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Positivity and dense matter
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We elaborate on previous results concerning the positivity of the Euclidean path integral measure for
low-energy modes in dense fermionic matter. We show that the sign problem usually associated with fermions
is absent if one considers only low-energy degrees of freedom. We describe a method for simulating dense
QCD on the lattice and give a proof using rigorous inequalities that the color-flavor locked~CFL! phase is the
true vacuum of three flavor, massless QCD. We also discuss applications to electronic systems in condensed
matter, such as generalized Hubbard models.
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I. INTRODUCTION

Euclidean quantum chromodynamics~QCD! with a non-
zero chemical potential has a complex measure, which
made lattice simulation particularly difficult@1#. ~For recent
lattice investigation of the QCD phase boundary at fin
density, see@2,3#.! This problem is often referred to as th
sign problem, because by appropriately grouping ter
quantities such as the partition function can be written a
sum over real, but potentially negative, terms.~That this
grouping can be accomplished is in many systems a co
quence of a discrete symmetry such as parity or time-reve
invariance.! Indeterminate signs are enough to preclude
use of importance sampling, the main technique for speed
up Monte Carlo integration. It is important to note that wh
the sign problem often arises in systems of fermions, i
neither inevitable nor inescapable. For example, in QCD
zero chemical potential and in the Hubbard model at h
filling one can organize the sum so that terms are real
positive. For recent work on the sign problem, see@4#.

Analytical work in color superconductivity@5# has dem-
onstrated a rich phase structure at high density, and sti
lated interest in QCD at non-zero baryon density. Seve
experiments have been proposed to probe matter at de
of a few times nuclear matter density@6#. Even rudimentary
information about the behavior of dense matter would
useful to the experimental program, as well as to the stud
compact astrophysical objects such as neutron stars. I
earlier paper@7#, we showed that QCD near a Fermi surfa
has positive, semi-definite measure. In the limit of low en
gies, the contribution of the remaining modes far from t
Fermi surface can be systematically expanded, using a
density effective theory previously introduced by one of
@8,9#. This effective theory is sufficient to study phenome
like color superconductivity, although quantities like th
equation of state may be largely determined by dynam
deep in the Fermi sea.
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The expansion about the Fermi surface is in powers
1/m, wherem is the chemical potential. For this expansion
be controlled, the ultraviolet cutoff of our effective theo
must be less thanm, or equivalently the scale of the physic
of interest must be small relative to the chemical potential
QCD at asymptotic density, the superconducting gap is
ponentially small, so this condition is satisfied. However, it
also quite possible that at intermediate densities~e.g., those
inside a neutron star! the gap is somewhat smaller thanm,
providing us with an additional small dimensionless para
eter. Even if this is not the case, the power expansion of
effective theory is qualitatively different from the usual pe
turbation inas , and therefore worth exploring. Finally, w
note that models~e.g., of electronic systems! which are not
asymptotically free may exhibit strongly coupled quasipa
cle excitations even at high density. The results descri
here still apply to such systems and may be of use in th
simulation.

This paper is organized as follows. We begin in Sec.
with simple examples in~111! and higher dimensions which
illustrate how the effective Fermi surface description c
have positive measure even if the original model has a s
problem. In Sec. III we review the results from our previo
paper, and include some discussion of how they apply
electronic systems that may arise in condensed matte
Sec. IV we describe how they can be applied to lattice sim
lations of dense matter. In Sec. V we discuss correlator
equalities~also known as QCD inequalities! that result from
positivity, and how they restrict the possible ground states
QCD. In Sec. VI we conclude with a summary and futu
prospects.

II. EXAMPLE: „1¿1… DIMENSIONS AND BEYOND

We begin with an example that illustrates the basic id
in a simple setting. Consider the Euclidean~111! action of
non-relativistic fermions interacting with a gauge field A

S5E dtdxcs* @~2]t1 if1eF!2e~2 i ]x1A!#cs ~1!
©2003 The American Physical Society11-1
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wheree(p) is the energy as a function of momentum@e.g.
e(p)'(p2/2m)1•••]. In Eq. ~1! and below we may con
sider it as a function of the operator (2 i ]x1A). The disper-
sion relation in the presence of the chemical potentialeF is
E(p)5e(p)2eF , and a low energy mode must have m
mentum close to6pF , wheree(6pF)5eF . The Fermi sur-
face in ~111! dimensions is reduced to the two pointsp5
6pF . Near these points we have

E~p6pF!'6vFp, ~2!

wherevF5]E/]pupF
is the Fermi velocity.

The action~1! is not obviously positive. In fact, the op
erator in brackets@•••# clearly has Hermitian as well a
anti-Hermitian components, and hence complex eigenval

Let us assume that the gauge field has small amplit
and is slowly varying relative to the scalepF . We will ex-
tract the slowly varying component of the fermion field
construct a low energy effective theory involving quasipa
cles and gauge fields. This effective theory will have a po
tive, semi-definite determinant.

First, we extract the quasiparticle modes~we suppress the
spin index in what follows!

c~x,t!5cLe1 ipFx1cRe2 ipFx, ~3!

where the functionscL,R are slowly varying. To simplify the
action, we use the identity

e6 ipFxE~2 i ]x1A!e7 ipFxc~x!'6vF~2 i ]x1A!c~x!,
~4!

to obtain@10#

Seff5E dtdx@cL
†~2]t1 if1 i ]x2A!cL

1cR* ~2]t1 if2 i ]x1A!cR#. ~5!

We can write this in a more familiar form by introducing th
Euclidean~111! gamma matricesg0,1,2, which are Hermit-
ian and can be taken asg i5s i wheresW are the Pauli matri-
ces. UsingcL,R5 1

2 (16g2)c we obtain

Seff5E dtdxc̄gm~]m1 iAm!c[E dtdxc̄D/c. ~6!

Since the gamma matrices are Hermitian, and the oper
(]m1 iAm) is anti-Hermitian, the operatorD” in Eq. ~6! has
purely imaginary eigenvalues. However, becauseg2 anti-
commutes withD” , the eigenvalues come in conjugate pai
given D” f5lf, we have

D” ~g2f!52g2D” f52g2lf52l~g2fn!.

Hence the determinant detD” 5)l* l is real and positive
semi-definite.

Thus, by considering only the low-energy modes near
Fermi points of the original model~1!, we obtain an effective
theory with desirable positivity properties. Note that it
necessary that the interactions~in this case, the backgroun
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gauge field A! not couple strongly the low-energy modes
fast modes which are far from the Fermi points. This is
reasonable approximation in many physical situations, wh
it is the interactions among quasiparticles that are of prim
interest. In what follows, we will apply this basic idea
more complex models such as QCD.

It is straightforward to go beyond~111! dimensions.
Consider an electron system, described by

L5c†@ i ] t2e~pW !#c1mc†c, ~7!

wheree(pW ) is the electron energy, a function of momentu
pW . It is interesting to note that the non-relativistic syste
already has a sign problem even at the zero density,m50,
though the free case does not suffer this, thanks to the s
ration of variables. In fact, it is quite unusual to have a s
tem like vacuum QCD which has no sign problem. In E
clidean space the electron determinant is

M52]t2e~pW !1m. ~8!

The first term in operator~8! is anti-Hermitian, while the res
are Hermitian. Since there is no constant matrixP in the spin
space that satisfiesM†5PM P21, it has a sign problem in
general.

Let us decompose the fermion momentum as

pW 5pW F1 lW. ~9!

Again, the Fermi momentum is defined to be a momentum
which the energy equals to the chemical potential at z
temperature:m5e(pF), and the Fermi velocity is defined a

vW F5
]e~p!

]pW
U

p5pF

. ~10!

If we are interested in low energies,u lWu!pF , we may inte-
grate out the fast modes to get an effective operator,

MEFT52]t2vW F• lW, ~11!

which has complex eigenvalues. However, when we inclu
the2vW F sector, we haveMEFT(vW F)MEFT(2vW F)<0 ~i.e., has
real negative eigenvalues!, assuminge(pW )5e(2pW ). We
again see that the sign problem in the electron system
alleviated in the low-energy effective theory.

III. QCD

Let us recall why the measure of dense QCD is comp
in Euclidean space. We use the following analytic continu
tion of the Dirac Lagrangian to Euclidean space:

x0→2 ixE
4 , xi→xE

i , g0→gE
4 , g i→ igE

i . ~12!

The Euclidean gamma matrices satisfy

gE
m†5gE

m , $gE
m ,gE

n %52dmn. ~13!
1-2
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The Dirac-conjugated field,c̄5c†g0, is mapped into a field
still denoted asc̄, which is independent ofc and transforms
as c† under SO(4). Then, the grand canonical partitio
function for QCD is

Z~m!5E dAmdet~M !e2S(Am), ~14!

whereS(Am) is the positive semi-definite gauge action, a
the Dirac operator

M5gE
mDE

m1mgE
4 , ~15!

whereDE5]E1 iAE is the analytic continuation of the co
variant derivative. The Hermitian conjugate of the Dirac o
erator is

M†52gE
mDE

m1mgE
4 . ~16!

The first term in Eq.~15! is anti-Hermitian, while the secon
is Hermitian, hence the generally complex eigenvalu
Whenm50, the eigenvalues are purely imaginary, but co
in conjugate pairs (l,l* ) @11#, so the resulting determinan
is real and positive semi-definite:

detM5) l* l>0. ~17!

In what follows we investigate the positivity properties
an effective theory describing only modes near the Fe
surface. A system of degenerate quarks with a net bar
number asymmetry is described by the QCD Lagrang
density with a chemical potentialm,

LQCD5c̄ iD” c2
1

4
Fmn

a Famn1mc̄g0c, ~18!

where the covariant derivativeDm5]m1 iAm and we neglect
the quark mass for simplicity.

At high density (m@LQCD), due to asymptotic freedom
the energy spectrum of quarks near the Fermi surface is
proximately given by a free Dirac eigenvalue equation,

~aW •pW 2m!c65E6c6 , ~19!

where aW 5g0gW and c6 denote the energy eigenfunction
with eigenvaluesE652m6upW u, respectively. At low energy
E,m, the statesc1 near the Fermi surface,upW u;m, are
easily excited butc2 , which correspond to the states in th
Dirac sea, are completely decoupled due to the presenc
the energy gapm provided by the Fermi sea. Therefore th
appropriate degrees of freedom at low energy consist of
ons andc1 only.

Now, we wish to construct an effective theory describi
the dynamics ofc1 by integrating out modes whose ener
is greater thanm. Consider a quark near the Fermi surfac
whose momentum is close tomvW F . Without loss of general-
ity, we may decompose the momentum of a quark into
Fermi momentum and a residual momentum as
03401
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pm5mvm1 l m , ~20!

wherevm5(0,vW F). Since the quark energy is given as

E52m1A~ l i1m!21 l'
2 , ~21!

the residual momentum should satisfy (l i1m)21 l'
2 <4m2

with lW i5vW F lW•vW F and lW'5 lW2 lW i .
To describe the small excitations of the quark with Fer

momentum,mvW F , we decompose the quark fields as

c~x!5eimvW F•xW@c1~vW F ,x!1c2~vW F ,x!#, ~22!

where

c6~vW F ,x!5P6~vW F!e2 imvW F•xWc~x!

with P6~vW F![
16aW •vW F

2
. ~23!

The quark Lagrangian in Eq.~18! then becomes

c̄~ iD” 1mg0!c5@c̄1~vW F ,x!ig i
mDmc1~vW F ,x!

1c̄2~vW F ,x!g0~2m1 iD̄ i!c2~vW F ,x!#

1@c̄2~vW F ,x!iD”'c1~vW F ,x!1H.c.#

~24!

where g i
m[(g0,vW FvW F•gW ), g'

m5gm2g i
m , D̄ i5V̄mDm with

Vm5(1,vW F), V̄m5(1,2vW F), andD”'5g'
mDm .

At low energy, we integrate out all the ‘‘fast’’ modesc2

and derive the low energy effective Lagrangian by match
all the one-light-particle irreducible amplitudes containi
gluons andc1 in loop expansion. The effects of fast mod
will appear in the quantum corrections to the couplings
low energy interactions. At tree level, the matching
equivalent to eliminatingc2 in terms of equations of mo
tion:

c2~vW F ,x!52
ig0

2m1 iD i
D”'c1~vW F ,x!

52
ig0

2m (
n50

` S 2
iD i

2m D n

D”'c1~vW F ,x!. ~25!

Therefore, the tree-level Lagrangian forc1 becomes

Leff
0 5c̄1ig i

mDmc12
1

2m
c̄1g0~D”'!2c11•••, ~26!

where the ellipsis denotes terms with higher derivatives.
Consider the first term in our effective Lagrangian, whi

when continued to Euclidean space yields the operator

Meft5g i
E
•D~A!. ~27!

Meft is anti-Hermitian and it anti-commutes withg5, so it
leads to a positive semi-definite determinant. However, n
1-3
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that the Dirac operator is not well defined in the space
c1(vW F ,x) ~for fixed vF), since it mapsc1(vW F ,x) into
c1(2vW F ,x):

iD” i P1c5P2iD” ic. ~28!

Since P2(vW F)5P1(2vW F), iD” c1(vW F ,x) are c1(2vW F ,x)
modes, or fluctuations of a quark with momentum2mvW F .

We can demonstrate the necessity of including b
c1(vW F ,x) andc1(2vW F ,x) modes in our effective theory b
considering charge conservation in a world with only1vW F
quarks. The divergence of the quark current at one loop i
the leading order in the 1/m expansion

^]mJam~vW F ,x!&5gsE d4p

~2p!4
e2 ip•xpmPmn

ab~p!Ai
bn~2p!,

~29!

whereAi5(A0 ,vW FvW F•AW ) and Pmn
ab is the vacuum polariza

tion tensor in the effective theory given as@8#

Pab
mn~p!52 i

m2

2
dabS 22pW •vW FVmVn

p•V1 i epW •vW F

1g'
mnD , ~30!

whereg'
mn5gmn2(VmV̄n1V̄mVn)/2 is the metric tensor per

pendicular toVm and V̄m. The polarization tensor has to b
transverse to maintain gauge invariance. We find that if
have both fieldsc1(vW F ,x) and c1(2vW F ,x) the current is
conserved and the gauge symmetry is not anomalous:

^]mJa
m~vW F ,x!1]mJa

m~2vW F ,x!&50. ~31!

Therefore, we need to introduce quark fields with oppos
momenta. The Dirac operator is well defined on this lar
space.

This anomaly can be understood in terms of spectral fl
since the Fermi surface is~in a certain sense! not gauge
invariant. Under a gauge transformation,U(x)5eiqW •xW, the
Hamiltonian changes and the energy spectrum of free mo
of residual momentumlW shifts to E5 lW•vW F1qW •vW F . Quarks
near the Fermi surface withvW F•qW .0 flow out of the Fermi
sea, creating charge. This charge creation is compensate
quarks with oppositevW F ; their energy decreases and th
flow into the Fermi sea. However, unless modes with op
site velocities~i.e. both sides of the Fermi sphere! are in-
cluded, charge is not conserved.

Thus far we have considered the quark velocity as a
rameter labelling different sectors of the quark field. This
similar to the approach of heavy quark effective theo
~HQET! @12#, in which the velocity of the heavy charm o
bottom quark is almost conserved due to the hierarchy
scales between the heavy quark mass and the QCD s
However, this approach contains an ambiguity often refer
to as ‘‘reparametrization invariance,’’ related to the no
uniqueness of the decomposition~20! of quark momenta into
a large and residual component. In the dense QCD case
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c(vF ,x) modes whose values ofvF are not very different
may actually represent the same degrees of freedom of
original quark field. In what follows we give a different for
mulation which describesall velocity modes of the quark
field, and is suitable for defining the quasiparticle determ
nant.

First, a more precise definition of the breakup of the qu
field into Fermi surface modes. Using the momentum ope
tor in a position eigenstate basis:pW 52 i ]W , we construct the
Fermi velocity operator:

vW 5
2 i

A2¹2

]

]xW
, ~32!

which is Hermitian, and a unit vector.
Using the velocity operator, we define the projection o

eratorsP6 as before and break up the quark field asc(x)
5c1(x)1c2(x), with c65P6c. By leavingvW as an op-
erator we can work in coordinate space without introduc
the HQET-inspired velocity Fourier transform which intro
ducesvF as a parameter. If we expand the quark field in t
eigenstates of the velocity operators, we recover the prev
formalism with all Fermi velocities summed up.

The leading low-energy part of the quark action is giv
by

L15c̄P2~v !~ i ]”2A” 1mg0!P1~v !c. ~33!

As before, we define the fieldsc1 to absorb the large Ferm
momentum:

c1~x!5e2 imxW•vW P1~v !c~x!. ~34!

Let us denote the eigenvaluev obtained by acting on the
field c ~which has momentum of orderm) as v l ~or v
‘‘large’’ !, whereas eigenvalues obtained by acting on the
fective field theory modesc1 are denotedv r ~or v ‘‘re-
sidual’’!. If the original quark mode had momentump with
upu.m ~i.e. was a particle!, then v l and v r are parallel,
whereas ifupu,m ~as for a hole! then v r and v l are anti-
parallel. In the first case, we haveP1(v l)5P1(v r) whereas
in the second caseP1(v l)5P2(v r). Thus, the residua
modesc1 can satisfy either ofP6(v r)c15c1 , depending
on whether the originalc mode from which it was derived
was a particle or a hole. In fact,c1 modes can also satisf
either of P6(v l)c15c1 since they can originate fromc
modes with momentum;1mv as well as2mv ~both are
present in the original measure:Dc̄Dc). So, the functional
measure for c1 modes contains all possible spino
functions—the only restriction is on the momenta:u l 0u,u lWu
,L, whereL is the cutoff.

In light of the ambiguity betweenv l andv r , the equation
c5e1 imx•vc1 must be modified to

c5exp~1 imx•va•v !c15exp~1 imx•v ra•v r !c1 ,
~35!

where the factor ofa•v r corrects the sign in the momentum
shift if v r andv l are antiparallel. In general, any expressi
1-4
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with two powers ofv is unaffected by this ambiguity. Fo
notational simplicity we define a local operator

X[mx•va•v5m
a ixj

¹2

]2

]xi]xj
. ~36!

Taking this into account, we obtain the following actio

L15c̄1e2 iX~ i ]”2A” 1mg0!e1 iXc1 . ~37!

We treat theA” term separately fromi ]”1mg0 since the
former does not commute withX, while the latter does. Con
tinuing to Euclidean space, and using the identityP2gmP1

5gm
i P1 , we obtain

L15c̄1g i
m~]m1 iA1

m !c1 , ~38!

where

A1
m 5e2 iXAme1 iX ~39!

and all g matrices are Euclidean. The term containingA
cannot be fully simplified because@v,A#Þ0. Physically, this
is because the gauge field carries momentum and can de
the quark velocity. The redefinedc1 modes are functions
only of the residual momenta l, and the exponential factor
the A term reflect the fact that the gluon originally couples
the quark fieldc, not the residual modec1 .

The kinetic term in Eq.~38! can be simplified to

g i
m]m5gm]m ~40!

since v•]v•g5]•g. The action~38! is the most genera
dimension 4 term with the rotational, gauge invariance@13#
and projection properties appropriate to quark quasipartic
Therefore, it is a general consequence of any Fermi liq
description of quark-like excitations.

The operator in Eq.~38! is anti-Hermitian and leads to
positive, semi-definite determinant since it anti-commu
with g5. The corrections given in Eq.~26! are all Hermitian,
so higher orders in the 1/m expansion may reintroduce com
plexity. The structure of the leading term plus corrections
anti-Hermitian plus Hermitian, just as in the original QC
Dirac Lagrangian with chemical potential.

By integrating out the fast modes, the Euclidean QC
partition function can be rewritten as

Z~m!5E dA1detMeff~A1!e2Seff(A1). ~41!

The leading terms in the effective action for gluons~these
terms are generated when we match our effective the
with energy cutoffL, to QCD! also contribute only real
positive terms to the partition function:

Seff~A!5E d4xES 1

4
Fmn

a Fmn
a 1

M2

16p (
vW F

A'm
a A'm

a D >0,

~42!
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where A'5A2Ai and the Debye screening mass isM
5ANf /(2p2)gsm. Note that Landau damping is due t
softer quark modes which have not been integrated out,
therefore do not contribute to matching.

Although the HDET only describes low-energy modes
still contains Cooper pairing interactions. This is becau
Cooper pairing, in which the quasiparticles have nearly eq
and opposite momenta, is induced by gluonic interactio
with small energy and momentum transfer. That is, althou
a gluon exchange~or other interaction! which causes a large
angular deflection of a quasiparticle

upW &→upW 8&

must involve a large momentum transfer, and hence is
part of the effective theory, a Cooper pairing interaction

upW ,2pW &→upW 8,2pW 8&

only involves a small energy and momentum transfer, eve
the angle betweenpW andpW 8 is large. Hence, it is described b
the leading order interaction between soft gluons and qua
in the effective theory~38!.

Matching of hard gluon effects also leads to four-qua
operators in the effective theory. The addition of these fo
quark operators still leads to a positive action for attract
channels, since they arise from quasiparticle-gluon inter
tions which are originally positive. A simple way to study th
positivity of four-quark operators is to replace them by
vector field with the trivial quadratic termVm

2 which couples

to quarks like the original gluon:Vmc̄gmc. Completing the
square, we see that the resulting path integral is posit
Note that this argument does not apply to interactions invo
ing six or more quarks, or interactions involving virtual an
quarks. However, these are always suppressed by addit
powers ofm.

Finally, some comments on more general models th
QCD—in particular electronic systems in condens
matter—which are also affected by a sign problem. We n
that as long as the important dynamics of the system invo
energies which are small compared to the Fermi energy~or
are exhibited at a temperature small compared to the Fe
temperature!, the Euclidean description of the system
likely to have a positive effective action after modes far fro
the Fermi surface are integrated out. Models involving, e
attractive four-fermion interactions or long range gau
fields fall into this category. As long as the important inte
actions are soft interactions between quasiparticle degree
freedom not too far from the Fermi surface, the model can
simulated without a sign problem, even if it is strong
coupled.

As a specific example, consider the Hamiltonian

H5(
ab

tabca
†cb1 (

abcd
vabcdca

†cbcc
†cd , ~43!

whereabcddenote lattice site and spin indices. This Ham
tonian includes the Hubbard model as a special case. A c
stant diagonal part of the kinetic term acts as a chem
1-5
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potentialm5taa , but t may also contain hopping terms suc
as a nearest-neighbor off-diagonal term in the tight bind
approximation. The usual kinetic term, taken by itself, p
duces a band structure which in momentum space has
form

(
k

E~k!ck
†ck , ~44!

for some functionE(k). A non-zero chemical potential lead
to filling of levels up to some momentumkF . There is an
effective theory description of modes near this surface if
Fourier transform of the interaction termvabcd only contains
soft interactions~i.e. support for typical momentum transfe
less thankF ).

To obtain the partition function Z we must extend t
fields from thed-dimensional lattice to~d11!-dimensional
Euclidean space, with finite extentb in the time direction.
The action density is given by

2
]

]t
2H ~45!

where H is the Hamiltonian density. Using the Hubbar
Stratonovich transformation, we can rewrite the interact
term in terms of a functional integral over a background fi
U,

Z5
1

NE )
ab

dUabe
(cde fUcdvcde f

21 Ue f det@T2U#, ~46!

whereT5(]/]t)2t contains the time derivative as well a
the kinetic termt from the Hamiltonian~43!. We assume tha
the interactionv is real and negative definite so that th
exponential is real and the integral converges.

The determinant can be expanded about our effec
theory. The leading term is positive and has no sign probl
The correction terms are suppressed as long as the b
ground fieldU has support on momentum scales small co
pared tokF . @See the discussion in the next section, es
cially Eq. ~52! with U playing the role of the gauge field.#
Typical fieldsU in the integral are determined by the exp
nential term—if the Fourier transform ofv has little support
at large momenta, then the exponent(kU(k)v21(k)U(k)
will be large and negative, and the corresponding mode
U suppressed.

Unfortunately, the Hubbard model itself contains the
teraction term

V(
i

ni↑ni↓ ~47!

whereni5ci
†ci is the number operator. This interaction a

lows all momentum transfers up top/a, wherea is the lat-
tice spacing. Because it couples low-energy modes to
modes far from the Fermi surface, the resulting partit
function is not well approximated by the positive EFT pa
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However, a model with modified~softer! interactions would
be approximately positive and might in fact be more phy
cally realistic.

IV. LATTICE SIMULATION

The goal of this section is to give a method for simulati
QCD at finite density. We will consider a chemical potent
m much larger thanLQCD throughout, and divide the func
tional integral over quark excitations into two parts:~I!
modes within a shell of widthL of the Fermi surface, and
~II ! modes which are further thanL from the Fermi surface.
We will assume the hierarchy

m@L@LQCD. ~48!

The quark determinant in region~I! is well approximated
by the determinant of the leading operator in high dens
effective theory~HDET! as long as the first inequality in~48!
is satisfied. As discussed in the previous section, it is posi
and real.

Here we will show that the contributions to the effectiv
action for the gauge field from quark modes in region~II ! are
small and vanish as theL grows large compared toLQCD.

First consider the theory in Minkowski space. The Dir
operator is

M5 iD” 1mg0 ~49!

and the Dirac equation can be written as

i ]0c5Hc ~50!

with

H5 ia•]2m ~51!

a Hermitian operator. The break up into regions~I! and ~II !
proceeds naturally in terms of energy eigenvalues ofH ~or l 0
in the HDET notation!. The low-lying modes in region~I! are
particle states with spatial momenta satisfyingupW u'm.

The analytic continuation of region~I! to Euclidean space
leads to the HDET determinant considered previously.

Modes in region~II ! all have large energy eigenvalues,
least as large asL. In considering their effect on physics a
the scaleLQCD, we can integrate them out in favor of loca
operators suppressed by powers ofLQCD/L.

To make this concrete, consider the effective action
gauge fields with field strengthsFmn of order LQCD. The
quark contribution to this effective action is simply the log
rithm of the determinant we wish to compute. It can be e
panded diagrammatically in graphs with external gauge fi
lines connected to a single quark loop. Restricting to reg
~II !, we require that the quark modes in the loop have largH
eigenvalues. Evaluating such graphs leads only to opera
which are local in the external fieldsAm(x).

The resulting renormalizable~dimension 4! operator is the
finite density equivalent ofFmn

2 , except that due to the
breaking of Lorentz invariance it contains separate time-
space-like components which represent the contribution
high-energy modes to the renormalization of the coupl
1-6
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constant and Debye screening. These effects do not intro
a complex component when continued to Euclidean spa

Higher dimension operators, which involve addition
powers ofFmn or covariant derivativesDm are suppressed b
the scaleL. These are presumably the source of comp
terms introduced to the effective action. However, due to
1/L suppression they are dominated by the contribution fr
the low-lying modes in region~I!, which is necessarily non
local, but real.

The logarithm of the Euclidean quark determinant w
have the form

ln detM;O~m4!1~non-local, real!

1OS 1

L D ~ local, complex!, ~52!

where the first term is the~real, constant! free energy of
non-interacting quarks, the second term is from the posi
determinant in region~I! and the last term is the suppresse
complex contribution from region~II !. Only the last two
terms depend on the gauge fieldAm(x).

On the lattice, one can use the dominant dependenc
detM on the first and second terms to do importance sa
pling. In order to keep the complex higher dimension ope
tors @last term in Eq.~52!# small, it is important that the
gauge field strengths are kept smaller thanL2. One can im-
pose this condition by using two different lattice spacingsag
for the gluons andadet for the quarks, withag.adet. The
determinant is calculated on the fineradet lattice, and is a
function of plaquettes which are obtained by interpolat
from the plaquettes on the coarserag lattice. Interpolation
can be defined in a natural way, since each lattice link v
able Uxm is an element of the gauge group, and one c
connect any two pointsg1 ,g2 on the group manifold in a
linear fashion:g(t)5g11t(g22g1),0<t<1.

More explicitly, let x and x1agm be two neighboring
points on the coarse lattice, and

zn5x1nadetm, n50,1,•••N ~53!

be the corresponding points on the fine lattice:z05x,zN5x
1agm, whereN5ag /adet. Then a link

Ux,m5exp@ iagGmtm#

is interpolated to a set of links as

Ūzn ,zn11
5exp@ iadetG

mtm#, ~54!

where thetm areSU~N! generators, and the bar denotes t
finer lattice. Equation~54! allows us to computeŪ links
which are sub-links of originalag link variables, and lie on
the outer perimeter of a plaquette. The remainingŪ links,
which are within anag plaquette, can be obtained through
similar interpolation starting from opposite sides of the p
rimeter, yielding an entire set of plaquettes on theadet lattice.
The field strengths resulting from this interpolation are
ways of orderag

22 and can be kept small compared to t
cutoff L2. To properly include the quasiparticle modes, t
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spacing of the fermion lattice must beadet;1/m, while ag
;1/LQCD is probably sufficient to capture the effects of no
perturbative gauge configurations.

The fermion determinant is to be computed as a funct
of the finer plaquettes$Ūxm%. The result is~approximately!
real and positive and can be used for importance sampl
Further, there is a physical understanding of the complex
of the determinant: it originates in the modes far from t
Fermi surface which have been integrated out.

V. INEQUALITIES AND ANOMALY MATCHING

Positivity of the measure allows for rigorous QCD in
equalities at asymptotic density. For example, inequali
among masses of bound states can be obtained using bo
on bare quasiparticle propagators. One subtlety that aris
that a quark mass term does not lead to a quasiparticle
~the mass term just shifts the Fermi surface!. Hence, for tech-
nical reasons the proof of non-breaking of vector symmet
@14# must be modified.@Naive application of the Vafa-Witten
theorem would preclude the breaking of the baryon num
that is observed in the color-flavor-locked~CFL! phase@15#.#
A quasiparticle gap can be inserted by hand to regulate
bare propagator, but it will explicitly violate baryon numbe
However, following the logic of the Vafa-Witten proof, an
symmetries which are preserved by the regulator gap ca
be broken spontaneously. One can, for example, still c
clude that isospin symmetry is never spontaneously bro
~although see below for a related subtlety!. In the case of
three flavors, one can introduce a regulatord with the color
and flavor structure of the CFL gap to show rigorously th
none of the symmetries of the CFL phase are broken
asymptotic density. On the other hand, by applying anom
matching conditions@16#, we can prove that theSU(3)A
symmetriesare broken. We therefore conclude that the CF
phase is the true ground state for three light flavors
asymptotic density, a result that was first established by
plicit calculation@9,17,18#.

To examine the long-distance behavior of the vector c
rent, we note that the correlator of the vector current fo
given gauge fieldA can be written as

^Jm
a ~vW F ,x!Jn

b~vW F ,y!&A

52Tr gmTaSA~x,y;d!gnTbSA~y,x;d!,

where the SU(Nf) flavor current Jm
a (vW F ,x)

5c̄1(vW F ,x)gmTac1(vW F ,x). The propagator with
SU(3)V-invariant IR regulatord is given as

SA~x,y;d!5^xu
1

M
uy&5E

0

`

dt^xue2 i t(2 iM )uy&

where withD5]1 iA

M5g0S D•V d

d† D•V̄
D .
1-7
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Since the eigenvalues ofM are bounded from below byd, we
have

U^xu
1

M
uy&U<E

R

`

dte2dtA^xux&A^yuy&5
e2dR

d
A^xux&A^yuy&,

~55!

whereR[ux2yu. The current correlators fall off rapidly a
R→`;

U E dA1detMeff~A!e2Seff^Jm
A~vW F ,x!Jn

B~vW F ,y!&A1U
<E

A1

u^Jm
A~vW F ,x!Jn

B~vW F ,y!&A1u

<
e22dR

d2 E
A1

z^xux& zz^yuy& z, ~56!

where we used the Schwartz inequality in the first inequa
since the measure of the effective theory is now positive,
Eq. ~55! in the second inequality. The IR regulated vec
currents do not create massless modes out of the vacuu
Fermi sea, which implies that there is no Nambu-Goldsto
mode in theSU(3)V channel. Therefore, for three massle
flavorsSU(3)V has to be unbroken as in CFL. The rigoro
result provides a non-trivial check on explicit calculation
and applies to any system in which the quasiparticle dyn
ics have positive measure.

It is important to note the order of limits necessary
obtain the above results. Because there are higher-order
rections to the HDET, suppressed by powers ofL/m that
spoil its positivity, there may be contributions on the righ
hand side~RHS! of Eq. ~56! of the form

OS L

m D f ~R!, ~57!

wheref (R) falls off more slowly than the exponential in Eq
~56!. To obtain the desired result, we must first take the lim
m→` at fixedL before takingR→`. Therefore, our results
only apply in the limit of asymptotic density.

Although our result precludes breaking of vector symm
tries at asymptotic density in the case of threeexactlymass-
less quarks@21#, it does not necessarily apply to the ca
when the quark masses are allowed to be slightly non-z
In that case the results depend on precisely how the limit
zero quark masses and asymptotic density are taken, a
discuss below.

In @19# the authors investigate the effect of quark mas
on the CFL phase. These calculations are done in
asymptotic limit, and are reliable for sufficiently small qua
masses. Whenmu5md[m!ms @unbrokenSU(2) isospin,
but explicitly brokenSU(3)], onefinds a kaon condensate
The critical value ofms at which the condensate forms
ms* ;m1/3D0

2/3, whereD0 is the CFL gap@see, in particular,
Eq. ~8! of the first paper#. As kaons transform as a doubl
under isospin, the vectorSU(2) symmetry is broken in
seeming contradiction with our result.
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However, a subtle order of limits is at work here. F
simplicity, let us setm50. Note that the CFL regulatord,
which was inserted by hand, explicitly breaksSU(3)A
through color-flavor locking, leading to small positive ma
squared for the pions and kaons, given as

mp,K
2 ;asd

2 lnS m

d D . ~58!

The meson mass is not suppressed by 1/m, since, unlike the
Dirac mass term, the regulator, being a Majorana mass, d
not involve antiquarks@20#.

Therefore, even when the light quarks are massless, t
is a critical value ofms necessary to drive negative the mas
squared of kaons and cause condensation:

ms* ;Fgsdm lnS m

d D G1/2

.~dm!1/2, ~59!

wheregs is the strong coupling constant. Note the product
gs with the logarithm grows asm gets large. To obtain ou
inequality we must keep the regulatord non-zero until the
end of the calculation in order to see the exponential fall o
To find the phase with kaon condensation identified in@19#
we must keepms larger thanms* . ~Note m→`, so to have
any chance of finding this phase we must taked→0 keeping
dR large anddm small.!

Since the UV cutoff of the HDET must be larger thanms ,
we have

1.S ms*

L D 2

.
d

L

m

L
, ~60!

which implies

L

m
f ~R!.

d

L
f ~R!. ~61!

Note the right-hand side of this inequality does not neces
ily fall off at large R, and also does not go to zero form
→` at fixedL andd. This is a problem since to apply ou
inequality the exponential falloff from Eq.~56! must domi-
nate the correction term~57!, which is just the left-hand side
of Eq. ~61!. Combining these equations, we see that the
ponential falloff of the correlator is bounded below,

e22dR

d2
.

d

L
f ~R!, ~62!

in the scaling region with a kaon condensate,ms.ms* .
Alternatively, if we had takenms to be finite for fixed

regulatord ~so that, asm→`, eventuallyms,ms* ), the in-
equality in Eq.~56! could be applied to exclude a Nambu
Goldstone boson, but we would find ourselves in the ph
without a kaon condensate.
1-8



ng
b
d
at
ic
p
iv

lin
ke
th
ce
a
he
a

ea
a

or

at
th-

ll,
e

igh
for

.
ful
by
ub-
rk
06-
op-

POSITIVITY AND DENSE MATTER PHYSICAL REVIEW D68, 034011 ~2003!
VI. CONCLUSION

The low-energy physics of dense fermionic matter, ra
ing from quark matter to electronic systems, is controlled
modes near the Fermi surface. An effective Lagrangian
scribing the low-energy modes can be given in a system
expansion in powers of the energy scale over the chem
potential. The leading term in this expansion has a sim
form, and we have shown that it leads to a real, posit
Euclidean path integral measure.

This observation opens the door to importance samp
in Monte Carlo simulations of dense matter systems. The
requirement is that the interactions do not strongly couple
low-energy modes to modes far from the Fermi surfa
QCD at high density satisfies this requirement, as do all
ymptotically free models. Electronic systems in which t
important interactions involve momentum transfer less th
the Fermi energy are in this category, although some id
ized models such as the Hubbard model are not. We h
given some proposals for how the positive effective the
.

.P

v.
x,

n
M

re
://
at

03401
-
y
e-
ic
al
le
e

g
y
e
.

s-

n
l-

ve
y

might be simulated numerically. Ultimately, we hope th
actual practitioners will develop even more practical me
ods.

Finally, positivity has analytical applications as we
since it allows the use of rigorous inequalities. In QCD w
obtain restrictions on symmetry breaking patterns at h
density. Similar restrictions can probably be obtained
electronic systems with suitable interactions.
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