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Pion and kaon masses in staggered chiral perturbation theory
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We show how to compute chiral logarithms that take into account botlD(aé) taste-symmetry breaking
of staggered fermions and the fourth-root trick that produces one taste per flavor. The calculation starts from
the Lee-Sharpe Lagrangian generalized to multiple flavors. An error in a previous treatment by one of us is
explained and corrected. The one loop chiral logarithm corrections to the pion and kaon masses in the full
(unquencheyq partially quenched, and quenched cases are computed as examples.
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I. INTRODUCTION introduced in the continuum limit. If we are able to show, by
comparing simulations to 3T forms, that the staggered
For simulating fully dynamical lattice QCD at light quark theory produces the expected chiral behavior in the con-
masses, stagger¢dogut-SusskindKS)] fermions have the tinuum limit with controlled ©O(a?) errors, it should go a
advantage of being very fast relative to other available methiong way toward easing worries about tfi®et trick.
ods[1]. In addition, an exact chiral symmetry for massless A starting point for any $PT calculation is the work of
quarks is retained at finite lattice spacing. However, the adtee and Sharpg6], who derived thed(a?) chiral Lagrang-
vantage in speed of KS fermions may be offset by systematifan for a single KS field1 flavor, 4 tastes In Ref.[7], a
issues: on present realistic lattic@sg., recent MILC simu-  generalization of the Lee-Sharpe Lagrangian to multiple
lations[2—5] with a~0.13 fm), the KS tasfeviolations are quark flavors was introduced to calculate chiral loop effects.
not negligible. Indeed, despite the fact that the MILC simu-However, there are subtleties in the generalization that were
lations use an improvedAsqtad”) action that reduces taste not appreciated in Ref7], leading to errors in the multifla-
violations toO(a%a?), these effects can still introduce sig- vor chiral Lagrangian and hence in the final chiral-logarithm
nificant lattice artifacts. formulas. These same subtleties also turn out to have impli-
Since one can control the taste of the external particlegations even for the tree-level comparigomRef.[6]) of the
explicitly in the simulation, taste-violating artifacts show up 1-flavor theory with simulations.
primarily in loop diagrams. In particular, any quantity or  Bejow we will follow the outlines of the three-step pro-
computation that is sensitive to chirgdseudoscalar mespn  cedure introduced in Reff7], which we restate here for com-
loops can be expected to show large artifacts at current |ab|eteness:

tice spacings. In order to perform controlled chiral extrapo- (j) Generalize the Lee-Sharpe Lagrangian to correspond
lations and extract physical results with small discretizationy, n staggered quark fields, resulting in €éroken
errors from staggered simulations, it is necessary to includgy(4n), x SU(4n)x chiral theory. Where convenient, we
the effects of taste violations explicitly in the chiral pertur- \yjj| specialize to the case of interest=3. We call then
bation theory §PT) calculations to which the simulations — 3 theory the “4+4+4” theory, since it has three flavors,
are compared. The goal of this paper is to develop such gach with four tastes: its symmetry is a brok8i(12),
“staggered chiral perturbation theory” {&T). XSU(12)g.

One can think of the MILC simulations as introducing (i) Calculate one loop quantitigsuch asm? ) in the 4
flavor with separate KS fields far, d and s quarks. The 4 75
frat+a theory.

tastes f h fiel th to 1 by taking the fourt
astes for each field are then reduced to 1 by taking the four (iii) Adjust, by hand, the result to a single taste per flavor

root of the quark determinants for each flagdrhe theory . . . .

with {/Det does not have a local lattice action, and there id" order t.o cor-respond to the physical czﬁaﬂ_ad 10 _S|mulat|on

some concern that nonuniversal behavior may thereby bga.ta). This adjustment_ corresponds to et trick. It re-
quires an understanding of the correspondence between the
meson diagrams at the chiral level and the underlying quark

diagrams and is basically the “quark flow” technique of Ref.

We use the term “taste” to describe the staggered symmetry in- .
duced by doubling; the taste symmetry becom&)(4), [8]. For nondegenerate quark masses, we call the adjusted

X SU(4)g in the massless, continuum limit, but is brokert{g?). case the ¥ 1+1 theory; Whe_n we t_akmU: Mg=m, (which

We reserve the term “flavor” for truey(, d ands) flavor. corresponds to the MILC simulationsve call it the 2+ 1
2Sincem, is always chosen equal toy in the MILC simulations, ~ theory. . o

one actually uses a slightly simpler procedure in practice. Only two  1he difficulties in Ref.[7] arose in stefi). Fierz trans-

KS fields are introduced, and the square root ofitfedeterminant ~ formations were used to simplify the flavor structure in the

is taken. However, assuming algorithmic effecstep-size errors, taste-symmetry breaking potential. However, Réf.had al-

autocorrelationsare under control, the two approaches are equivafe€ady employed Fierz transformations to simplify the form

lent. We therefore prefer to consider the conceptually simpler casef this potential. The two transformations turn out not to be

where each KS field represents a single flavor. compatible. In the Lee-Sharpe case, there was only one fla-
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vor, so this was not an issue. By properly taking into accounscribes four continuum tastes of quarks.
the mixing of the flavor indices, we find that two of the six =~ The 4X4 matrix 3, is defined by
terms in the symmetry-breaking potential of Rf] are in- 16
correct. _ - _
Another difference with Ref.7] is that theren was taken Z=exiglh), ¢’_a§1 Tala D
to be 2, and steyiii) was modified to adjust the,d loops

. ; ; here ther, are realf is the tree-level pion decay constant
according to a/Det, rather than &Det trick. This was due W e ' 1S
to the fact that Ref[7] took m,=m, from the beginning. (normalized here so thdt,~131 MeV), and the Hermitian

However, the entire procedure is much clearer if every qua”generators'l'a are
flavor is treated equivalently. Further, we will see that it is Ta:{§5ai§,u5’i§,uvr§,uagl}' 2)

important to be able to treat directly charged pioag., uH) . . .
: .- Here we use the Euclidean gamma matri€gs with £

that are composed of two independent flavors transformin ) : m
g o ‘ig,@ [4<v in EQ. (D], £,5=&,&5, and &=I is the 4

under an exact IaFtlce_ flavor symmet(lwhen m,=my). Fi- X4 identity matrix. The field® transforms undeBSU(4),
nally, the calculation is actually simpler when we keep a"><SU(4)R asS LR

three quark masses unequal. The fact that the Goldstone As discussed in Ref7], we will keep the singlet meson
charged piorj mass squared must then have an overall fac"%ﬁoctrgﬁ in this formalism., Due to the anomaly, the singlet
of m,+my gives a very useful check on our calculation. receives a large contributiofwhich we will call my) to its
General!zmg the taste-breaking potentlal_properly has leghass, and thus does not play a dynamical role. Lee and
us to realize that flavor-neutral mesons in certain tastesharpe do not include this field in their formalism, which is
nonsinglet channels can mix at tree-level due to “hairpin” equivalent to keeping the singlet in and takimg— o« at the
diagrams. We can now see that such diagrams are presestid of the calculatiof10]. We keep the singlet here since in
even in one-flavoyPT [6]; their effects however have not the generalized case of KS fields, it is only theSU(4n)
been appreciated previously. The coefficients of the hairpiginglet that is heavy. In theng—< limit, the otherSU(4)
diagrams that arise here are new parameters in the chiralnglets will still play a dynamical role.
theory and have to be fit with simulation data or determined The (Euclidean Lee-Sharpe Lagrangian is then

perturbatively. 2 1
This paper mirrors the format of Rdf7]. In Sec. II, we _ £(4)=§tr(aﬂ2@2*)— ZMmfztr(2+2T)
generalize the Lagrangian of Lee and Sharpe, properly taking
into account the flavor and taste structures involved. Section o2
[l discusses the calculation of the one loop chiral logarithms + T°(7T|)2+82V, 3)

for the flavor-nonsinglet Goldstone meson mass in the 4

+4+4 theory. It is convenient at this point to generalize thewhere,u is a constant with units of mass, amtis the KS-

calculation to the partially quenched case, where the valencg o breaking potential. Correct through(a2m) in the
and sea quark masses are completely nondegenerate. T, | expansion im? andm, we have

results are actually most simply expressed in this case, since

there is a clear distinction between valence and sea quark 6

effects, and no degeneracies arise that lead to cancellations™ V= kZl CyOk

We then make the transition to thetll+1 theory in Sec. -

IV. We write down results for both the partially quenched 1

and “full” (equal valence and sea quark masseses, fo- =Cltr(§5E§5ET)+Cz§[tr(22)—tr(§52§52)+H.c.]
cusing primarily there on features which are different from

Ref. [7]. The results for the quenched chiral logarithms are 1

discussed in Sec. V. Section VI adds in the analytic terms and + C3§ EV: [tr(£,%6,2)+H.c]

gives a compendium of final results, in full, partially

guenched, and quenched cases. In therfiyl=Emyg=m, (2 1

+1) case, the results from Sec. VI have already been re- +C4§ EV: [tr(£,5%85,2) +H.c]

ported in Ref.[9]. We conclude with remarks about other

uses for §PT in Sec. VII. An Appendix gives some addi- 1

tional details about the symmetries of the theory and briefly +C5§ zv: [r(&,2€,2T) ~tr(£,63 £5,27)]
discusses the possible existence of a heretofore unknown
phase of the staggered theory. This possibility is however
apparently unrealized for physical values of the quark
masses.

+Cg X tr(€,,56,,37). (4)
u<v

Il. GENERALIZATION OF LEE-SHARPE LAGRANGIAN
) SAside from themé term, we need not worry abowt, dependence
Lee and Sharp¢6] describe pseudo-Goldstone bosonsin this Lagrangian, since we are taking tiig— o limit. It is only

with a nonlinearly realizedSU(4)_XSU(4)r symmetry, in the quenched caséec. \j, where we are unable to take the
which originate from a single KS field. This KS field de- my—c limit, that we will have to examine other, terms.
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The 16 pions fall into 550(4) representations with tastes flavor unmixed 4-quark operators, theare singlets under
given by the generator, . This comes from the “acciden- the flavorSU(n) symmetry. We can thus make the replace-
tal” SO(4) symmetry of the potential. We can determine ment
the tree-level masses of the pions by expanding (Bpto
quadratic order:

&g 000
ama 0 & 0
mf,B:2,um+ T5B,|+a2A(l)(§B)1 (5) fB—’f(Bn): ©

0 0 & |
whereB e {5,u5,uv(u<v),u,l}. TheAM(&g) term comes
from theV term, and is givehin Refs.[6,7] as
where thet{" are 41x 4n matrices, and thég on the right
hand side are still X4 taste matrices.
Lee and Sharpe, however, already use Fierz transforma-
tions on the operators in Appendix A of RgB] to ensure
that the final six operators in E¢4) are all single-trace ob-
jects. We now find that the transformation used in R&f.
16 does not keep the operators in the same single-trace form.
A(l)(fw): —(2C43+2C,+4Cy) To see this, let us first assume we have made the replace-
f2 ment (9) in the taste-symmetry breaking potential. The op-
eratorsO, andQOy are then not invariant under axial rotations

AM(&)=0

16
AM(E,5) = f—z(cl+ C,+3C3+C,—Cs+3Cy)

. 16 of the individual fields. For example, consider a tadig 1)
AD(g,)= f—2(01+ Ca+C3+3Cy+Cs5+3Cp) transformation on a single flavor only:
T & 0 0
Al >(g,)=f—2(403+4c4). (6) N 0 10
3 —elfEs3e 55 Ho= 0 0 1 , (10
The vanishing ofA®)(&5) is due to the taste nonsinglet
Ua(1) symmetry
3, — el¥és3 gl 05, (7)  whereEs is a 41X 4n matrix, shown here as composed of

o _ . 4x 4 blocks. It is simple to verify that the operatd®s, O,
which is unbroken by the lattice regulator, making a true 0,, and Oy are invariant under Eq10). However, using
Goldstone boson. _ _ e'%és5=cosh+i&ssin6, one finds that?, and O are not in-
~ We now wish to generalize to the case of multiple KSyariant, and thus are not the correct generalization of the
fields. In Ref.[7], for two KS quark fields, this was accom- Lee-Sharpe terms to flavors.
plished by promoting: and the mass matrix t0>88 matri- One approach to generalizing the Lee-Sharpe Lagrangian
ces. In the general case ofKS fields, which we discuss correctly is therefore to consider all the different ways that
here, these becomen’k 4n matrices. The kinetic energy and the flavor indices on the various fields in Eq.(4) can
mass terms are correctly given in REf]. The only difficulty  contract. To do this, we write everything as<4 matrices

arises in generalizing the taste-symmetry breaking potentigdng show the flavor indices explicitly. For example, the form
(or equivalently the taste matricég). The generalization of f O, from Ref.[7] can be written as

Vin Ref.[7] uses a Fierz transformation on the various four-
quark operators to bring them into a “flavor unmixed” form

. . 1
as follows: Olzncorrectzz[tr(zljzjl)_tr(gszlj 552J|)+ HC], (11)

qi(ys® &0 a0 (vs ® 1), ®)

where ¢5 the 4X 4 object, and andj are theSU(n) flavor

whereq is the quark fieldj,j areSU(n) flavor indices,ys . .. : :
andye are spin matrices, angk andé;. are taste matrices. indices, to be _summed over. AnotHgt(n) invariant we can
create with this operator is

Treating the taste matrices as spurion fields, we see that for

1
“In Refs.[6,7], these corrections are denotedss). When we OZ:E[U(EHEH )—tr(£s2iiés2 ) +Hel. (12
generalize to multiple KS flavors, we will wish to distinguish this
single flavorA()(&g) from then-flavor A(&g).
SIn Ref. [6], these are referred to as KS-flavor matrices and deOne can easily see that this operator is invariant under Eq.
noted byér and &g . (10).
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By starting with the other operators in E@), we can
similarly find other correctly generalized terms. This would —U’EZ Cw Ok
for instance alte®s along the same lines as Ed.2). How- k
ever, a problem with this approach is that it is difficult to 1 ") ")
ensure that the most general taste-violating potential is gen- :CZVZ Ey [Tr(&,"2)Tr(&,%) +H.c]
erated. For example, the operatorSti@ || — £33 ) is
invariant under Eq(10) but is not easy to find starting with 1
Eq. (4). That is because Lee and Sharpe have already set +Cay EV [Tr(&R=)Tr(El)S) +H.cl
tr(S=" =const in arriving at thei®;.
A more direct way to find the final form of the taste- 1 ™ ()< 1
breaking potential involves starting from the quark level and +CSV§ EV [Tr(&72)Tr(6,72 )]
using the original analysis of Lee and Sharpe instead of their
final result. At the quark level, gluon exchange can change 1 ) ()~
taste and color, but not flavor. Therefore the taste-violating +Csaz 2 [THERDTIEDSD], (19
4-quark operators are composed of products of two bilinears, '
each of which is a flavor-singlet, as in E@). The 4-quark  where Tr is the full 41X 4n trace, and th&§ are 41X 4n
operators may be mixed or unmixed in cdior. matrices as in Eq(9). The terms that comprigé were found
To O(a®) in the duala®,m expansion, the taste-breaking in Ref. [7]. Now, however, there are no terms that directly
OperatOI’S can be Computed in the chiral limit. Since gluorborrespond to the Operatc@z and(’)s' |nstead’ we have the
emission does not change chirality, each bilinear is sepaouyr terms in/’.8 It turns out that only two combinations of
rately chirally invariant. The only such bilinears are vectorihe four constants i/ enter in the 1-loop resultCa,
and axial vector in the naive theory, which correspond to_c_, and C,o—Css. The terms corresponding t€s,y
“odd” operators in the staggered theofgperators in which | c_ andC,,+ Cs, do not appear at this level.
quark and antiquark fields are separated by lor 3]i[11§1§. Note that the “accidental’SO(4) symmetry of the one-
Thus only the odd-odd 4-quark operators in Appendix A off5y0r theory[6] survives in Eqs(13) and (14), as seen by
Ref.[6] are relevant to us here. Each such operator can occife fact that the taste indices are contracted in a “Lorentz
in color mixed and color unmixed form, but that does notinyariant” way. This implies that the degeneracies of the one-
affect the correspondence toyBT operators. The even-  fiayor theory will also appear in the-flavor case: all four
even operators of Ref{6] were obtained by Fierzing the taste-vector pions of a given flavor will be degenerate, as
odd-odd operators and may be ignored: They correspond 1gjj| 4l taste-tensors, etc. See the Appendix for further dis-
flavor-mixed 4-quark operators. cussion.

The above reasoning implies that the arguments in Ref. £qrn ks flavors,S, = exp(®/f) is a 41X 4n matrix, and
[7] were in fact correct, but only if the replacement E9).is

. X b - ® is given by
implementedeforethe Fierz transformations in R¢B] that
put the chiral operators in single-trace form. Writing the po- u =" K*
tential asV=U+U", we then obtain - 0
T D K e
b= — 1
K~ KO S R ( 5)
—uEEk COx
whereU=31° U,T,, etc., with theT, from Eq. (2). The
=C,Tr(elMs Vs ) component fields of the diagonéflavor-neutral elements
1 (Ua, Dy, etc) are real; while the othefcharged fields are
+Ca2 > [Tr(EMS EMS) +H.c] complex (s , K2, etc), such thatb is Hermitian. Here the
2% n=3 portion of ® is shown explicitly. The mass matrix is

1 now generalized to therdX 4n matrix
+Ca5 2 [THERSEDS) +He]

ml 0 0
0 mygg 0 -
+C 2 THENTENST (13 M0 0 mg (18
u<v

8In Ref. [6], color-mixed operators are Fierzed to put them in a
standard, color-unmixed form. But this is precisely what we do not 8The combinatiorO,,+ O,, can be Fierzed into the correct ver-
want to do here because it would mix the flavor indices. sion of O,, Eq. (12), and similarly forOs,—Os, and the correct
"The color structure does affect the coefficients of theversion of Os. The other linear combinations are new here, but
SxPT operators, but since these coefficients are arbitrary at theould have been Fierzed into other operators of R&f.if there
chiral level anyway, color mixing is irrelevant here. were no flavor indices.
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where again, the portion shown is for the=3 case. 25
Thus, our(Euclidean Lagrangian becomes U, _a\/V Dy
7<
2 1 (a)
t 2 t
£=§Tr((9#EaME )—Z,uf Tr(MX+ M)
2
2mg U a 5v d
+T(U,+D,+S,+-~-)2+azv, 17 U ) ( d

(b)

FIG. 1. The two-point mixing vertefiamong taste vectorsom-
ing from the newl/’ term. (a) corresponds to the chiral theoi(n)

where them? term includes then flavor-neutral fields and
V=U+U'" is given in Egs.(13) and (14). The gg‘) in V are
block-diagonal 4 X 4n matrices, as in EQ9). shows the corresponding quark level diagram. We also hi&

When the masses vanish, the chiral Lagrangian,(Eq, andD-S mixings and diagonal term3J-U etc). There are similar

has a flavorSU(n) vector symmetry and the individual yerices among the axial tastésith a?s,—a?s)), as well as the
U (1) symmetries for each flavor, both of which were usedsing|et tastegwith a28,,—4m/3).

above, as well as overall fermion number conservation.
These symmetries actually extend tdJ&n),<U(n), “re- 16
sidual chiral group,” although this full symmetry is not par- A(E,)=Ar=AD(¢, )= (2C5+2C,+4Cy)
. . . . A% T % 2 3 4 6
ticularly important to us in the present context. Details are f
relegated to the Appendix.

Expanding£ to quadratic order in meson fields, the po- 16
tential?/ gives different masses to different taste mesons, but A(E,L)Eszf—z(Cl+ C3+3C4+3Ce)
because it consists entirely of single-trace terms, the contri-
bution is independent of the meson flavor. However, siiice
consists of two-trace terms, it contributes only to the masses 16

P . . =A, =AW=

of flavor-neutral mesons, and in particular only those with A(&)=4,=4(&) f2(4C3+4C4).
vector and axial vector tastes. Thus, even at tree-level and
with my=mgy, a=" of a given taste receives different mass Note that them2 terms and the terms fro@t’ are not in-
corrections than a neutrél or D of the same taste. In Simu- |uded in these masses. Those terms. which affect only
lations, disconnected propagators for taste-nonsinglet piong,yor-neutral mesons and give nondiagonal contributions in
(including the Goldstone pion have invariably been ihe pasis of Eq(15), will be treated as vertices and summed
dropped. This implies that S|mglat|ons descrﬂpé MesoNs, 4 gl orders below. Thus thé(a?) corrections in Eq(18)
not those constructed from a single flavor, which would havey;e flavor independent.
disconnected contributions. The comparison in Réf. of Simulations with the “Asgtad” actior{5] give approxi-

the 1-flavor YPT tree-level results to simulations is there- nately equal splittings of the mass-squares of various taste
fore not justified, although almost all of the conclusions of esons in the ordeMs, M s, M,,, M,, M,. From Eq
. . 7 ‘U, ’ /1,]/ 1 l"' 1 . .
Ref. [6] survive a revised treatment. (19), this indicates thaC, is the dominant coefficient, a
We thus want a chiral theory with botlhand d quarks,

, X _ Hue conclusion first noted in Ref6].
even if we are interested in t.hau=md case. This is the Upon expanding’ in Eq. (14) to quadratic order, we find
primary reason that we consider thet4+4 theory here

S a two-point vertex mixing the taste-vector, flavor-neutral me-
rather than the 4 4 theory of Ref[7].

sons U,, D,, etc):
From Eq.(17), the tree-level masses of the mesons are
2 _ 2/ — 235(; —Cqy)=—a2s! 20
My, = #(Ma+My) +a°A(&p), (18) a f2( av—Csy)=—a%dy. (20)

wherea and b refer to the two quarks which make up the | other words, there is a term+ a?8,/2(U,+D,+S,

mesonM, and we have defined +-.-)2%in £. The vertex in the chiral theory is shown in Fig.

) 1(a); while the corresponding underlying quark diagram is
A(&5)=Ap=A""(&5)=0 shown in Fig. 1b). There is also a vertex mixing the taste-
axial, flavor-neutrals\ ,s, D .5, etc):
16
A(€,5)=Ap=—;(C1+3C3+Cy+3Cs) (19 ,16 -
f —a f_Z(C2A_CSA)E_a O (21)

. 2 2 . . .
®We remark however that it would in principle be possible to!-€-; @ tem;“‘a 5’A_/2(UMS+D;L5+SM5+ ) |2n L. Simi-
extract the 7" results from aK™ calculation in a(partially  larly, themg term in £ produces a vertex-4mg/3 between

quenchefl4+4 theory. the taste-singlet, flavor-neutralsl(, D,, etc).
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We thus have to resum the flavor-neutral propagators iscalars that do not couple to pure-glue states in the con-
three cases: taste-vector, taste-axial, and taste-singlet. Thiauum limit, unlike the real;’.
methods of Appendix A in Ref12] allow us to calculate the It is easy to generalize Eq&25), (27) to incorporate par-
full flavor-neutral meson propagators easily and write thential quenching. Iterating Fig.(b) to determine the full propa-
explicitly in terms of the true propagator polésass eigen- gator generates internal quark loops. Only @gsguenched
state$. Here we sketch a few steps in this process. For conguarks are therefore allowed in this iteration. Thus, if the
creteness we focus explicitly on the taste-vector case, ahumber of sea quarks isg, the product ovetL in the nu-
though the taste-axial case is obtained simply by repla¢ing merator of Eq.(27) includes only theng unmixed flavor-
with A in the equations below. The taste-singlet3j case neutral mesons built from these sea quarks. Likewise, only
can be calculated similarly, although a more standard aptheng full eigenvalues are included in the denominator prod-
proach is also possible. We write the full inverse propagatouct overF. The external mesorid andN, however, may be
as any flavor-neutral states, made from either sea quarks or va-

lence quarks. Similarly, in the quenched c&}é,\‘ is simply

Gy'=Ggy+HY, (22)
with pV,quench _ o2 o . 28
el " e @y
(Goy)mn=(q"+ My )Sun. (23
v Below we will also need the relation
Hyn=2a%8,, YM,N. (24)
_ detGy )
Here and below we us¥ for generic taste-vector states, —71=1+tr(GOVVHV)
rather than the index. The indicesM and N refer to the det(Gyy)
flavor-neutral mesons in the original basis of Ep), with
my,, and my,, the “unmixed” masses from Eq(18) [i.e., =1+a25\’,2 (29)
without including the mixing of Eq(20)]. For example, in T | g?+m;
the n=3 case, these mesons ajg, Dy, andS, . Using
Ref.[12], we then find that Here the sum over is again over the unmixed flavor-neutral
mesons in the original basi@n the partially quenched case,
Gy=Goy+D" only mesons made from sea quarks are included in the)sum.
This relation allows one to transform between the re&ii}
de(G(;\}) and the form[13] one gets directly by iterating the 2-point

DV=- GoyvH VG (25 vertex, Eq.(20).

Equations(22)—(29) apply explicitly to the taste-vector
case; to get the taste-axial case, jusMet A. These formu-
las can also be used for the taste-singlethannel with the

replacement? 5\’,—>4m§/3. We get

DV is the part of the taste-vector flavor-neutral propagato
that is disconnected at the quark levied., Fig. 1 plus itera-
tions of intermediate sea quark logp&Ve can write this
explicitly in terms of the masses as

1 D'MN:_A'_mg
’D\,\QN=—a25\’/( 2 2 . 2 2 je(imi) (26) 3
e III (p?+mf)
x , (30
s, H (g®+mf ) | (0l ) (2 i) [T olp?+ ) (
(q2+mf,|v)(q2+mﬁv)];[ (q2+m§V) whereL and F have the same meaning as in ER7). The

27) ma—oc limit in the 4+4+4 case is easily obtained, if de-
sired, usingnf],z4m§ for largem3 . The 7| then decouples.
|

HerelL, like M andN, labels the unmixed flavor-neutral me- . .
sons in the original basisn(f are the poles 06,); While However, we prefer not to takeltméﬂoo I.|m|t at t.hIS stage,

) . v " because the form of the result is then slightly different in the
F indexes the eigenvalues of the full mass matr¢( are 41414 and 1+ 1+ 1 cases, as we will discuss in Sec. IV,
poles of Gy). For n=3, we name the corresponding full  In the quenched case, the product over sea quark states in
eigenstates in the taste-vector ca&g 7y, andzy in anal-  the numerator and denominator of E&O) is omitted. Of
ogy with the physical, flavor-neutral, taste-singlet eigen-course,m3 now cannot be taken to infinity, and thg does
states. We emphasize, however, that all these taste-nonsingleit decouple. It is therefore necessary to consider possible
particles(including 7y, and the corresponding taste-axial par- additional | dependent terms in our Lagrangian. As dis-
ticle 7,) are physically merely varieties of “pions:” pseudo- cussed in Refd.7] and[14], one can do this simply by mak-
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O

@)

(@)

O
%@)
@
@

=)

(©)

(b)

Ok

FIG. 2. The only diagrams contributing to the flavor-nonsinglet
meson self-energya) includes all contributions where the propa- (€)
gator in the loop contains no two-point vertex insertiofis. sub-
sumes the graphs which have disconnected insertions on the propa-
gator. The cross represents one or more insertions of eithené,he
8, or 5, vertices.

O

9)
ing the replacemenhj— m3+ aq?, wherea is an additional
guenched chiral parameter. This gives

@

2 2
'DI quench_ _ i M+ aq

3 (@ +mpy (P +mg ) Y 0]

It is sometimes useful to think of the quenched case as the FIG. 3. The quark level diagrams that could contribute to the
limit of the partially quenched case as the sea quark massdsloop meson self-energy. Diagrarty and(c), which require ver-
go to infinity (at fixed valence masses and fixmg, a, &, ti(_:e§ of the form of Fig._ &), do not occur in the case of interest.
and ). For disconnected propagators, the resulting decou&mnlarly, (d) only contributes to flavor-neutral propagators. Note
pling of the sea quarks has the simple effect of canceling thd'at(f): () and() correspond tde), (g), and(i), respectively, with
“unmixed” terms in the numerator with the terms involving iteration of eithem3, &\,, or 5, vertices. These diagrams are to be
the full masses in the denominator. Thus E2j7) becomes taken as including any number of iterations, thus multiple internal

Eq. (28), and Eq.(30) becomes Eq(31). [The ag? term in quark loops.
Eq. (31) could have been put in for free in EQO) since it is
irrelevant in themc2,—>oc limit. ] the mass term. Also, note that we have factored out
1/1672f2, and not 1/96-*f? as in Ref[7].
IIl. ONE LOOP PION MASS FOR 4 +444 DYNAMICAL The terms “connected” and “disconnected” refer to the
FLAVORS internal loop at the quark level. In other words, a discon-

nected diagram will have either an internal disconnected

We can now calculate the 1-Ioop Goldstone pion self-propagatorfFigs. 3g)—3(j)] or a disconnected verteFig.
energy. We shall use the term “pion” to refer to a generic 3(e)], or both[Fig. 3(f)]. The disconnected propagators cor-
flavor-nonsinglet meson here, so it can refer to the kaons agspond to one or more insertions of a two-potor mO
well (and also what we will shortly call R* meson. Asin  vertex [i.e., D in Egs.(27), (28), and (30)]; while the dis-
Ref.[7], all the contributing diagrams are tadpoles, as ShOWftonnected vertices are generated by #ieterm in the po-
in Fig. 2, coming from each of the terms in H4.7). We can  tential, as we will see below.
break up the self-energidefined to beminusthe sum of We will explicitly perform the partially quenched calcula-
self-energy diagramsas tion. Here the quenched valence quaf&all themx andy)
will in general have different masses from the sea quarks
d ands. We will still refer to this as a “4-4+4" partially
quenched theory, based on its dynamical quark content. The
chiral Lagrangian needed has 5 flavors, but 2 flavors are
where “con’ and “ disc’ are short for connected and discon- dropped, by fiat, from loops. From this 5-flavor, partially
nected, respectively. The main difference here from REf. quenched theory, we can find equivalent 3-flagwhat we
is that the disconnected piec¢tor m,#my) now receives call “full” theory ) results by setting the valence quark
contributions from all the terms in the Lagrangian, not justmasses equal to various sea quark masses.

3(p?) = ——=[a°°"(p?) + 0¥%(p?)], (32

167%f2
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y vy not hard to show, from the explicit taste structurd£f that
only vertices with an odd number of mesons coming from
each trace contribute when two of the mesons are Goldstone
particles(pseudoscalar tasteThe /' vertices then separate
y y into two disconnected pieces, one with a single meson and
X X the other with three. Thug’ vertices must be of the form of

Fig. 4(d), and not Fig. 4c). This in turn implies that thé/’
(@) self-energy diagrams have the disconnected structure of Figs.
3(e) or 3(f) only, where Fig. &) uses a connected propagator
®) and Fig. 3f), a disconnected one.

Combining the connected contributions, we find

con/ ~2 1 d4q 2 2 2 2
i\ i o (p)=—T2(?ZBf?[D +q +(mP5++mQ5)

1
X +a2A(§B)]q2+—méB. (34)

<
<

© As before, B takes on the taste valuegs, u5, uv (u
X1 X <w), u, I}, and Q runs over all meson flavors with one
(d) valence quarkX ory) and one sea quarlu(lgj, ors). Which
FIG. 4. The possible quark level diagrams for2 meson scat- mesons contribute is clear from Fl.g(aB The first two
tering, where one incoming and one outgoing partisteown hori- terms In Eq‘(34_) come from the kinetic energy: one from the
zontally) are fixed to be valence mesofs. —xy. The indices and der!vat!ves act!ng on the _external legs and the other from the
' . derivatives acting on the internal loop. The last two terms are

j represent arbitrary quark flavors. There are two additional dia; .
grams(not shown, which are like(@) and(d) but have the roles of from the mass term arld respectively. We have used the fact

x andy interchanged. that p(my+ my)=m§,+ to rewrite the mass-term contribu-
5
_ tion.
The valence quarks andy form new mesons in our  The one-loop mass renormalization is just the self-energy
theory, which we name as follows: with the external momentum? evaluated at-m> . Making
5

X=xx Y=yy this substitution and noting from Eq18) that méB=mé5
+a”A(&g), the term inside the square brackets becorfes
Pf=xy P =yx 33 +* méB, which cancels the denominator from the propagator.

Thus, no chiral logarithms arise from these terms. This cor-
We will not give individual names to the mesons formedresponds to the fact that all diagrams of the form of Fig) 3
from various valence-sea combinations suchasbut just  cancel in the standard continuum chiral logarithm calculation
refer to them generically by Q.” A check on our final cal- [15]. (See Ref[7] for more discussion.

culation here is that the 1_|oop CorrectionrniJr should be For the disc_onnected contributions, it will be convenient
5 to divide up o' further, according tdi) whether the par-

. 2 .
proportional tom,+m, (and hencem. itself), due to the ticle in the loop is a vector, axial-vector, or singlet in taste,
separatdJ ,(1) symmetries fox andy and thex—y inter-  and(ii) the type of diagram that generates the term. We thus

change symmetry. have
Since the mass, kinetic, arid terms are composed en- disc_ _disc, disc. _disc
tirely of single traces, the relevant 4-meson vertices that they o =oy oy o, (39

generate are all of the form of Figs(a# and 4b). (This is )
because “touching” flavor indices must be the same in awith
single trace. In Fig. 4(b) the vertical meson lines must join

: .. . disc__
to make the internal loop; however, they can only join with a Oy =0y ght Oyt oyvet oy
disconnected propagator because they have different flavors. g
Thus connected contributions from mass, kinetic, &hall Op = 0pght Opijtoaet oA

involve the vertex of Fig. @), and produce diagrams of the

form of Fig. 3a). Disconnected contributions can come from

Figs. 4a) and 4b). 19f we were considering a futh=5 flavor theory wherex andy
Thel(' terms, on the other hand, involve two traces, andwere unquenched, then the quark loop in Fig) &ould also be an

therefore generate disconnected vertices, which in principlg or y, and the sum ove® would include the meson¥, Y and P

can be of the form of either Figs(e) or 4(d). However itis  [Eq. (33)].
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O'Fisc:("l,gh"'o'l,ij : (36) 1 d%q

oy gn(— mi;): 3 —2[(q2+ m)Z(V)D\)(X

Here, the labelgh, ij, e, andf refer to the diagrams in Fig. T
3 that generate the contribution. As discussed abovegthe +(g?+m2 DV, ]. (40)
andij contributions come from kinetic energy, mass,lor v
vertices, with a disconnected propagator. Brendf contri-
butions have d/" vertex and a connected or disconnectedp;
propagator, respectively. As is easily seen from the form Eqg.
(14), U' vertices that have two Goldstone mesons on the 2 diq
external lines must have only taste-vector or ax@ mesons on vaij(pz) =— _f _2[(p2+ q2— m,23+ +a?Ay)DYy]
the loop. Thereforey' gets contributions from Figs(§— 3) = 5
3(j) only, as it does in the continuum.

We focus first on the taste-vector contributions.e uses 5
the vertex Fig. &) with i =x (ori=y in its x—y varian) in ayij(—mgs)=— §f
order to have a connected propagator. We find, therefore, °

2 ., ( dig
Uv,e=—§az5vf gy

Finally, we haveo, ;; . This contribution uses the vertex
g. 4b) and, clearly, arX-Y disconnected propagator,

d*q

— [(q*-2m. Ay Dxy].

(41)
1 1

+
2, 2 2, 2
q*+my,  q°+my,

37) The sum of all the contributions i@/*® can be simplified
with an identity derived by combining Eq&6) and (29):

where all but the overall coefficient follows immediately v 1 q°+ m>2<V v
from the form of the diagram. We have already included the MZED s Dxwm=~ 9%+ m2 a2 Dyx. (42
factor of 4 for the four degenerate taste-vector mesons, and o Ay v
will continue to do so below. ) ) ]

oy.s again uses the vertex Fig(d), but nowi must be  USing this and th&«Y version we can add E¢38) to Egs.
one of the sea quarks, since a virtual quark loop is involved(37) @nd(40). The trivial identity[from Eq. (27)]

The propagator is the disconnected taste-vector propagator,
DV, Eq. (27). We have (02 +mg )Dyx= (0’ +my )Dyy (43

and the fact tham>2<v+ m$v= Zmi\t = 2m§,; +2a%Ay, can

2 dq
avyf=——a259f — > S(DXM+D\Y’M). (38)

3 72 M=UD, then be used to combine the result with E41) to give

simply

Note that bothoy . and oy ; have explicit factors ofé\, . .

These come from the 4-meson vertex, generated/by O_disc(_m2+):2m2+J’ d_qu (44)
There are additional implicit factors o), in the discon- v Ps Ps 27X

nected propagatdP " in o ;. Itis not immediately obvious

that this same linear combination 6%y and Csy [see Ed.  Note that the result is proportional tof. ., as expected. The
(20)] must occur in both the 2-meson and 4-mesons vertices. ) ) s - 5

However, we will see below that it is necessary for the cancorresponding expression fofy* is obtained by — A.
cellations that allow th@; mass renormalization to be pro- For o7'>°, we just have contributions from Figs(¢3—
portional tom2. as required by axial symmetry. 3(j). These contributions are very similar to the correspond-

Ry _ _ ~ ing ones fore3's°. We have
oy gh IS generated by vertices of type Fig(a# with i

=y (or i=x in its y—x varian). The result is dq

O'I,gh(pz): - 1_2

, ?[(p2+q2+mi;+m§5+azA|)
Oy h(pz):_if aa q[(p2+q2+m2++m>2< +a’Ay) 2
9 3] 2 Py 5 xD;(X+(p2+q2+mp++m$5+a2A|)DLY]

5

\ 2 2 \4
><Dxx+(p2+q2+mPS++mY5+a2AV)DYY]. ,

2 q
(39  Tigh(—Mp:)=—75 ?[<q2+m§|m'xx

The p?+g? terms come from the kinetic energy vertex; +(g%+ m%I)D'YY] (45
mi;, mj, andmg_, from the mass vertex; and tie, terms,
from Y. Putting p?=—mZ., and usingm3 =m& +a?Ay, 1 d%q

s o al,ij<p2>=gf — (PP +a?—mp +a%A) D]
from Eq. (18), this simplifies to T 5
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g |]( mp+)_ GJ _[(q _zmp++a2Al)D|XY]-
(46)

TheV—1 version of Eq(43) allows us to combine Eq$45)
and (46), yielding

2
m

P;f
2

Again, the result is proportional Im

digq__,
—D Xy -
7T

47

i 2
of (= mp) =~

Collecting Eqs(44) and(47) accordlng to Eq(35), gives

m2
N
P5

2

dg A |
— (4Dxy+4D%y—Dxy).
(48

PHYSICAL REVIEW D68, 034014 (2003

I (n

a=1
I1 (m?—m,?f
i£j

Equation (50) just follows from the fact that an analytic
function is determined by its poles and behavior at infinity; it
is known as “Lagrange’s formula” in complex analy$is6].

The integrals of the simple poles can now be done using

RIMM({m}i{uh = (51)

g f T (m), (52
= — m,
Y oem)t?+m? 1642
where
m2
€(m2)zmzlnp [infinite volumg, (53

with A the chiral scale. We use the arrow in E§2) and
later to indicate that we are only keeping the chiral logarithm

Since 0°*" is just a quarticly divergent constant, the aboveterms. If the system is in a finitéout large spatial volume
result contains all the 1-loop chiral logarithms in the mass->, we only have to modify Eq(53):

renormalization.

The result in Eq.(48) is rather implicit. To express the
chiral logarithms more concretely, we would need three fur-

ther steps:

(i) Find the explicit expressions for the eigenvalues of the

full mass matrices in the denominators of thge.g., mio ,
\

m’, andm’, in DV).
v ny

(i) Take themj— oo limit in the taste-singlet term.

(iii) Write the disconnected propagatofs as sums of
simple poles and perform the integrals oger

Steps(i) and(ii) are slightly different in the +1+1 case

of interest than in the presentt#4+4 case, so we postpone

them until later. On the other hand, stép) can be done
quite generally, so we present it here.
The integrands in Eq48) are of the form

k

11 @+ )
M {mpi{ph) =, (49)
[T (g?+m?)
j=1
where{m} and{u} are the sets of massés,,m,, ... ,m,}

and{ﬂl,/.l/z, -
mass degeneracies in the denominator, anrdk (which is

true here even after thaj— = limit), ZI"! can be written as
the sum of simple poles times their residues:

R ({mi{u})

2+mj

M {mp{uh) =2

i=1

, (50

where

mZ
€(m2)Em2( InP+ 51(mL))

[finite spatial volumé, (54)
where[7]
4 Ky(|rlmL)
s(mh=—2 ————, (55)
mL ixo Ir]

with K, the Bessel function of imaginary argument.
With the above, we can write a general integral of the
form in Eq.(48) as

d4
| =T i)

n

E RIMI(my;{u}) €(m?).

(56)

We make one final comment on thet4+4 calculation
before going on to the £1+1 case. In Ref[7], certain
chiral logarithm terms were claimed to come from pure va-
lence diagrams, with connected propagators; while in the

), respectively. As long as there are no cyrrent calculation, all such terms cancel. What is the reason

for the discrepancy? As discussed above, the problefi]in
was the incorrect treatment of flavor indices. Because of this,
it was not realized that there is a difference between a propa-
gator of a flavor-neutral Goldstone pion, such.as and that

of the flavor-nonsingletms (or between their partially
quenched counterpartés andP4 ). An explicit computation

in the current framework shows that the connected, valence
terms found in[7] do in fact exist, but only for a flavor-
neutral propagator. Such terms arise identically inXpeY s,
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Xs-Xs, and Ys-Yg propagators, but do not appear in the mzozm'f‘J =m% ,
™ \ \

P.-P. propagator. This proves that they come from Fig. v
3(d). The needed vertex is Fig(l®) (after relabeling which
is generated by kinetic, mass abidterms. The claim if7] , 1, > 3 5,
that connected, valence terms come from Fig) Sith ver- My, = 2| Mo, Mg, + za%oy =2/,
tex Fig. 4c) is incorrect. Indeed, it was argued above that the (59)
flavor structure of the terms in our Lagrangian forbids vertex 1 3
Fig. 4(c), at least with two external Goldstone mesons. mi, = 5( m6v+ mé\ﬁ' Zaz5\r/+z ;
\

IV. MOVING FROM 4 +4+4 TO 1+1+1 DYNAMICAL 25 9(325’)2
2= - - 2

To make the 4-4+4 result, Eq.(48), into a 1+1+1

result, we simply must divide by a factor of 4 for every sea _ . _ .

quark loop. The contributing diagrams are Figée)33()). The ta,ste—ax2|al case Jtzjst'reqwm!sﬁA. I_n 'th taste-singlet

There can be either taste-vector, taste-axial vector or tast&@S€.0" =4my/3, andmg will be taken to infinity, so only the

singlet mesons on the internal lines of these diagrams, an@'9eMo expressions are needed. We haagain for 2+ 1)

we can treat all these cases at the same time simply by de-

fining miozmalzszl
|
2 o1 .
a“o,, taste-vector;
, v . mg — 2mg
§'=4 a‘s,, taste-axial; (57) mfﬁ: -+t (60)
4m3/3, taste-singlet.
m>, =m2
Diagrams(e), (g), and (i) have no sea quark loops and a m 0

single factor ofs’ [in (e) this comes from the 4-mesdu
vertex]. Diagrams(f), (h), and(j) have one additional factor where we have neglected corrections that(a(e/mﬁ) com-

of ¢’ for each sea quark loop. Therefore, dividing by 4 for pared to the terms kept.

every sea quark loop is the same as dividing every factor of Finally, we can give the result for the chiral logs in the
é', except the first, by 4. For a general functi(®’') which  Goldstone pion self-energy. For the moment we stay with the
vanishes linearly ag’—0, we can make this adjustment partially quenched expression and also assume no degenera-
simply by the replacemertt(6’) —4f(6'/4). Alternatively, cies among the valence and sea quark masses. In+fe 1

we can see from Eq$48), (27) and(30) that the first factor +1 case we obtain from Edq48) with Egs.(27), (30) and

of &' comes from the explicit’ in front of DY, DA orD'; (32

while higher order terms i@’ are implicit in the values of

the “full” masses in the denominators relative to the “un- 21*”1(—m2+)

mixed” masses in the numerators. Therefore, to go from 4 P
+4+4 to 1+1+1, we leave the explici’ factors alone

2
but merely leté’— &§’/4 before diagonalizing the full mass Mp+
matrix. g ’ ’ H167725f2 —2a26,2 RI>Je(m?,
The full mass matrices to be diagonalized follow from the v
flavor-neutral mixing term irC, written down following Egs. 2
(20) and (21). After 6’ — &'/4, these have the form —23252\12 RE3e(m? )+ 3 ]2 Ri*e(m?) |,
A |
mi+ 814 54 5'14 (62)

’ 2 ’ ’
o'/4 mp+&'/4 o'/4 . (580  where we have used E(56), andR}"k and€(m?) are given
o'14 o'l4 m§+ o'l4 by Egs. (51) and (53) or Eq. (54). jy runs over
{Xv.Yy, 7y, 7v, 7} and

Here the masses?, m3, m3 have an implicit taste label RISI=RI53((my ,my,m.om, m }:{my ,mp.,ms}).
(V, A orl) depending on which case we are considering. 'V Iv ViV VeV 8"62
The explicit expressions for the eigenvalues of Exf) are (62
complicated and not illuminating in general. The solutions in (53 o .

the 2+1 (m,=my) case, however, have simple forms, and(FOr Ri,™, just let V—A.) Similarly, j, runs over
that is the case of greatest current interest. In the taste-vectfX,,Y,, 7,7} (the » has decoupled in the— oo limit),
channel, we have, for the+21 case, and
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RJ[TLB] = RJ[Tlls]({mM va| ! m7'r|0’ m’7|};{mu| ! mDI ’msl})'
(63)

In each taste channel, the valueswfo, mf7, andmf}, in EQ.

(61) are just the eigenvalues of the corresponding version of

Eq. (58).

The 2+1 (my=my) case is very similar, but because

m’,=mZ=m3, there is a cancellation in Eq&7) and(30)
betweenq?+m>, in the denominators and, say?+m3 in

PHYSICAL REVIEW D68, 034014 (2003

2
E quencr( _ mP;)

2
M+

_ 21 [2,0] 2\ _ 2o
~ To2pz| 28 5Vj2v REZ¢(m? ) —2a%5,

Ia

2
ij R[2’°]€(mj2A)+§jE RZO(mi—am?)e(m?)|.
A |

(67)

the numerators. Assuming no other degeneracies, we haveHerejy runs over{Xy,Y\}; similarly for j, andj, . For the

2

22+1 2 mp+
—m

(=)= Tem2r2

—2a%8,>, R*Ae(m? ) —2a25,
Jv

2
[4.2] 2 - [3.2] 2
X J_EA RJA {’(mJ-A)Jr3 §J| le €(mj|) .

(64)

Herejy runs over{Xy,Yy,nyv,ny} and

Rl[?/’Z]: R][?/’Z]({mxva va’ m’?v’mﬂ\’/};{mUv’ msv}) . (65)

Again, let V—A for RJ[‘:\'Z]. The index j, runs over
{X, Yy, m}, and

REA=REA({my ,my ,m, }i{my .mg}).  (66)

In this case, the values ofiZo, m?,
Egs.(59) and(60).

Cases of interest with further degeneraciesch as a
“full” 2 +1 pion with my=m,=m,=mgy) can be obtained

by carefully taking limits in Eq.(64). We will write down

and mi, are given by

a-dependent terms, we have used the integral

dq

— — m2€ m2 ,
(2m)* 1672 (™)

(68)

whereZ; is defined in Eq(52).
Because the quenched residues here are particularly
simple, it is useful to write out the result more explicitly:

2
Equencr( _ mP;)

2
.
Py

R
16722

m €(mZ )—€(m?)
— 2228, —— 5 —2a?
va_ mXV

2\ 2
) f(mxA) e(mYA)
X 5A—m2 .z
Ya Xa

2 (MG—amy )€(m% ) —(mG—ams )€(m)
+_

some of these cases explicitly in Sec. VI, where we also The mass at one loop is given by

include the analytic contributions.

V. QUENCHED CASE

Since we can think of the quenched theory as the limit of

2 2
3 m{ —mg
(69)
VI. FINAL ONE-LOOP RESULTS
—1
(mp-"P2=mZ. +3(—m3.). (70)
5 5 5

The chiral logarithm contributions td(—miﬁ) are pre-
5

the partially quenched theory as the sea quark masses go $ented in Eqs(61), (64) and(69), but for complete one-loop

infinity, all the manipulations that led to E¢48) will go

expressions we also need thé@(p*)” analytic terms. The

through unscathed in the quenched case. We can therefolaiter are unchanged from R¢¥]. However, for the analytic

simply replace the disconnected propagators in(&g). with
their quenched versions, Eq28) and(31). Using the same
notation as in Egs(61) and (64), we have(assumingm,
=m )

y.

coefficients we now prefer to use the more standaf L, ,
rather than the parametefs andK, employed in[7].

In the absence of any degeneracies, we have, in the 1
+1+1 case,
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(ml—loop,l+1+1)2
Pg
> - [53] [53] 43] 2
(M) p,[1+ =T —2a 5\,2 R%e(m? )—2a 5A2 RI>3g (m? AR Z R f(m“))
e 32u )
—5 (2Lg—Ls)(my+my) + f—2(2L6—L4)(mu+md+mS)+a C;. (71

Definitions here are the same as in E8fl); the chiral logarithm functior (m?) is given by Eq.(53), or in finite volume, by

Eq. (54). Recall that ours is a joint expansion in the quark maggesericallym) anda®. The analytic terms inr®~'°°P)2

here are®O(m?) or O(ma?); O(a*) terms cannot enter here because the pion mass must vanish in the chiral limit. Lattice

effects violating continuum rotational invariance cannot show up at this order for the Goldstone pion—see the Appendix.
Similarly, for my=my=m, (the 2+ 1 case, but with no other degeneracies, we have

1-loop,2+1\2

(mg+ ) 1 2
_ a2 [4,2] 2\ 52 [42p/m2\ 4 5 132 p (2
_'ull+1 2f2( 2a 5\,j§v ij €(mjv) 2a 5AJ§A RjA «?(mjA)t—3 Ej. le f(mjl)

5
(m,+ my)

3
+ f—f(ztg— Ls)(me+m,)+ f—zf(zt6—t4)(2m,+ms)+a2c . (72

Definitions here are the same as in E&4).
The quenched result is

1—loop,

L & 1 €(m )~ e(m? ) (g )—e(md)
_ 291 2o
Tmamy M Y | RN T o e 2 o

x T My 167<f my,— My, my, =My,

2 (Mg—am )€(mg)—(mg—ami )e(mi)| 16, : a2 73
+ = + —(2Lg—Ls)(my+my)+a“C’ 73
3 m\z(l_m)z(l f2 ( 8 5 ( X y

where the primes ohg, L, andC’ indicate that they may have different values than in the unquenched cases. Of course,
there is no analytic term involving the sea quark& {2 L,) in the quenched case.

It is useful to write down more explicit versions of the above results in various limits pertinent to many simulations. First,
with m,#my, we setm,=m, andm,=mjy to obtain the “full QCD” charged pion mass in thetll1+1 case,

1-loop,1+1+1 2
— 2 o
—=puf 1+ —2a“dy = 5 (M o) +— > £(ms )
(my+mgy) 16722 (mfw_mw?,)(mn(,_ m”?x) v (mn\,/_mflv)(mwg_mfyv) L
2 —m? 2 _m? 2 _ 2
Ms, ™My, 2 2 Ms~Mzo  mg—
(m2 _m2 )(mz _mg )€(m7]\r/) +(V—=A)+ § Wﬁm |O)+ - f(mm)
N, 7]\'/ 173 7;\'/ 7 m 77? 7
L 32u )
— (2Lg—Ls)(my+mg) + f—2(2L6—L4)(mu+ mg+ms)+a<C . (79

This result is most easily obtained by taking the degenerate mass limits {ddEgoefore the integral is performed, rather than
in Eq. (71). The quant|t|esm 0 m andm are eigenvalues of the mass matrix, E§8). From Eq.(74) we can get the

charged kaon mass simply by mterchangmg the explicit ladelss and D« S. (The neutral labels®, », and ' are
unaffected.

The results for the full pion and kaon in the case of degenerate up and down quark fhasiseset tom;) are also of
interest, as they are needed to fit many simulations. Since the pion and kaon results look quite different, we show them both,
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(mlzloop,2+1)2 . 2 m2 _m2
B S UL TN P N e e s S BTV
2m| K 16’77'2f2 773 m2’_m2 20_ 2 7y 20_ 2/ 77\;/
Y, v Ty v Ty 7y
2 1, 16u 32u ,
+€(m,n_|0)_§€(mm +f—2(2|_8_|_5)(2m|)+ f—2(2L6—L4)(2m|+ms)+a cl, (75)
1-loop,2+1,2
(M s ) L 2a%8), e VoA 2€ ,
(m|+ms) —H +16772f2 _m2’_m2 [ (mTIV)_ (m”\//)] +[ - ]+§ (mnl)
Ty v
16u 32u )
+f—2(2L8—L5)(m|+ms)+f—2(2L6—L4)(2m|+ms)+a C!. (76)

Again, the relevant limits are most easily taken before the integrals are performeat®Theand »' masses in this case are
given explicitly in Eqs.(59) and(60); we have made heavy use of these explicit forms to simplify the chiral logarithm terms
in the = mass.

The last case we will look at is the quenched pion mass correction in the limit of degenerate valence massag (
Here we get a double pole in the pion self-energy. We can either carefully take then|jmitn, in Eq. (73), or return to Eq.
(48) with quenchedD terms and do the double pole integrals directly. We follow the latter approach. We need the following
integrals:

IfdAQ : . )
= = — — — m s
et (@@+m)2 oam? t 16x2
d*q q? 1
sz =T,-m’T ¢(m?)—mZ(m?)], 78
=] Gt iy = M Tem L)~ (m?)] (79)
whereZ, is given in Eq.(52); £(m?), in Eq.(53); and
~ m?
{(m?)=— Inp+1 [infinite volumg, (79
with A the chiral scale. In finite spatial volume’,
~ 2
{(m)=— ( In e +1]+83(mL) [finite spatial volumé, (80
where[7]
83(mL) =22 Ko(|rImL), (81)

r#0

with K, the Bessel function of imaginary argument. Note that-ttieterm in¢ (m?) was omitted in Ref[7]. That is formally
acceptable when we are only keeping chiral logarithms, but inconvenient, since then the result from performing the double
pole integral is not equal to the degenerate limit of the chiral logs from the single poles.

Using the above integrals, we get

(m;g—loop,quencka
——=u

2m,

1 ~ ~ 2m§, 2a ~
+ mﬂzfz( —2a%5y(m% )~ 282550 (MY )+ ——T (Mm% )+ —-[€(m ) —m% T(m})]

: (82

16w , , o
+ f—2(2L8— Lg)(2my) +a“C
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Taking them,—m, limit in Eq. (73) of course gives the 7 free parameterg, f, 2Lg—Ls, 2Lg—Ly4, 8, 54 andC.*2
same result. To see that the finite-size corrections are th@/e remark that existence of the paramet&jsand 5, leads
same both ways, one needs the idertity to the possibility of phase transition before the chiral limit of
the staggered theory is reached. This possibility is discussed
further in the Appendix; it does not appear to be realized in
mL practice for the strange quark mass at its physical value.
3(mL)=—d,(mL)— —-d;(mL). (83 Despite the presence of additional parameters, well con-
trolled simultaneous fits to partially quenched lattice results
for f., fx, m2/(2m) and mZ/(m,+m,) at fixed lattice
Double poles also appear in some other interesting limitSPacing appear possibjég]. These should allow for highly
of Egs.(71) and(72). For example, the “partially quenched accurate. extrapolations to physical _ququ mass and then to
degenerate pion” in either the-21 case tn,=m,#m,) or the continuum, as well as determinations of the Gasser-

Leutwyler parameters;. It can help here to constrain, at
+1+ = = L ’
the 1r1+1 case (=m,#m, and m=m,#m) has least weakly, the new chiral parameters. One easy way to do

doub.le_poles. These can be d?‘a't with as in the quenchet is is to use a vacuum saturation estimate of the matrix

case: either take the limi,—m, in Eq. (71) or Eq.(7_2), OF " elements of the 4-quark taste-violating operators calculated

r(_aturn tﬁ Eq.(48) and perform the double pole integrals in perturbation theory19]. More accurate lattice evaluations

directly. of the matrix elements, or perhaps even direct lattice deter-
minations of thed,, and 6, by evaluation of disconnected
pion propagators, may also be envisioned.

VIl. REMARKS AND CONCLUSIONS An alternative approach to the fitting of lattice data is also
possible when highly accurate data exist at more than one
lattice spacing. Here one can extrapolate to the continuum at
fixed quark mass and then fit the resulting “continuum” re-

The most general result we have is for the 3 partially
guenched case (11+1) with all valence and sea quark

masses different, Eq.71). Other interesting cases can be sults to standarg¢PT forms, i.e., without taste violations.

obtained from Eq.{71) by taking appropriate mass limits. This is the approach taken {120, and it works well. Be-

The resm_JIts most relevant to current MILC simulations are., ;se of the nonanalytic dependence on the lattice spacing
those withm,=my=m, (the 2+1 case; these and other

: T Sl induced by the chiral logarithms coming from pions of vari-
important limits are presented explicitly in Sec. VI. The re- s tastes, though, there is a residual discretization error left
sult in the quenched case is given separately in(E8). in the data even after extrapolation to the continuum. This

At this point, one can calculate any other desired quantit)érror would go away if one worked very close to the con-
within this framework. The calculation for the pion and kaon tinyum limit, where “very close” here meankazAéCD
decay constants is straightforward; a description is now be= m2/A2, with k a constant that depends on the particular
ing prepared for publicatiofil7]. As in the case here of the o

staggered action, and is the chiral scale. For pions light

one loop pion mass, it is again simpler to examine the parénough foryPT to be applicable, however, this condition is

tlallybquertl)ch_ed(;:aSﬁ, and from the.rlf S" tﬂe necessary resulfay difficult to satisfy without further improvement in the
can be obtained. The next step will be the incorporation ok, qered  action than is currently available. The

heavg C(i:]_uarks., SO that we canhexamllfleh the effects of _S,tangPT formulas above will therefore remain crucial, at least
gered discretization errors on heavy-light meson quantitie§, e pegy term, for determining the systematic errors in the
This requires an extension of these ideas to incorporate ﬂ}%sults

heavy quark symmetries withiny®T, and is in progress.
The generalization of the Lee-Sharpe Lagrangian to mul-
tiple flavors has shown that two additional parametéXs,

and &,, appear in the one-loop chiral logarithms for the  We thank M. Golterman, G. P. Lepage, S. Sharpe, and D.
charged meson masses. These parameters are not determiedssaint for helpful discussions. This work was partially
at tree level by existing lattice data for pion mass splittings supported by the U.S. Department of Energy under grant
since they contribute only to unmeasured disconnected tregumber DE-FG02-91ER40628.

graphs for flavor-neutral, taste-nonsinglet, pions. The new
parameters are therefore unconstrained in current chiral-
logarithm fits to lattice results. In contrast, the masses of the
charged pions of various tastes that appear in our final results Here we write down the symmetries of the effective con-
are not free parameters in the one-loop fits, since they argnuum action(“Symanzik action”) of the staggered lattice
determined at tree-level by lattice measurements. Using tree-

level information, a fit of lattice data to E¢72) would have
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APPENDIX

120ne may choose to absofbinto x, which will have O(a?)
corrections in any case from higher operators in the effective con-
£ one chooses to perform the double pole integrals directly, Eqtinuum action that have the same symmetries as the lowest order
(50) is no longer valid, and a generalization of this formula is terms—see the Appendix. However, this will change the higher or-
needed. der corrections to Eq.72).
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TABLE I. The flavor and rotation symmetries respected by vari-an implicit sum over flavor, and whergys® &7, y5® &s}
ous terms in the effective action. Here “flavor” is used generically =0. Then it is clear that any bilinear of this type is invariant
to include fermion number, true vector flavor, chiral, and taste symynder the residual chiral symmetry, H&1). That theSFF(A)
metries. Almost all the notation is from Ref6]. The “residual  gd SFF(B) terms in the action are invariant under this sym-
chiral group,”U(n)xU(n), is defined in the text. We have also metry now follows from the fact they can be written as sums

added the subscript “vec” for vectol(+ R) symmetries, and have ¢ rqqycts of such bilinearsee the discussion preceding
included overall fermion numbel)(1)ygc, as well as individual Eq. (13)]
flavor number symmetrie$)(1),e.. There is no clear separation of X :

. Ve . o Note that, even though the identity matrix in flavor is
flavor and rotation symmetries in the last three lines. For simplicity. .
. included among the generatorg in Eq. (Al), the corre-
in them+ 0 cases, we assume that all quark masses are nonzero an

different for different flavors. sponding axial symmetries)f= — 6%) are traceless in flavor
® taste because of the presencetgf

Term in action [Flavor] X Rotation symmetry For future purposes it is convenient to rewrite E41) to
show explicitly the action of thé andr symmetries on the
S; (m=0) [U(1)vecX SU(4n) X SU(4n)g] X SO(4) chiral fields. Define
SA (m7é O) [(U(l)vecxSU(4)vean]XSq4)
glue _ 1-vs — 1+ys
S5 [U(1)vecX SU(4n) X SU(4n)g] X SW, q.= 2 g, gL.=q 2
S (m=0) [U(2)vecx SU4n) X SU(4n)g] X SW,
S5 (m+0) [(U(L)vecX SU4)ved "1 X SW, 1+ 1-
SEF [U(n)¢XU(n), X (T'yXSO(4))]X SO(4) qRE( %\, ER:E( ””) (A2)
7@ U)X U ()% (I3 SWh o 2 2
Se(m=0) U(n) X U(n) X(L s} SW, giag 1+¢&s

, Umsexp{i G?ta( 1_265”

theory through?(a?), and those of the corresponding chiral U”_Eexr{i arata( ! §5) } UrREexr{i af‘ta(%”_
theory, Eq.(17). We also briefly discuss the interesting pos- 2 2
sibility of a transition of the staggered theory to an unusual (A3)
phase. We follow the notation and reasoning of Héf.
closely; the discussion in this Appendixrist self-contained.

The symmetries of various terms in ti¥a?) Symanzik
action are shown in Table I, which is a generalization of
Table 1 in Ref[6] to the currenin-flavor case.

= i A2
Se(M+0) (U(L)yed" X T'4XI SWj ing U =expitita) —

Then

€ q —Ugaq, E__’ELU;L

The “residual chiral group,”U(n),xU(n),, which is a dr—Ur0r: Gr—0rUIR
symmetry ofS;™® and S5F(®) is the extension to multiple -
flavors of the residudl (1),eX U(1), symmetry of a single r: g —Uuq, q—aquU/,
staggered field. Let, be theU(n) generators, and let be
the co_mplete(ﬂa_vor_@ taste® spin quark field, as in Eq8) _ dr—URrOr: Or—0rUk. (A4)
but with flavor indices suppressed. Then the residual chiral
group is given by One now assumes that ti84J(4n), X SU(4n)g approxi-
. 1 yewé mate s_ymmetry_i.e., the symmetry 08,, th_e 4—di_mensional
qaex;{i G?ta( Y5¢¢s } ’ terms in the action, ah=0) breaks dynamically in the usual
_ 2 way down toSU(4n),e.. The kinetic energy term in the
€9 o _ 1+ ys® &s effective chiral Lagrangian then has the complgtg(4n),
q—q EXL{ —i6%t, T) }; X SU(4n)g symmetry(realized nonlinearly Other terms in
N the Symanzik action are represented by additional terms in
e 1+ ys® &g the chiral Lagrangian with the corresponding symmetries.
q->ex;{i 0%t — ] |% A key insight of Lee and Sharpe is that the chiral repre-
red (A1) sentgtives of all terms in the qction Fhat_ violate ®6(4)
— — o[- vs®Es| | rotation symmetry must contain dEnvauves. For exgmple,
| d—aexp—ifta 2 ’ the rotationally noninvariant terr ,q(y,®1)D3q in S

has a lowest chiral representati¥ie, Tr(923522."). Chiral
whered? and 67 (a=1,2, ... n?) are the group parameters. terms that are alread§(a?) and also have derivatives will
We use the notatiofi andr, rather than the usualandRfor ~ be higher order than ou®(m,a?) Lagrangian, Eq.(17).
chiral rotations, because these symmetries combine chirgthus only S,(m=0), S,(m#0), and ng(A) contribute to
Spin with taste. To Study the effect of this Symmetry on Vari-Eq_ (17)’ g|V|ng the kinetic energy, mass term' and potentia'
ous terms in Table l, ConSider_a ﬂaVOf-Singlet, “odd” bilin- V, respective|y. The symmetry group of the chiral Lagrang_
ear, i.e., a bilinear of the form(ys® é1)q, where there is ian is therefore simply the intersection of the symmetry
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groups of the relevant three lines from Table.13 I: has just a singld" ;< SW, giag factor, which is generated by

[(U(1)ved "X (I'sXSO(4))] xSX(4), although by treating single site translations and lattice rotations. It clearly cannot
the mass and taste violating matrices as spurions, one cajtt on different flavors separately since the gauge fields must
work with the full [U(1)ygcXSU(4n) XSU(4n)g]  also be translated and rotated. We remark further that, if

XSQ(4) group. _ there werel',XSQ(4) taste symmetries for each flavor
Under the residual chiral symmetty(n),xU(n),, Eq.  separately, they would forbid taste-nonsinglet hairpin graphs
(A4), the chiral fieldX transforms as like Fig. 1.
Lee and Sharpe have discussed the possibility of an un-
¢ 2—>U5L2UER, ET—>U4RETU}L usual “Aoki-phase” for staggered fermions that could occur

if the mass squared of one of the non-Goldstone pions van-

ished before the chiral limit. However, since the splittings,

r: S-U,.SU, ST-uRsTUl. A(&g) in Eq. (19) are all positive for existing staggered ac-
(A5)  tions, this scenario seems unlikely to be realized in practice.

It is straightf d to check that the kineti d The current work suggests another possibility for an un-
IS straightlorward 10 chec at the Kinelc energy and, g q| phase: from Ed59), if §, or &, is negative and suf-

potent_lal terms in the Lagrangian, E(q_7),_are nvariant un- ficiently large in magnitude compared to the Goldstone
der this symmetry, which is of course violated by the mass

term masses and to the corresponding splittinyg, or Ay, [Eq.

N I - , N (19)], thenm? or m? could vanish before the chiral limit.

ote that terms violating continuum rotational invariance A ny

can appear for the first time a®(ma?), from the chiral ~This possibility seems to us not as remote as the previous
representatives 85" ® . However, because the taste of the ON€, because chiral logarithm f[ts8] to existing MILC data
Goldstone pion transforms trivially under lattice rotationstend to give a negative value faf, that is comparable in
(SW, giag, rotational violations cannot affect it unless four magnitude toA,. Taking m,=myq, Eq. (59) implies that
derivatives are present. Thus, for example, the Goldston@?,, vanishes before the chiral limit{,=my=0) is reached
pion’s continuum dispersion relation is violated@¢m?a?) if
by a terma’S 9’ msd- 5 coming from the chiral represen-
tatives of the noninvariant terms B{"" and Sg"°.

TheS(O(4) part of the taste symmetry of the lowest order
chiral action guarantees that the approximate spectral degen-
eracies found in Ref.6] persist in then-flavor theory. This
symmetry is “accidental” in the sense that it is not obeyedgq, the squark mass at its physical valuemés

by the full lattice action and will be violated at next order. 5 . )
Note that the tast&O(4), and infact the accompanyin 5(700 MeVy’. On the coarse @~0.13 fim) MILC Ia.tf
x4) PANYING i ces, a’A,~(275 MeVY. This means that the transition

discrete Clifford groud’,, appear only once, as an overall ) ) ,
taste symmetry affecting all flavors, and not as individualcould occur with a physical strange quark mass onlydpor

groups for each flavor separately. This can be seen from thg ~ 1-93a, which does not appear to be satisfied by the

the fact that the symmetry of the underlying lattice theoryto move further fromsy .. However, the transition appears
considerably more likely to be realized in the unphysical

case where all three quark masses get small. Thgrg,=

3We are ignoring the discrete symmetries of parity and charge-4AA/3, which is comparable to fit values af,. More
conjugation here. study of this interesting possibility is clearly warranted.

1+azAA/m§5
Op<Op = — A f————————, (AB)
AT At A2+3&12AA/m§5
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