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We elaborate on previous results concerning the positivity of the Euclidean path integral measure for
low-energy modes in dense fermionic matter. We show that the sign problem usually associated with fermions
is absent if one considers only low-energy degrees of freedom. We describe a method for simulating dense
QCD on the lattice and give a proof using rigorous inequalities that the color-flavor I¢€lkdd phase is the
true vacuum of three flavor, massless QCD. We also discuss applications to electronic systems in condensed
matter, such as generalized Hubbard models.
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[. INTRODUCTION The expansion about the Fermi surface is in powers of
1/u, wherew is the chemical potential. For this expansion to
Euclidean quantum chromodynami@@CD) with a non-  be controlled, the ultraviolet cutoff of our effective theory
zero chemical potential has a complex measure, which ha®ust be less thap, or equivalently the scale of the physics
made lattice simulation particularly difficuli]. (For recent of interest must be small relative to the chemical potential. In
lattice investigation of the QCD phase boundary at finiteQCD at asymptotic density, the superconducting gap is ex-
density, sed2,3].) This problem is often referred to as the Ponentially small, so this condition is satisfied. However, it is
sign problem, because by appropriately grouping term@lSO quite possible that at intermediate densi@&g., those
quantities such as the partition function can be written as #side a neutron stathe gap is somewhat smaller than
sum over real, but potentially negative, ternf¥hat this  providing us with an additional small dimensionless param-
grouping can be accompﬁshed is in many systems a conséter. Even if this is not the case, the power expansion of the
quence of a discrete symmetry such as parity or time-revers&ffective theory is qualitatively different from the usual per-
invariance) Indeterminate signs are enough to preclude thdurbation ines, and therefore worth exploring. Finally, we
use of importance sampling, the main technique for speedingote that modelge.g., of electronic systemsvhich are not
up Monte Carlo integration. It is important to note that while asymptotically free may exhibit strongly coupled quasiparti-
the sign problem often arises in systems of fermions, it iscle excitations even at high density. The results described
neither inevitable nor inescapable. For example, in QCD ahere still apply to such systems and may be of use in their
zero chemical potential and in the Hubbard model at halsimulation.
filling one can organize the sum so that terms are real and This paper is organized as follows. We begin in Sec. II
positive. For recent work on the sign problem, $¢p with simple examples ifil+1) and higher dimensions which
Analytical work in color superconductivitj5] has dem- illustrate how the effective Fermi surface description can
onstrated a rich phase structure at high density, and stimdave positive measure even if the original model has a sign
lated interest in QCD at non-zero baryon density. Severaproblem. In Sec. Il we review the results from our previous
experiments have been proposed to probe matter at densigaper, and include some discussion of how they apply to
of a few times nuclear matter dens[t§]. Even rudimentary electronic systems that may arise in condensed matter. In
information about the behavior of dense matter would beSec. IV we describe how they can be applied to lattice simu-
useful to the experimental program, as well as to the study dftions of dense matter. In Sec. V we discuss correlator in-
compact astrophysical objects such as neutron stars. In @gualities(also known as QCD inequalitithat result from
earlier papef7], we showed that QCD near a Fermi surfacepositivity, and how they restrict the possible ground states of
has positive, semi-definite measure. In the limit of low ener-QCD. In Sec. VI we conclude with a summary and future
gies, the contribution of the remaining modes far from theProspects.
Fermi surface can be systematically expanded, using a high
density effective theory previously introduced by one of us
[8,9]. This effective theory is sufficient to study phenomena Il EXAMPLE: (1+1) DIMENSIONS AND BEYOND

equation of state may be largely determined by dynamicg, g simple setting. Consider the Euclide@n+1) action of
deep in the Fermi sea. non-relativistic fermions interacting with a gauge field A
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where e(p) is the energy as a function of momentymg. gauge field A not couple strongly the low-energy modes to
e(p)=(p?/2m)+---]. In Eq. (1) and below we may con- fast modes which are far from the Fermi points. This is a
sider it as a function of the operator({d,+ A). The disper- reasonable approximation in many physical situations, where
sion relation in the presence of the chemical potengjals it is the interactions among quasiparticles that are of primary
E(p)=€(p)—e€r, and a low energy mode must have mo- interest. In what follows, we will apply this basic idea to
mentum close ta- pg, Wheree(+ pg) =€g. The Fermi sur- more complex models such as QCD.

face in(1+1) dimensions is reduced to the two poimts It is straightforward to go beyondl+1) dimensions.
+pe. Near these points we have Consider an electron system, described by
E(p£pr)~*vep, 2 L=yig—e(p)ly+uy’y, 7

wherev=JE/dp|,_is the Fermi velocity. wheree(p) is the electron energy, a function of momentum

The _action(l) is not obviously positive._l_n fact, the op- |5 It is interesting to note that the non-relativistic system
era_tor in p_rackets{- --] clearly has Hermitian as_well as already has a sign problem even at the zero densityD,
anti-Hermitian components, and hence complex elgenvalue§nough the free case does not suffer this, thanks to the sepa-

Let us assume that the gauge field has small amplitudgyion of variables. In fact, it is quite unusual to have a sys-

and is slowly varying relative to the scapg. We will ex- - 1o jike vacuum QCD which has no sign problem. In Eu-
tract the slowly varying component of the fermion field to ijean space the electron determinant is

construct a low energy effective theory involving quasiparti-
cles and gauge fields. This effective theory will have a posi-
tive, semi-definite determinant.
First, we extract the quasiparticle modese suppress the  The first term in operataf) is anti-Hermitian, while the rest
spin index in what follows are Hermitian. Since there is no constant maix the spin
: - h isfie T=PMP1, it h ign problem in
(X, 7) = th & PPt o PEX 3 space that satisfielsl , it has a sign proble

general.
where the functiong_ are slowly varying. To simplify the Let us decompose the fermion momentum as
action, we use the identity

M=—3,—e(p)+ . (8)

‘ , p=pe+1. C)

e PRE(—idy+A)e ™ PFyY(X)~ Fvp(—idx+A)ih(X),

§ v - * v (4)  Again, the Fermi momentum is defined to be a momentum at
which the energy equals to the chemical potential at zero

to obtain[10] temperaturep = e(pg), and the Fermi velocity is defined as
. . . d
Seﬁ:f drdx[:,bJ[(—(?T+|¢+|(9X—A):,//|_ vE= G(P) ) (10)
ap | _
p=p
+YR(= 0, +i =10+ A) Yl (5 ]

If we are interested in low energield] <pg, we may inte-

We can write this in a more familiar form by introducing the grate out the fast modes to get an effective operator,

Euclidean(1+1) gamma matrices ; , Which are Hermit-
ian and.can be taken 5= o where& are the Pauli matri- Meer=—0.—ve- 1. (12)
ces. Usingy, gr=3(1= y,)¢ we obtain ol ToF
which has complex eigenvalues. However, when we include
Seﬁzf drdey"(aMJriA#)wEJ' drdxyD/y. (6)  the —uvg sector, we havéil ger(ve)Meger( —vg) <O (ie., has
real negative eigenvalugsassuminge(p)=e(—p). We
Since the gamma matrices are Hermitian, and the operat@&gain see that the sign problem in the electron system is
(9,+iA,) is anti-Hermitian, the operatdd in Eq. (6) has  alleviated in the low-energy effective theory.
purely imaginary eigenvalues. However, becayseanti-
commutes withD, the eigenvalues come in conjugate pairs: . QCD

ivenD ¢=\¢, we have .
g $=A¢ Let us recall why the measure of dense QCD is complex

D (y20)=— 7.0 d=—yohp=—N(v2;,). in Euclidean space. We use the following analytic continua-
tion of the Dirac Lagrangian to Euclidean space:
Hence the determinant d@t=IIA*\ is real and positive . , 4 o
semi-definite. Xo— —IXE, Xi—Xg, Yo—7Ye, Yi—~ive. (12
Thus, by considering only the low-energy modes near the . . )
Fermi points of the original modéL), we obtain an effective The Euclidean gamma matrices satisfy
theory with desirable positivity properties. Note that it is .
necessary that the interactiofin this case, the background YE'=vE, {vE.veb=20"" (13)

034011-2



POSITIVITY AND DENSE MATTER PHYSICAL REVIEW D68, 034011 (2003

The Dirac- conjugated fieldf #"+°, is mapped into a field, Pu=mv,+l,, (20
still denoted as/, which is mdependent af and transforms .
as 4" under SO(4). Then, the grand canonical partition Wherev (0u¢). Since the quark energy is given as

function for QCD is
© E=—ut Ut w22, 21)
Z(,u)=j dA de(M)e~SAw), (14 the residual momentum should satisfly{ w)2+12<4u?

with I]—J,:F lj,: and Il =I- rH
whereS(A ) is the positive semi-definite gauge action, and  To describe the small excitations of the quark with Fermi
the Dirac operator momentumuug, we decompose the quark fields as

M= yEDE+nyE, (15 Y)=€ME g (0 X) FU_(0g,X)], (22

whereDg=dg+iAg is the analytic continuation of the co- where
variant derivative. The Hermitian conjugate of the Dirac op-

erator is Y (Ur X) =P (0p)e HFXy(x)
MT=—yEDE+ure. (16) . 1*a-o;
with  P.(vg)= — (23
The first term in Eq(15) is anti-Hermitian, while the second

is Hermitian, hence the generally complex eigenvalues.l_he uark Lagrangian in Eq18) then becomes
Whenu =0, the eigenvalues are purely imaginary, but come q grang

in conjugate pairsX,\*) [11], so the resulting determinant

-, . O _ - -> . nd
is real and positive semi-definite: YD+ uy =1+ (e 019Dt (Ve X)

+ ¢ (0p X)Y(2u DY (vg X)]

[P (v XD, (Vg ,X) +H.C]

In what follows we investigate the positivity properties of (24)
an effective theory describing only modes near the Fermi _— )
surface. A system of degenerate quarks with a net baryohere V(L (7 VEVE-Y), Yi= “—YﬁL DHIV“D,L with
number asymmetry is described by the QCD Lagrangia’vV*=(1 v,:) Z —(1—v,:) andD, =
density with a chemical potential, At low energy, we integrate out aII the “fast” modes_
and derive the low energy effective Lagrangian by matching
all the one-light-particle irreducible amplitudes containing
gluons andy . in loop expansion. The effects of fast modes
will appear in the quantum corrections to the couplings of
where the covariant derivativie,, =, +iA , and we neglect low energy interactions. At tree level, the matching is
the quark mass for simplicity. equivalent to eliminating/_ in terms of equations of mo-
At high density > Aqcp), due to asymptotic freedom tion:
the energy spectrum of quarks near the Fermi surface is ap-

detMm=]] A*r=o0. (17)

_ 1 _
Locp=Yib lﬁ_ZFzyFaw+M¢7’o$, (18

0

roximately given by a free Dirac eigenvalue equation, - iy -
g Y oven by ? q b (0F X)= = o= D P (U X)
pHID)
(a-p—p)p.=E.y., (19 .
- - __ _W -
where a=y,y and ¢, denote the energy eigenfunctions ~ T o n—O( o D¢ (ve,x). (29

with eigenvalue€ . = — = |p|, respectively. At low energy

E<u, the statesy, near the Fermi surfacep|~u, are
easily excited but/_ , which correspond to the states in the 1
Dirac sea, are complt_ately decoupled d_ue to the presence of Lgﬁ: Yo y[D i~ 2_l/,+ YD )2, +
the energy gap provided by the Fermi sea. Therefore the M

appropriate degrees of freedom at low energy consist of glu-
ons andi, only.

Now, we wish to construct an effective theory describing
the dynamics of/, by integrating out modes whose energy
is greater thanu. Consider a quark near the Fermi surface, Meq= - D(A). (27)
whose momentum is close jovg . Without loss of general-
ity, we may decompose the momentum of a quark into &M is anti-Hermitian and it anti-commutes withs, so it
Fermi momentum and a residual momentum as leads to a positive semi-definite determinant. However, note

Therefore, the tree-level Lagrangian fgr. becomes

where the ellipsis denotes terms with higher derivatives.
Consider the first term in our effective Lagrangian, which
when continued to Euclidean space yields the operator
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that the Dirac operator is not well defined in the space ofy(vg,x) modes whose values ofz are not very different
¥ (ve,x) (for fixed vg), since it mapsy, (ve,x) into ~ May actually represent the same degrees of freedom of the

" (—5 X): original quark field. In what follows we give a different for-
" P mulation which describesll velocity modes of the quark
iD| P.y=P_iDy. (28  field, and is suitable for defining the quasiparticle determi-
nant.
Since P—(JF) — P+(_JF)! in ¢+(5F X) are ¢+(_5F X) First, a more precise definition of the breakup of the quark

. . field into Fermi surface modes. Using the momentum opera-
modes, or fluctuations of a quark with momentunuug . i . ) - -
We can demonstrate the necessity of including botHOr in & position eigenstate basis= —id, we construct the
¢+(l;,: ,X) and ¢+(—5F ,X) modes in our effective theory by Fermi velocity operator:

considering charge conservation in a world with orly . —i 9
qguarks. The divergence of the quark current at one loop is at v= 5 = (32
the leading order in the A/ expansion V=V ox
4 which is Hermitian, and a unit vector.
9 35 X)) = f e P XpHITAR (p)APY(—p), Using the velocity operator, we define the projection op-
(9% (ve X)) =05 (2m)* PALLPIAT(=P) eratorsP.. as before and break up the quark field &)

(29 =y, (X)+¢_(x), with . =P . By leavingv as an op-
I ab ] erator we can work in coordinate space without introducing
where A= (Ao,vrve-A) andll; is the vacuum polariza-  the HQET-inspired velocity Fourier transform which intro-

tion tensor in the effective theory given Eg ducesvr as a parameter. If we expand the quark field in the
) . eigenstates of the velocity operators, we recover the previous
. —2p-vpVAV? f li ith all Fermi velociti d up.
ggp) =~ o] gt (0 TR Cding fow-energy part of the quark acton is given
2 p-V+iep-vg b Ing low gy p qu ion is giv
y

whereg#’=g**— (VAV*+V#V")[2 is the metric tensor per- — .
eglr =g~ (VY )2 is th P Lo=PP (0)(i0-A+uyP. )y (33

pendicular tovV#* andV#. The polarization tensor has to be

transverse to maintain gauge invariance. We find that if weAs before, we define the fieldg, to absorb the large Fermi

have both fieldsy. (vg,x) and ¢, (—vg,x) the current is  momentum:

conserved and the gauge symmetry is not anomalous: .-
()= P L (0) (X). (34)

Let us denote the eigenvalue obtained by acting on the

Therefore, we need to introduce quark fields with opposité:'eld 4 (which has momentum of ordeg) as v, (or v
momenta. The Dirac operator is well defined on this larger 12rge” ), whereas eigenvalues obtained by acting on the ef-
space. fective field theory modes/ are denotedy, (or v *re-
This anomaly can be understood in terms of spectral flowSidual”). If the original quark mode had momentymwith
since the Fermi surface i6n a certain sengenot gauge P~ & (iLe. was a particle thenv, and v, are parallel,
invariant. Under a gauge transformatidd(x)=€'9"%, the whereas if|p| < (as for a holg thenv, andv, are anti-

Hamiltonian changes and the energy spectrum of free moddidrallel. In the first case, we haw, (v)) =P, (v,) whereas
) S LTl in the second cas®, (v,)=P_(v,). Thus, the residual
of residual momentun shifts toE=1-vg+q-vg. Quarks

s modesy, can satisfy either oP_.(v,) ¥, =, , depending
near the Fermi surface with--q>0 flow out of the Fermi  on whether the originaly mode from which it was derived
sea, creating Charge.aThis charge creation is compensated s a particle or a hole. In fac#;, modes can also satisfy
qguarks with opposite/r; their energy decreases and they either of P.(v,) . = ¢, since they can originate frony
flow into the Fermi sea. However, unless modes with oppomodes with momentum- + uv as well as— uv (both are

site velocities(i.e. both sides of the Fermi spherare in-  present in the original measu@y/D ). So, the functional

cluded, charge is not conserved. measure for ¢, modes contains all possible spinor

Thus far we have considered the quark velocity as a pagcfions_the only restriction is on the moment|,|I]

rameter labelling different sectors of the quark figld. This IS A whereA is the cutoff.

similar to thg app_roach of heavy quark effective theory In light of the ambiguity between, andv, , the equation
(HQET) [12], in which the velocity of the heavy charm or —etimX vy must be modified to

bottom quark is almost conserved due to the hierarchy o{/j *

scales betw_een the heavy qL_Jark mass _anql the QCD scale. Y=exp(+iuxX-va-v)P, =expl+iuX-via-v,) i, ,
However, this approach contains an ambiguity often referred (35)

to as “reparametrization invariance,” related to the non-

uniqueness of the decompositi®0) of quark momenta into where the factor ok-v, corrects the sign in the momentum
a large and residual component. In the dense QCD case, tvahift if v, andv, are antiparallel. In general, any expression

(3,9%(VE X) + 3,4 —vg X)) =0. (31)
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with two powers ofv is unaffected by this ambiguity. For where A, =A—A; and the Debye screening mass Né

notational simplicity we define a local operator =N¢/(27%)gsu. Note that Landau damping is due to
softer quark modes which have not been integrated out, and
a'xl 92 therefore do not contribute to matching.
X=ux-va-v= ? Ixiod (36) Although the HDET only describes low-energy modes, it

still contains Cooper pairing interactions. This is because
Cooper pairing, in which the quasiparticles have nearly equal
and opposite momenta, is induced by gluonic interactions
with small energy and momentum transfer. That is, although
a gluon exchangéor other interactionwhich causes a large
angular deflection of a quasiparticle

Taking this into account, we obtain the following action:

Lo=g.e X(ib—A+puyge Xy, . (37)

We treat theA term separately fromé+ uy, since the
former does not commute witk, while the latter does. Con- |5>H| 5,>
tinuing to Euclidean space, and using the idenBtyy P,

= VULP% we obtain must involve a large momentum transfer, and hence is not
o part of the effective theory, a Cooper pairing interaction
£+=zp+yﬁL((3’“+iA’i)¢//+, (38 .. R R
lp.—p)—I[p".—p")
where
_ _ only involves a small energy and momentum transfer, even if
Al =e " "Aret (39 the angle betweep andp’ is large. Hence, it is described by
the leading order interaction between soft gluons and quarks
and all y matrices are Euclidean. The term containiAg in the effective theory38).
cannot be fully simplified becauge,A]# 0. Physically, this Matching of hard gluon effects also leads to four-quark
is because the gauge field carries momentum and can deflegierators in the effective theory. The addition of these four-
the quark velocity. The redefinegt, modes are functions quark operators still leads to a positive action for attractive
only of the residual momenta |, and the exponential factors ithannels, since they arise from quasiparticle-gluon interac-
the A term reflect the fact that the gluon originally couples totions which are originally positive. A simple way to study the
the quark fieldy, not the residual mode . . positivity of four-quark operators is to replace them by a
The kinetic term in Eq(38) can be simplified to vector field with the trivial quadratic teri” which couples

to quarks like the original gluonV ,sy*y. Completing the
square, we see that the resulting path integral is positive.
Note that this argument does not apply to interactions involv-
ing six or more quarks, or interactions involving virtual anti-
quarks. However, these are always suppressed by additional
jiowers ofu.

Finally, some comments on more general models than
QCD—in particular electronic systems in condensed
matter—which are also affected by a sign problem. We note
Ihat as long as the important dynamics of the system involve
energies which are small compared to the Fermi enéogy
S[are exhibited at a temperature small compared to the Fermi
. o . . . g, emperaturg the Euclidean description of the system is
grl]rtélr ﬁgg:g?lgigLusvitHhetr:rﬁgﬁi%ajlulasétgztilgl the original QCD likely to h_ave a positive_ effective action after mpdes far from

Bv intearating out the fast modes tHe Euclidean CDthe Fe.rml surface are |n.tegratec.i out. Models involving, e.g.,

Y grating ) ’ Q attractive four-fermion interactions or long range gauge
partition function can be rewritten as fields fall into this category. As long as the important inter-
actions are soft interactions between quasiparticle degrees of
Z(M):f dA_ detM eﬁ(A+)e_seﬂ(A+)_ (41) freedom not too far from the Fermi surface, the model can be

simulated without a sign problem, even if it is strongly
coupled.
As a specific example, consider the Hamiltonian

ok =yt (40)

sincev-dv-y=4d-vy. The action(38) is the most general
dimension 4 term with the rotational, gauge invariahtg]
and projection properties appropriate to quark quasiparticle
Therefore, it is a general consequence of any Fermi liqui
description of quark-like excitations.

The operator in Eq(398) is anti-Hermitian and leads to a
positive, semi-definite determinant since it anti-commute
with ys. The corrections given in E¢26) are all Hermitian,
so higher orders in the 4&/expansion may reintroduce com-
plexity. The structure of the leading term plus corrections i

The leading terms in the effective action for gluoftisese
terms are generated when we match our effective theory,
with energy cutoffA, to QCD) also contribute only real,

positive terms to the partition function: H= 2; tanCaCht ;d VabedaChCeC (43
a abc
I R _M2 2 a pa | > whereabcddenote lattice site and spin indices. This Hamil-
Ser(A)= | d™Xg ZF#VFMV+ 167 2 AT AL =0, conian P >
vE onian includes the Hubbard model as a special case. A con-

(42 stant diagonal part of the kinetic term acts as a chemical
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potentialu=t,,, butt may also contain hopping terms such However, a model with modifiedspfter)_ interactions would
as a nearest-neighbor off-diagonal term in the tight bindind®®@ approximately positive and might in fact be more physi-
approximation. The usual kinetic term, taken by itself, pro-cally realistic.

duces a band structure which in momentum space has the
form IV. LATTICE SIMULATION

The goal of this section is to give a method for simulating
> E(k)clcy, (44)  QCD at finite density. We will consider a chemical potential
k w4 much larger tham\ ocp throughout, and divide the func-
tional integral over quark excitations into two partd)
for some functiorE(k). A non-zero chemical potential leads modes within a shell of width\ of the Fermi surface, and
to filling of levels up to some momentulk:. There is an  (II) modes which are further thak from the Fermi surface.
effective theory description of modes near this surface if thae will assume the hierarchy
Fourier transform of the interaction term,.q only contains
soft interactiondi.e. support for typical momentum transfers u>NA>Aqep. (48
less tharkg).

To obtain the partition function Z we must extend the
fields from thed-dimensional lattice tdd+1)-dimensional
Euclidean space, with finite extegt in the time direction.
The action density is given by

The quark determinant in regidh) is well approximated
by the determinant of the leading operator in high density
effective theory(HDET) as long as the first inequality {@#8)
is satisfied. As discussed in the previous section, it is positive

and real.
J Here we will show that the contributions to the effective
- —H (45) action for the gauge field from quark modes in regibhare
ar small and vanish as th& grows large compared td ocp.

First consider the theory in Minkowski space. The Dirac
where H is the Hamiltonian density. Using the Hubbard- gperator is
Stratonovich transformation, we can rewrite the interaction

term in terms of a functional integral over a background field M=iD + uyq (49)
v and the Dirac equation can be written as
zZ= % J lal dU o eseUedcdeVer de{ T—U],  (46) idop=Hy (50)
with
whereT=(d/d7)—t contains the time derivative as well as H=ia-d—p (51)

the kinetic termt from the Hamiltonian43). We assume that

the interactionv is real and negative definite so that the 3 Hermitian operator. The break up into regighisand (Il)
exponential is real and the integral converges. ~ proceeds naturally in terms of energy eigenvaluesd ¢ér |,
The determinant can be expanded about our effectivg, the HDET notatioh The low-lying modes in regiofi) are

theory. The I_eading term is positive and has no sign problerga ricle states with spatial momenta satisfyjﬁd;x,u.
The correction terms are suppressed as long as the ba " The analytic continuation of regiafh) to Euclidean space
ground fieldU has support on momentum scales Sma" COMaads to the HDET determinant considered previously.
p_ared toke . [Se_e the d|sgu55|on in the next section, espe-\;qqeq in region(ll) all have large energy eigenvalues, at
$|all_y II:? (|32)valth hU playlngl the r(;)le of fchedgte)lugﬁ field. least as large a&. In considering their effect on physics at
yplt(_:al tle S_.f'tr;]t E '”t.egrf‘ ar? eterfrumel.ttlyt € exE[)o- the scaleA ocp, We can integrate them out in favor of local
nential term—if the Fourier transform of has |7le suppor operators suppressed by powers\gico/A.
at large momenta, the_n the exponaitU (kju .(k)U(k) To make this concrete, consider the effective action for
will be large and negative, and the corresponding modes Oéauge fields with field strengths,,, of order Aocp. The
U suppressed. . . . quark contribution to this effective action is simply the loga-
Um_‘ortunately, the Hubbard model itself contains the N rithm of the determinant we wish to compute. It can be ex-
teraction term panded diagrammatically in graphs with external gauge field
lines connected to a single quark loop. Restricting to region
vy nitNi (47) (I_I), we require that th_e guark modes in the loop have l&fge
i eigenvalues. Evaluating such graphs leads only to operators
which are local in the external fields,(x).
where nizciTci is the number operator. This interaction al-  The resulting renormalizablelimension 4 operator is the
lows all momentum transfers up to/a, wherea is the lat-  finite density equivalent oFfw, except that due to the
tice spacing. Because it couples low-energy modes to fadireaking of Lorentz invariance it contains separate time- and
modes far from the Fermi surface, the resulting partitionspace-like components which represent the contribution of
function is not well approximated by the positive EFT part. high-energy modes to the renormalization of the coupling
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constant and Debye screening. These effects do not introduggacing of the fermion lattice must ke~ 1/u, while ay
a complex component when continued to Euclidean space.~1/A op is probably sufficient to capture the effects of non-
Higher dimension operators, which involve additional perturbative gauge configurations.

powers off,, or covariant derivative® , are suppressed by ~ The fermion determinant is to be computed as a function

the scaIeA. These are presu_mably' the source of complexyt the finer plaquette$U, .} The result is(approximately
terms introduced to the effective action. However, due to thqzea| and positive and can be used for importance sampling.

1/A suppression they are dominated by the contribution fromrher, there is a physical understanding of the complex part
the low-lying modes in regiofi), which is necessarily non- o the determinant: it originates in the modes far from the

local, but real. , _ _Fermi surface which have been integrated out.
The logarithm of the Euclidean quark determinant will

have the form
V. INEQUALITIES AND ANOMALY MATCHING

4
~ + - e . .
In detM~O(n™) + (non-local, rea Positivity of the measure allows for rigorous QCD in-

equalities at asymptotic density. For example, inequalities
(local, compley, (52)  among masses of bound states can be obtained using bounds

on bare quasiparticle propagators. One subtlety that arises is
where the first term is théreal, constantfree energy of that a quark mass term does not lead to a quasiparticle gap
non-interacting quarks, the second term is from the positivéthe mass term just shifts the Fermi surfadéence, for tech-
determinant in regioril) and the last term is the suppressed,hical reasons the proof of non-breaking of vector symmetries
complex contribution from regiorfll). Only the last two [14] must be modified.Naive application of the Vafa-Witten
terms depend on the gauge fiedd(x). theorem would preclude the breaking of the baryon number

On the lattice, one can use the dominant dependence #pat is observed in the color-flavor-lockédFL) phasg15].]

detM on the first and second terms to do importance samA quasiparticle gap can be inserted by hand to regulate the
pling. In order to keep the complex higher dimension operabare propagator, but it will explicitly violate baryon number.
tors [last term in Eq.(52)] small, it is important that the However, following the logic of the Vafa-Witten proof, any
gauge field strengths are kept smaller theh One can im- ~ Symmetries which are preserved by the regulator gap cannot
pose this condition by using two different lattice spaciags D€ broken spontaneously. One can, for example, still con-
for the gluons andage for the quarks, withag™>age. The clude that isospin symmetry is never spontaneously broken
determinant is calculated on the finag lattice, and is a (although see below for a related subtletin the case of
function of plaquettes which are obtained by interpolationthree flavors, one can introduce a regulataxith the color
from the plaquettes on the coarsgy lattice. Interpolation ~and flavor structure of the CFL gap to show rigorously that
can be defined in a natural way, since each lattice link varinone of the symmetries of the CFL phase are broken at
able U, is an element of the gauge group, and one carSymptotic density. On the other hand, by applying anomaly
connect any two points;,g, on the group manifold in a Matching conditiond16], we can prove that th&U(3)a

+0

A

linear fashiong(t)=g; +t(g,—g;),0<t<1. symmetriesare broken. We therefore conclude that the CFL
More explicitly, let x and x+a4u be two neighboring phase is the true ground state for three light flavors at
points on the coarse lattice, and asymptotic density, a result that was first established by ex-
plicit calculation[9,17,18.
Z,=X+Nnageu, n=0,1,--N (53 To examine the long-distance behavior of the vector cur-

_ _ . . rent, we note that the correlator of the vector current for a
be the corresponding points on the fine lattizg=x,zy=X  given gauge fieldA can be written as
+agu, whereN=ay/age. Then a link

U, ,=exfdia Gmt™] (J2(vE ) I(vE YA

_ A . bcA .
is interpolated to a set of links as =—Try,T2S%(x,y;d) y, T°S\(y,x;d),

=exfgiagGC™™], (54 where the SU(N¢) flavor current JZ(JF ,X)
=4 (g, X) 7, T2, (vg,X). The propagator  with

where thet™ are SUN) generators, and the bar denotes theg U(3)y-invariant IR regulatod is given as

finer lattice. Equation(54) allows us to computdJ links

which are sub-links of originad, link variables, and lie on A 1 % (= iM)

the outer perimeter of a plaquette. The remainingdinks, S (x,y,d)=<x|m|y>: fo dr(xe y)

which are within anag plaquette, can be obtained through a

similar interpolation starting from opposite sides of the Pe-where withD = 9+iA

rimeter, yielding an entire set of plaquettes onahg lattice.

The field strengths resulting from this interpolation are al-

ways of ordera, 2 and can be kept small compared to the M= 70(

cutoff A2. To properly include the quasiparticle modes, the

Zn ’Zn+l
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Since the eigenvalues df are bounded from below by, we However, a subtle order of limits is at work here. For
have simplicity, let us setm=0. Note that the CFL regulatat,
which was inserted by hand, explicitly breal&U(3),

1 » o € " —— ~—— through color-flavor locking, leadi iti
+ —dr _ gh color-flavor locking, leading to small positive mass
<X|M V)= L dre {(Xx)\(yly)= d (XX Kyly), squared for the pions and kaons, given as

(55)
whereR=|x—y|. The current correlators fall off rapidly as me’K~an2 In(%). (58
R—o;

e A= 5 - A The meson mass is not suppressed hy, Kince, unlike the
f dA detMeg(A)e™ =M, (vE ,X) I, (vE,Y))™ Dirac mass term, the regulator, being a Majorana mass, does
not involve antiquark$20].
- - Therefore, even when the light quarks are massless, there
A B A ’ I
= fA+|<JM(UF X) 3, (e, Y)) is a critical value ofng necessary to drive negative the mass-

squared of kaons and cause condensation:
—-2dR

=S| 1oty 59

112
>(dp)'?, (59

m% ~| gsdu In(%)

where we used the Schwartz inequality in the first inequality,

since the_ measure of the effectl_ve theory is now positive, a”%heregs is the strong coupling constant. Note the product of
Eqg. (55) in the second inequality. The IR regulated vectorgs with the logarithm grows ag gets large. To obtain our
currents do not create massless modes out of the vacuum flequality we must keep the regulatdmon-zero until the
Fermi sea, which implies that there is no Nambu-Goldstonng of the calculation in order to see the exponential fall off.
mode in theSU(3)y channel. Therefore, for three masslesstg find the phase with kaon condensation identifiedZig]
flavors SU(3)y has to be unbroken as in CFL. The rigorous e must keepn, larger thanm? . (Note w—, so to have

result provides a non-trivial check on explicit calculations,any chance of finding this phase we must take0 keeping
and applies to any system in which the quasiparticle dynamgg large anddu small)

ics have positive measure. . Since the UV cutoff of the HDET must be larger thamg,
It is important to note the order of limits necessary t0, o have

obtain the above results. Because there are higher-order cor-

rections to the HDET, suppressed by powersAdfu that

*\ 2
spoil its positivity, there may be contributions on the right- 1>(E> >Eﬁ (60)
hand side(RHS) of Eq. (56) of the form A A A’
(’)(—)f(R), (57) which implies
o
. A d
wheref(R) falls off more slowly than the exponential in Eq. ;f(R)>Kf(R). (61

(56). To obtain the desired result, we must first take the limit
u—oo at fixedA before takingR— . Therefore, our results
only apply in the limit of asymptotic density. Note the right-hand side of this inequality does not necessar-

Although our result precludes breaking of vector symmedly fall off at large R, and also does not go to zero for
tries at asymptotic density in the case of theeactlymass- — at fixed A andd. This is a problem since to apply our
less quarkgd21], it does not necessarily apply to the caseinequality the exponential falloff from Eq56) must domi-
when the quark masses are allowed to be slightly non-zerd)ate the correction teritb7), which is just the left-hand side
In that case the results depend on precisely how the limits d®f Ed. (61). Combining these equations, we see that the ex-
Zero quark masses and asymptotic density are taken, as \p@nential falloff of the correlator is bounded below,
discuss below.

In [19] the authors investigate the effect of quark masses e~ 2dR
on the CFL phase. These calculations are done in the —2>Kf(R)’ (62)
asymptotic limit, and are reliable for sufficiently small quark d
masses. Whem,=myg=m<m, [unbrokenSU(2) isospin,
but explicitly brokenSU(3)], onefinds a kaon condensate. in the scaling region with a kaon condensatg>my .
The critical value ofmg at which the condensate forms is  Alternatively, if we had takermg to be finite for fixed
m* ~m'3A3", whereA, is the CFL gagsee, in particular, regulatord (so that, agu—, eventuallyms<mZ), the in-
Eqg. (8) of the first papel As kaons transform as a doublet equality in Eq.(56) could be applied to exclude a Nambu-
under isospin, the vectoBU(2) symmetry is broken in Goldstone boson, but we would find ourselves in the phase
seeming contradiction with our result. without a kaon condensate.
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VI. CONCLUSION might be simulated numerically. Ultimately, we hope that
actual practitioners will develop even more practical meth-

The low-energy physics of dense fermionic matter, rang- o

ing from quark matter to electronic systems, is controlled by Finally, positivity has analytical applications as well

modes near the Fermi surface. An effective Lagrangian deéince it allows the use of rigorous inequalities. In QCD we

2§r'2':3;26ir:0\’\gvevgzggf Th%dzsngfn 2&32’%’\1@'? 3]2ysrt]ir:q?éla§btain restrictions on symmetry breaking patterns at high
pan: P . . 9y X : ensity. Similar restrictions can probably be obtained for
potential. The leading term in this expansion has a simple

form, and we have shown that it leads to a real, positivee'eCtronIC systems with suitable interactions.
Euclidean path integral measure.
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