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Tribimaximal mixing, discrete family symmetries, and a conjecture connecting the quark
and lepton mixing matrices

Catherine I. Low* and Raymond R. Volkas†

School of Physics, Research Centre for High Energy Physics, The University of Melbourne, Victoria 3010, Australia
~Received 22 May 2003; published 8 August 2003!

Neutrino oscillation experiments~excluding the Liquid Scintillator Neutrino Detector experiment! suggest a
tribimaximal form for the lepton mixing matrix. This form indicates that the mixing matrix is probably
independent of the lepton masses, and suggests the action of an underlying discrete family symmetry. Using
these hints, we conjecture that the contrasting forms of the quark and lepton mixing matrices may both be
generated by such a discrete family symmetry. This idea is that the diagonalization matrices out of which the
physical mixing matrices are composed have large mixing angles, which cancel out due to a symmetry when
the CKM matrix is computed, but do not do so in the MNS case. However, in the cases where the Higgs bosons
are singlets under the symmetry, and the family symmetry commutes withSU(2)L , we prove a no-go theorem:
no discrete unbroken family symmetry can produce the required mixing patterns. We then suggest avenues for
future research.
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I. INTRODUCTION

Experimental observations of neutrino oscillations1 point
to a mixing matrix of the form

UMNS5S A2

3

1

A3
0

2
1

A6

1

A3

1

A2

2
1

A6

1

A3
2

1

A2

D , ~1!

where the flavor eigenstates are related to the mass e
states via (ne ,nm ,nt)

T5UMNS(n1 ,n2 ,n3)T. Such a mixing
pattern has been termed ‘‘tribimaximal mixing’’@2#. ~Majo-
rana phases have not been included in the above mi
matrix as they do not lead to observable effects in osci
tions.! A mixing matrix of this form was first investigated b
Wolfenstein in 1978@3# ~with degenerate mass eigenstatesn1
andn3), and proposed more recently in the light of the ne
experimental observations by Harrison, Perkins and S
@2,4,5# and He and Zee@6,7#. The generation of small devia
tions from tribimaximal mixing has been investigated
Xing @8#.

The tribimaximal form is a very special case of the ge
eral mixing matrix parametrized in the usual way by t
Euler anglesu i j wherei , j 51,2,3. The angleu23, extracted
from atmospheric neutrino experiments@9–12#, takes the

*Electronic address: c.low@physics.unimelb.edu.au
†Electronic address: r.volkas@physics.unimelb.edu.au
1For the purpose of this study, we have assumed the Liquid S

tillator Neutrino Detector~LSND! results@1# have a nonoscillation
explanation. The reader should be aware, however, that this
sumption may be false.
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best fit value of sin2u235
1
2 @13#. Solar neutrino results@14–

20# are accommodated in Eq.~1! through the choice sin2u12
5 1

3 , which is in the middle of the allowed ‘‘large mixing
angle ~LMA ! regions’’ denoted LMA-I and LMA-II @21#.
The third mixing angle, measured by the nonobservation
ne disappearance@22#, is taken as the current best fitu13
50 @13#. Note thatu23 takes the maximum possible valu
while u13 takes the minimum possible value.

A. Mathematics suggested by tribimaximal mixing

If these special mixing angle values are indeed the cor
ones, then it is unlikely that they arise from a random cho
of parameters@23#. This encourages one to look for exact
approximate symmetries of nature, operative even at low
ergy scales, that enforce the special tribimaximal form~or
something close to it!.

1. Mixing angles independent of masses

The elements of the tribimaximal mixing matrix ar
square roots of fractions, whereas the charged lepton ma
appear to have no precise fractional relationships, and ne
do the preferred neutrinoDm2 parameters. This motivate
the construction of models where the mixing angles, thou
precisely defined, are independent of the mass eigenva
Such an approach is to be contrasted with the often con
ered alternative proposal that relates mixing angles to m
ratios @24–27#.

2. Abelian symmetries

Harrison, Perkins and Scott@2# proposed weak basis mas
matrices for charged leptons and neutrinos that gene
tribimaximal mixing. An attractive feature of the propose
mass matrices is that they can be generated by discrete
lian symmetries acting on the three generations of char
leptons and neutrinos. These symmetries dictate the form
the mixing matrix, but leave the masses as free parame
~see above discussion!. The utility of these mass matrice
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suggests that Abelian generation symmetries are interes
candidates for the new symmetries that might explain
neutrino mixing pattern.

B. Aims of this paper

1. Quark and lepton mixing matrices derived from a symmetry

In Sec. II the Harrison, Perkins and Scott proposal@2# will
be reviewed. We will then extend their ideas by conjectur
that the underlying symmetries might simultaneously p
duce a quark mixing matrix that is almost the identity mat
and a leptonic analogue that has the very different tribima
mal form. While we find this an attractive hypothesis, it
not so easy to implement in a completely well-defined ext
sion of the standard model. As we shall see, this propo
requires that left-handed charged leptons and left-han
neutrinos transform differently. But to have the symme
group GSM of the standard model extended toGSM^ GH ,
whereGH is a discrete horizontal or generation symmet
the left-handed charged leptons and left-handed neutr
must transform in the same way under the symmetry, as
are members of the sameSU(2)L doublet.

2. Form-diagonalizable matrices

Section III will define a class of matrices that are invaria
under a symmetry and where the unitary matrices that d
onalize them are independent of the eigenvalues. We
matrices such as these ‘‘form-diagonalizable’’ and prop
them as good candidates for lepton mass matrices bec
they generate mixing angles that are independent of the
genvalues. This section will look at some interesting ma
ematics that relates the symmetry group to the diagona
tion matrices.

3. No-go theorem

Motivated by the symmetries proposed by Harrison, P
kins, and Scott@2#, Sec. IV will investigate the possibility o
using such symmetries to extend the standard model.
assume left-handed neutrinos transform under the symm
in the same way as left-handed charged leptons, and tha
Higgs bosons are singlets. Given these assumptions, we
that tribimaximal mixing, or any other form that is both ph
nomenologically acceptable and predictive, cannot be ge
ated by an unbroken family symmetry.

4. Further symmetries to investigate

Ways around the no-go theorem will be briefly discuss
in Sec. V. Either or both of the assumptions of the theor
— that the Higgs fields are singlets and that the symmetr
unbroken — must be relaxed. The generation symmetry
be extended to the Higgs sector by introducing a numbe
generations of Higgs fields that transform under the sym
try. Majorana neutrinos have different couplings to the Hig
fields from the Dirac charged leptons. As a result a symme
that transforms Higgs fields could potentially explain the d
ferences between the mixing matrices of the leptons and
quarks. Vacuum expectation values of the Higgs fields
break the symmetry and result in different mixing matric
03300
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from those of the exact symmetry cases. Work along th
lines is in progress. For some recent efforts, see for insta
@28–32#.

II. DISCRETE SYMMETRIES CONSTRAIN
MIXING MATRICES

Many theories have been constructed using symmetrie
generate preferred mass patterns and mixing angles. Fo
ample, democratic mass matrices can be generated from
S3L3S3R generation symmetry@33–35#, Le-Lm-Lt symme-
try leads to bimaximal mixing~disfavored by the curren
data! @36–38#, and S2 permutation symmetry acting onnm
andnt results in maximal atmospheric mixing@39–41#.

A. How symmetries constrain mixing matrices

The mixing matrix is related to the charged lepton ma
matrix M , and the neutrino mass matrixM n in any weak
basis by the unitary diagonalization matricesU,L

and Un .
We use

diag~me ,mm ,mt!5U,L

† M ,Ul R
,

diag~m1 ,m2 ,m3!5Un
†M nUn* , ~2!

to extract the lepton mixing matrix via

UMNS5U,L

† Un . ~3!

The symmetries of the standard model do not dictate
form of the mass matrices. The charged lepton mass ma
M , can be any 333 matrix, and if neutrinos are Majorana
thenM n must be symmetric, but is otherwise unconstrain
As a result the mixing matrix can be of any unitary form, a
the masses are unrestricted by the standard model sym
tries. However, if a generation symmetry holds, the form
the mass matrices — and hence the mixing matrix —
constrained. For the Lagrangian to be invariant under tra
formations of the three generations of Majorana neutrin
the left-handed charged leptons and the right-handed cha
leptons,

n→Xnn, ,L→XL,L , ,R→XR,R , ~4!

the mass matrices must obey the restrictions,

M n5Xn
†M nXn* , M ,5XL

†M ,XR , ~5!

whereXn , XL andXR are 333 unitary matrices. The specia
case of the vector-like symmetry would have left and rig
handed fields transforming identically, withXL5XR .

B. Harrison, Perkins and Scott’s proposed symmetries

Harrison, Perkins and Scott@2# suggested mass matrice
of the form
7-2
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M ,5S a b c

c a b

b c a
D , M n5S x 0 y

0 z 0

y 0 x
D , ~6!

where the parametersa,b,c are related to the three charge
lepton masses, andx,y,z provide three independent neutrin
masses. The charged lepton mass matrix is of circulant f
and can be generated by a cyclic permutation (C3) symme-
try. An S23S2 symmetry generates the neutrino mass mat

The unitary transformation matrices are

XL15XR15S 0 0 1

1 0 0

0 1 0
D ; XL25XR25S 0 1 0

0 0 1

1 0 0
D ;

Xn15S 0 0 1

0 1 0

1 0 0
D ; Xn25S 1 0 0

0 21 0

0 0 1
D . ~7!

The proposed mass matrices are diagonalized by

U,L
5U,R

5
1

A3 S 1 1 1

1 v v*

1 v* v
D ,

Un5S 1

A2
0 2

1

A2

0 1 0

1

A2
0

1

A2

D , ~8!

wherev[e2p i /3, which combine to give tribimaximal mix-
ing.

C. Using the symmetry to constrain quark mixing
to small angles: A conjecture

Harrison, Perkins and Scott’s idea can be extended to
clude the quarks, and produce small quark mixing. We c
jecture that the up-type quarks and the down-type qua
transform under theC3 generation symmetry in the sam
way as the charged leptons transform above. This will fo
both quark mass matrices into circulant form

Mu5S au bu cu

cu au bu

bu cu au

D , Md5S ad bd cd

cd ad bd

bd cd ad

D . ~9!

These mass matrices are diagonalized by the same m
Uu5Ud , resulting inUCKM5Uu

†Ud5I , corresponding to no
quark mixing. As with the leptons, all quark masses are
restricted by the symmetry.

The unbroken symmetry producesUCKM5I , andUMNS to
be of tribimaximal form. Small symmetry breaking can
introduced to generate off-diagonal terms in the quark m
03300
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ing matrix. This breaking may also deviate the lepton mixi
matrix away from tribimaximal form.

The quarks transform together, whereas the neutri
transform independently of the charged leptons. This
counts for the differences between the quark and the lep
mixing matrices.

Under the symmetry the neutrinos transform in a differe
way from all the other fermions. This may be associated w
other special characteristics of the neutrinos, for example,
Majorana nature of the neutrino, or the lack of elect
charge.

D. SU„2…L constraint on standard model extensions

The conjecture outlined above shows that discrete gen
tion symmetries can produce tribimaximal lepton mixing a
small quark mixing. However, these symmetries cannot
incorporated into an extension of the standard model with
structureSU(2)L ^ GH , where theGH is the discrete hori-
zontal or family symmetry. The symmetries of Eq.~7! do not
commute withSU(2)L , as the left-handed neutrinos tran
form under the symmetry in a different way from the le
handed charged leptons, whereas a symmetry that is an
tension to the standard model should preserve the stan
model symmetrySU(2)L , by having members of the sam
SU(2)L doublet transform together@42#. SU(2)L is not vio-
lated by the quark transformations as the up and down-t
quarks transform in the same way.

This constraint makes it difficult to find any symmet
that gives rise to tribimaximal mixing. Section IV invest
gates whether it is possible for any discrete family symme
to predict tribimaximal mixing when theSU(2)L constraint
is included.

III. FORM-DIAGONALIZABLE MATRICES

A. Definition

A form-diagonalizable matrix is a matrix that is invaria
under a symmetry, and with diagonalization matrices wh
elements depend on the form of the original matrix only.
a result the diagonalization matrices are independent of
matrices’ eigenvalues.

An n3n form-diagonalizable matrix is defined by

F5(
i

k

a il i ~10!

where

~1! l i are n3n matrices of pure numbers, anda i are n
complex parameters;

~2! l i are simultaneously diagonalizable by two unitary m
tricesUL andUR , whereUL

†l iUR is diagonal for alli;
~3! l i are invariant under a group transformation:l i

5XL
†l iXR ;

~4! k<n.
Note that fork,n, only k eigenvalues are independent
These conditions result in the masses being linear com

nations ofa i , and the diagonalization matrices,UL andUR ,
being independent of these masses.
7-3
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B. Examples of form-diagonalizable matrices
with Abelian symmetries

Equation ~6! has two examples of form diagonalizab
mass matrices, with the symmetries being the Abelian gro
C3 andS23S2.

The form of the mass matrices is dependent not only
the symmetry group, but also on the representation of
group that the transformation matricesXL andXR take.

1. Regular representation of Abelian groups

An interesting relationship occurs between the symme
group and the diagonalization matrix when the symmetry
an Abelian group in the regular representation. The reg
representation of a group of ordern, is a set ofn matricesXi .
The matrices are unitary, have sizen3n, and their elements
are 0 or 1. A matrixM is considered to be invariant unde
the regular representation of a group whenM5Xi

TMXi for
all i.

For Abelian symmetries the mass matrix that is invari
under the regular representation is a linear combination o
the representation matrices themselves, i.e.l i of Eq. ~10! are
the Xi . This is shown in Appendix A.

The matrixU that diagonalizes the mass matrixM can be
simply derived from then one-dimensional representation
of the groupG: Each column of the diagonalization matrix
made up of a normalized list of the elements of the o
dimensional representations, and each column correspon
a different one-dimensional representation. As all the ir
ducible representations of Abelian groups are one dim
sional, the character table lists these representations, an
diagonalization matrix can be read directly off the table.

2. C3 example

This relationship between the regular representation
the diagonalization matrices is illustrated by theC3 symme-
try of the charged leptons outlined in Sec. II B.

The charged lepton mass matrix of Eq.~6! is invariant
under the regular representation ofC3 which is given by

H S 1 0 0

0 1 0

0 0 1
D ,S 0 1 0

0 0 1

1 0 0
D ,S 0 0 1

1 0 0

0 1 0
D J .

~11!

The mass matrix is made up of a linear combination of
variant matricesl i . In this case thel i are the representatio
matrices themselves, forming the mass matrixM , of Eq. ~6!.
The diagonalization matrix is

U,5
1

A3 S 1 1 1

1 v v*

1 v* v
D ~12!

where v5e2p i /3, v* , 1 are the cube roots of unity. Thi
diagonalization matrix can be constructed using the o
dimensional representations ofC3 which are $1,1,1%,
03300
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$1,v,v* %, $1,v* ,v%. Each column of the diagonalizatio
matrix is made up of a one-dimensional representation,
the matrix is normalized.

Representations other than the regular representations
also produce form-diagonalizable mass matrices. An
ample of this is theS23S2 symmetry which generates th
mass matrixM n of Eq. ~6!. In cases other than the regula
representation, the relationship between the representatio
the symmetry and the diagonalization matrix is not clear.

IV. NO-GO THEOREM FOR DISCRETE
FAMILY SYMMETRIES

Individual lepton number symmetryU(1)Le
^ U(1)Lm

^ U(1)Lt
is a symmetry of the standard model with massle

neutrinos, and is known to be broken by neutrino oscil
tions. However, if a discrete subgroup of this symmetry
unbroken by the neutrino mass term, this will constrain
form of the mixing matrix.

The success of the symmetries in Eq.~7! in generating
tribimaximal mixing, and the idea that a subgroup
U(1)Le

^ U(1)Lm
^ U(1)Lt

may still remain unbroken with
massive neutrinos motivates the systematic study of disc
Abelian group symmetries, with the added constraint of h
ing the left-handed charged leptons transform in the sa
way as the left-handed neutrinos.

This section shows that discrete unbroken genera
symmetries~Abelian and non-Abelian! with the SU(2)L
constraint and the other assumptions stated below ca
generate tribimaximal mixing. In fact, the only mixing ma
trix that falls within experimental bounds and is generated
a symmetry, is the mixing matrix that is completely unr
stricted by the symmetry. In this section we assume that
Higgs bosons are singlets of the symmetry.

Section IV B shows that discrete non-Abelian generat
symmetries give rise to degenerate charged leptons, pro
that non-Abelian symmetries cannot produce mass and m
ing schemes that agree with experiment.

Section IV C considers how Abelian groups can constr
the charged lepton Dirac mass matrix. Exactly how the tra
formations alter the neutrino mass matrix depends on
type of mass term, because Majorana mass terms are
strained by the symmetry in a different way from Dirac ma
terms. Because of this the no-go theorem for Abelian gro
is segmented into three cases; Majorana neutrinos~Sec.
IV D !, Dirac neutrinos~Sec. IV E!, and Majorana neutrinos
when the mass term is generated by the seesaw mecha
~Sec. IV F!. In the seesaw case we assume that the rig
handed Majorana mass matrix is invertible.

We show that in all three cases all mixing schemes t
can be produced by Abelian symmetries are not allowed
experiment, except for the case where the mixing is not c
strained by the symmetry at all.

A. Equivalent representations yield identical mixing

The matricesXLi and XRi of Eq. ~5! that transform the
leptons are representations of the symmetry group. Differ
representations of the same symmetry group provide dif
7-4



ge
n
it

a

on
is

k
as

s
pr
y.
ta
g

na
ia
nt

g
an
af-
lian

n
nd

tion
me
s are

ns
are

ex-
rre-

,

just
ck

TRIBIMAXIMAL MIXING, DISCRETE FAMILY . . . PHYSICAL REVIEW D 68, 033007 ~2003!
ent restrictions on the mass matrices. As there are three
erations of leptons we are interested in three dimensio
representations only. A given symmetry group has an infin
number of three dimensional representations, but only a
nite number of inequivalent representations.

Two different representationsXi andYi , are considered to
be equivalent if they are related by a similarity transform
tion

Yi5V†XiV, ~13!

whereV is any unitary matrix.
Appendix B shows that two equivalent transformati

matrices restrict the mixing matrix in an identical way. Th
is because the weak basis leptons (nLX

,l LX
)T in the case

where the representationXi is chosen, are related to the wea
basis leptons (nLY

,l LY
)T in the Yi case by a basis change,

per

S nLX

l LX

D→S nLY

l LY

D 5V†S nLX

l LX

D . ~14!

Since the mixing matrix is associated with the mass ba
of the leptons, not the weak basis, the two equivalent re
sentations will restrict the mixing matrix in an identical wa
As there are only a finite number of inequivalent represen
tions of any discrete group it is possible to find all mixin
matrices that can be generated by a given group.

All Abelian representations are equivalent to a diago
representation—a representation where all matrices are d
onal. The converse is also true; no non-Abelian represe
03300
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tion has matrices that are all diagonal~as diagonal matrices
commute!. This provides a convenient way of analyzin
many groups at once. First we will consider non-Abeli
groups by examining how nondiagonal transformations
fect mass matrices and mixing, and then we consider Abe
representations by looking at diagonal representations.

B. Non-Abelian groups

Non-Abelian groups have Abelian~for example the trivial
representation! and non-Abelian representations. Abelia
representations of non-Abelian groups are not faithful, a
are also representations of Abelian groups. This sec
shows that non-Abelian representations constrain so
charged leptons to be degenerate. Abelian representation
covered by Secs. IV D, IV E and IV F.

As explained in Sec. IV A, two equivalent representatio
correspond to two different bases. So if the mass matrices
invariant under some non-Abelian transformation, there
ists a non-Abelian representation of the group that co
sponds to the charged lepton mass basisM ,

5diag(me ,mm ,mt). As this representation is non-Abelian
there is at least one matrix that is not diagonal.

Mass degeneracy can be concluded by considering
one nondiagonal transformation matrix. For example a blo
diagonal unitary matrix

XL5S x 0 0

0 y w

0 z v
D , ~15!

constrainsM ,M ,
† by
n if

ut all the
nstrained
M ,M ,
†5XL

†M ,M ,
†XL5S x* 0 0

0 y* z*

0 w* v*
D S me

2 0 0

0 mm
2 0

0 0 mt
2
D S x 0 0

0 y w

0 z v
D ~16!

5S me
2uxu2 0 0

0 mm
2 uyu21mt

2uzu2 mm
2 y* w1mt

2z* v

0 mm
2 yw* 1mt

2zv* mt
2uvu21mm

2 uwu2
D . ~17!

The 232 block in XL rotatesmm
2 and mt

2 , so the diagonal mass matrix will only be invariant under this transformatio
mm

2 5mt
2 . An XL that is not in block diagonal form will result in three degenerate charged leptons.

The same argument also applies when theXR transformation is non-Abelian. In this case theXR transformation constrains
M ,

†M ,5diag(me
2 ,mm

2 ,mt
2) by M ,

†M ,5XR
†M ,

†M ,XR , also resulting in degenerate masses.

C. Abelian representations and charged lepton mass matrices

In the case of Abelian groups, every representation is equivalent to a diagonal matrix representation, so to find o
mixing matrices that can be produced by an Abelian group, we can restrict the study to how mass matrices can be co
by diagonal representations.

The diagonal representations

XL5diag~eif1,eif2,eif3!, XR5diag~eis1,eis2,eis3!, ~18!

constrain the charged lepton mass matrixM , by M ,5XL
†M ,XR , or, more explicitly,
7-5
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M ,5S r s t

u v w

x y z
D 5S re2 i (f12s1) se2 i (f12s2) te2 i (f12s3)

ue2 i (f22s1) ve2 i (f22s2) we2 i (f22s3)

xe2 i (f32s1) ye2 i (f32s2) ze2 i (f32s3)
D . ~19!

Not all of the information contained in the mass matrix is required in order to find the masses and the mixing matr
may simply compute the Hermitian squared mass matrixM ,M ,

† and then diagonalize it via the left-handed matrixU,L
only,

as perU,L

† M ,M ,
†U,L

5diag(me
2 ,mm

2 ,mt
2). Now, M ,M ,

† is restricted by theXL transformation by

M ,M ,
†5S a b c

b* d f

c* f * g
D 5XL

†M ,M ,
†XL5S a be2 i (f12f2) ce2 i (f12f3)

b* ei (f12f2) d f e2 i (f22f3)

c* ei (f12f3) f * ei (f22f3) g
D . ~20!

The XL transformation constrains the Hermitian squared mass matrix in the following way: The diagonal elements ofM ,M ,
†

are unrestricted by the symmetry; whenf i5f j the i j th term in M ,M ,
† is unrestricted by the symmetry; otherwise thei j th

element will be zero.
Note thatM ,M ,

† can also be constrained by theXR matrix. For example, ifXL5I andXR52I thenM ,5M ,M ,
†50, even

though theXL transformation does not constrain the mass matrix.
To make the no-go theorem simpler, we look first at howUMNS can be constrained by theXL transformation, before

analyzing how theXR transformation alters the situation. For nearly all choices ofXL , theXL tranformation constrainsM ,M ,
†

andM n in such a way to force the mixing matrixUMNS into a form that has been ruled out experimentally. In these case
XR transformations are irrelevant, the symmetry having been ruled out for all possible choices ofXR .

D. Abelian representations and Majorana neutrinos

The left-handed transformationXL restricts the Majorana neutrino mass matrix by

M n5S A B C

B D E

C E F
D 5S Ae22if1 Be2 i (f11f2) Ce2 i (f11f3)

Be2 i (f11f2) De22if2 Ee2 i (f21f3)

Ce2 i (f11f3) Ee2 i (f21f3 Fe22if3

D . ~21!

The XL transformation multiplies each element of the mass matrix by a phase. If the phase equals 1, then the el
unconstrained by the symmetry. If the phase is not equal to 1, then the matrix element is forced to be zero. Ifeif i561, then
the i i th element of the matrix will be unrestricted by the symmetry. Ifeif i5e2 if j then thei j th element will be unrestricted
Otherwise the elements will be zero.

We have performed an exhaustive analysis of all possible forms of lepton mixing matrices that can be produce
Abelian generation symmetry. The mixing matrices are listed below. Interchanging columns corresponds to relabeling
mass eigenstates.

In the following matricess[ sinu and c[ cosu, whereu is unconstrained by the symmetry. The phaseseid i are not
neccesarily physical.

Mixing matrix Form of XL required for all XL

UMNS1
5S ceid1 seid2 0

2seid3 ceid4 0

0 0 1
D XL5diag~eif1,eif1,61!

XL5diag~61,61,eif3!

XL5diag~61,61,71!

~22!

UMNS2
5S 1 0 0

0 ceid1 seid2

0 2seid3 ceid4

D XL5diag~61,eif2,eif2!

XL5diag~eif1,61,61!

XL5diag~61,71,71!

~23!

UMNS3
5S ceid1 0 seid2

0 1 0

2seid3 0 ceid4

D XL5diag~eif1,61,eif1!

XL5diag~61,eif1,61!

XL5diag~71,61,71!

~24!
033007-6



UMNS4
5S 2

1

A2
eid5

1

A2
eid5 0

s

A2
eid1

s

A2
eid1 ceid2 D XL5diag~eif1,e2 if1,e2 if1! ~25!

within
s can
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c

A2
eid3

c

A2
eid3 2seid4

UMNS5
5S s

A2
eid1

s

A2
eid1 ceid2

c

A2
eid3

c

A2
eid3 2seid4

2
1

A2
eid5

1

A2
eid5 0

D XL5diag~eif1,eif1,e2 if1! ~26!

UMNS6
5S s

A2
eid1

s

A2
eid1 ceid2

2
1

A2
eid5

1

A2
eid5 0

c

A2
eid3

c

A2
eid3 2seid4

D XL5diag~eif1,e2 if1,eif1! ~27!

UMNS7
5S 1/A2 1/A2 0

21/A2 1/A2 0

0 0 1
D XL5diag~eif1,e2 if1,e2 if3!

XL5diag~eif1,e2 if1,61!
~28!

UMNS8
5S 1/A2 0 1/A2

0 1 0

21A2 0 1/A2
D XL5diag~eif1,eif2,e2 if1!

XL5diag~eif1,61,e2 if1!
~29!

UMNS9
5S 1 0 0

0 1/A2 1/A2

0 21/A2 1/A2
D XL5diag~eif1,eif2,e2 if2!

XL5diag~61,eif2,e2 if2!
~30!

UMNS10
5Trivial2massless neutrinos

XL5diag~eif1,eif2,eif3!

f iÞ61 for at least oneXL , for all i ,

f jÞf i for at least oneXL , for all i , j .

~31!

UMNS11
5Unrestricted by the symmetry XL56I . ~32!

In casesUMNS4,5,6
, m152m2 andm350. In casesUMNS7,8,9

, the two mixed neutrinos havemi52mj .
Except for the case where the mixing is unrestricted by the symmetry, none of the above mixing matrices fall

experimental bounds. In the unrestricted caseUn is unrestricted, so although right-handed charged lepton transformation
alter U,L

, the mixing matrixUMNS5U,L

† Un will remain unconstrained by the symmetry.
033007-7
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E. Abelian representations and Dirac neutrinos

An Abelian symmetry constrains the neutrino Dirac mass matrix in the same way as the charged lepton Dirac mas
Eq. ~19!, except that the right-handed neutrino may transform in a different way to the right-handed charged leptons

Dirac neutrino mass matrices are diagonalized by diag(m1 ,m2 ,m3)5UnL

† M nUnR
, and the mixing matrix incorporates onl

the left diagonalization matrices.UnL
can be obtained fromM nM n

† which is restricted by theXL transformation byM nM n
†

5XL
†M nM n

†XL .
The possibleUMNS matrices obtainable by the left-handed transformation are listed below. It is possible that the

handed transformations will be able to further restrict the mixing matrices.

Mixing matrix Form of XL required for all XL

UMNS1
5S cl sl 0

2sle
id l cle

id l 0

0 0 1
D XL5diag~eif1,eif1,eif3! ~33!

UMNS2
5S 1 0 0

0 cl sl

0 2sle
id l cle

id l

D XL5diag~eif1,eif2,eif2! ~34!

UMNS3
5S cl 0 sl

0 1 0

2sle
id l 0 cle

id l

D XL5diag~eif1,eif2,eif1! ~35!

UMNS4
5unrestricted byXL XL5eif1I ~36!

UMNS5I

eif1Þeif2 for some XL ,

eif1Þeif3 for some XL ,

and eif2Þeif3 for some XL .

~37!
is

-

th

tio

s
mns
nd
The onlyUMNS that fits in with experiment is the one that
unrestricted byXL , which occurs whenXL5eifI . In this
case bothU,L

andUnL
are unconstrained by theXL transfor-

mation. However,U,L
andUnL

can be restricted by the right

handed transformationsX,R
and XnR

. If one or both of the
two diagonalization matrices remains unrestricted under
right-handed transformations, thenUMNS5U,L

† UnL
will be

unrestricted, independent of how the second diagonaliza
matrix is restricted by the symmetry.

The transformation

X,R
5diag~eis1,eis2,eis3! ~38!

restricts the charged lepton mass matrix by
03300
e

n

M ,5S r s t

u v w

x y z
D ~39!

5XL
†M ,X,R

5S e2 i (f2s1)r e2 i (f2s2)s e2 i (f2s3)t

e2 i (f2s1)u e2 i (f2s2)v e2 i (f2s3)w

e2 i (f2s1)x e2 i (f2s2)y e2 i (f2s3)z
D . ~40!

Either the i th column is unrestricted by the symmetry (f
5s i), or the symmetry constrains columni to be a column
of zeros (fÞs i). A matrix that has one column of zeros ha
one massless charged lepton. A matrix that has no colu
of zeros is completely unconstrained by the symmetry, a
will give an unrestrictedU,L

.
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Therefore, in the case whereXL5eifI , UMNS is unre-
stricted unless one or more of the charged leptons are m
less. As there are no massless charged leptons, we can
clude that for Dirac neutrinos no mixing matrix is compatib
with experiment, except for whenUMNS is completely un-
constrained by the symmetry.

In fact, if the electron is taken to be massless~correspond-
ing to a single column of zeros!, we are convinced thatU,L

is also completely general, and hence, the mixing matrix
unrestricted by the symmetry. In this caseU,L

has the same
number of free parameters as a completely unconstra
diagonalization matrix. This has been backed up by num
cal calculations. The right-handed diagonalization ma
U,R

, however, is restricted by the right-handed transform
tion.

F. Abelian representations and seesaw neutrinos

Majorana neutrino mass matrices that are generated by
seesaw mechanism can be expressed as

M n5Md
TM M

21Md , ~41!

where Md is the Dirac mass matrix, andM M is the right-
handed Majorana mass matrix. This equation is valid wh
M M is invertible. In this section we assume thatM M is in-
vertible.~If the Majorana mass matrix was not invertible, a
had rankn.3, the physical particles would ben ultralight
neutrinos,n heavy neutrinos and 2n26 neutrinos whose
masses are naturally the same size as the other ferm
@43,44#.!

Under theXL transformationsM n is restricted by

M n5XL
†M nXL* , ~42!

the same as when the neutrinos are Majorana but do not
mass terms generated by the seesaw mechanism. Se
IV D lists all the ways thatXL can restrict the mixing matrix
Again, the only mixing matrix that fits with experiment is th
mixing matrix that is unrestricted by the symmetry, whi
occurs whenXL56I . In this case the diagonalization matr
cesU,L

andUn are both unrestricted by theXL transforma-
tion, but can be further restricted by right-handed trans
mations.

The right-handed charged lepton transformation restr
the mass matrix by

M ,5S r s t

u v w

x y z
D ~43!

5XL
†M ,X,R

56S eis1r eis2s eis3t

eis1u eis2v eis3w

eis1x eis2y eis3z
D . ~44!

The argument in the Dirac neutrino section is applica
here also. Either a column of the mass matrix is unrestric
by the symmetry, or it is zero. If all columns are unrestricte
03300
ss-
on-

is

ed
i-
x
-
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n

ns
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tion
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ts

e
d
,

U,L
is unrestricted by the symmetry, giving a mixing matr

that is unconstrained by the symmetry. For each column
is constrained to be zero, there is a corresponding mass
charged lepton which is not seen in nature. If one char
lepton is taken to be massless, the mixing is still unco
strained by the symmetry. Therefore, the only mixing mat
that can be generated by a discrete unbroken symmetry,
is consistent with experiments is the mixing matrix that
completely unconstrained by the symmetry.

V. CONCLUSIONS AND FUTURE WORK

It is tantalizing to suppose that a family symmetry cou
simultaneously explain both the lepton and the quark mix
matrices. We have shown however, that given certain
sumptions, unbroken symmetries acting on the generat
of the fermions cannot produce a lepton mixing matrix
tribimaximal form, or anything approaching this form. R
laxing the assumptions of this no-go theorem may mak
possible for a symmetry to generate an experimentally
lowed mixing matrix.

An option for trying to generate nontrivial mixing in th
lepton sector, while still including theSU(2)L restriction, is
to utilize the different mass generation mechanisms for
neutrinos and charged leptons. Charged lepton masses c
from Yukawa couplings with the standard model Higgs do
blet. Majorana neutrinos will gain masses from anoth
mechanism, possibly using the same Higgs doublets in
seesaw mechanism, or by interaction with a Higgs triplet,
by a different mechanism.

If the Higgs sector is extended by introducing a number
generations of Higgs fields, these Higgs fields can also tra
form under the symmetry. Since the action of the Hig
fields in creating mass matrices is different for neutrin
compared to charged leptons, different restrictions for
two mass matrices will in general result. This in turn w
lead to the diagonalization matrices for neutrinos being d
ferent from that of the charged leptons, possibly resulting
phenomenologically acceptable lepton mixing.

Since both up-like and down-like quarks are Dirac p
ticles, the action of the Higgs fields in creating their ma
matrices is similar for both sectors. It might be possib
then, to construct a model whereby these mass matrices
sufficiently similar so as to yield very similar left
diagonalization matrices. The resultingUCKM may then be
approximately diagonal, in agreement with the observ
form of this matrix. This kind of setting — models with
nonminimal Higgs sector — may be the appropriate one
which to realize our conjecture~see Sec. II C! within a com-
plete and consistent standard model extension, despite
original inspiration coming from the rather different Harr
son, Perkins and Scott proposal.
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APPENDIX A: REGULAR REPRESENTATIONS
OF ABELIAN GROUPS

For a group of rankn, the regular representation involve
n, n3n matrices, with elements 0 and 1. Each row or c
umn contains one 1. Thei j th term equals 1 for one and onl
one matrix in the representation. One of the matrices is
identity.

M is invariant under the regular representation of an A
lian group if M commutes with allX:

M5Xa
TMXa for all a, ~A1!

wherea labels theX matrices, or for each element

Mi j 5(
kl

~XaT! ikMklXl j
a for all a. ~A2!

As the group is Abelian, all theX matrices commute with
each other, so an arbitrary linear combination of theX ma-
trices will also commute with allX. The following argument
shows that ifM commutes withX, the most general Mmust
be a linear combination of theX matrices. The restriction
forces the diagonal elements ofM to be equal:

M115(
kl

~XaT!1kMklXl1
a

5~XT!1 jM j j Xj 15M j j 5M j j

choosing theX to be the one that hasXj 151.

~A3!

Since there exists a matrixX such thatXj 151 for all j, all the
diagonal elements are equal. The diagonal elements ofM can
be written asM11I .

By looking just at the restrictions placed on the mass m
trix by anX that hasXi j 51, we show that ifXkl also equals
1, then theklth element of the mass matrix must be equa
the i j th element,Mi j 5Mkl . Let us take theX that hasX12
51.

M125(
kl

5~XT!1kMklXl2 choose theX that hasX1251.

~A4!

5(
k

~XT!1kMk1X12 choose ak such thatXk151

5Mk1

Mk15(
j

~XT!k jM jkXk1 choosej such thatXjk51

5M jk .
03300
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Repeating this will show that the restrictions from theX that
hasX1251, ensure thatM125Mi j if Xi j 51. M12X describes
the i j terms of the mass matrix, whereXi j 51. The same
argument can be made for anyM element. IfXi j 5Xkl for a
given X, thenMi j 5Mkl , showing that theklth elements of
M can be expressed asMi j X. ThereforeM is a linear com-
bination of theX matrices.

APPENDIX B: PROOF THAT TWO EQUIVALENT
REPRESENTATIONS CONSTRAIN THE MIXING MATRIX

IN AN IDENTICAL WAY

This proof assumes that Higgs bosons are singlets of
generation symmetry, and that the generation symmetry c
mutes withSU(2)L meaningnL transforms in the same wa
as ,L . The seesaw section assumes that the right-han
Majorana mass matrix is invertible.

1. Charged leptons

ALi and BLi are equivalent representations which w
transform the left-handed leptons. Each matrix is labelled
an indexi. A,RiandB,Ri are also equivalent representatio
which transform the right-handed charged leptons:

U1
†ALiU15BLi , U2

†A,RiU25B,Ri . ~B1!

The two different representations restrict the charged lep
mass matrix by

M ,A5ALi
† M ,AA,Ri for all i ,

M ,B5BLi
† M ,BB,Ri for all i

5U1
†ALi

† U1M ,BU2
†A,RiU2 . ~B2!

U1M ,BU2
† has the same restrictions asM ,A . As we assume

that the mass matrices are completely unconstrained a
from the generation symmetry constraints, we can set

U1M ,BU2
†5M ,A . ~B3!

M , is diagonalized byU,L
andU,R

via

diag~me ,mm ,mt!5Ul LA
† MlAUl RA5Ul LB

† MlBUl RB ,

~B4!

so U,LB5U1
†U,LA andU,RB5U2

†U,RA .

2. Majorana neutrinos

The two representations restrict the neutrino mass ma
by

M nA5ALi
† M nAALi* for all i ,

M nB5BLi
† M nBBLi* for all i ,

5U1
†ALi

† U1M nBU1
TALi* U1* . ~B5!
7-10
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U1M nBU1
T has the same restrictions asM nA , and we can

equateU1M nBU1
T5M nA . M n is diagonalized byUn via

diag~m1 ,m2 ,m3!5UnA
† M nAUnA* 5UnB

† M nBUnB* . ~B6!

So UnB5U1
†UnA . Combining this result with the charge

lepton results we see

UMNSB5U,LB
† UnB5U,LA

† U1U1
†UnA

5U,LA
† UnA5UMNS A ~B7!

showing that representationA gives the same mixing matrix
restrictions as representationB.

3. Dirac neutrinos

The right-handed neutrinos transform by the represe
tions AnRi andBnRi which are related by

U3
†AnRiU35BnRi . ~B8!

An identical argument to Appendix B 1 showsU1M nBU3
† has

the same restrictions asM nA , enabling us to setU1M nBU3
†

5M nA . So UnLB5U1
†UnLA , UnRB5U3

†UnRA . Combining
this with the charged lepton result we see that the mix
matrix for A is the same as the mixing matrix forB:

UMNSB5Ul LB
† UnB5Ul LA

† U1U1
†UnA

5Ul LA
† UnA5UMNSA , ~B9!

showing that the two equivalent representations restrict
mixing in the same way.

4. Seesaw neutrinos

This section assumes that the Majorana mass matri
invertible, so the resultant light neutrino mass matrix is giv
by M n5Md

TM M
21Md .
. B

03300
a-

g

e

is
n

From Appendix B 3, (U1MdBU3
†) has the same restric

tions asMdA , so set them to be equal.
From Appendix B 2, the right-handed Majorana mass te

constraints show (U3* M MBU3
†) has the same restrictions a

M MA , so they can be set equal.
The resultant light neutrino mass term has the restricti

M nA5MdAM MA
21 MdA

T

5~U1MdBU3
†!~U3M MB

21 U3
T!~U3* MdB

T U1
T!

5U1MdBM MB
21 MdB

T U1
T

5U1M nBU1
T . ~B10!

So M nA andM nB are related by a basis change — the sa
as the case with nonseesaw Majorana neutrinos. Diagon
ing,

diag~m1 ,m2 ,m3!5UnA
† M nAUnA*

5UnA
† U1M nBU1

TUnA*

5UnB
† M nBUnB* . ~B11!

So UnB5U1
†UnA .

So the mixing matrices for the two representations are

UMNSB5Ul LB
† UnB5Ul LA

† U1U1
†UnA

5Ul LA
† UnA5UMNSA . ~B12!

Therefore, two different, but equivalent, representations
strict the mixing matrix in the same way.
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