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Neutrinoless doubleb decay and effective field theory
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We analyze neutrinoless doubleb decay (0nbb decay! mediated by heavy particles from the standpoint of
effective field theory. We show how symmetries of the 0nbb-decay quark operators arising in a given particle
physics model determine the form of the corresponding effective, hadronic operators. We classify the latter
according to their symmetry transformation properties as well as the order at which they appear in a derivative
expansion. We apply this framework to several particle physics models, including R-parity violating super-
symmetry~RPV SUSY! and the left-right symmetric model~LRSM! with mixing and a right-handed Majorana
neutrino. We show that, in general, the pion exchange contributions to 0nbb decay dominate over the short-
range four-nucleon operators. This confirms previously published RPV SUSY results and allows us to derive
new constraints on the masses in the LRSM. In particular, we show how a nonzero mixing anglez in the
left-right symmetry model produces a new potentially dominant contribution to 0nbb decay that substantially
modifies previous limits on the masses of the right-handed neutrino and boson stemming from constraints from
0nbb decay and vacuum stability requirements.
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I. INTRODUCTION

The study of neutrinoless double beta decay (0nbb de-
cay! is an important topic in particle and nuclear physics~for
recent reviews, see Refs.@1–3#!. The discovery of neutrino
oscillations in atmospheric, solar and reactor neutrino exp
ments proves the existence of a nonvanishing neutrino m
@4–6#. While oscillation experiments provide information o
mass-squared differences, they cannot by themselves d
mine the magnitude of the neutrino masses nor determin
neutrinos are Majorana particles. If the neutrino sector of
‘‘extended’’ standard model includes massive, Majorana n
trinos, then 0nbb decay provides direct information on th
Majorana masses. Indeed, since Majorana neutrinos vio
lepton number (L), Feynman graphs such as the one d
picted in Fig. 1~a! are nonvanishing. In particular, if th
e,m,t neutrinos have nonvanishing Majorana masses,
analysis of 0nbb coupled with data from neutrino oscilla
tions provides limits on the absolute value of these lig
neutrino masses@7#.

Neutrinolessbb decay can also be a probe for hea
mass scales. For example, in the left-right symmetric mo
@2,8,9#, a heavy right-handed neutrino also contributes to
process; it can even be dominant depending on the value
the elements of the mixing matrix. Thus, 0nbb can be a tool
for the exploration of energy scales beyond the electrow
symmetry breaking scale. Alternatively, theL-violating inter-
actions responsible for 0nbb decay may not involve Majo-
rana neutrinos directly. For example, semileptonic, R par
0556-2821/2003/68~3!/034016~19!/$20.00 68 0340
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violating ~RPV! supersymmetric ~SUSY! interactions,
involving exchange of charged-lepton superpartners@an ex-
ample of which is given in Fig. 1~b!# rather than Majorana
neutrinos, can give rise to 0nbb decay@10–12#. Here again
0nbb decay provides a probe of the heavy SUSY mass s
and imposes constraints on RPV SUSY parameters@13#. Fur-
thermore, these alternative scenarios for 0nbb decay are
relevant for the study of Majorana neutrinos since a
0nbb-decay mechanism will generate Majorana masses
the neutrinos@14#.

The left-right symmetric model and RPV SUSY are b
two of a number of models that involve a heavy mass sc
Lbb that characterizes the heavy,L-violating physics. Al-
though the effects of these mechanisms will typically be s
pressed by some inverse power ofLbb , 0nbb decay medi-
ated by light neutrinos can also be suppressed since
amplitude is proportional to the neutrino effective ma
Thus, it is important to analyze systematically the potentia
comparable contributions stemming fromL-violating mecha-
nisms mediated by heavy particles. SinceLbb is far heavier
than any hadronic scale that would enter the problem, th
exists a clear separation of scales in this case. For the an
sis of such situations, effective field theory~EFT! is the tool
of choice.

In what follows, we systematically organize th
0nbb-decay problem using EFT, focusing onL-violation
mediated by heavy physics~for other efforts along these
lines, see Refs.@15–17#!. Since the particle physics dynam
ics of this heavy physics occur primarily at short-distan
©2003 The American Physical Society16-1
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FIG. 1. ~a! 0nbb through the exchange of a
Majorana neutrino.~b! 0nbb through the ex-
change of two selectrons and a neutralino in RP
SUSY.
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one may ‘‘integrate out’’ the heavy degrees of freedom, le
ing an effective theory of quarks and leptons; these qua
lepton operators in turn generate hadron-lepton operators
have the same transformation properties under various s
metries. In this work, only the lightest quarks are consider
with the relevant symmetries being parity and stro
SU(2)L3SU(2)R @chiral SU~2!#. The effective hadron-
lepton Lagrangian for this theory,LEFF

0nbb , contains an infinite
tower of nonrenormalizable operators, which may be syst
atically classified in powers ofp/LH , p/Lbb andLH /Lbb .
Here,p denotes any small quantity, such asmp or the energy
of the dilepton pair andLH;1 GeV is a hadronic mas
scale. While the coefficients of the effective operators
LEFF

0nbb are unknown,1 the symmetry properties of the unde
lying short-distance physics may require that certain oper
coefficients vanish.

These symmetry properties can have significant con
quences for the size of 0nbb-decay nuclear matrix elemen
and, thus, for the short-distance mass scale deduced
experimental limits. Specifically, the hadronic vertices a
pearing inLEFF

0nbb will be of the typeNNNNee, NNpee and
ppee, etc. They stem from quark-lepton operators hav
different transformation properties under parity and ch
SU~2!; as such, they will contribute to different orders in th
p/LH expansion.

Traditionally, the short-rangeNNNNee contribution to
0nbb decay has been analyzed using a form-factor appro
@18# where the finite size of the nucleon is taken into acco
with the use of a dipole form-factor. The form-factor ove
comes the short-range repulsive core inNN interactions that
would otherwise prevent the nucleons from ever gett
close enough to exchange the heavy particles that med
0nbb decay. The disadvantage of a form-factor model
that the error introduced by the modeling cannot be e
mated systematically in contrast to the EFT approach. A
cussion of theNNNNeevertex within the framework of EFT
will appear later in this paper.

In contrast to the short range contribution to 0nbb decay,
the long range contributions involve the exchange of pio
@19# through theNNpeeandppeevertices. Although these
long range contributions have been analyzed in the fo
factor approach@20#, they are more systematically analyze
within the context of EFT because of the separation
scales:mp,LH!Lbb . As noted in Ref.@21#, for example,
the matrix elements associated with the long range pio

1The computation of these coefficients from the underlying qua
lepton interaction introduces some degree of uncertainty—a p
lem we will not address in this work.
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effects allowed under RPV SUSY scenarios can be do
nant. However, we show that the dominance of pion
change in 0nbb decay mediated by heavy physics is a mo
general result not limited to RPV SUSY. These pionic effe
can be considerably larger than those obtained using the
ventional form factor model for the short-rangeNNNNee
process. For these reasons, the analysis of the long r
contributions to 0nbb decay in EFT will be the main focus
of this paper.

The various types ofL-violating operators that contribut
to the long range contributions of 0nbb decay appear a
different orders in thep/LH expansion withp;mp , and the
order at which they appear depends on their symmetry p
erties. It is therefore important to delineate clearly the sy
metry properties ofLEFF

0nbb for various types ofL-violating
operators and use these symmetries to relate the had
lepton operators to the underlying quark-lepton operato
Carrying out this classification constitutes the first comp
nent of this study. In doing so, we also comment on
standard approach to deriving 0nbb-decay nuclear operator
and correct some errors appearing in the literature.

The second step in our treatment involves derivi
0nbb-decay nuclear operators fromLEFF

0nbb and expressing
the rate in terms of corresponding nuclear matrix eleme
For anybb-decay mode to occur, the final nucleus must
more bound than any other prospective singleb-decay
daughter nucleus. Suchb-forbidden butbb-allowed nuclei
only occur for sufficiently heavy nuclei. Thus, the extracti
of the short-distance physics that gives rise to 0nbb decay
~at present, only upper limits on the decay rates exist! de-
pends on a proper treatment of the many-body nuclear p
ics. Having in hand the appropriate set of nuclear opera
~for a given L-violation scenario!, one could in principle
compute the relevant nuclear matrix elements. Unfortunat
it is not yet possible to do so in a manner fully consiste
with EFT. This problem has been studied extensively in
case of theNN and three-nucleon systems, where the sta
of-the art involves use of chiral symmetry to organize~and
renormalize! the relevant nuclear operators@22–25#. Out of
necessity, we follow the same philosophy here. Nonethel
the organization of various 0nbb-decay operators based o
symmetry considerations and EFT power counting sho
represent an improvement over present treatments of
nuclear problem.

As a final step, we relate the various nuclear operat
obtained fromLEFF

0nbb to different particle physics models fo
L-violation. Doing so allows us to determine which nucle
mechanisms dominate the rate for a given particle phy
model. For example, in both the RPV SUSY and the le
right symmetric model with mixing of the gauge bosons, t

-
b-
6-2
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FIG. 2. Diagrams that contribute to 0nbb at
tree level. The exchange diagrams are not
cluded.
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ppee contribution to the 0nbb-decay amplitude is signifi-
cantly larger than that of the short rangeNNNNeecontribu-
tion. In contrast, for left-right symmetric models with n
mixing, these contributions are of a similar magnitude. W
also show how this largeppee contribution to 0nbb decay
substantially affects the relationship between the masse
the right-handed neutrino and gauge boson including a
correlation between the minimum mass of the right-han
neutrino and theWL2WR mixing angle. In short, the sens
tivity of the 0nbb decay searches is strongly affected by t
symmetry transformation properties of the operators c
tained in a given particle physics model.

The remainder of our paper is organized as follows.
Sec. II, we classify the operators inLEFF

0nbb according to their
symmetry properties andp/L counting and we tabulate th
various quark-lepton operators according to the hadron
ton operators they can generate. In Sec. III we use the l
ing operators to derive nonrelativistic nuclear operators
compare their structure with those appearing in conventio
treatments. In Sec. IV we work out the particle physics i
plications under various scenarios, namely RPV SUSY
the left-right symmetric model and compare them to ea
other. We summarize our conclusions in Sec. V.

II. EFFECTIVE 0 nbb-DECAY OPERATORS

The classification of the operators inLEFF
0nbb relies on two

elements:
~i! The use of symmetry to relate effective lepton-hadr

0nbb-decay operators to those involving quarks and l
tons. The relevant symmetries are parity and chiral SU~2!.
Indeed, because the lepton-hadron effective operators
generated from the quark-lepton operators through strong
teractions, they should retain the same parity and ch
structure.

~ii ! The organization of these effective lepton-hadron o
erators in an expansion in powers of a small momentump.

To organize the nonstandard model~NSM! operators in
powers ofp, consider first the long rangep-exchange con-
tributions to 0nbb decay of Figs. 2~a!–2~c!. The fact that
pions are Goldstone bosons allows us to use chiral pertu
tion theory@26,27# to classify the NSM hadronic operators
terms of ap/LH expansion, withLH54p f p;1 GeV and
p;mp wheref p.92.4 MeV is the pion decay constant. Th
leading order~LO! quark operators should therefore indu
effective hadronic operators that do not involve derivativ
of the pion fields or pion mass insertions,2 the next-to-
leading order~NLO! operators would involve a single de

2At tree level, the pion mass insertions always have the formmp
2

and therefore do not contribute at LO or NLO.
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rivative of the pion field, the next-to-next-to-leading ord
~NNLO! would involve two derivatives or pion mass inse
tions and so on. This approach to 0nbb decay is similar to
the application of effective field theory to purely hadron
DS50 parity-violating operators that was done in@28# and
the same notation will be used.

The power counting for the long-range 0nbb-decay op-
erators will involve the chiral order of the standard mod
~SM! operators as well as the chiral order of the NSM o
erators. For the SM operators, these counting rules ar
follows: ~i! a pion propagator isO(1/p2) while ~ii ! each
derivative of the pion field and the LO strongpNN vertex is
O(p).

As for the short range operators@Fig. 2~d!#, the hadronic
part is constructed from a 4-nucleon vertex. This vertex c
also be expanded in powers of the nucleon’s 3-moment
However, the chiral counting suggests that the leadingO(p0)
four-nucleon vertex is already strongly suppressed relativ
the long range 0nbb-decay operators such that th
4-nucleon vertex can be neglected to lowest order. Inde
with these rules, the chiral counting of the 0nbb-decay op-
erators of Figs. 2~a!–2~d! is

Fig. 2~a!;Kppp22,

Figs. 2~b!,2~c!;KNNpp21,

Fig. 2~d!;KNNNNp0, ~1!

where theKi denote the order of the NSM hadronic vertice
In general, the LO vertex in each diagram isO(p0), though
in certain cases symmetry considerations require that
leading order vertex vanish~see below!. Thus, the long range
0nbb-decay operators of Figs. 2~a!–2~c! are enhanced by
1/p2 and 1/p, respectively, relative to the short-range ope
tor of Fig. 2~d!. In what follows, we will consider contribu-
tions generated by all of the diagrams in Fig. 2. Since the
contribution from Fig. 2~d! is O(p0), we must include con-
tributions from Figs. 2~a!–2~c! through this order as well
Consequently, we consider all terms inKpp and KNNp to
O(p2) andO(p), respectively.

A. Quark-lepton Lagrangian

In order to construct the hadron-lepton operators, we
gin by writing down the quark-lepton Lagrangian for 0nbb
decay. This is done by considering all the nonvanishing,
equivalent, lowest-dimension quark-lepton operators that
Lorentz-invariant and change lepton number by two units
6-3
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L 0nbb
q 5

GF

Lbb
$~o1O11

111o2O21
111o3O22

111o4O31
111o5O32

11!ēec1~o6O11
111o7O21

111o8O22
111o9O31

11

1o10O32
11!ēg5ec1~o11O41

11,m1o12O42
11,m1o13O51

11,m1o14O52
11,m!ēgmg5ec1H.c.%, ~2!
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where

O11
ab 5~ q̄LtagmqL!~ q̄RtbgmqR!, ~3!

O 26
ab 5~ q̄RtaqL!~ q̄RtbqL!6~ q̄LtaqR!

3~ q̄LtbqR!, ~4!

O 36
ab 5~ q̄LtagmqL!~ q̄LtbgmqL!

6~ q̄RtagmqR!~ q̄RtbgmqR!, ~5!

O 46
ab,m5~ q̄LtagmqL7q̄RtagmqR!~ q̄LtbqR

2q̄RtbqL!, ~6!

O 56
ab,m5~ q̄LtagmqL6q̄RtagmqR!~ q̄LtbqR

1q̄RtbqL!. ~7!

The qL,R5(u,d)L,R are left-handed and right-handed iso
pinors and thet ’s are Pauli matrices in isospace. Whena
5b, the operators with subscript1 (2) are even~odd!
eigenstates of parity as can be verified by noting that
parity operator simply interchanges left-handed spinors w
right-handed spinors. This list of nine operators was arriv
at by inspection.3 Other operators that could have been wr
ten down are either equivalent to those in Eqs.~3!–~7! or
vanish as shown in Appendix A. In particular, all operato
proportional toēsmnec, ēg5smnec and ēgmec vanish since
these leptonic currents are identically zero as can be ver
with the use of Fierz transformations. Some of these van
ing leptonic currents were erroneously taken as nonzer
Ref. @17#. Similarly, a quark operator, like
q̄smnt6qq̄smnt6q, can be reexpressed in terms ofO 26

66 by
applying a Fierz transformation despite the color indic
since the hadronic matrix elements of four-quark opera
only select their color singlet part.4

Recalling that fermion fields have mass dimension 3
note that the operators appearing inL 0nbb

q have mass dimen
sion nine. Therefore, the overall coefficients have dim
sions@Mass#25. In Eq. ~2!, this scale factor is expressed
GF

2/Lbb where Lbb remains to be determined. Derivativ

3In writing down Eqs.~3!–~7!, we suppressed the color indice
since EFT only relates color-singlet quark operators to hadro
operators.

4The projection onto color singlet states introduces a new fa
that can ultimately be absorbed in theoi ’s.
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quark operators are suppressed by extra powers ofLbb and
need not be considered further.

The operators inL 0nbb
q can be generated by various pa

ticle physics models, but not all of them are necessarily g
erated in a single model. For example, the left-right symm
ric model always involves the product of left-handed and
right-handed currents, while onlyO11

ab andO 36
ab are of that

form. Thus,O 26
ab , O 46

ab,m and O 56
ab,m cannot appear in the

left-right symmetric model. Another example is a minim
extension of the standard model with only left-handed c
rents and Majorana neutrinos; in this scenario, onlyO 36

ab

could appear. On the other hand, these operators all appe
RPV SUSY. This observation will allow a classification o
these particle physics models later in this paper.

Since 0nbb decay always requiresa5b56, the O’s
have definite transformation properties. Using the quark fi
transformation properties under chiral SU~2!,

under SU~2!L3SU~2!R: qL→LqL , qR→RqR, ~8!

where theL and R transformation matrices have the for
exp$PL,RuL,R% and

uL,R[
1

2
tW•uW L,R , PL,R[

1

2
~17g5!, ~9!

we derive the transformation properties of theO i 6
ab(m) under

chiral SU~2!,

O11
ab →~ q̄LL†tagmLqL!~ q̄RR†tbgmRqR!, ~10!

O 26
ab →~ q̄RR†taLqL!~ q̄RR†tbLqL!

6~ q̄LL†taRqR!~ q̄LL†tbRqR!, ~11!

O 36
ab →~ q̄LL†tagmLqL!~ q̄LL†tbgmLqL!

6~ q̄RR†tagmRqR!~ q̄RR†tbgmRqR!, ~12!

O 46
ab,m→~ q̄LL†tagmLqL7q̄RR†tagmRqR!

3~ q̄LL†tbRqR2q̄RR†tbLqL!, ~13!

O 56
ab,m→~ q̄LL†tagmLqL6q̄RR†tagmRqR!

3~ q̄LL†tbRqR1q̄RR†tbLqL!. ~14!

We observe thatO11
ab belongs to the (3L,3R) representation

of SU(2)L3SU(2)R ~from here on, the subscriptsL,R are
dropped! in the sense that the first superscripta transforms
like a triplet under SU(2)L while the second superscriptb

ic

r

6-4
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transforms like a triplet under SU(2)R. Note that onlyO11
ab

belongs to a representation of chiral SU~2!. The other
O i 6

ab(,m)’s are superpositions of operators that have differ
transformation properties under chiral SU~2!. This is not sur-
prising since the generators of chiral SU~2! do not commute
with the parity operator as they involveg5. For instance,
(q̄Lt6gmqL)(q̄Lt6gmqL) changes isospin by two units an
is a singlet under SU(2)R such that it belongs to~5,1! while
(q̄Rt6gmqR)(q̄Rt6gmqR) belongs to~1,5!. Hence,O 36

66 be-
longs to (5,1)% (1,5).

B. Hadron-lepton Lagrangian

Let us now turn to the derivation of theppeevertex from
the quark operators. This will be followed by a similar ana
sis for theNNpee andNNNNeevertices.

1. ppee vertex

To derive the hadronic vertex, first consider parity. T
product of two pion fields being even under parity, only po
tive parity operators can contribute. Secondly, note t
O41

66,m andO51
66,m must give rise to an operator of the for

p1]mp1ēgmg5ec1H.c. ~15!

A partial integration shows that this operator is suppres
by one power of the electron mass, and is therefore ne
gible.

Thus, the only terms inL 0nbb
q that contribute are

GF
2

Lbb
$O11

11ē~o11o6g5!ec1O21
11ē~o21o7g5!ec

1O31
11ē~o41o9g5!ec1H.c.%. ~16!

The hadronic operators that stem from these quark op
tors must have the same transformation properties and ca
written down by introducing the following fields@28#:

XR
a5jtaj†, XL

a5j†taj, Xa5jtaj, ~17!

j5exp~ ip/ f p!

5expF i

A2 f p
S t1p11t2p21

1

A2
t3p0D G ~18!

p65
1

A2
~p17 ip2!, N: Nucleon field. ~19!

The transformation properties of the above fields under p
ity are

p→2p, j↔j†, XR
a↔XL

a , Xa↔X†a, N→g0N,
~20!

while under SU(2)L3SU(2)R they transform as

j→LjU†5UjR† ~21!
03401
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Xa→Uj R†taL jU† ~22!

XL
a→Uj† L†taL jU† ~23!

XR
a→Uj R†taR j†U† ~24!

N→UN. ~25!

The transformation matrixU only depends on thet ’s and the
pion field.

At LO ~no derivatives!, the two-pion operator stemmin
from theO11

66 operator is

O11
66→tr@F11

66#[tr@XL
6XR

61XR
6XL

6#

5
4

f p
2

p7p71•••, ~26!

while the one generated byO21
6 is

O21
6 →tr@F21

66#[tr@X6X61X†6X†6#

52
4

f p
2

p7p71•••. ~27!

Here,F1,26
66 are defined

F16
66[XL

6XR
66XR

6XL
6 ,

F26
66[X6X66X†6X†6, ~28!

and the6 subscript refers to the transformation properties
the F i 6

66’s under parity.
Note that when the traces ofF11

66 andF21
66 are expanded

up to two powers of the pion field, they are physically ind
tinguishable since the relative minus sign can be absorbe
an operator coefficient referred to as a low energy cons
~LEC!.

Now consider the case of the two-pion operator genera
by O31

66 ; to LO the hadronic operator should be

tr@XL
1XL

11XR
1XR

1#50. ~29!

Thus, there exists no (5,1)% (1,5) hadronic operator with no
derivatives.

The LO Lagrangian for theppee vertex is therefore

L(0)
ppee5

GF
2

Lbb
$tr@F11

11#ē~a1bg5!ec

1tr@F11
22#ēc~a1bg5!e1tr@F21

11#ē~a81b8g5!ec

1tr@F21
22#ēc~a81b8g5!e%, ~30!

where a,b,a8,b8 are LEC’s. Note that although there a
nominally four LEC’s, once the traces of theF i

6’s are ex-
panded, there are in practice only two:a2a8 andb2b8.

In contrast to theoi ’s, thea,b,a8,b8 are dimensionful. It
is useful to express them in terms of dimensionless par
eters~denoted in this work by Greek letters! with the aid of a
6-5
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TABLE I. Cross-reference table between nucleon and quark operators. TheX indicates that the quark
operator cannot generate the corresponding nucleon operator while theA indicates that it can.

NNNNops. O11
66 O21

66 O22
66 O31

66 O32
66 O41

66,m O42
66,m O51

66,m O52
66,m

N11
66

A A X A X X X X X
N21

66
A A X A X X X X X

N31
66

A A X A X X X X X
N41

66,m X X X X X A X A X
N42

66,m X X X X X X A X A
ar
a

.

d

ies

e
on
n

ls

O

-

a-

-
from
scaling rule. In a scaling rule, the hadronic operators
divided by the relevant scales such that their coefficients
dimensionless and of a ‘‘natural’’ size. We follow the na¨ive
dimensional analysis~NDA! scaling rules given in Ref.@29#
and modified here to account for the lepton bilinears:5

S N̄N

LHf p
2 D kS ]m

LH
D l S p

f p
D mS f p

2 GF
2

Lbb
ēecD

3~LHf p!2. ~31!

Justification for this scaling rule is given in Appendix B
Note that the scaling factor (p/ f p)m is already properly ac-
counted for in the definition ofj and need not be applie
again in Eq.~30! after expanding theF ’s to two pions. For
the nonderivativeppee vertex, we have (k,l ,m)5(0,0,2)
and

L(0)
ppee5

GF
2LH

2 f p
2

Lbb
$p2p2ē~b11b2g5!ec

1p1p1ēc~b12b2g5!e%. ~32!

Consider now the higher order contributions to theppee
vertex. As discussed below Eq.~15!, there is no NLO con-
tribution. Hence,L(1)

ppee50.
At NNLO, not only do O 11

66 and O 21
66 generate two-

derivative hadronic operator, but so doesO 31
66

O 31
66→ 1

2
tr@D mXL

6DmXL
61D mXR

6DmXR
6#, ~33!

where the chiral covariant derivative is given by

Dm5]m2 iVm , Vm5
1

2
i ~j]mj†1j†]mj!. ~34!

The operatorDmXL,R has the same transformation propert
under chiral SU~2! asXL,R .

The only other contribution stems from quark mass ins
tions that always generate squared pion mass inserti
Writing the NNLO contributions directly in terms of pio
fields, we obtain

5We neglect electromagnetic effects.
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L(2)
ppee5

GF
2f p

2

Lbb
$]mp2]mp2ē~b31b4g5!ec

1mp
2 p2p2ē~b51b6g5!ec1H.c.%. ~35!

Note that theb5,6 terms constitute corrections tob1,2→b1,2

1mp
2 b5,6 that can be ignored in particle physics mode

where the LO operators contribute sinceb1,2 must be
measured.6

2. NNpee vertex

We analyze theNNpee vertex of Figs. 2~b! and 2~c! us-
ing similar logic as in the foregoing discussion. The L
Lorentz-scalarNNp operator isN̄t6p7N which is odd un-
der parity. Therefore,O11

66 , O21
66 andO31

66 cannot contrib-
ute since they are parity even. As forO32

66 , notice that as in
the ppee case, the LO contribution (XL

6XL
62XR

6XR
6) van-

ishes.
The operatorN̄t6p7N can only be induced byO22

66 .
The result is

O22
66→N̄F22

66N. ~36!

It is straightforward to verify thatN̄F22
66N transforms pre-

cisely like O22
66 under SU(2)L3SU(2)R.

In addition,O 46
66,m andO 56

66,m also generate LO contri
butions to theNNp operator,

O41
66,m ,O51

66,m→N̄gmg5F32
66N,

O42
66,m ,O52

66,m→N̄gmF32
66N, ~37!

where

F32
665~XL

61XR
6!~X62X6†!, ~38!

as can be checked explicitly by considering the transform
tion properties under chiral SU~2! and parity. TheNNpee
LO Lagrangian can now be written down,

6As discussed in Ref.@30#, EFT relates the two-derivativeppee
operator to the27-plet K→2p decays indicating the possible exis
tence of an extra suppression factor beyond that deduced
power counting.
6-6
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L (0)
NNpee5

GF
2

Lbb
$N̄F22

11Nē~c1dg5!ec1N̄gm~ f 11 f 2g5!F32
11Nēgmg5ec1H.c.%

>
GF

2LHf p

Lbb
$N̄t1p2Nē~z11z2g5!ec1N̄gm~z31z4g5!t1p2Nēgmg5ec1H.c.%, ~39!
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where thez i are dimensionless LEC’s introduced using E
~31! with (k,l ,m)5(1,0,1) and where we have expanded t
F ’s to one pion.

At NLO, O11
66 , O21

66 , O32
66 andO31

66 contribute to the
NNp operator,

O11
66→N̄g5F12

66N, ~40!

O21
66→N̄g5F22

66N, ~41!

O32
66→N̄$gm@XL

6~2 iDmXL
6!2XR

6~ iDmXR
6!#%N, ~42!

O31
66→N̄$gmg5@XL

6~2 iDmXL
6!2XR

6~ iDmXR
6!#%N. ~43!

The first thing to note is that a term likeN̄g5pN is sublead-
ing because in the nonrelativistic reduction, theg5 couples
small and large components of the nucleon spinors. S
ondly, we observe that Eqs.~40!, ~41! and~43! are physically
indistinguishable on shell when expanded to one pion an
the order we are considering, as seen from the equation
motion. Thirdly, Eq.~42! is negligible even at NLO becaus
the equations of motion can be used to show thatN̄]”pN is
proportional to the electron momentum. Therefore,O32

66

does not contribute to theNNpee vertex.
Other contributions toO(p) include terms normally ne

glected at LO in the nonrelativistic reduction of Eq.~39!,
namely the terms proportional toz3 and z4 with m51,2,3
andm50, respectively, where LO and NLO components
the nucleon spinors are coupled. These are the only co
butions to theNNpee vertex since themp

2 insertions are of
O(p2) and excluded as discussed below Eq.~1!. Hence, the
only new contribution toO(p) is

L (1)
NNpee5

GF
2LHf p

Lbb
N̄g5t1p2Nē~z51z6g5!ec1H.c.

~44!

where the scaling rule in Eq.~31! was used with (k,l ,m)
5(1,1,1). L (1)

NNpee is subleading because theg5 couples the
large and small components of the nucleon spinors and
03401
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result is proportional top/M whereM is the nucleon mass
andp is the magnitude of the nucleon three-momentum@31–
35#.

3. NNNNee vertex

To identify the quark operators that generate t
0nbb-decay four-nucleon operators, we insert the hadro
fields XLR

66 , X66, X†66 in all possible ways into

N̄GNN̄G8N and use their transformation properties und
chiral SU~2! to relate them to theO i 6

66(,m) . The four-
nucleon operators are then obtained by expanding these
ronic fields to LO and ignoring all contributions from pio
loops. Thus, it is not necessary to insert these hadronic fi
in all possible ways; we only need to show that a particu
quark operator can generate a particular nucleon oper
with the same transformation properties under parity and
ral SU~2!.

For example, the LO operator (N̄t6N)2 can be generated
by O11

66 . The latter transforms the same way under par
and chiral SU~2! as the hadronic operator

~N̄XL
6N!~N̄XR

6N!. ~45!

At zero pion order, theXL
6 andXR

6 both becomet6, so that

the operator in Eq.~45! just becomes (N̄t6N)2. In a similar
fashion, it can be easily shown that the following five ope
tors:

N11
665~N̄t6N!2, N21

665~N̄t6gmN!~N̄t6gmN!,

N31
665~N̄t6g5gmN!~N̄t6g5gmN!,

N41
66,m5~N̄t6gmN!~N̄t6N!,

N42
66,m5~N̄t6g5gmN!~N̄t6N!, ~46!
l-
FIG. 3. ~a! Example of a graph that renorma
izes the LEC’s that multiplies themp

2 and two-
derivative ppee vertex. ~b! Example of a new
vertex (ppppee) that contributes to 0nbb at
NNLO.
6-7
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exhaust the list of possible LO four-nucleon operators7 that
can be generated by the checkedO i 6

66(,m)’s in Table I.
The LO four-nucleon Lagrangian is therefore given by

L 0
NNNNee5

GF
2

Lbb
$~j1N11

111j2N21
111j3N31

11!ēec1~j4N11
11

1j5N21
111j6N31

11!ēg5ec1~j7N41
11,m

1j8N42
11,m!ēg5gmec1H.c.%, ~47!

where thej i ’s are dimensionless.
In concluding this section, we discuss a few issues t

will require future work. The first involves the application o
EFT to heavy nuclei. As pointed out earlier, no fully cons
tent treatment for such situations has yet been develope
principle, one could imagine following a program similar
spirit to the EFT treatment of few-body systems. In that ca
there has been recent progress in developing a consi
power counting for EFT with explicit pions@24,25#. The ap-
proach involves including the LOp-exchange contribution
to the NN potential, expanding it about the chiral limit (mp

2

→0), and obtaining two-body wave functions by solving t
Schrödinger equation with the chirally expanded potenti
To be consistent, operators would also be expanded to
same chiral order as the potential and matrix elements c
puted using the corresponding wave functions. This appro
appears to reproduce the consistent momentum power co
ing obtained with perturbative pions in the1S0 channel and
the convergence obtained with nonperturbative pions
the3S1- 3D1 channel. In going to more complex nuclei, on
might explore a marriage of the chiral expansion with tra
tional many-body techniques~e.g., shell model or RPA!, in
which case one would require a corresponding chiral cou
ing of nuclear operators. In organizing the 0nbb-decay had-
ronic operators according to both the derivative and ch
expansion, we have taken one step in this direction. For
moment, however, we will have to content ourselves w
using these operators along with wave functions obtai
from traditional many-body techniques.

A second issue is the presence of higher partial wave
the two-body transition matrix elements appearing in 0nbb
decay. A fully consistent treatment would, therefore, requ
that one include the corresponding higher-order operators
task that is clearly impractical at present. Fortunately, in
case, there is reason to believe our qualitative conclus
about the dominance of long-range, pion-exchange opera
are fairly insensitive to this issue. For the cases where the
ppee are not forbidden by the symmetries of the qua
lepton operators, the LOp-exchange operator arising from
Fig. 2~a! will always give the LO contribution to the trans
tion matrix element, regardless of the partial wave decom
sition of the two-nucleon initial and final states. In gener
then, we expect that matrix elements of these opera
should always be enhanced relative to those involving

7Since N̄g5N and (N̄g5gmN)(N̄gmN) are proportional top/M ,
they are subleading in the nonrelativistic limit.
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four-nucleon contact operators orp-exchange operators ob
tained with higher-order pionic vertices. Indeed, some e
dence to this effect is given by the computation of Ref.@39#,
where the relative importance of the LOp-exchange opera
tors and short-range operators was compared for R
SUSY.8

Finally, when NNLO and NLO interactions are include
at tree level, loop graphs must also be included to be con
tent with the power counting~examples of which are given
in Fig. 3!. These loop graphs are handled according to
chiral perturbation theory prescription by which the dive
gences renormalize the LEC’s that multiply themp

2 and two-
derivative ppee vertex of Eq. ~35!. In this context, loop
graphs that renormalize theNNpee vertex are N3LO and
can be ignored. Indeed, this can be demonstrated u
power counting where each loop involves a factor ofp4

while nucleon propagators count asp21 @36–38#.
When loops are included, new lepton-violating tree lev

vertices can contribute inside the loop graphs, such as
ppppee vertex of Fig. 3~b!. Other new vertices that could
potentially contribute at the one loop level areNNppeeand
pppee vertices. In short, a large number of Feynman d
grams may need to be calculated at NNLO. We defer a
cussion of such loop contributions to a subsequent study

To summarize the conclusions of the analysis, Table
lists the quark-lepton operators that contribute to the vari
hadron operators at LO. One important result indicated in
table is the fact that if the short-distance physics respons
for 0nbb decay belongs to a representation of SU(2L
3SU(2)R , only operators that belong to the~3,3! and
(5,1)% (1,5) can generate 0nbb decay and therefore, only
O11

66 and O31
66 can contribute. For example, the left-righ

symmetric model with mixing between left- and righ
handed gauge bosons induces operators belonging to
~3,3! as well as the (5,1)% (1,5). From Table II, the LO
0nbb-decay operator that contributes in this case is gen
ated by Fig. 2~a! and isO(p22).

Alternatively, consider a short-distance model involvin
products of two left-handed currents or two right-handed c
rents only. Such a situation arises, for instance, in the l
right symmetric model when theWL andWR bosons do not
mix. For this scenario, onlyO31

66 contributes, and there ar
no LO contributions to theppee andNNpee vertices. The
first nonzero contributions to the hadronic part of these v
tices are given by Eqs.~33! and~43! as well as contributions
that includemp

2 insertions. The resulting contribution to th
amplitude isO(p0). In this case, both the long- and shor
range nuclear operators occur at the same order.

III. NUCLEAR OPERATORS TO LO AND NLO

In the calculation of the 0nbb-decay amplitude, the
Feynman diagrams of Fig. 2 must be calculated toO(p0),
wherep is the small momentum used as an expansion

8However, in that work, the traditional, form factor approach w
used to compute short-range effects.
6-8
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TABLE II. Leading order 0nbb-decay hadronic-lepton operators generated by the various quark-le
operators.

0nbb-decay ops. O11
66 O21

66 O22
66 O31

66 O32
66 O41

66,m O42
66,m O51

66,m O52
66,m

ppee LO A A X X X X X X X
ppee NNLO A A X A X X X X X
NNpee LO X X A X X A A A A

NNpee NLO X A X A X A A A A

NNNNeeLO A A X A X A A A A
t
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ar

le
rameter. As discussed below Eq.~1!, this implies that we
need to include NNLOppee operators, NLONNpee op-
erators and LONNNNeeoperators.

From the ppee Lagrangian of Eq. ~32!, the LO
0nbb-decay amplitude of Fig. 2~a! is calculated to be

M0
pp52

gA
2GF

2LH
2 M2

Lbb

8~ ūp3g5un1!~ ūp4g5un2!

~q1
22mp

2 1 i e!~q2
22mp

2 1 i e!

3ūe1g2g0~b11b2g5!ūe2
T , ~48!

whereq15P12P3 , q25P22P4 as defined in Fig. 2~a! and
gA51.27 is the usual axial pion-nucleon coupling related
gpNN by the Goldberger-Treiman relation.

As for the NLO, recall from Eq.~15! and the discussion
that followed that theppee vertex has no NLO contribu
tions. Thus, the NLO 0nbb-decay nuclear operators a
given by Figs. 2~b! and 2~c!. Note that experiments planne
and under way involve mainly ground state to ground st
transitions 01→01 which are favored by phase space co
siderations. The nuclear matrix elements of all the opera
of L 0

NNpee @Eq. ~39!# vanish for this transition by parity.9

There are therefore no NLO contributions for the 01→01

transition andM0
pp is the only nonvanishing amplitud

throughO(p). Nevertheless, we provide the expressions
the NLO nuclear operators in Appendix C for completene

Taking the nonrelativistic limit of Eq.~48! and Fourier
transforming to coordinate space yields

F.T.M0
pp.

1

12p

gA
2GF

2LH
2

Lbb
ūe1g2g0~b11b2g5!

3ūe2
T O 0

pp~xW1 ,xW2 ,xW3 ,xW4!, ~49!

where the nuclear operator is given by

O 0
pp~xW1 , . . . ,xW4!

52d~xW12xW3!d~xW22xW4!~x3,a
† x1,b!

3~x4,f
† x2,d!

1

r
@F1sW ab•sW fd1F2Taf,bd#, ~50!

9Recall from above thatN̄g5N and N̄g iN, i 51,2,3, are NNLO
operators that couple the large and small components of the nuc
spinors.
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and

Taf,bd[3sW ab• r̂sW fd• r̂2sW ab•sW fd . ~51!

The form-factors F1 and F2 were first introduced in Ref.@20#

F1~x!5~x22!e2x, F2~x!5~x11!e2x, ~52!

where x5mpr, r5uxW12xW2u is the distance between th
nucleons, andr̂5rW /r. However, in Ref.@20#, these form-
factors were derived within a minimal extension of the sta
dard model with only left-handed currents and heavy Ma
rana neutrinos; as was shown above by considering
possible representations to which the product of two le
handed weak currents can belong, this minimal extens
cannot give rise to the LOppee vertex that yields these
form-factors. In contrast, the derivation ofF1 and F2 was
performed here by considering the symmetry properties
the quark operators that could generate the hadro
0nbb-decay operators without specifying the short-distan
physics responsible for 0nbb decay.

Up to NLO, the 0nbb-decay half-life is therefore

1

T1/2
5

\c2

144p5ln 2

gA
4

R2

LH
4GF

4

Lbb
2 E

me

Ebb2me
dE1

3F~Z12,E1!F~Z12,E2!
1

2
@~b1

21b2
2!p1E1p2E2

2~b1
22b2

2!p1p2me
2#uM 0u2, ~53!

where F(Z,E) is the usual Fermi function describing th
Coulomb effect on the outgoing electrons with

M05^CA,Z12u(
i j

R

r i j
@F1~xi j !sW i•sW j

1F2~xi j !Ti j #t i
1t j

1uCA,Z&, ~54!

Ti j 53sW i• r̂ i j sW j• r̂ i j 2sW i•sW j , ~55!

E25Ebb2E1 , pi5AEi
22me

2. ~56!

Herer i j is the distance between thei th and j th neutrons in
the initial nucleusuCA,Z& or the distance between two pro
tons in the final stateuCA,Z12&, me is the mass of the elec
tron, R is a scale taken to be of the order of the nucle
on
6-9
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radius,10 sW i ( j ) acts on the spin of thei ( j )th neutron and the
isospin matrixt i ( j )

1 turns thei ( j )th neutron into a proton
Note that independently of the nuclear matrix element,
b1

22b2
2 part of the rate in Eq.~53! is always considerably

smaller ~by at least a factor of;10 from the kinematics!
than theb1

21b2
2 part which is the only one usually consid

ered.

A. Long range operators At NNLO

Consider now the long range operators at NNLO. We
interested in comparing the LO and NNLO tree-level lo
range contributions and for simplicity we will ignore contr
butions from loops,mp

2 insertions and the four-nucleon ve
tex which also contribute at NNLO.11 Thus, we only need the
hadronic operators of Eqs.~35! and ~44! rewritten here

M25
GF

2

Lbb
$ f p

2 ]mp2]mp2ē~b31b4g5!ec

1 f pLHN̄g5t1p2Nē~z51z6g5!ec1H.c.%. ~57!

The diagrams of Figs. 2~a!–2~c! can be evaluated using th
operators of Eq.~57!. The Fourier transform of the final re
sult is

M25
1

8p
gA

2
GF

2

Lbb
@ ūe1g2g0~b31b4g5!ūe2

T O 2
pp

3~xW1 , . . . ,xW4!1ūe1g2g0~z51z6g5!

3ūe2
T O 2

pNN~xW1 , . . . ,xW4!#, ~58!

with

O 2
pp~xW1 , . . . ,xW4!52d~xW12xW3!d~xW22xW4!~x3,a

† x1,b!

3~x4,f
† x2,d!

1

r3
~G1

ppsW ab•sW fd

1G2
ppTaf,bd! ~59!
03401
e

e

O 2
pNN~xW1 , . . . ,xW4!52

A2LH

gAM
d~xW12xW3!zd~xW22xW4!

3~x3,a
† x1,b!

3~x4,f
† x2,d!

1

r3
~G1

pNNsW ab•sW fd

1G2
pNNTaf,bd!, ~60!

and (x5mpr as before!

G1
pp52

x2

3
~42x!e2x, ~61!

G2
pp52F212x1

1

3
x22

1

3
x3Ge2x,

~62!

G1
pNN52

1

3
x2e2x, ~63!

G2
pNN52S 11x1

1

3
x2De2x. ~64!

The new form-factors G1
pp and G2

pp stem from theppee
vertex while G1

pNN and G2
pNN ~also given in Ref.@39#! stem

from the NNpee vertex. In contrast to the zero-derivativ
case, the amplitudes stemming from these two vertices ar
the same order in this minimal extension of the stand
model.

The corresponding half-life, assuming that Eq.~58! repre-
sents the only decay amplitude, is
d

1

T1/2
5

1

64p5ln 2
S \c

R D 6gA
4

\

GF
4

Lbb
2 c4Eme

Ebb2me
dE1F~Z12,E1!F~Z12,E2!

1

2 H FUb3M 2
pp1

A2LH

gAM
z5M 2

pNNU2

1Ub4M 2
pp

1
A2LH

gAM
z6M 2

pNNU2Gp1E1p2E22FUb3M 2
pp2

A2LH

gAM
z5M 2

pNNU2

2Ub4M 2
pp2

A2LH

gAM
z6M 2

pNNU2Gp1p2me
2J ,

~65!

with

10This scale is inserted to make the operator in Eq.~54! dimensionless. It is canceled by a corresponding factor of 1/R2 in the rate.
11We also ignore recoil order corrections from the amplitude of Fig. 2~a! whereKpp is of O(p0). In this case, the rate will be dominate

by terms in Eq.~53!.
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M 2
pp(pNN)5^CA,Z12u(

i j
S R

r i j
D 3

@G1
pp(pNN)~xi j !sW i•sW j1G2

pp(pNN)~xi j !Ti j #t i
1t j

1uCA,Z&. ~66!
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We can compare the rates of Eq.~53! and Eq.~65! by
assuming that all dimensionless constants are of the orde
unity with 1/r i j ;mp andLH;1 GeV, and that the nuclea
matrix elements cancel in the ratio

Eq. ~53!

Eq. ~65!
;

LH
4

mp
4

'103. ~67!

Note that this ratio agrees with our expectation based
power counting. We end this subsection by emphasizing
Eq. ~65! is not the general formula for the 0nbb-decay half-
life at NNLO ~which must include all contributing term
including loops, recoil effects,NNNNeeterms andmp

2 cor-
rections! since the LO contributions should be added if th
do not vanish from symmetry considerations before squa
the amplitude.

IV. PARTICLE PHYSICS MODELS

While our discussion so far has been quite general
independent of the underlying physics of the lepton-num
violation, we apply in this section our EFT analysis to tw
particle physics models: RPV SUSY and the left-right sy
metric ~LRS! model.

A. RPV SUSY

R-parity-violating supersymmetry can contribute to 0nbb
decay through diagrams like the one in Fig. 1~b!. Since su-
persymmetric particles are heavy, their internal lines can
shrunk to a point in tree level diagrams yielding operat
that involve only quarks and leptons. When the RPV sup
potential is expanded to yield a lepton number violating L
grangian, and a Fierz transformation is used to separate
tonic from quark currents, the result is@21#

Lqe5
GF

2

2M
ē~11g5!ecF ~h q̃1h f̃ !~JPJP1JSJS!

2
1

4
h q̃JT

mnJTmnG , ~68!

where

JP5q̄g5t1q, JS5q̄t1q,

JT
mn5q̄smn~11g5!t1q, ~69!

andh q̃ ,h f̃ are quadratic functions of the RPV SUSY para
eter,l1118 defined in Ref.@21#:
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g

d
r

-

e
s
r-
-
p-

-

h k̃5
2p

9

ul1118 u2M

GF
2mq̃

4 F2as

1

mg̃

1•••G ,

with k̃5q̃, f̃ . ~70!

HereM is the nucleon mass,mq̃ is a first generation squar
mass,mg̃ is the gluino mass,as is the running SU~3! C cou-
pling, and the1••• indicate contributions involving the firs
generation sleptons and lightest neutralino.12 Note that the
dependence onGF andM cancels from Eq.~68!, so that the
effective lepton-quark 0nbb-decay operator depends on fiv
inverse powers of SUSY masses.

It is useful to rewrite Eq.~68! in terms of our operators
O i 6

11 :

Lqe5
GF

2

2M
ē~11g5!ecF1

2
~h q̃1h f̃ !O21

112
3

14
h q̃~O21

11

2O22
11!G . ~71!

The first thing to note is thatO22
11 can be neglected for 01

→01 nuclear transitions. Secondly, from Table II we see t
O21

11 gives rise to LOppee and NLO NNpee operators
and therefore contributes to the long range 0nbb-decay op-
erator of Fig. 2~a! that is enhanced relative to the short ran
interaction of Fig. 2~d! as observed by direct calculation i
Ref. @21#, but derived with different assumptions about t
scaling of the LEC.

From Eqs.~16!, ~30! and ~32!, it follows that the LO
ppeeoperator contributes dominantly to the 0nbb decay in
RPV SUSY. The corresponding half-life formula is Eq.~53!
with b15b2 and with the substitution

1

Lbb
→ 1

4M S 4

7
h q̃1h f̃ D . ~72!

Obviously, a lower limit on the half-life can be interpreted
an upper limit on the coupling constantsh q̃ andh f̃ . Making
further assumptions about masses of SUSY particles, one
ultimately obtain model-dependent upper limits on the co
pling constantl1118 as discussed in Ref.@39#.

Next, let us compare the scaling rules used here an
Refs.@21# and@39#. In the previous section, we used NDA t
extract the relevant scales out of the dimensionful LEC’s

12The slepton/neutralino terms—which have complicat
expressions—causeh q̃Þh f̃ . We have only shown the gluino con
tributions for illustrative purposes.
6-11
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using the scaling rule Eq.~31!. The alternative method use
in Ref. @21# was to calculate the quark operator matrix e
ment in the vacuum insertion approximation~VIA ! and
match the result to the hadron operator matrix element.

Specifically, for the LOppee operator of Eq.~30! we
found that the dimensionful LEC scaled asLH

2 f p
2 while the

VIA would predict13

LEC8s;^p1uJPJPup2&'^p1uJPu0&^0uJPup2&

522 f p
2

mp
4

~mu1md!2
,

~73!

where mu,d are the light quark masses. TakingLH5Lx

54p f p , the chiral symmetry breaking scale, andmu1md
511.6 MeV we find

NDA

VIA
;

~4p f p!2f p
2

2 f p
2

mp
4

~mu1md!2

50.7. ~74!

The NDA scaling is thus slightly smaller than that obtain
from the VIA. Although they give results of the same ord
VIA has proved to be unreliable in other contexts~see, e.g.,
the study of rare kaon decays in Ref.@40#!. We will therefore
use NDA in what follows.

Referring to Table II, it follows that there should be add
tional, subdominant contributions from the operatorppee
and from theNNpee operator at NNLO. The NNLO contri-
butions from theNNpeevertex were considered in Ref.@39#
where detailed numerical evaluations showed that they c
tribute on average about thirty times less than the LO c
tribution. Our systematic analysis leads to the same qua
tive conclusion ~namely with regards to the NNLO
suppression ofp2/LH

2 with respect to the LO!, but differs
from Ref. @39# in some respects.

First of all, not all NNLO contributions were included. I
particular, as pointed out above, the NNLOppee operator
contributes to 0nbb decay at the same order as theNNpee
operator~called 1p in Ref. @39#! and the form-factorsG1,2

pp

should be included.
Secondly, our analysis shows that theNNNNeeoperator

~the only one considered previously in this type of analys!
gives contributions at NNLO.14 In Ref. @21# the suppression
of that operator relative to the LOppee contribution was

13Note that we do not take into account the color factor 8/3 of R
@21# since it is a number ofO(1) which does not involve any mas
scale. It can therefore be absorbed in the LEC’s which are und
mined. See also the footnote below Eq.~7!.

14We note that the long-range operators considered in Ref.@41#
through the induced pseudoscalar coupling terms of the nuc
current correspond to the NNLO contributions of Eq.~35!. The
results presented by the authors of Ref.@41# in the form-factor
approach are compatible with the EFT analysis given here s
they only considered left-handed hadronic currents.
03401
-

,

n-
-

a-

only by a factor of ten for76Ge which is larger than wha
would be expected from our power counting~see also Ref.
@42#!. However, this suppression is still in qualitative agre
ment with our analysis keeping in mind that considera
uncertainty remains in the evaluation of nuclear matrix e
ments. Furthermore, although the traditional method of c
culating the short-range 0nbb-decay operator using dipol
form-factors@20# may yield results of the correct order, th
method is unsystematic with uncontrollable errors that c
not be easily estimated.

B. Left-right symmetric model

We consider LRS models that contain a heavy rig
handed neutrino, and mixing between the right-handed
left-handed gauge bosons withgL'gR5g wheregL andgR
are the left-handed and right-handed gauge couplings.
LRS Lagrangian is taken to be invariant under SU(2L
3SU(2)R3U(1)B2L where B,L are the baryon, lepton
numbers, respectively. We will not be concerned with t
CP-violating phases of the mixing matrixUR of the right-
handed quark generations~the right-handed equivalent of th
Cabbibo-Kobayashi-Maskawa matrix, denoted hereUL) nor
the precise nature of the relationship betweenUR and UL

~e.g., manifest versus pseudo-manifest LRS model! as the
order of magnitude of the constraints obtained from exp
ments are broadly robust to the different possibilities@43–
46#. We will use the standard Higgs sector composed o
left-handed triplet,DL , a right-handed triplet,DR, and a
multiplet, F, that respectively transform under SU(2L
3SU(2)R3U(1)B2L according to (L,R,Y)
5(3,1,2), (1,3,2) and~2,2,0!. Their vacuum expectation
values are

^DL&5S 0

0

DL
0
D , ^DR&5S 0

0

DR
0
D ,

^F&5S k 0

0 k8
D . ~75!

Assume the following relation between the gauge and
mass eigenstates~ignoring the possibility of aCP-violating
phase!:

WL5coszW11sinzW2

WR52sinzW11coszW2 , ~76!

where z is a small mixing angle between the mass eige
states and,

MW1

2 >
g2

2
~k21k82!, ~77!

MW2

2 >
g2

2
~k21k8212DR

02
!, ~78!

f.

r-
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FIG. 4. Left-right symmetric model graphs
~a! involves the interaction of two right-hande
~left-handed! currents while~b! depicts the inter-
action of left-handed and right-handed currents
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02

, ~79!

whereMW1,2
are the masses ofW1,2. From these equation

and the fact thatuk21k82u/2>ukk8u, we immediately obtain
the important relation first derived in Ref.@47#,15

l[S MW1

MW2

D 2

>z. ~80!

Turning to experimental bounds on the masses and mix
angles, we will use for the lower limit on the right hande
gauge bosonMW2

.715 GeV @48#, which corresponds
roughly to

l,1022. ~81!

To put limits on the mixing angle, we use recent results fr
superallowed 01→01 b-decay in Ref.@49# that imply a
violation of the unitarity of the CKM matrix at the 95%
confidence level. In the LRS model, unitarity can be resto
by taking a positive value for the mixing angle with magn
tude

z50.001660.0007, ~82!

given that one has

uVudu21uVusu21uVubu250.996860.0014, ~83!

in the standard model only@49#. A range of 231024<z
<331023 is allowed at 95% confidence level. Note that t
discrepancy in the unitarity condition cannot be resolved
adjustingl because it enters the ordinaryb-decay amplitude
quadratically and, thus, produces a correction smaller t
1024 @see Eq.~81!#. In what follows, we will consider the
range 0<z<331023 and use the central value of Eq.~82!
for some specific estimates. Note that for the central valu
z of Eq. ~82!, we obtain an upper limit onMW2

from Eq.~80!

of

MW2
<MW1

/Az→MW2
<2 TeV for z50.0016. ~84!

With these bounds onMW2
andz, we can now estimate th

relative order of magnitude of the graphs of Fig. 4.

15From here on,z will exclusively denote the magnitude of th
mixing angle.
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When the right-handed neutrino andWL,R are integrated
out, the amplitude of Fig. 4~a! reduces to an operator of th
form O31

11 while Fig. 4~b! reduces to an operator of the form
O11

11 .16 In previous treatments of 0nbb decay, only graph
4~a! with right-handed interacting currents is considered a
the impact ofWL-WR mixing is neglected. Our analysis o
the previous sections implies that the hadronic operators g
erated byO31

11 are suppressed by a factor ofp2/LH
2;1022

relative to those generated byO11
11 . Hence, taking into ac-

count the fact that the coupling of a~right!left-handed cur-
rent with a (W1)W2 involves a suppression factor ofz while
a W2 internal line involves a suppression factor ofl, we
expect thepp operators generated by these quark opera
to scale as

M4(a)
(LL) ;z2

p2

LH
2

,1028, M4(a)
(RR);l2

p2

LH
2

,1026,

M4(b)
(LR);lz,1025, ~85!

with all else assumed equal. Therefore, even ifz is ten times
smaller than the central value in Eq.~82!, the contribution
stemming from the mixing of left-handed and right-hand
gauge bosons is still non-negligible. It may even be dom
nant.

Such analysis may modify two constraints that relate
right-handed weak boson and neutrino masses,MW2

and

MNR
, respectively.17

The first constraint stems from the requirement that
vacuum expectation value of the Higgs fieldDR be a true
minimum of the Higgs potential that generates the masse
the right-handed particles@50#. The vacuum is then stabl
against collapse. This imposes stringent constraints on
one-loop corrections to the effective potential@51–53#. In
particular, the loop corrections will involve terms of the for
kDR

4ln(DR
2/DR

02) where k is a constant that depends on th
particle masses. For the vacuum to be stable at large va
of DR, k must be positive to ensure that the minimum at t
VEV is a true minimum and not simply a local minimum
The condition k.0 is equivalent to a condition on th
masses. Following this formalism allows us to derive a re
tionship betweenMW2

andMNR
:

16Recall that the parity-oddLL/RRoperatorO32
11 is suppressed a

NNLO.
17For illustrative purposes, we assume the existence of only

right-handed neutrino.
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FIG. 5. Constraints on the right-handed weak boson and neutrino masses~in TeV! in the LRS model. The solid lines stem from th
vacuum stability~V.S.! constraint of Eq.~86! while the hyphenated lines correspond to limits imposed from 0nbb decay and Eq.~80! with
the following values of mixing angle from longest to shortest dashes:z i5$331023,1.631023,0% with i 51,2,3. Graphs~a! and ~b!
correspond to cases 1 and 2 of the text, respectively. Note that the value of the mixing anglez350 cannot occur for case 2 withou
simultaneously takingMW2

to infinity, while z2 corresponds to the central value obtained from CKM unitarity. The arrows indicate the l
boundMW2

>715 GeV imposed by direct searches. The shaded, triangular regions in the graphs are the allowed values of the ma
mixing angle isz2.
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1.65MW2
>MNR

. ~86!

This constraint is represented in the graphs of Fig. 5 by
fact that no value of (MNR

,MW2
) below the solid lines is

allowed.18

A second relationship constrainingMW2
and MNR

in the
LRS model with mixing can be inferred from experimen
limits on 0nbb decay @50,55# from Eq. ~53! with Lbb
5MNR

and choosingb15b251

uzl6d~l21z2!u2

,
9

2

MNR

2

LH
4G0n

(A,Z)uM 0
(A,Z)u2T1/2

(A,Z)

[n (A,Z)2, ~87!

G0n
(A,Z)5~GFcosuCgA!4S \c

R D 2 1

32p5\ ln 2

3E
me

Ebb2me
dE1F~Z12,E1!F~Z12,E2!p1E1p2E2 ,

~88!

wheren (A,Z) is defined by Eq.~87!, LH'1 GeV, T1/2
(A,Z) is

the current limit on the half-life of the 0nbb-decay transi-
tion of a nucleus (A,Z) and where the functionsG0n

(A,Z) were
tabulated in Ref.@56# for various nuclei. The matrix elemen
M 0

(A,Z) is defined in Eq.~54!.19 In Eq. ~87! we have made
explicit the scaling factors of Eq.~85! and also introduced a
factor d which parametrizes thep2/LH

2 suppression of the
NNLO 0nbb-decay operators relative to the LO operato
As mentioned above, the numerical evaluations in Ref.@39#
suggest thatd'1/30 which is the conservative number w

18In Ref. @50#, the constraint that appears is 0.95MW2
>MNR

, the
result of a typo@54#.

19From here on, we take cosuC51.
03401
e
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will use. Thus, thel2 term stems from the exchange of tw
W2’s while the z2 term comes from the exchange of tw
W1’s wherez, being the magnitude of the mixing angle,
always positive. The relative sign between thezl andd(l2

1z2) terms on the LHS of Eq.~87! cannot be predicted by
EFT since we do not know the sign of the LEC’s.

For the values of half-life,G0n
(A,Z) and M 0

(A,Z) , we will
use the ones determined for76Ge

T1/2
Ge>1.931025 yrs, ~G0n

Ge!2154.09

31025eV2 yrs, M 0
Ge52, ~89!

where we extracted the value ofM 0
Ge from the value of

M 2p calculated in Ref.@39# and the limit on the half-life is
at 90% confidence level@57#. With these numbers, Eq.~87!
becomes

uzl6d~l21z2!u,nGe5A 9

3.8
S MNR

TeV
D 1026. ~90!

In the limit z→0 we obtain

MW2
.S dA3.8

9

TeV

MNR

106D 1/4

MW1
>S TeV

MNR
D 1/4

TeV. ~91!

Our result is slightly smaller than the result obtained in Re
@50,55# for zero mixing angle. In Ref.@50# this constraint
was calculated with the short range NNLONNNNeeoperator
of Fig. 2~d! using the dipole form factor approach. Note th
we can reproduce exactly the values given in Refs.@50,55#
by slightly adjusting the unknown constantsb1 ,b2 in Eq.
~53!.

To extract the constraint imposed by Eq.~90! on MNR
and

MW2
, we need to consider three cases:

~1! The LO and NNLO terms have the same sign whi
corresponds to taking the plus sign in Eq.~90!.
6-14
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~2! They have opposite signs withzl.d(l21z2).
~3! They have opposite signs withzl,d(l21z2).
We note that in all three cases, the upper limit onMW2

for

z.0 implied by Eq.~80! always holds.
Case 1. When solving the quadratic equation inl, we

must keep the root that has the same limit as Eq.~90! when
d,z→0,

z<l<
1

2d
@2z1A~124d2!z214dn#, ~92!

where we used Eq.~80! to obtain the first inequality. The firs
thing to note is that Eqs.~90!–~92! impose a lower-limit on
the mass of the right-handed neutrino

MNR

TeV
.A3.8

9
106~112d!z2>1.8, ~93!

assuming the central value of Eq.~82!. This lower limit only
depends on the mixing angle sinced can in principle be
calculated. In Fig. 5~a!, the constraint Eq.~92! is plotted for
three values of the mixing anglez i5$331023,1.6
31023,0%.

In Fig. 5~a!, we see that the larger the mixing angle, t
larger the parameter space that is ruled out. In particular,
z1, the largest angle that we are considering, the region
lowed by Eqs.~92! and ~93! is located below the constrain
imposed by vacuum stability. Hence, a value of the mix
angle as large asz1 is excluded. In contrast, the central mi
ing angle value from CKM unitarity,z2, allows for a trian-
gular region@bordered by the vacuum stability curve and E
~92!# of possible values for the masses. In particular, forz2,
we note that not only do we have the upper-limit of Eq.~84!,
but we also haveMW2

>1.6 TeV andMNR
<3.2 TeV, which

would constitute more stringent limits than that obtain
from direct searches so far. For zero mixing angle, the en
region that is simultaneously above the vacuum stab
curve and the curve stemming from Eq.~91! is allowed.
Thus, in general, as the mixing angle increases, the allo
region of parameter space shrinks while the minimum va
of MW2

increases. The maximum mixing angle that results
a nonvanishing allowed region20

z<2.231023 with

MW2
>1.7 TeV, MNR

>2.8 TeV. ~94!

Case 2. The condition of validity for this case,zl
.d(l21z2), rules out the positive root of the quadrat
equation inl, Eq. ~90!. The limits onl are then

z<l<
1

2d
@z2A~124d2!z224dn#. ~95!

We note that Eq.~95! imposes upper and lower limits o
both MNR

andMW2
,

20Actually, a point in this case.
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A3.8

9
106~122d!z2<

MNR

TeV

<A3.8

9
106

1

4d
~124d2!z2,

A2dMW1

2

z
<MW2

. ~96!

For z2, we obtain in particular, 1.6 TeV<MNR
<12 TeV and

MW2
>0.51 TeV. Note that the upper limit onMNR

for z2 is
well above the constraint stemming from vacuum stabil
Eq. ~86!, combined with the upper limit onMW2

given in Eq.
~84!. Equations~96! also imply a new relationship betwee
MNR

andMW2
applicable only to case 2,

MW2
<SA3.8

9

106TeV

4dMNR
D 1/4

MW1

>3.8S TeV

MNR
D 1/4

TeV, ~97!

where we neglected the 4d2 term.
From the plot in Fig. 5~b!, the same analysis as in case

follows: as the mixing angle increases, the region of allow
values for the masses shrinks. As in case 1,z1 is already
excluded whilez2 allows for a triangular region of possibl
values for the masses. We note that Eq.~97! does not further
constrain the allowed region of parameter space and has
included here for completeness. For this case, the maxim
mixing angle is calculated to be,

z<2.131023 with

MW2
>1.8 TeV, MNR

>2.9 TeV, ~98!

which are similar to the values found for case 1.
Case 3.For the casezl,d(l21z2), we must keep the

root that gives the correct upper-limit whenz→0 since now
the limit d→0 cannot be taken. With the constraint onl
stemming from the condition of validity of this case,zl
,d(l21z2), the inequalities satisfied byl are

l<
z

2d
~12A124d2!,

z

2d
~11A124d2!<l

<
1

2d
@z1A~124d2!z214dn#. ~99!

Thus, values ofl located between the rootsl65z/(2d)(1
6A124d2) are excluded.21 Note that for the two nonzero

21Since 1/(2d)@z1A(124d2)z214dn#@z/(2d)(12A124d2)
for all nonzero values ofz andn, we need only be concerned wit
the l2 upper limit onl.
6-15
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PRÉZEAU, RAMSEY-MUSOLF, AND VOGEL PHYSICAL REVIEW D68, 034016 ~2003!
angles considered in Fig. 5, the ranges defined byl>l1

have already been ruled out by direct searches of rig
handed bosons@44# and we are left with the first constraint o
Eqs. ~99! which does not depend on limits from 0nbb de-
cay. However case three appears to be entirely ruled ou
Eq. ~80!. Indeed, approximating the remaining constraint
Eq. ~99! to l,dz, we see that both constraints cannot
satisfied simultaneously.

From Fig. 5 and the three cases considered above, it
lows that the effect of mixing on the mass constraint can
very important—a point not recognized previously. In p
ticular, we see that nonzero mixing angles will generally e
clude much of the parameter space by imposing much m
stringent constraints on the masses and that the mass o
right-handed neutrino is bounded from below. We also n
that quite generally, the mixing angle is constrained to
<2.231023.

We conclude this section by briefly comparing the le
right symmetric model and RPV SUSY. We observe that
though both models can contribute toO(p22) to the operator
of Fig. 2~a!, only RPV SUSY contributes to Figs. 2~b! and
2~c! to O(p21) as discussed in the previous section. The
results are summarized in Table III.

V. CONCLUSIONS

Neutrinoless double beta decay will continue to pro
‘‘new’’ physics scenarios that violate lepton number for som
time to come. The existence of such scenarios is intima
related to the nature of the neutrino, namely, whether or
it is a Majorana particle. If a significant signal for 0nbb
decay were to be observed, one would know that the neut
is a Majorana particle. However, one would not kno
whether the rate is dominated by the exchange of a l
Majorana neutrino or by some other L-violating process t
is also responsible for generation of the Majorana ma
Such L-violating processes could involve mass scales (Lbb)
well above the weak scale. Thus, it is important to study
implications of 0nbb decay for such scenarios—a ta
which we have undertaken in the present paper.

In doing so, we have applied the ideas of EFT, which
appropriate in this case because there is a clear distinctio
scales: Lbb@LH@p. We wrote down all nonequivalen
quark-lepton operators of dimension nine that contribute
0nbb decay, and showed how to match them to hadr
lepton operators by using their transformation properties
der parity and chiral SU~2!. We then organized the hadron
lepton operators (ppee, NNpee and NNNNee! in powers
of p/LH and discussed how the symmetries determine

TABLE III. Order at which the left-right symmetric model
with/without mixing and RPV SUSY contribute to the 0nbb-decay
operators of Fig. 2.

Models Fig. 2~a! Figs. 2~b!,2~c! Fig. 2~d!

LRSM z50 p0 p0 p0

LRSM zÞ0 p22 p0 p0

RPV SUSY p22 p21 p0
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type of hadronic operators that can be generated by e
quark operator. In particular, we demonstrated that the h
ronic operators generated by the interaction of two le
handed or two right-handed quark currents are always
NNLO. We also showed that EFT can classify particle ph
ics models of 0nbb decay in terms of the hadron-lepto
operators they can generate and to what order these oper
enter. In particular, we found that left-right symmetric mo
els with mixing can potentially and considerably modify e
isting constraints on the masses of the right-handed partic
Indeed, a nonzero mixing angle gives far more stringent c
straints on the allowed values of the masses of right-han
particles including a correlation between the mass of
right-handed neutrino and the mixing angle. We also fou
that a necessary condition for the existence of a region
allowed values ofMW2

andMNR
is z<2.231023. For RPV

SUSY models, we have also confirmed the previous con
sion that the dominant contribution stems from theppee
operator which leads to more severe constraints on the
responding RPV SUSY parameters than traditionally
lieved. More generally, with this EFT analysis and usi
Table II, it can be immediately known what hadron-lept
operators can be generated by any quark-lepton opera
appearing in any particle physics model that gives rise
0nbb decay, and to what order these hadron-lepton ope
tors will contribute. Finally, we note that deriving detaile
information about a given scenario for L-violation will re
quire combining information from a variety of measur
ments. As our analysis of the left-right symmetric mod
shows, using studies of 0nbb decay in conjunction with
precision electroweak measurements~e.g., light quarkb de-
cay! and collider experiments can more severely constr
the particle physics parameter space than can any indivi
probe alone. Undertaking similar analysis for other n
physics scenarios and other probes of L-violation constitu
an interesting problem for future study.
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APPENDIX A: EQUIVALENT AND VANISHING QUARK
OPERATORS

All operators proportional toēcgme and ēcsmne vanish
identically by virtue of the fact that the electron fields a
Grassmann variables. For example

ēcgme5 ieagab
0 gbs

2 gsd
m ed

52 ied~gds
m !Tgsb

2 gba
0 ea
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5 ieTg2g0gme

52ēcgme

50. ~A1!

Note also thatg5smn52i«mnabsab implies thatēcg5smne
also vanish identically. In Ref.@17#, these operators wer
incorrectly included in their super-formula.22

Other color singlet operators that could potentially co
tribute to 0nbb decay are

O61
115~ q̄L

at1qR,a!~ q̄R
bt1qL,b!5

1

6
O11

11 , ~A2!

O 76
115~ q̄R

at1smnqL,a!~ q̄R
bt1smnqL,b!

6~ q̄L
at1smnqR,a!~ q̄L

bt1smnqR,b!

5
12

7
O 26

11 , ~A3!

O81
115~ q̄L

at1smnqR,a!~ q̄R
bt1smnqL,b!50,

~A4!

O 96
11,m5~ q̄L

at1smnqR,a1q̄R
at1smnqL,a!

3~ q̄L
bt1gnqL,b6q̄R

bt1gnqR,b!

5
2 i

168
O 46

11,m , ~A5!

O 106
11,m5~ q̄L

at1smnqR,a2q̄R
at1smnqL,a!

3~ q̄L
bt1gnqL,b7q̄R

bt1gnqR,b!

5
2 i

178
O 56

11,m , ~A6!

where the Latin indices denote color and terms that invo
the product of color octet currents are ignored~see below!.
Using Fierz transformations and the following formula,

dabdcd5
1

3
daddcb1

1

2 (
i 51

8

lad
i lcb

i , ~A7!

it is easy to prove Eqs.~A2!–~A6!. Note that the second term
on the right-hand side of Eq.~A7! represents the product o
two color octet currents. This term does not contribute si
the asymptotic states are colorless and a completeness
tion involving only hadronic states can be inserted betw
the currents. We therefore neglect this contribution.

Even though two Fierz-related operators can arise du
different short-distance dynamics, they are physically ind

22However, they neglected them in their final analysis beca
they worked in the s-wave approximation.
03401
-

e

e
la-
n

to
-

tinguishable. Note that in Ref.@17#, these indistinguishable
operators were included as separate operators.

APPENDIX B: NAI¨VE DIMENSIONAL ANALYSIS
SCALING RULE

To determine the scaling rules of the various fields a
pearing in the chiral Lagrangian, start with the relation b
tween the axial current and the pion decay constant@40#,

^0uAa,mupb~p!&5 idabf ppm, ~B1!

which implies thatp is normally normalized byf p . Recall-
ing that chiral perturbation theory is an expansion in pow
of p/LH , we scale pion derivatives byLH noting that pion
loop corrections will involve factors ofp2/(4p f p)2; this
suggests thatLH'4p f p .

Since the action is dimensionless, we also have from
kinetic energy term of the pion field

E d4x]mpW •]mpW 5E d4x~LHf p!2
]m

LH

pW

f p
•

]m

LH

pW

f p
.

~B2!

This shows that we can associate with d4x the scale
(LHf p)2. This is the origin of the last factor of Eq.~31!.
From the parity-conserving pion nucleon coupling, we ha

E d4x
gA

f p
N̄g5]”pN

5E d4x~LHf p!2
gA

LHf p
2
N̄g5

]”

LH

p

f p
N. ~B3!

This shows that we can associate the scaleLHf p
2 with N̄N.

Next, we note that since the axial current at the qu
level is given byq̄g5gmq while a contribution to the axia
current at the hadronic level isN̄g5gmN, we can also asso
ciate with q̄q the scaleLHf p

2 . For a 0nbb-decay quark-
lepton operator, this implies

GF
2

Lbb
E d4x~ q̄Gq!~ q̄G8q!~ ēG9ec!

5
GF

2f p
2

Lbb
E d4x~LHf p!2

q̄Gq

LHf p
2

q̄G8q

LHf p
2
ēG9ec. ~B4!

Therefore, we can associate the scaleGF
2f p

2 /Lbb with the
lepton bilinears. This explains the origin of the scaling ru
in Eq. ~31!.

APPENDIX C: NLO NUCLEAR OPERATORS

Here we present the results for Figs. 2~b! and 2~c!. The
Lagrangian Eq.~39! gives
e
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~b!1~c!54i
gAMLH

A2
ūe1g2g0~z11z2g5!ūe2

T F ~ ūp3un1!~ ūp4g5un2!

~q2
22mp

2 1 i e!
1

~ ūp3g5un1!~ ūp4un2!

~q1
22mp

2 1 i e!
G14i

gAM

A2 f p

ūe1gmg2g0g5ūe2
T

3F ~ ūp4g5un2!

~q2
22mp

2 1 i e!
ūp3~z31z4g5!gmun11

~ ūp3g5un1!

~q1
22mp

2 1 i e!
ūp4~z31z4g5!gmun2G . ~C1!

After taking the nonrelativistic limit and performing a Fourier transform we obtain

F.T.~C1!.
1

2p

mp

A2gALH

gA
2LH

2

Lbb
5

d~xW12xW3!d~xW22xW4!
e2x

r S 11
1

xD $ūe1g2g0~z11z2g5!ūe2
T ~d24x3

†sW • r̂x12d13x4
†sW • r̂x2!

1ūe1gmg2g0g5ūe2
T @2x3

†~z3dm02z4s idm i !x1x4
†sW • r̂x21x4

†~z3dm02z4s idm i !x2x3
†sW • r̂x1#%. ~C2!

One can check explicitly that this nuclear operator is parity-odd and does not contribute to the 01→01 nuclear transitions.
Note also the extra factor ofmp /LH relative to the LO contribution of Eq.~49! which is consistent with the power countin
of Eq. ~1!.
o,

o,

r-

v-

v-
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