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Testing the statistical compatibility of independent data sets
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We discuss a goodness-of-fit method which tests the compatibility between statistically independent data
sets. The method gives sensible results even in cases where thex2 minima of the individual data sets are very
low or when several parameters are fitted to a large number of data points. In particular, it avoids the problem
that a possible disagreement between data sets becomes diluted by data points which are insensitive to the
crucial parameters. A formal derivation of the probability distribution function for the proposed test statistics is
given, based on standard theorems of statistics. The application of the method is illustrated on data from
neutrino oscillation experiments, and its complementarity to the standard goodness-of-fit is discussed.
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I. INTRODUCTION

The essence of any scientific progress is the compar
of theoretical predictions to experimental data. Statistics p
vides the scientist with so-calledgoodness-of-fittests, which
allow us to obtain well-defined probability statements ab
the agreement of a theory with data. By far the most popu
goodness-of-fit test dates back to 1900, when K. Pea
identified the minimum of ax2 function as a powerful tool to
evaluate the quality of the fit@1#. However, it is known that
the Pearsonxmin

2 test is not very restrictive in global analy
ses, where data from different experiments with a large nu
ber of data points are compared to a theory depending
many parameters. The reason for this is that in such a ca
given parameter is often constrained only by a small sub
of the data. If the rest of the data~which can contain many
data points! are reasonably fitted, a possible problem in t
fit of the given parameter is completely washed out by
large amount of data points. A discussion of this problem
various contexts can be found e.g. in Refs.@2–4#.

To evade this problem a modification of the originalxmin
2

test was proposed in Ref.@5# to evaluate the goodness-of-fi
of neutrino oscillation data in the framework of four-neutrin
models. There this method was calledparameter goodness
of-fit ~PG!, and it can be applied when the global data co
sists of statistically independent subsets. The PG is base
parameter estimation and hence it avoids the problem of
ing diluted by many data points. It tests thecompatibilityof
the different data sets in the framework of the given theo
ical model. In this note we give a formal derivation of th
probability distribution function~p.d.f.! for the test statistics
of the PG, and discuss the application and interpretation
the PG on some examples. The original motivation for
PG was the analysis of neutrino oscillation data. Howev
the method may be very useful also in other fields of phys
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especially where global fits of many parameters to data fr
several experiments are performed.

The outline of the paper is as follows. In Sec. II we defi
the PG and show that its construction is very similar to t
of the standard goodness-of-fit. The formal derivation of
p.d.f. for the PG test statistics is given in Sec. III, whereas
Sec. IV a discussion of the application and interpretation
the PG is presented. In Sec. V we consider the PG in the
of correlations due to theoretical errors, and we conclude
Sec. VI.

II. GOODNESS-OF-FIT TESTS

We would like to start the discussion by citing th
goodness-of-fit definition given by the Particle Data Gro
~see Sec. 31.3.2. of Ref.@6#!: ‘‘Often one wants to quantify
the level of agreement between the data and a hypoth
without explicit reference to alternative hypotheses. This c
be done by defining agoodness-of-fit statistics, t which is a
function of the data whose value reflects in some way
level of agreement between the data and the hypothe
@ . . . # The hypothesis in question, say,H0 will determine the
p.d.f. g(tuH0) for the statistics. The goodness-of-fit is qua
tified by giving thep value, defined as the probability to fin
t in the region of equal or lesser compatibility withH0 than
the level of compatibility observed with the actual data. F
example, ift is defined such that large values correspond
poor agreement with the hypothesis, then thep value would
be

p5E
tobs

`

g~ tuH0!dt, ~1!

wheretobs is the value of the statistic obtained in the actu
experiment.’’

Let us stress that from this definition of goodness-of
one has complete freedom in choosing a test statistict, as
long as the correct p.d.f. for it is used.
©2003 The American Physical Society20-1
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A. The standard goodness-of-fit

ConsiderN random observablesn5(n i) and let m i(u)
denote the expectation value for the observablen i , where
u5(ua) are P independent parameters which we wish
estimate from the data. Assuming that the covariance ma
S is known one can construct the followingx2 function:

x2~u!5@n2m~u!#TS21@n2m~u!# ~2!

and use its minimumxmin
2 as test statistics for goodness-of-

evaluation:

t~n!5xmin
2 . ~3!

The hypothesis we want to test determines the p.d.f.g(t) for
this statistics. Once the real experiments have been
formed, giving the resultsnobs, the goodness-of-fit is given
by the probability of obtaining at larger thantobs, as ex-
pressed by Eq.~1!. We will refer to this procedure asstan-
dard goodness-of-fit~SG!:

pSG5E
xmin

2 (nobs)

`

g~ t !dt. ~4!

The great success of this method is mostly due to a v
powerful theorem, which was proven over 100 years ago
K. Pearson1 @1# and which greatly simplifies the task of ca
culating the integral in Eq.~4!. It can be shown under quit
general conditions~see e.g. Ref.@7#! that xmin

2 follows a x2

distribution with N2P degrees of freedom~d.o.f.!, so that
g(t)5 f x2(t,N2P). Therefore, the integral in Eq.~4! be-
comes

pSG5CL„xmin
2 ~nobs!,N2P…[E

xmin
2 (nobs)

`

f x2~ t,N2P!dt,

~5!

where CL(x2,n) is the confidence levelfunction ~see e.g.,
Fig. 31.1 of Ref.@6#!.

In the following we propose a modification of the SG, f
the case when the data can be divided into several sta
cally independent subsets.

B. The parameter goodness-of-fit

ConsiderD statistically independent sets of random o
servablesn r5(n i

r) (r 51, . . . ,D), each consisting ofNr ob-
servables (i 51, . . . ,Nr), with Ntot5( rNr . Now a theory
depending onP parametersu5(ua) is confronted with the
data. The totalx2 is given by

1Pearson uses the slightly different test statistic

xPearson
2 5(

i

@ni2mi~u!#2

m i~u!

and assumes thatn i are independent. We prefer to use insteadx2 of
Eq. ~2!, because in this way also correlated data can be conside
03302
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x tot
2 ~u!5(

r 51

D

x r
2~u!, ~6!

where

x r
2~u!5@n r2mr~u!#TSr

21@n r2mr~u!# ~7!

is thex2 of the datasetr. Now we define

x̄2~u!5x tot
2 ~u!2(

r 51

D

x r ,min
2 , ~8!

wherex r ,min
2 5xr

2(ûr), and ûr(n r) are the values of the pa
rameters which minimizex r

2 . Instead of the totalx2 mini-
mum we propose now to use

t~n!5x̄min
2 5x̄2~ ũ! ~9!

as test statistics for goodness-of-fit evaluation. In Eq.~9!

x̄min
2 is the minimum ofx̄2 defined in Eq.~8!, andũ are the

parameter values at the minimum ofx̄2, or equivalently of
x tot

2 . If we now denote byḡ(t) the p.d.f. for this statistics
we can define the corresponding goodness-of-fit by mean
Eq. ~1!, in complete analogy to the SG case:

pPG5E
x̄min

2 (nobs)

`

ḡ~ t !dt. ~10!

This procedure was proposed in Ref.@5# with the namepa-
rameter goodness-of-fit~PG!. Its construction is very similar
to the SG, except that nowx̄2 rather thanx2 is used to define
the test statistics.

In the next section we will show that also in the case
the PG the calculation of the integral appearing in Eq.~10!
can be greatly simplified. Let us define

Pr[rankF]mr

]u G . ~11!

This corresponds to the number ofindependentparameters
~or parameter combinations!, constrained by a measureme
of mr .2 Then under general conditionx̄min

2 is distributed as a
x2 with Pc5( r Pr2P d.o.f., so that Eq.~10! reduces to

pPG5CL„x̄min
2 ~nobs!,Pc…. ~12!

III. THE PROBABILITY DISTRIBUTION FUNCTION
OF x̄min

2

In this section we derive the distribution of the test stat
tics for the PG. This can be done in complete analogy to
SG. Therefore, we start by reviewing the correspond
proof for the SG, see e.g. Ref.@7#.

d.

2If in some pathological casesPr depends on the point in the
parameter space, Eq.~11! should be evaluated at the true values
the parameters, see Sec. III B.
0-2
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A. The standard goodness-of-fit

Let us start with thex2 defined in Eq.~2!. Since the
covariance matrixS is a real, positive and symmetric matr
one can always find an orthogonal matrixO and a diagonal
matrix s such thatS215OTs2O. Hence, we can write thex2

in the following way:

x2~u!5@n2m~u!#TS21@n2m~u!#5y~u!Ty~u!, ~13!

where we have defined the new variablesy(u)5sO@n
2m(u)#. Let us denote the~unknown! true values of the
parameters byu 0 and we define

x[y~u 0!5sO@n2m~u 0!#. ~14!

Now we assume that thexi are normal distributed with mea
0 and the covariance matrix1N , which in particular implies
that they are statistically independent. This assumption
obviously correct if the datan i are normal distributed with
meanm i(u 0) and covariance matrixS. However, it can be
shown~see e.g. Refs.@7–9#! that this assumption holds for
large class of arbitrary p.d.f. for the data under quite gen
conditions, especially in the large sample limit, i.e. largen i .
Under this assumption it is evident thatx2(u 0)5xTx follows
a x2 distribution withN d.o.f. According to Eq.~3! the test
statisticst for the SG is given by the minimum of Eq.~13!.
To derive the p.d.f. fort we state the following proposition

Proposition 1. Letû be the values of the paramete
which minimize Eq. (13). Then

xmin
2 5x2~u0!2Dx2, ~15!

with xmin
2 5ŷTŷ and ŷ[y(û), has ax2 distribution with N

2P d.o.f. andDx2 has ax2 distribution with P d.o.f. and is
statistically independent ofxmin

2 .
A rigorous proof of this proposition is somewhat intrica

and can be found e.g. in Ref.@7#. In the following we give an
outline of the proof dispensing with mathematical details
the sake of clarity.

The û are obtained by solving the equations

]x2

]ua
52yT

]y

]ua
50. ~16!

It can be proved~see e.g. Ref.@7#! under very general con
ditions that Eq.~16! has a unique solutionû which converges
to the true valuesu 0 in the large sample limit. In this sens
it is a good approximation3 to write

ŷ'x1B~ û2u 0!, ~17!

where we have defined the rectangularN3P matrix B by

B[
]y

]u
U

u 0

. ~18!

3Note that Eq.~17! is exact ify depends linearly on the paramete
u.
03302
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Without loss of generality we assume that4 rank@B#5P.
From Eq.~17! we obtain

]y

]u
U

û

'
]y

]u
U

u 0

5B. ~19!

Using this last relation in Eq.~16! we find that ŷ fulfils
ŷTB50. Multiplying Eq. ~17! from the left side byBT this
leads to

BTx52BTB~ û2u 0!. ~20!

Using Eqs.~17! and ~20! we obtain

ŷTŷ5xTx2~ û2u 0!TBTB~ û2u 0!. ~21!

The symmetricP3P matrix BTB can be written asBTB
5Rb2RT with the orthogonal matrixR and the diagonal ma
trix b, and Eq.~20! impliesb21RTBTx52bRT(û2u 0). De-
fining theN3P matrix

H[BRb21 ~22!

we find (û2u 0)TBTB(û2u 0)5xTHHTx, and Eq.~21! be-
comes

ŷTŷ5xT~1N2HHT!x. ~23!

Note that the matrixH obeys the orthogonality relation
HTH51P , showing that theP column vectors of lengthN in
H are orthogonal. We can addN2P columns to the matrixH
completing it to an orthogonalN3N matrix: V5(H,K).
Here K is an N3(N2P) matrix with KTK51(N2P) , HTK
50 and the completeness relation

VVT5HHT1KKT51N . ~24!

Now we transform to the new variables

x85VTx, x85S v

wD 5S HTx

KTxD , ~25!

wherev5HTx is a vector of lengthP andw5KTx is a vector
of length N2P. In general, if the covariance matrix of th
random variablesx is S, then the covariance matrixS8 of
x85VTx is given byS85VTSV. Hence, since in the presen
casexi are normal distributed with mean 0 and covarian
matrix 1N the same is true forxi8 . In particular alsov andw
are statistically independent. Using Eqs.~23! and ~24! we
deduce

4If rank@B#5P8,P some of the parametersua are not indepen-
dent. In this case one can perform a change of variables and ch
a new sets of parametersub8 , such thatx2(u8) depends only on the
first P8 of them. The remaining parameters are not relevant for
problem and can be eliminated from the very beginning. Wh
repeating the construction in the new set of variables, the numbe
parameters will be equal to the rank ofB.
0-3
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ŷTŷ5xT~1N2HHT!x5xTKKTx5wTw ~26!

proving thatxmin
2 5ŷTŷ has ax2 distribution withN2P d.o.f.

Finally, we obtain

Dx25x2~u0!2xmin
2 5xTx2 ŷTŷ5xTHHTx5vTv, ~27!

showing thatDx2 has ax2 distribution withP d.o.f. and is
statistically independent ofxmin

2 . h

B. The parameter goodness-of-fit

Moving now to the PG we generalize in an obvious w
the formalism of the previous section by attaching and ind
r for the data set to each quantity. We have

x tot
2 ~u!5(

r
yr

T~u!yr~u!, x tot
2 ~u 0!5(

r
xr

Txr , ~28!

and

x̄2~u![x tot
2 ~u!2(

r
x r,min

2 5(
r

@yr
T~u!yr~u!2 ŷr

Tŷr #.

~29!

Proposition 2. Letũ be the values of the paramete

which minimizex̄2(u), or equivalentlyx tot
2 (u). Then x̄min

2

5x̄2(ũ) follows ax2 distribution with Pc d.o.f., with

Pc[P2P, P[(
r 51

D

Pr , Pr[rank@Br # and

Br[
]yr

]u
U

u 0

. ~30!

The matricesBr are of orderNr3P. Since a given data
set r may depend only on some of theP parameters, or on
some combination of them, in general one has to conside
possibility of Pr<P.5 This means that the symmetricP
3P matrix Br

TBr can be writen asRrbr
TbrRr

T , whereRr is an
orthogonal matrix andbr is aPr3P ‘‘diagonal’’ matrix, such
that the diagonalP3P matrix br

Tbr will have Pr nonzero
entries. Let us now define theP3Pr ‘‘diagonal’’ matrix br

21

in such a way that (br
21) i i [1/(br) i i for each of thePr non-

vanishing entries ofbr , and all other elements are zero.
analogy to Eq.~22! we introduce now the matrices

Hr[BrRrbr
21 , ~31!

which are of orderNr3Pr . To prove Proposition 2 we de
fine the vectors of lengthP

5Note that the definition ofPr in Eq. ~30! is equivalent to that
given in Eq.~11!.
03302
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Y~u![S H1
Ty1~u!

A

HD
T yD~u!

D , X[S H1
Tx1

A

HD
T xD

D 5S v1

A

vD

D .

~32!

In the first part of the proof we show thatx̄min
2 5ỸTỸ with

Ỹ[Y(ũ). With arguments similar to the ones leading to E
~21! we find

(
r

ỹr
T ỹr5(

r
xr

Txr2~ ũ2u 0!T(
r

Br
TBr~ ũ2u 0!.

~33!

Using further Eq.~23! for eachr we obtain

x̄min
2 5(

r
ỹr

T ỹr2(
r

ŷr
Tŷr

5(
r

xr
THrHr

Txr2~ ũ2u 0!T(
r

Br
TBr~ ũ2u 0!.

~34!

On the other hand we can use that the minimum valuesũ are
converging to the true valuesu 0 in the large sample limit
and write Ỹ'X1B(ũ2u 0), where we have defined theP
3P matrix

B[
]Y

]u
U

u 0

5S H1
TB1

A

HD
T BD

D . ~35!

Without loss of generality we assume that rank@B#5P.
Again, with arguments similar to those leading to Eq.~21!
we derive

ỸTỸ5XTX2~ ũ2u 0!TB TB~ ũ2u 0!. ~36!

Using Eq.~31! it is easy to show thatB TB5( rBr
TBr , and by

comparing Eqs.~36! and~34! we can readily verify the rela-
tion x̄min

2 5ỸTỸ.
To complete the proof we identifyY↔y and X↔x and

proceed in perfect analogy to the proof of Proposition
given in Sec. III A. In particular, from the arguments pr
sented there it follows that the elements ofvr are Pr inde-
pendent Gaussian variables with mean 0 and varianc
Since theD data sets are assumed to be statistically indep
dent the vectorX containsP independent Gaussian variable
with mean 0 and variance 1. In analogy to the matricesH,K
of Sec. III A we now obtain theP3P matrix H and theP
3Pc matrix K, which fulfil HHT1KK T51P , and Eq.~36!
becomes

ỸTỸ5XT~1P2HHT!X. ~37!

In analogy to the vectorw from Eq. ~25! we now defineW
[K TX, containingPc5P2P independent Gaussian var
ables with mean 0 and variance 1, and Eq.~37! gives
0-4
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TESTING THE STATISTICAL COMPATIBILITY OF . . . PHYSICAL REVIEW D 68, 033020 ~2003!
ỸTỸ5XTKK TX5WTW. ~38!

From Eq. ~38! it is evident thatx̄min
2 5ỸTỸ follows a x2

distribution withPc d.o.f. h
Let us conclude this section by noting that both Propo

tion 1 and 2 areexact if the data are multinormally distrib
uted and the theoretical predictionsm,mr depend linearly on
the parametersu. If these requirements are not fulfilled, sim
plified expressions~5! and~12! are valid only approximately
and to calculate the SG and the PG one should in princ
use general formulas~4! and~10! instead. However, we wan
to stress that under rather general conditionsxmin

2 and x̄min
2

will be distributed as ax2 in the large sample limit~i.e. for
largen andn r , respectively!, so that even in the general ca
Eqs.~5! and ~12! can still be used.

IV. EXAMPLES AND DISCUSSION

In this section we illustrate the application of the PG
some examples. In Sec. IV A we show that in the simple c
of two measurements of a single parameter the PG is ide
cal to the intuitive method of considering the difference
the two measurements, and in Sec. IV B we show the c
sistency of the PG and the SG in the case of indepen
data points. In Sec. IV C we discuss the application of
PG to neutrino oscillation data in the framework of a ster
neutrino scheme. This problem was the original motivat
to introduce the PG in Ref.@5#. In Sec. IV D we add some
general remarks on the PG.

A. The determination of one parameter by two experiments

Let us consider two data sets observing the data po
n15(n i

1) ( i 51, . . . ,N1) andn25(n i
2) ( i 51, . . . ,N2). Fur-

ther, we assume that the expectation values for both data
can be calculated from a theory depending on one param
h: mr(h) (r 51,2), and alln i

r are independent and norm
distributed around the expectation values with variances i

r .
Then we have the followingx2 functions for the two data
setsr 51,2:

x r
2~h!5(

i 51

Nr S n i
r2m i

r~h!

s i
r D 2

5x r ,min
2 1S ĥ r2h

ŝ r
D 2

, ~39!

where ĥ r5ĥ r(n r) is the value of the parameter at thex2

minimum of data setr. Now one may ask the questio
whether the results of the two experiments are consist
More precisely, we are interested in the probability of obta
ing ĥ1 andĥ2 under the assumption that both result from t
sametrue valueh0.

A standard method~see e.g. Ref.@8# Sec. 14.3! to answer
this question is to consider the variable

z5
ĥ12ĥ2

Aŝ1
21ŝ2

2
. ~40!
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If the theory is correctz is normal distributed with mean 0
and variance 1. Hence we can answer the question ra
above by citing the probability of obtaininguzu>uzobsu:

p512E
2uzobsu

uzobsu
f N~z;0,1!dz, ~41!

where f N denotes the normal distribution.
If the PG is applied to this problem, one obtains fro

Eq. ~39!

x̄2~h!5S ĥ12h

ŝ1
D 2

1S ĥ22h

ŝ2
D 2

, ~42!

and after some simple algebra one findsx̄min
2 5z2, wherez is

given in Eq.~40!. Obviously, applying Eq.~12! to calculate
the p value according to the PG with the relevant number
d.o.f. Pc522151 leads to the same result as Eq.~41!.

Hence, we arrive at the conclusion that in this simple c
of testing the compatibility of two measurements for t
mean of a Gaussian, the PG is identical to the intuit
method of testing whether the difference of the two value
consistent with zero.

B. Consistency of PG and SG for independent data points

As a further example of the consistency of the PG meth
we consider the case ofN statistically independent dat
pointsn i . Let us denote bys i the standard deviation of th
observationn i ( i 51, . . . ,N), and the corresponding theore
ical prediction bym i(u), whereu is the vector ofP param-
eters. For simplicity, we assume that each of them i depends
at least on one parameter. Then thex2 is given by

x2~u!5(
i 51

N

x i
2~u!,

where

x i
2~u!5

@n i2m i~u!#2

s i
2

, ~43!

and from the SG construction~see Sec. III A! we know that
xmin

2 follows a x2 distribution with N2P degrees of free-
dom. On the other hand, if we consider each single data p
as an independent data set and we apply the PG construc
we easily see thatx i ,min

2 50 for eachi. This implies x̄2(u)

5x2(u), and in particularx̄min
2 5xmin

2 . Therefore, for the spe
cific case considered here one expects that SG and PG
identical.

To show that this is really the case let us first note t
each matrix]m i /]u consists just ofa single line, and there-
fore it obviously has rank one. Hence, Eq.~11! gives Pi
51 for eachi. This reflects the fact that from the measur
ment of a single observable we cannot deriveindependent
bounds onP parameters, but onlya single combinationof
them is constrained. Therefore, the number of d.o.f. relev
for the calculation of the PG is given byPc5( i 51

N Pi2P
0-5



e
t

ion
om

er
e

am

a

i-
g
m
s
a
ne
th
th

D

ts

a-
-

w

-
is
e

er

lues
all
re-

eric
the

sis
rst
are
ino
f

w-
nly
r-
nd

ter.
een

here
how
e is
in
ber

ive
ni-
ted
the
n in

e-
the

pa-
-

the
sets
. 1.
ven

m
ults

vor
of

r in
out

nts,

ct

M. MALTONI AND T. SCHWETZ PHYSICAL REVIEW D 68, 033020 ~2003!
5N2P, which is exactly the number of d.o.f. relevant for th
SG. Hence, we have shown that in the considered case
two methods are equivalent and consistent.

C. Application to neutrino oscillation data

In this section we use real data from neutrino oscillat
experiments to discuss the application of the PG and to c
pare it to the SG. We consider the so-called~212! neutrino
mass scheme, where a fourth~sterile! neutrino is introduced
in addition to the three standard model neutrinos. In gen
this model is characterized by nine parameters: three n
trino mass-squared differencesDmsol

2 , Dmatm
2 , DmLSND

2 and
six mixing parametersusol, uatm, uLSND, dm , hs , he . An
interested reader can find precise definitions of the par
eters, applied approximations, an extensive discussion
physics aspects, and references in Refs.@3,5,10#. Here we are
interested mainly in the statistical aspects of the analysis,
therefore we consider a simplified scenario.

We do not include LSND, KARMEN and all the exper
ments sensitive toDmLSND

2 and the corresponding mixin
angle uLSND. Hence, we are left with three datasets fro
solar, atmospheric and reactor neutrino experiments. The
lar dataset includes the current global solar neutrino d
from the SNO, Super-Kamiokande, Gallium and Chlori
experiments, making a total of 81 data points, whereas
atmospheric data sample includes 65 data points from
Super-Kamiokande and MACRO experiments~for details of
the solar and atmospheric analysis see Ref.@10#!. In the re-
actor data set we include only the data from the KamLAN
and the CHOOZ experiments, leading to a total of 13114
527 data points@11,12#. In general the reactor experimen
~especially CHOOZ! depend in addition toDmsol

2 and usol

also onDmatm
2 and a further mixing parameterhe . However,

we adopt here the approximationhe51, which is very well
justified in the (212) scheme@3#. This implies that the de-
pendence onDmatm

2 disappears and we are left with the p
rametersDmsol

2 andusol for both reactor experiments, Kam
LAND as well as CHOOZ.

Under these approximations the experimental datasets
are using are described only by the six parametersDmsol

2 ,
Dmatm

2 , usol, uatm, hs , dm . The parameter structure is illus
trated in Fig. 1. This simplified analysis serves well for d
cussing the statistical aspects of the problem; a more gen
treatment including a detailed discussion of the physics
given in Refs.@3,5#. In Table I we summarize the paramet

ATM SOL

∆m2
ATM ∆m2

SOL

dµ ηs

θATM θSOL

REAC

FIG. 1. Parameter structure of the three data sets from rea
solar and atmospheric neutrino experiments.
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dependence, the number of data points, the minimum va
of thex2 functions and the resulting SG. We observe that
the datasets analyzed alone give a very good fit. Let us
mark that especially in the case of reactor and atmosph
data the SG is suspicious high. This may indicate that
errors have been estimated very conservatively.

In Table II we show the results of an SG and PG analy
for various combinations of the three datasets. In the fi
three lines in the table only two out of the three datasets
combined. By combining solar and atmospheric neutr
data we find axmin

2 of 126.7. With the quite large number o
d.o.f. of 140 this gives an excellent SG of 78.3%. If, ho
ever, the PG is applied we obtain a goodness-of-fit of o
3.5431026. The reason for this very bad fit can be unde
stood from Figs. 1 and 2. From Fig. 1 one finds that solar a
atmospheric data are coupled by the parameterhs . In Fig. 2
Dx2 is shown for both sets as a function of this parame
We find that there is indeed significant disagreement betw
the two datasets:6 solar data prefers values ofhs close to 0,
whereas atmospheric data prefers values close to one. T
are two reasons why this strong disagreement does not s
up in the SG. First, since the SG of both datasets alon
very good, there is much room to ‘‘hide’’ some problems
the combined analysis. Second, because of the large num
of data points many of them actually might not be sensit
to the parameterhs , where the disagreement becomes ma
fest. Hence, the problem in the combined fit becomes dilu
due to the large number of data points. We conclude that
PG is very sensitive to disagreement of the data sets, eve
cases where the individualx2 minima are very low, and
when the number of data points is large.

In the reactor1 solar analysis one finds complete agre
ment between the two data sets for the SG as well as for
PG. This reflects the fact that the determination of the
rametersusol andDmsol

2 from reactor and solar neutrino ex
periment are in excellent agreement@11#. Finally, in the case
of the combined analysis of reactor and atmospheric data
PG cannot be applied. In our approximation these data
have no parameter in common as one can see in Fig
Hence, it makes no sense to test their compatibility, or e
to combine them at all.

In the lower part of Table II we show the results fro
combining all three data sets. By comparing these res

6The physical reason for this is that both datasets strongly disfa
oscillations into sterile neutrinos. Since it is a generic prediction
the (212) scheme that the sterile neutrino must show up eithe
solar or in atmospheric neutrino oscillations the model is ruled
by the PG test@5#.

TABLE I. Parameter dependence, total number of data poi
xmin

2 and the corresponding SG for the three data sets.

Dataset Parameters N xmin
2 /d.o.f. SG

Reactor Dmsol
2 ,usol 27 11.5/25 99%

Solar Dmsol
2 ,usol ,hs 81 65.8/78 84%

Atmospheric Dmatm
2 ,uatm,hs ,dm 65 38.4/61 99%

or,
0-6



TESTING THE STATISTICAL COMPATIBILITY OF . . . PHYSICAL REVIEW D 68, 033020 ~2003!
TABLE II. Comparison of SG and PG for various combinations of the datasets from solar~sol!, atmo-
spheric~stm! and reactor~react! neutrino experiments.

Datasets Ntot x tot,min
2 /d.o.f. SG ( r Pr P x̄min

2 /Pc
PG

Sol 1 atm 146 126.7/140 78.3% 314 6 21.5/1 3.5431026

React1 sol 108 77.4/105 98.0% 213 3 0.13/2 93.5%
React1 atm 92 49.9/86 99.9% 214 6 0.0/0
KamL 1 sol 1 atm 159 132.7/153 88.1% 21314 6 21.7/3 7.5331025

React1 sol 1 atm 173 138.2/167 95.0% 21314 6 21.7/3 7.5331025
n
1

ric

w
S
t

in

th
nd
d
S
n

im
o

e
be
s

th

on

in

te
a
r

fo

e

in

is-

ly

is
e
.
fit

di-

ed
in

ge
ata
ata
tion
ed
tive

ed

of

ino
bal(
with that from the solar1 atmospheric analysis one ca
appreciate the advantage of the PG. If we add only the
data points from KamLAND to the solar and atmosphe
samples we observe that the SG improves from 78.3%
88.1%, whereas if both reactor experiments are included
obtain an SG of 95.0%. This demonstrates that the
strongly depends on the number of data points, especially
14 data points from CHOOZ contain nearly no relevant
formation, since the best fit values ofDmsol

2 and usol are in
the no-oscillation regime for CHOOZ implying thatx2 is
flat. Moreover, since reactor data are not sensitive to
parameterhs ~see Fig. 1! the disagreement between solar a
atmospheric data becomes even more diluted by the a
tional reactor data points. This clearly illustrates that the
can be drastically improved by adding data which contain
information on the relevant parameters. Also the PG
proves slightly by adding reactor data, reflecting the go
agreement between solar and reactor data. However, th
sulting PG is still very small due to the disagreement
tween solar and atmospheric data in the model under con
eration. Moreover, the PG is completely unaffected by
addition of the CHOOZ data, becausex2 of CHOOZ is flat
in the relevant parameter region, and the PG is sensitive
to the parameter dependence of the datasets.

Finally, we mention that in view of the analyses shown
Table II the meaning ofPc , the number of d.o.f. for PG
becomes clear. It corresponds to the number of parame
coupling the datasets. Solar and atmospheric data
coupled only byhs , hencePc51, whereas reactor and sola
data are coupled byusol andDmsol

2 andPc52. Atmospheric
data has no parameter in common with reactor data, there

0 0.2 0.4 0.6 0.8 1

η
s

0

10

20
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χ− 2
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∆χ2
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∆χ2
atm

χ− 2

FIG. 2. PG for solar and atmospheric neutrino data in the
12) scheme.
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Pc50. In the combination of reactor1 solar1 atmospheric
datasets, the three parametershs , usol, Dmsol

2 provide the
coupling andPc53.

D. General remarks on the PG

~1! Using the relationx̄min
2 5(rDxr

2(ũ) one can obtain
more insight into the quality of the fit by considering th

contribution of each dataset tox̄min
2 . If the PG is poor it is

possible to identify the data sets leading to the problems

the fit by looking at the individual values ofDx r
2(ũ). In this

sense the PG is similar to the so-called ‘‘pull approach’’ d
cussed in Ref.@13# in relation with solar neutrino analysis.

~2! One should keep in mind that the PG is complete
insensitive to the goodness-of-fit of theindividual data sets.
Because of the subtraction of thex r ,min

2 in Eq. ~8! all the
information on the quality of the fit of the datasets alone
lost. One may benefit from this property if the SG of th
individual datasets is very good~see the example in Sec
IV C!. On the other hand, if e.g. one dataset gives a bad
on its own this will not show up in the PG. Only thecom-
patibility of the datasets is tested, irrespective of their in
vidual SGs.

~3! The PG might be also useful if one is interest
whether a dataset consisting of very few data points is
agreement with a large data sample.7 The SG of the com-
bined analysis will be completely dominated by the lar
sample and the information contained in the small d
sample may be drowned out by the large number of d
points. In such a case the PG can give valuable informa
on the compatibility of the two sets, because it is not dilut
by the number of data points in each set and it is sensi
only to the parameter dependence of the sets.

V. CORRELATIONS DUE TO THEORETICAL
UNCERTAINTIES

One of the limitations of the PG is that it can be appli
only if the datasets arestatistically independent. In many
physically interesting situations~for example, different solar
neutrino experiments! this is not the case sincetheoretical
uncertaintiesintroduce correlations between the results

7For example, one could think of a combination of the 19 neutr
events from the Super Nova 1987A with the high statistics glo
solar neutrino data.

2
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different—and otherwise independent—experiments. Ho
ever, in such a case one can take advantage of the so-c
pull approach, which, as demonstrated in Ref.@13#, is
equivalent to the usual covariance method. In that pape
was shown that if correlations due to theoretical errors ex
it is possible to account for them by introducing new para
etersja and adding penalty functions tox2. In this way it is
possible to get rid of unwanted correlations and the PG
be applied. The correlation parametersja should be treated
in the same way as the parametersu of the theoretical model

In this section we illustrate this procedure by consider
a generic experiment with an uncertainty on the normali
tion of the predicted number of events. Let the experim
observe some energy spectrum which is divided intoN bins.
The theoretical prediction for the bini is denoted bym i(u)
depending onP parametersu. In praxis oftenm i(u) is not
known exactly. Let us consider the case of a fully correla
relative errors th . A common method to treat such an error
to add statistical and theoretical errors in quadrature, lead
to the correlation matrix

Si j ~u!5d i j s i ,stat
2 1s th

2 m i~u!m j~u!, ~44!

wheres i ,stat is the statistical error in the bini. In the case of
neutrino oscillation experiments such a correlated error
sults e.g. from an uncertainty of the initial flux normalizatio
or of the fiducial detector volume. Thex2 is given by

x2~u!5 (
i , j 51

N

@n i2m i~u!#Si j
21~u!@n j2m j~u!#, ~45!

wheren i are the observations. As shown in Ref.@13#, instead
of Eq. ~45! we can equivalently use

x2~u,j!5(
i 51

N S n i2jm i~u!

s i ,stat
D 2

1S j21

s th
D 2

, ~46!

and minimize with respect to the new parameterj.
On the other hand, ifj is considered as an addition

parameter, on the same footing asu, all the data points are
formally uncorrelated and it is straightforward to apply t
PG. Subtracting the minimum of the first term in Eq.~46!
with respect tou andj one obtains

x̄2~u,j!5Dx2~u,j!1S j21

s th
D 2

. ~47!

The external information on the parameterj represented by
the second term in Eq.~47! is considered as an addition
dataset. Evaluating the minimum of Eq.~47! for 1 d.o.f. is a
convenient method to test if the best fit point of the mode
in agreement with the constraint on the overall normali
tion. In particular one can identify whether a problem in t
fit comes from the spectral shape~first term! or the total rate
~second term!.

Moreover, one may like to divide the data into two par
set I consisting of bins 1, . . . ,n and and set II consisting o
bins n, . . . ,N, and test whether these datasets are com
ible. Equation 46 can be written as
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x2~u,j!5(
i 51

n S n i2jm i~u!

s i ,stat
D 2

1(
i 5n

N S n i2jm i~u!

s i ,stat
D 2

1S j21

s th
D 2

, ~48!

and subtracting the minima of the first two terms gives
x̄2 relevant for the PG:

x̄2~u,j!5Dx I
2~u,j!1Dx II

2~u,j!1S j21

s th
D 2

. ~49!

Assuming that the datasets I and II both depend on aP

parametersu, the minimum of thisx̄2 has to be evaluated fo
P12 d.o.f. to obtain the PG. This procedure tests whet
the data sets I and II are consistent with each otherand the
constraint on the overall normalization. By considering t
relative contributions of the three terms in Eq.~49! it is pos-
sible to identify potential problems in the fit. For examp
one may test whether a bad fit is dominated only by a sm
subset of the data, e.g. a few bins at the low or high end
the spectrum. Alternatively, the two datasets I and II c
come from two different experiments correlated by a co
mon normalization error, e.g. two detectors observing eve
from the same beam.

It is straightforward to apply the method sketched in th
section also in more complicated situations. For example
there are several sources of theoretical errors leading to m
complicated correlations the pull approach can also be
plied by introducing a parameterja for each theoretical erro
@13#. In a similar way one can treat the case when the co
patibility of several experiments should be tested, which
correlated by common theoretical uncertainties.~Consider
e.g. the various solar neutrino experiments, which are co
lated due to the uncertainties on the solar neutrino flux p
dictions.!

VI. CONCLUSIONS

In this note we have discussed a goodness-of-fit met
which was proposed in Ref.@5#. The so-calledparameter
goodness-of-fitcan be applied when the global data consi
of several statistically independent subsets. Its construc
and application are very similar to the standard goodness
fit. We gave a formal derivation of the probability distribu
tion function of the proposed test statistics, based on s
dard theorems of statistics, and illustrated the application
the PG on some examples. We have shown that in the sim
case of two datasets determining the mean of a Gaussian
PG is identical to the intuitive method of testing whether t
difference of the two measurements is consistent with ze
Furthermore, we have compared the standard goodness-
and the PG by using real data from neutrino oscillation
periments, which have been the original motivation for t
PG. In addition we have illustrated that the so-called p
approach allows us to apply the PG also in cases where
datasets are correlated due to theoretical uncertainties.

The proposed method tests the compatibility of differe
0-8



e
ot
ids
as
th
s
m

a
in
tio
i

y
ba

s-
ci-
an,
ed
ean
y

he
as
fu
in-

TESTING THE STATISTICAL COMPATIBILITY OF . . . PHYSICAL REVIEW D 68, 033020 ~2003!
datasets, and it gives sensible results even in cases wher
errors are estimated very conservatively and/or the t
number of data points is very large. In particular, it avo
the problem that a possible disagreement between dat
becomes diluted by data points which are insensitive to
problem in the fit. The PG can also be very useful when a
consisting of a rather small number of data points is co
bined with a very large data sample.

To conclude, we believe that physicists should keep
open mind when choosing a statistical method for analyz
experimental data. In many cases much more informa
can be extracted from data if the optimal statistical tool
used. We think that the method discussed in this note ma
useful in several fields of physics, especially where glo
analyses of large amount of data are performed.
y
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