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Heavy quark free energies and screening in SU„2… gauge theory
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We study the properties of the free energy of an infinitely heavy quark–antiquark pair in SU~2! gauge theory.
By means of lattice Monte Carlo simulations we calculated the free energies in the singlet, triplet, and color
averaged channels, both in the confinement and deconfinement phases. The singlet and triplet free energies are
defined in the Coulomb gauge which is equivalent to their gauge invariant definitions recently introduced by
Philipsen. We analyze the short and the long distance behavior, making comparisons with the zero temperature
case. The temperature dependence of the electric screening mass is carefully investigated. The order of the
deconfining transition is manifest in the results nearTc and it allows a reliable test of a recently proposed
method to renormalize the Polyakov loop.
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I. INTRODUCTION

The study of the free energy of a static heavy-quar
antiquark pair in a medium of color charges at some te
peratureT has recently become a hot topic of statistical QC
@1–4#. The main reason is the fact that such free energ
related to the potential between quarks and antiquarks, w
is of fundamental importance both for understanding dec
finement and in heavy quark phenomenology at finite te
perature@5,6#. The study of static quark free energies~Polya-
kov loop correlators! is also important for constructing
effective theories at the deconfinement transition@7#.

The presence of the medium affects the quark–antiqu
interaction in a nontrivial way. Such modifications of inte
actions are usually studied in terms of the free energy o
static quark–antiquark pair separated by some distancer. So
far most studies concentrated on the behavior of the s
quark–antiquark free energy at large distances,r @1/T
@1,8,9#; below the deconfinement temperatureTc such behav-
ior is characterized by a temperature dependent string
sion, aboveTc by exponential screening which is govern
by a temperature dependent~Debye! screening mass. How
ever, it turned out that the free energies of a static qua
antiquark pair exhibit a quite complex temperature behav
already at short distancesr ,1/T @3,10–12#. Furthermore,
the detailed study of the free energy at short distances all
us to define a renormalized order parameter@3#. As far as the
physics of heavy quarkonia is concerned, the detailed st
ture of the static quark–antiquark free energy at short
tances is even more important than its large distance be
ior. Though the large distance behavior of the color avera
potential was extensively studied in Refs.@1,8,9# the problem
was not completely settled. This is partly due to finite s
effects and very large statistics needed in such studies.

In this paper we want to study various features of
heavy-quark free energy in SU~2! gauge theory at finite tem
perature. The study of SU~2! lattice gauge theory has at lea
two advantages: the simulations are not so time consum
as in SU~3! and the deconfinement transition is second ord
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which has interesting consequences on the behavior of
free energy near the critical temperatureTc . In general, the
heavy-quark free energy depends on the color channel
considers; for a complete analysis we investigated the
glet, the triplet, and the color averaged channels. In part
lar the study of the color singlet free energy is of intere
because it is the most relevant quantity as far as the phy
of heavy quarkonia at finite temperature is concerned.
examined both the short and the long-distance behavio
the free energies, below and above the deconfinement
perature. We devoted special attention to the issue of scr
ing, in that we determined the Debye masses at various t
peratures.

The rest of the paper is organized as follows. In Sec. II
define the free energy of a static quark–antiquark pair
color singlet, color triplet, and color averaged channels a
discuss the choice of the simulation parameters. The b
features of the static quark–antiquark free energies are
discussed there. In Sec. III we present the numerical res
below Tc . Section IV deals with free energies above deco
finement and determination of the screening masses. In
V we define the renormalized Polyakov loop for SU~2!
gauge theory following Ref.@3#. Finally Sec. VI contains our
conclusions.

II. FREE ENERGIES IN SU „2… GAUGE THEORY

On the lattice the free energy of a static quark–antiqu
pair in the gluonic medium is determined by correlati
functions of temporal Wilson linesL,

L~rW !5 )
t50

Nt21

U0~rW,t!, ~1!

Tr L is also referred to as the Polyakov loop. Following Re
@13,14# we introduce the color singlet and triplet free ener
of a static quark–antiquark pair
©2003 The American Physical Society08-1
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e2F1(r ,T)/T1C5
1

2
^Tr@L~rW !L†~0W !#&, ~2!

e2F3(r ,T)/T1C5
1

3
^Tr L~rW !Tr L†~0W !&2

1

6
^Tr L~rW !L†~0W !&

~3!

as well as the color averaged free energy defined by

e2Favg(r ,T)/T1C5
1

4
^Tr L~rW !Tr L†~0W !&. ~4!

The latter can be written as a thermal average of the
energies in singlet and triplet channels, hence the name

e2Favg(r ,T)/T5
1

4
e2F1(r ,T)/T1

3

4
e2F3(r ,T)/T. ~5!

The normalization constantC can be defined in differen
ways. In the deconfined phase it is customary to seC

5 lnu^1
2 Tr L&u2. Another possibility is to fix it by normalizing

the singlet free energy to the zero temperature heavy q
potential@3#.

The main problem with the definitions of the singlet a
triplet free energies~2!, ~3! is that these definitions are no
gauge invariant, as the Wilson line is not a gauge invari
quantity. The only manifestly gauge invariant quantity is t
color averaged free energy. This is the reason why sin
and triplet free energies were not studied in much detai
far. It was recently shown by Philipsen that gauge invari
definitions of the singlet and triplet free energies can
achieved by replacing the Wilson line in Eqs.~2!, ~3! by a
gauge invariant Wilson line defined by

L̃~rW !5V†~rW !L~rW !V~rW !. ~6!

The SU~2! matrix V(RW ) is constructed from eigenvectors o
the spatial covariant Laplacian~see Ref.@2# for further de-
tails!. Furthermore, it was shown that this definition
equivalent to the definitions of the singlet and triplet fr
energies in Coulomb gauge. Since the determination
eigenvectors of the covariant Laplacian is computationa
very expensive we fix the Coulomb gauge to calculate
singlet and triplet free energies.

In our numerical investigations we use the standard W
son action. In order to get control over finite size effec
which become important in the vicinity ofTc , we have per-
formed simulations at several different volumes. As we a
want to investigate the short distance behavior of the f
energies, simulations were performed forNt54,6,8. To fix
the temperature scale we have used the nonperturbative
function of Ref.@15#. We will also useTc /As50.69 @16#,
with s being the zero temperature string tension. The lat
volumes and the gauge coupling along with the correspo
ing temperatures used in our simulations are summarize
Table I.

Calculations of the zero temperature potential and of
free energy of the static quark–antiquark pair show latt
artifacts, e.g., violation of rotational symmetry at short d
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tances. Since we are also interested in the behavior of
potential at short distances, we should try to remove th
lattice artifacts. At short distances it is expected that
dominant contribution to the potential is given by one-glu
exchange and thus it is natural to start the discussion of
cutoff effects in the Coulomb potential calculated on the l
tice. The lattice Coulomb potential is given by

CL~r !5E d3k

~2p!3
exp~ ikW•rW !

1

4a22 (
i 51,3

sin2~kia/2!

, ~7!

with a being the lattice spacing. In the limita→0,
sin2 kia/2.kW2a2/4 and the usual continuum Coulomb pote
tial is recovered. However, one can easily see that keep
the second term in the expansion of sinkia/2 will lead to the
appearance of terms of ordera2/r 3, which in turn will de-
pend not only on the value ofr but also on whether the
separation vectorrW lies on the coordinate axis or is aligne
along other possible directions, indicating the breakdown
rotational symmetry. Following Ref.@17# we replaceFi(r )
by Fi(r I) wherer I5@4pCL(r )#21. In this way we replace
the lattice separation by the separationr I which corrects for
the tree level artifacts in the Coulomb potential calculated
the lattice. When presenting the data on the free energy
will always do this replacement unless stated otherwise.

Let us now present some general features of our findin
First we have performed simulations at a fixed lattice sp
ing, corresponding to the gauge couplingb52.5 atNt512
and 6 corresponding to temperaturesT50.6Tc and 1.3Tc ,
respectively. The results are shown in Fig. 1~left!. At this
value of the gauge coupling the ground state static qua
antiquark potential as well as the first two excited potenti
at T50 have been calculated@18# and we show them in Fig
1 together with our data. The singlet free energies at sh
distances do not differ from the zero temperature poten
and temperature dependence shows up only atrAs.0.5.
The triplet free energy and the triplet potential atT50 were
not studied in detail so far beyond perturbation theory.
zero temperature it was shown that the excited potential
incides with the triplet potential at very short distances up
a nonperturbative constant@19#. This is also supported by
lattice calculations in SU~3! gauge theory~there one has to
talk about the octet potential of course! @21#. We expect that
our definition of the triplet free energy should matc
smoothly the perturbative zero temperature triplet poten
at very short distances without any constant, in the same
as the singlet free energy approaches the singlet zero
perature potential. This is the reason why the triplet fr
energy is smaller than the excited potential as shown in F
1. We find that the triplet free energy is temperature indep
dent at short distances.

In most of our calculations we have varied the tempe
ture T by varying the lattice spacinga ~i.e., the gauge cou-
pling b54/g2) for fixed temporal extentNt . As both the
free energy and theT50 potential contain a lattice spacin
dependent additive constantC @cf. Eqs.~2!–~5!#, some nor-
malization prescription should be introduced in order
8-2
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TABLE I. Lattice volumes and gauge couplingsb54/g2 used in our simulations. The values ofT/Tc

were obtained using the nonperturbative beta function@15#.

Nt54 Nt56 Nt58 Nt512

b T/Tc Ns b T/Tc Ns b T/Tc Ns b T/Tc Ns

2.1962 0.70 32 2.5000 1.30 32 2.4781 0.90 32 2.5000 0.60
2.2340 0.80 16,32 2.7385 2.00 32
2.2681 0.90 16,32 2.8765 3.00 32
2.2745 0.92 32,60 3.1228 6.062 32
2.2807 0.94 32 3.2218 8.00 32
2.2838 0.95 32,60 3.3680 12.00 32
2.2900 0.97 32,60
2.2930 0.98 60
2.2960 0.99 32,60
2.2975 0.995 32
2.3019 1.01 32,48,60
2.3077 1.03 32
2.3134 1.05 16,32,48
2.3272 1.10 32
2.3533 1.20 16,32
2.3776 1.30 32
2.4215 1.50 16,32
2.5118 2.00 16,32
2.6431 3.00 32
2.8800 6.062 32
2.9766 8.000 32
3.0230 9.143 32
3.2190 15.87 16
er
r

ta-
the

we
compare the free energies calculated at different temp
tures. To do so we assume the following form for the ze
temperature potential:

V~r !/As52
0.238

rAs
1rAs1

0.0031

~rAs!2
. ~8!
03400
a-
o
This form was obtained in Ref.@20# by fitting the lattice data
on theT50 potential forrAs.0.063 atb52.85 apart from
the constant which we have omitted. The violation of ro
tional invariance on the lattice was taken into account in
fit procedure. Thus Eq.~8! defines our convention for the
continuum zero temperature potential. In some cases
ed free
FIG. 1. ~Left! Free energies of a static quark–antiquark pair as a function of the distancerAs at T50.6Tc ~open symbols! and T
51.3Tc ~closed symbols! corresponding to couplingb52.5. Also shown is theT50 potential and its first excitation~open and closed lower
triangles correspondingly connected by lines! at the sameb value.~Right! The free energies are here calculated atNt54; the temperature
values areT50.9Tc and 1.3Tc , respectively. The triangles, squares, and circles indicate the singlet, the triplet, and the averag
energies, respectively.
8-3
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FIG. 2. The color singlet~left! and triplet~right! free energies at various temperatures in the confinement phase calculated forNt54. The
normalization constantC was chosen such that the singlet free energy matches the zero temperature potential~solid line! at the shortest
distance~see text!.
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need theT50 potential at distancesrAs,0.063. In this
case we use the three-loop perturbative potential calcul
in the qq scheme@22# normalized to smoothly match th
form defined by Eq.~8! at rAs50.07. We have also checke
that the difference between the three-loop and two-loop
sults is negligible for our purposes. In what follows the n
malization constantC will be chosen such~unless stated oth
erwise! that the singlet free energy matches theT50
potential at the shortest distance (r /a51). In Fig. 1 ~right!
we show our results on static free energies calculated
Nt54 and using this normalization convention. The free e
ergies in the deconfined phase reach the same value at
distances~see Fig. 1!. This is to be expected as at very larg
distances due to screening the free energy of color cha
should be independent of their relative color orientation.

III. RESULTS IN THE CONFINEMENT PHASE

In this section we are going to present our numerical
sults in the confinement phase. In Fig. 2 we show the sin
and triplet free energies with the normalization described
the previous section. One can see that the temperature de
dence of the singlet free energy is only visible at distan
rAs.2. The triplet free energy is also temperature indep
dent at small distances; thermal effects become visible
rAs.1.4. We also notice that there is a slight enhancem
of the singlet free energy over theT50 potential in the in-
terval 1,rAs,2. A similar enhancement was observed a
in the case of (211)-dimensional SU~2! gauge theory at
finite temperature@2# as well as in preliminary SU~3! calcu-
lations @4#. As the color averaged free energy is a therm
average of singlet and triplet free energies, it would hav
nontrivial temperature dependence even if the latter w
temperature independent. This temperature dependenc
larger the smaller the gap between the triplet and sin
contributions. In general one can say that the tempera
dependence of the color averaged free energy at short
intermediate distances is mostly determined by the value
the temperature dependence of the color triplet contribut
If this continues to be true in full QCD, then some of th
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conclusions of Ref.@6# ~where the color averaged free ener
was related to the meson masses! should be revised.

At large distances the color singlet, triplet, and averag
free energy reach a common value which can be par
etrized by a form

Fi~r ,T!urT@15s~T!r 1A~T!ln rT1B~T!. ~9!

In Fig. 3 we show the color averaged free energy as wel
the string tension obtained from it using the fit to Eq.~9!.
Because the deconfinement transition is of second order
inverse correlation length~string tension! vanishes atTc . As
a result we have large finite size effects close toTc . Indeed
we found that on the 32334 lattice the string tension van
ishes around 0.97Tc . For this reason we performed simula
tions on the larger 60334 lattice close toTc . We have seen
that the values ofs(T) we have obtained from our calcula
tions on 32334 lattice agree with the results from the 603

34 lattice up to 0.92Tc . Above such temperature we ado
the results from the larger lattice. The final situation is illu
trated in Fig. 3~right!, where the squares indicate the resu
from 60334, the crosses the ones from 32334. It is well
known thats(T) vanishes nearTc according to the power
law s(T)}(Tc2T)n, wheren50.63 is the 3D Ising expo-
nent for the correlation length. Therefore we tried to fit o
data point by using the ansatzs(T)5a(Tc2T)n@11b(Tc
2T)1/2#, with n50.63. The best fit curve is shown in ou
plot and it reproduces very well our data. The values ofs(T)
found by us are considerably smaller than those obtaine
Ref. @8#. This is probably due to the fact that the lattic
volumes used in Ref.@8# were considerably smaller tha
ours.

IV. RESULTS IN THE DECONFINEMENT PHASE:
SCREENING

We start our discussion of the numerical results in
deconfined phase with Fig. 4, where we show the singlet
energy in units ofAs normalized to the zero temperatu
potential at the shortest distance. As one can see the sin
free energy saturates at large distances, while at short en
8-4
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FIG. 3. ~Left! Color averaged free energies at various temperatures in the confinement phase.~Right! String tension as a function o
T/Tc , crosses correspond to a 32334 lattice, open squares to a 60334 lattice.
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distances it is temperature independent and coincides
the zero temperature potential. The distance in physical u
at which the temperature dependence enters, of co
strongly depends on the value of the temperature, the hig
the temperature the shorter is the distance where effec
the medium become visible. Also the distance where the
glet free energy saturates strongly depends on the temp
ture, it is getting larger as we approachTc . Close toTc

screening enters only at distancesrAs.1. This feature of
the free energy is reflected in the temperature dependen
the screening masses which will be discussed below. Ano
interesting feature of the singlet free energy is that the va
of the plateau of the free energy decreases with the temp
ture. Such a behavior of the singlet free energy was obse
for SU~3! gauge theory in Ref.@3#, where it was also argue
that the reason for this is the presence of the entropy co
bution.

For the further discussion of the results in the deconfin
phase, especially for making comparisons with perturba
theory, it is more convenient and in fact customary~cf.
@1,11#! to choose the renormalization constantC in Eqs.~2!,

~3! to be C5 lnu^1
2 Tr L&u2. Furthermore, the large distanc

behavior of the free energies should be discussed separ
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from their short distance behavior, where one would exp
perturbation theory to work. In general it is expected th
perturbation theory breaks down at distancesr .1/g2T @24#,
with g being the gauge coupling constant. As for the phy
cally interesting temperature range one always hasg;1,
perturbation theory may be applicable at distancesrT,1.
One of the predictions of perturbation theory is th
23F3(r ,T)/F1(r ,T).1, for any r. In Fig. 5 we show this
ratio for different temperatures. This ratio appears indeed
be constant forT.1.5Tc but always smaller than 1, even fo
the highest temperature we considered (16Tc). Similar re-
sults were found in Landau gauge in Refs.@10,23#.

High temperature perturbation theory at leading order p
dicts that the color averaged free energy has the form@13,25#

Favg~r ,T!

T
52

3

32

g4

~4prT !2
e22mD0r ~10!

at distancesr .1/T, with mD0 being the leading order Deby
massmD05A2/3gT. At distancesr ,1/T the simple form
~10! is no longer valid, though the 1/r 2-like behavior is still
expected due to cancellation between singlet and triplet c
FIG. 4. The color singlet free energy at various temperatures in the deconfinement phase calculated forNt54 ~left! andNt58 ~right!.
The solid line is theT50 potential.
8-5
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tributions @13#. Therefore we define the so-called screen
function S(r ,T) by the formula

Favg~r ,T!

T
52

3

32

1

~rT !2
S~r ,T!. ~11!

In Fig. 6 we show the numerical results for the square r
screening function. As one can see from the figure, at h
temperatures (T.2Tc) the screening function shows a mi
r-dependence, which implies that the color averaged free
ergy behaves like 1/r 2. The screening functionS(r ,T) de-
creases with increasing temperature which one would ex
if S(r ,T);g4(T). At temperatures closer toTc the screening
function decreases at small distances. Obviously, this be
ior has nothing to do with screening and signals the bre
down of the high temperature expansion. As we approachTc
F1,3/T is no longer small at small distances as shown in F
6 and therefore the exponentials in Eq.~5! cannot be ex-
panded. As a result of this, the cancellation between the
glet and triplet free energies no longer holds; moreover, si
the singlet free energy is negative and the triplet one is p
tive ~when working with normalization conventionC

5 lnu^1
2 Tr L&u2) the color averaged free energy is dominat

by the singlet contribution and behaves like 1/r at small dis-
tances. We also note that the free energies calculated

FIG. 5. Free energy triplet/singlet ratio at various temperatu
03400
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ct
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e
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different Nt ~different lattice spacing! at 3Tc agree reason-
ably well. Similar agreement between the results calcula
for different values ofNt was observed for other tempera
tures too.

Let us now discuss the large distance behavior of the
energies and the determination of the screening masses
will restrict ourselves to the discussion of the color sing
and color averaged free energy as the color triplet free
ergy becomes very noisy at large distances and the pre
statistics do not allow one to study it in detail.

Contrary to earlier studies@1,8,11#, where the screening
masses were obtained using uncorrelated fit and the shor
large distance behaviors of the free energy were not se
rated from each other, here we use the correlated fit pro
dure of Ref.@26#. From Fig. 6 it is clear that in the regio
rT,1 the color averaged free energy can be well descri
by almost unscreened 1/r 2-like behavior. Therefore this re
gion should not be considered for the determination of
screening masses. In our procedure the fit interval was c
sen so that the fit yields a reasonab
x2/@No. degree of freedom (DOF)#. Thus, unlike in the un-
correlated fit used in Ref.@1#, there is no dependence of th
screening masses on the fit interval. We determine
screening mass in the color singlet channel by fitting the d
with a screened Coulomb~Yukawa-like! ansatz. In leading
order perturbation theory, in fact, the most important con
bution to the singlet free energy is given by the exchange
a single gluon. In the case of the color average free ene
we used a more general fit ansatz@27#:

Favg

T
5

A

r d
exp~2mR!1B. ~12!

As possible values for the exponentd we tookd51,2. The
resulting values of the screening masses that we extracte
presented in Tables II and III for the singlet and the avera
channels, respectively. For determination of the screen
masses we mostly use a 32334 lattice.

We found that for the color averaged free energy the
with d51 andd52 are both good for all temperatures, e
cept nearTc , where we got a reasonablex2/(No. DOF) only
for d51. From our fit analysis it then comes out that w

s.
n
FIG. 6. The square root of the screening function~left! and the singlet free energy in units ofT ~right! at different temperatures. The ope
symbols refer to the results forNt54, the closed symbols to the results forNt58.
8-6
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HEAVY QUARK FREE ENERGIES AND SCREENING IN . . . PHYSICAL REVIEW D68, 034008 ~2003!
cannot choose between the two cases, which gives a sys
atic error of about 30% on the screening masses. In orde
eliminate this ambiguity, we have also calculated the pla
plane correlator, given by the formula:

CPL~x3!5^TrL~x3!Tr L†~0!&2u^Tr L&u2, ~13!

whereL(x3)[(x1 ,x2
L(x1 ,x2 ,x3). If the color averaged free

energy has the form~12! with d51, thenCPL(x3) should
fall off with the distance as a simple exponential, which
lows a direct determination of the screening mass. The
sults we found are reported for comparison in Table III. W
see that the values of the masses extracted from the p
plane correlator agree in each case with the masses obta
from the point-point correlator whend51. Furthermore, we

TABLE II. Screening masses extracted from color singlet fr
energy.

Color singlet correlators

b T/Tc me(T)/T

2.3019 1.01 0.884~80!

2.3077 1.03 1.356~52!

2.3134 1.05 1.75~10!

2.3272 1.10 2.23~4!

2.3533 1.20 2.35~24!

2.3776 1.30 2.50~6!

2.4215 1.50 2.62~6!

2.5118 2.00 2.37~9!

2.8800 6.062 1.912~44!

3.0230 9.143 1.812~36!

TABLE III. Screening masses extracted from color averag
free energy and from plane-plane correlators of Polyakov loops~see
text!.

Color averaged correlators

mavg(T)/T, extracted from
b T/Tc Point-C, d51 Point-C, d52 Plane-C

2.3019 1.01 0.424~20! ,0 0.468~28!

2.3134 1.05 1.000~28! 0.544~20! 1.024~16!

2.3533 1.20 1.95~13! 1.19~22! 1.93~6!

2.3776 1.30 2.31~16! 1.332~88! 2.296~64!

2.5112 2.00 2.69~15! 2.06~12! 2.89~18!

2.8800 6.062 3.03~10! 2.32~10!

3.0230 9.143 3.04~20! 2.04~56!
03400
m-
to
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ed

have analyzed the effective masses extracted fromCPL(x3).
They reach a plateau already atx3T;1, which makes the
presence of power-like prefactors inCPL(x3) at large dis-
tances very unlikely and thus implying that very likelyd
.1. At high temperature dimensional reduction argume
suggest thatd51, as the large distance behavior of any sta
correlators is governed by exchange of a bound state of
effective three-dimensional theory@28#.

For T51.01Tc the results refer to the 48334 lattice in-
stead of 32334. In this case, in fact, the mass changes
preciably when one goes to the larger 48334 lattice. This is
probably due to the large correlation length close toTc .
Further simulations on a 60334 lead to the same value of th
mass we found on the 48334, which is then reliable as
infinite volume limit at this temperature.

In Fig. 7 we show the screening masses extracted fr
the singlet free energy as a function of the temperatu
There we also show the values of the screening masses
tained from the electric gluon propagator in Landau gau
@23,29# at T.1.2Tc . As one can see they are compatib
with the singlet masses we have found. This is to be expe
in perturbation theory. It was shown, however, by Nadka
that this is true in general at large distancesr @1/T @14#. In
Fig. 7 the color averaged screening masses are show
well; we compared them with the lowestA1

1 scalar screening
mass~spatial glueball mass! obtained in Ref.@30#. Dimen-
sional reduction arguments@28# suggest that these mass
should agree at high temperature and the figure seem
indicate that this is indeed the case. Very recently the pla
plane correlators of Polyakov loops were studied in Ref.@31#
for T51.1105Tc and 1.227Tc ~we use the nonperturbativ
beta function@15# to convert the gauge coupling of Ref.@31#
to temperature!. In Fig. 7 we show as well the correspondin
screening masses~open triangles!. Moreover, we note tha
the color averaged screening masses obtained by us usin
with d52 agree with the findings of Refs.@9,32# where the
same exponent was used. The color averaged screening
should go to zero whenT→Tc because it is just the invers
of the Polyakov loop correlation length, which diverges
Tc . On the other hand there is noa priori argument for
which the singlet mass should vanish at the threshold. Fig
7 indicates that both masses become very small nearTc .

V. THE RENORMALIZED POLYAKOV LOOP

The last issue we would like to address is the renorm
ization of the Polyakov loop. It is known that if one takes t
continuum limit at fixed temperature, the expectation va
of the Polyakov loop vanishes, so that the usual definit
does not really provide a physical order parameter for dec
finement. As we have already said at the beginning, the
energies on the lattice are always defined up to some re
malization constant. According to a recent work@3#, a suit-
able choice of such a renormalization constant can lead
new definition of the Polyakov loop. If the constant is chos
such that the singlet free energy matches the zero temp
ture heavy quark potential at short distances, one can de
a ‘‘renormalized’’ Polyakov loopL ren through the formula:

d
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FIG. 7. Screening masses in units of temperature vsT/Tc extracted from the color singlet free energy~left! and from the color averaged
free energy~right!. In the left plot we have also shown the screening mass extracted from the static electric propagator@23,29#. In the right
plot we give the lowestA1

1 screening mass from@30# as well as the screening masses of plane-plane correlators of Polyakov loops from@31#
~open triangles!.
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en-
ver-
L ren5exp@2F`~T!/2T#, ~14!

whereF`(T) is the asymptotic value of the singlet free e
ergy at the temperatureT ~in fact, it does not depend o
relative color orientation of the quark–antiquark pair, s
above!. We remind the reader that we have renormalized
singlet free energy exactly in this way, so that, in our ca
F`(T) is nothing but the height of the plateau of the curv
in Fig. 4. Practically we tookF`(T)5F1(Ns/2,T), which is
the value of the free energy at the largest distance allowe
the lattice. In Fig. 8 we plot the renormalized Polyakov lo
as function of the temperatures. When normalizing the s
glet free energy to theT50 potential at the shortest distanc
(r /a51) we implicitly assume that there is no temperatu
dependence at this distance. This may not always be the
Therefore we also calculateF`(T) and the corresponding
L ren by normalizing the singlet free energy to theT50 po-
tential as well as atr /a5A2. The difference inF`(T) (L ren)
arising from these two normalizations gives us an estimat
possible systematic errors. When quoting the error on
renormalized Polyakov loop we always add quadratically
systematic and the statistical errors. At variance with SU~3!,
03400
e
e
,

s

on

-

se.

of
e
e

we now have a second order phase transition and a
defined scaling behavior ofL ren at criticality. In order to
check the scaling we have fitted the data onL ren using the
standard ansatz in the intervalTc,T<1.5Tc ,

L ren~T!5c~T2Tc!
b@11b~T2Tc!

v#, ~15!

with the exponentsb and v fixed to their SU~2! valuesb
50.3265 andv51. The fit curve is shown in Fig. 8~dashed
line! and reproduces quite well the pattern of the data poi
We have also performed fits settingb50 and considering
temperaturesT<1.1Tc . This fit gives similar values ofc as
the fits withbÞ0 discussed above.

VI. CONCLUSIONS

In conclusion we have studied the quark–antiquark f
energies in SU~2! gauge theory below and above the deco
finement temperature. We have found that the tempera
dependence of the singlet free energy is much weaker
the temperature dependence of the color averaged free
ergy. Most of the temperature dependence of the color a
FIG. 8. Renormalized Polyakov loop as a function of the temperature in the entire temperature interval~left! and forT<1.5Tc together
with the fit ~right!. The error bars indicate the combined statistical and systematic errors.
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aged free energy is due to the presence of the color tri
contribution and its temperature dependence. If this will h
for real QCD it may have important consequences in
heavy quarkonia phenomenology at finite temperature.
large distances the free energy in color singlet and trip
channels converge to a common value.

AboveTc the color singlet free energy can be understo
in terms of propagation of a nonperturbatively screen
gluon. Through the detailed analysis of the point-point a
plane-plane correlators as well as comparisons with o
determinations of the screening masses, we have establ
that the color averaged free energy is described by Yuk
law at large distances, whereas at shorter distances it exh
a more complex behavior. At low temperatures and sh
distances the color averaged free energy is dominated by
singlet contribution, while at higher temperatures it h
1/r 2T behavior and its temperature dependence is qua
tively the same as predicted by perturbation theory. Fina
hy

ky

is

s.

oh
24
p
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we have shown that the renormalized Polyakov loop defi
in @3# has the correct scaling behavior near the critical te
perature.

As an outlook we note that we have studied the free
ergy of static charges in the fundamental representation
will be interesting to investigate the free energy of sta
charges in other representations. Some work in this direc
was done in@33#.
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