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Heavy quark free energies and screening in S(2) gauge theory
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We study the properties of the free energy of an infinitely heavy quark—antiquark paif2y §lige theory.
By means of lattice Monte Carlo simulations we calculated the free energies in the singlet, triplet, and color
averaged channels, both in the confinement and deconfinement phases. The singlet and triplet free energies are
defined in the Coulomb gauge which is equivalent to their gauge invariant definitions recently introduced by
Philipsen. We analyze the short and the long distance behavior, making comparisons with the zero temperature
case. The temperature dependence of the electric screening mass is carefully investigated. The order of the
deconfining transition is manifest in the results n@arand it allows a reliable test of a recently proposed
method to renormalize the Polyakov loop.
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[. INTRODUCTION which has interesting consequences on the behavior of the
free energy near the critical temperatdrg. In general, the
The study of the free energy of a static heavy-quark-heavy-quark free energy depends on the color channel one
antiquark pair in a medium of color charges at some temconsiders; for a complete analysis we investigated the sin-
peratureT has recently become a hot topic of statistical QCDYlet, the triplet, and the color averaged channels. In particu-
[1-4]. The main reason is the fact that such free energy idar the study of the color singlet free energy is of interest
related to the potential between quarks and antiquarks, whichecause it is the most relevant quantity as far as the physics
is of fundamental importance both for understanding deconof heavy quarkonia at finite temperature is concerned. We
finement and in heavy quark phenomenology at finite temexamined both the short and the long-distance behavior of
peraturd5,6]. The study of static quark free energi@olya-  the free energies, below and above the deconfinement tem-
kov loop correlators is also important for constructing Perature. We devoted special attention to the issue of screen-
effective theories at the deconfinement transifigh ing, in that we determined the Debye masses at various tem-
The presence of the medium affects the quark—antiquarReratures.
interaction in a nontrivial way. Such modifications of inter-  The rest of the paper is organized as follows. In Sec. Il we
actions are usually studied in terms of the free energy of glefine the free energy of a static quark—antiquark pair in
static quark—antiquark pair separated by some distan€e color singlet, color triplet, and color averaged channels and
far most studies concentrated on the behavior of the statidiscuss the choice of the simulation parameters. The basic
quark—antiquark free energy at large distances;1/T  features of the static quark—antiquark free energies are also
[1,8,9); below the deconfinement temperatiizesuch behav- discussed there. In Sec. Il we present the numerical results
ior is characterized by a temperature dependent string tefelow T.. Section IV deals with free energies above decon-
sion, aboveT, by exponential screening which is governed finement and determination of the screening masses. In Sec.
by a temperature dependeiebye screening mass. How- V we define the renormalized Polyakov loop for @V
ever, it turned out that the free energies of a static quark-gauge theory following Ref3]. Finally Sec. VI contains our
antiquark pair exhibit a quite complex temperature behaviofonclusions.
already at short distancas<1/T [3,10-12. Furthermore,
the detailed study of the free energy at short distances allows
us to define a renormalized order paramgsérAs far as the

physics of heavy quarkonia is concerned, the detailed struc- On the lattice the free energy of a static quark—antiquark

ture of the static quark—antiquark free energy at short dispair in the gluonic medium is determined by correlation
tances is even more important than its large distance behaunctions of temporal Wilson linek,

ior. Though the large distance behavior of the color averaged
potential was extensively studied in R€f%,8,9] the problem
was not completely settled. This is partly due to finite size - -
effects and very large statistics needed in such studies. L(r)= TUO Uo(r,7), @)

In this paper we want to study various features of the
heavy-quark free energy in $8) gauge theory at finite tem-
perature. The study of SP) lattice gauge theory has at least TrL is also referred to as the Polyakov loop. Following Refs.
two advantages: the simulations are not so time consumingl3,14] we introduce the color singlet and triplet free energy
as in SU3) and the deconfinement transition is second orderpf a static quark—antiquark pair

Il. FREE ENERGIES IN SU (2) GAUGE THEORY
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1 . . tances. Since we are also interested in the behavior of the
e Far T+ E(TF[L(Y)LT(O)D- (2 potential at short distances, we should try to remove these
lattice artifacts. At short distances it is expected that the
1 ) ) 1 R ) dominant contribution to the potential is given by one-gluon
e FsnM/T+C= §<Tr L(r)TrLT(0))— E(Tr L(r)LT(0)) exchange and thus it is natural to start the discussion of the
3) cutoff effects in the Coulomb potential calculated on the lat-
tice. The lattice Coulomb potential is given by

as well as the color averaged free energy defined by

Cu(r) f o pik-1) - (7)
B 1 - R L(r)= 3 explik-r ,
e Fadt DITHC=2(Tr L()TrL(0)). (4) (2m) 4272 sirt(kal2)

i=13
The latter can be written as a thermal average of the free ) i , .
energies in singlet and triplet channels, hence the name, With @ being the lattice spacing. In the limia—0,
sir? kia/2=k?a%4 and the usual continuum Coulomb poten-
tial is recovered. However, one can easily see that keeping
the second term in the expansion of kg2 will lead to the
appearance of terms of ordaf/r3, which in turn will de-
The normalization constan® can be defined in different pend not only on the value af but also on whether the

ways. In the deconfined phase it is customary to Get geparation vector lies on the coordinate axis or is aligned
=In|(3 TrL)|2. Another possibility is to fix it by normalizing along other possible directions, indicating the breakdown of
the singlet free energy to the zero temperature heavy quatotational symmetry. Following Refl17] we replaceF;(r)
potential[3]. by F;i(r,) wherer,=[47C_(r)]*. In this way we replace
The main problem with the definitions of the singlet andthe lattice separation by the separatigrwhich corrects for
triplet free energies2), (3) is that these definitions are not the tree level artifacts in the Coulomb potential calculated on
gauge invariant, as the Wilson line is not a gauge invarianthe lattice. When presenting the data on the free energy we
quantity. The only manifestly gauge invariant quantity is thewill always do this replacement unless stated otherwise.
color averaged free energy. This is the reason why singlet Let us now present some general features of our findings.
and triplet free energies were not studied in much detail sdirst we have performed simulations at a fixed lattice spac-
far. It was recently shown by Philipsen that gauge invarianing, corresponding to the gauge couplifg2.5 atN, =12
definitions of the singlet and triplet free energies can beand 6 corresponding to temperatures 0.6T. and 1.3,
achieved by replacing the Wilson line in Ed®), (3) by a  respectively. The results are shown in Fig(léft). At this

1 3
e Fadr DT ZefFl(r,T)/T_i_ Zest(r,T)/T_ (5)

gauge invariant Wilson line defined by value of the gauge coupling the ground state static quark—
. o antiquark potential as well as the first two excited potentials
L(n=Q%r)L(rQ(r). (6) at T=0 have been calculatgd8] and we show them in Fig.

. 1 together with our data. The singlet free energies at short

The SU2) matrix Q2 (R) is constructed from eigenvectors of distances do not differ from the zero temperature potential
the spatial covariant Laplaciaisee Ref[2] for further de-  and temperature dependence shows up onlyat>0.5.
tails). Furthermore, it was shown that this definition is The triplet free energy and the triplet potentialTat 0 were
equivalent to the definitions of the singlet and triplet freenot studied in detail so far beyond perturbation theory. At
energies in Coulomb gauge. Since the determination ofero temperature it was shown that the excited potential co-
eigenvectors of the covariant Laplacian is computationallyincides with the triplet potential at very short distances up to
very expensive we fix the Coulomb gauge to calculate thex nonperturbative constafi9]. This is also supported by
singlet and triplet free energies. lattice calculations in S(8) gauge theorythere one has to

In our numerical investigations we use the standard Wiltalk about the octet potential of couyd@1]. We expect that
son action. In order to get control over finite size effects,our definition of the triplet free energy should match
which become important in the vicinity df;, we have per- smoothly the perturbative zero temperature triplet potential
formed simulations at several different volumes. As we alsat very short distances without any constant, in the same way
want to investigate the short distance behavior of the fre@as the singlet free energy approaches the singlet zero tem-
energies, simulations were performed fr=4,6,8. To fix  perature potential. This is the reason why the triplet free
the temperature scale we have used the nonperturbative besaergy is smaller than the excited potential as shown in Fig.
function of Ref.[15]. We will also useT./\o=0.69[16], 1. We find that the triplet free energy is temperature indepen-
with o being the zero temperature string tension. The latticalent at short distances.
volumes and the gauge coupling along with the correspond- In most of our calculations we have varied the tempera-
ing temperatures used in our simulations are summarized iture T by varying the lattice spacing (i.e., the gauge cou-
Table I. pling B=4lg?) for fixed temporal extenN.. As both the

Calculations of the zero temperature potential and of thdree energy and th& =0 potential contain a lattice spacing
free energy of the static quark—antiquark pair show latticedependent additive consta@t[cf. Egs.(2)—(5)], some nor-
artifacts, e.g., violation of rotational symmetry at short dis-malization prescription should be introduced in order to
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TABLE |. Lattice volumes and gauge couplings=4/g? used in our simulations. The values BfT,
were obtained using the nonperturbative beta fundticsj.

N,=4 N,=6 N,=8 N,=12
B TIT, N, g TIT. N, B TIT. N, g TIT. N,
2.1962  0.70 32 25000 130 32 24781 090 32 25000 0.60 32
2.2340 0.80 16,32 2.7385 200 32
22681 090 16,32 2.8765 3.00 32
22745 0.92 32,60 3.1228 6.062 32
2.2807 0.94 32 3.2218 800 32
2.2838 0.95 32,60 3.3680 12.00 32
2.2900 0.97 32,60
2.2930  0.98 60

2.2960 0.99 32,60
2.2975 0.995 32
23019 1.01 32,48,60

2.3077  1.03 32
2.3134 105 16,32,48
23272 110 32
23533 1.20 16,32
23776  1.30 32

24215 1.50 16,32
2.5118 2.00 16,32
2.6431 3.00 32
2.8800 6.062 32
2.9766  8.000 32
3.0230 9.143 32
3.2190 15.87 16

compare the free energies calculated at different temperdrhis form was obtained in Reff20] by fitting the lattice data
tures. To do so we assume the following form for the zeroon theT=0 potential forr /o >0.063 at3=2.85 apart from
temperature potential: the constant which we have omitted. The violation of rota-
tional invariance on the lattice was taken into account in the
V(r)Jo=— @+r\/;+ 0-0031_ ®) fit pr_ocedure. Thus Eq(8) defines our convention for the
rJo (ro)? continuum zero temperature potential. In some cases we

35 T 4 T=0:9TC T T T T T
3+ 35 T=3T, —=— J
25t 8t
sl 25
o o 2
e 15 o pood Ty
E Tr ..-- I_ 1}
05 geoa' 05t
0r [ ] ot T=0 —~— ot
_05 | <] A T=O.6Tc —B—
’ T=1.3T, —=— 051 . 1
_1 ™ 1 1 1 1 1 1 1 A \ ' ' ) 1 L
0 02 04 06 08 1 12 14 186 0 0.5 1 1.5 2 2.5 3 3.5
|'G1/2 rG1/2

FIG. 1. (Left) Free energies of a static quark—antiquark pair as a function of the distaficeat T=0.6T, (open symbolsand T
=1.3T.. (closed symbolscorresponding to coupling=2.5. Also shown is th& =0 potential and its first excitatiofopen and closed lower
triangles correspondingly connected by lihasthe sameB value.(Right) The free energies are here calculatedNat 4; the temperature
values areT=0.9T. and 1.3, respectively. The triangles, squares, and circles indicate the singlet, the triplet, and the averaged free
energies, respectively.
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FIG. 2. The color singlefleft) and triplet(right) free energies at various temperatures in the confinement phase calculatee-for The
normalization constant was chosen such that the singlet free energy matches the zero temperature pstidiéhe) at the shortest
distance(see text

need theT=0 potential at distances\/c<0.063. In this conclusions of Ref.6] (where the color averaged free energy
case we use the three-loop perturbative potential calculatedas related to the meson masssisould be revised.

in the gq scheme[22] normalized to smoothly match the At large distances the color singlet, triplet, and averaged
form defined by Eq(8) atr Jo=0.07. We have also checked free energy reach a common value which can be param-
that the difference between the three-loop and two-loop reétrized by a form

sults is negligible for our purposes. In what follows the nor-

malization constan€ will be chosen suckunless stated oth- Fi(r,Dlirs1=a(Mr+AMInrT+B(T). 9)

erwise that the singlet free energy matches tfie=0 :
. . B . . In Fig. 3 we show the color averaged free energy as well as
potential at the shortest distancgd=1). In Fig. 1(righy the string tension obtained from it using the fit to E).

\ll\lve_sdt‘gvr;’ dOL:Jsrinrestlﬁlitssn%?mséﬁggtigﬁi:nnvzﬂs)sn C?Lceuic?;zde;%ecause the deconfinement transition is of second order, the
TS g this : inverse correlation lengttstring tensioi vanishes al ;. As
ergies in the deconfined phase reach the same value at lar

distancegsee Fig. 1. This is to be expected as at very large Y%esult we have large finite size effects clos@ o Indeed

: . we found that on the 3X 4 lattice the string tension van-
distances due to screening the free energy of color charge . .
; ; . : . iShes around 0.97,. For this reason we performed simula-
should be independent of their relative color orientation.

tions on the larger 60< 4 lattice close tdT.. We have seen
that the values o&(T) we have obtained from our calcula-
IIl. RESULTS IN THE CONFINEMENT PHASE tions on 33x 4 lattice agree with the results from the360
) ) ) ) X4 lattice up to 0.9Z.. Above such temperature we adopt
In this section we are going to present our numerical reyhe results from the larger lattice. The final situation is illus-

sults in the confinement phase. In Fig. 2 we show the singlefated in Fig. 3(right), where the squares indicate the results
and triplet free energies with the normalization described it om 6®x 4. the crosses the ones from3324. It is well

the previous section. One can see that the temperature depgfown thato(T) vanishes neal, according to the power
dence of the singlet free energy is only visible at distanceg,, o(T)(T.—T)”, wherev=0.63 is the 3D Ising expo-
rVo>2. The triplet free energy is also temperature indepennent for the correlation length. Therefore we tried to fit our
dent at small distances; thermal effects become visible gjgta point by using the ansate(T)=a(T.—T)[1+b(T,
ryo>1.4. We also notice that there is a slight enhancement T)12] with »=0.63. The best fit curve is shown in our
of the singlet free energy over thie=0 potential in the in-  piot and it reproduces very well our data. The values¢¥)
terval 1<r Jo<2. A similar enhancement was observed alsofound by us are considerably smaller than those obtained in
in the case of (2 1)-dimensional S(2) gauge theory at Ref. [8]. This is probably due to the fact that the lattice

finite temperatur¢2] as well as in preliminary S@3) calcu-  volumes used in Ref[8] were considerably smaller than
lations [4]. As the color averaged free energy is a thermalgyrs.

average of singlet and triplet free energies, it would have a

nontrivial temperature depenc_ience even if the latter Were |y RESULTS IN THE DECONFINEMENT PHASE:
temperature independent. This temperature dependence is SCREENING

larger the smaller the gap between the triplet and singlet

contributions. In general one can say that the temperature We start our discussion of the numerical results in the
dependence of the color averaged free energy at short atconfined phase with Fig. 4, where we show the singlet free
intermediate distances is mostly determined by the value anehergy in units ofyo normalized to the zero temperature
the temperature dependence of the color triplet contributionpotential at the shortest distance. As one can see the singlet
If this continues to be true in full QCD, then some of the free energy saturates at large distances, while at short enough
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FIG. 3. (Left) Color averaged free energies at various temperatures in the confinement (Btigh.String tension as a function of
T/T., crosses correspond to a®324 lattice, open squares to a’604 lattice.

distances it is temperature independent and coincides witfiom their short distance behavior, where one would expect

the zero temperature potential. The distance in physical uniterturbation theory to work. In general it is expected that

at which the temperature dependence enters, of courggerturbation theory breaks down at distancesl/g?T [24],

strongly depends on the value of the temperature, the highevith g being the gauge coupling constant. As for the physi-

the temperature the shorter is the distance where effects ahlly interesting temperature range one always gasl,

the medium become visible. Also the distance where the sinperturbation theory may be applicable at distancgs:1.

glet free energy saturates strongly depends on the temper@ne of the predictions of perturbation theory is that

ture, it is getting larger as we approadh. Close toT, —3F;3(r,T)/F4(r, T)=1, for anyr. In Fig. 5 we show this

screening enters only at distanaego>1. This feature of ratio for different temperatures. This ratio appears indeed to

the free energy is reflected in the temperature dependence bé constant foif >1.5T . but always smaller than 1, even for

the screening masses which will be discussed below. Anotheéhe highest temperature we consideredTJ6 Similar re-

interesting feature of the singlet free energy is that the valusults were found in Landau gauge in R€f§0,23.

of the plateau of the free energy decreases with the tempera- High temperature perturbation theory at leading order pre-

ture. Such a behavior of the singlet free energy was observeticts that the color averaged free energy has the {a3r25

for SU(3) gauge theory in Ref3], where it was also argued

Lhuagtotlr:e reason for this is the presence of the entropy contri- Fadr,T) 3 g
For the further discussion of the results in the deconfined T 32 (47rT)?

phase, especially for making comparisons with perturbation

theory, it is more convenient and in fact customadf. gt distances>1/T, with mp, being the leading order Debye
[1,11]) to choose the renormalization const&hin Egs.(2), massmpo=2/3gT. At distancesr <1/T the simple form

(3) to be C=In[(3 TrL)|%. Furthermore, the large distance (10) is no longer valid, though the r-like behavior is still
behavior of the free energies should be discussed separatadypected due to cancellation between singlet and triplet con-

4
e 2mpor (10)

3 r . . 0
1.01T, —a—
25 +1.03T, —e— At
1.05T, —&—
2 t1.10T, —v— 2}
120TC —— - g L
15 '150TC & e _ -3 |
o Q
JCR & 4
i w
0.5 5t
0 6 I
-0.5 71t
-1 L . . . L L . . . ] _ . . . . .
05 1 15 2 25 3 35 4 45 5 0 0.05 0.1 0.15 0.2 0.25 0.3
r(,5‘1/2 I'G1/2

FIG. 4. The color singlet free energy at various temperatures in the deconfinement phase calcutdted4fdleft) andN,=8 (right).
The solid line is theT=0 potential.

034008-5



DIGAL, FORTUNATO, AND PETRECZKY PHYSICAL REVIEW D68, 034008 (2003

different N, (different lattice spacingat 3T. agree reason-

@ 2 P oot 3§4ddad [f] ably well. Similar agreement between the results calculated
08Fe @ 2 5% i for different values ofN, was observed for other tempera-
3 33 1 ! i ;% JOUPEN?: tures too.
2 o6l | Let us now discuss the large distance behavior of the free
,&: Tl o energies and the determination of the screening masses. We
= H 33 % will restrict ourselves to the discussion of the color singlet
o 0.4 1 % %, | and color averaged free energy as the color triplet free en-
T=16.T, —= ergy becomes very noisy at large distances and the present
0.2  T=2.0T, —e— 1 statistics do not allow one to study it in detail.
E}:gc — Contrary to earlier studiegl,8,11, where the screening
0 2 masses were obtained using uncorrelated fit and the short and
0.2 0.4 06 0.8 1 1.2 large distance behaviors of the free energy were not sepa-

m rated from each other, here we use the correlated fit proce-
FIG. 5. Free energy triplet/singlet ratio at various temperatures.dure of Ref.[26]. From Fig. 6 it is clear that in the region
rT<1 the color averaged free energy can be well described

tributions [13]. Therefore we define the so-called screeningPy almost unscreened riflike behavior. Therefore this re-

function S(r,T) by the formula gion should not be considered for the determination of the
screening masses. In our procedure the fit interval was cho-
sen so that the fit vyields a reasonable
FadlT) 3 1 4
— 1 = 3—2( T)ZS(r,T). (1))  x?/[No. degree of freedom (DOF) Thus, unlike in the un-
r

correlated fit used in Refl1], there is no dependence of the
In Fia. 6 how th ical its for th creening masses on the fit interval. We determine the
n Fig. © we show the numerical results for the square roo creening mass in the color singlet channel by fitting the data

screening function. As one can see from_ the figure, at .higlavith a screened Coulombrukawa-like ansatz. In leading
temperatures{>2T,) the screening function shows a mild order perturbation theory, in fact, the most important contri-

r-dependence, which implies that the color averaged free e5ution to the singlet free energy is given by the exchange of

ergy beha_ves_ like ﬁ' The screening fu_nctiofB(r,T) de- a single gluon. In the case of the color average free energy
creases with increasing temperature which one would expegls used a more general fit ansk27]:

if S(r,T)~g*(T). At temperatures closer fb, the screening
function decreases at small distances. Obviously, this behav- Fag A

ior has nothing to do with screening and signals the break- T - —dexp(—,uR)+8. (12
down of the high temperature expansion. As we apprdach r

F13/T is no longer small at small distances as shown in Figag possible values for the exponesive tookd=1,2. The

6 and therefore the exponentials in H§) cannot be ex- regyiting values of the screening masses that we extracted are
panded. As a result of this, the cancellation between the sinsresented in Tables Il and Il for the singlet and the averaged
glet and triplet free energies no longer holds; moreover, sinCgnannels, respectively. For determination of the screening
the singlet free energy is negative and the triplet one is posif,asses we mostly use a%24 lattice.

tive (when working with normalization conventiorC We found that for the color averaged free energy the fits
=In|(3 TrL)|?) the color averaged free energy is dominatedwith d=1 andd=2 are both good for all temperatures, ex-
by the singlet contribution and behaves like &t small dis-  cept neafT,, where we got a reasonak}é/(No. DOF) only
tances. We also note that the free energies calculated fdor d=1. From our fit analysis it then comes out that we

] T=1.050T, —x— 0.2
27 o B T=1.100Tg —x— ol
X T=1.200T; —&—
1} x 1 T=1500T; —o— 02t
« T=2.000T; —a— 04
T=3.000T, —— =T
- 08 v x % x x REE IR B T=6.062T§ ——i 06
= T=6.062T, —e— =
g 06 L * 5 J T=8000TC —e— LI:_ -0.8 +
) 5 = mﬂ]@@i % T=8000TC —e— qt
04 - e ©° @ ¢e woomp ') 1.2
v v%vv&i‘ A 1.4
02 seveigd, e VN RN
& eoeeasg gp 46 F
0 L L I L I -1.8 | | L L | ' L ' '
0 02 04 06 08 1 02 04 06 08 1 12 14 18 18 2
T T

FIG. 6. The square root of the screening functilaft) and the singlet free energy in units Bfright) at different temperatures. The open
symbols refer to the results fof,=4, the closed symbols to the results féy=38.
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TABLE Il. Screening masses extracted from color singlet freehave analyzed the effective masses extracted Eon(xs).
energy. They reach a plateau already»afT~1, which makes the
presence of power-like prefactors @y, (x3) at large dis-
tances very unlikely and thus implying that very likedly

Color singlet correlators

B TIT, wo(T)IT =1. At high temperature dimensional reduction arguments
suggest thatl=1, as the large distance behavior of any static
2.3019 1.01 0.8580) correlators is governed by exchange of a bound state of the
23077 103 1.3562) effective three-dimensional theof28]. o
For T=1.01T, the results refer to the 4& 4 lattice in-
2.3134 1.05 1.7840) stead of 39x 4. In this case, in fact, the mass changes ap-
23272 110 2.2 preciably when one goes to the Iarg_er”aﬂﬁsﬂr lattice. This is
probably due to the large correlation length closeTia
2.3533 1.20 2.324) Further simulations on a 864 lead to the same value of the
mass we found on the 284, which is then reliable as
2.3776 1.30 2.56) infinite volume limit at this temperature.
24215 1.50 2 605) In Fig. 7 we show the screening_ masses extracted from
the singlet free energy as a function of the temperature.
2.5118 2.00 2.3B) There we also show the values of the screening masses ob-
5 8800 6.062 1.9124) tained from the electric gluon propagator in Landau gauge

[23,29 at T>1.2T.. As one can see they are compatible
3.0230 9.143 1.8126) with the singlet masses we have found. This is to be expected
in perturbation theory. It was shown, however, by Nadkarni
that this is true in general at large distances1/T [14]. In
cannot choose between the two cases, which gives a systeffiig. 7 the color averaged screening masses are shown as
atic error of about 30% on the screening masses. In order twell; we compared them with the lowes{ scalar screening
eliminate this ambiguity, we have also calculated the planemass(spatial glueball magsobtained in Ref[30]. Dimen-
plane correlator, given by the formula: sional reduction argumen{®8] suggest that these masses
should agree at high temperature and the figure seems to
Cpi(x3)=(TrL(xz)TrLT(0))—[(TrL)|?, (13 indicate that this is indeed the case. Very recently the plane-
plane correlators of Polyakov loops were studied in R&f]
WhereL(xg)EEXl,XZL(xl,xz,xg)_ If the color averaged free for T=1.11097; and 1.227. (we use the nonperturbative
energy has the fornil2) with d=1, thenCp,(xs) should beta functior 15] to convert the gauge coupling of Réﬂl].
fall off with the distance as a simple exponential, which al-{0 temperaturg In Fig. 7 we show as well the corresponding
lows a direct determination of the screening mass. The reScreening masse®pen triangles Moreover, we note that
sults we found are reported for comparison in Table 1. Wethe color averaged screening masses obtained by us using fits
see that the values of the masses extracted from the plan®ith d=2 agree with the findings of Ref§9,32] where the
plane correlator agree in each case with the masses obtaing8Me exponent was used. The color averaged screening mass
from the point-point correlator wheth=1. Furthermore, we ~Should go to zero whefl — T, because it is just the inverse
of the Polyakov loop correlation length, which diverges at
TABLE IIl. Screening masses extracted from color averagedTc- On the other hand there is re priori argument for

free energy and from plane-plane correlators of Polyakov l¢eps Which the singlet mass should vanish at the threshold. Figure
text). 7 indicates that both masses become very small figar

Color averaged correlators

jiavdT)/T, extracted from V. THE RENORMALIZED POLYAKOV LOOP
avi ’

B T/T, Point-C,d=1 Point-C,d=2  Plane-C The last issue we would like to address is the renormal-
ization of the Polyakov loop. It is known that if one takes the

23019 101 0.4220 =0 0.46828) continuum limit at fixed temperature, the expectation value
23134 1.05 1.00@8) 0.54420) 1.02416) of the Polyakov loop vanishes, so that the usual definition
does not really provide a physical order parameter for decon-
2.3533 120 1.983 1.1922) 1.936) finement. As we have already said at the beginning, the free
23776  1.30 2.316) 1.33288) 2.29664) ene_rgie_s on the lattice are a_\lways defined up to some renor-
malization constant. According to a recent wo#, a suit-
25112  2.00 2.645) 2.0612) 2.8918) able choice of such a renormalization constant can lead to a
28800 6.062 3.020 23210 new definition of the Polyakov loop. If the constant is chosen

such that the singlet free energy matches the zero tempera-
3.0230 9.143 3.020) 2.0456) ture heavy quark potential at short distances, one can define
a “renormalized” Polyakov loof ¢, through the formula:
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FIG. 7. Screening masses in units of temperatur€/I§, extracted from the color singlet free enei@sft) and from the color averaged
free energy(right). In the left plot we have also shown the screening mass extracted from the static electric pro@sg2¢brin the right
plot we give the lowesA; screening mass frofi80] as well as the screening masses of plane-plane correlators of Polyakov loog8filom
(open triangles

Len=exd — F..(T)/2T], (14) we now have a second order phase transition and a well
defined scaling behavior df,., at criticality. In order to

whereF_.(T) is the asymptotic value of the singlet free en- check the scaling we have fitted the datalgg, using the
ergy at the temperaturé (in fact, it does not depend on standard ansatz in the intervBl<T<1.5T,
relative color orientation of the quark—antiquark pair, see
above. We remind the reader that we have renormalized the Lied T)=c(T—To)[1+b(T—Ty“], (15
singlet free energy exactly in this way, so that, in our case,
F..(T) is nothing but the height of the plateau of the curveswith the exponentg3 and o fixed to their SW2) values
in Fig. 4. Practically we tool..(T) =F1(N,/2,T), whichis  =0.3265 andv=1. The fit curve is shown in Fig. &ashed
the value of the free energy at the largest distance allowed oline) and reproduces quite well the pattern of the data points.
the lattice. In Fig. 8 we plot the renormalized Polyakov loopWe have also performed fits settitip=0 and considering
as function of the temperatures. When normalizing the sintemperature§ <1.1T.. This fit gives similar values of as
glet free energy to th& =0 potential at the shortest distance the fits withb+# 0 discussed above.
(r/a=1) we implicitly assume that there is no temperature
dependence at this distance. This may not always be the case.
Therefore we also calculaté..(T) and the corresponding
Len by normalizing the singlet free energy to tfie=0 po- In conclusion we have studied the quark—antiquark free
tential as well as at/a= 2. The difference ifF..(T) (L en) energies in S2) gauge theory below and above the decon-
arising from these two normalizations gives us an estimate dinement temperature. We have found that the temperature
possible systematic errors. When quoting the error on théependence of the singlet free energy is much weaker than
renormalized Polyakov loop we always add quadratically thehe temperature dependence of the color averaged free en-
systematic and the statistical errors. At variance witt@3U ergy. Most of the temperature dependence of the color aver-

VI. CONCLUSIONS
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FIG. 8. Renormalized Polyakov loop as a function of the temperature in the entire temperature (feéihvahd forT<1.5T. together
with the fit (right). The error bars indicate the combined statistical and systematic errors.
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aged free energy is due to the presence of the color tripleve have shown that the renormalized Polyakov loop defined
contribution and its temperature dependence. If this will holdn [3] has the correct scaling behavior near the critical tem-
for real QCD it may have important consequences in theperature.
heavy quarkonia phenomenology at finite temperature. At As an outlook we note that we have studied the free en-
large distances the free energy in color singlet and tripleergy of static charges in the fundamental representation. It
channels converge to a common value. will be interesting to investigate the free energy of static
Above T, the color singlet free energy can be understoodcharges in other representations. Some work in this direction
in terms of propagation of a nonperturbatively screenedvas done if33].
gluon. Through the detailed analysis of the point-point and
plane-plane correlators as well as comparisons with other
determinations of the screening masses, we have established
that the color averaged free energy is described by Yukawa It is a pleasure to thank J. Engels, O. Kaczmarek, and F.
law at large distances, whereas at shorter distances it exhibikarsch for helpful discussions. We are grateful to A. Cucch-
a more complex behavior. At low temperatures and shorteri, who provided us the gauge fixing routine. We would
distances the color averaged free energy is dominated by ttadso like to thank the TMR network ERBFMRX-CT-970122
singlet contribution, while at higher temperatures it hasand the DFG Forschergruppe fFOR 339/2-1 or financial sup-
1/r>T behavior and its temperature dependence is qualitgeort. This work was partly supported by the U.S. Department
tively the same as predicted by perturbation theory. Finallyof energy under Contract DE-AC02-98CH10886.
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