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Neutrino oscillation experimentexcluding the Liquid Scintillator Neutrino Detector experimesuggest a
tribimaximal form for the lepton mixing matrix. This form indicates that the mixing matrix is probably
independent of the lepton masses, and suggests the action of an underlying discrete family symmetry. Using
these hints, we conjecture that the contrasting forms of the quark and lepton mixing matrices may both be
generated by such a discrete family symmetry. This idea is that the diagonalization matrices out of which the
physical mixing matrices are composed have large mixing angles, which cancel out due to a symmetry when
the CKM matrix is computed, but do not do so in the MNS case. However, in the cases where the Higgs bosons
are singlets under the symmetry, and the family symmetry commutesSwi¢g), , we prove a no-go theorem:
no discrete unbroken family symmetry can produce the required mixing patterns. We then suggest avenues for
future research.
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I. INTRODUCTION best fit value of sif¥,3= 2% [13]. Solar neutrino resultgl4—
20] are accommodated in E¢l) through the choice sfid;,
Experimental observations of neutrino oscillatibpsint =1, which is in the middle of the allowed “large mixing
to a mixing matrix of the form angle (LMA) regions” denoted LMA-I and LMA-II[21].
The third mixing angle, measured by the nonobservation of
\ﬁ i 0 v disappearancg22], is taken as the current best fif;
3 3 =0 [13]. Note that#,5 takes the maximum possible value,
while 6,5 takes the minimum possible value.
1 1 1
Unns= \/6 \/§ \/E ' @ A. Mathematics suggested by tribimaximal mixing
1 1 1 If these special mixing angle values are indeed the correct
- % ﬁ - E ones, then it is unlikely that they arise from a random choice

of parameter$23]. This encourages one to look for exact or
approximate symmetries of nature, operative even at low en-
where the flavor eigenstates are related to the mass eigesrgy scales, that enforce the special tribimaximal fdon
states via fe,v,,7,) ' =Uwns(v1,72,73)T. Such a mixing  something close to )it
pattern has been termed “tribimaximal mixin§2]. (Majo-
rana phases have not been included in the above mixing 1. Mixing angles independent of masses
matrix as they do not lead to observable effects in oscilla- 1o alements of the tribimaximal mixing matrix are
tions) A mixing matrix of this form was first investigated by g ,are roots of fractions, whereas the charged lepton masses
Wolfenstein in 19783] (with degenerate mass eigenstates ,nnear to have no precise fractional relationships, and neither
andvs), and proposed more recently in the light of the newq, the preferred neutrindm? parameters. This motivates

experimental observations by Harrison, Perkins and Scothe construction of models where the mixing angles, though
[2,4,5 and He and Zeg6,7]. The generation of small devia- acisely defined, are independent of the mass eigenvalues.
tions from tribimaximal mixing has been investigated by g,ch an approach is to be contrasted with the often consid-

Xing [8]'_ ) ) ) ) ered alternative proposal that relates mixing angles to mass
The tribimaximal form is a very special case of the gen'ratios[24—23.

eral mixing matrix parametrized in the usual way by the
Euler angless;; wherei,j=1,2,3. The anglé,;, extracted 2. Abelian symmetries
from atmospheric neutrino experimenit8—12|, takes the '

Harrison, Perkins and Scd@] proposed weak basis mass
matrices for charged leptons and neutrinos that generate
*Electronic address: c.low@physics.unimelb.edu.au tribimaximal mixing. An attractive feature of the proposed
"Electronic address: r.volkas@physics.unimelb.edu.au mass matrices is that they can be generated by discrete Abe-
IFor the purpose of this study, we have assumed the Liquid Scini@an symmetries acting on the three generations of charged
tillator Neutrino DetectokLSND) results[1] have a nonoscillation leptons and neutrinos. These symmetries dictate the form of
explanation. The reader should be aware, however, that this athe mixing matrix, but leave the masses as free parameters

sumption may be false. (see above discussipnThe utility of these mass matrices
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suggests that Abelian generation symmetries are interestirfgpom those of the exact symmetry cases. Work along these
candidates for the new symmetries that might explain thdines is in progress. For some recent efforts, see for instance

neutrino mixing pattern. [28-32.
B. Aims of this paper Il. DISCRETE SYMMETRIES CONSTRAIN
1. Quark and lepton mixing matrices derived from a symmetry MIXING MATRICES
In Sec. Il the Harrison, Perkins and Scott propd&akill Many theories have been constructed using symmetries to

be reviewed. We will then extend their ideas by conjecturinggenerate preferred mass patterns and mixing angles. For ex-
that the underlying symmetries might simultaneously pro-ample, democratic mass matrices can be generated from an
duce a quark mixing matrix that is almost the identity matrix Sz X Sz generation symmetr{33—-35, L¢-L ,-L, symme-

and a leptonic analogue that has the very different tribimaxitry leads to bimaximal mixingdisfavored by the current
mal form. While we find this an attractive hypothesis, it is datg [36—38, and S, permutation symmetry acting on,

not so easy to implement in a completely well-defined extenand v results in maximal atmospheric mixing9—41.

sion of the standard model. As we shall see, this proposal
requires that left-handed charged leptons and left-handed
neutrinos transform differently. But to have the symmetry o o
group Ggy, of the standard model extended @x,® Gy, The mixing matrix is r_elated to the charg_ed lepton mass
where Gy, is a discrete horizontal or generation symmetry,matrix M, and the neutrino mass matr, in any weak
the left-handed charged leptons and left-handed neutrindd@sis by the unitary diagonalization matridgg, andU,.
must transform in the same way under the symmetry, as theywe use
are members of the san®UJ(2), doublet.

A. How symmetries constrain mixing matrices

diagme,mﬂ,m,)=U}LM€U,R,
2. Form-diagonalizable matrices

Section Il will define a class of matrices that are invariant diagm;,m,,mg)=U'M U* i)
under a symmetry and where the unitary matrices that diag-
onalize them are independent of the eigenvalues. We dup ayiract the lepton mixing matrix via
matrices such as these “form-diagonalizable” and propose
them as good candidates for lepton mass matrices because
they generate mixing angles that are independent of the ei-
genvalues. This section will look at some interesting math-
ematics that relates the symmetry group to the diagonaliza- The symmetries of the standard model do not dictate the
tion matrices. form of the mass matrices. The charged lepton mass matrix

M, can be any X3 matrix, and if neutrinos are Majorana,
3. No-go theorem thenM, must be symmetric, but is otherwise unconstrained.

Motivated by the symmetries proposed by Harrison, perAs a result the mixing mgtrix can be of any unitary form, and
kins, and Scotf2], Sec. IV will investigate the possibility of (1€ masses are unrestricted by the standard model symme-
using such symmetries to extend the standard model. Wii€S: However, if a generation symmetry holds, the form of
assume left-handed neutrinos transform under the symmeti{}€ Mass matrices — and hence the mixing matrix — is
in the same way as left-handed charged leptons, and that t nstrained. For the Lagrangian to be invariant under trans-

Higgs bosons are singlets. Given these assumptions, we fif@'mations of the three generations of Majorana neutrinos,
that tribimaximal mixing, or any other form that is both phe- the left-handed charged leptons and the right-handed charged

nomenologically acceptable and predictive, cannot be genel€PtONS,
ated by an unbroken family symmetry.

Unns=U7, U, 3

V—>XVV, €|_—>X|_€|_, fR—>XR€R, (4)
4. Further symmetries to investigate

Ways around the no-go theorem will be briefly discussed® Mmass matrices must obey the restrictions,
in Sec. V. Either or both of the assumptions of the theorem
— that the Higgs fields are singlets and that the symmetry is M,=XIM X5, M =X[MXg, ®)
unbroken — must be relaxed. The generation symmetry can
be extended to the Higgs sector by introducing a number ofyhereX,, X, andXg are 3x 3 unitary matrices. The special
generations of Higgs fields that transform under the symmecase of the vector-like symmetry would have left and right-

try. Majorana neutrinos have different couplings to the Higgshanded fields transforming identically, wid) = Xg.
fields from the Dirac charged leptons. As a result a symmetry

that transforms Higgs fields could potentially explain the dif-
ferences between the mixing matrices of the leptons and the
guarks. Vacuum expectation values of the Higgs fields can Harrison, Perkins and Scdi2] suggested mass matrices
break the symmetry and result in different mixing matricesof the form

B. Harrison, Perkins and Scott’s proposed symmetries
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ing matrix. This breaking may also deviate the lepton mixing
matrix away from tribimaximal form.

' (®) The quarks transform together, whereas the neutrinos
transform independently of the charged leptons. This ac-

counts for the differences between the quark and the lepton
where the parameteesb,c are related to the three charged mixing matrices.

lepton masses, andy,z provide three independent neutrino  ynder the symmetry the neutrinos transform in a different
masses. The charged lepton mass matrix is of circulant foryay from all the other fermions. This may be associated with

and can be generated by a cyclic permutatio)(symme-  qther special characteristics of the neutrinos, for example, the
try. An S, X S, symmetry generates the neutrino mass matrixyajorana nature of the neutrino, or the lack of electric

a b c x 0 vy
M,=|Cc a b|], M,=l0 z O
b ¢ a y 0 X

The unitary transformation matrices are charge.
0 01 010 D. SU(2), constraint on standard model extensions
Xu=Xp=| 1 0 015 X p=Xg={ 0 0 1}; The conjecture outlined above shows that discrete genera-
0 1 0 1 00 tion symmetries can produce tribimaximal lepton mixing and

small quark mixing. However, these symmetries cannot be
0 01 1 0 O incorporated into an extension of the standard model with the
X,=[0 1 0f; X,=|0 -1 0. (7 structureSU(2), ® Gy, where theGy, is the discrete hori-
zontal or family symmetry. The symmetries of Ed@) do not
100 0 0 1 commute withSU(2), , as the left-handed neutrinos trans-
form under the symmetry in a different way from the left-

The proposed mass matrices are diagonalized b
prop ! 29 ' 4 handed charged leptons, whereas a symmetry that is an ex-

1 1 1 tension to the standard model should preserve the standard
_ _ 1 * model symmetrnySU(2),, by having members of the same
U =Ue= ﬁ R K SU(2), doublet transform togeth¢A2]. SU(2), is not vio-
1 o o lated by the quark transformations as the up and down-type

quarks transform in the same way.

1 1 This constraint makes it difficult to find any symmetry
—= 0 -—= that gives rise to tribimaximal mixing. Section IV investi-
2 T hethor it s oo o -
gates whether it is possible for any discrete family symmetry
u=| 0 1 0 |, (8)  to predict tribimaximal mixing when th8U(2), constraint
is included.
1 1
— 0 -
\/E \/E lll. FORM-DIAGONALIZABLE MATRICES
where w=e?"""3, which combine to give tribimaximal mix- A. Definition
Ing. A form-diagonalizable matrix is a matrix that is invariant
_ . . under a symmetry, and with diagonalization matrices whose
C. Using the symmetry to constrain quark mixing elements depend on the form of the original matrix only. As
to small angles: A conjecture a result the diagonalization matrices are independent of the

Harrison, Perkins and Scott's idea can be extended to inMatrices’ eigenvalues. o _
clude the quarks, and produce small quark mixing. We con- An nxn form-diagonalizable matrix is defined by
jecture that the up-type quarks and the down-type quarks K
transform under theC; generation symmetry in the same F=E ks (10)
way as the charged leptons transform above. This will force oo
both quark mass matrices into circulant form

where
ay by ¢y g bg Cq (1) \; are nXn matrices of pure numbers, ang are n
M,=|Cu a, by|, Myg=|Cqd ag bg|. (9 complex parameters;
b, c, a, by ¢y ag (2) \j are simultaneously diagonalizable by two unitary ma-

tricesU, andUg, whereUI)\iUR is diagonal for alli;
These mass matrices are diagonalized by the same matr{8) \; are invariant under a group transformatioi;

U,=Uy, resulting inUcxm= UIUdz I, corresponding to no =XI)\iXR;

quark mixing. As with the leptons, all quark masses are un¢4) k=<n.

restricted by the symmetry. Note that fork<<n, only k eigenvalues are independent.
The unbroken symmetry productsxy =1, andU yns to These conditions result in the masses being linear combi-

be of tribimaximal form. Small symmetry breaking can be nations ofe;, and the diagonalization matricad, andUg,
introduced to generate off-diagonal terms in the quark mixbeing independent of these masses.
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B. Examples of form-diagonalizable matrices {lLw,0*}, {1,0*,w}. Each column of the diagonalization
with Abelian symmetries matrix is made up of a one-dimensional representation, and

Equation (6) has two examples of form diagonalizable the matrix is normalized.

mass matrices, with the symmetries being the Abelian groups Representations ot_her tha_n the regular repre_sentations can
C, andS,x S,. also produce form-diagonalizable mass matrices. An ex-

The form of the mass matrices is dependent not only ofMPle Of this is theS, X S, symmetry which generates the

the symmetry group, but also on the representation of thg1ass matrixM, of Eq. (6). In cases other than the regular
group that the transformation matricks and X take. representation, the relat|.onsh|p .bet\./veen th(_a representation of
the symmetry and the diagonalization matrix is not clear.

1. Regular representation of Abelian groups
IV. NO-GO THEOREM FOR DISCRETE

An interesting relationship occurs between the symmetry
FAMILY SYMMETRIES

group and the diagonalization matrix when the symmetry is
an Abelian group in the regular representation. The regular |ndividual lepton number symmetrny (1), ®U(1),

representation ofa group of orda:.rls aseton mqtrlcesxi ' ®U(1), is a symmetry of the standard model with massless
The matrices are unitary, have siz&n, and their elements T

are 0 or 1. A matrixM is considered to be invariant under N€utrinos, and is known to be broken by neutrino oscilla-
the regular representation of a group wher=X'MX; for tions. However, if a dl_screte subgroup (_)f th_|s symmetry is
all i ' unbroken by the neutrino mass term, this will constrain the

For Abelian symmetries the mass matrix that is invariantform of the mixing matrix. S . .
under the regular representation is a linear combination of all . '!'he success (.)f the symmetr!es in B@) in generating
the representation matrices themselveshi@f Eq. (10) are tribimaximal mixing, and the |_dea th_at a subgroup of
the X; . This is shown in Appendix A. U(l)Le®U(1)LM®U(1)LT may still remain unbroken with
The matrixU that diagonalizes the mass matkikcan be ~ Massive neutrinos motivates the systematic study of discrete
simply derived from then one-dimensional representations Abelian group symmetries, with the added constraint of hav-
of the groupG: Each column of the diagonalization matrix is ing the left-handed charged leptons transform in the same
made up of a normalized list of the elements of the oneWay as the left-handed neutrinos. .
dimensional representations, and each column corresponds to This section shows that discrete unbroken generation
a different one-dimensional representation. As all the irresymmetries(Abelian and non-Abelianwith the SU(2),
ducible representations of Abelian groups are one dimernconstraint and the other assumptions stated below cannot
sional, the character table lists these representations, and tegnerate tribimaximal mixing. In fact, the only mixing ma-

diagonalization matrix can be read directly off the table.  trix that falls within experimental bounds and is generated by
a symmetry, is the mixing matrix that is completely unre-

2. C; example stricted by the symmetry. In this section we assume that the
Ia|iggs bosons are singlets of the symmetry.
Section IV B shows that discrete non-Abelian generation
: . symmetries give rise to degenerate charged leptons, proving
try of the charged leptons outllned_ln Sec. |l B . . that non-Abelian symmetries cannot produce mass and mix-
The charged lepton mass'matnx of E(@) is invariant ing schemes that agree with experiment.
under the regular representation@§ which is given by Section IV C considers how Abelian groups can constrain
1 the charged lepton Dirac mass matrix. Exactly how the trans-
formations alter the neutrino mass matrix depends on the
0 type of mass term, because Majorana mass terms are con-
0

This relationship between the regular representation an
the diagonalization matrices is illustrated by the symme-

l 3

strained by the symmetry in a different way from Dirac mass

terms. Because of this the no-go theorem for Abelian groups
(11 is segmented into three cases; Majorana neutrif&esc.

IV D), Dirac neutrinogSec. IV B, and Majorana neutrinos
The mass matrix is made up of a linear combination of in-when the mass term is generated by the seesaw mechanism
variant matrices\; . In this case thea; are the representation (Sec. IV B. In the seesaw case we assume that the right-
matrices themselves, forming the mass maltixof Eq.(6).  handed Majorana mass matrix is invertible.

1 00
0 10
0 0 1

= O O

10 0
0 1 1
0 0 0

= O O

The diagonalization matrix is We show that in all three cases all mixing schemes that
can be produced by Abelian symmetries are not allowed by
1 1 1 experiment, except for the case where the mixing is not con-
U€=i 1 o o (12) strained by the symmetry at all.
V3 1 ow*

A. Equivalent representations yield identical mixing

where 0=e?"", w*, 1 are the cube roots of unity. This  The matricesX,; and Xg; of Eq. (5) that transform the
diagonalization matrix can be constructed using the oneleptons are representations of the symmetry group. Different
dimensional representations of; which are {1,1,1}, representations of the same symmetry group provide differ-
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ent restrictions on the mass matrices. As there are three getien has matrices that are all diagoriak diagonal matrices

erations of leptons we are interested in three dimensionalommutg. This provides a convenient way of analyzing

representations only. A given symmetry group has an infinitanany groups at once. First we will consider non-Abelian

number of three dimensional representations, but only a figroups by examining how nondiagonal transformations af-

nite number of inequivalent representations. fect mass matrices and mixing, and then we consider Abelian
Two different representation§ andY;, are considered to representations by looking at diagonal representations.

be equivalent if they are related by a similarity transforma- _

tion B. Non-Abelian groups

Ry Y 13 Non—Abe.Iian groups have Abelie(lfor examplle the trivia!

i iV representation and non-Abelian representations. Abelian
representations of non-Abelian groups are not faithful, and
are also representations of Abelian groups. This section
shows that non-Abelian representations constrain some

matrices restrict the mixing matrix in an identical way. This charged leptons to be degenerate. Abelian representations are
. . T H .
is because the weak basis Ieptons_x(ILX) in the case covered by Secs. IV D, IV E and IV F.

whereV is any unitary matrix.
Appendix B shows that two equivalent transformation

VL
=T

where the representatiof) is chosen, are related to the weak g explained in Sec. IV A, two equivalent representations
per invariant under some non-Abelian transformation, there ex-

ists a non-Abelian representation of the group that corre-

Viy YLy X
( I )_’( I A 14 =diag(me,m,,m,). As this representation is non-Abelian,
x v x there is at least one matrix that is not diagonal.

of the leptons, not the weak basis, the two equivalent repre@n€ nondiagonal tran§formati0n matrix. For example a block
sentations will restrict the mixing matrix in an identical way. diagonal unitary matrix

basis leptonss#,I,,)" in theY; case by a basis change, as correspond to two different bases. So if the mass matrices are
sponds to the charged Ilepton mass basM,
Since the mixing matrix is associated with the mass basis Mass degeneracy can be concluded by considering just
As there are only a finite number of inequivalent representa-

. . o . . o x 0 O
tions of any discrete group it is possible to find all mixing
matrices that can be generated by a given group. X =0y wj, (15
All Abelian representations are equivalent to a diagonal 0 z v
representation—a representation where all matrices are diag-
onal. The converse is also true; no non-Abelian representa:onstrainsMgM} by
|
x* 0 O0\/m> 0 O0\/x 0 O
M MI=xIMMIX =l O y* 2z 0 m 0 0Oy w (16)
0 w* p* 0 0 m 0 z v
m2|x|? 0 0
2 2 2 2
- 0 mely[?+mZz|?  miy*w+mizt | (17)

0 miyw +mizv*  mZfv|?+m?|w|?

The 2x2 block in X, rotatesmi and mf, so the diagonal mass matrix will only be invariant under this transformation if
mi:mf. An X, that is not in block diagonal form will result in three degenerate charged leptons.
The same argument also applies whenXhgransformation is non-Abelian. In this case g transformation constrains

MM =diag(mZ,mZ,m?) by M{M,=XiMIMXg, also resulting in degenerate masses.

C. Abelian representations and charged lepton mass matrices

In the case of Abelian groups, every representation is equivalent to a diagonal matrix representation, so to find out all the
mixing matrices that can be produced by an Abelian group, we can restrict the study to how mass matrices can be constrained
by diagonal representations.

The diagonal representations

X =diage'?1,e'%2,e'¢3)  Xz=diage'"1,e'72,e'73), (18
constrain the charged lepton mass maiix by M€=X[M€XR, or, more explicitly,
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r s t re (41701 ggild1702) g (417 03)
Mo=lu v w|= ue (¢2701) g (2702 g ilda—03) | (19
Xy z Xefi(¢37o'1) yefi(d’B*"'Z) Zefi(‘z’B*UB)

Not all of the information contained in the mass matrix is required in order to find the masses and the mixing matrix. One
may simply compute the Hermitian squared mass mMj;M}f and then diagonalize it via the left-handed matlig(L only,

as perUj M M{U, =diag(mi,mZ,m?). Now, M M is restricted by the, transformation by

a b C a beﬁi(¢17¢2) Ce*i(¢17¢3)
MMi=| b* d f|=xIMM!x = b*e¥17¢ d fei(d2-93) | (20
ct f* g crel(b1=¢3)  f*gi(do ) g

The X transformation constrains the Hermitian squared mass matrix in the following way: The diagonal eIenIé@MIof
are unrestricted by the symmetry; whein= ¢; theijth term in MgM} is unrestricted by the symmetry; otherwise ifigh
element will be zero.

Note thatM eMZ can also be constrained by thg matrix. For example, iX, =1 andXg=—1 thenM ,= M{;M}=O, even
though theX, transformation does not constrain the mass matrix.

To make the no-go theorem simpler, we look first at hOyys can be constrained by thé, transformation, before
analyzing how theXy transformation alters the situation. For nearly all choiceX,of the X, tranformation constrainil eM}
andM,, in such a way to force the mixing matrbys into a form that has been ruled out experimentally. In these cases the
Xg transformations are irrelevant, the symmetry having been ruled out for all possible choXgs of

D. Abelian representations and Majorana neutrinos

The left-handed transformatioxy restricts the Majorana neutrino mass matrix by

A B C Ae 2d1  Be i(41t¢2) Ceild1t )
M=|B D E|=| Bei(41+42 De 2142 Ee i(d2t¢3) | 21)
C E F Ce (#1t¢3) Eg i(d2tés Fe 2i¢3

The X, transformation multiplies each element of the mass matrix by a phase. If the phase equals 1, then the element is
unconstrained by the symmetry. If the phase is not equal to 1, then the matrix element is forced to beeZeroHf, then
theiith element of the matrix will be unrestricted by the symmetne!fi=e "¢ then theijth element will be unrestricted.
Otherwise the elements will be zero.

We have performed an exhaustive analysis of all possible forms of lepton mixing matrices that can be produced by an
Abelian generation symmetry. The mixing matrices are listed below. Interchanging columns corresponds to relabeling neutrino
mass eigenstates. _

In the following matricess= sin# and c= cosé, where 6 is unconstrained by the symmetry. The phasts are not
neccesarily physical.

Mixing matrix Form of X, required forall X

ced sd®2 0 X, =diage'?1,e'%1, +1)

Upns,=| —s€% c€® 0 X, =diag +1,+1¢'%3) (22)
0 0 1 X, =diag *1,+1,¥1)
1 0 0 X, =diag =1, %2,e %2

Unns,=| O ce“fl sééz X =diage'?1,+1,+1) (23)
0 —sd% ce% X, =diag +1,¥1,71)
cedt 0 sd® X, =diage'?1,+1e'%1)

Ums,=| 0 1 0 X =diag +1e'?1, 1) (24
—sd% 0 c€% X, =diag ¥1,+1,71)
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1 . )
__e|&5 _e|55
V2o 2
U — _eiﬁl _eiﬁl
MNS, \/E \/E
c . c .
_e|§3 _e|63
V2 V2
S S .
_e|51 _e|51
V2 V2
c .
U — _e|53 _elﬁa
MNSg 2 >
1 . 1 .
__e|55 _e|55
V20 2
S S .
_e|§1 _e|51
V2 V2
1 :
U — __e|§5 _e|55
MNSg \/E 2
c . c .
_e|53 _e|53
V2 V2
12 12 0
UMNS: _1/\/5 1/\/5 0
0 0 1
12 0 12
UMNSBZ 0 1 0
~1y2 0 142
1 0 0
Ums.=| 0 1n2 142
0 —1N2 142

—sd%

ce

—sd%

Cei 8y

—sd%

Uuns. .= Trivial — massless neutrinos
10

Uwmns,,= Unrestricted by the symmetry

PHYSICAL REVIEW D 68, 033007 (2003

X, =diage'?1,e %1 e"1¢1)

X, =diag e ?1,e' %1, e 141)

XL: diaqei (l’l,efi (f’l’ei ¢’1)

X, =diage'?1,e"'¢1,e7193)
X =diage'?1,e %1, +1)

X, =diag e %1,e'%2,e7141)
X, =diage' %1, x1e %)

XL: diaQei‘ﬁl,ei‘/’z,e*i‘ﬁZ)
X, =diag = 1,e'%2,e " %2)

XL:diaq6i¢1,ei¢2,ei¢3)
¢;# £1 foratleastoneX,, forall i,

¢+ ¢; foratleastoneX,, forall i, j.

XL:iI

In casesUins, ;o Mi=—M; andmz=0. In cased) s, ;4 the two mixed neutrinos have;=—m;.

Except for the case where the mixing is unrestricted by the symmetry, none of the above mixing matrices fall within
experimental bounds. In the unrestricted cdsds unrestricted, so although right-handed charged lepton transformations can
aIterUeL, the mixing matrixUMNSZU}fLU, will remain unconstrained by the symmetry.
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E. Abelian representations and Dirac neutrinos

An Abelian symmetry constrains the neutrino Dirac mass matrix in the same way as the charged lepton Dirac mass matrix,
Eq. (19), except that the right-handed neutrino may transform in a different way to the right-handed charged leptons.

Dirac neutrino mass matrices are diagonalized by drggn,,mg) = UZLM o and the mixing matrix incorporates only
the left diagonalization matricesl » Can be obtained from/IVMI which is restricted by th&, transformation byM VMI
=X{M,MTX, .

The possibleU,,ys matrices obtainable by the left-handed transformation are listed below. It is possible that the right-
handed transformations will be able to further restrict the mixing matrices.

Mixing matrix Form of X_ required for all X,
C S| 0
Unins, = —s5ed ¢ed 0 X, =diage'?1,e'#1,e'%3) (33
0 0 1
1 0 0
Ums,=[ 0 ¢ S X, =diag e'?1,e'%2,e'%2) (34)

0 —se€d ce'
C 0 S|
Ums=| ©0 1 0 X =diage'?1,e'?2,e'%1) (39
—se'd 0 ced

Uys,= Unrestricted byX, X =e'?% (36)

e'%1£e' %2 for some X,

Upne=| e'?1#e' s for some X, (37)
and e'%2#¢e'?s for some X, .
|
The onlyU s that fits in with experiment is the one that is r s t

unrestricted byX, , which occurs wherX, =e'?l. In this

case bothJ 0 andUVL are unconstrained by th§ transfor- Me=fu v W (39)
mation. HoweverlJ, andU, can be restricted by the right- X'y z
handed transformatlon)sgR and Xoe: If one or both of the =XE|V|€X€R

two diagonalization matrices remains unrestricted under the
right-handed transformations, themMstu}LU,,L will be e (¢mo)p  @7i(6-02)g g i(d-0oa)

unrestricted, independent of how the second diagonalization =| e i¥7oly e 1(¥mody i@y | (40
matrix is restricted by the symmetry.

The transformation e lWmox e l0mnly  nl(0modz

Either theith column is unrestricted by the symmetrg (
S =0;), or the symmetry constrains coluniio be a column
X =diage'71,e'72,e'73) (38)  of zeros @+ ;). A matrix that has one column of zeros has
one massless charged lepton. A matrix that has no columns
of zeros is completely unconstrained by the symmetry, and
restricts the charged lepton mass matrix by will give an unrestrictedJ 0o
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Therefore, in the case whed¢ =€'?l, Uyys is unre- Ue, is unrestricted by the symmetry, giving a mixing matrix

stricted unless one or more of the charged leptons are masgrat is unconstrained by the symmetry. For each column that

less. As there are no massless charged leptons, we can cq8-constrained to be zero, there is a corresponding massless

clude that for Dirac neutrinos no mixing matrix is compatible charged lepton which is not seen in nature. If one charged

with experiment, except for wheb s is completely un- |epton is taken to be massless, the mixing is still uncon-

constrained by the symmetry. strained by the symmetry. Therefore, the only mixing matrix
In fact, if the electron is taken to be massléssrrespond-  that can be generated by a discrete unbroken symmetry, and

ing to a single column of zerpswe are convinced thall, s consistent with experiments is the mixing matrix that is

is also completely general, and hence, the mixing matrix icompletely unconstrained by the symmetry.

unrestricted by the symmetry. In this cade, has the same

number of free parameters as a completely unconstrained V. CONCLUSIONS AND FUTURE WORK
diagonalization matrix. This has been backed up by numeri- o _
cal calculations. The right-handed diagonalization matrix It is tantalizing to suppose that a family symmetry could

U,_, however, is restricted by the right-handed transformaSimultaneously explain both the lepton and the quark mixing
tiorF; matrices. We have shown however, that given certain as-

sumptions, unbroken symmetries acting on the generations
of the fermions cannot produce a lepton mixing matrix of
tribimaximal form, or anything approaching this form. Re-
Majorana neutrino mass matrices that are generated by tHaxing the assumptions of this no-go theorem may make it

F. Abelian representations and seesaw neutrinos

seesaw mechanism can be expressed as possible for a symmetry to generate an experimentally al-
- lowed mixing matrix.
M,=M¢My Mg, (41) An option for trying to generate nontrivial mixing in the

. . . ) . lepton sector, while still including th8 U(2), restriction, is
where My is the Dirac mass matrix, anklly is the right- 1o yjlize the different mass generation mechanisms for the
handed Majorana mass matrix. This equation is valid whemetrinos and charged leptons. Charged lepton masses come
My is invertible. In this section we assume thd, is in-  from yukawa couplings with the standard model Higgs dou-
vertible. (If the Majorana mass matrix was not invertible, and ¢ Majorana neutrinos will gain masses from another
had rankn>3, the physical particles would beultralight  mechanism, possibly using the same Higgs doublets in the
neutrinos,n heavy neutrinos and r2-6 neutrinos whose  seesaw mechanism, or by interaction with a Higgs triplet, or
masses are naturally the same size as the other fermlo%§, a different mechanism.

[43,44) _ . . If the Higgs sector is extended by introducing a number of
Under theX_ transformationdVl, is restricted by generations of Higgs fields, these Higgs fields can also trans-
M =X M X* (42) f_orm u_nder th_e symmetry. S_ince _the_action of the Hi_ggs
v AL AL fields in creating mass matrices is different for neutrinos
the same as when the neutrinos are Majorana but do not hacgmpared to charged leptons, different restrictions for the

. IWwo mass matrices will in general result. This in turn will
mass terms generated by the seesaw mechanism. Section g

: . - : ead to the diagonalization matrices for neutrinos being dif-
IV D lists all the ways thak, can restrict the mixing matrix. ferent from that of the charged leptons, possibly resulting in
Again, the only mixing matrix that fits with experiment is the 9 b ' P y 9

mixing matrix that is unrestricted by the symmetry, which phenomenologmall_y acceptable Ie_pton mixing. :
o ; . o ; Since both up-like and down-like quarks are Dirac par-
occurs wherX, = *1. In this case the diagonalization matri-

; ticles, the action of the Higgs fields in creating their mass
cesUy, andl, are both unrestricied by thé_transforma- matrices is similar for both sectors. It might be possible,

mations. _ _ sufficiently similar so as to yield very similar left-
The rlght-ha}nded charged lepton transformation res”'Ct%iiagonalization matrices. The resultitdiexy may then be
the mass matrix by approximately diagonal, in agreement with the observed
form of this matrix. This kind of setting — models with a
rs t nonminimal Higgs sector — may be the appropriate one in
M,;=|U v W (43)  which to realize our conjectur@ee Sec. Il Cwithin a com-
Xy z plete and consistent standard model extension, despite its
original inspiration coming from the rather different Harri-
e elteg  dost son, Perkins and Scott proposal.
— XIM {’x[ =+ ei o1y ei %2y ei T3 | (44)
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APPENDIX A: REGULAR REPRESENTATIONS givenX, thenM;;=M, showing that theIth elements of

OF ABELIAN GROUPS M can be expressed &4;;X. ThereforeM is a linear com-

o bination of theX matrices.
For a group of rank, the regular representation involves

n, nXn matrices, with elements 0 and 1. Each row or col-
umn contains one 1. THeth term equals 1 for one and only REP
one matrix in the representation. One of the matrices is the

APPENDIX B: PROOF THAT TWO EQUIVALENT
RESENTATIONS CONSTRAIN THE MIXING MATRIX
IN AN IDENTICAL WAY

identity.
M is invariant under the regular representation of an Abe- This proof assumes that Higgs bosons are singlets of the
lian group if M commutes with allX: generation symmetry, and that the generation symmetry com-
mutes withSU(2), meaningy, transforms in the same way
M=X;MX, foralla, (Al)  as¢, . The seesaw section assumes that the right-handed

_ Majorana mass matrix is invertible.
wherea labels theX matrices, or for each element

1. Charged leptons

Mif% (X2NiM X3 forall a. (A2) A_; and B,; are equivalent representations which will
transform the left-handed leptons. Each matrix is labelled by

As the group is Abelian, all th& matrices commute with an indexi. AgRiand BfRi are also equivalent representations
each other, so an arbitrary linear combination of ¥iena-  Which transform the right-handed charged leptons:

trices will also commute with alk. The following argument t - t _

shows that ifM commutes withX, the most general Mnust UiALiU1=Bri,  UzAqiU2=By. (B1)

be a linear combination of th& matrices. The restriction ) ) )

mass matrix by

Mu:% (X3T) 1 M XPy M A=Al M aA,; forall i,
=(XN)MjXj1=Mj;=M;; Ms=B[M B forall i
choosing theX to be the one that haX|,;=1. :UIAEiulM«?BUZAfRiUZ- (B2)
(A3)

) ) ) UM (;BUE has the same restrictions &, . As we assume
Since there exists a matrisuch thai;; =1 for allj, allthe  {hat the mass matrices are completely unconstrained apart

diagonal elements are equal. The diagonal eleme$@dn  from the generation symmetry constraints, we can set
be written asgVl 1.

By looking just at the restrictions placed on the mass ma- U1M€BU£: Ma. (B3)
trix by an X that hasX;; =1, we show that ifX,; also equals
1, then theklth element of the mass matrix must be equal toy, is diagonalized byJ, andU,_ via
theijth elementM;;=M,. Let us take theX that hasXj, - R
=1 diag(me,m,,,m,)=U] \MiaU; 4=U] gMi5U, g,
(B4)
M12=; =(X") 1M X;» choose theX that hasX;,= 1.

I (A soUg g=UJU, a andU, g=UJU, 4.

2. Majorana neutrinos

— T —
_Ek (XD)1Mia Xy choose & such thatX, =1 The two representations restrict the neutrino mass matrix

by
~Mia T * :
M,a=A M, A, forall i,
Mk1=; (XT)jM kXy1 choosej such thatX;, =1 M,s=B! M ,gB forall i,
=Mjy. =UJA[ UM gUTA} US . (B5)
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UlM,,BUI has the same restrictions &%,,, and we can
equateU;M ,gUI=M .. M, is diagonalized by, via

diagimy,m,,mg) = UIAM wUsa= UIBM 8Us- (B6)

So U,,BZUIUVA. Combining this result with the charged
lepton results we see

Umnse= U}-LBU VBT U}LLAU 1U1U,
:U}LAUVA:UMNSA (B7)

showing that representatighgives the same mixing matrix
restrictions as representati@n

3. Dirac neutrinos

The right-handed neutrinos transform by the representa-

tions Ay and By which are related by

UIA, Us=B (B8)

vRi vRi

An identical argument to Appendix B 1 showsM,zUJ has
the same restrictions a4 ,,, enabling us to set);M VBUE
=M,s. So U, g=UjU, s, U, g=UlU, . Combining

this with the charged lepton result we see that the mixing

matrix for A is the same as the mixing matrix f&
—_ut —_ut T
UMNSB_UILBUVB_UILAUluluvA

:UITLAU A= Unnsa (B9)

showing that the two equivalent representations restrict the

mixing in the same way.

4, Seesaw neutrinos

PHYSICAL REVIEW D 68, 033007 (2003

From Appendix B 3, (JlMdBug) has the same restric-
tions asMy,, SO set them to be equal.

From Appendix B 2, the right-handed Majorana mass term
constraints show {3 MMBUE) has the same restrictions as
Mma. SO they can be set equal.

The resultant light neutrino mass term has the restrictions

M,a=MyaM WAMEA
=(U;MggU})(UsMygU3) (USMgUT)
=U1MggMysMgaU1

=U;M,gU]. (B10)

SoM , , andM g are related by a basis change — the same
as the case with nonseesaw Majorana neutrinos. Diagonaliz-

ing,

diagmy,m,,mz)=UT,M aU%
= UIAU 1M VBU]_—U:A

=UTM gU%;. (B11)

SoU,g=UlU 4.
So the mixing matrices for the two representations are
Uwnse=U/ gU,s=U[ AU UIU
MNSB™ V| B BT Y| AV 1Y 1Y A

= UITLAU va=Unnsa - (B12

This section assumes that the Majorana mass matrix is
invertible, so the resultant light neutrino mass matrix is givenTherefore, two different, but equivalent, representations re-

by M,=MIM M.

strict the mixing matrix in the same way.
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