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We discuss a goodness-of-fit method which tests the compatibility between statistically independent data
sets. The method gives sensible results even in cases whey@ thimima of the individual data sets are very
low or when several parameters are fitted to a large number of data points. In particular, it avoids the problem
that a possible disagreement between data sets becomes diluted by data points which are insensitive to the
crucial parameters. A formal derivation of the probability distribution function for the proposed test statistics is
given, based on standard theorems of statistics. The application of the method is illustrated on data from
neutrino oscillation experiments, and its complementarity to the standard goodness-of-fit is discussed.
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[. INTRODUCTION especially where global fits of many parameters to data from
several experiments are performed.

The essence of any scientific progress is the comparison The outline of the paper is as follows. In Sec. Il we define
of theoretical predictions to experimental data. Statistics prothe PG and show that its construction is very similar to that
vides the scientist with so-callegbodness-of-fitests, which  of the standard goodness-of-fit. The formal derivation of the
allow us to obtain well-defined probability statements abouf.d.f. for the PG test statistics is given in Sec. |ll, whereas in
the agreement of a theory with data. By far the most populaBec. 1V a discussion of the application and interpretation of
goodness-of-fit test dates back to 1900, when K. Pearsotfie PG is presented. In Sec. V we consider the PG in the case
identified the minimum of &? function as a powerful tool to  of correlations due to theoretical errors, and we conclude in
evaluate the quality of the fjtL]. However, it is known that Sec. VI.
the Pearson(zmin test is not very restrictive in global analy-
ses, where datz_;\ from different experiments with a Iarge_ num- Il. GOODNESS-OF-FIT TESTS
ber of data points are compared to a theory depending on
many parameters. The reason for this is that in such a case a We would like to start the discussion by citing the
given parameter is often constrained only by a small subsejoodness-of-fit definition given by the Particle Data Group
of the data. If the rest of the datahich can contain many (see Sec. 31.3.2. of Rdf6]): “Often one wants to quantify
data pointg are reasonably fitted, a possible problem in thethe level of agreement between the data and a hypothesis
fit of the given parameter is completely washed out by thewithout explicit reference to alternative hypotheses. This can
large amount of data points. A discussion of this problem inbe done by defining goodness-of-fit statisticé which is a
various contexts can be found e.g. in Rés-4. function of the data whose value reflects in some way the

To evade this problem a modification of the origingl,,  level of agreement between the data and the hypothesis.
test was proposed in Rgb] to evaluate the goodness-of-fit [ .. .] The hypothesis in question, s&yy will determine the
of neutrino oscillation data in the framework of four-neutrino p.d.f. g(t|H,) for the statistics. The goodness-of-fit is quan-
models. There this method was callpdrameter goodness- tified by giving thep value, defined as the probability to find
of-fit (PG), and it can be applied when the global data con-t in the region of equal or lesser compatibility with, than
sists of statistically independent subsets. The PG is based dhe level of compatibility observed with the actual data. For
parameter estimation and hence it avoids the problem of beexample, ift is defined such that large values correspond to
ing diluted by many data points. It tests tbempatibilityof ~ poor agreement with the hypothesis, then phealue would
the different data sets in the framework of the given theoretbe
ical model. In this note we give a formal derivation of the
probability distribution functior(p.d.f) for the test statistics o
of the PG, and discuss the application and interpretation of pzf g(t|Hg)dt, D
the PG on some examples. The original motivation for the tobs
PG was the analysis of neutrino oscillation data. However,
the method may be very useful also in other fields of physicswheret,s is the value of the statistic obtained in the actual

experiment.”
Let us stress that from this definition of goodness-of-fit
*Electronic address: maltoni@ific.uv.es one has complete freedom in choosing a test statistis
Electronic address: schwetz@ph.tum.de long as the correct p.d.f. for it is used.
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A. The standard goodness-of-fit

ConsiderN random observables=(v;) and let u;(6) thot(o):rzl X7 (0), ®)
denote the expectation value for the observalle where
0=(0,) are P independent parameters which we wish towhere
estimate from the data. Assuming that the covariance matrix

Sis known one can construct the following function: XA O=[v' = p(O)]'S [v' —u'(0)] (7
X0 =[v—u(0)]'S {vr—u(0)] (2) s the x? of the dataset. Now we define
. . 2 P _Af_fi —
and use |t§ minimuny i, s test statistics for goodness-of-fit X2(0)=x2,(0)— DR ®)
evaluation:
t(V):szmn- ®) Where)(r min ,\/2(0) and 0 (v'") are the values of the pa-

rameters which m|n|m|zq/r . Instead of the totak? mini-

The hypothesis we want to test determines the pgdtf. for ~ MuUmM we propose now to use

this statistics. Once the real experiments have been per- —

formed, giving the results,,s, the goodness-of-fit is given t(w)= Xmm X0 ©)
by the probability of obtaining & larger thant,,s, as ex-

pressed by Eq(1). We will refer to this procedure astan- as test statistics for goodness-of-fit evaluation. In 9.

dard goodness-of-fitSQ): XZin is the minimum ofy? defined in Eq/(8), and @ are the
parameter values at the minimum gf, or equivalently of
* Hdt @ thot. If we now denote byg(t) the p.d.f. for this statistics,
Psc= X2 (vand g(ndt. we can define the corresponding goodness-of-fit by means of
mn Eq. (1), in complete analogy to the SG case:
The great success of this method is mostly due to a very w o
powerful theorem, which was proven over 100 years ago by Ppc= g(t)dt. (10
K. Pearsoh[1] and which greatly simplifies the task of cal- Ximin Vo9

culating the integral in Eq(4). It can be shown under quite _ . .
general conditiongsee e.g. Ref[7]) that 2, follows a x? This procedure was proposed in RE] with the namepa-

distribution with N— P degrees of freedond.o.f), so that rameter goodness—of—f@P(i). Its construction is very similar
g(t)=f 2(t,N—P). Therefore, the integral in Eq4) be- 0 the SG, except that noy rather thany? is used to define

comes the test statistics.
In the next section we will show that also in the case of
w the PG the calculation of the integral appearing in Bd)
Psc=CL(Xmin(Pobd -N—P)= | , f 2(t,N—P)dt, can be greatly simplified. Let us define
Xmin(¥obsd (5) ;
[
P,= rank{ 5 0} (13)

where CL(y?,n) is the confidence levefunction (see e.g.,
Fig. 31.1 of Ref[6]). This corresponds to the number iofidependenparameters
In the following we propose a modification of the SG, for (or parameter combinatiopsconstrained by a measurement

the case when the data can be divided into several statlsth #".2 Then under general conditiogf,;, is distributed as a

cally independent subsets. x? with P,=3,P,— P d.o.f., so that Eq(10) reduces to
B. The parameter goodness-of-fit ppGZCL(;rznm( Voo Pe). (12
ConsiderD statistically independent sets of random ob-
servablew'=(#!) (r=1, ... D), each consisting dfl, ob- ll. THE PROBABILITY DISTRIBUTION FUNCTION
servables i(=1, ... N,), with N,z=2,N,. Now a theory OF XZin

depending orP parameters#9=(4,) is confronted with the

data. The total? is given by In this section we derive the distribution of the test statis-

tics for the PG. This can be done in complete analogy to the
SG. Therefore, we start by reviewing the corresponding

!pearson uses the slightly different test statistic proof for the SG, see e.g. Rf].

i—(0)]
X%’earson E [V -

i Hi(6) 2If in some pathological caseB, depends on the point in the
and assumes that are independent. We prefer to use instgéaf parameter space, E(L1) should be evaluated at the true values of
Eq. (2), because in this way also correlated data can be considerethe parameters, see Sec. Il B.
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A. The standard goodness-of-fit Without loss of generality we assume thaankB]="P.

Let us start with they? defined in Eq.(2). Since the From Eq.(17) we obtain
covariance matri§is a real, positive and symmetric matrix g
one can always find an orthogonal matéixand a diagonal %Y
matrix s such thatS™ 1= 0"s?0. Hence, we can write thg? 76
in the following way:

”4
~—| =B. (19
» 9940

o S B T Using this last relation in Eq(16) we find thaty fulfils
X(O=[r=p(6)]'S[v=p(0)]=y(6) y(0), (13 y'B=0. Multiplying Eq. (17) from the left side byB this

where we have defined the new variablged)=sO[y l€adsto

—m(6)]. Let us denote théunknown true values of the T T % a0

parameters by° and we define B'x=—-B'B(6-6"). (20
x=y(0°)=sO[v— u(0°]. (14)  Using Egs.(17) and(20) we obtain

Now we assume that the are normal distributed with mean yTy=x"x—(6—6°"B"B(6— 6°). (21)

0 and the covariance matrilg,, which in particular implies

that they are statistically independent. This assumption ighe symmetricPx P matrix B'B can be written as3'B
obviously correct if the data; are normal distributed with =Rb?RT with the orthogonal matriR and the diagonal ma-
meanu;(#°) and covariance matri$. However, it can be trix b, and Eq.20) impliesb *RTBTx= _bRT(‘g_ 0°). De-
shown(see e.g. Refd.7-9)) that this assumption holds for a fining the N X P matrix

large class of arbitrary p.d.f. for the data under quite general

conditions, especially in the large sample limit, i.e. large H=BRDb ! (22
Under this assumption it is evident that( 8°) =x"x follows

a x2 distribution with N d.o.f. According to Eq(3) the test we find (6— 6°)"B"B(#— 6°)=x"HHx, and Eq.(21) be-
statisticst for the SG is given by the minimum of E@L3). comes

To derive the p.d.f. fot we state the following proposition

Proposition 1. Let® be the values of the parameters y'y=x"(1y—HHT)x. (23

which minimize Eq. (13). Then . . .
Note that the matrixH obeys the orthogonality relation

aninz)(Z( 6°)—Ax?, (15) H™H=1p, showing that thé> column vectors of lengthl in
H are orthogonal. We can adidt— P columns to the matrixd
with x2..=y'y and y=y(#), has ay? distribution with N completing it to an orthogonaNxN matrix: V=(H,K).
—P d.of. andA 2 has ay? distribution with P d.of. and is HereK is anNX(N—P) matrix with KTK=1(y_p), H'K
statistically independent of2,,.. =0 and the completeness relation
A rigorous proof of this proposition is somewhat intricate
and can be found e.g. in R¢¥]. In the following we give an
outline of the proof dispensing with mathematical details for
the sake of clarity.

VVT=HHT+KKT=1,. (24)

Now we transform to the new variables

The 6 are obtained by solving the equations Y% HTx
x' =VTx, x’=( )= T ) (25
J X2 Ly W K'x
— =2y —=0. (16)
90 90,4 wherev=HTx is a vector of lengttP andw=K x is a vector

of lengthN—P. In general, if the covariance matrix of the
random variablex is S then the covariance matri®’ of
x'=VTx is given byS'=VTSV. Hence, since in the present
casex; are normal distributed with mean 0 and covariance
matrix 1y the same is true fax{ . In particular alsos andw

are statistically independent. Using Eq23) and (24) we
deduce

It can be provedsee e.g. Refl7]) under very general con-

ditions that Eq(16) has a unique solutio which converges
to the true value®® in the large sample limit. In this sense
it is a good approximatiohto write

y~x+B(6- 09, 17
where we have defined the rectangu\ax P matrix B by

4If rank{ B]= P’ <P some of the parametess, are not indepen-
. (18 dent. In this case one can perform a change of variables and choose
0° a new sets of parametefs , such thaty?(@') depends only on the
first P’ of them. The remaining parameters are not relevant for the
problem and can be eliminated from the very beginning. When
3Note that Eq(17) is exact ify depends linearly on the parameters repeating the construction in the new set of variables, the number of
6. parameters will be equal to the rank Bf

B

Il
Qvl%
<
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y'y=x"(1y—HHNx=x"KKx=w"w (26)

proving thaty?,,=y"y has ay? distribution withN— P d.o.f.
Finally, we obtain

Ax?=x2(6°) — xZin=x"x—yTy=x"HHTx=V"v, (27)

showing thatA y? has ay? distribution withP d.o.f. and is
statistically independent of2,,,. [J

B. The parameter goodness-of-fit

Moving now to the PG we generalize in an obvious way

PHYSICAL REVIEW D 68, 033020(2003

H1y.(0) HixX vy
Y(0)= s ,

HLYo(0)

X
i

T
HpXp Vb

(32

In the first part of the proof we show thgf,,=YTY with

Y=Y (). With arguments similar to the ones leading to Eq.
(21) we find

2 =2 xx—(5-0°T3 BIB,(9-0°).
(33

the formalism of the previous section by attaching and indexUsing further Eq.(23) for eachr we obtain

r for the data set to each quantity. We have
Xiol 0)= 2 VI (OY(8), X 0°=2 X%, (28)

and

XA(0)=x2(0) - 2 X min= Z (YT (O (0) -y y,].
(29)

Proposition 2. Let® be the values of the parameters
which minimizey?(#6), or equivalently)(tzot(O). Then;,znin
=x2(0) follows a y? distribution with P, d.o.f., with

D
P=P-P, P=2 P,, P,=rankB,] and

=1
(30)

The matricesB, are of orderN, X P. Since a given data
setr may depend only on some of tlieparameters, or on

some combination of them, in general one has to consider thc_e

possibility of P,<P.® This means that the symmetrie
X P matrix B/ B, can be writen a& b, b,R|, whereR; is an
orthogonal matrix and, is aP, X P “diagonal” matrix, such
that the diagonaP X P matrix b,Tbr will have P, nonzero
entries. Let us now define tHeX P, “diagonal” matrix b,‘l
in such a way thatl{,‘l)iizll(br)“ for each of theP, non-
vanishing entries ob,, and all other elements are zero. In
analogy to Eq(22) we introduce now the matrices
H,=BRb, *, (31)
which are of ordeN, X P, . To prove Proposition 2 we de-
fine the vectors of lengti®

Note that the definition oP, in Eq. (30) is equivalent to that
given in Eq.(11).

;ﬁwinzzr er yr_Z g’;rg/r

= Z xTHHx — (6 0°)TZ BB, (60— 6°).
(39

On the other hand we can use that the minimum vallase
converging to the true valueg® in the large sample limit

and writeY ~X+ B(6— 0°), where we have defined tie
X P matrix

HB,
: (39
HpBo

Without loss of generality we assume that rafik=P.
Again, with arguments similar to those leading to E2j1)
we derive

Y¥=XT™X—(0-0°"B7B(0-0°). (36)
Using Eq.(31) it is easy to show tha T8==,B/B, , and by
omparing Eqs(36) and(34) we can readily verify the rela-
tion 2, =YTY.

To complete the proof we identify <y and X« x and
proceed in perfect analogy to the proof of Proposition 1
given in Sec. Il A. In particular, from the arguments pre-
sented there it follows that the elementswfare P, inde-
pendent Gaussian variables with mean 0 and variance 1.
Since theD data sets are assumed to be statistically indepen-
dent the vectoX containsP independent Gaussian variables
with mean 0 and variance 1. In analogy to the matridek
of Sec. lll A we now obtain thé®xX P matrix H and theP
X P, matrix K, which fulfil HH"+ KK T=1,, and Eq.(36)
becomes

YTY=XT(1p— HHT)X. (37)
In analogy to the vectow from Eq. (25) we now defineW
=KX, containingP.=P—P independent Gaussian vari-
ables with mean 0 and variance 1, and BY) gives

033020-4



TESTING THE STATISTICAL COMPATIBILITY OF . .. PHYSICAL REVIEW D 68, 033020 (2003

TTY=XTIcCTX=WTW. (39) If the theory is correct is normal distributed with mean 0
and variance 1. Hence we can answer the question raised
above by citing the probability of obtaining|=|z,d:

From Eq.(39) it is evident thaty2,, =YY follows a x? yerngmep Y 8120
distribution with P d.o.f. O B |ond
Let us conclude this section by noting that both Proposi- p—l—f

tion 1 and 2 areexactif the data are multinormally distrib-

uted and the theoretical predictiopsu’ depend linearly on  wheref denotes the normal distribution.

the parameter®. If these requirements are not fulfilled, sim-  If the PG is applied to this problem, one obtains from
plified expressiongs) and(12) are valid only approximately, Eq. (39)

and to calculate the SG and the PG one should in principle

fn(z,0,1)dz, (41

~1Zoh:

use general formula@) and(10) instead. However, we want _ -2 =1\
i 2 XA (n)=| —= +| == : (42)
to stress that under rather general Condlthﬁ]ﬁ] and xin oy o,

will be distributed as g7 in the large sample limiti.e. for
largev andv', respectively, so that even in the general case

E0. (5) and (12) oan stll b used. and after some simple algebra one finds, =2, wherez is

given in Eq.(40). Obviously, applying Eq(12) to calculate
the p value according to the PG with the relevant number of
IV. EXAMPLES AND DISCUSSION d.o.f. P,.=2—1=1 leads to the same result as E41).
i ) ) o Hence, we arrive at the conclusion that in this simple case
In this section we illustrate the application of the PG ongf testing the compatibility of two measurements for the
some examples. In Sec. IV Awe show thatin the simple casgiean of a Gaussian, the PG is identical to the intuitive

of two measurements of a single parameter the PG is identinethod of testing whether the difference of the two values is
cal to the intuitive method of considering the difference of .onsistent with zero.

the two measurements, and in Sec. IV B we show the con-
sistency of the PG and the SG in the case of independent
data points. In Sec. IV C we discuss the application of the
PG to neutrino oscillation data in the framework of a sterile ~ As a further example of the consistency of the PG method
neutrino scheme. This problem was the original motivatiorwe consider the case dfl statistically independent data
to introduce the PG in Ref5]. In Sec. IV D we add some pointsy;. Let us denote by; the standard deviation of the
general remarks on the PG. observatiory; (i=1, ... N), and the corresponding theoret-
ical prediction byu;(6), where@ is the vector ofP param-
eters. For simplicity, we assume that each of ghelepends
at least on one parameter. Then ffeis given by

Let us consider two data sets observing the data points N
v'=(v1) (i=1,... Ny and’=(?) (i=1,... Np). Fur- . 5
ther, we assume that the expectation values for both data sets X (0)_21 xi(0),
can be calculated from a theory depending on one parameter
n: u'(n) (r=1,2), and ally{ are independent and normal where
distributed around the expectation values with variamfe
Then we have the following? functions for the two data

B. Consistency of PG and SG for independent data points

A. The determination of one parameter by two experiments

[vi—umi(0)]°

2 —
setsr = 1,2: Xi (0) - 0'i2 ’ (43)
N 2 ~ 2
2( ):Er vi—wi(n) _.2 N (39) and from the SG constructidisee Sec. Il A we know that
XA = 2 o Armin™ =2 ) x2in follows a x? distribution with N—P degrees of free-

dom. On the other hand, if we consider each single data point
~ A _ as an independent data set and we apply the PG construction,
where 7,= 7,(»") is the value of the parameter at thé

minimum of data ser. Now one may ask the question "¢ easily see thati mi=0 for eachi. This implies x*(6)

. qon- -, - S S
whether the resuilts of the two experiments are consistent=X*(6), and in particulan z,=x&- Therefore, for the spe-
More precisely, we are interested in the probability of obtain-Cific case considered here one expects that SG and PG are

P - . identical.
ing 71 and 7, under the assumption that both result from the o ,
sametrue valuez°. To show that this is really the case let us first note that

A standard methogsee e.g. Ref.8] Sec. 14.3to answer each'matri?q?,ui /90 consists just of single ling anq there-
this question is to consider the variable fore it obviously has rank one. Hence, Ed1) gives P;
=1 for eachi. This reflects the fact that from the measure-

ment of a single observable we cannot derindependent

"2 bounds onP parameters, but onlg single combinatiorof
= \/ﬁ (40) them is constrained. Therefore, the number of d.o.f. relevant
o1t o3 for the calculation of the PG is given b§. == ,P,—P
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=N—P, which is exactly the number of d.o.f. relevant for the = TABLE I. Parameter dependence, total number of data points,
SG. Hence, we have shown that in the considered case thé, and the corresponding SG for the three data sets.
two methods are equivalent and consistent.

Dataset Parameters N x2,/dof. SG
C. Application to neutrino oscillation data Reactor AmZ ), by 27 11.5/25 99%
Solar AmZ,), Oso1, 75 81  65.8/78  84%

In this section we use real data from neutrino oscillation _
experiments to discuss the application of the PG and to corﬁgtmos'[’herlc AMGi,Oaims 75,0, 65 38.4/61 99%
pare it to the SG. We consider the so-call@d-2) neutrino
mass scheme, where a fouf8terile neutrino is introduced  gdependence, the number of data points, the minimum values
in addition to the three standard model neutrinos. In genergs the y2 functions and the resulting SG. We observe that all
this model is characterized by nine parameters: three neyne datasets analyzed alone give a very good fit. Let us re-
trino mass-squared differencasnz,, AmZ,,, Amiq\p and  mark that especially in the case of reactor and atmospheric
six mixing parameterds,, Oam, Oisnos dus s, 7e- AN data the SG is suspicious high. This may indicate that the
interested reader can find precise definitions of the paramerrors have been estimated very conservatively.
eters, applied approximations, an extensive discussion of |n Table Il we show the results of an SG and PG analysis
physics aspects, and references in Rg¥$,10. Here we are  for various combinations of the three datasets. In the first
interested mainly in the statistical aspects of the analysis, anghree lines in the table only two out of the three datasets are
therefore we consider a simplified scenario. combined. By combining solar and atmospheric neutrino
We do not include LSND, KARMEN and all the experi- data we find g2, of 126.7. With the quite large number of
ments sensitive ta\m’gyp, and the corresponding mixing d.o.f. of 140 this gives an excellent SG of 78.3%. If, how-
angle f snp- Hence, we are left with three datasets fromever, the PG is applied we obtain a goodness-of-fit of only
solar, atmospheric and reactor neutrino experiments. The s@:54x 10 6. The reason for this very bad fit can be under-
lar dataset includes the current global solar neutrino datatood from Figs. 1 and 2. From Fig. 1 one finds that solar and
from the SNO, Super-Kamiokande, Gallium and Ch|0rineatmospheric data are coupled by the paramsterin Fig. 2
experiments, making a total of 81 data points, whereas thg 2 is shown for both sets as a function of this parameter.
atmospheric data sample includes 65 data points from theye find that there is indeed significant disagreement between
Super-Kamiokande and MACRO experimefftr details of  the two datasetdsolar data prefers values of, close to 0,
the solar and atmospheric analysis see RE]). In the re-  \hereas atmospheric data prefers values close to one. There
actor data set we include only the data from the KamLANDgre two reasons why this strong disagreement does not show
and the CHOOZ experiments, leading to a total ofrTl3f  yp in the SG. First, since the SG of both datasets alone is
=27 data point§11,12. In general the reactor experiments very good, there is much room to “hide” some problems in
(especially CHOOZ depend in addition taAm?2, and 65,  the combined analysis. Second, because of the large number
also onAmgtm and a further mixing parametej,. However, of data points many of them actually might not be sensitive
we adopt here the approximatiop=1, which is very well  to the parametes)s, where the disagreement becomes mani-
justified in the (2+2) schemd3]. This implies that the de- fest. Hence, the problem in the combined fit becomes diluted
pendence omm?,, disappears and we are left with the pa- due to the large number of data points. We conclude that the
rametersAmﬁm and 6, for both reactor experiments, Kam- PG is very sensitive to disagreement of the data sets, even in

LAND as well as CHOOZ. cases where the individugt’> minima are very low, and
Under these approximations the experimental datasets when the number of data points is large.
are using are described only by the six parameferg,, In the reactor+ solar analysis one finds complete agree-

Amzt Oeo1s Oaimy 75, d, . The parameter structure is illus- ment between the two data sets for the SG as well as for the
atm? ’ H ’ ot . . .
trated in Fig. 1. This simplified analysis serves well for dis-PC- This reflects the fact that the determination of the pa-

2 .
cussing the statistical aspects of the problem: a more generfimetersds, and Amg,, from reactor and solar neutrino ex-

treatment including a detailed discussion of the physics i®eriment are in excellent agreem¢it]. Finally, in the case
given in Refs[3,5]. In Table | we summarize the parameter Of the combined analysis of reactor and atmospheric data the
PG cannot be applied. In our approximation these datasets

have no parameter in common as one can see in Fig. 1.
@ Hence, it makes no sense to test their compatibility, or even
to combine them at all.
In the lower part of Table Il we show the results from

@ SoL REAC combining all three data sets. By comparing these results

The physical reason for this is that both datasets strongly disfavor
@ oscillations into sterile neutrinos. Since it is a generic prediction of
the (2+2) scheme that the sterile neutrino must show up either in

FIG. 1. Parameter structure of the three data sets from reactosplar or in atmospheric neutrino oscillations the model is ruled out
solar and atmospheric neutrino experiments. by the PG tes{5].

GaklsC
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TABLE II. Comparison of SG and PG for various combinations of the datasets from (solgratmo-
spheric(stm) and reactofreac}) neutrino experiments.

Datasets Niot Xy mirfd-0.f. SG =P, P /P PG
Sol + atm 146 126.7/140 78.3% 34 6 2151 3.5410°
React+ sol 108 77.4/1105 98.0% 23 3 0.13/2 93.5%
React+ atm 92 49.9/86 99.9% 24 6 0.0/0

KamL + sol + atm 159 132.7/153 88.1% +23+4 6 2173 7.5%10°°
React+ sol + atm 173 138.2/167 95.0% 23+4 6 21.7/3 7.5%10°°

with that from the solar+ atmospheric analysis one can P.=0. In the combination of reactor solar+ atmospheric
appreciate the advantage of the PG. If we add only the 13atasets, the three parametess, 6s,, AmZ, provide the
data points from KamLAND to the solar and atmosphericcoupling andP.= 3.

samples we observe that the SG improves from 78.3% to
88.1%, whereas if both reactor experiments are included we
obtain an SG of 95.0%. This demonstrates that the SG
strongly depends on the number of data points, especially the (1) Using the reIation;ﬁqm:ErA)(,z(b) one can obtain
14 data points from CHOOZ contain nearly no relevant in-more insight into the quality of the fit by considering the

formation, since the best fit values Afm_ﬁo, and fsq are in - congripution of each dataset igy,. If the PG is poor it is
the no-oscillation regime for CHOOZ implying that’ is ossible to identify the data sets leading to the problems in

flat. Moreover, since reactor data are not sensitive to tht fit by looki t the individual val @ 2(9). In thi
parameteny, (see Fig. 1the disagreement between solar and e fit by looking at the individual values dfx;(6). In this

atmospheric data becomes even more diluted by the addf€nse the PG is similar to the so-called “pull approach” dis-
tional reactor data points. This clearly illustrates that the Sc*ussed in Refl13] in relation with solar neutrino analysis.
can be drastically improved by adding data which contain no (2) One should keep in mind that the PG is completely
information on the relevant parameters. Also the PG imdnsensitive to the goodness-of-fit of tiedividual data sets.
proves slightly by adding reactor data, reflecting the goodBecause of the subtraction of th¢ ., in Eg. (8) all the
agreement between solar and reactor data. However, the rigformation on the quality of the fit of the datasets alone is
sulting PG is still very small due to the disagreement belost. One may benefit from this property if the SG of the
tween solar and atmospheric data in the model under considrdividual datasets is very googee the example in Sec.
eration. Moreover, the PG is completely unaffected by thdV C). On the other hand, if e.g. one dataset gives a bad fit
addition of the CHOOZ data, becaugé of CHOOZ is flat ~ on its own this will not show up in the PG. Only toom-

in the relevant parameter region, and the PG is sensitive onlgatibility of the datasets is tested, irrespective of their indi-
to the parameter dependence of the datasets. vidual SGs.

Finally, we mention that in view of the analyses shown in  (3) The PG might be also useful if one is interested
Table 1l the meaning oP., the number of d.o.f. for PG Whether a dataset consisting of very few data points is in
becomes clear. It corresponds to the number of parametefgreement with a large data samplehe SG of the com-
coupling the datasets. Solar and atmospheric data afned analysis will be completely dominated by the large
coupled only byzs, henceP.=1, whereas reactor and solar sample and the information contained in the small data
data are coupled bg, andAmZ, andP.=2. Atmospheric Sample may be drowned out by the large number of data
data has no parameter in common with reactor data, therefoRoints. In such a case the PG can give valuable information

on the compatibility of the two sets, because it is not diluted
40 e by the number of data points in each set and it is sensitive
K ] only to the parameter dependence of the sets.

D. General remarks on the PG

o E V. CORRELATIONS DUE TO THEORETICAL
- . UNCERTAINTIES
20: ] One of the limitations of the PG is that it can be applied
C ] only if the datasets arstatistically independentin many
101~ 7 physically interesting situation$or example, different solar
C ] neutrino experimenjsthis is not the case sindheoretical
oL P B / uncertaintiesintroduce correlations between the results of
0 02 04 06 08 1

Ng
"For example, one could think of a combination of the 19 neutrino
FIG. 2. PG for solar and atmospheric neutrino data in the (2events from the Super Nova 1987A with the high statistics global
+2) scheme. solar neutrino data.
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different—and otherwise independent—experiments. How- n &, 2 N &, 2

ever, in such a case one can take advantage of the so-called x?(#, g)zz (Lﬂ'(m) +E L,U«.(O))

pull approach, which, as demonstrated in REE3], is =1 i stat 1=n i stat

equivalent to the usual covariance method. In that paper it £—1\2

was shown that if correlations due to theoretical errors exist, +( ) , (48
th

it is possible to account for them by introducing new param-
etersé, and adding penalty functions . In this way it is
possible to get rid of unwanted correlations and the PG cal
be applied. The correlation parametégsshould be treated X relevant for the PG:
in the same way as the parameté@rsf the theoretical model.

In this section we illustrate this procedure by considering
a generic experiment with an uncertainty on the normaliza-
tion of the predicted number of events. Let the experiment
observe some energy spectrum which is divided Mtoins.  Assuming that the datasets | and Il both depend onPall
The theoretical prediction for the binis denoted byui(6)  parameters, the minimum of thisy? has to be evaluated for
depending orP parametersd. In praxis oftenw(6) is not  p.42 d.of. to obtain the PG. This procedure tests whether
known exactly. Let us consider the case of a fully correlatedpe data sets | and Il are consistent with each o#imerthe

relative erroroy,. A common method to treat such an error is constraint on the overall normalization. By considering the
to add statistical and theoretical errors in quadrature, leadingsative contributions of the three terms in E49) it is pos-

E_nd subtracting the minima of the first two terms gives the

— -1 2
X2(0,§)=AX|2(0,§)+Axﬁ(0,§)+(%)- (49)

to the correlation matrix sible to identify potential problems in the fit. For example,
B 2 2 one may test whether a bad fit is dominated only by a small
Sij(0)= 8ij 07 stat™ Tini(0) 1(6), (44 subset of the data, e.g. a few bins at the low or high end of

the spectrum. Alternatively, the two datasets | and Il can

whereo; gtis the statistical error in the bin In the case of come from two different exoeriments correlated by a com
neutrino oscillation experiments such a correlated error re- P y

sults e.g. from an uncertainty of the initial flux normalization mon normalization error, e.g. two detectors observing events

o o from the same beam.
or of the fiducial detector volume. The’ is given by It is straightforward to apply the method sketched in this

N section also in more complicated situations. For example, if
X2(0)= 2 [vi—wi(0)]S; Y O[vi—ni(0)], (45 there are several sources of theoretical errors leading to more
ihj=1 complicated correlations the pull approach can also be ap-
plied by introducing a parameté, for each theoretical error
[13]. In a similar way one can treat the case when the com-
patibility of several experiments should be tested, which are
correlated by common theoretical uncertaintié€Sonsider

wherev; are the observations. As shown in Réf3], instead
of Eq. (45 we can equivalently use

S (m ()7 (651 : - i -
Y(0,6)= ( i SMi ) +( ) , 46) €9 the various solar neutrino experiments, wh|qh are corre-
i=1 O, stat Oth lated due to the uncertainties on the solar neutrino flux pre-
dictions)

and minimize with respect to the new parameger
On the other hand, i€ is considered as an additional
parameter, on the same footing @sall the data points are
formally uncorrelated and it is straightforward to apply the In this note we have discussed a goodness-of-fit method
PG. Subtracting the minimum of the first term in E46)  which was proposed in Ref5]. The so-calledparameter
with respect tof and £ one obtains goodness-of-fitan be applied when the global data consists
of several statistically independent subsets. Its construction
£-1\2 and application are very similar to the standard goodness-of-
om | (47) fit. We gave a formal derivation of the probability distribu-
tion function of the proposed test statistics, based on stan-
The external information on the parameterepresented by dard theorems of statistics, and illustrated the application of
the second term in Eq47) is considered as an additional the PG on some examples. We have shown that in the simple
dataset. Evaluating the minimum of Eg.7) for 1 d.o.f. isa case of two datasets determining the mean of a Gaussian, the
convenient method to test if the best fit point of the model isPG is identical to the intuitive method of testing whether the
in agreement with the constraint on the overall normalizadifference of the two measurements is consistent with zero.
tion. In particular one can identify whether a problem in theFurthermore, we have compared the standard goodness-of-fit
fit comes from the spectral shaffest term) or the total rate  and the PG by using real data from neutrino oscillation ex-
(second term periments, which have been the original motivation for the
Moreover, one may like to divide the data into two parts,PG. In addition we have illustrated that the so-called pull
set | consisting of bins,1 .. ,n and and set Il consisting of approach allows us to apply the PG also in cases where the
binsn, ... N, and test whether these datasets are compatiatasets are correlated due to theoretical uncertainties.
ible. Equation 46 can be written as The proposed method tests the compatibility of different

VI. CONCLUSIONS

X2(0,6)=Ax%(0,&)+
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