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Pion and kaon masses in staggered chiral perturbation theory

C. Aubin and C. Bernard
Washington University, St. Louis, Missouri 63130, USA
~Received 24 April 2003; published 21 August 2003!

We show how to compute chiral logarithms that take into account both theO(a2) taste-symmetry breaking
of staggered fermions and the fourth-root trick that produces one taste per flavor. The calculation starts from
the Lee-Sharpe Lagrangian generalized to multiple flavors. An error in a previous treatment by one of us is
explained and corrected. The one loop chiral logarithm corrections to the pion and kaon masses in the full
~unquenched!, partially quenched, and quenched cases are computed as examples.
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I. INTRODUCTION

For simulating fully dynamical lattice QCD at light quar
masses, staggered@Kogut-Susskind~KS!# fermions have the
advantage of being very fast relative to other available me
ods @1#. In addition, an exact chiral symmetry for massle
quarks is retained at finite lattice spacing. However, the
vantage in speed of KS fermions may be offset by system
issues: on present realistic lattices~e.g., recent MILC simu-
lations@2–5# with a'0.13 fm), the KS taste1 violations are
not negligible. Indeed, despite the fact that the MILC sim
lations use an improved~‘‘Asqtad’’ ! action that reduces tast
violations toO(aS

2a2), these effects can still introduce sig
nificant lattice artifacts.

Since one can control the taste of the external partic
explicitly in the simulation, taste-violating artifacts show u
primarily in loop diagrams. In particular, any quantity
computation that is sensitive to chiral~pseudoscalar meson!
loops can be expected to show large artifacts at current
tice spacings. In order to perform controlled chiral extrap
lations and extract physical results with small discretizat
errors from staggered simulations, it is necessary to incl
the effects of taste violations explicitly in the chiral pertu
bation theory (xPT) calculations to which the simulation
are compared. The goal of this paper is to develop suc
‘‘staggered chiral perturbation theory’’ (SxPT).

One can think of the MILC simulations as introducin
flavor with separate KS fields foru, d and s quarks. The 4
tastes for each field are then reduced to 1 by taking the fo
root of the quark determinants for each flavor.2 The theory
with A4 Det does not have a local lattice action, and there
some concern that nonuniversal behavior may thereby

1We use the term ‘‘taste’’ to describe the staggered symmetry
duced by doubling; the taste symmetry becomesSU(4)L

3SU(4)R in the massless, continuum limit, but is broken atO(a2).
We reserve the term ‘‘flavor’’ for true (u, d ands) flavor.

2Sincemu is always chosen equal tomd in the MILC simulations,
one actually uses a slightly simpler procedure in practice. Only
KS fields are introduced, and the square root of theu,d determinant
is taken. However, assuming algorithmic effects~step-size errors,
autocorrelations! are under control, the two approaches are equi
lent. We therefore prefer to consider the conceptually simpler c
where each KS field represents a single flavor.
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introduced in the continuum limit. If we are able to show,
comparing simulations to SxPT forms, that the staggere
theory produces the expected chiral behavior in the c
tinuum limit with controlledO(a2) errors, it should go a
long way toward easing worries about theA4 Det trick.

A starting point for any SxPT calculation is the work of
Lee and Sharpe@6#, who derived theO(a2) chiral Lagrang-
ian for a single KS field~1 flavor, 4 tastes!. In Ref. @7#, a
generalization of the Lee-Sharpe Lagrangian to multi
quark flavors was introduced to calculate chiral loop effec
However, there are subtleties in the generalization that w
not appreciated in Ref.@7#, leading to errors in the multifla-
vor chiral Lagrangian and hence in the final chiral-logarith
formulas. These same subtleties also turn out to have im
cations even for the tree-level comparison~in Ref. @6#! of the
1-flavor theory with simulations.

Below we will follow the outlines of the three-step pro
cedure introduced in Ref.@7#, which we restate here for com
pleteness:

~i! Generalize the Lee-Sharpe Lagrangian to corresp
to n staggered quark fields, resulting in a~broken!
SU(4n)L3SU(4n)R chiral theory. Where convenient, w
will specialize to the case of interest,n53. We call then
53 theory the ‘‘41414’’ theory, since it has three flavors
each with four tastes; its symmetry is a brokenSU(12)L
3SU(12)R .

~ii ! Calculate one loop quantities~such asmp5

2 ) in the 4

1414 theory.
~iii ! Adjust, by hand, the result to a single taste per flav

in order to correspond to the physical case~and to simulation
data!. This adjustment corresponds to theA4 Det trick. It re-
quires an understanding of the correspondence between
meson diagrams at the chiral level and the underlying qu
diagrams and is basically the ‘‘quark flow’’ technique of Re
@8#. For nondegenerate quark masses, we call the adju
case the 11111 theory; when we takemu5md[ml ~which
corresponds to the MILC simulations! we call it the 211
theory.

The difficulties in Ref.@7# arose in step~i!. Fierz trans-
formations were used to simplify the flavor structure in t
taste-symmetry breaking potential. However, Ref.@6# had al-
ready employed Fierz transformations to simplify the fo
of this potential. The two transformations turn out not to
compatible. In the Lee-Sharpe case, there was only one

-

o

-
se
©2003 The American Physical Society14-1



un
ix

a
is

in

al
to
c

le
ste
in’
s
t
p
hi
e

kin
tio
m

he
n

.
in
ua
io

d

m
r

an
ly

r
er
i-
fl
ow
ve
ar

ns

-

nt

et

and
is

in

e

C. AUBIN AND C. BERNARD PHYSICAL REVIEW D68, 034014 ~2003!
vor, so this was not an issue. By properly taking into acco
the mixing of the flavor indices, we find that two of the s
terms in the symmetry-breaking potential of Ref.@7# are in-
correct.

Another difference with Ref.@7# is that theren was taken
to be 2, and step~iii ! was modified to adjust theu,d loops
according to aADet, rather than aA4 Det trick. This was due
to the fact that Ref.@7# took mu5md from the beginning.
However, the entire procedure is much clearer if every qu
flavor is treated equivalently. Further, we will see that it
important to be able to treat directly charged pions~e.g., ud̄)
that are composed of two independent flavors transform
under an exact lattice flavor symmetry~whenmu5md). Fi-
nally, the calculation is actually simpler when we keep
three quark masses unequal. The fact that the Golds
charged pion mass squared must then have an overall fa
of mu1md gives a very useful check on our calculation.

Generalizing the taste-breaking potential properly has
us to realize that flavor-neutral mesons in certain ta
nonsinglet channels can mix at tree-level due to ‘‘hairp
diagrams. We can now see that such diagrams are pre
even in one-flavorxPT @6#; their effects however have no
been appreciated previously. The coefficients of the hair
diagrams that arise here are new parameters in the c
theory and have to be fit with simulation data or determin
perturbatively.

This paper mirrors the format of Ref.@7#. In Sec. II, we
generalize the Lagrangian of Lee and Sharpe, properly ta
into account the flavor and taste structures involved. Sec
III discusses the calculation of the one loop chiral logarith
for the flavor-nonsinglet Goldstone meson mass in the
1414 theory. It is convenient at this point to generalize t
calculation to the partially quenched case, where the vale
and sea quark masses are completely nondegenerate
results are actually most simply expressed in this case, s
there is a clear distinction between valence and sea q
effects, and no degeneracies arise that lead to cancellat
We then make the transition to the 11111 theory in Sec.
IV. We write down results for both the partially quenche
and ‘‘full’’ ~equal valence and sea quark masses! cases, fo-
cusing primarily there on features which are different fro
Ref. @7#. The results for the quenched chiral logarithms a
discussed in Sec. V. Section VI adds in the analytic terms
gives a compendium of final results, in full, partial
quenched, and quenched cases. In the fullmu5md[ml (2
11) case, the results from Sec. VI have already been
ported in Ref.@9#. We conclude with remarks about oth
uses for SxPT in Sec. VII. An Appendix gives some add
tional details about the symmetries of the theory and brie
discusses the possible existence of a heretofore unkn
phase of the staggered theory. This possibility is howe
apparently unrealized for physical values of the qu
masses.

II. GENERALIZATION OF LEE-SHARPE LAGRANGIAN

Lee and Sharpe@6# describe pseudo-Goldstone boso
with a nonlinearly realizedSU(4)L3SU(4)R symmetry,
which originate from a single KS field. This KS field de
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scribes four continuum tastes of quarks.
The 434 matrix S is defined by

S[exp~ if/ f !, f[ (
a51

16

paTa ~1!

where thepa are real,f is the tree-level pion decay consta
~normalized here so thatf p'131 MeV), and the Hermitian
generatorsTa are

Ta5$j5 ,i jm5 ,i jmn ,jm ,j I%. ~2!

Here we use the Euclidean gamma matricesjm , with jmn
[jmjn @m,n in Eq. ~2!#, jm5[jmj5, and j I[I is the 4
34 identity matrix. The fieldS transforms underSU(4)L
3SU(4)R asS→LSR†.

As discussed in Ref.@7#, we will keep the singlet meson
p I}trf in this formalism. Due to the anomaly, the singl
receives a large contribution~which we will call m0) to its
mass, and thus does not play a dynamical role. Lee
Sharpe do not include this field in their formalism, which
equivalent to keeping the singlet in and takingm0→` at the
end of the calculation@10#. We keep the singlet here since
the generalized case ofn KS fields, it is only theSU(4n)
singlet that is heavy. In them0→` limit, the otherSU(4)
singlets will still play a dynamical role.

The ~Euclidean! Lee-Sharpe Lagrangian is then3

L(4)5
f 2

8
tr~]mS]mS†!2

1

4
mm f2tr~S1S†!

1
2m0

2

3
~p I !

21a2V, ~3!

wherem is a constant with units of mass, andV is the KS-
taste breaking potential. Correct throughO(a2,m) in the
dual expansion ina2 andm, we have

2V[(
k51

6

CkOk

5C1tr~j5Sj5S†!1C2

1

2
@ tr~S2!2tr~j5Sj5S!1H.c.#

1C3

1

2 (
n

@ tr~jnSjnS!1H.c.#

1C4

1

2 (
n

@ tr~jn5Sj5nS!1H.c.#

1C5

1

2 (
n

@ tr~jnSjnS†!2tr~jn5Sj5nS†!#

1C6 (
m,n

tr~jmnSjnmS†!. ~4!

3Aside from them0
2 term, we need not worry aboutp I dependence

in this Lagrangian, since we are taking them0→` limit. It is only
in the quenched case~Sec. V!, where we are unable to take th
m0→` limit, that we will have to examine otherp I terms.
4-2
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PION AND KAON MASSES IN STAGGERED CHIRAL . . . PHYSICAL REVIEW D 68, 034014 ~2003!
The 16 pions fall into 5SO(4) representations with taste
given by the generatorsTa . This comes from the ‘‘acciden
tal’’ SO(4) symmetry of the potentialV. We can determine
the tree-level masses of the pions by expanding Eq.~3! to
quadratic order:

mpB

2 52mm1
4m0

2

3
dB,I1a2D (1)~jB!, ~5!

whereBP$5,m5,mn(m,n),m,I %. TheD (1)(jB) term comes
from theV term, and is given4 in Refs.@6,7# as

D (1)~j5!50

D (1)~jm5!5
16

f 2
~C11C213C31C42C513C6!

D (1)~jmn!5
16

f 2
~2C312C414C6!

D (1)~jm!5
16

f 2
~C11C21C313C41C513C6!

D (1)~j I !5
16

f 2
~4C314C4!. ~6!

The vanishing ofD (1)(j5) is due to the taste nonsingle
UA(1) symmetry

S→eiuj5Seiuj5, ~7!

which is unbroken by the lattice regulator, makingp5 a true
Goldstone boson.

We now wish to generalize to the case of multiple K
fields. In Ref.@7#, for two KS quark fields, this was accom
plished by promotingS and the mass matrix to 838 matri-
ces. In the general case ofn KS fields, which we discuss
here, these become 4n34n matrices. The kinetic energy an
mass terms are correctly given in Ref.@7#. The only difficulty
arises in generalizing the taste-symmetry breaking poten
~or equivalently the taste matricesjB). The generalization of
V in Ref. @7# uses a Fierz transformation on the various fo
quark operators to bring them into a ‘‘flavor unmixed’’ form
as follows:

q̄i~gS^ jT!qi q̄j~gS8^ jT8!qj , ~8!

whereq is the quark field,i , j areSU(n) flavor indices,gS
andgS8 are spin matrices, andjT andjT8 are taste matrices.5

Treating the taste matrices as spurion fields, we see tha

4In Refs.@6,7#, these corrections are denoted asD(jB). When we
generalize to multiple KS flavors, we will wish to distinguish th
single flavorD (1)(jB) from then-flavor D(jB).

5In Ref. @6#, these are referred to as KS-flavor matrices and
noted byjF andjF8 .
03401
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flavor unmixed 4-quark operators, thej are singlets under
the flavorSU(n) symmetry. We can thus make the replac
ment

jB→jB
(n)5S jB 0 0 •••

0 jB 0 •••

0 0 jB •••

A A A �

D , ~9!

where thejB
(n) are 4n34n matrices, and thejB on the right

hand side are still 434 taste matrices.
Lee and Sharpe, however, already use Fierz transfor

tions on the operators in Appendix A of Ref.@6# to ensure
that the final six operators in Eq.~4! are all single-trace ob-
jects. We now find that the transformation used in Ref.@7#
does not keep the operators in the same single-trace for

To see this, let us first assume we have made the repl
ment ~9! in the taste-symmetry breaking potential. The o
eratorsO2 andO5 are then not invariant under axial rotation
of the individual fields. For example, consider a tasteUA(1)
transformation on a single flavor only:

S→eiuJ5SeiuJ5, J55S j5 0 0 •••

0 1 0 •••

0 0 1 •••

A A A �

D , ~10!

whereJ5 is a 4n34n matrix, shown here as composed
434 blocks. It is simple to verify that the operatorsO1 , O3 ,
O4, and O6 are invariant under Eq.~10!. However, using
eiuj55cosu1ij5 sinu, one finds thatO2 andO5 are not in-
variant, and thus are not the correct generalization of
Lee-Sharpe terms ton flavors.

One approach to generalizing the Lee-Sharpe Lagran
correctly is therefore to consider all the different ways th
the flavor indices on the variousS fields in Eq. ~4! can
contract. To do this, we write everything as 434 matrices
and show the flavor indices explicitly. For example, the fo
of O2 from Ref. @7# can be written as

O 2
incorrect5

1

2
@ tr~S i j S j i !2tr~j5S i j j5S j i !1H.c.#, ~11!

wherej5 the 434 object, andi and j are theSU(n) flavor
indices, to be summed over. AnotherSU(n) invariant we can
create with this operator is

O25
1

2
@ tr~S i i S j j !2tr~j5S i i j5S j j !1H.c.#. ~12!

One can easily see that this operator is invariant under
~10!.
-

4-3
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C. AUBIN AND C. BERNARD PHYSICAL REVIEW D68, 034014 ~2003!
By starting with the other operators in Eq.~4!, we can
similarly find other correctly generalized terms. This wou
for instance alterO5 along the same lines as Eq.~12!. How-
ever, a problem with this approach is that it is difficult
ensure that the most general taste-violating potential is g
erated. For example, the operator tr(S i i S j j

† 2j5S i i j5S j j
† ) is

invariant under Eq.~10! but is not easy to find starting with
Eq. ~4!. That is because Lee and Sharpe have already
tr(SS†)5const in arriving at theirO1.

A more direct way to find the final form of the taste
breaking potential involves starting from the quark level a
using the original analysis of Lee and Sharpe instead of t
final result. At the quark level, gluon exchange can cha
taste and color, but not flavor. Therefore the taste-violat
4-quark operators are composed of products of two biline
each of which is a flavor-singlet, as in Eq.~8!. The 4-quark
operators may be mixed or unmixed in color.6

To O(a2) in the duala2,m expansion, the taste-breakin
operators can be computed in the chiral limit. Since glu
emission does not change chirality, each bilinear is se
rately chirally invariant. The only such bilinears are vec
and axial vector in the naive theory, which correspond
‘‘odd’’ operators in the staggered theory~operators in which
quark and antiquark fields are separated by 1 or 3 links! @11#.
Thus only the odd-odd 4-quark operators in Appendix A
Ref. @6# are relevant to us here. Each such operator can o
in color mixed and color unmixed form, but that does n
affect the correspondence to SxPT operators.7 The even-
even operators of Ref.@6# were obtained by Fierzing th
odd-odd operators and may be ignored: They correspon
flavor-mixed 4-quark operators.

The above reasoning implies that the arguments in R
@7# were in fact correct, but only if the replacement Eq.~9! is
implementedbeforethe Fierz transformations in Ref.@6# that
put the chiral operators in single-trace form. Writing the p
tential asV5U1U8, we then obtain

2U[(
k

CkOk

5C1Tr~j5
(n)Sj5

(n)S†!

1C3

1

2 (
n

@Tr~jn
(n)Sjn

(n)S!1H.c.#

1C4

1

2 (
n

@Tr~jn5
(n)Sj5n

(n)S!1H.c.#

1C6 (
m,n

Tr~jmn
(n)Sjnm

(n)S†! ~13!

6In Ref. @6#, color-mixed operators are Fierzed to put them in
standard, color-unmixed form. But this is precisely what we do
want to do here because it would mix the flavor indices.

7The color structure does affect the coefficients of t
SxPT operators, but since these coefficients are arbitrary at
chiral level anyway, color mixing is irrelevant here.
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2U8[(
k8

Ck8Ok8

5C2V

1

4 (
n

@Tr~jn
(n)S!Tr~jn

(n)S!1H.c.#

1C2A

1

4 (
n

@Tr~jn5
(n)S!Tr~j5n

(n)S!1H.c.#

1C5V

1

2 (
n

@Tr~jn
(n)S!Tr~jn

(n)S†!#

1C5A

1

2 (
n

@Tr~jn5
(n)S!Tr~j5n

(n)S†!#, ~14!

where Tr is the full 4n34n trace, and thejB
(n) are 4n34n

matrices as in Eq.~9!. The terms that compriseU were found
in Ref. @7#. Now, however, there are no terms that direc
correspond to the operatorsO2 andO5. Instead, we have the
four terms inU8.8 It turns out that only two combinations o
the four constants inU8 enter in the 1-loop result:C2V
2C5V and C2A2C5A . The terms corresponding toC2V
1C5V andC2A1C5A do not appear at this level.

Note that the ‘‘accidental’’SO(4) symmetry of the one-
flavor theory@6# survives in Eqs.~13! and ~14!, as seen by
the fact that the taste indices are contracted in a ‘‘Lore
invariant’’ way. This implies that the degeneracies of the on
flavor theory will also appear in then-flavor case: all four
taste-vector pions of a given flavor will be degenerate,
will all taste-tensors, etc. See the Appendix for further d
cussion.

For n KS flavors,S5exp(iF/f) is a 4n34n matrix, and
F is given by

F5S U p1 K1
•••

p2 D K0
•••

K2 K̄0 S •••

A A A �

D , ~15!

whereU5(a51
16 UaTa , etc., with theTa from Eq. ~2!. The

component fields of the diagonal~flavor-neutral! elements
(Ua , Da , etc.! are real; while the other~charged! fields are
complex (pa

1 , Ka
0 , etc.!, such thatF is Hermitian. Here the

n53 portion of F is shown explicitly. The mass matrix i
now generalized to the 4n34n matrix

M5S muI 0 0 •••

0 mdI 0 •••

0 0 msI •••

A A A �

D , ~16!

t

e

8The combinationO2V1O2A can be Fierzed into the correct ve
sion of O2, Eq. ~12!, and similarly forO5A2O5V and the correct
version of O5. The other linear combinations are new here, b
could have been Fierzed into other operators of Ref.@6# if there
were no flavor indices.
4-4
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where again, the portion shown is for then53 case.
Thus, our~Euclidean! Lagrangian becomes

L5
f 2

8
Tr~]mS]mS†!2

1

4
m f 2Tr~MS1MS†!

1
2m0

2

3
~UI1DI1SI1••• !21a2V, ~17!

where them0
2 term includes then flavor-neutral fields and

V5U1U8 is given in Eqs.~13! and ~14!. The jB
(n) in V are

block-diagonal 4n34n matrices, as in Eq.~9!.
When the masses vanish, the chiral Lagrangian, Eq.~17!,

has a flavorSU(n) vector symmetry and the individua
UA(1) symmetries for each flavor, both of which were us
above, as well as overall fermion number conservati
These symmetries actually extend to aU(n),3U(n) r ‘‘re-
sidual chiral group,’’ although this full symmetry is not pa
ticularly important to us in the present context. Details a
relegated to the Appendix.

ExpandingL to quadratic order in meson fields, the p
tentialU gives different masses to different taste mesons,
because it consists entirely of single-trace terms, the co
bution is independent of the meson flavor. However, sinceU8
consists of two-trace terms, it contributes only to the mas
of flavor-neutral mesons, and in particular only those w
vector and axial vector tastes. Thus, even at tree-level
with mu5md , a p1 of a given taste receives different ma
corrections than a neutralU or D of the same taste. In simu
lations, disconnected propagators for taste-nonsinglet p
~including the Goldstone pion! have invariably been
dropped. This implies that simulations describep1 mesons,
not those constructed from a single flavor, which would ha
disconnected contributions. The comparison in Ref.@6# of
the 1-flavor SxPT tree-level results to simulations is ther
fore not justified, although almost all of the conclusions
Ref. @6# survive a revised treatment.

We thus want a chiral theory with bothu and d quarks,
even if we are interested in themu5md case. This is the
primary reason that we consider the 41414 theory here
rather than the 414 theory of Ref.@7#.9

From Eq.~17!, the tree-level masses of the mesons ar

mMB

2 5m~ma1mb!1a2D~jB!, ~18!

wherea and b refer to the two quarks which make up th
mesonM, and we have defined

D~j5![DP5D (1)~j5!50

D~jm5![DA5
16

f 2
~C113C31C413C6! ~19!

9We remark however that it would in principle be possible
extract the p1 results from aK1 calculation in a ~partially
quenched! 414 theory.
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D~jmn![DT5D (1)~jmn!5
16

f 2
~2C312C414C6!

D~jm![DV5
16

f 2
~C11C313C413C6!

D~j I ![D I5D (1)~j I !5
16

f 2
~4C314C4!.

Note that them0
2 terms and the terms fromU8 are not in-

cluded in these masses. Those terms, which affect o
flavor-neutral mesons and give nondiagonal contributions
the basis of Eq.~15!, will be treated as vertices and summe
to all orders below. Thus theO(a2) corrections in Eq.~18!
are flavor independent.

Simulations with the ‘‘Asqtad’’ action@5# give approxi-
mately equal splittings of the mass-squares of various t
mesons in the orderM5 , Mm5 , Mmn , Mm , MI . From Eq.
~19!, this indicates thatC4 is the dominant coefficient, a
conclusion first noted in Ref.@6#.

Upon expandingU8 in Eq. ~14! to quadratic order, we find
a two-point vertex mixing the taste-vector, flavor-neutral m
sons (Um , Dm , etc.!:

2a2
16

f 2
~C2V2C5V![2a2dV8 . ~20!

In other words, there is a term1a2dV8 /2(Um1Dm1Sm

1•••)2 in L. The vertex in the chiral theory is shown in Fig
1~a!; while the corresponding underlying quark diagram
shown in Fig. 1~b!. There is also a vertex mixing the tast
axial, flavor-neutrals (Um5 , Dm5, etc.!:

2a2
16

f 2
~C2A2C5A![2a2dA8 , ~21!

i.e., a term1a2dA8 /2(Um51Dm51Sm51•••)2 in L. Simi-
larly, the m0

2 term in L produces a vertex24m0
2/3 between

the taste-singlet, flavor-neutrals (UI , DI , etc.!.

DVUV

(a)

u
u

d
d

(b)

-a2δ’V

-a2δ’V

FIG. 1. The two-point mixing vertex~among taste vectors! com-
ing from the newU8 term. ~a! corresponds to the chiral theory.~b!
shows the corresponding quark level diagram. We also haveU-S
andD-S mixings and diagonal terms (U-U etc.!. There are similar
vertices among the axial tastes~with a2dV8→a2dA8 ), as well as the
singlet tastes~with a2dV8→4m0

2/3).
4-5
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C. AUBIN AND C. BERNARD PHYSICAL REVIEW D68, 034014 ~2003!
We thus have to resum the flavor-neutral propagator
three cases: taste-vector, taste-axial, and taste-singlet.
methods of Appendix A in Ref.@12# allow us to calculate the
full flavor-neutral meson propagators easily and write th
explicitly in terms of the true propagator poles~mass eigen-
states!. Here we sketch a few steps in this process. For c
creteness we focus explicitly on the taste-vector case,
though the taste-axial case is obtained simply by replacinV
with A in the equations below. The taste-singlet (m0

2) case
can be calculated similarly, although a more standard
proach is also possible. We write the full inverse propaga
as

GV
215G0,V

211HV, ~22!

with

~G0,V
21!MN5~q21mMV

2 !dMN , ~23!

HMN
V 5a2dV8 , ;M ,N. ~24!

Here and below we useV for generic taste-vector state
rather than the indexm. The indicesM and N refer to the
flavor-neutral mesons in the original basis of Eq.~15!, with
mMV

and mNV
the ‘‘unmixed’’ masses from Eq.~18! @i.e.,

without including the mixing of Eq.~20!#. For example, in
the n53 case, these mesons areUV , DV , and SV . Using
Ref. @12#, we then find that

GV5G0,V1D V

D V[2G0,VHVG0,V

det~G0,V
21!

det~GV
21!

. ~25!

D V is the part of the taste-vector flavor-neutral propaga
that is disconnected at the quark level~i.e., Fig. 1 plus itera-
tions of intermediate sea quark loops!. We can write this
explicitly in terms of the masses as

D MN
V 52a2dV8

1

~q21mMV

2 !~q21mNV

2 !

det~G0,V
21!

det~GV
21!

~26!

52a2dV8

)
L

~q21mLV

2 !

~q21mMV

2 !~q21mNV

2 !)
F

~q21mFV

2 !

.

~27!

HereL, like M andN, labels the unmixed flavor-neutral me
sons in the original basis (mLV

2 are the poles ofG0,V); while

F indexes the eigenvalues of the full mass matrix (mFV

2 are

poles of GV). For n53, we name the corresponding fu
eigenstates in the taste-vector casepV

0 , hV , andhV8 in anal-
ogy with the physical, flavor-neutral, taste-singlet eige
states. We emphasize, however, that all these taste-nonsi
particles~includinghV8 and the corresponding taste-axial pa
ticle hA8 ) are physically merely varieties of ‘‘pions:’’ pseudo
03401
in
he

-
l-

p-
r

r

-
let

scalars that do not couple to pure-glue states in the c
tinuum limit, unlike the realh8.

It is easy to generalize Eqs.~25!, ~27! to incorporate par-
tial quenching. Iterating Fig. 1~b! to determine the full propa-
gator generates internal quark loops. Only sea~unquenched!
quarks are therefore allowed in this iteration. Thus, if t
number of sea quarks isnS , the product overL in the nu-
merator of Eq.~27! includes only thenS unmixed flavor-
neutral mesons built from these sea quarks. Likewise, o
thenS full eigenvalues are included in the denominator pro
uct overF. The external mesonsM andN, however, may be
any flavor-neutral states, made from either sea quarks or
lence quarks. Similarly, in the quenched caseD MN

V is simply

D MN
V,quench52a2dV8

1

~q21mMV

2 !~q21mNV

2 !
. ~28!

Below we will also need the relation

det~GV
21!

det~G0,V
21!

511tr~G0,VHV!

511a2dV8(
L S 1

q21mLV

2 D . ~29!

Here the sum overL is again over the unmixed flavor-neutr
mesons in the original basis.~In the partially quenched case
only mesons made from sea quarks are included in the su!
This relation allows one to transform between the result~27!
and the form@13# one gets directly by iterating the 2-poin
vertex, Eq.~20!.

Equations~22!–~29! apply explicitly to the taste-vecto
case; to get the taste-axial case, just letV→A. These formu-
las can also be used for the taste-singlet~I! channel with the
replacementa2dV8→4m0

2/3. We get

D MN
I 52

4m0
2

3

3

)
L

~p21mLI

2 !

~p21mMI

2 !~p21mNI

2 !) F~p21mFI

2 !

, ~30!

whereL and F have the same meaning as in Eq.~27!. The
m0

2→` limit in the 41414 case is easily obtained, if de
sired, usingmh

I8
2 >4m0

2 for largem0
2 . Theh I8 then decouples.

However, we prefer not to take them0
2→` limit at this stage,

because the form of the result is then slightly different in t
41414 and 11111 cases, as we will discuss in Sec. IV

In the quenched case, the product over sea quark stat
the numerator and denominator of Eq.~30! is omitted. Of
course,m0

2 now cannot be taken to infinity, and theh I8 does
not decouple. It is therefore necessary to consider poss
additional h I8 dependent terms in our Lagrangian. As d
cussed in Refs.@7# and@14#, one can do this simply by mak
4-6
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PION AND KAON MASSES IN STAGGERED CHIRAL . . . PHYSICAL REVIEW D 68, 034014 ~2003!
ing the replacementm0
2→m0

21aq2, wherea is an additional
quenched chiral parameter. This gives

D MN
I ,quench52

4

3

m0
21aq2

~q21mMI

2 !~q21mNI

2 !
. ~31!

It is sometimes useful to think of the quenched case as
limit of the partially quenched case as the sea quark ma
go to infinity ~at fixed valence masses and fixedm0

2, a, dV8
anddA8 ). For disconnected propagators, the resulting dec
pling of the sea quarks has the simple effect of canceling
‘‘unmixed’’ terms in the numerator with the terms involvin
the full masses in the denominator. Thus Eq.~27! becomes
Eq. ~28!, and Eq.~30! becomes Eq.~31!. @The aq2 term in
Eq. ~31! could have been put in for free in Eq.~30! since it is
irrelevant in them0

2→` limit.#

III. ONE LOOP PION MASS FOR 4 ¿4¿4 DYNAMICAL
FLAVORS

We can now calculate the 1-loop Goldstone pion se
energy. We shall use the term ‘‘pion’’ to refer to a gene
flavor-nonsinglet meson here, so it can refer to the kaon
well ~and also what we will shortly call aP1 meson!. As in
Ref. @7#, all the contributing diagrams are tadpoles, as sho
in Fig. 2, coming from each of the terms in Eq.~17!. We can
break up the self-energy~defined to beminus the sum of
self-energy diagrams! as

S~p2!5
1

16p2f 2
@scon~p2!1sdisc~p2!#, ~32!

where ‘‘con’’ and ‘‘ disc’’ are short for connected and discon
nected, respectively. The main difference here from Ref.@7#
is that the disconnected piece~for muÞmd) now receives
contributions from all the terms in the Lagrangian, not ju

(a)

(b)

FIG. 2. The only diagrams contributing to the flavor-nonsing
meson self-energy.~a! includes all contributions where the prop
gator in the loop contains no two-point vertex insertions.~b! sub-
sumes the graphs which have disconnected insertions on the p
gator. The cross represents one or more insertions of either them0

2,
dV8 , or dA8 vertices.
03401
e
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t

the mass term. Also, note that we have factored
1/16p2f 2, and not 1/96p2f 2 as in Ref.@7#.

The terms ‘‘connected’’ and ‘‘disconnected’’ refer to th
internal loop at the quark level. In other words, a disco
nected diagram will have either an internal disconnec
propagator@Figs. 3~g!–3~j!# or a disconnected vertex@Fig.
3~e!#, or both@Fig. 3~f!#. The disconnected propagators co
respond to one or more insertions of a two-pointd8 or m0

2

vertex @i.e., D in Eqs. ~27!, ~28!, and ~30!#; while the dis-
connected vertices are generated by theU8 term in the po-
tential, as we will see below.

We will explicitly perform the partially quenched calcula
tion. Here the quenched valence quarks~call themx andy)
will in general have different masses from the sea quarku,
d and s. We will still refer to this as a ‘‘41414’’ partially
quenched theory, based on its dynamical quark content.
chiral Lagrangian needed has 5 flavors, but 2 flavors
dropped, by fiat, from loops. From this 5-flavor, partial
quenched theory, we can find equivalent 3-flavor~what we
call ‘‘full’’ theory ! results by setting the valence qua
masses equal to various sea quark masses.

t

pa-

(a) (b)

(e) (f)

(d)(c)

(h)(g)

(i) (j)

FIG. 3. The quark level diagrams that could contribute to
1-loop meson self-energy. Diagrams~b! and~c!, which require ver-
tices of the form of Fig. 4~c!, do not occur in the case of interes
Similarly, ~d! only contributes to flavor-neutral propagators. No
that ~f!, ~h! and~j! correspond to~e!, ~g!, and~i!, respectively, with
iteration of eitherm0

2, dV8 , or dA8 vertices. These diagrams are to b
taken as including any number of iterations, thus multiple inter
quark loops.
4-7
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C. AUBIN AND C. BERNARD PHYSICAL REVIEW D68, 034014 ~2003!
The valence quarksx and y form new mesons in ou
theory, which we name as follows:

X5xx̄ Y5yȳ

P15xȳ P25yx̄. ~33!

We will not give individual names to the mesons form
from various valence-sea combinations such asxū, but just
refer to them generically by ‘‘Q. ’’ A check on our final cal-
culation here is that the 1-loop correction tomP

5
1

2
should be

proportional tomx1my ~and hencemP
5
1

2
itself!, due to the

separateUA(1) symmetries forx andy and thex↔y inter-
change symmetry.

Since the mass, kinetic, andU terms are composed en
tirely of single traces, the relevant 4-meson vertices that t
generate are all of the form of Figs. 4~a! and 4~b!. ~This is
because ‘‘touching’’ flavor indices must be the same in
single trace.! In Fig. 4~b! the vertical meson lines must joi
to make the internal loop; however, they can only join with
disconnected propagator because they have different flav
Thus connected contributions from mass, kinetic, andU all
involve the vertex of Fig. 4~a!, and produce diagrams of th
form of Fig. 3~a!. Disconnected contributions can come fro
Figs. 4~a! and 4~b!.

The U8 terms, on the other hand, involve two traces, a
therefore generate disconnected vertices, which in princ
can be of the form of either Figs. 4~c! or 4~d!. However it is

x x

yy

y yii

(a)

ii

yy

x

x x

x

(d)

jj ii

x x

yy

(c)

y y

yy

x

x x

x
(b)

FIG. 4. The possible quark level diagrams for 2→2 meson scat-
tering, where one incoming and one outgoing particle~shown hori-

zontally! are fixed to be valence mesons,P15xȳ. The indicesi and
j represent arbitrary quark flavors. There are two additional d
grams~not shown!, which are like~a! and~d! but have the roles of
x andy interchanged.
03401
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not hard to show, from the explicit taste structure ofU8, that
only vertices with an odd number of mesons coming fro
each trace contribute when two of the mesons are Golds
particles~pseudoscalar taste!. The U8 vertices then separat
into two disconnected pieces, one with a single meson
the other with three. ThusU8 vertices must be of the form o
Fig. 4~d!, and not Fig. 4~c!. This in turn implies that theU8
self-energy diagrams have the disconnected structure of F
3~e! or 3~f! only, where Fig. 3~e! uses a connected propagat
and Fig. 3~f!, a disconnected one.

Combining the connected contributions, we find

scon~p2!52
1

12 (
Q,B

E d4q

p2
@p21q21~mP

5
1

2
1mQ5

2 !

1a2D~jB!#
1

q21mQB

2
. ~34!

As before, B takes on the taste values$5, m5, mn (m
,n), m, I %, and Q runs over all meson flavors with on
valence quark (x or y) and one sea quark (u, d, or s). Which
mesons contribute is clear from Fig. 3~a!.10 The first two
terms in Eq.~34! come from the kinetic energy: one from th
derivatives acting on the external legs and the other from
derivatives acting on the internal loop. The last two terms
from the mass term andU respectively. We have used the fa
that m(mx1my)5mP

5
1

2
to rewrite the mass-term contribu

tion.
The one-loop mass renormalization is just the self-ene

with the external momentump2 evaluated at2mP
5
1

2
. Making

this substitution and noting from Eq.~18! that mQB

2 5mQ5

2

1a2D(jB), the term inside the square brackets becomesq2

1mQB

2 , which cancels the denominator from the propaga

Thus, no chiral logarithms arise from these terms. This c
responds to the fact that all diagrams of the form of Fig. 3~a!
cancel in the standard continuum chiral logarithm calculat
@15#. ~See Ref.@7# for more discussion.!

For the disconnected contributions, it will be convenie
to divide upsdisc further, according to~i! whether the par-
ticle in the loop is a vector, axial-vector, or singlet in tas
and~ii ! the type of diagram that generates the term. We t
have

sdisc5sV
disc1sA

disc1s I
disc , ~35!

with

sV
disc5sV,gh1sV,i j 1sV,e1sV, f

sA
disc5sA,gh1sA,i j 1sA,e1sA, f

10If we were considering a fulln55 flavor theory wherex andy
were unquenched, then the quark loop in Fig. 3~a! could also be an
x or y, and the sum overQ would include the mesonsX, Y andP
@Eq. ~33!#.

-

4-8
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PION AND KAON MASSES IN STAGGERED CHIRAL . . . PHYSICAL REVIEW D 68, 034014 ~2003!
s I
disc5s I ,gh1s I ,i j . ~36!

Here, the labelsgh, i j , e, andf refer to the diagrams in Fig
3 that generate the contribution. As discussed above, thegh
and i j contributions come from kinetic energy, mass, orU
vertices, with a disconnected propagator. Thee and f contri-
butions have aU8 vertex and a connected or disconnect
propagator, respectively. As is easily seen from the form
~14!, U8 vertices that have two Goldstone mesons on
external lines must have only taste-vector or axial meson
the loop. Therefore,s I

disc gets contributions from Figs. 3~g!–
3~j! only, as it does in the continuum.

We focus first on the taste-vector contributions.sV,e uses
the vertex Fig. 4~d! with i 5x ~or i 5y in its x→y variant! in
order to have a connected propagator. We find, therefore

sV,e52
2

3
a2dV8 E d4q

p2 F 1

q21mXV

2
1

1

q21mYV

2 G , ~37!

where all but the overall coefficient follows immediate
from the form of the diagram. We have already included
factor of 4 for the four degenerate taste-vector mesons,
will continue to do so below.

sV, f again uses the vertex Fig. 4~d!, but now i must be
one of the sea quarks, since a virtual quark loop is involv
The propagator is the disconnected taste-vector propag
D V, Eq. ~27!. We have

sV, f52
2

3
a2dV8 E d4q

p2 (
M5U,D,S

~D XM
V 1D Y M

V !. ~38!

Note that bothsV,e and sV, f have explicit factors ofdV8 .
These come from the 4-meson vertex, generated byU8.
There are additional implicit factors ofdV8 in the discon-
nected propagatorD V in sV, f . It is not immediately obvious
that this same linear combination ofC2V and C5V @see Eq.
~20!# must occur in both the 2-meson and 4-mesons verti
However, we will see below that it is necessary for the c
cellations that allow theP5

1 mass renormalization to be pro
portional tomP

5
1

2
, as required by axial symmetry.

sV,gh is generated by vertices of type Fig. 4~a!, with i
5y ~or i 5x in its y→x variant!. The result is

sV,gh~p2!52
1

3E d4q

p2
@~p21q21mP

5
1

2
1mX5

2 1a2DV!

3D XX
V 1~p21q21mP

5
1

2
1mY5

2 1a2DV!D YY
V #.

~39!

The p21q2 terms come from the kinetic energy verte
mP

5
1

2
, mX5

2 andmY5

2 , from the mass vertex; and theDV terms,

from U. Putting p252mP
5
1

2
, and usingmXV

2 5mX5

2 1a2DV ,

from Eq. ~18!, this simplifies to
03401
q.
e
n

e
nd

.
or,
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-

sV,gh~2mP
5
1

2
!52

1

3E d4q

p2
@~q21mXV

2 !D XX
V

1~q21mYV

2 !D YY
V #. ~40!

Finally, we havesV,i j . This contribution uses the verte
Fig. 4~b! and, clearly, anX-Y disconnected propagator,

sV,i j ~p2!52
2

3E d4q

p2
@~p21q22mP

5
1

2
1a2DV!D XY

V #

sV,i j ~2mP
5
1

2
!52

2

3E d4q

p2
@~q222mP

5
1

2
1a2DV!D XY

V #.

~41!

The sum of all the contributions tosV
disc can be simplified

with an identity derived by combining Eqs.~26! and ~29!:

(
M5U,D,S

D XM
V 52

1

q21mXV

2
2

q21mXV

2

a2dV8
D XX

V . ~42!

Using this and theX↔Y version we can add Eq.~38! to Eqs.
~37! and ~40!. The trivial identity@from Eq. ~27!#

~q21mXV

2 !D XX
V 5~q21mYV

2 !D XY
V ~43!

and the fact thatmXV

2 1mYV

2 52mP
V
1

2
52mP

5
1

2
12a2DV , can

then be used to combine the result with Eq.~41! to give
simply

sV
disc~2mP

5
1

2
!52mP

5
1

2 E d4q

p2
D XY

V . ~44!

Note that the result is proportional tomP
5
1

2
, as expected. The

corresponding expression forsA
disc is obtained byV→A.

For s I
disc , we just have contributions from Figs. 3~g!–

3~j!. These contributions are very similar to the correspo
ing ones forsV

disc . We have

s I ,gh~p2!52
1

12E d4q

p2
@~p21q21mP

5
1

2
1mX5

2 1a2D I !

3D XX
I 1~p21q21mP

5
1

2
1mY5

2 1a2D I !D YY
I #

s I ,gh~2mP
5
1

2
!52

1

12E d4q

p2
@~q21mXI

2 !D XX
I

1~q21mYI

2 !D YY
I # ~45!

s I ,i j ~p2!5
1

6E d4q

p2
@~p21q22mP

5
1

2
1a2D I !D XY

I #
4-9
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C. AUBIN AND C. BERNARD PHYSICAL REVIEW D68, 034014 ~2003!
s I ,i j ~2mP
5
1

2
!5

1

6E d4q

p2
@~q222mP

5
1

2
1a2D I !D XY

I # .

~46!

TheV→I version of Eq.~43! allows us to combine Eqs.~45!
and ~46!, yielding

s I
disc~2mP

5
1

2
!52

mP
5
1

2

2 E d4q

p2
D XY

I . ~47!

Again, the result is proportional tomP
5
1

2
.

Collecting Eqs.~44! and~47! according to Eq.~35!, gives

sdisc~2mP
5
1

2
!5

mP
5
1

2

2 E d4q

p2
~4D XY

V 14D XY
A 2D XY

I !.

~48!

Sincescon is just a quarticly divergent constant, the abo
result contains all the 1-loop chiral logarithms in the ma
renormalization.

The result in Eq.~48! is rather implicit. To express the
chiral logarithms more concretely, we would need three f
ther steps:

~i! Find the explicit expressions for the eigenvalues of
full mass matrices in the denominators of theD ~e.g., mp

V
0

2
,

mhV

2 andmh
V8

2
in D V).

~ii ! Take them0
2→` limit in the taste-singlet term.

~iii ! Write the disconnected propagatorsD as sums of
simple poles and perform the integrals overq.

Steps~i! and~ii ! are slightly different in the 11111 case
of interest than in the present 41414 case, so we postpon
them until later. On the other hand, step~iii ! can be done
quite generally, so we present it here.

The integrands in Eq.~48! are of the form

I [n,k]~$m%;$m%![

)
a51

k

~q21ma
2!

)
j 51

n

~q21mj
2!

, ~49!

where$m% and$m% are the sets of masses$m1 ,m2 , . . . ,mn%
and $m1 ,m2 , . . . ,mk%, respectively. As long as there are n
mass degeneracies in the denominator, andn.k ~which is
true here even after them0

2→` limit !, I@n,k# can be written as
the sum of simple poles times their residues:

I [n,k]~$m%;$m%!5(
j 51

n Rj
[n,k]~$m%;$m%!

q21mj
2

, ~50!

where
03401
s

-

e

Rj
[n,k]~$m%;$m%![

)
a51

k

~ma
22mj

2!

)
i 5” j

~mi
22mj

2!

. ~51!

Equation ~50! just follows from the fact that an analyti
function is determined by its poles and behavior at infinity
is known as ‘‘Lagrange’s formula’’ in complex analysis@16#.

The integrals of the simple poles can now be done us

I 1[E d4q

~2p!4

1

q21m2
→ 1

16p2
,~m2!, ~52!

where

,~m2![m2ln
m2

L2
@ infinite volume#, ~53!

with L the chiral scale. We use the arrow in Eq.~52! and
later to indicate that we are only keeping the chiral logarith
terms. If the system is in a finite~but large! spatial volume
L3, we only have to modify Eq.~53!:

,~m2![m2S ln
m2

L2
1d1~mL!D

@finite spatial volume#, ~54!

where@7#

d1~mL!5
4

mL
(
rWÞ0

K1~ urWumL!

urWu
, ~55!

with K1 the Bessel function of imaginary argument.
With the above, we can write a general integral of t

form in Eq. ~48! as

E d4q

p2
I [n,k]~$m%;$m%!

→(
j 51

n

Rj
[n,k]~$m%;$m%!,~mj

2!. ~56!

We make one final comment on the 41414 calculation
before going on to the 11111 case. In Ref.@7#, certain
chiral logarithm terms were claimed to come from pure v
lence diagrams, with connected propagators; while in
current calculation, all such terms cancel. What is the rea
for the discrepancy? As discussed above, the problem in@7#
was the incorrect treatment of flavor indices. Because of t
it was not realized that there is a difference between a pro
gator of a flavor-neutral Goldstone pion, such asU5, and that
of the flavor-nonsingletp5

1 ~or between their partially
quenched counterparts,X5 andP5

1). An explicit computation
in the current framework shows that the connected, vale
terms found in@7# do in fact exist, but only for a flavor-
neutral propagator. Such terms arise identically in theX5-Y5 ,
4-10
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PION AND KAON MASSES IN STAGGERED CHIRAL . . . PHYSICAL REVIEW D 68, 034014 ~2003!
X5-X5, and Y5-Y5 propagators, but do not appear in th
P5

1-P5
2 propagator. This proves that they come from F

3~d!. The needed vertex is Fig. 4~b! ~after relabeling!, which
is generated by kinetic, mass andU terms. The claim in@7#
that connected, valence terms come from Fig. 3~c! with ver-
tex Fig. 4~c! is incorrect. Indeed, it was argued above that
flavor structure of the terms in our Lagrangian forbids ver
Fig. 4~c!, at least with two external Goldstone mesons.

IV. MOVING FROM 4 ¿4¿4 TO 1¿1¿1 DYNAMICAL
FLAVORS

To make the 41414 result, Eq.~48!, into a 11111
result, we simply must divide by a factor of 4 for every s
quark loop. The contributing diagrams are Figs. 3~e!–3~j!.
There can be either taste-vector, taste-axial vector or ta
singlet mesons on the internal lines of these diagrams,
we can treat all these cases at the same time simply by
fining

d85H a2dV8 , taste-vector;

a2dA8 , taste-axial;

4m0
2/3, taste-singlet.

~57!

Diagrams~e!, ~g!, and ~i! have no sea quark loops and
single factor ofd8 @in ~e! this comes from the 4-mesonU8
vertex#. Diagrams~f!, ~h!, and~j! have one additional facto
of d8 for each sea quark loop. Therefore, dividing by 4 f
every sea quark loop is the same as dividing every facto
d8, except the first, by 4. For a general functionf (d8) which
vanishes linearly asd8→0, we can make this adjustmen
simply by the replacementf (d8)→4 f (d8/4). Alternatively,
we can see from Eqs.~48!, ~27! and~30! that the first factor
of d8 comes from the explicitd8 in front of D V, D A or D I ;
while higher order terms ind8 are implicit in the values of
the ‘‘full’’ masses in the denominators relative to the ‘‘un
mixed’’ masses in the numerators. Therefore, to go from
1414 to 11111, we leave the explicitd8 factors alone
but merely letd8→d8/4 before diagonalizing the full mas
matrix.

The full mass matrices to be diagonalized follow from t
flavor-neutral mixing term inL, written down following Eqs.
~20! and ~21!. After d8→d8/4, these have the form

S mU
2 1d8/4 d8/4 d8/4

d8/4 mD
2 1d8/4 d8/4

d8/4 d8/4 mS
21d8/4

D . ~58!

Here the massesmU
2 , mD

2 , mS
2 have an implicit taste labe

(V, A, or I ) depending on which case we are consideri
The explicit expressions for the eigenvalues of Eq.~58! are
complicated and not illuminating in general. The solutions
the 211 (mu5md) case, however, have simple forms, a
that is the case of greatest current interest. In the taste-ve
channel, we have, for the 211 case,
03401
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4
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tor

mp
V
0

2
5mUV

2 5mDV

2 ,

mhV

2 5
1

2 S mUV

2 1mSV

2 1
3

4
a2dV82ZD ,

~59!

mh
V8

2
5

1

2 S mUV

2 1mSV

2 1
3

4
a2dV81ZD ;

Z[A~mSV

2 2mUV

2 !22
a2dV8

2
~mSV

2 2mUV

2 !1
9~a2dV8 !2

16
.

The taste-axial case just requiresV→A. In the taste-singlet
case,d854m0

2/3, andm0
2 will be taken to infinity, so only the

large-m0 expressions are needed. We have~again for 211)

mp
I
0

2
5mUI

2 5mDI

2

mh I

2 5
mUI

2

3
1

2mSI

2

3
~60!

mh
I8

2
5m0

2 ,

where we have neglected corrections that areO(1/m0
2) com-

pared to the terms kept.
Finally, we can give the result for the chiral logs in th

Goldstone pion self-energy. For the moment we stay with
partially quenched expression and also assume no dege
cies among the valence and sea quark masses. In the11
11 case we obtain from Eq.~48! with Eqs. ~27!, ~30! and
~32!

S11111~2mP
5
1

2
!

→
mP

5
1

2

16p2f 2S 22a2dV8(
j V

Rj V

[5,3],~mj V

2 !

22a2dA8(
j A

Rj A

[5,3],~mj A

2 !1
2

3 (
j I

Rj I

[4,3],~mj I

2 ! D ,

~61!

where we have used Eq.~56!, andRj
n,k and,(m2) are given

by Eqs. ~51! and ~53! or Eq. ~54!. j V runs over
$XV ,YV ,pV

0 ,hV ,hV8 % and

Rj V

[5,3]5Rj V

[5,3]~$mXV
,mYV

,mp
V
0,mhV

,mh
V8
%;$mUV

,mDV
,mSV

%!.

~62!

~For Rj A

[5,3] , just let V→A.! Similarly, j I runs over

$XI ,YI ,p I
0 ,h I% ~the h I8 has decoupled in them0

2→` limit !,
and
4-11
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Rj I

[4,3]5Rj I

[4,3]~$mXI
,mYI

,mp
I
0,mh I

%;$mUI
,mDI

,mSI
%!.

~63!

In each taste channel, the values ofmp0
2 , mh

2 , andmh8
2 in Eq.

~61! are just the eigenvalues of the corresponding version
Eq. ~58!.

The 211 (mu5md) case is very similar, but becaus
mp0

2
5mU

2 5mD
2 , there is a cancellation in Eqs.~27! and~30!

betweenq21mp0
2 in the denominators and, say,q21mD

2 in
the numerators. Assuming no other degeneracies, we ha

S211~2mP
5
1

2
!→

mP
5
1

2

16p2f 2 S 22a2dV8(
j V

Rj V

[4,2],~mj V

2 !22a2dA8

3(
j A

Rj A

[4,2],~mj A

2 !1
2

3 (
j I

Rj I

[3,2],~mj I

2 ! D .

~64!

Here j V runs over$XV ,YV ,hV ,hV8 % and

Rj V

[4,2]5Rj V

[4,2]~$mXV
,mYV

,mhV
,mh

V8
%;$mUV

,mSV
%!. ~65!

Again, let V→A for Rj A

[4,2] . The index j I runs over

$XI ,YI ,h I%, and

Rj I

[3,2]5Rj I

[3,2]~$mXI
,mYI

,mh I
%;$mUI

,mSI
%!. ~66!

In this case, the values ofmp0
2 , mh

2 , andmh8
2 are given by

Eqs.~59! and ~60!.
Cases of interest with further degeneracies~such as a

‘‘full’’ 2 11 pion with mx5my5mu5md) can be obtained
by carefully taking limits in Eq.~64!. We will write down
some of these cases explicitly in Sec. VI, where we a
include the analytic contributions.

V. QUENCHED CASE

Since we can think of the quenched theory as the limit
the partially quenched theory as the sea quark masses
infinity, all the manipulations that led to Eq.~48! will go
through unscathed in the quenched case. We can there
simply replace the disconnected propagators in Eq.~48! with
their quenched versions, Eqs.~28! and~31!. Using the same
notation as in Eqs.~61! and ~64!, we have~assumingmx
5my)
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Squench~2mP
5
1

2
!

→
mP

5
1

2

16p2f 2 S 22a2dV8(
j V

Rj V

[2,0],~mj V

2 !22a2dA8

3(
j A

Rj A

[2,0],~mj A

2 !1
2

3 (
j I

Rj I

[2,0]~m0
22amj I

2 !,~mj I

2 ! D .

~67!

Here j V runs over$XV ,YV%; similarly for j A and j I . For the
a-dependent terms, we have used the integral

I 2[E d4q

~2p!4

q2

q21m2

52m2I11E d4q

~2p!4
→2

1

16p2
m2,~m2!, ~68!

whereI1 is defined in Eq.~52!.
Because the quenched residues here are particu

simple, it is useful to write out the result more explicitly:

Squench~2mP
5
1

2
!

→
mP

5
1

2

16p2f 2 F22a2dV8
,~mXV

2 !2,~mYV

2 !

mYV

2 2mXV

2
22a2

3dA8
,~mXA

2 !2,~mYA

2 !

mYA

2 2mXA

2

1
2

3

~m0
22amXI

2 !,~mXI

2 !2~m0
22amYI

2 !,~mYI

2 !

mYI

2 2mXI

2 G .

~69!

VI. FINAL ONE-LOOP RESULTS

The mass at one loop is given by

~mP
5
1

12 loop
!25mP

5
1

2
1S~2mP

5
1

2
!. ~70!

The chiral logarithm contributions toS(2mP
5
1

2
) are pre-

sented in Eqs.~61!, ~64! and~69!, but for complete one-loop
expressions we also need the ‘‘O(p4)’’ analytic terms. The
latter are unchanged from Ref.@7#. However, for the analytic
coefficients we now prefer to use the more standard@15# Li ,
rather than the parametersK3 andK48 employed in@7#.

In the absence of any degeneracies, we have, in th
1111 case,
4-12
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~mP
5
1

12 loop,11111
!2

~mx1my!
5mH 11

1

16p2f 2 S 22a2dV8(
j V

Rj V

[5,3],~mj V

2 !22a2dA8(
j A

Rj A

[5,3],~mj A

2 !1
2

3 (
j I

Rj I

[4,3],~mj I

2 ! D
1

16m

f 2
~2L82L5!~mx1my!1

32m

f 2
~2L62L4!~mu1md1ms!1a2CJ . ~71!

Definitions here are the same as in Eq.~61!; the chiral logarithm function,(m2) is given by Eq.~53!, or in finite volume, by
Eq. ~54!. Recall that ours is a joint expansion in the quark masses~genericallym) anda2. The analytic terms in (m12 loop)2

here areO(m2) or O(ma2); O(a4) terms cannot enter here because the pion mass must vanish in the chiral limit. L
effects violating continuum rotational invariance cannot show up at this order for the Goldstone pion—see the Appe

Similarly, for mu5md[ml ~the 211 case!, but with no other degeneracies, we have

~mP
5
1

12 loop,211
!2

~mx1my!
5mH 11

1

16p2f 2 S 22a2dV8(
j V

Rj V

[4,2],~mj V

2 !22a2dA8(
j A

Rj A

[4,2],~mj A

2 !1
2

3 (
j I

Rj I

[3,2],~mj I

2 ! D
1

16m

f 2
~2L82L5!~mx1my!1

32m

f 2
~2L62L4!~2ml1ms!1a2CJ . ~72!

Definitions here are the same as in Eq.~64!.
The quenched result is

~mP
5
1

12 loop,quench
!2

~mx1my!
5mH 11

1

16p2f 2 F22a2dV8
,~mXV

2 !2,~mYV

2 !

mYV

2 2mXV

2
22a2dA8

,~mXA

2 !2,~mYA

2 !

mYA

2 2mXA

2

1
2

3

~m0
22amXI

2 !,~mXI

2 !2~m0
22amYI

2 !,~mYI

2 !

mYI

2 2mXI

2 G1
16m

f 2
~2L882L58!~mx1my!1a2C8J , ~73!

where the primes onL88 , L58 , andC8 indicate that they may have different values than in the unquenched cases. Of c
there is no analytic term involving the sea quarks (2L682L48) in the quenched case.

It is useful to write down more explicit versions of the above results in various limits pertinent to many simulations
with muÞmd , we setmx5mu andmy5md to obtain the ‘‘full QCD’’ charged pion mass in the 11111 case,

~mp
5
1

12 loop,11111
!2

~mu1md!
5mH 11

1

16p2f 2 F22a2dV8S mSV

2 2mp
V
0

2

~mhV

2 2mp
V
0

2
!~mh

V8
2

2mp
V
0

2
!

,~mp
V
0

2
!1

mSV

2 2mhV

2

~mh
V8

2
2mhV

2 !~mp
V
0

2
2mhV

2 !
,~mhV

2 !

1

mSV

2 2mh
V8

2

~mhV

2 2mh
V8

2
!~mp

V
0

2
2mh

V8
2

!
,~mh

V8
2

!D 1~V→A!1
2

3 S mSI

2 2mp
I
0

2

mh I

2 2mp
I
0

2 ,~mp
I
0

2
!1

mSI

2 2mh I

2

mp
I
0

2
2mh I

2
,~mh I

2 !D G
1

16m

f 2
~2L82L5!~mu1md!1

32m

f 2
~2L62L4!~mu1md1ms!1a2CJ . ~74!

This result is most easily obtained by taking the degenerate mass limits in Eq.~48!, before the integral is performed, rather th
in Eq. ~71!. The quantitiesmp0

2 , mh
2 and mh8

2 are eigenvalues of the mass matrix, Eq.~58!. From Eq.~74! we can get the
charged kaon mass simply by interchanging the explicit labelsd↔s and D↔S. ~The neutral labelsp0, h, and h8 are
unaffected.!

The results for the full pion and kaon in the case of degenerate up and down quark masses~both set toml) are also of
interest, as they are needed to fit many simulations. Since the pion and kaon results look quite different, we show th
034014-13
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~mp
5
1

12 loop,211
!2

2ml
5mS 11

1

16p2f 2 H F 24,~mp
V
0

2
!2

2a2dV8

mh
V8

2
2mhV

2 S mSV

2 2mhV

2

mp
V
0

2
2mhV

2
,~mhV

2 !2

mSV

2 2mh
V8

2

mp
V
0

2
2mh

V8
2 ,~mh

V8
2

!D G1@V→A#

1,~mp
I
0

2
!2

1

3
,~mh I

2 !J 1
16m

f 2
~2L82L5!~2ml !1

32m

f 2
~2L62L4!~2ml1ms!1a2CD , ~75!

~mK
5
1

12 loop,211
!2

~ml1ms!
5mH 11

1

16p2f 2 S F2
2a2dV8

mh
V8

2
2mhV

2 @,~mhV

2 !2,~mh
V8

2
!#G1@V→A#1

2

3
,~mh I

2 !D
1

16m

f 2
~2L82L5!~ml1ms!1

32m

f 2
~2L62L4!~2ml1ms!1a2CJ . ~76!

Again, the relevant limits are most easily taken before the integrals are performed. Thep0, h andh8 masses in this case ar
given explicitly in Eqs.~59! and~60!; we have made heavy use of these explicit forms to simplify the chiral logarithm te
in the p mass.

The last case we will look at is the quenched pion mass correction in the limit of degenerate valence masses (my5mx).
Here we get a double pole in the pion self-energy. We can either carefully take the limitmy→mx in Eq. ~73!, or return to Eq.
~48! with quenchedD terms and do the double pole integrals directly. We follow the latter approach. We need the foll
integrals:

I3[E d4q

~2p!4

1

~q21m2!2
52

]

]m2
I 1→

1

16p2
,̃~m2!, ~77!

I4[E d4q

~2p!4

q2

~q21m2!2
5I12m2I 3→

1

16p2
@,~m2!2m2,̃~m2!#, ~78!

whereI1 is given in Eq.~52!; ,(m2), in Eq. ~53!; and

,̃~m2![2S ln
m2

L2
11D @ infinite volume#, ~79!

with L the chiral scale. In finite spatial volumeL3,

,̃~m2![2S ln
m2

L2
11D 1d3~mL! @finite spatial volume#, ~80!

where@7#

d3~mL!52(
rWÞ0

K0~ ur uWmL!, ~81!

with K0 the Bessel function of imaginary argument. Note that the11 term in,̃(m2) was omitted in Ref.@7#. That is formally
acceptable when we are only keeping chiral logarithms, but inconvenient, since then the result from performing the
pole integral is not equal to the degenerate limit of the chiral logs from the single poles.

Using the above integrals, we get

~mP
5
1

12 loop,quench
!2

2mx
5mH 11

1

16p2f 2 S 22a2dV8 ,̃~mXV

2 !22a2dA8 ,̃~mXA

2 !1
2m0

2

3
,̃~mXI

2 !1
2a

3
@,~mXI

2 !2mXI

2 ,̃~mXI

2 !# D
1

16m

f 2
~2L882L58!~2mx!1a2C8J . ~82!
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Taking themy→mx limit in Eq. ~73! of course gives the
same result. To see that the finite-size corrections are
same both ways, one needs the identity@7#

d3~mL!52d1~mL!2
mL

2
d18~mL!. ~83!

Double poles also appear in some other interesting lim
of Eqs.~71! and ~72!. For example, the ‘‘partially quenche
degenerate pion’’ in either the 211 case (mx5my5” ml) or
the 11111 case (mx5my5” mu and mx5my5” md) has
double poles. These can be dealt with as in the quenc
case: either take the limitmy→mx in Eq. ~71! or Eq.~72!, or
return to Eq.~48! and perform the double pole integra
directly.11

VII. REMARKS AND CONCLUSIONS

The most general result we have is for then53 partially
quenched case (11111) with all valence and sea quar
masses different, Eq.~71!. Other interesting cases can b
obtained from Eq.~71! by taking appropriate mass limits
The results most relevant to current MILC simulations a
those with mu5md[ml ~the 211 case!; these and othe
important limits are presented explicitly in Sec. VI. The r
sult in the quenched case is given separately in Eq.~73!.

At this point, one can calculate any other desired quan
within this framework. The calculation for the pion and ka
decay constants is straightforward; a description is now
ing prepared for publication@17#. As in the case here of th
one loop pion mass, it is again simpler to examine the p
tially quenched case, and from there all the necessary re
can be obtained. The next step will be the incorporation
heavy quarks, so that we can examine the effects of s
gered discretization errors on heavy-light meson quantit
This requires an extension of these ideas to incorporate
heavy quark symmetries within SxPT, and is in progress.

The generalization of the Lee-Sharpe Lagrangian to m
tiple flavors has shown that two additional parameters,dV8
and dA8 , appear in the one-loop chiral logarithms for th
charged meson masses. These parameters are not deter
at tree level by existing lattice data for pion mass splittin
since they contribute only to unmeasured disconnected
graphs for flavor-neutral, taste-nonsinglet, pions. The n
parameters are therefore unconstrained in current ch
logarithm fits to lattice results. In contrast, the masses of
charged pions of various tastes that appear in our final res
are not free parameters in the one-loop fits, since they
determined at tree-level by lattice measurements. Using t
level information, a fit of lattice data to Eq.~72! would have

11If one chooses to perform the double pole integrals directly,
~50! is no longer valid, and a generalization of this formula
needed.
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We remark that existence of the parametersdV8 anddA8 leads
to the possibility of phase transition before the chiral limit
the staggered theory is reached. This possibility is discus
further in the Appendix; it does not appear to be realized
practice for the strange quark mass at its physical value.

Despite the presence of additional parameters, well c
trolled simultaneous fits to partially quenched lattice resu
for f p , f K , mp

2 /(2ml) and mK
2 /(ml1ms) at fixed lattice

spacing appear possible@18#. These should allow for highly
accurate extrapolations to physical quark mass and the
the continuum, as well as determinations of the Gas
Leutwyler parametersLi . It can help here to constrain, a
least weakly, the new chiral parameters. One easy way to
this is to use a vacuum saturation estimate of the ma
elements of the 4-quark taste-violating operators calcula
in perturbation theory@19#. More accurate lattice evaluation
of the matrix elements, or perhaps even direct lattice de
minations of thedV8 and dA8 by evaluation of disconnecte
pion propagators, may also be envisioned.

An alternative approach to the fitting of lattice data is a
possible when highly accurate data exist at more than
lattice spacing. Here one can extrapolate to the continuum
fixed quark mass and then fit the resulting ‘‘continuum’’ r
sults to standardxPT forms, i.e., without taste violations
This is the approach taken in@20#, and it works well. Be-
cause of the nonanalytic dependence on the lattice spa
induced by the chiral logarithms coming from pions of va
ous tastes, though, there is a residual discretization error
in the data even after extrapolation to the continuum. T
error would go away if one worked very close to the co
tinuum limit, where ‘‘very close’’ here meanska2LQCD

2

!mp
2 /L2, with k a constant that depends on the particu

staggered action, andL is the chiral scale. For pions ligh
enough forxPT to be applicable, however, this condition
very difficult to satisfy without further improvement in th
staggered action than is currently available. T
SxPT formulas above will therefore remain crucial, at lea
in the near term, for determining the systematic errors in
results.
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APPENDIX

Here we write down the symmetries of the effective co
tinuum action~‘‘Symanzik action’’! of the staggered lattice

.

12One may choose to absorbC into m, which will have O(a2)
corrections in any case from higher operators in the effective c
tinuum action that have the same symmetries as the lowest o
terms—see the Appendix. However, this will change the higher
der corrections to Eq.~72!.
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theory throughO(a2), and those of the corresponding chir
theory, Eq.~17!. We also briefly discuss the interesting po
sibility of a transition of the staggered theory to an unus
phase. We follow the notation and reasoning of Ref.@6#
closely; the discussion in this Appendix isnot self-contained.

The symmetries of various terms in theO(a2) Symanzik
action are shown in Table I, which is a generalization
Table 1 in Ref.@6# to the currentn-flavor case.

The ‘‘residual chiral group,’’U(n),3U(n) r , which is a
symmetry ofS6

FF(A) andS6
FF(B) , is the extension to multiple

flavors of the residualU(1)vec3U(1)A symmetry of a single
staggered field. Letta be theU(n) generators, and letq be
the complete~flavor ^ taste^ spin! quark field, as in Eq.~8!
but with flavor indices suppressed. Then the residual ch
group is given by

,:H q→expF iu,
ataS 12g5^ j5

2 D Gq,

q̄→q̄ expF2 iu,
ataS 11g5^ j5

2 D G ;

r :H q→expF iu r
ataS 11g5^ j5

2 D Gq,

q̄→q̄ expF2 iu r
ataS 12g5^ j5

2 D G ; ~A1!

whereu,
a andu r

a (a51,2, . . . ,n2) are the group parameter
We use the notation, andr, rather than the usualL andR for
chiral rotations, because these symmetries combine c
spin with taste. To study the effect of this symmetry on va
ous terms in Table I, consider a flavor-singlet, ‘‘odd’’ bilin
ear, i.e., a bilinear of the formq̄(gS^ jT)q, where there is

TABLE I. The flavor and rotation symmetries respected by va
ous terms in the effective action. Here ‘‘flavor’’ is used generica
to include fermion number, true vector flavor, chiral, and taste sy
metries. Almost all the notation is from Ref.@6#. The ‘‘residual
chiral group,’’ U(n),3U(n) r is defined in the text. We have als
added the subscript ‘‘vec’’ for vector (L1R) symmetries, and have
included overall fermion number,U(1)VEC , as well as individual
flavor number symmetries,U(1)vec. There is no clear separation o
flavor and rotation symmetries in the last three lines. For simplic
in themÞ0 cases, we assume that all quark masses are nonzer
different for different flavors.

Term in action @Flavor# 3 Rotation symmetry

S4 (m50) @U(1)VEC3SU(4n)L3SU(4n)R#3SO(4)
S4 (mÞ0) @(U(1)vec3SU(4)vec)

n#3SO(4)

S6
glue @U(1)VEC3SU(4n)L3SU(4n)R#3SW4

S6
bilin (m50) @U(1)VEC3SU(4n)L3SU(4n)R#3SW4

S6
bilin (mÞ0) @(U(1)vec3SU(4)vec)

n#3SW4

S6
FF(A) @U(n),3U(n) r3(G4’SO(4))#3SO(4)

S6
FF(B) U(n),3U(n) r3(G4’SW4,diag)

S6(m50) U(n),3U(n) r3(G4’SW4,diag)
S6(mÞ0) (U(1)vec)

n3G4’SW4,diag
03401
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an implicit sum over flavor, and where$gS^ jT ,g5^ j5%
50. Then it is clear that any bilinear of this type is invaria
under the residual chiral symmetry, Eq.~A1!. That theSFF(A)

andSFF(B) terms in the action are invariant under this sym
metry now follows from the fact they can be written as su
of products of such bilinears@see the discussion precedin
Eq. ~13!#.

Note that, even though the identity matrix in flavor
included among the generatorsta in Eq. ~A1!, the corre-
sponding axial symmetries (u,

a52u r
a) are traceless in flavo

^ taste because of the presence ofj5.
For future purposes it is convenient to rewrite Eq.~A1! to

show explicitly the action of the, and r symmetries on the
chiral fields. Define

qL[S 12g5

2 Dq, q̄L5q̄S 11g5

2 D
qR[S 11g5

2 Dq, q̄R5q̄S 12g5

2 D ~A2!

U,L[expF iu,
ataS 11j5

2 D G , U,R[expF iu,
ataS 12j5

2 D G
UrL[expF iu r

ataS 12j5

2 D G , UrR[expF iu r
ataS 11j5

2 D G .
~A3!

Then

,: qL→U,LqL , q̄L→q̄LU,L
†

qR→U,RqR , q̄R→q̄RU,R
†

r : qL→UrLqL , q̄L→q̄LUrL
†

qR→UrRqR , q̄R→q̄RUrR
† . ~A4!

One now assumes that theSU(4n)L3SU(4n)R approxi-
mate symmetry~i.e., the symmetry ofS4, the 4-dimensional
terms in the action, atm50) breaks dynamically in the usua
way down to SU(4n)vec. The kinetic energy term in the
effective chiral Lagrangian then has the completeSU(4n)L
3SU(4n)R symmetry~realized nonlinearly!. Other terms in
the Symanzik action are represented by additional term
the chiral Lagrangian with the corresponding symmetries

A key insight of Lee and Sharpe is that the chiral rep
sentatives of all terms in the action that violate theSO(4)
rotation symmetry must contain derivatives. For examp
the rotationally noninvariant term(mq̄(gm ^ I )Dm

3 q in S6
bilin

has a lowest chiral representative(mTr(]m
2 S]m

2 S†). Chiral
terms that are alreadyO(a2) and also have derivatives wil
be higher order than ourO(m,a2) Lagrangian, Eq.~17!.
Thus only S4(m50), S4(m5” 0), and S6

FF(A) contribute to
Eq. ~17!, giving the kinetic energy, mass term, and potent
V, respectively. The symmetry group of the chiral Lagran
ian is therefore simply the intersection of the symme

-

-

y
nd
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groups of the relevant three lines from Table I13

@(U(1)vec)
n3(G4’SO(4))#3SO(4), although by treating

the mass and taste violating matrices as spurions, one
work with the full @U(1)VEC3SU(4n)L3SU(4n)R#
3SO(4) group.

Under the residual chiral symmetryU(n),3U(n) r , Eq.
~A4!, the chiral fieldS transforms as

,: S→U,LSU,R
† , S†→U,RS†U,L

†

r : S→UrLSUrR
† , S†→UrRS†UrL

† .
~A5!

It is straightforward to check that the kinetic energy a
potential terms in the Lagrangian, Eq.~17!, are invariant un-
der this symmetry, which is of course violated by the ma
term.

Note that terms violating continuum rotational invarian
can appear for the first time atO(ma2), from the chiral
representatives ofS6

FF(B) . However, because the taste of t
Goldstone pion transforms trivially under lattice rotatio
(SW4,diag), rotational violations cannot affect it unless fo
derivatives are present. Thus, for example, the Goldst
pion’s continuum dispersion relation is violated atO(m2a2)
by a terma2(m]m

2 p5]m
2 p5 coming from the chiral represen

tatives of the noninvariant terms inS6
bilin andS6

glue.
TheSO(4) part of the taste symmetry of the lowest ord

chiral action guarantees that the approximate spectral de
eracies found in Ref.@6# persist in then-flavor theory. This
symmetry is ‘‘accidental’’ in the sense that it is not obey
by the full lattice action and will be violated at next orde
Note that the tasteSO(4), and in fact the accompanying
discrete Clifford groupG4, appear only once, as an overa
taste symmetry affecting all flavors, and not as individu
groups for each flavor separately. This can be seen from
structure of the four-quark operators, Eq.~8!. It is related to
the fact that the symmetry of the underlying lattice theo

13We are ignoring the discrete symmetries of parity and cha
conjugation here.
-
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has just a singleG4’SW4,diag factor, which is generated by
single site translations and lattice rotations. It clearly can
act on different flavors separately since the gauge fields m
also be translated and rotated. We remark further tha
there wereG4’SO(4) taste symmetries for each flavo
separately, they would forbid taste-nonsinglet hairpin gra
like Fig. 1.

Lee and Sharpe have discussed the possibility of an
usual ‘‘Aoki-phase’’ for staggered fermions that could occ
if the mass squared of one of the non-Goldstone pions v
ished before the chiral limit. However, since the splitting
D(jB) in Eq. ~19! are all positive for existing staggered a
tions, this scenario seems unlikely to be realized in pract

The current work suggests another possibility for an u
usual phase: from Eq.~59!, if dA8 or dV8 is negative and suf-
ficiently large in magnitude compared to the Goldsto
masses and to the corresponding splittings,DA or DV @Eq.
~19!#, thenmhA

2 or mhV

2 could vanish before the chiral limit

This possibility seems to us not as remote as the prev
one, because chiral logarithm fits@18# to existing MILC data
tend to give a negative value fordA8 that is comparable in
magnitude toDA . Taking mu5md , Eq. ~59! implies that
mhA

2 vanishes before the chiral limit (mu5md50) is reached

if

dA8,dA,crit8 [24DA

11a2DA /mS5

2

213a2DA /mS5

2
. ~A6!

For the s-quark mass at its physical value,mS5

2

'(700 MeV)2. On the ‘‘coarse’’ (a'0.13 fm) MILC lat-
tices, a2DA'(275 MeV)2. This means that the transitio
could occur with a physical strange quark mass only fordA8
&21.9DA , which does not appear to be satisfied by t
chiral fits. Further, asa decreases, the fit values ofdA8 seem
to move further fromdA,crit8 . However, the transition appear
considerably more likely to be realized in the unphysic
case where all three quark masses get small. TheredA,crit8 5

24DA/3, which is comparable to fit values ofdA8 . More
study of this interesting possibility is clearly warranted.
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