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Time evolution via S-branes
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UsingS(pacelike)-branes defined through rolling tachyon solutions, we show how the dynamical formation
of D~irichlet!-branes and strings in tachyon condensation can be understood. Specifically, we present solutions
of S-brane actions illustrating the classical confinement of electric and magnetic flux into fundamental strings
and D-branes. The role ofS-branes in string theory is further clarified and their Ramond-Ramond charges are
discussed. In addition, by examining ‘‘boosted’’S-branes, we find what appears to be a surprising dualS-brane
description of strings and D-branes, which also indicates that the critical electric field can be considered as a
self-dual point in string theory. We also introduce new tachyonicS-branes as Euclidean counterparts to non-
Bogomol’nyi-Prasad-Sommerfield branes.
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I. INTRODUCTION

Tachyon condensation in open string theories has reve
new intriguing aspects of string theories and D-branes. O
of the meritorious achievements in this area is that we
now describe D-branes as topological solitons in~effective!
field theories of tachyons and string field theories. This
proach to D-branes has also been extended to deal with
time dependent decay or creation of D-branes. In develop
tools to deal with the complexities of time dependent s
tems, new ingredients calledS(pacelike)-branes were intro
duced in Ref.@1#. Whereas ordinary D-branes are realized
timelike kinks and vortices of the tachyon field, spaceli
defects can be defined as spacelike kinks and vortices in
background of a time dependent tachyon condensation
cess called rolling tachyons@2#. As definedS-branes are in-
trinsically related to and naturally arise in time depend
processes in string theory.1

In Ref. @3#, some of the present authors demonstrated
S-branes can in fact describe the formation of topologi
defects in time dependent tachyon condensation. The
point was that while flatS-branes are defined as spaceli
defects of a specific rolling tachyon solution, we can a
introduce fluctuations into the rolling tachyon which will a
cordingly deform theS-branes. It was then found that th
information from only theS-brane fluctuations is sufficient t
describe the formation of individual fundamental strings
remnants of the original tachyon system. The advantag
the S-brane approach in describing tachyon remnant form
tion came from the fact that explicit knowledge of the fu
tachyon action was not necessary. This is a generalized
respondence between tachyon systems and Dirac-B
Infeld ~DBI! systems on the tachyon defects@12,13#.

*Email address: koji@hep1.c.u-tokyo.ac.jp
†Email address: pmho@phys.ntu.edu.tw
‡Email address: nagaoka@hep1.c.u-tokyo.ac.jp
§Email address: hllywd2@phys.ntu.edu.tw
1See Refs.@4–10# for the development following Ref.@1#. Early

work on tachyon condensation includes Ref.@11#.
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S-branes are universally governed by a Euclidean DBI eff
tive action, independent of the specific details of the origi
tachyon systems, and with scalar excitations along the t
direction. While many tachyonic Lagrangians have simi
features and give rise to the same type of static solitons
rolling tachyon backgrounds, we must look for these so
tions in each Lagrangian individually. Another advantage
the S-brane approach is then that anS-brane solution repre-
sents a class of solutions for many tachyonic Lagrangia
these solutions are classes in the sense that many diffe
tachyonic Lagrangians give rise to the same type ofS-brane
solutions. So while in string theory the tachyon effecti
actions are obtained in various forms with different deriv
tions, theS-brane approach gives a universal treatment
third advantage is that it is easier to solve the equations
motion for theS-brane action than for arbitrary tachyon sy
tems.

In this paper, after discussingS-branes and their role in
time dependent physics in Sec. II, we will illustrate our ide
by presenting classical solutions of theS-brane actions, clari-
fying their role and obtaining their corresponding tachy
descriptions.2 In Sec. III we recapitulate the solution@3# of
the formation of confined electric fluxes which are fund
mental strings. In addition we show how theS-brane solution
is consistent with the tachyon picture of classical flux co
finement. In Sec. IV new solutions representing the form
tion of (p,q) strings are presented and we relate these n
solutions to an implementation ofSduality for S-branes. The
late time behavior of theseS-brane solutions can be capture
by simple linear solutions which we call ‘‘boosted’’S-branes.
These boostedS-branes are given corresponding explic
tachyon solutions and boundary state descriptions in Sec
and their consistency with the usual string and D-brane p
ture is checked.T duality in the time direction is found to
interchange these two classes of D-brane solutions with
electric field above or below the critical value. In Sec. VI w
examine the possibility thatS-brane solutions may describ

2We neglect closed string backreactions when describing the
ing tachyon.
©2003 The American Physical Society07-1
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D-brane scattering and Feynman diagrams for D-branes.
further find a generalized Ramond-Ramond~RR! charge
conservation law forS- or D-branes. Section VII is devote
to conclusions and discussions.

It should be emphasized that although we are using
language of string theory, any theory with topological defe
will have its own ‘‘S-branes’’ or spacelike defects. Some
these solutions should necessarily describe defect forma
It would be fascinating if our methods can be further appl
to the formation of other topological defects and also prov
dual descriptions of all kinds of defects and remnants.

In the paper we take 2pa851 unless stated otherwise.

II. ROLES OF S-BRANES

The central idea we explore throughout this paper is h
S-branes can be used to describe time dependent defec
mation and tachyon condensation decay remnants. The
tailed exploration of the classical solutions ofS-brane actions
will be provided in later sections, and we first concentrate
the general properties ofS-branes, explaining their importan
roles in time-dependent tachyon condensation. Along
way we will see howS-branes and their classical solution
can be classified by the species of tachyon remnants,
discuss a new type ofS-brane, which we name the tachyon
S-brane. We also deriveS-brane actions which have a un
versal form, slightly generalizing the results in Ref.@3#.

A. Remnant or defect formation

Assuming that the tachyon potential for a no
Bogomol’nyi-Prasad-Sommerfield~BPS! D-brane is mini-
mized at some values for bothT.0 andT,0, kink solu-
tions can be approximately depicted by theT50 loci. While
the timelike kinks correspond to D-branes, the spacelike o
areS-branes. WhenS-branes were first introduced, they pr
vided a fresh approach to the study of time dependent
tems, but only fine tuned configurations were consider
Actually, as we will now demonstrate,S-branes appear ubiq
uitously during tachyon condensation. This is why it
worthwhile to define theS-brane action and to study its gen
eral solutions@3#.

At late times of the tachyon condensation process, i
possible to describe D-brane remnants as kinks~or lumps! in
the tachyon potential. In principle it should be possible
follow the time evolution of theseT50 regions. One might
ask why we need to considerS-branes. The point is that
given a generic tachyon configuration, before the remna
are fully formed~before the tachyon profiles are localized!,
S-branes appear first in the time dependent formation of
fects. TheseT50 regions can ‘‘appear out of nowhere’’ a
some time and are exactlyS-branes. Only when theT.0
region becomes spatially localized has theS-brane metamor-
phosed or decayed into a D-brane~topological defect!, see
Fig. 1. In addition, even if there are no remnants, short-liv
S-branes will appear as long as the energy is large enoug
create local fluctuations over the top of the tachyon poten

Furthermore, although it is suggested by its name
usually assumed that theS-branes are spacelike, theS-brane
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action admits timelike solutions which correspond
D-branes with a large electric field. We have seen such s
tions in Ref.@3# and will present others below.

B. S-branes as classes of tachyon decay

In the case of tachyonic Lagrangians, it is possible to fi
kink solutions which represent lower dimensional excitatio
such as D-branes. These relations between unstable br
and ‘‘static’’ branes are also called the descent relations
different question one can ask is how are the various obj
in string theory related when we take into account time
pendent processes? If we start off with a tachyonic sys
and end up with a stable system, then what is the time e
lution process which connects these two systems? We
pose thatS-branes be used to classify the time evoluti
processes whenever there are remnants in the end.

We emphasize that there are differences between
S-branes of the non-BPS brane and theD-D̄ system. It is
clear that theS-branes share common properties but th
should also be some differences due to the additio
tachyon on theD-D̄ pair. There are additionalS-branes for

FIG. 1. The top figure is a series of snapshots of tachyon t
evolution processes but since time is not explicit, the role of
S-brane is obscured. The bottom left figure is essentially jus
redrawing of the top figure. The bottom right figure shows the en
dynamical evolution process with theS-branes outlined. TheT50
regions are drawn in as dashed lines. The main point is that at
times we have remnants with tachyon value zero and we can
duce them from generic initial conditions.S-branes are how we
‘‘connect the lines’’ from the initial to final stage.
7-2
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TIME EVOLUTION VIA S-BRANES PHYSICAL REVIEW D68, 026007 ~2003!
the D-D̄ system that we call ‘‘tachyonicS-branes,’’ which
might be considered Euclidean counterparts of non-B
branes in view of the correspondence that the origi
S-branes are Euclidean counterparts of BPS D-branes;
precise correspondence between tachyonicS-branes and Eu-
clidean non-BPS branes is, however, not clear~see the next
section for the precise definition of the tachyonicS-branes!.
TachyonicS-branes should not be hard to differentiate fro
S-branes and describe essentially different time evolut
processes. Some processes might be solutions ofS-brane
Lagrangians and some might be solutions of tachyo
S-brane Lagrangians. With this point in mind, we summar
the solutions discussed in this paper in Fig. 2.

In Ref. @1# S-branes represented a tachyon configurat
rolling up and down the tachyon potential with the ener

FIG. 2. Time evolution processes characterized byS-branes. The
S-branes are the arrows. The upper three arrows starting from
non-BPS Dp-brane will be treated in Secs. III, IV and VI, respe
tively. Although theS-branes from the non-BPS brane basica
have counterparts in the Dp-Dp, the arrows emanating from th
Dp-Dp include processes previously unknown, especially the o
mediated by tachyonicS-branes. All arrows are commonly expecte
both in type IIA and IIB string theories. Finally, to understand t
creation of D-strings, it is necessary to incorporate M-theory effe
as indicated in the bottom figure and discussed in Sec. IV.
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necessary to go up the potential remaining as some b
ground contribution. This means at late times we have a t
evolving system with energy stored in either radiation, t
rolling tachyon or various other fields. In our case, howev
long livedS-branes represent remnant formation and this d
ference implies that the process is not always time reve
invariant. As an example of the process we are consider
let us consider a finite energy configuration with the tachy
at large negative values. As the system evolves we climb
the tachyon potential, and at some point anS-brane shows up
and eventually creates a remnant. The energy of the confi
ration can then be totally transferred to the remnant, so
S-brane shows how delocalized systems organize and tr
form energy into a remnant; in the end there might be
energy left to go into radiation, the rolling tachyon or an
thing else.3 TheS-brane schematically pulls the tachyon va
ues over the potential and leaves a remnant solution in
process, see Figs. 3 and 4.

Reference@1# also discusses the width of anS-brane. In
the context of tachyon condensation an analogous questio
how easy is it to put one flatS-brane one after another i
time. In general it is not clear if there is some limiting fact
since it takes time for the tachyon to roll up and down t
potential; however, it should not be impossible to have m
tiple S-branes. Any initial conditions forming the rolling
tachyon can simply be repeated at some later time so
will roughly produce two separated rolling tachyon proces
and two flatS-branes. It is the interactions between the init
conditions which will place a limit on how easy it is t

3In the argument here we compactify directions transverse to
resultant remnant in the world volume of the original unsta
brane. This is necessary for the remnant to possess a finite ten
This observation is consistent with what has been studied in o
literature@6,8,9#.

he
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FIG. 3. Two different time evolution processes characterized
S-branes. The three pictures on the left characterize the rol
tachyon picture so theS-brane appears only when the tachyo
crosses the top of the potential. The second three pictures gi
schematic of remnant creation. We start off with some energy in
tachyon and perhaps in other fields. As the tachyon rolls, at s
point it starts to createT50 regions specified by the thick line
which eventually turn into remnants. At late times, the tachyon d
not roll ~no velocity arrow! as all the energy has been transferr
into the remnant kink.
7-3
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FIG. 4. The figure on the right
is a schematic cross section o
tachyon values on the non-BP
brane which gives rise to a decay
ing S-brane. To the left we have
included snapshots of the tachyo
values at specific times. At early
times the tachyon configuration i
changing but anS-brane has not
appeared. TheS-brane then ap-
pears, coming in from infinity, and
then slows down to metamorphos
into a D-brane. The tachyon con
figuration is not a kink or lump
but more like an infinite well.
Time dependent kinks do not nec
essarily leave spatial kink rem
nants. Related discussion can b
found in Secs. V and VI.
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produce multipleS-branes. This question could be explor
further and it is related to coincidentS-branes and their pos
sible non-Abelian structure.

C. S-brane descent relations and new ‘‘tachyonic’’S-branes

It has been argued that static tachyonic kink solutions
non-BPS branes correspond to codimension-one BPS bra
while vortex solutions onD-D̄ pairs are codimension-two
BPS branes. The relationship between these branes is
marized by the usual descent relations@14#. In analogy, Gut-
perle and Strominger@1# also definedS-branes as time de
pendent kinks~vortices! on non-BPS branes (D-D̄ pairs!, so
it should be possible to extend the descent relations, sh
in Fig. 5, to include both D-branes andS-branes. One may
understand that the horizontal correspondence in the figu
just Euclideanization, or the change ‘‘timelike↔ spacelike.’’
For example, from this viewpoint the relation between t
S(p22)-brane and the non-BPS D(p21)-brane can be
understood4 as an arrow~1! in the extended descent rela
tions. This arrow is how one can derive anS-brane action
from the non-BPS D-brane action@3#. The D(p22) vortex
solution on a Dp-D̄p can be generalized to anS-brane coun-
terpart. Later in this section we will derive the action of
S-brane spacetime vortex along the arrow~4!.

First, starting at the top right of Fig. 5 we have anS-S̄
pair. The figure also contains the tachyonicS(p21)-brane.
The tachyonic brane is naturally embedded into the exten
descent relation since the space-time vortex@the arrow~4! in

4Note that the arrows in this figure are not the physical proces
of formation which are depicted in Fig. 2. Here the arrows j
represent construction of classical solutions from Lagrangians.
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the figure# from D-D̄ to anS(p22) can be decomposed int
two procedures: first construct a time-dependent kink~2! and
then a space-dependent kink~3!. The second procedure i
almost the same as the arrow from the non-BPS D(p21) to
the BPS D(p22).

To understand what a tachyonicS-brane is, let us first
construct it. We begin with the Lagrangian of a Dp-Dp pair,
choosing the Lagrangian of the boundary string field the
~BSFT! @15–17# since it is the best understood. The rece
paper by Jones and Tye@18# proposed the action

S522TD9E d10xe2puTu2F~X1AY!F~X2AY!, ~2.1!

es
t

FIG. 5. The extended descent relation for tachyon conden
tions. We do not deal with the relation between type IIA and ty
IIB here.
7-4
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TIME EVOLUTION VIA S-BRANES PHYSICAL REVIEW D68, 026007 ~2003!
where we defineX[]mT]mT̄ andY[(]mT)2(]nT̄)2, and for
simplicity we choosep59. We do not need detailed infor
mation of the kinetic functionF here. This action is valid for
linear tachyon profiles, but unfortunately a linear ansatz
time-dependent homogeneous solutionsT5T(x0) leads to
only trivial solutions~see Ref.@19#!. Even though we excee
the validity of the action, let us proceed for the moment a
examine the homogeneous tachyon solution. Noting that
D-D̄ system reduces to the non-BPS brane system when
restrict the complex tachyonT5T11 iT2 to take only real
valueT1, it is easy to see that the classical solution presen
in Ref. @19#,

T5Tcl~x0!5x01@exponentially small terms for largex0#,

~2.2!

is the tachyon solution on the D-D¯which we are looking for.
The imaginary partT2 of the complex tachyon appears in th
Lagrangian only in squared form and so the equation of m
tion for T2 has an overall factorT2 or ]T2 and is trivially
satisfied byT250. However, the ‘‘tachyonic’’ fluctuation
from T2 leads to a new feature which we call the tachyo
S-brane. An effective tachyonicS-brane action is discusse
in Appendix A.

Next, we consider arrow~4! in this section, which will
provide another way to derive theS-brane action. This solu
tion can be thought of as a combination of a time-depend
kink and the usual space-dependent kink alongx1. The so-
lution of the BSFT action~2.1! is easily found

T5Tcl~x0!1 iux1 ~2.3!

where u goes to infinity by the usual BSFT argument f
spatial kinks@16,17#. This classical solution has two zer
modes in fluctuations since this ‘‘spacetime vortex’’ brea
two translation symmetries.

Following the analysis of Ref.@20# we construct an effec
tive action of the spacetime vortex which we identify as
S-brane. The effective action of a D9-D9̄ system takes the
form

S52TD9E d10xe2puTu2Adet~11F ! f ~X,Y! ~2.4!

whereF is the diagonal linear combination of the twoU(1)
gauge fields,F5F11F2 andX,Y are now defined using th
open string metric with respect forF

X[Gmn]mT]nT̄, Y[uGmn]mT]nTu2. ~2.5!

This effective action is constrained by the usual assump
that the fields are slowly varying. The fluctuation fiel
which are zero modes~Nambu-Goldstone modes! are em-
bedded in the action in a special manner since it is associ
with the breaking of the translational symmetries. In fa
they appear as a kind of Lorentz transformation,

T5Tsol~y0 ,y1!, y0[
1

b0
@x02t0~xm̂!#,
02600
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y1[
1

b1
@x12t1~xm̂!#, ~2.6!

x→y5Lx, ~L t!GL5G, ~2.7!

where the open string metric is@we turn on onlyF m̂n̂ (m̂,n̂
52, . . . ,9)]

Gm̂n̂5S 1

12F2D m̂n̂

, G00521, G1151, G0m̂5G1n̂50

~2.8!

and the Lorentz transformation matrixL is

~2.9!

Lorentz invariance~2.7! of the open string metric determine
the beta factors

b05A12Gm̂n̂]m̂t0]n̂t0, b15A11Gm̂n̂]m̂t1]n̂t1,

Gm̂n̂]m̂t0]n̂t150 ~2.10!

which can be substituted back into the action to give, a
performing the integration overx0 andx1,

S5S0E d8xb0b1Adet~dm̂n̂1F m̂n̂!

5S0E d8xAdet~dm̂n̂1F m̂n̂2]m̂t0]n̂t01]m̂t1]n̂t1!.

~2.11!

This is the effective action for the spacetime vortex, coinc
ing with theS-brane action which was derived in Ref.@3# if
we sett150. The new scalar fieldt1 appears in the sam
way as how the usual D-brane action is generalized to
D-D̄ pair. This action naturally leads to the following gener
form of theSp-brane action in which the worldvolume em
bedding in the bulk spacetime (XM with M50,1, . . . ,9) has
not been gauge fixed

S5S0E dp11xAdet~]m̂XM]n̂XM1F m̂n̂!. ~2.12!

The field t0 in Eq. ~2.11! is identified with the embedding
scalarX0. Since in our derivation we did not refer to a sp
cific tachyon effective action, the form of theS-brane action
is universal in the slowly varying field approximation.5

5We expect that ourS-brane action derived using a field theoret
approach is related to the long-distanceS-brane effective field
theory in Ref.@10#.
7-5
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III. STRINGS FROM S-BRANES

S-brane solutions describing a flux tube confining into
fundamental string have been previously discussed in R
@3#. In this section we reexamine the solution from a spa
time perspective which will be helpful in finding othe
S-brane solutions in the next section. Also, by directly an
lyzing the tachyon system, we find further evidence that
S-brane solution should be regarded as a fundamental st

A. Solution of F-string formation

Let us review the electricS3-brane spike solution of Ref
@3#.6 The S-brane actions of Eq.~2.11! were derived in a
certain gauge in which the time direction was treated a
scalar fieldX0. In the following sections we will discus
S-brane solutions with nontrivial time dependence, so
take the following gauge choice which is preferable in t
spacetime point of view

X05t

X15r ~ t !cosu

X25r ~ t !sinu cosf ~3.1!

X35r ~ t !sinu sinf

X45x

Ftx5E~ t !

ds25~211 ṙ 2!dt21dx21r 2~ t !@du21sin2udf2#,
~3.2!

where we parametrize the worldvolume of theS3-brane by
(t,u,f,x). At any given moment, theS-brane worldvolume
is a cylinder,R3S2. The open string metric and its invers
are

~3.3!

~3.4!

The Lagrangian for thisS-brane is~up to a normalization
constant for theS-brane tension!

Adet~g1F !5r 2sinuA211 ṙ 21E2 ~3.5!

6Reference@3# discussesSp-branes withp>3, but in this section
we consider thep53 case in preparation of Sec. IV.
02600
f.
-
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e
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e

and the equation of motions for the embedding are

]a@Adet~g1F !~g1F !ab]bXM#50, ~3.6!

whereM50, . . . ,4.There are only two distinct equations o
motion for this system~the gauge field equations of motio
can also be checked!, the first of which is

]a@r 2sinuA211 ṙ 21E2~g1F !ab]bt#50 ~3.7!

while the second equation of motion is

]a@r 2sinuA211 ṙ 21E2~g1F !ab]b~r cosu!#50.
~3.8!

We use the first equation of motion to simplify the derivati
term in the second equation of motion and then rearra
terms slightly, to obtain

] tS r 2

A211 ṙ 21E2
D 50, r r̈ 12~12 ṙ 22E2!50.

~3.9!

Finally, substituting the second equation into the first, we
the differential equation for the radius

] tS r 3/2

Ar̈
D 50 ⇔ r̈ 5Ar3 ~3.10!

which has a solution describing the confinement of elec
flux

r 5
c

t
, E51. ~3.11!

The electric field is always constant and takes the criti
value, while the radius of this flux tube shrinks to zero at
5`. The electric field is necessarily constant since there
no magnetic fields; a changing electric field would necess
ily also produce a magnetic field. Although this solution on
exists fort.0, this does not mean that the dynamics on
non-BPS mother brane is trivial fort,0. Beforet50 it is
still possible to have flux on the non-BPS mother brane a
yet noT50 regions. The key point is that theS-brane is only
defined where the tachyon value is zero and so captures
tial knowledge of the full tachyon configuration and flu
Yet, at the same time there is no violation of fundamen
string charge from theS-brane viewpoint.7 This S-brane
comes in from spatial infinity and brings in charge throu
the gauge fields on its worldvolume. For charge conserva
we do not have to have time reversalS-brane solutions which
would correspond to including a mirror copy of the abo
solution describing an expanding worldvolume. We po
out, however, that the expanding string solution is interest
in its own right and is possibly related to instabilities due

7For this solution~3.11! the total fundamental string number
4pc. See Eq.~4.41!.
7-6
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TIME EVOLUTION VIA S-BRANES PHYSICAL REVIEW D68, 026007 ~2003!
critical electric fields and possibly the Hagedorn tempe
ture. Further discussion on why this solution represent
fundamental string at late times is given in Ref.@3#.

These spike solutions correspond to inhomogene
tachyon configurations which spontaneously localize i
lower dimensional systems. An example of such a solut
was found by Sen in Ref.@6#.

B. Discussion on confinement

In Ref. @3# and in the previous section, we have se
S-brane solutions describing the decay of an unsta
D-brane into fundamental strings. A peculiar feature of th
solutions is that eventually the electric flux becomes conc
trated around theS-brane remnant whereT50. Is this a
generic phenomenon corresponding to the confinement8 of
fundamental strings? In this section, we will discuss how
S-brane configuration is related to confinement in a tach
system by showing that it is the lowest energy configurat
for fixed electric flux. Furthermore, the magnetic field is a
shown to be classically confined, which is consistent with
S-brane solution of the D-string formation presented in S
IV.

The main idea is that as an unstable D-brane decays
tachyon condensesT→` almost everywhere except at th
location of theS-brane remnant whereT50. We wish to
show that the electric flux will concentrate around the reg
T50.

Take an unstable D2-brane for simplicity. To begin, let
first consider homogeneous configurations with electric fi
F015E. The Lagrangian density is of the form

L52A12E2L̃~T,z!, ~3.12!

where

z52
Ṫ2

12E2
, E5Ȧ, ~3.13!

and this Lagrangian is valid for 0<E2,1. The conjugate
variables ofT andA are

P5
]L
]Ṫ

5
1

A12E2

]L̃
]z

Ṫ, ~3.14!

D5
]L
]E

5
E

A12E2 S L̃22z
]L̃
]z

D ~3.15!

so the Hamiltonian density is

H5PṪ1DE2L5
1

A12E2 S L̃22z
]L̃
]z

D . ~3.16!

8See Ref.@21# for a discussion on the dielectric effect on classic
confinement of fluxes, and also Refs.@22,23# for the confinement on
branes.
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As long asEÞ0, we have the simpler expression@24#

H5
D

E
. ~3.17!

Now consider those configurations which can be appro
mated by a homogeneous region forux2u, l /2, and a differ-
ent homogeneous region whenux2u. l /2. For our purposes
the two regions will correspond to theS-brane regionT
50, and the tachyon condensation regionT→`. When the
D2-brane decays, some energy will be dissipated or radia
away but the electric flux

F5E dx2D ~3.18!

will be preserved. The final state of the process should be
most energy-efficient configuration for a given flux.

According to Eq. ~3.16!, the energy in the region o
tachyon condensation can be arbitrarily close to zero. As
example, for the effective theory withL̃5V(T) f (z), where
V(T)→0 asT→`, we can setT→` and Ṫ→0 such that
H50. It follows from Eq.~3.15! that D50 in the conden-
sate region as long asE,1. Although there is electric field
everywhere on the non-BPS brane, the flux is only non-z
in the S-brane region

lD 5F, ~3.19!

whereD is the electric flux density forux2u, l /2. The total
energy is

H5 lH5 l
D

E
5

F

E
, ~3.20!

where we used Eq.~3.17!. SinceF is a given fixed number,
the energyH is minimized by maximizingE. We conclude
that the minimal energy state has

E→1 ~3.21!

around theS-brane, and so the energy is from pure fluxH
5F, that is, the total energy is the same as the energy du
the tension of the fundamental strings. Finally, due to E
~3.15!, in the limit where the electric field goes to the critic
value, D→`, and so the width of theS-brane region with
nonzero electric flux shrinks to zero

l 5
F

D
→0. ~3.22!

We have therefore shown that the electric flux is confined
the infinitesimal region aroundT50.

We hope that the analysis above captures the phys
reason for confinement in the low energy limit and with t
present result one can show that the confined flux behave
a fundamental string governed by a Nambu-Goto action
lowing the argument given in Refs.@23,24#. In the above
discussion, however, we ignored the transition interpolat
the two homogeneous regions. When the transition regio

l

7-7
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taken into account, it might happen that the confinement p
file has an optimal width at some characteristic scale.

Is there confinement for the magnetic flux as well? Sin
S-duality interchanges fundamental strings with D-strin
we expect the answer to be yes. We will study the con
quences ofS-duality for S-branes in the next section, whil
here we will continue with a direct analysis of the tachy
system. It is well known that a magnetic field on a BP
Dp-brane gives a density of lower-dimensional BPS Dp
22)-branes on the mother D-brane. Naively, however
magnetic field on the non-BPS brane does not give
lower-dimensional BPS D-brane charge. The effect of
magnetic field appears only on the tachyon defects. For
ample, on a non-BPS D3-brane, a tachyon kink is equiva
with a BPS D2-brane. Suppose that we have a magnetic
on the original non-BPS brane along the kink. Then t
induces BPS D0-brane charge only on the D2-brane, w
apart from the kink no charge is induced though the magn
field is present all over the non-BPS D3-brane worldvolum

Keeping the above charge conservation in mind, let us
the same confinement argument to tackle this problem.
analogue of Eq.~3.12! is

L52A11B2L̃~T,z!, ~3.23!

wherez52 1
2 Ṫ2, and the analogue of Eq.~3.16! is

H5A11B2S L̃22z
]L̃
]z

D . ~3.24!

As in the case of electric flux, we consider a homogene
S-brane region9 of width l and a tachyon condensation r
gion. Let the magnetic fields in the two regions beB0 and
B1. The energy in the condensed region can be minimize
zero by assigningT→` and Ṫ50. The total energy is

H5 lH5ClA11B0
2, ~3.25!

whereC is a constant independent ofB0 andl. This energyH
is to be minimized with the constraint that the total flux on
on the S-brane region is conserved~or to assume thatB1
50), that is

F05 lB05fixed. ~3.26!

Using the same arguments as before, we see thatH is mini-
mized for l 50 ~and alsoB0→`), which shows the confine
ment of the lower dimensional RR charge.

We will see in Sec. IV that in fact one can construct
S3-brane spike solution which represents the formation
(p,q) strings. The argument for confinement of the elect

9Although a homogeneous tachyon profileT50 will not help to
give the lower dimensional RR charge because the RR couplin
the non-BPS brane is proportional todT`F while dT vanishes, we
believe that the argument here captures an important featur
confinement.
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and magnetic fields we have presented here is therefore
sistent with our interpretation of the spike solutions.

IV. D-BRANES FROM S-BRANES

In the previous section, we reviewed the formation
fundamental strings fromS-branes and showed how confin
ment of the electric flux can be a strong coupling but clas
cal process. We found also that magnetic flux on a non-B
brane is confined, which was expected due to the elec
magnetic duality in string theory. Confinement of magne
fields should occur in any theory with electric-magnetic d
ality with confined electric flux bundles. In string theory th
electric fluxes act as fundamental strings while confin
magnetic fluxes act as branes; D-strings will be the focus
our attention. In this section we show how anS3-brane can
realize the dynamical formation of (p,q) string bound states
and D-strings, and so in a similar vein this will demonstra
that magnetic fields also confine. Magnetic fields can have
effect on tachyon dynamics.

Another motivation for searching for these solutions is t
fact that, as opposed to fundamental strings, it is alre
known that D-branes can be described in the context
tachyon condensation. If we can discuss D-branes forma
using S-branes then the related tachyon solutions should
easier to obtain.~An understanding of tachyon solution
would also help to explain how to construct closed strin
from an open string picture.! A schematic cross section o
expected tachyon values is shown in Fig. 4. From this ill
tration we see that while theS-brane region (T50) seems to
appear ‘‘out of nowhere’’ and therefore seems to violate c
sality, from the tachyon picture there is in fact no difficult
Before the S-brane appears, the tachyon field is simp
evolving with noT50 regions. Also at very early times, th
entire spacetime is filled with only one of the vacua and s
is impossible to consider stable lower dimensional defe
When the tachyon has evolved closer to the second vac
at late times, it is possible to interpret theT50 regions as
physical objects. By the time we can interpret theS-brane as
a standard localized defect, it has already slowed down
less than the speed of light.

A. Tachyon solutions with homogeneous electricÕmagnetic
fields

Before turning to the formation of (p,q) strings, we first
consider homogeneous tachyon solutions with magn
fields in analogy to the electric case in Ref.@24#. To better
understand the tachyon condensate, it has been proposed@24#
that in the effective action description of non-BPS branes

L5V~T!A2det~h1F !F~z!, ~4.1!

z[@~h1F !21#mn]mT]nT5@~h2Fh21F !21#mn]mT]nT,

~4.2!

not only does the potential go to zero but that the kine
energy contribution of the tachyon also vanishes

F~z!50 ⇔ z521 ~4.3!

on

of
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TIME EVOLUTION VIA S-BRANES PHYSICAL REVIEW D68, 026007 ~2003!
after tachyon condensation. For uniform electric fields a
tachyon fields this leads to a constraint

Ṫ21E251 ~4.4!

which governs the tachyon system near the bottom of
tachyon potential.10 One motivation for searching for such
constraint is that it should help to describe confinement
the electric flux on a non-BPS brane, and it was shown
this constraint leads to a Carrollian limit for the propagati
degrees of freedom on the brane. The effect of the Carrol
limit is to make the condensate a fluid of electric strings.

It is straightforward to extend the above analysis to
clude magnetic fields as well as electric fields. For simplic
we explicitly work out the 211 dimensional case but a
other cases can be treated in the same manner. Similar
cussion has also recently appeared in Ref.@25#.

When the fields are all spatially homogeneous the o
string metric is

~4.5!

and to calculate the constraint we only need theGtt compo-
nent of the inverse of this matrix. A simple calculation sho
that the constraintz521 becomes

Ṫ21
E2

11B2
51. ~4.6!

There is no obvious duality between electric and magn
fields since the tachyon scalar field breaks the world volu
Lorentz invariance. The effect of the magnetic field is
increase the critical electric field, and if we takeṪ50 then
we reduce to the simple Lorentz invariant condition

E22B251. ~4.7!

The role played by electric and magnetic fields is intere
ing and we make the following observations. First, a criti
electric field will stop the tachyon from rolling near the en
of the tachyon condensation process. Second, it has
shown that a D-D̄pair with critical electric field is supersym
metric @26#. Even though these results were derived in d
ferent contexts, there is an overlap in the way a critical el
tric field on branes removes tachyon dynamics and
wonders if there are further connections. For example, p
haps the reason why the tachyon ceases to roll in the p
ence of the electric field is also due to supersymmetry
general we should be able to see regions of supersymm
develop during the tachyon condensation process, wheṪ

10In Ref. @24#, this conditionz521 comes from requiring thatD
and H be preserved whileV(T)→0 for a homogeneous back
ground.
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50 and these regions could have interpretations as var
lower dimensional supersymmetric objects. We further po
out the existence of supersymmetric D-D¯ configurations
which are distinct@27# from the critical electric field case
These solutions should also appear as end products
tachyon condensation and be related to different constra
on the tachyon Lagrangian.

As we have just observed in 211 dimensions, if there are
no electric fields, then there is apparently no effect due to
magnetic field near the tachyon minimum. For higher dime
sions, it is clear that if we follow similar steps, the homog
neous magnetic field by itself does not effect tachyon
namics. One way to understand why the magnetic field d
not change the rolling tachyon condition is that a const
magnetic field on a non-BPSDp-brane can be understood a
a bound state of a non-BPSDp-brane and non-BPS D(p

22)-branes. Both of these have a rolling tachyon (Ṫ51), so
the resultant bound state also has the rolling tachyon. C
stant magnetic fields in this situation are not capable of g
erating stable lower dimensional objects. On the other ha
more complicated configurations with magnetic fields c
create lower dimensional branes as we will see in the n
section.

Finally, let us obtain the results of Eq.~4.3! from the
worldsheet point of view. An open string on the D-brane h
opposite charges at its end points. In a constant electric fi
background, the charges are pulled in opposite directio
with the electrostatic force in competition with the tensio
When we stretch a string in an electric field which is stro
enough (E561), the increase in energy due to tension
compensated by the decrease in electric potential energy.
strings can have infinite length with vanishing energy. It a
pears as if the strings have no tension, resembling a co
tion of particles or dust. We propose to interpret this situat
as tachyon condensation, or the point at which the D-br
vanishes.

Consider an open string with the worldsheet action

S5E d2sF1

2
~Ẋ22X8 21FmnẊmX8 n!1X8 m]mF~X!G

5E d2s
1

2
~Ẋ22X8 2!1E dtS 2

1

2
FmnXmẊn1F~X! D .

~4.8!

The spacetime momentum densities are

Pm5Ẋm1FmnX8 n. ~4.9!

The equation of motion is

Ẍm2X9 m50, ~4.10!

and the boundary condition is

Xm8 1FmnẊn5]mF~X!, ~4.11!

at the string end pointss50,p.
7-9
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We do not consider oscillation modes, so we impose
above boundary condition on the whole string. From E
~4.9! and ~4.11!, we obtain the relation

~dn
m2FmkFkn!X8 n52FmnPn1]mF~X!. ~4.12!

From this equation we see that there are solutions with a
trarily largeX8 andPm50 ~that is, arbitrarily long strings a
no cost in energy or momentum! if either

det~12F2!5det~11F !det~12F !5@det~11F !#250,
~4.13!

or

]mF5`. ~4.14!

The first condition~4.13! agrees with~4.6! when Ṫ50.
The second condition~4.14! agrees with the final state of th
rolling tachyon solution of Sen

F}eX0
. ~4.15!

It can be related to the desired condition forT via a change
of variable such as

F5
T

A11z
, ~4.16!

wherez is defined in Eq.~4.2!. The condition~4.14! is now

z521. ~4.17!

B. S3-branes with electric and magnetic fields

Let us proceed to construct a solution of theS3-brane
action which represents a formation of a (p,q) string bound
state. The ansatz is identical to the one in the previous
tion, Eq. ~3.1!, except that we also include an addition
magnetic field

X05t

X15r ~ t !cosu

X25r ~ t !sinu cosf

X35r ~ t !sinu sinf ~4.18!

X45x

Ftx5E~ t !

Fuf5b sinu.

The open string metric and its inverse are just direct produ
of the example we gave before and
02600
e
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~4.19!

so the action is proportional to

Adet~g1F !5r 2sinuA~211 ṙ 21E2!S 11
b2

r 4 D .

~4.20!

We first examine the equation of motion of the embedd
coordinate

] tF r 2sinuA~211 ṙ 21E2!S 11
b2

r 4 D ~g1F ! tt] ttG50

~4.21!

and try a solution of the form

r 5
cd

t
, E5const, ~4.22!

wherecd is a constant parameter. This ansatz gives a solu
as long as we satisfy the relation

E22
b2

cd
2

51 ~4.23!

which is consistent with the constraint in Eq.~4.3! since on
the S-brane world volumeṪ50. It is straightforward to
check that the other equations of motion such as

]aF r 2sinuA~211 ṙ 21E2!S 11
b2

r 4 D
3~g1F !ab]b~r cosu!G50 ~4.24!

and

]aF r 2sinuA~211 ṙ 21E2!S 11
b2

r 4 D ~g1F !abG50

~4.25!

are also satisfied. The field strengthFuf generates a mag
netic field alongx and parallel to the electric field. Thi
S-brane is an electric-magnetic flux tube confining into a
11 dimensional remnant. At late times thisS-brane becomes
a (p,q) string bound state. The existence of these additio
7-10
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solutions should be expected due toS duality on the
S3-brane as we will explain in the following section.

We note that these solutions have realFuf as long as the
electric field is greater than the critical value due to E
~4.23!. Although the appearance of large electric fields
unusual on D-branes, they appear quite naturally onS-branes
and large electric fields do not lead to imaginaryS-brane
actions. We will see in the following section how large ele
tric fields show up onS-branes by examining the tachyo
solutions on the non-BPS mother branes.

C. S duality for S3-branes

For the purposes of this section, the following parame
zation:

X05X0~x1,x2,x3!

X15x1

X25x2

X35x3 ~4.26!

X45x

Fax5]bAx~x1,x2,x3!

Fab5Fab~x1,x2,x3!

turns out to be useful to see the duality transformatio
wherea,b51,2,3. The world volume of theS3-brane is now
parametrized by (x1,x2,x3,x) as in Ref.@3#. In the above
parametrization we have assumed that all the fields are i
pendent ofx just like in our explicitS-brane solutions. We
follow Ref. @28# in deriving the extended duality symmetr
This will help clarify how the (p,q) string formation solu-
tions are related to theF-string formation solution in Sec. III
and suggests other ‘‘non-BPS’’ throat-type solutions.

The S3-brane Lagrangian in this coordinate choice
written as@3#

L5Adet~d i j 2] iX
0] jX

01Fi j ! ~4.27!

5@12~]aX0!21~Fax!21~Fab!
2/4

1~]aX0Fax!22~]aX0!2~Fbx!2

2~eabcFbc]aX0!2/4

1~eabcFbcFax!2/4#1/2.

We omit the overall constant factorS0 in the S-brane La-
grangian. We next introduce the Lagrange multiplier fieldfB
for the Bianchi identity ofFab as

DL5~fB/2!@eabc]aFbc#. ~4.28!

With this multiplier term we can regardFab as fundamenta
fields and integrate out the field strengthFab . The final form
of the Lagrangian is simply
02600
.
s

-

i-

s,

e-

L1DL5Adet~hRS1¹FR
•¹FS! ~4.29!

whereFR5(X0,fB ,Ax) and the metric in the virtual trans
verse space parametrized byFR is hRS5diag(21,21,1).
The Lagrangian shows that the whole duality symmetry
SO(2,1). It is interesting that the subgroup of the dual
symmetry which rotates the electric and magnetic fieldsAx

andfB , in other wordsFax andeabcFbc and so this should
beSduality, is in this caseSO(1,1). This duality is more like
a Lorentz boost between electric and magnetic fields than
usual duality rotations. We will explain how to obtain th
more usual duality rotations in the next section.

If X0 and Ax are turned on, the duality group becom
SO(1,1) whose fixed point is the spike solution

X05Ax5
c

r
~4.30!

which represents the formation of a fundamental string. If
also turn onfB , we obtain the spike solution representin
the formation of a (p,q) string at late time

X05
Ax

cosha
5

fB

sinha
5

cd

r
~4.31!

which we provided in the previous section from an altern
viewpoint, Eq.~4.7!. The relationship between these two p
rametrizations is

E5cosha, b5cdsinha. ~4.32!

The fundamental string charge and the D-string charge
4pcdcosha and 4pcdsinha, respectively.

The duality groupSO(1,1) above is only a subgroup o
the full S-duality symmetry groupSL(2). @It becomes
SL(2,Z) upon charge quantization.# Here we started off with
an S-brane solution which decayed into fundamental strin
(n,0). TheSO(1,1) symmetry connects it to (p,q) strings
with p.q, but we are still missing all other (p,q) strings
with p,q. We will discuss how to obtain these other cas
in the next section.

D. Magnetic S-branes from M-theory

Since D-branes can be realized as defects on the non-
brane worldvolume, one is tempted to try to find th
S3-brane spike solution decaying into just D-strings. Ho
ever, the condition in Eq.~4.23! implies that if there are no
fundamental strings (E50), there is no solution with rea
magnetic fields; one can prove this from the equations
motion, Eq.~4.21!, and by assuming only rotational symm
try. In the context of tachyon condensation of non-BP
branes, the magnetic field on anyS-brane induced from the
field strength on the corresponding non-BPS brane shoul
real. Magnetic solutions do exist, however, if we allow f
imaginary field strengths. It is possible to investigate the i
plications for allowing imaginary field strength solution
Imaginary field strengths have been noted to potentially a
in time dependent systems@29# and it remains to be see
whether they will play a physical role in a theory.
7-11
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However, instead of introducing imaginary field strengt
we will find a way to mimic their behavior with real mag
netic fields and so avoid the constraint of Eq.~4.23!. The key
point will be to consider M-theory effects by dualizing th
scalar field from the M-theory circle to a gauge field. Th
dualized gauge field will not be induced from the non-B
brane but from M-theory.

Earlier, in Sec. II, we discussed a generalizedS-brane
action for spacetime vortices in Eq.~2.11!. The main differ-
ence was that this generalized action included fluctuation
a transverse scalar along a spatial direction. Up to now
have not used this scalar; however, we will now use this
solve the riddle of D-string generation from anS3-brane.
The idea is to consider M-theory compactified on tw
circles, one the M-theory circle which reduces us to type
and another to take us from type IIA to type IIB strin
theory.

In this case we can begin with an M5-M5 pair and look
for a codimension-three-generalized vortex solution rep
senting a spacelike M2-brane. This should be present jus
generalizing the argument in Ref.@22# where an M2-brane is
realized as a topological soliton in M5-M5. The spacelike
M2-brane Lagrangian of this spacetime vortex is

L5Adet~d i j 2] iX
0] jX

01] iX
4] jX

41] iX
10] jX

10!,

i , j 51,2,3 ~4.33!

where the spatial transverse direction is along the M-the
circle X10. Let us dualize the scalarX10 into a gauge field
with field strengthF̃. We perform the dualization by addin
the Lagrange multiplier term

DL5
1

2
X10e i jk] i F̃ jk ~4.34!

and then integrating outX10. The final form of the Lagrang-
ian is

L1DL5Adet~d i j 2] iX
0] jX

01] iX
4] jX

41 i F̃ i j !
~4.35!

where the factor of ‘‘i ’’ now accompanies the dual field
strength! This factor does not need to be added into
Lagrange multiplier term but instead is a direct conseque
of the Euclidean nature of theS-brane action. If the scalarX4

is trivial as in the present situationX45x of Secs. III and IV,
this S2-brane action in type IIA can be regarded as anS3-
brane action in type IIB theory. In this action we can no
solve for a purely magneticS3-brane solution as in Sec. IV B
but now with real field strength. We emphasize that the fi
strength is real and the factor of ‘‘i ’’ does not effect the
Hermiticity of the action. One might ask if theS3-brane can
be constructed directly from an unstable 4-brane object.
possible that thisS3-brane construction can be studied on t
S-dual of the non-BPS D4-brane which has also been ca
an NS4-brane@30#.

This S3-brane decays into a one dimensional remn
with magnetic field, so our expectation should be that thi
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a D-string. Let us obtain the explicit solution and see h
the D-string tension is reproduced. We begin with the act
for this magneticS3-brane written in the spacetime point o
view with the parametrization~4.18!,

L5r 2sinuA211 ṙ 21B22B2ṙ 2, B[
F̃uf

r 2sinu
.

~4.36!

The solution for this decayingS3-brane is

r 5
cm

t
, B5

cm

r 2
, ~4.37!

where we takecm to be positive. We calculate the conjuga
momenta and Hamiltonian

Pr5r 2sinu
ṙ @12B2#

A211 ṙ 21B22B2ṙ 2
, ~4.38!

H[E dxdudf@Pr ṙ 2L#

5E dxdudfr 2sinu
211B2

A211 ṙ 21B22B2ṙ 2
.

~4.39!

At late timesṙ 50 andB is large so in this limit the Hamil-
tonian has the simple form

H5E dxE
S2

dudfBr2sinu54pcmE dx. ~4.40!

At this stage we recall that in the above analysis we omit
the overall factor of theS3-brane tension, and also that th
parametercm should be subject to the Dirac quantizatio
condition. It is naturally expected that theS3-brane tension
is given by the D3-brane tension,TD351/2pgs in our con-
vention 2pa851. Now what about the Dirac quantizatio
condition? Let us compare this magneticS-brane with the
electric case in the previous section. A straightforward c
culation shows that the energy there is given by the sa
expression

Helectric S354pcE dx ~4.41!

where again the overall tensionTD3 is omitted, andc is the
parameter appearing in the solution~3.11!. Now the Dirac
quantization condition is

4pc•4pcm5
2pn

TD3
~4.42!

wheren is an integer and the factors of 4p come from inte-
grating over theS2 angular directions of theS-brane world-
7-12
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volume. The factorTD3 appears here since this factor appe
in the action and so the right hand side is proportional to
string coupling constantgs.

Let us see how this condition works. What we are doing
a generalization of Ref.@31#. Suppose that Eq.~4.41! gives
the correct tension of a fundamental string,

4pcTD35TF1 ~4.43!

which is 1 in our convention. This equation together with t
condition ~4.42! provides the correct tension of a D-string

4pcmTD35
n

gs
5nTD1 . ~4.44!

Heren should be a positive integer since the left-hand sid
positive. We have shown that the remnant, represented by
magneticS3-brane solution, has the tension of a D-strin
which supports our claim that the remnant is a D-string
boundary state discussion of this claim is also presente
Sec. V F.

It is interesting to relate the above dualization proced
to a discussion ofS duality. In fact Ref.@32# discussedS
duality for D3-branes and used a Euclideanized version
the D3-brane action for simplicity, which from our viewpoin
is an S3-brane action. As compared to our dualization p
cedure, Eq.~4.28!, in the dualization process of Ref.@32# the
Lagrange multiplier fieldfB enforcing the Gauss conditio
came with a factor of ‘‘i . ’’ The factor of ‘‘ i ’’ was argued to
arise from the Euclidean nature of the brane worldvolum
The effect of this alternate dualization procedure with
explicit factor of ‘‘i ’’ is that we reproduce the action in Eq
~4.35!. Therefore this alternate dualization procedure
equivalent to field strengths coming from the M-theory circ
and not from the non-BPS brane.

Finally, for this case the duality group discussed in S
IV C becomesSO(1,2) acting on (X0,fB ,Ax), due to the
‘‘ i ’’ factor. The electric-magnetic duality is now the mo
standardSO(2) duality rotation, which is consistent with th
interpretation that thisS3-brane decays into a D-string. Inte
estingly, for the solution with the factor of ‘‘i , ’’ we can ig-
nore thex direction and regard the solution as anS2-brane
instead of theS3-brane. This solution represents the form
tion of a D0-brane from theS2-brane in type IIA theory. The
magnetic field was originally the scalar field for th
M-theory circle, thus this solution in the M-theory side re
resents a lightlike particle emission process from the spa
like M2-brane.

V. STRINGS AND D-BRANES AS BOOSTED S-BRANES

A succinct summary of our characterization ofS-branes so
far is that there are ways to follow the time dependent de
formation process. In this section we further discuss
(p,q) strings of the previous sections. We will find how ce
tain ‘‘boosted’’ S1-branes apparently become ordina
D-branes and fundamental strings moving in the bulk.
fact, these boostedS1-branes extract late time information o
the remnant formation solutions which we studied befo
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We start by presenting solutions ofS1-brane actions and dis
cussing their properties. The corresponding tachyon s
tions are then presented, and it is shown how in a cer
limit these solutions apparently become (p,1) strings.
Boundary states for the boostedS-branes are also con
structed, and we show that they become boundary state
(p,1) strings in the limit relevant to theS-branes discussed in
the previous sections. Finally, we examine the boundary s
of the magneticS3-brane in Sec. IV D, and show that at la
times this solution produces a D-string boundary state c
sistently.

A. BoostedS1-branes

TheS3-branes of Secs. III and IV are eventually confin
into (111)-dimensional remnants so it should be interest
to analyzeS1-branes directly. Since the ‘‘static’’S1-branes
are spacelike in the target space we will have to ‘‘boo
them to become timelike in the target space. These boo
S1-branes are expected to be almost the same as the
solutions in Secs. III and IV at late times, except that t
boostedS1-branes have at least one D1-brane charge.
generalS1-brane action is

S5E d2xAdet~d i j 2] iX
0] jX

01Fi j ! ~5.1!

where the Euclidean worldvolume is parametrized byxi with
i 51,x. First let us consider a solution relevant for the fu
damental string formation in Sec. III. As in the previou
solutions, we turn on onlyAx among the gauge fields an
assume]x50, so the action simplifies to

S5E d2xA12~]1X0!21~]1Ax!2. ~5.2!

When the BPS-like relationX056Ax holds, the equations
of motion become linear:

]1]1X050. ~5.3!

This holds for any Sp-brane if the above ansatz is applie
and the spike solution of Sec. III and Ref.@3# was of this
type. In the present casep51, the solutions are simple

X05cx1, F1x5c ~5.4!

where the parameterc describes the velocity in the targe
space

]x1

]X0
51/c. ~5.5!

Due to the presence of the field strengthF1x on theS-brane,
the resultant configuration can be timelike,c.1. The con-
figuration is a one dimensional object moving in the targ
space with speed 1/c along thex1 direction. If c.1, this
object moves slower than the speed of light and appare
becomes a physically meaningful moving 1-brane. The
duced electric field on the 1-brane is
7-13
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F0x5
]x1

]X0
F1x51 ~5.6!

which is the critical value. If one tries to use a usual D
analysis for this moving 1-brane by assuming that t
1-brane is a D1-brane, the DBI action becomes imagin
So although this seems to be similar to a normal bound s
of strings and branes, this configuration seems to only h
an S-brane description using theS-brane action.

We can generalize this solution so that it deviates from
BPS-like relation. A simple calculation shows that a gen
alized solution is

]1X05
c1

A12c2
21c1

2
, F1x5

c2

A12c2
21c1

2
. ~5.7!

In this case the induced electric field takes on arbitrary v
ues

F0x5
c2

c1
, ~5.8!

although we still have the restriction on the parametersc1
andc2

12c2
21c1

2>0 ~5.9!

coming from the reality condition for theS1-brane action.
The velocity of the moving D1-brane has a lower bou
related to the field strengthF1x . Expressingc2 in terms of
F1x andc1 as

c25
F1x

A11~F1x!2
A11c1

2, ~5.10!

it is not difficult to see that

U]x1

]x0U5
A11c1

2

c1

1

A11~F1x!2
>

1

A11~F1x!2
. ~5.11!

Settingc15c25c brings us back to the BPS solution~5.4!.
These solutions include ones which describe static c

figurations in the bulk. Setting the velocity to zero in E
~5.7!, we get the relationshipc2

2511c1
2 and in this case the

induced electric field can be larger than the critical value

F0x5
A11c1

2

c1
>1. ~5.12!

Again, we see that this static one-dimensional object exce
the validity of the usual DBI action, unlessc15`. In the
limit c15` the configuration is static and has a critical ele
tric field so this configuration can also be described by
usual D1-brane action. However, this limit is rather singu
and it apparently represents an~n,1! string with n→`. We
identify this as an infinite number of fundamental strin
where the D1-brane effect has disappeared@33#. On the other
hand, the limitc1;c25` is just like the late time behavio
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of the spike solution found in Sec. III and Ref.@3# so here we
see a nice agreement between these twoS-brane solutions.

B. Tachyon condensation representation

Our generalS-brane analysis is based on the belief th
any solution of theS-brane action has a correspondin
tachyon solution on an unstable brane. The solution give
the previous section should hence have a tachyon des
tion. Since the solution is just a boostedS-brane, it is natural
to expect that the corresponding tachyon solution can be g
erated by the worldvolume boost from the homogene
rolling tachyon solution. In this case, one has to perform
Lorentz boost respecting the open string metric. Let us
this in more detail.

We start with the following general Lagrangian for a no
BPS D2-brane,

L52V~T!A2det~h1F !F~Gmn]mT]nT!, ~5.13!

whereF is a function defining the kinetic energy structure
the tachyon, andGmn is the open string metric. This action i
the general form for the linear tachyon profiles. Almost
the Lagrangians which have been investigated so far, suc
Sen’s rolling Lagrangian@2,34#, BSFT @15–17#, and the
Minahan-Zwiebach model@35#, are included in this genera
form. Let us examine the tachyon field which depends o
on x0 and x1. If one chooses a gaugeAx50 and turns on
only A1, then the gauge field equations of motion are sa
fied trivially for the constant gauge field strengthF1x . Then
the problem reduces to the situation where we have to s
only the tachyon equation of motion under the background
the field strength which appears only in the open string m
ric. In our case the explicit form of the inverse open stri
metric is

Gmn5diagS 21,
1

11~F1x!2
,

1

11~F1x!2D ~5.14!

wherem50,1,x. The metric in thex0-x1 spacetime is

Gmn5diag@21,11~F1x!2#. ~5.15!

The simplest solution is a homogeneous solution,]1T
5]xT50. Since in this case we turned on only the magne
field, we have thatG00521, and so this solution is just th
same as the one with vanishing field strength. One can i
grate the equations of motion forT and then obtain a
solution11 T5Tcl(x

0). Without loss of generality, we may
assume that the tachyon passes the top of its potential ax0

50, i.e. the equationTcl(x
0)50 is solved byx050.

We next perform a Lorentz boost in the 01 spaceti
directions which preserves the open string metric. For t
purpose we define a rescaled coordinatex̃1[AG11x

1. In

11At this stage we exceed the validity of the BSFT tachyon act
~5.13! since the solution is not linear inx0 @19#.
7-14
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these rescaled coordinates the metric becomesG̃mn

5diag(21,1) and the Lorentz boost takes the usual form

S x0

x̃1D→S x08

x̃1 8
D 5S coshg sinhg

sinhg coshg D S x0

x̃1D . ~5.16!

The line where the original defect is located,x050, is
boosted to a tilted line

x01tanhgAG11x
150 ~5.17!

so the defect is now moving along thex1 direction with
velocity

]x1

]x0
5

21

AG11 tanhg
. ~5.18!

The important point here is that the absolute value of t
velocity can be made less than unity. By definitionutanhgu
<1, so if the field strength vanishes, the velocity of the co
figuration is greater than that of light; the worldvolume
the defect is still spacelike. If we turn on a constant fie
strength, then a large boost will make the defect timeli
This property is a direct result of the fact that the open str
light cone lies inside the closed string light cone@36#. Be-
cause of this fact one may obtain timelike D-branes fr
spacelike-branes~see Fig. 6!.

The lower bound for the velocity of the moving D-bran
~5.11! should be seen also in this tachyon solution. In fac
is given by

U]x1

]x0U>u1/AG11u5
1

A11~F1x!2
, ~5.19!

which coincides with Eq.~5.11!. For theS-brane, the limit
F1x→` makes theS-brane worldvolume static. Let us stud
what happens to the tachyon solution in this limit. T
boosted tachyon configuration is

FIG. 6. The light cone structure on the non-BPS D2-bra
worldvolume. The closed string light cone~a! is always located
outside the open string light cone~b!. The dashed line denotes th
motion of the boostedS-brane which is both timelike with respec
to the closed string light cone and spacelike with respect to the o
string light cone.
02600
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T5Tcl@~coshg!x01~sinhg!AG11x
1#. ~5.20!

The original solutionTcl(x
0) has the rolling tachyon behav

ior for largex0, Tcl;x0. Therefore in the limitF1x→`, this
boosted tachyon solution becomes

T;ux1, u[F1xsinhg→` ~5.21!

and this linear dependence onx1 coincides with the familiar
static D-string kink solution. The coefficient of the linea
term diverges, which is also consistent with the BSFT ren
malization argument for D-brane kink solutions@16,17#.

It is clear that the moving 1-brane has a unit D-stri
charge. Taking into account that the integration surface
closing the defect in the original non-BPS brane worldv
ume is not necessarily timelike, theS-brane charge is just the
same as the D-brane charge@1#. So, if theS-brane worldvol-
ume is deformed to be timelike, it should give an ordina
D-brane charge. This can be easily seen from the R
tachyon coupling in the non-BPS brane@17#,

E C`dTe2T2
. ~5.22!

HeredT can be evaluated as

dT5
]Tcl~x08!

]x08
d~x08!. ~5.23!

Therefore if the boosted linex0850 becomes timelike, the
usual D-brane charge is generated in which the RR sourc
distributed on a hypersurface timelike in the bulk clos
string metric.

Here we stress that the boosted tachyon configuration
the usual D-string charge, so the configuration should rep
sent an (n,1) string withn→`, as seen in Sec. V A. Then
how is the fundamental string chargen seen in the tachyon
description? The answer is that the fundamental string cha
is expected to be realized only in the induced electric fie
not in the tachyon field. In fact, if we recall the noncomm
tative soliton representing a fundamental string@37#, there
the tachyon sits at the bottom of the potential from the fi
place. In the present case using Eq.~5.20!, it is easy to evalu-
ate the induced electric field

F0x5
]x1

]x0
F1x52

F1x

AG11 tanhg
°

F1x→`

2cothg ~5.24!

and we find that this agrees with theS1-brane analysis Eq
~5.12!. So in the limitg→` we have a critical electric field
F0x521.

In addition to the charges of the defects, their energy
another important physical quantity to study. Though o
expects that the energy of the boostedS-brane should depend
on the tension of theS-branes whose precise value is u
known, we may proceed by using the explicit expression
the corresponding tachyon solution. The detailed analysi
presented in Appendix B.

e

en
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Although we have just seen how theS1-brane seems to
describe (n,1) string bound states, one might question
validity of the solutions since theS-brane solutions allow for
faster than light travel. Let us examine the tachyon confi
rations to see how this occurs. As discussed around
~5.21! a static brane has zero width while all moving co
figurations acquire a finite width. When the width is sm
relative to the background it is easy to say that there i
lump which is actually moving, and in such cases the lum
moving slower than the speed of light. If we speed up
configuration, its width increases and the lump in t
tachyon field becomes hard to separate from the backgro
In such cases it is difficult to say if the lump is moving a
instead we should describe the configuration as a collec
motion of the tachyon field which just resembles a lum
moving. When theS-branes move faster than light, the co
figurations do not have good interpretations in terms
lumps or branes in motion and so it is okay if the config
ration ‘‘moves’’ at a speed greater than light.

C. Boundary state and fundamental string charge

In the previous section it was shown that the boos
S-brane carries D-string charge and the tachyon config
tion had the usual D-string form. However, since an elec
field is induced on this D-string as shown in Eq.~5.8!, the
1-brane is expected to be an (n,1) string which also pos-
sesses fundamental string charge. The easiest way to s
this object carries such a charge is to study its bound
state, especially its coupling to the bulk Neveu-Schwa
Neveu-Schwarz~NS-NS! gauge field. In this section we ex
plicitly construct a boundary state for the boostedS-branes of
Eq. ~5.7!.

According to Gutperle and Strominger@1#, the boundary
state for anSp-brane12 satisfies the following boundary con
ditions:

~an
m1O n

m ã2n
n !uB,h&50 ~5.25!

~and similar expressions for the worldsheet fermions!. The
orthogonal matrixO is given by

O n
m 5diag~21,1, . . . ,1,21, . . . ,21! ~5.26!

where we havep11 entries giving11, specifying the Neu-
mann directions. For spacelike branes the first entryO 0

0 is
negative due to the Dirichlet boundary condition for the tim
direction.

We now proceed to find the boundary state for the boos
S1-brane. Since our solution has constant field strength
constant velocity, it is expected that only the orthogonal m
trix O will be modified.13 We work out the bosonic string

12In the following, we identify our flatS-brane in the rolling
tachyon context with theSD-brane which is defined to be a bran
on which open strings can end with Dirichlet boundary conditio
along time.

13Also the normalization of the boundary state, which is usua
identified with the DBI Lagrangian, will be modified but in thi
paper we will not consider this point.
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case for simplicity. The worldsheet boundary coupling in t
string sigma model should be

R dtS F1xX1
]

]t
Xx1VX1

]

]s
X0D ~5.27!

where V is the inverse of the velocity of the moving D1
brane, while we normalize the bulk action as

1

2E dsdt]aXm]bXnhabhmn ~5.28!

with the oscillator expansion

Xm5xm1pmt
i

2
1 (

nÞ0

1

n
~anein(s1t)1ãnein(s2t)!.

~5.29!

The variation of the action gives the boundary conditions
s50,p as

]sX12F1x]tX
x2V]sX050,

]sXx1F1x]tX
150, ~5.30!

]tX
02V]tX

150.

The last condition is due to the original Dirichlet bounda
condition for the time directionX0. Substituting

]sXmus5052
1

2 (
n

~an
m1ã2n

m !, ]tX
mus50

52
1

2 (
n

~an
m2ã2n

m ! ~5.31!

into the above boundary conditions~5.30!, we obtain

an
02ã2n

0 2V~an
12ã2n

1 !50,

an
11ã2n

1 2F1x~an
x2ã2n

x !2V~an
01ã2n

0 !50,

an
x1ã2n

x 1F1x~an
12ã2n

1 !50. ~5.32!

Solving these equations, we obtain a new orthogonal ma
specifying the boundary condition

O n
m 5

1

11F1x
2 2V2

3S 2~11F1x
2 1V2! 2V 2F1xV

22V 12F1x
2 1V2 2F1x

2F1xV 22F1x 12F1x
2 2V2

D ,

~5.33!

wherem,n50,1,x. It should be noted here that off-diagon
entries appear inÕ, and these are responsible for the fund
mental string charge. There is now a non-vanishing over

s
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of the boundary state with a NS-NSB field stateuBmn
NSNS&.

This represents a source for theB-field

^BuB0x
NSNS&}2Õ0x1Õx05Õ x

0 1Õ 0
x Þ0. ~5.34!

Here we lowered the indices byhmn which appears in the
oscillator commutation relations. This shows that the mov
D-string carries fundamental string charge and become
source for the target space NS-NSB field.

To gain a better understanding of this source, such as
amount of chargen it has, let us study the structure of th
orthogonal matrixO in more detail. We started from a
S1-brane boundary state~5.26! which has a Dirichlet bound
ary condition along time and then boosted it to obtain
matrix in Eq.~5.33!. This can be compared with the ordina
(n,1) string boundary state constructed in Ref.@38# which is
obtained from the boundary state of aD1-braneby introduc-
ing the boundary coupling14

R dtS EX0
]

]t
Xx2vX0

]

]s
X1D . ~5.35!

The orthogonal matrix obtained in Ref.@38# was

Õ n
m 5

1

12E22v2

3S 11E21v2 22v 2E

2v 211E22v2 2vE

2E 22vE 11E22v2
D
~5.36!

and the associated boundary state describes an (n,1) string
moving with the speedv along thex1 direction. The charge
n is given by the electric flux on the worldvolume theory,

n5
E

A12E22v2
. ~5.37!

Remarkably, the matrix~5.33! is identical with~5.36! under
the relation

V5
1

v
, F1x5

E

v
. ~5.38!

This is indeed what we expected since the first equatio
just v5]x1/]x051/V and the second equation is just th
change of the coordinates forE5F0x which we have found
in previous sections. This suggests that the boostedS-brane
boundary state~5.33! describes a moving (n,1) string, but in
a strict sense this is not the case. Let us compare the reg
of parameter space where the actions are valid. The des
tion ~5.33! is valid if the S-brane Lagrangian is real,

14Here we changed the notation from Ref.@38# as s↔t and
(0,1,2)→(0,x,1) to fit our computation, and to avoid confusion w
used2v instead of theV used in Ref.@38#.
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11F1x
2 2V2>0. ~5.39!

Substituting the identification~5.38! into the above inequal-
ity, we find

12E22v2<0, ~5.40!

which is the region where the description~5.36! is invalid
since the D1-brane Lagrangian becomes imaginary. Th
fore, although the boundary states have the same struc
their valid regions of parameter space are different. The
descriptions overlap only in the case of vanishi
Lagrangians where the fundamental string chargen goes to
infinity. This means that the fundamental string~limit ! can be
described by both the boostedS1-brane and the D1-brane.

In the static case we can see this correspondence m
directly. In theS-brane boundary conditions~5.30!, we take
the limit

E5
F1x

V
→1, v5

1

V
→0 ~5.41!

which is expected to give static fundamental strings. Th
Eq. ~5.30! reduces to

]tX
150, ]tX

x1]sX050. ~5.42!

The first equation tells us that the object has Dirichlet bou
ary condition alongx1 and so it has worldvolume alongx0

andxx, while the second equation is theuEu51 limit of the
mixed boundary condition on a D-string,

F0x]tX
x1]sX050. ~5.43!

So this is precisely the fundamental string limit.

D. S-brane description and T duality

At this stage it is very natural to ask, ‘‘What is the boost
S-brane without taking the fundamental string limit (5 van-
ishing Lagrangian limit!?’’ To approach a possible answer
this question, let us observe what happens to the orthog
matrix in the boundary state. For simplicity we examine t
static case. The boundary state of a static (n,1) string pre-
sented in Ref.@38# is defined through its orthogonal matrix

Õ n
m ~E!5

1

12E2 S 11E2 2E

2E 11E2D , ~5.44!

where m,n50,x. Here of courseE should be less than o
equal to 1. On the other hand, the boostedS1-brane with the
static limit V5` is also described by the above matrix wi
E>1. To relate these two descriptions, we see that if
perform the transformation

E→Ẽ51/E, ~5.45!

then the matrixÕ transforms as

Õ~Ẽ!52Õ~E!. ~5.46!
7-17
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Interestingly, this means that the case with electric fieldE
larger than 1 is related to anE smaller than 1 only by a sign
change ofÕ. The change in the sign ofÕ is equivalent to the
replacementã→2ã which is a T duality alongx0 and x
directions, see Eq.~5.25!.

So what we have found here is that the description oE
larger than 1 can be obtained byT duality alongx0 and x.
Let us discuss the meaning of this duality more. Before
amining our present case, it is instructive to remember
ordinaryT duality along spatial directions for D-branes. L
us consider a bound state ofn D0-branes andm D2-branes.
The D2-brane worldvolume is extended alongx1 andx2. The
density of the D0-branes per unit area on the worldvolume
a single D2-brane is just the magnetic field induced on
D2-brane,F125n/m. The open string boundary conditio
becomes a mixed boundary condition. Now let us takeT
duality alongx1 and x2. First, T dualizing alongx1 trans-
forms this D2-D0 bound state to a D1-brane winding the
torus n times alongx1 and m times alongx2. Second, take
the T duality alongx2. We then get a bound state ofn D2-
branes andm D0-branes, giving an induced magnetic fie
F̃125m/n5(F12)

21. This shows that the inversion of th
magnetic field can be understood asT duality.

Let us apply this well-known idea to our case, and s
what happens to a (n,1) string when weT-dualize alongx0

and x. Consider a static (n,1) string stretched along thex
direction. The induced electric fieldE5F0x,1 parametrizes
the number of bound fundamental strings. First let us tak
T-duality alongx. The resultant configuration is a D0-bran
moving at the speedE which does not exceed the speed
light. This moving D0-brane can be thought of as a ‘‘win
ing’’ D0-brane, that is, a D0-brane winding 1/E times along
x0 and 1 time alongx. The winding alongx should be
thought of as anS0-brane since the worldvolume is on
along this spatial direction. Now take a secondT duality
along x0. The former 1/E D0-brane becomes 1/E
S(-1)-branes, while the latterS0-brane becomes a sing
D1-brane. Therefore, after theT dualities, we have a boun
state of a single D1-brane and 1/E S(-1)-branes. This state
ment is very plausible in view of how we derived the boos
S-brane: there we considered anS1-brane with magnetic
field F1x , which is exactly a bound state of anS1-brane and
S(-1)-branes. If we consider now the boostedS-brane so the
S1-brane is timelike, i.e. a D1-brane, the resultant obj
should be a bound state of a D1-brane andS(-1)-branes.

Since theS-brane description in the previous sections
valid for E>1, the caseE51 is the only overlapping region
and has two equivalent descriptions. However, the above
servation leads us to an intriguing conjecture: Any (n,1)
string can be thought of as a bound state of a D1-brane aE
S~-1!-branes withE,1. Here we do not specify how th
latter bound state should be described but there migh
some advantages in treating the (n,1) strings from the
S-brane point of view. To illustrate this point, consider t
RR coupling on a Dp-brane

E C(p11)1F`C(p21)1•••. ~5.47!
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Let us turn on a constant electric fieldE01. Usually this is
said to turn the Dp-brane into an~F, Dp) bound state, but
what does the above RR coupling tell us? The second t
gives

E01E C23•••p
(p21) . ~5.48!

This is a source term for the RR (p21)-form with spatial
indices, or in other words for anS(p22)-brane. This sug-
gests that the fundamental strings can be thought of
smearedS-branes, at least in the worldvolume of oth
mother D-branes in which the fundamental strings are bou

E. Relation betweenS- and D-brane descriptions

In the above we have learned that while D-branes w
small electric fields are described by D-brane actio
D-branes with large electric fields are described byS-brane
actions. Following the previous section, here we further
plore theT duality which interchanges these two classes
configurations.

For simplicity, only the electric field in thex direction is
turned on. The Lagrangian, electric flux density and
Hamiltonian for the D-brane are given by

L52A12E2, D5
E

A12E2
, H5

1

A12E2
,

~5.49!

and those for theS-brane are

L5A211E2, D5
E

A211E2
, H5

1

A211E2
.

~5.50!

The range of electric fields valid for the D-brane descripti
is E2,1, which is mapped to the range of validityE2.1 for
theS-brane description by theT-duality along the time direc-
tion

E→ 1

E
~5.51!

considered in the previous section. From the express
above, we find that this map induces the interchange oD
and H, or equivalently the interchange of the fundamen
string charge and the energy. Recall that ordinaryT-duality
interchanges winding modes with Kaluza-Klein mode
Since the total string number can be thought of as the ‘‘win
ing number,’’ and the energy as the ‘‘momentum’’ in the tim
direction, roughly speaking, the interchange ofD and H is
what one would expect for theT duality in the time direction.

F. BoostedS3-brane as a D-string

Earlier in this section we saw how the late time part of t
solution of Sec. III can be realized as a boostedS1-brane.
We may expect that in the same manner the late time c
figuration of the spike solution of Sec. IV D can also b
7-18
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obtained as a boostedS-brane. Here we will present
boosted solution of anS3-brane action with magneti
fields,15 and show that actually the boundary state of
boostedS3-brane reduces to that of a static D-string.

As explained in Sec. IV D we may consider fie
strengths on theS3-brane arising from the excitations of
scalar field along the M-theory circle. If we assume that
fields in Eq.~4.33! are independent ofx2, x3 as well asx4,
we obtain for vanishingA4 (5X4)

L5A12~]1X0!21~]1X10!2. ~5.52!

The field X10 is related to the original field strengthB1

[F̃23 through the Legendre transformation,

d

dB1
@A12~]1X0!22B1

21~B1]1X0!22B1]1X10#50

~5.53!

where the factor ofi has been included as discussed earl
This is rewritten as

]1X1052B1A12~]1X0!2

12B1
2

~5.54!

so that theS3-brane can become a timelike object,u]1X0u
.1.

The Lagrangian~5.52! has the same form as Eq.~5.2!, as
it should due toS duality. There exists a general solutio
similar to Eq.~5.7!,

]1X05
c1

A12c2
21c1

2
, ]1X105

c2

A12c2
21c1

2
. ~5.55!

Let us take the BPS limitc15c2 and furthermore the stati
limit c1→`. This is expected to be a D-string since this lim
provides the late time behavior of the spike solution in S
IV D. To check this, let us again look at the worldshe
boundary condition of an attached fundamental string. T
appropriate inclusion of the boundary coupling leads to16

]sX22 i F̃ 23]tX
350, ]sX31 i F̃ 23]tX

250, ~5.56!

]tX
02V]tX

150, V]sX02]sX150, ~5.57!

whereV is defined to be the value of]1X0 in the solution as
before. In the static limit,V→` and F̃23→`, the above
boundary conditions reduce to

]tX
35]tX

25]tX
150, ]sX050. ~5.58!

15Though so far in this section we have usedS1-branes, in this
section we need magnetic fields and so use anS3-brane instead.

16Although there appears an ‘‘i ’’ in this expression, this might be
absorbed into the redefinition of the worldsheet variables.
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Remembering that we have a Neumann boundary condi
for x4, this is precisely a boundary condition for a D-strin
extended alongx4.

This analysis provides more evidence for the claim t
the late time remnant of the solution in Sec. IV D is just
D-string. Here we demonstrated that D-strings can be
scribed by anS3-brane, suggesting another interesting du
ity.

VI. S-BRANE AND D-BRANE INTERACTIONS

In this section we discuss how the formation of
codimension-one D-brane can be understood using
S-brane description of brane creation. In comparison, the
lutions in Sec. IV B describe the formation of a (p,q) string
from anS3-brane which is defined to be a spacelike def
on a non-BPS D4-brane. On the non-BPS D4-brane, th
S-brane solutions are therefore describing the formation
codimension-three defects. However, the simplest c
should be the formation of a codimension-one D-bra
which has been studied in some literature@6,39,8,40,9#.

Here we make a preliminary discussion of the interest
role which S-branes play in RR charge conservation. O
main point is that in order to create charged defects we m
also have chargedS-branes whose time dependent char
represents specific inflow and outflow of charge into the s
tem. In a time evolution transition, for example, we w
discuss how RR charge can be thought to be ‘‘added’’ by
S-brane

A ~with chargeq1) S-brane ‘‘charge’’ q2
°

B ~with chargeq11q2). ~6.1!

An interesting candidate process to examine is the t
dependent formation of a kink, see also Refs.@6,39,8,40,9#.
For simplicity consider a kink D0-brane on a non-BPS D
brane system. The kink solutions for a D0-brane and
anti-kink solution for aD0-brane are schematically

TD~x!.0 for x.0

,0 for x,0,

TD̄~x!,0 for x.0

.0 for x,0. ~6.2!

Consider now a transition from kink to anti-kink. This is
configuration where the absolute values of the tachyon fi
decrease and then increase again. The crucial point is
there should be a transition in the entire tachyon profile a
goes through zero. The time evolution of the configurat
should roughly pass through

T~x!50 ;x ~6.3!

which is flat. Since theS-brane always appears in such
transition, we attempt to ascribe the change in charge
being due to theS-brane. Although from the point of view o
7-19
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the effective theory theS-brane is a very non-localized in
stantaneous charged object, the complete tachyon pr
paints a more standard picture which shows that the tra
tion is not instantaneous. We will see, however, the con
tency and simplicity of theS-brane picture.

To go from kink to anti-kink, theS-brane must have
charge two, one to annihilate with theD0-brane and one to
create the D0-brane. The fact that a flatS-brane describes
such a process is very surprising as it is so simple an
different from our otherS-brane solutions. Also as discusse
in Ref. @40#, many branes and anti-branes can be essent
created from a flatT50 initial condition. It seems then tha
a flat charge oneS-brane can either destroy a D0-brane,
destroy a D0-brane and also create equal numbers of br
and anti-branes. If this statement were true it would grea
reduce the usefulness ofS-branes since eachS-brane would
represent an infinite number of qualitatively different pr
cesses. Fortunately, we shall see by considering things m
carefully that this is not the case and our consideration h
was too naive. In fact we can consistently conserve
charge in the tachyon condensation process by properly
counting for theS-branes.

Figure 7 illustrates the time dependent kink formati
process and represents the entire non-BPS D1-brane w
volume with the vertical and horizontal directions corr
sponding to time and space, respectively. The horizontal
t50 indicates the location of theS0-brane, the upper hal
vertical line is aD0-brane and the lower half vertical line
a D0-brane. Fort,0, T(x).0 for x.0 while T(x),0 for
x,0. For t.0, T(x),0 for x.0 while T(x).0 for x
,0.

Although the horizontal line marks theT50 region, it
actually consists of anS0-brane and anS0-brane. The
S0-brane is located atx,0, t50 while theS0-brane is at
x.0, t50. This is clear if we look at the tachyon configu
ration at t50 since Ṫ,0 for x.0 while Ṫ.0 for x,0.
This pair ofS-branes seems to be necessary to create a
brane on a non-BPS D1-brane.

Now we can define our charge conservation rule. If
just consider the D0-brane and theD0-brane, charge is no

FIG. 7. Formation of an anti-kink using a kink andS-branes.
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conserved. To conserve charge we must include theS-brane
charge and so propose the following conservation law.
any closed curve, for example the dashed circle in the fig
count the number of D-branes andS-branes which flow into
the curve in such a way that a D-brane~anti-S-brane! con-
tributes a charge11 while an anti-D-brane (S-brane! counts
as a21. Naturally, a single stationary D0-brane conserv
charge as does a single flatS0-brane~which is consistent
with the charge conservation of the known flatS-branes of
the rolling tachyon.! In the above figure the net change i
flow is zero,122250.

The verification of this conservation law is straightfo
ward. Draw an arbitrary simple closed curve over the spa
time plot of any tachyon configuration and parametrize
curve by l, so the values of the tachyon areT5T( l ), 0< l
<2p. The zeros of the tachyon configuration are located
l 5 l i where i 51,2, . . . ,2n. Now the important point is tha
we take the tachyon field to be a single valued function o
the worldvolumeT( l 50)5T( l 52p), so integrating the de-
rivative ]T/] l over the curve we get

(
i

sgnF]T

] l U l 5 l i G50. ~6.4!

The locationsl i with sgn@]T/] l u l 5 l i
#511 are physically in-

terpreted as intersections of the circle with either a D0-br
or S0-brane, depending on how fast the tachyon field ze
are moving. This proves our conservation law and clea
shows that S-branes play an essential role in char
conservation.17

Consider next a similar case where the entire tach
configuration is situated atT50. We are tempted to imagin
the formation of a net kink or anti-kink by tiny perturbation
as shown in Fig. 8, and this fact gives some support to
previous statement that a flatS-brane is a good candidate t
describe the transition. Unfortunately this observation is
direct contradiction to our charge conservation law. How
we resolve charge conservation with our above observat
One way is to place theS-brane at past infinity by reparam
etrizing time, see Fig. 9. TheS-brane can never be enclose
by any finite closed curve, so charge is conserved. Put

17More precisely, the ‘‘location’’l i does not specify the location o
the branes but gives the maximum of the RR charge density.

RR charge density is given by;e2T2
dT, and the integration over

TP@2`,`# gives a unit RR charge. In the following the locatio
should be understood in this sense of the maximum charge den

FIG. 8. Creating aD0-brane does not conserve charge.
7-20
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the S-brane at past infinity was also discussed in Refs.@7,8#
as a ‘‘half S-brane,’’ where the tachyon was taken to
T(t)5elt. This tachyon configuration is just like a fla
S-branes in our sense at early times and then dissipates
the vacuum at late times.@To go from the D0-brane to the
D0-brane we would need something likeT(t,x)
5x sinh(lt).# We may also think of the situation illustrated
Fig. 10 in which anS0-brane turns into aD0-brane so charge
is again conserved. Although charge conservation can
solely determine the possible dynamics, it clearly does li
the dynamical processes.

It should be remembered that we can produce charge
remnants.18 The fundamental string formation process stu
ied in Sec. III provides an example. There the net (S-)brane
RR charge disappeared due to the shrinking worldvolu
Of course if we took the branes to have zero charge t
charge conservation would play no role. However, as long
we treat topological defects with topological charges,
same argument should apply.

Our discussion on charge conservation for codimens
one kinks of a real tachyon can be generalized to codim
sion two vortices of complex tachyons, which exist on t
worldvolume of a D-D̄pair. Therefore in analogy to Eq
~6.4!, the number of vortices and anti-vortices intersectin
sphere should be equal.

Seeing howS-branes and D-branes interact, we are
minded of string networks. Also, one could attempt to int
pret the process in Fig. 7 as two copies of the process in
10. Solutions of Fig. 10 are not solutions of theS-brane
action, but could be solutions of anS-S̄ pair.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we have explained howS-branes play a role
in time evolution in string theory, especially in the D-bran
F-string formation during tachyon condensation. In gene
we have classifiedS-brane solutions according to their rem
nants as in Fig. 2. Although there are some ‘‘expected’’

18Many field theories have solitons and so we believe that Sp
like solitons ~branes! should also exist in these theories. For e
ample in scalarf4 theory, it might be possible forS-branes to
describe the formation of the kink solution. In this case since
kink solution hasZ2 topological charge which should be conserve
the process illustrated in Fig. 8 still does not exist.

FIG. 9. Putting theS-brane at past infinity will ensure charg
conservation.
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lutions which we have not yet obtained, the arrows in Fig
typically show howS-branes work in regards to time evolu
tion of string theory processes. Although ourS-brane is de-
fined through the rolling tachyon on non-BPS D-branes,
may expect that this scenario of D-brane/F-string formation
via S-branes is more general and may be applied to ot
situations of brane creation in string theory and also to br
cosmology@41#. Possibly we may even apply theseS-brane
methods to understand defect formation in non-stringy s
tems with topological defects, such as the standard mo
since it has recently been reported that the generic feature
D-branes can be reconstructed in the context of usual fi
theories@42#.

To illustrate the roles of theS-branes, we presented se
eral classical solutions ofS-brane actions, including electri
S3-brane spike solutions~Sec. III and Ref.@3#! which de-
scribed fundamental string formation, electric-magne
S3-brane spike solutions in Sec. IV which produced (p,q)
strings and D-strings, and ‘‘boosted’’S-branes which are fla
and timelike branes capturing the late time configuration
the spike solutions. By directly analyzing the non-BP
tachyon system in Sec. III B, the confinement of electric fl
was shown to minimize the energy of the correspond
tachyon system, and this result agrees with our interpreta
of the electric spike solution.S-duality on theS3-brane was
studied in Sec. IV C, which turned out to be consistent w
the rolling tachyon with electric and magnetic fields obtain
in Sec. IV A. By taking into account M-theory effects, w
found out how to produce D-strings from anS3-brane. The
existence of these solutions therefore demonstrates
S-duality could in fact be used in a new way to constra
remnant formation. Our resolution of the imaginary fie
strength on theS3-brane worldvolume is potentially relevan
in other cases@29#. The boostedS-brane was introduced an
we provided their corresponding tachyon configurations
Sec. V B. We also obtained the boostedS-brane boundary
state which clarified that the boostedS-brane isT dual in the
time direction to (p,q) strings. In our analysis the fundamen
tal string limit of (p,q) strings can be described by bo
D-branes andS-branes so the critical electric fieldE51 is
likely a self-dual point between these two descriptions.

We now turn to detailed comments on some results
obtained in this paper. Although the late time configurati
of the spike solution in Sec. III is given by the booste
S-brane in Sec. V, we have not found explicit tachyon so
tions corresponding to the spike solutions of Sec. III a
Sec. IV. The results of Ref.@13#, which discussed tachyon

e-

e
,

FIG. 10. AnS0-brane is changing into aD0-brane.
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spike configurations of D-branes~the brane/F-string ending
on branes!, might be useful in the construction of tachyo
configurations forS-branes. It might be possible to genera
ize the recent result in Ref.@43# on the correspondence be
tween the tachyon system and DBI on their defects, to
S-brane situations. It is inevitable, however, that the tachy
solutions will be approximate since the precise Lagrangia
string theory is still missing. Also, while work has been do
to check various static properties of tachyon actions, th
time dependent properties are not as well understood.

We also point out various other solutions and general
tions. Another type of solution to look for on theS-brane
worldvolumes we have discussed, is to have the electric fi
and magnetic fields in different directions. One example is
have the electric field along thex direction and to have the
magnetic field along one of the angular directions, let us
f. A similar static case has been discussed in Refs.@26,44#.
Also, in the solution of Sec. III, it is possible to take aT
duality along thex direction. This simply turnsFtx into the
velocity along that direction, so the criticality of the origin
electric field will result in theS-brane worldvolume moving
at the speed of light. This is a null geodesic, and looks l
an emission process of a D-brane. Another interesting ge
alization is to have multiple spikes. This is possible beca
the bion spike solutions in Refs.@31,28# decouple from each
other and so do the multipleS-brane spikes. These solution
are similar to the above emission processes. In this case
observe many D-branes and strings coming in from past
finity and scattering to various directions in the target spa
However, we would like to state that such a configuration
odd since although the Hamiltonian is simply the sum
spikes, and hence gives seemingly independent world
umes, we see that the worldvolumes also apparently inter
for some time.

The analysis in Sec. IV C also implies that there are a
throat solutions inS-brane systems as in the D-brane cas
In the ordinary D-brane case the throat solutions are rele
for the brane and anti-brane annihilation process@31,45,5#. It
would be very interesting if the role of theseS-brane throat
solutions~the throat is along time directionX0 in theS-brane
case! is clarified. In fact this question is related to the po
sible non-Abelian structure ofS-branes which should be no
just the result of a non-Abelian structure of the original no
BPS D-branes but is more intrinsic to time evolution a
tachyon condensation on a single non-BPS D-brane. S
the throat can also carry an electric charge, it is possible
these throat solutions are involved with the mechanism
electric flux confinement.

Finally, the variousS-brane solutions we have found a
reminiscent of interactions between branes and strings,
the interpretation that particularS-brane solutions can b
thought of as Feynman diagrams was pursued partly in S
VI and Ref.@5#. In Sec. VI the creation of codimension-on
D-branes was qualitatively discussed from the viewpoint
charge conservation. We believe that this creation proc
can be described by some classical solution of the~tachy-
onic! S-brane action which might be the action of anS-S̄
pair. However, here we outline another possible way to
scribe this D-brane creation process. The tachyon config
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tion of Fig. 7 has an interesting property. The rolling tachy
energy atxÞ0 is nonzero while atx50 the energy is equa
to the non-BPS brane sinceT5Ṫ50 there. The tension o
the S0-brane depends on the rolling tachyon energyE(x),
since in the derivation of theS-brane action, the tension o
the S-brane is just the value of the non-BPS brane Lagra
ian integrated overx0 with substitution of the classical solu
tion T(x0) which is dependent onE. Hence it may be pos-
sible to regardE(x) ~or equivalently, the tension of the
S-brane! as another dynamical variable that theS-brane sys-
tem has. At values ofx with E(x)5Tnon-BPSD1, a D0-brane is
created as in Fig. 7. If we may introduce a term like (]E) in
the S-brane Lagrangian, it may fix the spatial dependence
the S-brane tension via equations of motion forE and so
govern the D-brane creation process. However, sinceE(x) is
not a localized mode on theS-brane but defined through th
integration over all thex0 region, it might be difficult to
proceed along this direction to generalize theS-brane La-
grangian.

If a configuration like Fig. 7 is explicitly constructed
however, it should provide an interesting procedure to co
pute Feynman diagrams for D-brane scattering. It is poss
that physical quantities associated with the scattering pro
are directly related toS-brane actions and their solution
Understanding theseS-brane systems might provide a theo
of interacting D-branes and strings in a general context
an alternative to matrix theory.

By analyzing boundary states with electric fields and
inhomogeneous tachyon background, the authors of Ref.@46#
have also recently discussed solutions which can dyna
cally produce fundamental strings. It would be interesting
further explore the relationship between their boundary s
analysis andS-brane solutions. We leave these issues to
ture investigation.
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APPENDIX A: TACHYONIC S-BRANE ACTION

In this appendix, we explicitly demonstrate how the t
chyonic S-branes considered in Sec. II C appear in t
tachyon condensation of D-brane anti-D-brane. In Fig. 4 t
is the arrow~2!. Since arrow~1! has already been discusse
in Ref. @3#, while arrow ~3! is just the same as the usu
D-brane descent relation and arrow~4! was realized in Sec
II C, the derivation of arrow~2! completes the explanation o
the generalized descent relations of Fig. 4.
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To derive the effective action of the ‘‘tachyonicS-brane’’
by using the fluctuation analysis of the time dependent k
as performed in Ref.@3#, we return to the Lagrangian of th
D-D̄ pair in Eq.~2.1! and the solution representing the tach
onic S-brane in Eq.~2.2!. A direct analysis of this fluctuation
mode is difficult due to the complexity of the Lagrangian

The easiest way to proceed is to simplify the situation a
truncate the derivatives of the Lagrangian at fourth order

S52TD9E d10xe2uTu2@11u]mTu21p1~ u]mTu2!2

1p2~]mT!2~]nT̄!2#, ~A1!

whereT[T11 iT2 and p1 ,p2 are numerical constants. W
must keep at least fourth order derivative terms since if
only keep the usual canonical kinetic energy there is
tachyon solution linear in time, and unless the solution
linear it is again technically difficult to perform a fluctuatio
analysis. The equation of motion for a homogeneous t
dependent tachyon is

2T1~11Ṫ123pṪ1
4!1T̈1~126pṪ1

2!50, ~A2!

where p[p11p2, and we have setT250. Therefore the
linear solution

Tcl5ax0, ~A3!

exits for a5A(11A1112p)/6p.
It is actually strange that we have a completely line

solution in spite of the presence of the tachyon potential. T
higher-order kinetic term makes this situation possible. T
general solution does not exhibit the rolling tachyon beh
ior at late time, since this model is just a generalization of
Minahan-Zwiebach model which does not possess the rol
tachyon behavior. The general solution reaches the
vacuumT5` in finite time. But if we tune the initial con-
dition then we have the completely linear solution for t
rolling tachyon. The strangeness of this solution is also
parent in that its energy vanishes

E5E e2uTu2~11Ṫ123pṪ1
4!50. ~A4!

For the meantime we treat this special solution as just
illustration of the new descent relations.

1. Fluctuation spectrum

Let us consider the following fluctuation:

T5Tcl~x0!1t1~xm!1 i t 2~xm!, ~A5!

where m50,1, . . . ,9. Substituting this into the action an
collecting terms quadratic in the fluctuation fields, we obt
the fluctuation action
02600
k

d

e
o
s

e

r
e
e
-
e
g
e

-

n

n

Sfluc52TD9E d10xe2Tcl
2F S 4

3
2

2

3
a2D @~2a2x0

221!t1
22t2

2#

2
824a2

3
x0t1 ṫ11

a222

3a2
~]mt1!21

4~11a2!

3a2
ṫ1
2

1~122a2p112a2p2!~]mt2!214p2a2 ṫ2
2G . ~A6!

The two fluctuation modes are completely decoupled fr
each other. Integrating by parts, we find that

S152TD9E d10xe2Tcl
2Fa222

3a2
~]mt1!21

4~11a2!

3a2
ṫ1
2G ,

~A7!

S252TD9E d10xe2Tcl
2F S 2

4

3
1

2

3
a2D t2

2

1~122a2p112a2p2!~]mt2!214p2a2 ṫ2
2G . ~A8!

To see the physical meaning of these fluctuations, we re
fine the fields ast̂1,25e2(ax0)2/2t1,2 so the newly defined
fields t̂1,2 have canonical kinetic terms. Then we can deco
pose the fieldst̂1,2(x

m) into the eigenfunctions of the har
monic potential alongx0, as performed in Ref.@3#. We may
determine the ‘‘mass’’ spectra for these fluctuations as
eigenvalues of the Laplacian,] i

2 , for the spatial directions.
The t1 fluctuation contains a zero mode which is th

Nambu-Goldstone mode associated with the symme
breaking of the translation alongx0 by the presence of the
kink solution. The ‘‘mass’’ tower oft1 is obtained as

m25
8a2~11a2!

a222
n, n50,1, . . . . ~A9!

The constanta should be less thanA2 to keep the coefficien
of the term (]mt1)2 negative.

Next, we use the field redefinitions to rewrite the acti
S2 as

S252TD9E d10xF ~122a2p112a2p2!~] i t̂2!21
22a2

3a2
t62
2

1
a2~22a2!

3a2
x0

2 t̂2
21~a222! t̂2

2G . ~A10!

From this expression it is easy to extract the mass spect

m25
22a2

3a2~122a2p112a2p2!
FaA22a2

3
~2n11!

1a222G . ~A11!
7-23
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Here again 122a2p112a2p2.0 should be satisfied so tha
the fluctuation Lagrangian is positive definite. The lowe
mode becomes tachyonic, and this tachyonic mode is a
ciated with the instability of the time-dependent kink so
tion.

2. Effective action

The lowest modes in the fluctuationst̂1,2 are Gaussian
and if one expresses these in term of the original fluctua
then they are actually constant, independent ofx0. Using this
property, we can calculate the effective action for the tac
onic S-brane. By substitution of the fluctuation into the orig
nal D-D̄ action, we have

S52TD9E dx0e2(ax01t2)2E d9x$12a21~] i t1!21~] i t2!2

1p1@~a422a2~] i t1!222a2~] i t2!2#

1p2@a422a2~] i t1!212a2~] i t2!2#%

52TD9

Ap

a E d9xe2t2
2F2

3
~22a2!2

22a2

a2
~] i t1!2

1~122a2p112a2p2!~] i t2!21@~]t !4term#G .

~A12!

~In the last line we have performed the integration overx0.!
This is the tachyonicS-brane effective action, which re
sembles a Minahan-Zwiebach model@35#. The differences
between them are as follows:~1! The sign of (] i t1)2 term is
negative, indicating that this mode represents the transla
along the time direction.~2! The worldvolume metric defin-
ing this theory is Euclidean. These two properties are sha
with the S-brane action obtained in our previous paper.

Although we have adopted a derivative truncation as
starting point~A1! and also a special solution~A3!, we be-
lieve that this effective action~A12! may capture essentia
features of the tachyonicS-branes.

APPENDIX B: EVALUATION OF THE TACHYON
ENERGY OF THE BOOSTED S-BRANE

Though the energy of the~deformed! S-brane configura-
tions has been studied in Sec. III, Sec. IV, and Ref.@3#, the
overall normalization of theS-brane action has not bee
specified there. This can be fixed in principle in the deriv
tion of theS-brane actions in Sec. II C and Ref.@3#. It is clear
that the factorS0 in Ref. @3#, which is an ‘‘S-brane tension,’’
can be computed by substituting the rolling tachyon solut
into the original tachyon action. This tensionS0 is, therefore,
not fixed since it is dependent on the rolling tachyon ene
E. This situation is different from the case of static tachy
defects of D-branes where the tension is fixed completel

Let us evaluateS0 using the BSFT Lagrangian as a sta
02600
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ing point.19 The BSFT action of a non-BPS D2-brane is20

SnonBPS52T 2E d3xe2pT2A2det~h1F !F~z!, ~B1!

where the worldvolume coordinates arex0,x1,x and

z[Gmn]mT]nT. ~B2!

We are working in the units 2pa851, andGmn is the open
string metric. The functionF is defined by BSFT and its
explicit form is given in Refs.@15–17#, for example. The
properties of thisF,

F~z!;2
1

2

1

z11
~z;21! ~B3!

will turn out to be important later.
For vanishing field strength the homogeneous rolli

tachyon solutionT5Tcl(x
0) presented in Ref.@19# has an

asymptotic expansion for largex0

Tcl~x0!5x01e~x0!1higher, ~B4!

where

ė~x0!5AT2

4E expF2
p

2
~x0!2G . ~B5!

HereE, the energy density of the above homogeneous roll
tachyon solution, is defined by the following Hamiltonia
density formula:

H5T 2e2pTcl
2A2det~h1F !FF~z!2Ṫ

dz

dṪ

dF~z!

dz G .

~B6!

Note thatTcl(x
0) is a function dependent on the integratio

constantE implicitly. The S-brane tensionS0 is just the value
of the action~B1! into which the solutionTcl is substituted
~while the integration over the spatial worldvolume is le
unperformed, to give the worldvolume of theS-brane!. Al-
though the complexity of the functionF(z) obstructs the
analytic evaluation of the action, we can read off the in
grand in the asymptotic regionx0;`. Noting that z ap-
proaches21 in this limit

z;212AT2

E expF2
p

2
~x0!2G , ~B7!

we obtain

19So far, among many tachyonic Lagrangians, only the BS
Lagrangians reproduce the D-brane tensions correctly and co
tently.

20We have rescaled the tachyon from that of Ref.@19# as T
→T/A4p.
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LnonBPS;2T 2e2p(x0)2S 2
1

2D F2AT2

E expF2
p

2
~x0!2G G21

52
AET 2

2
e2p(x0)2/2. ~B8!

This means that the value ofS0, which is given by the inte-
gral of LnonBPSover x0, is in fact finite and may be approxi
mated as

S0;2
AET2

2 E
2`

`

dx0e2p(x0)2/252AET2

2
. ~B9!

Let us move on to the evaluation of the energy of t
boostedS-brane which is a timelike object. It is straightfo
ward to show that the rolling tachyon solution in the pre
ence of a constant magnetic field is also a solution of
non-BPS D2-brane system~B1!,

T5Tcl~x0!, F1x5const. ~B10!

Basically we can turn on the constant field strength tra
verse to theS-brane freely. Next, consider the boosted so
tion

T5Tcl~x08!, F1x5const ~B11!

where

x08[x0coshg1x1AG11sinhg. ~B12!

Here the open string metric is

Gmn5diag~21,11F1x
2 ,11F1x

2 !. ~B13!

One can show that Eq.~B11! is again a solution21 of the
non-BPS D2-brane system~B1!. In the limit

F1x→` ~B14!

the S-brane becomes timelike and in this case the tach
configuration is approximately

T;~AG11sinhg!x1, ~B15!

which resembles the usual D-string kink solution. This su
gests that the energy is localized atx150.

We keep this in mind and proceed to carefully evalu
the Hamiltonian atx050 for simplicity. The asymptotic ex-
pansion ofTcl at x050 is

T5sinhgAG11x
11AT2

4E expF2
p

2
~sinhgAG11x

1!2G
1higher ~B16!

21The nontrivial check is on the equations of motion for the gau
fields. The tachyon equation of motion is trivially satisfied since
made a boost respecting the open string metric.
02600
-
e

-
-

n

-

e

and this approximation is very good for nonzerox1 and large
F1x . For this solution the argumentz is

z5@2Ṫ21G11~]1T!2#5•••52~Tcl8 !2 ~B17!

where the prime denotes a derivative with respect to the
gument of the functionTcl , i.e. in the above

Tcl8[FdTcl~a!

da G
a5coshgx01sinhgAG11x

1

. ~B18!

SinceTcl8 approaches 1,z approaches21 everywhere excep
x150 in the limit F1x→`. This means that in the evaluatio
of the energydF/dz @the second term in Eq.~B6!# is much
larger thanF @the first term in Eq.~B6!# due to the expansion
~B3!, so the Hamiltonian atx050 is given by

H5T2exp@2p~sinhgAG11x
1!2#A2det~h1F !2~ Ṫ!2

dF~z!

dz

5T2exp@2p~sinhgAG11x
1!2#A11F1x

2 2~cosh2g!

3~Tcl8 !2
dF~z!

dz

5T2exp@2p~sinhgAG11x
1!2#A11F1x

2 2~cosh2g!

3
1

2T2

E exp@2p~sinhgAG11x
1!2#

5EA11F1x
2 cosh2g. ~B19!

This is independent ofx1, and we have shown that the bac
ground rolling tachyon energy is still present everywhe
even in the limitF1x→`. ~The above result is consisten
with the original rolling tachyon withF1x50 and g50,
since this should give the energyE.!

Let us consider higher order terms in the Hamiltonian
see the localization of the energy which should correspon
the energy of the boostedS-brane. In the limit~B14!, it turns
out that the next-to-leading order term coming from the e
pansion of the potential terme2pT2

can be ignored. First, we
expand the functionz for largex1 at x050 as

z5212AT2

E expF2
p

2
~sinhgAG11x

1!2G
2

T2

E exp@2p~sinhgAG11x
1!2#1higher. ~B20!

Then the Hamiltonian is evaluated to the next-to-leading
der as

e
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H5EA11F1x
2 cosh2gF12

1

2
AT2

E

3expF2
p

2
~sinhgAG11x

1!2G G1
1

2
AET2A11F1x

2

3expF2
p

2
~sinhgAG11x

1!2G1higher. ~B21!

Here the second term in the first line is from the higher or
evaluation of dF/dz in Eq. ~B6!, while the second line
comes from evaluation of theF(z) term in the Hamiltonian
~B6!. Interestingly, though these two exponential terms
come infinitely small in the limitF1x→`, they are com-
bined and approach ad function whose coefficient is finite
More precisely, the above expression is arranged in this l
as

H5EA11F1x
2 cosh2g2AET2

2
usinhgud~x1!. ~B22!

So, in addition to the homogeneous energy of the ba
ground rolling tachyon, we have a localized energy with
finite coefficient. This second term should be identified w
the energy of the boostedS1-brane.

We now show that the localized energy contribution
just calculated agrees with the Hamiltonian of theS1-brane
action. The action of a staticS1-brane located atx150 is

SS15S0E dx0dx1dxd~x1!AE221. ~B23!

Using this action, one finds that theS1-brane Hamiltonian
density is

HS15S0

1

AE221
d~x1!. ~B24!

Now this electric fieldE is the induced electric field as see
in Eq. ~5.24!. After taking the limitF1x→`, we haveE5
2cothg. Substituting this into theS-brane Hamiltonian
~B24!, we obtain
J.

s,

02600
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HS15S0usinhgud~x1!. ~B25!

Remarkably this agrees with the finite energy contribution
Eq. ~B22! using theS-brane tension of Eq.~B9!.

Lastly we provide a comment on this localized energy.
the final expression~B22!, the S-brane contribution was
found to be negative. This suggests that theS-brane has a
negative energy, which agrees with the result of the bound
state analysis in which the time-time component of t
boostedS-brane boundary state is given by a negative va
as opposed to the usual boundary states for (p,1) strings. In
this appendix we have shown why this does not result in
of the usual problems. While the contribution of theS-brane
is negative, there is an additional leading order energy c
tribution in Eq. ~B22! which is due to the energy of th
background rolling tachyon, and so the total energy is s
positive.

The picture is reminiscent of anti-particles in the ‘‘Dira
sea.’’ The boostedS-brane is like something existing in
cloud of fundamental strings. Since our non-BPS D-bra
formulation did not take care of the radiation of the fund
mental strings, it keeps the energy and effect of all th
strings which are supposed to radiate away.~One of the ef-
fects of this cloud of fundamental strings might possibly
to make theS-brane energy negative.! Actually, the string
cloud will dissipate, and theS-brane with strings attached t
it will become a D-brane with strings attached to it.~Here we
have to distinguish the strings on the non-BPS D-bra
which will decay away, from strings stuck to theS-brane.! As
a final remark, the energy of the background rolling tachy
in Eq. ~B19! diverges in the limitF1x→`. The validity of
some of the calculations are not so rigorous due to this
gular limit. Although the boostedS-brane is expected to cap
ture the late time behavior of the spike solution in Sec.
apparently this divergence comes from the fact that we h
not taken into account the curved worldvolume of t
S-brane in the spike solution whereF1x is divergent only at
r 50. In this sense the correspondence between the s
solution and the boostedS-brane is not exact.
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