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Time evolution via S-branes
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Using S(pacelike)-branes defined through rolling tachyon solutions, we show how the dynamical formation
of D(irichlet)-branes and strings in tachyon condensation can be understood. Specifically, we present solutions
of Sbrane actions illustrating the classical confinement of electric and magnetic flux into fundamental strings
and D-branes. The role &branes in string theory is further clarified and their Ramond-Ramond charges are
discussed. In addition, by examining “booste®branes, we find what appears to be a surprising Simbne
description of strings and D-branes, which also indicates that the critical electric field can be considered as a
self-dual point in string theory. We also introduce new tachy@&lbranes as Euclidean counterparts to non-
Bogomol'nyi-Prasad-Sommerfield branes.
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[. INTRODUCTION Sbranes are universally governed by a Euclidean DBI effec-
tive action, independent of the specific details of the original
Tachyon condensation in open string theories has revealdgdchyon systems, and with scalar excitations along the time
new intriguing aspects of string theories and D-branes. Ondirection. While many tachyonic Lagrangians have similar
of the meritorious achievements in this area is that we caffieatures and give rise to the same type of static solitons and
now describe D-branes as topological solitongeaffective rolling tachyon backgrounds, we must look for these solu-
field theories of tachyons and string field theories. This aptions in each Lagrangian individually. Another advantage of
proach to D-branes has also been extended to deal with ttihe S-brane approach is then that &brane solution repre-
time dependent decay or creation of D-branes. In developingents a class of solutions for many tachyonic Lagrangians;
tools to deal with the complexities of time dependent systhese solutions are classes in the sense that many different
tems, new ingredients calle®{ pacelike)-branes were intro- tachyonic Lagrangians give rise to the same typ&bfane
duced in Ref[1]. Whereas ordinary D-branes are realized assolutions. So while in string theory the tachyon effective
timelike kinks and vortices of the tachyon field, spacelikeactions are obtained in various forms with different deriva-
defects can be defined as spacelike kinks and vortices in tHe®ns, the Sbrane approach gives a universal treatment. A
background of a time dependent tachyon condensation prdahird advantage is that it is easier to solve the equations of
cess called rolling tachyori®]. As definedS-branes are in- motion for theSbrane action than for arbitrary tachyon sys-
trinsically related to and naturally arise in time dependentems.
processes in string theoty. In this paper, after discussingbranes and their role in
In Ref.[3], some of the present authors demonstrated thaime dependent physics in Sec. Il, we will illustrate our ideas
Sbranes can in fact describe the formation of topologicaby presenting classical solutions of tBérane actions, clari-
defects in time dependent tachyon condensation. The kefying their role and obtaining their corresponding tachyon
point was that while flaS-branes are defined as spacelikedescriptions. In Sec. Il we recapitulate the solutidi] of
defects of a specific rolling tachyon solution, we can alsathe formation of confined electric fluxes which are funda-
introduce fluctuations into the rolling tachyon which will ac- mental strings. In addition we show how tBdrane solution
cordingly deform theS-branes. It was then found that the is consistent with the tachyon picture of classical flux con-
information from only theS-brane fluctuations is sufficientto finement. In Sec. IV new solutions representing the forma-
describe the formation of individual fundamental strings agion of (p,q) strings are presented and we relate these new
remnants of the original tachyon system. The advantage dfolutions to an implementation &duality for S-branes. The
the S-brane approach in describing tachyon remnant formalate time behavior of thes&brane solutions can be captured
tion came from the fact that explicit knowledge of the full by simple linear solutions which we call “booste&branes.
tachyon action was not necessary. This is a generalized cofhese boostedS-branes are given corresponding explicit
respondence between tachyon systems and Dirac-Boriachyon solutions and boundary state descriptions in Sec. V,
Infeld (DBI) systems on the tachyon defec{d2,13. and their consistency with the usual string and D-brane pic-
ture is checkedT duality in the time direction is found to
interchange these two classes of D-brane solutions with the
*Email address: koji@hepl.c.u-tokyo.ac.jp electric field above or below the critical value. In Sec. VI we
"Email address: pmho@phys.ntu.edu.tw examine the possibility the-brane solutions may describe
*Email address: nagaoka@hepl.c.u-tokyo.ac.jp
SEmail address: hllywd2@phys.ntu.edu.tw
ISee Refs[4-10) for the development following Refl]. Early 2We neglect closed string backreactions when describing the roll-
work on tachyon condensation includes HéfL]. ing tachyon.
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D-brane scattering and Feynman diagrams for D-branes. \Wiate time . =) N
further find a generalized Ramond-RamofRR) charge ™"
conservation law fos- or D-branes. Section VIl is devoted
to conclusions and discussions.

It should be emphasized that although we are using theg,
language of string theory, any theory with topological defectshave
will have its own “S-branes” or spacelike defects. Some of #Peared
these solutions should necessarily describe defect formatior
It would be fascinating if our methods can be further applied ?jﬁﬁfic
to the formation of other topological defects and also provide conditions
dual descriptions of all kinds of defects and remnants.

In the paper we take 2a’ =1 unless stated otherwise.

Time

II. ROLES OF S-BRANES

The central idea we explore throughout this paper is how
Sbr_anes can be used to descrlpe time dependent defectfo | . ’ ﬁ \ ‘ ﬁ \
mation and tachyon condensation decay remnants. The de remnants
tailed exploration of the classical solutions®brane actions
will be provided in later sections, and we first concentrate on ®
the general properties &branes, explaining their important 1

in time- i S-br o o v \
roles in time-dependent tachyon condensation. Along the -Drancs D\/S@_(@ Q D\/Brt)—@ &

can be classified by the species of tachyon remnants, an
FIG. 1. The top figure is a series of snapshots of tachyon time

discuss a new type @&brane, which we name the tachyonic ...
A. Remnant or defect formation evolution processes but since time is not explicit, the role of the

Sbrane. We also deriv&-brane actions which have a uni-  Initial
redrawing of the top figure. The bottom right figure shows the entire

dynamical evolution process with tt&branes outlined. Th&=0

tions can be anproximately depicted by e 0 loci. While regions are drawn in as dashed lines. The main point is that at late
PP y aep y ) times we have remnants with tachyon value zero and we can pro-

the timelike kinks correspond to D-branes, the spacelike ON€S,ce them from generic initial condition&branes are how we
areSbranes. Whers-branes were first introduced, they pro- «.,nnect the lines” from the initial to final stage.

vided a fresh approach to the study of time dependent sys-

tems, but only fine tuned configurations were consideredaction admits timelike solutions which correspond to
Actually, as we will now demonstrat&branes appear ubig- D-branes with a large electric field. We have seen such solu-

uitously during tachyon condensation. This is why it istions in Ref.[3] and will present others below.
worthwhile to define thé&-brane action and to study its gen-

®

Assuming that the tachyon potential for a non-
Bogomol'nyi-Prasad-SommerfielBPS D-brane is mini-
mized at some values for boffi>0 andT<O0, kink solu-

eral solutiong3]. . o B. Sbranes as classes of tachyon decay
At late times of the tachyon condensation process, it is ) ) L ) '
possible to describe D-brane remnants as kiokgumps in In the case of tachyonic Lagrangians, it is possible to find

the tachyon potential. In principle it should be possible toKink solutions which represent lower dimensional excitations
follow the time evolution of thes@=0 regions. One might such as D-branes. These relations between unstable branes
ask why we need to consid@branes. The point is that and “static” branes are also called the descent relations. A

given a generic tachyon configuration, before the remnantdifférent question one can ask is how are the various objects
are fully formed (before the tachyon profiles are localized N string theory related when we take. into account'tlme de-
Sbranes appear first in the time dependent formation of deP€ndent processes? If we start off with a tachyonic system
fects. TheseT=0 regions can “appear out of nowhere” at an_d end up with a stable system, then what is the time evo-
some time and are exactf-branes. Only when th&=0 lution process which connects these.two sys.tems? We.pro—
region becomes spatially localized has Sibrane metamor- POSe thatSbranes be used to classify the time evolution
phosed or decayed into a D-braftepological defed; see ~ Processes whenever there are remnants in the end.
Fig. 1. In addition, even if there are no remnants, short-lived W€ emphasize that there are differences between the
Sbranes will appear as long as the energy is large enough gbranes of the non-BPS brane and eD system. It is
create local fluctuations over the top of the tachyon potentialclear that theSbranes share common properties but there
Furthermore, although it is suggested by its name anghould also be some differences due to the additional
usually assumed that ttgbranes are spacelike, tigebrane tachyon on theD-D pair. There are additiong-branes for

026007-2



TIME EVOLUTION VIA SBRANES PHYSICAL REVIEW D68, 026007 (2003

Time Dependent Defect Formation via S-branes
.:)/L .A
. electric Sp-1 K. -
I 7 string
dyonic Sp-1 A A
l N (Dp-3, F1) bound
| >
non-BPS Dp S(p-1)-S(p-1)
: > (o
| general S-brane _/\_._)
I v 4 general remnant
FIG. 3. Two different time evolution processes characterized by
Sbranes. The three pictures on the left characterize the rolling
tachyon picture so thé&brane appears only when the tachyon
| electric Sp-2 . crosses the top of the potential. The second three pictures give a
I y 4 string schematic of remnant creation. We start off with some energy in the
dyonic Sp-2 taqhyqn and perhaps in other fi.elds. As thg tachyon rol!s, aF some
T N (Dp-4, F1) bound point it starts to creatd =0 regions specified by the thick lines
— ) 4 which eventually turn into remnants. At late times, the tachyon does
Dp - Dp S(p-Z)-S(p_-Z) not roll (no velocity arrow as all the energy has been transferred
} ) Dp-2 into the remnant kink.
| general S-brane necessary to go up the potential remaining as some back-
I 7 ground contribution. This means at late times we have a time
evolving system with energy stored in either radiation, the
rolling tachyon or various other fields. In our case, however,
Henstic 88 long lived S-branes represent remnant formation and this dif-
— ) ference implies that the process is not always time reversal
— invariant. As an example of the process we are considering,
M5 - M5 iy let us consider a finite energy configuration with the tachyon
[ > at large negative values. As the system evolves we climb up
the tachyon potential, and at some point3rane shows up

and eventually creates a remnant. The energy of the configu-

ration can then be totally transferred to the remnant, so the

brane shows how delocalized systems organize and trans-
tively. Although the S-branes from the non-BPS brane basically form energy into a remngn?; in the end there might be no
energy left to go into radiation, the rolling tachyon or any-

have counterparts in the@Dp, the arrows emanating from the . .
— P P 9 thing else® The S-brane schematically pulls the tachyon val-
Dp-Dp include processes previously unknown, especially the ones

mediated by tachyoni&branes. All arrows are commonly expected Ues over the potential and leaves a remnant solution in the

both in type IlA and 1B string theories. Finally, to understand the procefss, see Flgsl. 3 a_nd 4. h idth of
creation of D-strings, it is necessary to incorporate M-theory effects Reference[1] also discusses t'e width of &hbrane. In' .
as indicated in the bottom figure and discussed in Sec. IV. the context of tachyon condensation an analogous question is

how easy is it to put one fla&brane one after another in

the D-D system that we call “tachyoniSbranes,” which ~ time. In general it is not clear if there is some limiting factor
might be considered Euclidean counterparts of non-BPSince it takes time for the tachyon to roll up and down the
branes in view of the correspondence that the originapotential; however, it should not be impossible to have mul-
Sbranes are Euclidean counterparts of BPS D-branes; thiégple Sbranes. Any initial conditions forming the rolling
precise correspondence between tachy&icanes and Eu- tachyon can simply be repeated at some later time so this
clidean non-BPS branes is, however, not cleae the next  will roughly produce two separated rolling tachyon processes
section for the precise definition of the tachyofibranes. and two flatS-branes. It is the interactions between the initial
TachyonicS-branes should not be hard to differentiate fromconditions which will place a limit on how easy it is to
Shranes and describe essentially different time evolution
processes. Some processes might be solutionStwfne
Lagrangians and some might be solutions of tachyonic 3 the argument here we compactify directions transverse to the
Shbrane Lagrangians. With this point in mind, we summarizeresultant remnant in the world volume of the original unstable
the solutions discussed in this paper in Fig. 2. brane. This is necessary for the remnant to possess a finite tension.
In Ref. [1] Sbranes represented a tachyon configuratiorThis observation is consistent with what has been studied in other
rolling up and down the tachyon potential with the energyliterature[6,8,9.

FIG. 2. Time evolution processes characterize®tyanes. The
Sbranes are the arrows. The upper three arrows starting from th
non-BPS [p-brane will be treated in Secs. lll, IV and VI, respec-
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FIG. 4. The figure on the right
is a schematic cross section of
tachyon values on the non-BPS
brane which gives rise to a decay-
ing Sbrane. To the left we have
included snapshots of the tachyon
values at specific times. At early
times the tachyon configuration is
changing but arSbrane has not
appeared. TheSbrane then ap-
pears, coming in from infinity, and
then slows down to metamorphose
into a D-brane. The tachyon con-
figuration is not a kink or lump
but more like an infinite well.
Time dependent kinks do not nec-
essarily leave spatial kink rem-
nants. Related discussion can be
found in Secs. V and VI.

produce multipleS-branes. This question could be explored 4 figurd from D-D to anS(p—2) can be decomposed into

further and it is related to coincidetbranes and their pos-
sible non-Abelian structure.

two procedures: first construct a time-dependent kihkand
then a space-dependent kifB). The second procedure is

almost the same as the arrow from the non-BP$-D1) to

C. S-brane descent relations and new “tachyonic”S-branes

the BPS Dp—2).

It has been argued that static tachyonic kink solutions on To understand what a tachyon&brane is, let us first
non-BPS branes correspond to codimension-one BPS branggnstruct it. We begin with the Lagrangian of @{Dp pair,
while vortex solutions orD-D pairs are codimension-two €h0osing the Lagrangian of the boundary string field theory
BPS branes. The relationship between these branes is suf®SFT [15-17 since it is the best understood. The recent

marized by the usual descent relati¢fid]. In analogy, Gut-
perle and Stromingell] also definedS-branes as time de-

pendent kinkgvorticeg on non-BPS branedX-D pair9, so

it should be possible to extend the descent relations, shown
in Fig. 5, to include both D-branes arglbranes. One may
understand that the horizontal correspondence in the figure is
just Euclideanization, or the change “timelike spacelike.”

For example, from this viewpoint the relation between the
S(p—2)-brane and the non-BPS P{1)-brane can be
understoodl as an arrowm(1) in the extended descent rela-
tions. This arrow is how one can derive &brane action
from the non-BPS D-brane actid]. The D(p—2) vortex

solution on a Ib-Sp can be generalized to &hbrane coun-
terpart. Later in this section we will derive the action of an
Sbrane spacetime vortex along the arr@y.

First, starting at the top right of Fig. 5 we have &85
pair. The figure also contains the tachyoBigp— 1)-brane.
The tachyonic brane is naturally embedded into the extended
descent relation since the space-time voftae arrow(4) in

paper by Jones and Ty&8] proposed the action

S=— 2TDQJ d%e TP X+ VY A X=Y), (2.2)

Dp Dp

non-BPS
D (p-1)

BPS D(p-2)

@

SpSp

@

@ Tachyonic
S (p-1)

[©]

S (p-2)

“Note that the arrows in this figure are not the physical processes FIG. 5. The extended descent relation for tachyon condensa-
of formation which are depicted in Fig. 2. Here the arrows justtions. We do not deal with the relation between type IIA and type

represent construction of classical solutions from Lagrangians.
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where we defin&=4,To*T andY=(4,T)%(9"T)?, and for

simplicity we choosep=9. We do not need detailed infor- V1= E[Xl_tl(xﬁ)]’ (2.6
mation of the kinetic functiorf here. This action is valid for
linear tachyon profiles, but unfortunately a linear ansatz for x—y=AXx, (AYGA=G, 2.7

time-dependent homogeneous solutidhs T(x%) leads to

only trivial solutions(see Ref[19]). Even though we exceed where the open string metric fsve turn on onlyF ;5 (u,v
the validity of the action, let us proceed for the moment and=2, . . . 9)]

examine the homogeneous tachyon solution. Noting that the

D-D system reduces to the non-BPS brane system when we .. wy . .
restrict the complex tachyom=T,+iT, to take only real GH'= AR G%=-1, G!'=1, G™*=G'"=0
valueT,, itis easy to see that the classical solution presented 1-F 58
in Ref. [19], (2.8

T=T(x%)=x°+ [exponentially small terms for largé], and the Lorentz transformation matrix is

(22) l/ﬁo 0 _&ﬂl‘o/ﬁo

is the tachyon solution on the D-Bhich we are looking for. A= 0 B[ —duti/B
The imaginary parT, of the complex tachyon appears in the o * *

Lagrangian only in squared form and so the equation of mo-
tion for T, has an overall factol, or 9T, and is trivially
satisfied byT,=0. However, the “tachyonic” fluctuation
from T, leads to a new feature which we call the tachyonicLorentz invariancg2.7) of the open string metric determines
Sbrane. An effective tachyoni€-brane action is discussed the beta factors

in Appendix A.

Next, we consider arrowd) in this section, which will Bo=V1-G*"d,tod;tg, B1=V1+G*"d,110;t4,

provide another way to derive tif&brane action. This solu-

(2.9

tion can be thought of as a combination of a time-dependent G 9:td;t,=0 2.10
kink and the usual space-dependent kink alahgThe so- .
lution of the BSFT action(2.1) is easily found which can be substituted back into the action to give, after

. performing the integration ove® andx?,
T=Ty(x%) +iuxt (2.3

where u goes to infinity by the usual BSFT argument for S:Sof d®xBoB1Vdel 5, +Fp)

spatial kinks[16,17]. This classical solution has two zero

modes in fluctuations since this “spacetime vortex” breaks

two translation symmetries. =Sof d8x/de( 6ot F = dut0di ot d,t105t).
Following the analysis of Ref20] we construct an effec- (2.1

tive action of the spacetime vortex which we identify as an '

Sbrane. The effective action of a D99Dsystem takes the This is the effective action for the spacetime vortex, coincid-
form ing with the Sbrane action which was derived in Rg8] if
we sett;=0. The new scalar field, appears in the same

S— ZTDQJ dloxe‘”mZ de(1+ F)f(X,Y) 2.4 way as. how the gsual D-brane action is genergllzed to the
D-D pair. This action naturally leads to the following general

form of the Spbrane action in which the worldvolume em-
bedding in the bulk spacetim&{" with M=0,1, ...,9) has
not been gauge fixed

whereF is the diagonal linear combination of the twi(1)
gauge fieldsF=F;+F, andX,Y are now defined using the
open string metric with respect fér

X=G*9,Td,T, Y=|G*"3,Ta,T|?. (2.5 s:sof dP*ixyde(d; Xud; XM +F;;). (212

This effective action is constrained by the usual assumptiog,q fieldty in Eq. (2.1D) is identified with the embedding
tha_t the fields are slowly varying. The fluctuation fields q.415rx° Since in our derivation we did not refer to a spe-
which are zero modegNambu-Goldstone modgsre em- iic tachyon effective action, the form of tibrane action

bedded in the action in a special manner since it is associatqg universal in the slowly varying field approximatién
with the breaking of the translational symmetries. In fact, '

they appear as a kind of Lorentz transformation,

1 SWe expect that ous-brane action derived using a field theoretic
T=Tel(Yo.Y1), Yo= 5 [Xo—to(X;)], approaph is related to the long-distanSdrane effective field
Bo theory in Ref,[10].
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ll. STRINGS FROM S-BRANES and the equation of motions for the embedding are
Sbrane solutions describing a flux tube confining into a 9. del(g+F)(g+F)g,xM]=0, (3.6
fundamental string have been previously discussed in Ref.
[3]. In this section we reexamine the solution from a spacewhereM =0, . . . ,4.There are only two distinct equations of

time perspective which will be helpful in finding other motion for this systenfthe gauge field equations of motion
S-brane solutions in the next section. Also, by directly ana-can also be checkgdthe first of which is
lyzing the tachyon system, we find further evidence that the

S-brane solution should be regarded as a fundamental string. a[r?sin6y—1+r2+E%(g+F)®4,t]=0 (3.7
A. Solution of F-string formation while the second equation of motion is
Let us review the electri&3-brane spike solution of Ref. 2i [ 42, 2 ab _
. . . dj[resing\—1+r-+E“(g+F)?°,(r cosd)]=0.
[3].° The Sbrane actions of Eq(2.11) were derived in a ol (g+F) ™ )] (3.9

certain gauge in which the time direction was treated as a

scalar fieldX°. In the following sections we will discuss We use the first equation of motion to simplify the derivative
Sbrane solutions with nontrivial time dependence, so weerm in the second equation of motion and then rearrange
take the following gauge choice which is preferable in theterms slightly, to obtain

spacetime point of view

r2 e .
X0=t at(—_ =0, rr+2(1-r2-g?»=0.
V—1+r2+E2
Xt=r(t)cos (3.9
X?=r(t)sinf cos¢ (3.1 Finally, substituting the second equation into the first, we get

the differential equation for the radius
X3=r(t)sindsing

r3/2

X4=y at(7) =0 < r=Ard (3.10
r

Fiy=E(1) . . - . .
which has a solution describing the confinement of electric
ds=(—1+r2)dt?+dy+r2(t)[d6?+sirtod 2], flux
(3.2 c
where we parametrize the worldvolume of t88-brane by =1 E=1. (311

(t,0,0,x). At any given moment, th&brane worldvolume

is a cylinder,Rx S?. The open string metric and its inverse The electric field is always constant and takes the critical
are value, while the radius of this flux tube shrinks to zerd at
=, The electric field is necessarily constant since there are

! X 0 ¢ no magnetic fields; a changing electric field would necessar-

_1+32 E() 0 0 ily also produce a magnetic field. Although this solution only
exists fort>0, this does not mean that the dynamics on the

(g+F)p=| —E@) 1 0 0 R non-BPS mother brane is trivial fd<0. Beforet=0 it is
0 0 2 0 still possible to have flux on the non-BPS mother brane and
_ yet noT=0 regions. The key point is that ti&brane is only
0 0 0 risin’d (3.3  defined where the tachyon value is zero and so captures par-

tial knowledge of the full tachyon configuration and flux.

t X Yet, at the same time there is no violation of fundamental

string charge from theSbrane viewpoinf. This Sbrane
. > . comes in from spatial infinity and brings in charge through
E(t) —1+r° (3.4  the gauge fields on its worldvolume. For charge conservation
we do not have to have time rever&dbrane solutions which
The Lagrangian for thisSbrane is(up to a normalization would correspond to including a mirror copy of the above

(g4 )b 1 ( 1 —E(1)

—1+r*+E*

constant for theS-brane tension solution describing an expanding worldvolume. We point
out, however, that the expanding string solution is interesting
Jde(g+F)=r2singy—1+r2+E? (3.5  inits own right and is possibly related to instabilities due to

®Referencd 3] discussesSpbranes withp=3, but in this section For this solution(3.11) the total fundamental string number is
we consider thgp=3 case in preparation of Sec. IV. 47c. See Eq(4.4)).
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critical electric fields and possibly the Hagedorn temperaAs long asE+ 0, we have the simpler expressif2v|

ture. Further discussion on why this solution represents a

fundamental string at late times is given in R]. 2= E (3.17)
These spike solutions correspond to inhomogeneous E" :

tachyon configurations which spontaneously localize into

lower dimensional systems. An example of such a solution Now consider those configurations which can be approxi-

was found by Sen in Ref6]. mated by a homogeneous region fag| <I/2, and a differ-

ent homogeneous region whéxy|>1/2. For our purposes

the two regions will correspond to th&brane regionT

=0, and the tachyon condensation regibro. When the

In Ref. [3] and in the previous section, we have seenpy.prane decays, some energy will be dissipated or radiated
Sbrane solutions describing the decay of an unstableyay put the electric flux

D-brane into fundamental strings. A peculiar feature of these

solutions is that eventually the electric flux becomes concen- 5

trated around theSbrane remnant wher@=0. Is this a ‘I’:f dx’D (3.18
generic phenomenon corresponding to the confinefneint

fundamental strings? In this section, we will discuss how thewill be preserved. The final state of the process should be the
Sbrane configuration is related to confinement in a tachyormost energy-efficient configuration for a given flux.

system by showing that it is the lowest energy configuration According to Eq.(3.16), the energy in the region of
for fixed electric flux. Furthermore, the magnetic field is alsotachyon condensation can be arbitrarily close to zero. As an

shown to be classically confined, which is consistent with thesxample, for the effective theory with=\V(T)f(z), where
Sbrane solution of the D-string formation presented in SeCV(T)—>O asT—o. we can seff—» and T—0 such that

IV. =0. It follows from Eq.(3.15 thatD=0 in the conden-

o . H
The main idea is that as an unstable D-brane decays, thsealte region as long &< 1. Although there is electric field
tachyon condenseb e almost everywhere except at the everywhere on the non-BPS brane, the flux is only non-zero
location of theSbrane remnant wherg=0. We wish to "« s prane region '

show that the electric flux will concentrate around the region

T=0. ID=2, (3.19
Take an unstable D2-brane for simplicity. To begin, let us

first consider homogeneous configurations with electric fieldvhereD is the electric flux density fofx,|<I1/2. The total

B. Discussion on confinement

Fo1=E. The Lagrangian density is of the form energy is
- 27
L=—1-E“L(T,z), (3.12 He M= E: 2 (3.20
E E
where
where we used Ed3.17). Since® is a given fixed number,
T2 ) the energyH is minimized by maximizinge. We conclude
z=— g E=A, (3.13  that the minimal energy state has
E—1 (3.21
and this Lagrangian is valid for9E?<1. The conjugate
variables ofT andA are around theS-brane, and so the energy is from pure fldx
=®, that is, the total energy is the same as the energy due to
EYs 1 ar. the tension of the fundamental strings. Finally, due to Eq.
== T, (38.14  (3.15, in the limit where the electric field goes to the critical

T 1-E* 72 value,D—x, and so the width of th&brane region with

nonzero electric flux shrinks to zero

(3.15 d

L E L
° -2

TE e Y

so the Hamiltonian density is We have therefore shown that the electric flux is confined to

~ the infinitesimal region aroun@=0.
2_22%)_ (3.16 We hope that the analysis above captures the physical
Jz reason for confinement in the low energy limit and with the
present result one can show that the confined flux behaves as
a fundamental string governed by a Nambu-Goto action fol-
83ee Ref[21] for a discussion on the dielectric effect on classical lowing the argument given in Ref$23,24]. In the above
confinement of fluxes, and also Reff22,23 for the confinement on  discussion, however, we ignored the transition interpolating
branes. the two homogeneous regions. When the transition region is

H=PT+DE—£=—(
1-E?
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taken into account, it might happen that the confinement proand magnetic fields we have presented here is therefore con-

file has an optimal width at some characteristic scale. sistent with our interpretation of the spike solutions.
Is there confinement for the magnetic flux as well? Since
S’duallty interChangeS fundamental StringS with D-Strings, IV. D-BRANES FROM S-BRANES

we expect the answer to be yes. We will study the conse- _ _ _ _
quences ofS-duality for Sbranes in the next section, while  In the previous section, we reviewed the formation of
here we will continue with a direct analysis of the tachyonfundamental strings fror-branes and showed how confine-
system. It is well known that a magnetic field on a BPSment of the electric flux can be a strong coupling but classi-
Dp-brane gives a density of lower-dimensional BPSpD( cal process. We found also that magnetic flux on a non-BPS
—2)-branes on the mother D-brane. Naively, however, &rane is confined, which was expected due to the electric-
magnetic field on the non-BPS brane does not give anynagnetic duality in string theory. Confinement of magnetic
lower-dimensional BPS D-brane charge. The effect of théields should occur in any theory with electric-magnetic du-
magnetic field appears only on the tachyon defects. For ex@lity with confined electric flux bundles. In string theory the
ample, on a non-BPS D3-brane, a tachyon kink is equiva|er@|9Ctl’iC fluxes act as fundamental Strings while confined
with a BPS D2-brane. Suppose that we have a magnetic fielhagnetic fluxes act as branes; D-strings will be the focus of
on the original non-BPS brane along the kink. Then thisour attention. In this section we show how &8-brane can
induces BPS DO-brane charge only on the D2-brane, whilgealize the dynamical formation of(q) string bound states
apart from the kink no charge is induced though the magneti@nd D-strings, and so in a similar vein this will demonstrate
field is present all over the non-BPS D3-brane worldvolumethat magnetic fields also confine. Magnetic fields can have an
Keeping the above charge conservation in mind, let us trgffect on tachyon dynamics.
the same confinement argument to tackle this problem. The Another motivation for searching for these solutions is the

analogue of Eq(3.12) is fact that, as opposed to fundamental strings, it is already
known that D-branes can be described in the context of
L=— 1+ BZL(T,2), (3.23  tachyon condensation. If we can discuss D-branes formation

using S-branes then the related tachyon solutions should be
easier to obtain(An understanding of tachyon solutions
would also help to explain how to construct closed strings
~ from an open string pictureA schematic cross section of
2_22%>_ (3.24) expected tachyon values is shown in Fig. 4. From this illus-
Jz tration we see that while th&brane region {=0) seems to
appear “out of nowhere” and therefore seems to violate cau-
As in the case of electric flux, we consider a homogeneousality, from the tachyon picture there is in fact no difficulty.
Sbrane regioh of width | and a tachyon condensation re- Before the Shbrane appears, the tachyon field is simply
gion. Let the magnetic fields in the two regions Bg and  evolving with noT=0 regions. Also at very early times, the
B;. The energy in the condensed region can be minimized tentire spacetime is filled with only one of the vacua and so it

wherez=—1T2, and the analogue of E¢3.16) is

H=\T7B?

zero by assigning — andT=0. The total energy is is impossible to consider stable lower dimensional defects.
When the tachyon has evolved closer to the second vacuum
H=I1H=CI\J1+BZ (3.25  atlate times, it is possible to interpret tfie=0 regions as

physical objects. By the time we can interpret fhbrane as
a standard localized defect, it has already slowed down to

whereC is a constant independentBf, andl. This energyH less than the speed of light

is to be minimized with the constraint that the total flux only
on the Sbrane region is conserve@r to assume thaB;

=0), that is A. Tachyon solutions with homogeneous electrimagnetic
fields
®o=1Bo=fixed. (3.26 Before turning to the formation ofp(q) strings, we first

] o consider homogeneous tachyon solutions with magnetic
Using the same arguments as before, we seeHhatmini-  fields in analogy to the electric case in RE24]. To better
mized forl =0 (and alsoBy— ), which shows the confine- ynderstand the tachyon condensate, it has been prof@$ed
ment of the lower dimensional RR charge. that in the effective action description of non-BPS branes

We will see in Sec. IV that in fact one can construct an
S3-brane spike solution which represents the formation of L=V(T)y—del(n+F)H2z), 4.7

(p,q) strings. The argument for confinement of the electric
z=[(p+F) 19,79, T=[(n—Fy 'F)"11*"9,T4,T,

9Although a homogeneous tachyon profile=0 will not help to 42
give the lower dimensional RR charge because the RR coupling oROt only does the potential go to zero but that the kinetic
the non-BPS brane is proportionaldd/\F while dT vanishes, we energy contribution of the tachyon also vanishes
believe that the argument here captures an important feature of
confinement. FHz)=0 & z=-1 (4.3
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after tachyon condensation. For uniform electric fields and=0 and these regions could have interpretations as various

tachyon fields this leads to a constraint lower dimensional supersymmetric objects. We further point
P out the existence of supersymmetric D-&nfigurations
T°+E°=1 (4.4 which are distinc27] from the critical electric field case.

These solutions should also appear as end products of

which governs the tachyon system near the bottom of th(f}achyon condensation and be related to different constraints

tachyon potential’ One motivation for searching for such a

constraint is that it should help to describe confinement of" the tachyon_ Lagrangian. : . . .
. . As we have just observed irH21 dimensions, if there are
the electric flux on a non-BPS brane, and it was shown that

this constraint leads to a Carrollian limit for the propagatingno electric fields, then there is apparently no effect due to the

degrees of freedom on the brane. The effect of the CarroIIiarﬂnagneJ[IC field near the tachyon minimum. For higher dimen-

limit is to make the condensate a fluid of electric strings. sions, it 1s clea_r th_at if we .fOHOW similar steps, the homoge
. . . . neous magnetic field by itself does not effect tachyon dy-
It is straightforward to extend the above analysis to in- : o
- i . .. namics. One way to understand why the magnetic field does
clude magnetic fields as well as electric fields. For simplicity . e
oS . ; not change the rolling tachyon condition is that a constant
we explicitly work out the 2-1 dimensional case but all .o
. S magnetic field on a non-BPBp-brane can be understood as
other cases can be treated in the same manner. Similar dis-
. ! a bound state of a non-BPBp-brane and non-BPS B(
cussion has also recently appeared in R25].

When the fields are all spatially homogeneous the oper 2)-branes. Both of these have a rolling tachy@r=(1), so
string metric is the resultant bound state also has the rolling tachyon. Con-

stant magnetic fields in this situation are not capable of gen-

{ x Yy erating stable lower dimensional objects. On the other hand,
-1 E, E, more complicated configurations with magnetic fields can
(g+F)ap= ‘ create lower dimensional branes as we will see in the next
—E. 1 B section
-E, -B 1 Finally, let us obtain the results of E¢4.3 from the

4.9 worldsheet point of view. An open string on the D-brane has
opposite charges at its end points. In a constant electric field
background, the charges are pulled in opposite directions,
with the electrostatic force in competition with the tension.
When we stretch a string in an electric field which is strong

and to calculate the constraint we only need @lecompo-
nent of the inverse of this matrix. A simple calculation shows
that the constraint= —1 becomes

E2 enough E=*1), the increase in energy due to tension is
T2+ S=1. (4.6) compensated by the decrease in electric potential energy. The
1+B strings can have infinite length with vanishing energy. It ap-

. , ) . _pears as if the strings have no tension, resembling a collec-
There is no obvious duality between electric and magnetigio of particles or dust. We propose to interpret this situation

fields since the tachyon scalar field breaks the world volume,q tachyon condensation, or the point at which the D-brane
Lorentz invariance. The effect of the magnetic field is to,,5nishes. '

increase the critical electric field, and if we take=0 then Consider an open string with the worldsheet action
we reduce to the simple Lorentz invariant condition
1. :
E*-B%*=1. (4.7) s=f A0 5 (X2= X" 24 F, XEXT )+ X 49,8 (X)

The role played by electric and magnetic fields is interest- L L
ing and we make the following observations. First, a critical _ 2 0 w2 Sy
electric field will stop the tachyon from rolling near the end _f d UE(X —X )+f dT( a EF’“’XMX +CD(X))'
of the tachyon condensation process. Second, it has been (4.9
shown that a D-Dpair with critical electric field is supersym- ) "
metric [26]. Even though these results were derived in dif- 1N Spacetime momentum densities are
ferent contexts, there is an overlap in the way a critical elec- .
tric field on branes removes tachyon dynamics and one P, =X, TFX"" (4.9
wonders if there are further connections. For example, per- _ o
haps the reason why the tachyon ceases to roll in the predhe equation of motion is
ence of the electric field is also due to supersymmetry. In )
general we should be able to see regions of supersymmetry X#—=X"#=0, (4.10

develop during the tachyon condensation process, wiere o
and the boundary condition is

19n Ref.[24], this conditionz= —1 comes from requiring thad X+ F . X'=3d,d(X), (4.1)
and H be preserved while/(T)—0 for a homogeneous back-
ground. at the string end pointe=0,7r.
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We do not consider oscillation modes, so we impose the 0 ¢
above boundary condition on the whole string. From Egs. Sy )
(4.9) and (4.11), we obtain the relation (g+F),={ 750 b sin §
—bsin @ r?
(8 —FHE, )X "=—FF;'P +0*D(X). (4.12
¢ ¢
From this equation we see that there are solutions with arbi- . .
: ' : . - 1 r?sin’ —bsin 6
trarily largeX’ andP,=0 (that is, arbitrarily long strings at (g+F)=
no cost in energy or momentyrif either 4.2 b*\ \ bsing r
r7sin” 4 l—l-—4
de(1-F2)=de(1+F)de(1-F)=[de(1+F)]2=0, 4 (4.19
(4.13
so the action is proportional to
or
) b?
J,P=c0. (4.14 \/de(g+F):r25in6\/(—1+r2+E2) 1+r—4).
(4.20

The first condition(4.13 agrees with(4.6) when T=0.
The second conditiot%.14) agrees with the final state of the =~ We first examine the equation of motion of the embedding

rolling tachyon solution of Sen coordinate
x° . b?
Doce. (4.15 at{rzsine\/(—1+r2+E2) 1+ (g+F)“att1=0
r
It can be related to the desired condition foria a change (4.21)
of variable such as
and try a solution of the form
b= ! (4.16 c
1tz ' r=—d, E=const, (4.22

t

wherez is defined in Eq(4.2). The condition(4.14) is now  \yherec, is a constant parameter. This ansatz gives a solution

as long as we satisfy the relation
z=-1. (4.17

2 _
B. S3-branes with electric and magnetic fields E*- C_g_ 1 (4.23
Let us proceed to construct a solution of t88-brane o . . o )
action which represents a formation of @,¢) string bound which is consistent with thg constraint in E¢..3) since on
state. The ansatz is identical to the one in the previous sethe Sbrane world volumeT=0. It is straightforward to
tion, Eq. (3.1), except that we also include an additional check that the other equations of motion such as
magnetic field

. b2
X0=t aa{rzsina\/(—1+r2+E2) 1+—4)
r
Xt=r(t)cosd
X (g+F)23g,(r cos) | =0 (4.29
X?=r(t)sin6 cos¢

X3=r(t)sindsing (4.18 and
: b?
X*=y aa{rzsine\/(—1+r2+E2) 1+ r—4)(g+F)ab]=0
Fo,=E(D) (4.25
are also satisfied. The field strend®, generates a mag-
Fos=Dbsing. netic field alongy and parallel to the electric field. This

Sbrane is an electric-magnetic flux tube confining into a 1
The open string metric and its inverse are just direct products- 1 dimensional remnant. At late times ttf8drane becomes
of the example we gave before and a (p,q) string bound state. The existence of these additional
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solutions should be expected due ® duality on the L+AL=de( RS+ VOR. VDS (4.29
S3-brane as we will explain in the following section.

We note that these solutions have rEg); as long as the where®R=(X°, ¢5 ,A,) and the metric in the virtual trans-
electric field is greater than the critical value due to Eq.verse space parametrized B is 7»RS=diag(—1,—1,1).
(4.23. Although the appearance of large electric fields isThe Lagrangian shows that the whole duality symmetry is
unusual on D-branes, they appear quite naturallstmanes  SQ(2,1). It is interesting that the subgroup of the duality
and large electric fields do not lead to imagin&®prane  symmetry which rotates the electric and magnetic fields
actions. We will see in the following section how large elec-and ¢, in other wordsF,, and e,pFpe and so this should
tric fields show up orSbranes by examining the tachyon be Sduality, is in this cas&Q(1,1). This duality is more like

solutions on the non-BPS mother branes. a Lorentz boost between electric and magnetic fields than the
usual duality rotations. We will explain how to obtain the
C. Sduality for S3-branes more usual duality rotations in the next section.

If X° and A, are turned on, the duality group becomes

For the purposes of this section, the following parametrl-so(l’l) whose fixed point is the spike solution

zation:
c
X=X x2 ) XO= A=~ (4.30

Xt=x! . . .
which represents the formation of a fundamental string. If we
X2=yx2 also turn on¢g, we obtain the spike solution representing

the formation of a p,q) string at late time

0_ AX _ ¢B :& (431)
X*=x cosha sinha r ’

X3=x3 (4.26

which we provided in the previous section from an alternate
viewpoint, Eq.(4.7). The relationship between these two pa-
rametrizations is

Fay= A, (X1 %%, x3)

Fab: Fab(xlixzixg)
) ) E=cosha, b=cgsinha. (4.32

turns out to be useful to see the duality transformations,
wherea,b=1,2,3. The world volume of th83-brane is now The fundamental string charge and the D-string charge are
parametrized by x*,x?,x3,x) as in Ref.[3]. In the above 4mc cosha and 4rcgsinha, respectively.
parametrization we have assumed that all the fields are inde- The duality groupSQ(1,1) above is only a subgroup of
pendent ofy just like in our explicitS-brane solutions. We the full Sduality symmetry groupSL(2). [It becomes
follow Ref. [28] in deriving the extended duality symmetry. SL(2,Z) upon charge quantizatigriHere we started off with
This will help clarify how the ,q) string formation solu- an Sbrane solution which decayed into fundamental strings

tions are related to thie-string formation solution in Sec. Ill, (n,0). TheSQ(1,1) symmetry connects it tap(q) strings
and suggests other “non-BPS” throat-type solutions. with p>q, but we are still missing all otherp(q) strings
The S3-brane Lagrangian in this coordinate choice iswith p<<g. We will discuss how to obtain these other cases
written as[3] in the next section.
- 0, %0
L= det 5;—d;X°9,X°+F)) (4.27 D. Magnetic S-branes from M-theory
=[1—(9.X%)%+ (F )2+ (Fap) /4 Since D-branes can be realized as defects on the non-BPS
brane worldvolume, one is tempted to try to find the
+(9.XOF 5,) 2= (92X°)(Fp,)? S3-brane spike solution decaying into just D-strings. How-

aba N2 ever, the condition in Eq4.23 implies that if there are no
— (e FpcdaX") 4 fundamental stringsE=0), there is no solution with real
+(€achchaX)2/4]1/2- magnetic fields; one can prove this from the equations of
motion, Eq.(4.21), and by assuming only rotational symme-
We omit the overall constant fact®, in the Sbrane La- try. In the context of tachyon condensation of non-BPS
grangian. We next introduce the Lagrange multiplier figlg ~ Pranes, the magnetic field on agbrane induced from the

for the Bianchi identity ofF,, as field strength on the corresponding non-BPS brane should be
real. Magnetic solutions do exist, however, if we allow for
AL=(¢g/2)[ €apcTaFpcl- (4.29  imaginary field strengths. It is possible to investigate the im-

plications for allowing imaginary field strength solutions.
With this multiplier term we can regari,, as fundamental Imaginary field strengths have been noted to potentially arise
fields and integrate out the field strendih,. The final form  in time dependent systenf29] and it remains to be seen
of the Lagrangian is simply whether they will play a physical role in a theory.
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However, instead of introducing imaginary field strengthsa D-string. Let us obtain the explicit solution and see how
we will find a way to mimic their behavior with real mag- the D-string tension is reproduced. We begin with the action
netic fields and so avoid the constraint of E423. The key  for this magneticS3-brane written in the spacetime point of
point will be to consider M-theory effects by dualizing the view with the parametrizatio(4.18),
scalar field from the M-theory circle to a gauge field. This

dualized gauge field will not be induced from the non-BPS : . F
2ai 2, R2_R2;2 0¢
brane but from M-theory. L=r2sing\—1+r>+B2-B%? B= 2sing’
Earlier, in Sec. Il, we discussed a generalizétirane resin (4.3
action for spacetime vortices in E(.11). The main differ- ’

ence was that this generalized ac_tion _inclu_ded fluctuations of e solution for this decaying3-brane is
a transverse scalar along a spatial direction. Up to now we
have not used this scalar; however, we will now use this to
solve the riddle of D-string generation from &3-brane. r=—, B=— (4.37)
The idea is to consider M-theory compactified on two
circles, one the M-theory circle which reduces us to type IIA N )
and another to take us from type IIA to type IIB string Where we take, to be positive. We calculate the conjugate

theory. momenta and Hamiltonian
In this case we can begin with an M85 pair and look [1-B7]
. . i . . i 11—
for a codimension-three-generalized vortex solution repre P =r%sing (4.38

senting a spacelike M2-brane. This should be present just by
generalizing the argument in R¢22] where an M2-brane is
realized as a topological soliton in M#@5. The spacelike
M2-brane Lagrangian of this spacetime vortex is HEJ dxd 0d¢[Pr'r— L]

V-1+12+B2-BY2

_ 0 0 4 4 104 1
L = Vde( 8;; — X%, X+ 3, X*9;X*+ ;X %9, X19), _14+g?

. = | dydéde¢r?sing :
i,j=1,2,3 (4.33 f X ¢ \/—1+f2+82—82f2
where the spatial transverse direction is along the M-theory (4.39
circle X*0. Let us dualize the scalat!® into a gauge field

with field strength. We perform the dualization by adding At late timesr =0 andB is large so in this limit the Hamil-

the Lagrange multiplier term tonian has the simple form
1 ~ .

AL = Exlofijk(?iij (4.34) HIJ dxf82d0d¢BrZSIn0=47TCmf dy. (4.40
and then integrating o°. The final form of the Lagrang- At this stage we recall that in the above analysis we omitted
ian is the overall factor of thes3-brane tension, and also that the

parameterc,, should be subject to the Dirac quantization
L+AL= \/de( 5 —ﬁiXO&jX°+<?iX4<9jX4+i|~:ij) condition. It is naturally expected that tI83-brane tension

(4.35 is given by the D3-brane tensioiip;=1/27g, in our con-
vention 2ra’=1. Now what about the Dirac quantization

where the factor of I” now accompanies the dual field condition? Let us compare this magne8drane with the
strength! This factor does not need to be added into thelectric case in the previous section. A straightforward cal-
Lagrange multiplier term but instead is a direct consequenceulation shows that the energy there is given by the same
of the Euclidean nature of tt@brane action. If the scala¢*  expression
is trivial as in the present situatiof!= y of Secs. lll and 1V,
this 2-brane action in type IIA can be regarded asS8n
brane action in type IIB theory. In this action we can now
solve for a purely magneti3-brane solution as in Sec. IV B
but now with real field strength. We emphasize that the fieldvhere again the overall tensidr,; is omitted, andc is the
strength is real and the factor ofi™ does not effect the —parameter appearing in the soluti¢g®.11). Now the Dirac
Hermiticity of the action. One might ask if tH83-brane can quantization condition is
be constructed directly from an unstable 4-brane object. It is
possible that thi$3-brane construction can be studied on the L. Amrc :ZL”
S-dual of the non-BPS D4-brane which has also been called ™ Tps
an NS4-brang30].

This S3-brane decays into a one dimensional remnantvheren is an integer and the factors ofdcome from inte-
with magnetic field, so our expectation should be that this igyrating over theS? angular directions of th&brane world-

Helectric83:47TCf dx (4.41

(4.42
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volume. The factoll 53 appears here since this factor appearsiWe start by presenting solutions 8f-brane actions and dis-

in the action and so the right hand side is proportional to th&ussing their properties. The corresponding tachyon solu-

string coupling constards. tions are then presented, and it is shown how in a certain
Let us see how this condition works. What we are doing idimit these solutions apparently becomep,X) strings.

a generalization of Ref31]. Suppose that Eq4.41) gives Boundary states for the boosteBtbranes are also con-

the correct tension of a fundamental string, structed, and we show that they become boundary states of
(p,1) strings in the limit relevant to th&branes discussed in
AcTps=Tk (4.43  the previous sections. Finally, we examine the boundary state

of the magnetiS3-brane in Sec. IV D, and show that at late
which is 1 in our convention. This equation together with thetimes this solution produces a D-string boundary state con-
condition (4.42 provides the correct tension of a D-string, sistently.

A. BoostedS1-branes

The S3-branes of Secs. Il and IV are eventually confined

.into (1+ 1)-dimensional remnants so it should be interesting

Heren should be a positive integer since the left-hand side ig analyzeS1-branes directly. Since the “static31-branes
positive. We have shown that the remnant, represented by tqﬁe spacelike in the target space we will have to “boost”

magneticS3-brane solution, has the tension of a D'St”ng’them to become timelike in the target space. These boosted

which supports our clal_m that the remnant Is a D-string. A.‘Sl—branes are expected to be almost the same as the spike
boundary state discussion of this claim is also presented IDolutions in Secs. Il and IV at late times, except that the

Sec..V .F' . o boostedS1-branes have at least one D1-brane charge. The
It is interesting to relate the above dualization procedure

to a discussion ofS duality. In fact Ref.[32] discussedS generalS1-brane action is
duality for D3-branes and used a Euclideanized version of
the D3-brane action for simplicity, which from our viewpoint S= J d?x/det 8, — ;X°9,X°+F ) (5.2

is an S3-brane action. As compared to our dualization pro-

cedure, Eq(4.28), in the dualization process of R¢B2] the  \here the Euclidean worldvolume is parametrizeckbwith
Lagrange multiplier fieldpg enforcing the Gauss condition =1 y. First let us consider a solution relevant for the fun-

came with a factor of I*.” The factor of “i” was argued to  damental string formation in Sec. lIl. As in the previous

arise from the Euclidean nature of the brane worldvolumegg|ytions, we turn on onlyA, among the gauge fields and
The effect of this alternate dualization procedure with aMassume?, =0, so the actionxsimplifies to

explicit factor of “i” is that we reproduce the action in Eq.
(4.35. Therefore this alternate dualization procedure is 5 5 5
equivalent to field strengths coming from the M-theory circle S:f d?xy1—(9:X°) +(91A)". (5.2)
and not from the non-BPS brane.

Finally, for this case the duality group discussed in SecWhen the BPS-like relatioix®= *=A, holds, the equations
IV C becomesS((1,2) acting on ){(0,¢>B,AX), due to the of motion become linear:
“i” factor. The electric-magnetic duality is now the more
standard3O(2) duality rotation, which is consistent with the d191X°=0. (5.3
interpretation that thi§3-brane decays into a D-string. Inter- ) _ )
estingly, for the solution with the factor ofi * we can ig-  This holds for any §-brane if the above ansatz is applied,
nore they direction and regard the solution as &brane  a@nd the spike solution of Sec. Ill and R¢8] was of this
instead of theS3-brane. This solution represents the forma-tyPe. In the present cage=1, the solutions are simple
tion of a DO-brane from th&2-brane in type IlA theory. The XO—coxd Fro—c (5.9
magnetic field was originally the scalar field for the T T I :
M-theory circle, thus this solution in the M-theory side rep-

where the parameter describes the velocity in the target

resents a lightlike particle emission process from the space,
. pace
like M2-brane.
axt
V. STRINGS AND D-BRANES AS BOOSTED S-BRANES M =1/c. (5.5

A succinct summary of our characterizationSbranes so

far is that there are ways to follow the time dependent defecBue to the presence of the field strength, on theS-brane,
formation process. In this section we further discuss thdhe resultant configuration can be timelilee>1. The con-
(p,q) strings of the previous sections. We will find how cer- figuration is a one dimensional object moving in the target
tain “boosted” Sl-branes apparently become ordinary space with speed d/along thex! direction. If c>1, this
D-branes and fundamental strings moving in the bulk. Inobject moves slower than the speed of light and apparently
fact, these boostefll-branes extract late time information of becomes a physically meaningful moving 1-brane. The in-
the remnant formation solutions which we studied beforeduced electric field on the 1-brane is
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axl of the spike solution found in Sec. Il and RE3] so here we
Fox="oF1,=1 (5.6)  see a nice agreement between these $iwane solutions.
axX
which is the critical value. If one tries to use a usual DB B. Tachyon condensation representation

analysis for this moving 1-brane by assuming that this Our generalSbrane analysis is based on the belief that
1-brane is a D1-brane, the DBI action becomes imaginaryany solution of theSbrane action has a corresponding
So although this seems to be similar to a normal bound stat@chyon solution on an unstable brane. The solution given in
of strings and branes, this configuration seems to only havghe previous section should hence have a tachyon descrip-
an Sbrane description using thgbrane action. tion. Since the solution is just a boostBdrane, it is natural

We can generalize this solution so that it deviates from theo expect that the corresponding tachyon solution can be gen-
BPS-like relation. A simple calculation shows that a genererated by the worldvolume boost from the homogeneous

alized solution is rolling tachyon solution. In this case, one has to perform a
Lorentz boost respecting the open string metric. Let us see
c c is i i
9,X0= 1 £ - 2 5.7 this in more detail.

We start with the following general Lagrangian for a non-

Ji-c2+c2’ ™ 1-c2+c?
2 2 BPS D2-brane,

In this case the induced electric field takes on arbitrary val-

ues L=—V(T)y—del(n+F)AG*"9,Td,T), (513
C, whereF is a function defining the kinetic energy structure of
FoX=C—1, (58 the tachyon, an@G*” is the open string metric. This action is

the general form for the linear tachyon profiles. Almost all
although we still have the restriction on the parametgrs the Lagrangians which have been investigated so far, such as
andc, Sen’s rolling Lagrangian2,34], BSFT [15-17, and the
Minahan-Zwiebach moddB5], are included in this general
1-c3+ci=0 (5.9  form. Let us examine the tachyon field which depends only
_ _ - _ on x° and x*. If one chooses a gaugk,=0 and turns on
coming frqm the reality (;ond|t|on for th&1-brane action. only A,, then the gauge field equations of motion are satis-
The velocity of the moving D1-brane has a lower boundfieq trivially for the constant gauge field strength, . Then
related to the field strength,, . Expressingc, in terms of  he problem reduces to the situation where we have to solve

Fi, andc, as only the tachyon equation of motion under the background of
. the field strength which appears only in the open string met-

1 ric. In our case the explicit form of the inverse open strin
X [1+¢c? (5.10 P P 9

metric is

T (F)?

it is not difficult to see that % 1
d —

GH*’=dia
Vi+c? 1

¢ VIt (Fr)? VIF(Fi)?

(5.19

1 MR 1 (Fy )2
IX ( 1)() ( l)()

ax°

(5.1

whereu=0,1y. The metric in thex’-x! spacetime is

Settingc, =c,=c brings us back to the BPS soluti¢b.4). ) 5
These solutions include ones which describe static con- Guy=diad —1,14(F1))]. (5.19
figurations in the bulk. Setting the velocity to zero in Eq.
(5.7), we get the relationship5=1+c7 and in this case the The simplest solution is a homogeneous solutiéaT
induced electric field can be larger than the critical value = J, T=0. Since in this case we turned on only the magnetic
field, we have thaG,,=—1, and so this solution is just the

\/1+c§ same as the one with vanishing field strength. One can inte-
Fo,= o =1 (5.12  grate the equations of motion fof and then obtain a

solution* T=T,(x%). Without loss of generality, we may
Again, we see that this static one-dimensional object exceed@ssume that the tachyon passes the top of its potentidl at
the validity of the usual DBI action, unlesg==. In the =0, i.e. the equatiofy(x°)=0 is solved byx’=0.

limit ¢, =9 the configuration is static and has a critical elec- \We next perform a Lorentz boost in the 01 spacetime
tric field so this configuration can also be described by thdlirections which preserves the open string metric. For this
usual D1-brane action. However, this limit is rather singularpurpose we define a rescaled coordinate= G;;x*. In

and it apparently represents ém1) string withn—o. We

identify this as an infinite number of fundamental strings

where the D1-brane effect has disappedB8]. On the other At this stage we exceed the validity of the BSFT tachyon action
hand, the limitc;~c,= is just like the late time behavior (5.13 since the solution is not linear ix° [19].
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T=T,[(coshy)x’+ (sinhy) G, x*]. (5.20
The original solutionT(x°) has the rolling tachyon behav-
ior for largex®, To~x. Therefore in the limiF,,—, this
boosted tachyon solution becomes
T~ux!, u=Fy,sinhy— (5.21)

and this linear dependence &h coincides with the familiar
static D-string kink solution. The coefficient of the linear
term diverges, which is also consistent with the BSFT renor-
malization argument for D-brane kink solutiofiks,17).

It is clear that the moving 1-brane has a unit D-string

FIG. 6. The light cone structure on the non-BPS D2-branecharge. Taking into account that the integration surface en-

worldvolume. The closed string light con@) is always located

closing the defect in the original non-BPS brane worldvol-

outside the open string light corib). The dashed line denotes the ume is not necessarily timelike, tisbrane charge is just the
motion of the booste@brane which is both timelike with respect same as the D-brane chaidg. So, if theS-brane worldvol-
to the closed string light cone and spacelike with respect to the opeame is deformed to be timelike, it should give an ordinary

string light cone.

these rescaled coordinates the metric becon@/§V

=diag(—1,1) and the Lorentz boost takes the usual form

x° x?’ coshy sinhy) [ x°

%) T \xt7] "\ sinhy coshy/\Xt/)" (.19
The line where the original defect is locatex?=0, is
boosted to a tilted line

x%+tanhy{Gxt=0

(5.17

so the defect is now moving along thé direction with
velocity
axt -1

— (5.18
&XO Glltanh'y

D-brane charge. This can be easily seen from the RR-
tachyon coupling in the non-BPS brafi7],

f cAdTe ™. (5.22
HeredT can be evaluated as
AT (X%
dT= #d(xo'). (5.23
ax”’

Therefore if the boosted ling®’ =0 becomes timelike, the
usual D-brane charge is generated in which the RR source is
distributed on a hypersurface timelike in the bulk closed
string metric.

Here we stress that the boosted tachyon configuration has
the usual D-string charge, so the configuration should repre-
sent an ,1) string withn—, as seen in Sec. V A. Then,
how is the fundamental string chargeseen in the tachyon

The important point here is that the absolute value of thiglescription? The answer is that the fundamental string charge

velocity can be made less than unity. By definitiganh+

is expected to be realized only in the induced electric field,

<1, so if the field strength vanishes, the velocity of the con-not in the tachyon field. In fact, if we recall the noncommu-
figuration is greater than that of light; the worldvolume of tative soliton representing a fundamental str[i33], there
the defect is still spacelike. If we turn on a constant fieldthe tachyon sits at the bottom of the potential from the first
strength, then a large boost will make the defect timelikeplace. In the present case using E%j20), it is easy to evalu-
This property is a direct result of the fact that the open stringté the induced electric field

light cone lies inside the closed string light cof86]. Be-

cause of this fact one may obtain timelike D-branes from axt

spacelike-brane&see Fig. 6.

The lower bound for the velocity of the moving D-brane
(5.11) should be seen also in this tachyon solution. In fact, it

is given by

axt 1
ax° VI+(Fp)?

which coincides with Eq(5.11). For theShbrane, the limit

Fl FlX—mo
X — —cothy (5.24

o Glltanh'y

a0 M
and we find that this agrees with ti$d-brane analysis Eq.
(5.12. So in the limity—o we have a critical electric field
FOX: - 1 .

In addition to the charges of the defects, their energy is
another important physical quantity to study. Though one
expects that the energy of the boos&lrane should depend
on the tension of th&-branes whose precise value is un-

F1,— makes thes-brane worldvolume static. Let us study known, we may proceed by using the explicit expression of
what happens to the tachyon solution in this limit. Thethe corresponding tachyon solution. The detailed analysis is

boosted tachyon configuration is

presented in Appendix B.
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Although we have just seen how ti81-brane seems to case for simplicity. The worldsheet boundary coupling in the
describe ,1) string bound states, one might question thestring sigma model should be
validity of the solutions since th&brane solutions allow for
faster than light travel. Let us examine the tachyon configu-
rations to see how this occurs. As discussed around Eq.
(5.21) a static brane has zero width while all moving con-
figurations acquire a finite width. When the width is small WhereV is the inverse of the velocity of the moving D1-
relative to the background it is easy to say that there is &rane, while we normalize the bulk action as
lump which is actually moving, and in such cases the lump is 1
moving slower than the speed of light. If we speed up the - o yv, ab
configuration, its width increases and the lump in the 2[ dod70aX 00X 7 (528
tachyon field becomes hard to separate from the background., ) .
In such cases it is difficult to say if the lump is moving and With the oscillator expansion
instead we should describe the configuration as a collective i 1
motion of the tachyon field which just resembles a lump  xr—yripur—+ > Z(q M0+ gin(e=n)
moving. When theS-branes move faster than light, the con- 2 q7on
figurations do not have good interpretations in terms of (5.29
lumps or branes in motion and so it is okay if the configu-
ration “moves” at a speed greater than light.

1 J X 1 J 0
dr| X! X+ VXX (5.27

The variation of the action gives the boundary conditions at

o=0,7 as
C. Boundary state and fundamental string charge 9 X1— FlX,gTXX_Vg(TXOZO’
In the previous section it was shown that the boosted 1
Sbrane carries D-string charge and the tachyon configura- I XX+ F1,d:X>=0, (5.30
tion had the usual D-string form. However, since an electric 0 1
field is induced on this D-string as shown in H§.8), the 9.X"=Va X>=0.

1-brane is expected to be an,{) string which also pos- L - .
: ' : The last condition is due to the original Dirichlet boundary
sesses fundamental string charge. The easiest way to see |J? dition for the time directioi?. Substituting

this object carries such a charge is to study its boundar§On
state, especially its coupling to the bulk Neveu-Schwarz—

1 ~
Neveu-SchwarzNS-N§ gauge field. In this section we ex- 7 GI R 5 > (al+aty), a.XH o
plicitly construct a boundary state for the boos&blranes of n
Eq. (5.7). 1 ~
According to Gutperle and Strominggt], the boundary =—3 En: (ah—a)) (5.3)

state for arSp-brané? satisfies the following boundary con-

ditions: into the above boundary conditios.30, we obtain

(al+0O*a” )|B,7)=0 (5.25

o _ at—a’ —V(ai-a' =0,

(and similar expressions for the worldsheet fermjofihe
orthogonal matrixO is given by

aptat —Fy(af—a¥ ) -V(ap+a®,)=0,
Oo#* =diag—1,1,...,1+1,...,—1) (5.26
aX+aX +F, (at—at )=0. (5.32
where we have+ 1 entries giving+ 1, specifying the Neu- " T "
mann directions. For spacelike branes the first edfyyis  Solving these equations, we obtain a new orthogonal matrix
negative due to the Dirichlet boundary condition for the timespecifying the boundary condition
direction.

We now proceed to find the boundary state for the boosted 1
Sl-brane. Since our solution has constant field strength an@*,=

2 _\,2

constant velocity, it is expected that only the orthogonal ma- 1+F—V
trix O will be modified*® We work out the bosonic string —(1+F2 +V?) o\ 2F, V

X -2V 1-Ff +V? 2F 1, ,

2n the following, we identify our flatSbrane in the rolling 2F;,V —2F,, 1_|:§X_V2

tachyon context with th&D-brane which is defined to be a brane
on which open strings can end with Dirichlet boundary conditions (5.33
along time.

13150 the normalization of the boundary state, which is usuallyWheréx,»=0,1,. It should be noted here that off-diagonal

identified with the DBI Lagrangian, will be modified but in this entries appear i, and these are responsible for the funda-
paper we will not consider this point. mental string charge. There is now a non-vanishing overlap
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of the boundary state with a NS-N field state|B))>"'). 1+F% —Vv?=0. (5.39
This represents a source for tBefield
o Substituting the identificatio(6.38) into the above inequal-
(B|BOy S = Og,+ 0,0=0° +0%#0. (539 ity, we find

Here we lowered the indices by, , which appears in the 1-E2—v2%<0, (5.40

oscillator commutation relations. This shows that the moving

D-string carries fundamental string charge and becomes Which is the region where the descripti¢s.36) is invalid

source for the target space NS-BSield. since the D1-brane Lagrangian becomes imaginary. There-
To gain a better understanding of this source, such as thi@re, although the boundary states have the same structure,

amount of charge it has, let us study the structure of the their valid regions of parameter space are different. The two

orthogonal matrix® in more detail. We started from an descriptions overlap only in the case of vanishing

S1-brane boundary stat6.26) which has a Dirichlet bound- Lagrangians where the fundamental string chargges to

ary condition along time and then boosted it to obtain theinfinity. This means that the fundamental strifignit) can be

matrix in Eq.(5.33. This can be compared with the ordinary described by both the boost&i -brane and the D1-brane.

(n,1) string boundary state constructed in H88] which is ~In the static case we can see thi; .correspondence more
obtained from the boundary state obd-braneby introduc- ~ directly. In theSbrane boundary conditiort$.30, we take
ing the boundary couplifg the limit
jgd EXO - X0 X1 (5.39 S Y v:£_>o (5.41
T &T U aa_ . . V 1 V N
The orthogonal matrix obtained in R¢B8] was which is expected to give static fundamental strings. Then
Eq. (5.30 reduces to
- 1
ot =——— aX1=0, 9.XX+9,X°=0. 5.4
1-E2—p? (5.42
2, 2 The first equation tells us that the object has Dirichlet bound-
1+E“+v —2v 2E o 1 .
ary condition along<* and so it has worldvolume alond
X 2v —1+E*-v? 2vE andx*, while the second equation is thg|=1 limit of the
2F —2vE 1+E2— 2 mixed boundary condition on a D-string,

(5.36 Fo,d-XX+d,X°=0. (5.43

and the associated boundary state describedl) 6tring  So this is precisely the fundamental string limit.
moving with the speed along thex! direction. The charge

nis given by the electric flux on the worldvolume theory, D. S-brane description and T duality

E At this stage it is very natural to ask, “What is the boosted
nN=—r———. (6.37  Shbrane without taking the fundamental string limit (van-
1-E°—v ishing Lagrangian limjf?” To approach a possible answer to
this question, let us observe what happens to the orthogonal

Remarkably, the matri¥5.33) is identical with(5.36 under matrix in the boundary state. For simplicity we examine the

the refation static case. The boundary state of a stafi¢l] string pre-
1 E sented in Ref[38] is defined through its orthogonal matrix
V==, Fq=—. (5.39
v’ N . 1 (1+E2  2E 504
Oo*(E)= , 5.4
This is indeed what we expected since the first equation is 1-g2\ 2E  1+E?

just v=0xY9x°=1/V and the second equation is just the

change of the coordinates f&=F, which we have found Wherex,»=0,x. Here of courseE should be less than or
in previous sections. This suggests that the booSterhne ~ €qual to 1. On the other hand, the boos8adbrane with the
boundary stat¢5.33 describes a movingn(1) string, but in ~ Static limit V=cc is also described by the above matrix with
a strict sense this is not the case. Let us compare the regiofs=1. To relate these two descriptions, we see that if we
of parameter space where the actions are valid. The descriperform the transformation

tion (5.33 is valid if the Sbrane Lagrangian is real, -
E-E=1F, (5.49

144ere we changed the notation from REBS] as o« and  then the matrixO transforms as
(0,1,2)—(0,x,1) to fit our computation, and to avoid confusion we o _
used—v instead of theV used in Ref[38]. O(E)=—-0(E). (5.46
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Interestingly, this means that the case with electric field Let us turn on a constant electric fiell);,. Usually this is
larger than 1 is related to @ smaller than 1 only by a sign said to turn the P-brane into an(F, Dp) bound state, but

change of?). The change in the sign @ is equivalent to the What does the above RR coupling tell us? The second term

replacemeniz— —« which is aT duality alongx® and y gives
directions, see Eq5.25.
So what we have found here is that the descriptiolE of Emf c(zgj%’)), (5.48
larger than 1 can be obtained Byduality alongx® and y.
Let us discuss the meaning of this duality more. Before exypg i 4 source term for the RRp¢ 1)-form with spatial
amining our present case, it is instructive to remember th‘f“ndices, or in other words for aB(p—2)-brane. This sug-
ordmaryT duality along spatial directions for D-branes. Let gests that the fundamental strings can be thought of as
us consider a bound state pfD0-branes andn D2-branes. g 05redSbranes, at least in the worldvolume of other
The D2-brane worldvolume is extended alodgandx®. The 1 oiher D-branes in which the fundamental strings are bound.
density of the DO-branes per unit area on the worldvolume of
a single D2-brane is just the magnetic field induced on the
D2-brane,F,=n/m. The open string boundary condition
becomes a mixed boundary condition. Now let us take a In the above we have learned that while D-branes with
duality alongx® and x2. First, T dualizing alongx* trans- small electric fields are described by D-brane actions,
forms this D2-DO bound state to a D1-brane winding the 12D-branes with large electric fields are describedSayrane
torusn times alongx! and m times alongx?. Second, take actions. Following the previous section, here we further ex-
the T duality alongx?. We then get a bound state nfD2-  plore theT duality which interchanges these two classes of
branes andn DO-branes, giving an induced magnetic field configurations.
EL,=m/n=(F,) "L This shows that the inversion of the For simplicity, only the'electric fie]d in thg dire_ction is
magnetic field can be understood Bsluality. turned on. The Lagrangian, electric flux density and the
Let us apply this well-known idea to our case, and sedlamiltonian for the D-brane are given by
what happens to an(1) string when weT-dualize alongx®

E. Relation betweenS- and D-brane descriptions

apd X Consider a staticr(,l)_ s’gring stretched along the L=—\J1-E% D= E . H= 1 ,
direction. The induced electric fiel=F,,<1 parametrizes 1-E? 1-E?

the number of bound fundamental strings. First let us take a (5.49
T-duality alongy. The resultant configuration is a DO-brane

moving at the speed which does not exceed the speed of @nd those for th&brane are

light. This moving DO-brane can be thought of as a “wind- E 1

|rg)g D0-brape, that is, a DO-bra.me-WlndlngELMmes along L=J—1+E2, D= . H= _

x° and 1 time alongy. The winding alongy should be J=—1+EZ2 J—1+EZ2

thought of as arS0-brane since the worldvolume is only (5.50

along this spatial direction. Now take a secondduality

along x°. The former 1E DO-brane becomes B/ The range of electric fields valid for the D-brane description

S(-1)-branes, while the latte80-brane becomes a single is E><1, which is mapped to the range of validf>1 for

D1-brane. Therefore, after tiedualities, we have a bound theSbrane description by thé-duality along the time direc-

state of a single D1-brane andE15(-1)-branes. This state- tion

ment is very plausible in view of how we derived the boosted

Sbrane: there we considered &1i-brane with magnetic E_, = (5.51)

field F1,, which is exactly a bound state of & -brane and E

S(-1)-branes. If we consider now the boost®brane so the ) ) ) . )

S1-brane is timelike, i.e. a D1-brane, the resultant objec€onsidered in the previous section. From the expressions

should be a bound state of a D1-brane &el)-branes. above, we flnql that this map induces the interchang® of
Since theSbrane description in the previous sections is@nd H, or equivalently the interchange of the fundamental

valid for E=1, the cas€ =1 is the only overlapping region String charge and the energy. Recall that ordin&guality

and has two equivalent descriptions. However, the above odbterchanges winding modes with Kaluza-Klein modes.

servation leads us to an intriguing conjecture: Any,1) Since the total string number can be thought of as the “wind-

string can be thought of as a bound state of a D1-brandcand I"d Number,” and the energy as the “momentum”in the time
S(-1)-branes withE<1. Here we do not specify how the direction, roughly speaking, the interchangefandH is

latter bound state should be described but there might pwhat one would expect for thEduality in the time direction.
some advantages in treating tha,X) strings from the
Sbrane point of view. To illustrate this point, consider the F. BoostedS3-brane as a D-string

RR coupling on a P-brane Earlier in this section we saw how the late time part of the
solution of Sec. Ill can be realized as a boos&dbrane.
. We may expect that in the same manner the late time con-
(p+1) (=14 ... . ; ; .
f N +FAC e (5.47 figuration of the spike solution of Sec. IV D can also be
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obtained as a booste&brane. Here we will present a Remembering that we have a Neumann boundary condition

boosted solution of anS3-brane action with magnetic for x*, this is precisely a boundary condition for a D-string

fields!® and show that actually the boundary state of theextended along®.

boostedS3-brane reduces to that of a static D-string. This analysis provides more evidence for the claim that
As explained in Sec. IVD we may consider field the late time remnant of the solution in Sec. IVD is just a

strengths on th&3-brane arising from the excitations of a D-string. Here we demonstrated that D-strings can be de-

scalar field along the M-theory circle. If we assume that thescribed by arS3-brane, suggesting another interesting dual-

fields in Eq.(4.33 are independent of?, x° as well asx®, ity.

we obtain for vanishingh, (=X%)

VI. SBRANE AND D-BRANE INTERACTIONS

L= 11— (9,X%2+(9,X™9)2. (5.52
In this section we discuss how the formation of a
The field X'° is related to the original field strength,  codimension-one D-brane can be understood using an
—E,, through the Legendre transformation, S-pranq description of brane creation. Irl comparison, the so-
lutions in Sec. IV B describe the formation of p,{) string
5 from an S3-brane which is defined to be a spacelike defect
_[\/1_(51)(0)2_B§+(Blg1x0)2_5151x10]=o on a non-BPS D4-brane. On the non-BPS D4-brane, these
oB Shrane solutions are therefore describing the formation of
(5.53 codimension-three defects. However, the simplest case

. . . should be the formation of a codimension-one D-brane,
where the factor of has been included as discussed earherwhich has been studied in some literat{6e39,8,40,9

This is rewritten as

Here we make a preliminary discussion of the interesting
role which Sbranes play in RR charge conservation. Our
o 1—(9,X°%)? main point is that in order to create charged defects we must
91X7=—By W (5.54 also have charge&branes whose time dependent charge
1 represents specific inflow and outflow of charge into the sys-

tem. In a time evolution transition, for example, we will

. . . O
so that theS3-brane can become a timelike objeet, X" jiscuss how RR charge can be thought to be “added” by the

>1.
Sbrane
The Lagrangian5.52 has the same form as EG.2), as
it should due toS duality. There exists a general solution A (with chargeq;) S-brane “chargé g,
>

similar to Eq.(5.7),

B (with chargeg;+qs,). (6.9
alxozL alxl":L. (5.55

Ji-c2+c?’ Ji-c2+c?

An interesting candidate process to examine is the time
dependent formation of a kink, see also R¢639,8,40,9

Let us take the BPS limit;=c, and furthermore the static Eor S|mpl|ct:|ty cc%_nh3|di_r ﬁ k|n|ktl_)O-brfane OBS ;On_BPSthlh'
limit c;—0c0. This is expected to be a D-string since this limit rane system. fhe kink solutions for a Du-brane an €

provides the late time behavior of the spike solution in Sec&nti-Kink solution for aD0-brane are schematically
IV D. To check this, let us again look at the worldsheet

N . > >
boundary condition of an attached fundamental string. The To(X)>0  for x>0
appropriate inclusion of the boundary coupling lead$ to <0 for x<0

A X2—F 239,X3=0, 3,X3+iF ,30.X>=0, (5.56 To(x)<0 for x>0

a.X°-Va,xr*=0, Vg, X°-a,X*=0, (5.57 >0 for x<0. (6.2

whereV is defined to be the value @X° in the solution as Con_S|der now a transition from kink to anti-kink. This is a
T ~ configuration where the absolute values of the tachyon field
before. In the static limitV—c« and F;3—«, the above ecrease and then increase again. The crucial point is that

boundary conditions reduce to there should be a transition in the entire tachyon profile as it
5 5 ) o goes through zero. The time evolution of the configuration
9. X°=9,X°=9,X"=0, 9,X"=0. (5.58  should roughly pass through
T(x)=0 Yx (6.3

Though so far in this section we have usgt-branes, in this
section we need magnetic fields and so us&asbrane instead. ~ Which is flat. Since theS-brane always appears in such a
Although there appears ari™in this expression, this might be transition, we attempt to ascribe the change in charge as
absorbed into the redefinition of the worldsheet variables. being due to th&brane. Although from the point of view of
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FIG. 7. Formation of an anti-kink using a kink agbranes.

the effective theory th&-brane is a very non-localized in-

PHYSICAL REVIEW D 68, 026007 (2003

FIG. 8. Creating @D0-brane does not conserve charge.

conserved. To conserve charge we must includeStheane
charge and so propose the following conservation law. For
any closed curve, for example the dashed circle in the figure,
count the number of D-branes afebranes which flow into
the curve in such a way that a D-bratenti-S-brang con-
tributes a charge- 1 while an anti-D-brane&-brang counts

as a—1. Naturally, a single stationary DO-brane conserves
charge as does a single fl&0-brane(which is consistent

stantaneous charged object, the complete tachyon profiith the charge conservation of the known fabranes of
paints a more standard picture which shows that the transfhe rolling tachyon.In the above figure the net change in-
tion is not instantaneous. We will see, however, the consisflow is zero, +2-2=0.

tency and simplicity of thes-brane picture.

To go from kink to anti-kink, theS-brane must have
charge two, one to annihilate with tf20-brane and one to
create the DO-brane. The fact that a fabrane describes

such a process is very surprising as it is so simple and i

The verification of this conservation law is straightfor-
ward. Draw an arbitrary simple closed curve over the space-
time plot of any tachyon configuration and parametrize the
curve hyl, so the values of the tachyon afe=T(l), 0=l
27r. The zeros of the tachyon configuration are located at

different from our otheS-brane solutions. Also as discussed | =!i wherei=1,2,.... 2. Now the important point is that

in Ref. [40], many branes and anti-branes can be essentiall{/® take the tachyon field to be a single_valued_function over
created from a flaT =0 initial condition. It seems then that the worldvolumeT(l=0)=T(l=2), so integrating the de-

a flat charge on&brane can either destroy a DO-brane, or'ivative 9T/l over the curve we get

destroy a DO-brane and also create equal numbers of branes oT

and anti-branes. If this statement were true it would greatly > sgr{—‘Ml =0.

reduce the usefulness &fbranes since eac&brane would i dl '

represent an infinite number of qualitatively different pro- . ; . _ : :
0 ; e locationd; with sgrf T/dl|,-; ]=+1 are physically in-
cesses. Fortunately, we shall see by considering things more : g |'*'i] phy y

carefully that this is not the case and our consideration herfe/Préted as intersections of the circle with either a DO-brane
was too naive. In fact we can consistently conserve RFOr SO-brane, depending on how fast the tachyon field zeros
charge in the tachyon condensation process by properly a@'® moving. This proves our conservation law and clearly
counting for theS-branes. shows that Sbranes play an essential role in charge
Figure 7 illustrates the time dependent kink formationConseer"t")’Jf-7 o _
process and represents the entire non-BPS D1-brane world- Consider next a similar case where the entire tachyon
volume with the vertical and horizontal directions corre-configuration is situated &t=0. We are tempted to imagine
sponding to time and space, respectively. The horizontal linéh€ formation of a net kink or anti-kink by tiny perturbations
t=0 indicates the location of th80-brane, the upper half @S shown in Fig. 8, and this fact gives some support to our
vertical line is aDO-brane and the lower half vertical line is Prévious statement that a fl&trane is a good candidate to

a DO-brane. Fot<0, T(x)>0 for x>0 while T(x)<0 for describe the transition. Unfortunately this observation is in
x<0. For t.>0 T(x,)<0 for x>0 while T(x)>0 for x direct contradiction to our charge conservation law. How do

<0 we resolve charge conservation with our above observation?
Although the horizontal line marks th€=0 region, it On.e.way_ IS to placg th&-brane at past infinity by reparam-

actually consists of arS0-brane and arS0-brane 'i'he etrizing time, see Fig. 9. Th&brane can never be enclosed

0 bra)r/1e is located at<0. t=0 while the S0 brané ic at by any finite closed curve, so charge is conserved. Putting

x>0, t=0. This is clear if we look at the tachyon configu-
ration att=0 sinceT<0 for x>0 while T>0 for x<0. "More precisely, the “location’; does not specify the location of
This pair of Sbranes seems to be necessary to create a DGhe branes but gives the maximum of the RR charge density. The

brane on a non-BPS D1-brane. _ RR charge density is given bye T°dT, and the integration over
Now we can define our charge conservation rule. If wet c[—« ] gives a unit RR charge. In the following the location

just consider the DO-brane and th®-brane, charge is not should be understood in this sense of the maximum charge density.

(6.9
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FIG. 9. Putting theSbrane at past infinity will ensure charge

conservation. FIG. 10. AnS0-brane is changing into R0-brane.

lutions which we have not yet obtained, the arrows in Fig. 2
typically show howS-branes work in regards to time evolu-
tion of string theory processes. Although dsibrane is de-
ﬂped through the rolling tachyon on non-BPS D-branes, we
may expect that this scenario of D-brafegtring formation

via Sbranes is more general and may be applied to other
=X sinh(M).] We may also think of _the situation illustrated in iggﬁgg;&;?{égggﬁﬁ;%g%S;cne%émeg;ypin?hzlgsgrfngrane
F'g' 10.'” which arB0-brane tums into &0-brane SO charge methods to understand defect formation in non-stringy sys-
is again conserved. Although charge conservation cannggmg with topological defects, such as the standard model,
solely determine the possible dynamics, it clearly does limilj, ¢ it has recently been reported that the generic features of

the dynamical processes. D-branes can be reconstructed in the context of usual field
It should be remembered that we can produce Chargele%ﬁeoriesmz]

remnants The fundamental string formation process stud- To illustrate the roles of th&branes, we presented sev-
ied in Sec. 1l provides an example. There the r@)brane 5| cjassical solutions @ brane actions, including electric
RR charge_ disappeared due to the shrinking worldvolumegg .o spike solution&Sec. Il and Ref[3]) which de-

Of course if we took the branes to have zero charge theQgjneq fundamental string formation, electric-magnetic
charge conservation would play no role. However, as long 383 _prane spike solutions in Sec. IV which producedq)

we treat topological defects with topological charges, thegyings and D-strings, and “booste@branes which are flat

same argumen.t should apply. . . . and timelike branes capturing the late time configuration of
Our discussion on charge conservation for codimensiong, spike solutions. By directly analyzing the non-BPS

one kinks of a real tachyon can be generalized to codimeng, .y qn system in Sec. 1l B, the confinement of electric flux
sion two vortices of gomplex tachyons, which exist on theWas shown to minimize the energy of the corresponding
worldvolume of a D-Dpair. Therefore in analogy to Eq. tachyon system, and this result agrees with our interpretation
(6.4), the number of vortices and anti-vortices intersecting &f the electric spike solutiorS-duality on theS3-brane was
sphere should be equal. _ studied in Sec. IV C, which turned out to be consistent with
‘Seeing howS-branes and D-branes interact, we are rehe rolling tachyon with electric and magnetic fields obtained
minded of string networks. Also, one could attempt to inter-in Sec. IV A. By taking into account M-theory effects, we
pret the process in Fig. 7 as two copies of the process in Figound out how to produce D-strings from &3-brane. The

the S-brane at past infinity was also discussed in RETS]

as a “half Sbrane,” where the tachyon was taken to be
T(t)=eM. This tachyon configuration is just like a flat
Sbranes in our sense at early times and then dissipates in
the vacuum at late time§To go from the DO-brane to the
DO-brane we would need something likeT(t,x)

10. Solutions of Fig. 10 are not solutions of tisbrane
action, but could be solutions of &S pair.

VII. CONCLUSIONS AND DISCUSSIONS

existence of these solutions therefore demonstrates that
S-duality could in fact be used in a new way to constrain
remnant formation. Our resolution of the imaginary field
strength on th&3-brane worldvolume is potentially relevant

in other case§29]. The boosteds-brane was introduced and
In this paper, we have explained h@branes play a role We provided their corresponding tachyon configurations in
in time evolution in string theory, especially in the D-brane/Sec. V B. We also obtained the boost&drane boundary
F-string formation during tachyon condensation. In generaptate which clarified that the boost&brane isT dual in the
we have classifie@brane solutions according to their rem- time direction to p,q) strings. In our analysis the fundamen-
nants as in Fig. 2. Although there are some “expected” sotal string limit of (p,q) strings can be described by both
D-branes ands-branes so the critical electric fielH=1 is
likely a self-dual point between these two descriptions.
18\any field theories have solitons and so we believe that Space- We now turn to detailed comments on some results we
like solitons (brane$ should also exist in these theories. For ex- Obtained in this paper. Although the late time configuration
ample in scalarg” theory, it might be possible fo&branes to Of the spike solution in Sec. lll is given by the boosted
describe the formation of the kink solution. In this case since theS-brane in Sec. V, we have not found explicit tachyon solu-
kink solution hasZ, topological charge which should be conserved, tions corresponding to the spike solutions of Sec. Il and
the process illustrated in Fig. 8 still does not exist. Sec. IV. The results of Refl13], which discussed tachyon
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spike configurations of D-brandthe brandf-string ending tion of Fig. 7 has an interesting property. The rolling tachyon
on braneg might be useful in the construction of tachyon energy atx#0 is nonzero while ak=0 the energy is equal

configurations forS-branes. It might be possible to general- to the non-BPS brane sinde=T=0 there. The tension of
ize the recent result in Ref43] on the correspondence be- the S0-brane depends on the rolling tachyon eneggy),
tween the tachyon system and DBI on their defects, to ougince in the derivation of th&brane action, the tension of
Sbrane situations. It is inevitable, however, that the tachyonhe Sbhrane is just the value of the non-BPS brane Lagrang-
solutions will be approximate since the precise Lagrangian ifian integrated ovex? with substitution of the classical solu-
string theory is still missing. Also, while work has been donEtion T(XO) which is dependent 0A. Hence it may be pos-
to check various static properties of tachyon actions, theigiple to regard&(x) (or equivalently, the tension of the
time dependent properties are not as well understood.  sprang as another dynamical variable that tBérane sys-
We also point out various other solutions and generalizazem has. At values of with E(X) = Tron 8PS0 aDO-brane is
tions. Another type of solution to look for on th@brane  created as in Fig. 7. If we may introduce a term like) in
worldvolumes we have discussed, is to have the electric fielgho 5 prane Lagrangian, it may fix the spatial dependence of
and magnetic fields in different directions. One example is tQhe S prane tension via; equations of motion f6rand so
have the electric field along the direction and to have the ,vern the D-brane creation process. However, si{g® is

magnetic field along one of the angular directions, let us safy 4 |ocalized mode on t@brane but defined through the
¢. A similar static case has been discussed in Re,44. integration over all thex® region, it might be difficult to

Also_, in the solution of _Sec. II.I, it_ is possible tq takeTa proceed along this direction to generalize ®érane La-
duality along they direction. This simply turng, into the grangian.

veloci_ty along f[hat dire(_:tion, so the criticality of the original If a configuration like Fig. 7 is explicitly constructed,
electric field will result in theS-brane worldvolume moving however, it should provide an interesting procedure to com-
at the speed of light. This is a null geodesic, and 100ks lik&, te Feynman diagrams for D-brane scattering. It is possible
an emission process of a D-brane. Another interesting genefpa; physical quantities associated with the scattering process
alization is to have multiple spikes. This is possible becausgre girectly related tcbrane actions and their solutions.
the bion spike solutions in Ref§31,2§ decouple from each jyqerstanding thesgbrane systems might provide a theory

other and so do the multipl&brane spikes. These solutions .t interacting D-branes and strings in a general context and
are similar to the above emission processes. In this case alternative to matrix theory.

observe many D-branes and strings coming in from past in- gy analyzing boundary states with electric fields and an
finity and scattering to various directions in the target space&innomogeneous tachyon background, the authors of 6.

However, we would like to state that such a configuration is,ae aiso recently discussed solutions which can dynami-
odd since although the Hamiltonian is simply the sum ofc4)y produce fundamental strings. It would be interesting to
spikes, and hence gives seemingly independent worldvoly, ther explore the relationship between their boundary state
umes, we see that the worldvolumes also apparently interseg,qyysis ands-brane solutions. We leave these issues to fu-

for some time. o ture investigation.
The analysis in Sec. IV C also implies that there are also

throat solutions irS-brane systems as in the D-brane cases.

In the ordinary D-brane case the throat solutions are relevant ACKNOWLEDGMENTS

for the brane and anti-brane annihilation prode&ss45.5. It We thank C. -M. Chen, J. Evslin, M. Garousi, M. Kleban,
would be very interesting if the role of theSebrane throat 3 kuymar, H. -N. Li, M. Li, N. Sakai, Y. Sakamura, A. Sen, S.
solutions(the throat is along time directiok” in the Sbrane  Sygimoto and S. Terashima for valuable discussions and
casg is clarified. In fact this question is related to the pos-comments. K.H. is supported in part by the Grant-in-Aid for
sible non-Abelian structure &-branes which should be not ggjentific ResearchiNo. 12440060 and 131352p&om the

just the result of a non-Abelian structure of the original non-japan Ministry of Education, Science and Culture. P.M.H.
BPS D-branes but is more intrinsic to time evolution andang J.E.W. are supported in part by the National Science
tachyon condensation on a single non-BPS D-brane. Sincgouncil, the Center for Theoretical Physics at National Tai-
the throat can also carry an electric charge, it is possible thagan university, the National Center for Theoretical Sci-

these throat solutions are involved with the mechanism ognces, and the CosPA project of the Ministry of Education,
electric flux confinement. Taiwan, R.O.C.

Finally, the variousS-brane solutions we have found are
reminiscent of interactions between branes and strings, and
the interpretation that particula®-brane solutions can be
thought of as Feynman diagrams was pursued partly in Sec. |n this appendix, we explicitly demonstrate how the ta-
VI and Ref[S] In Sec. VI the creation of codimension-one Chyonic Sbranes considered in Sec. Il C appear in the
D-branes was qualitatively discussed from the viewpoint ofachyon condensation of D-brane anti-D-brane. In Fig. 4 this
charge conservation. We believe that this creation procesg the arrow(2). Since arrow(1) has already been discussed
can be described by some classical solution of (taehy-  in Ref. [3], while arrow (3) is just the same as the usual
onic) Sbrane action which might be the action of &S D-brane descent relation and arr@® was realized in Sec.
pair. However, here we outline another possible way to detl C, the derivation of arrow2) completes the explanation of
scribe this D-brane creation process. The tachyon configurahe generalized descent relations of Fig. 4.

APPENDIX A: TACHYONIC S-BRANE ACTION
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To derive the effective action of the “tachyon&brane” Jra 2
by using the fluctuation analysis of the time dependent kink Sy,.= 2TD9f d%e Ta (5— §a2 [(2a?x3—1)t2—t3]
as performed in Ref.3], we return to the Lagrangian of the
D-I_I) pair in Eq.(2.1) and the_ solution representing the ta_chy- 8—4a2  a?2-2 4(1+ad).
onic S-brane in Eq(2.2). A direct analysis of this fluctuation — ———Xot t+ —(ﬁ#t1)2+ —t%
mode is difficult due to the complexity of the Lagrangian. 3 3a? 3a?
The easiest way to proceed is to simplify the situation and
truncate the derivatives of the Lagrangian at fourth order +(1—2a2pl+2a2p2)(a#t2)2+4p2a2't§ _ (AB)
1712
S= 2T09J d*%e 1 +0,T|2+p.(10,T|%)? The two fluctuation modes are completely decoupled from
- each other. Integrating by parts, we find that
+ pZ(ﬁ,u.T)z( aVT)Z]v (Al) 2 2
a—2 4(1+a%).,

(9,t1)%+

) ) SIZZTDQJ dlo)(e_-r§|
whereT=T,+iT, and p,,p, are numerical constants. We
must keep at least fourth order derivative terms since if we (A7)
only keep the usual canonical kinetic energy there is no
tachyon solution linear in time, and unless the solution is
linear it is again technically difficult to perform a fluctuation S2=2Tpg
analysis. The equation of motion for a homogeneous time
dependent tachyon is

3a? 3a?

t

10y o~ T3
fdoxe ! 3

4 2
(—§+—a2

+(1—2a%p;+2a%py)(3,t) 2+ 4p,a%t3|. (A8)

—T4(1+T,—3pT}H+T1(1-6pT3)=0, A2 . _ :
(14 T2 =3pTy) +To(1-6pTy) BR2) " 15 see the physical meaning of these fluctuations, we rede-

. . ;A (@92 .
where p=p;+p,, and we have seT,=0. Therefore the f?ne tbe fields aSth_ e ti2 SO the newly defined
linear solution fieldst, , have canonical kinetic terms. Then we can decom-

pose the fieldst:l,z(x”) into the eigenfunctions of the har-
Tg=ax, (A3)  Mmonic potential along®, as performed in Ref3]. We may
determine the “mass” spectra for these fluctuations as the
exits fora=(1+ V1T 12p)/6p eigenvalues of the Laplaciaﬁ-,?, for the spatial directions.
. N ’ : The t; fluctuation contains a zero mode which is the
It is actually strange that we have a completely lmearNambu-GoIdstone mode associated with the symmetry

solution in spite of the presence of the tachyon potential. Th : .
higher-order kinetic term makes this situation possible. Th%'reaklng .Of the trahnslatlc'),n alorg by. the presence of the
ink solution. The “mass” tower ot is obtained as

general solution does not exhibit the rolling tachyon behav-
ior at late time, since this model is just a generalization of the 2 2
Minahan-Zwiebach model which does not possess the rolling mzzwn
tachyon behavior. The general solution reaches the true a’-2
vacuumT = in finite time. But if we tune the initial con-

dition then we have the completely linear solution for the The constana should be less thag2 to keep the coefficient
rolling tachyon. The strangeness of this solution is also apef the term (?Mtl)2 negative.

, n=01,.... (A9)

parent in that its energy vanishes Next, we use the field redefinitions to rewrite the action
S, as
5:J e M (1+T,-3pTH=o0. (A4) . —a?,
52=2TDgf d%| (1—2a%p,+2a%p,)(dit,) %+ > {2
For the meantime we treat this special solution as just an 22— a?)
i i i a‘(2—a% .. N
illustration of the new descent relations. " -~ x§t§+(a2—2)t§ . (A10)
a

1. Fluctuation spectrum . L
From this expression It Is easy to extract the mass spectrum

Let us consider the following fluctuation:
2

3

2—a’

T=Ty(X%) +t(x*) +ity(xH), (A5) m2=
3a’(1—2a%p;+2ap,)

a

(2n+1)
where ©=0,1, . ..,9. Substituting this into the action and

collecting terms quadratic in the fluctuation fields, we obtain +a2—2}. (Al11)
the fluctuation action
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Here again * 2a2p,+2a®p,>0 should be satisfied so that ing point!® The BSFT action of a non-BPS D2-brané&’is
the fluctuation Lagrangian is positive definite. The lowest
mode becomes tachyonic, and this tachyonic mode is asso- _ e~ "1\ —de( 7 F)
ciated with the instability of the time-dependent kink solu- Snongps™ _TZJ d°xe —de(n+F)¥2), (BD
tion.

where the worldvolume coordinates af¢x?, y and

2. Effective action z=G*"3,Ta,T. (B2)
The lowest modes in the ﬂuctuatioﬁl@z are Gaussian, o . ) i
and if one expresses these in term of the original fluctuatiofVe are working in the units 2a’=1, andG,,, is the open
then they are actually constant, independent®fUsing this ~ String metric. The functionf is defined by BSFT and its
property, we can calculate the effective action for the tachy€xplicit form is given in Refs[15-17, for example. The
onic Sbrane. By substitution of the fluctuation into the origi- Properties of this7,
nal D-D action, we have 11
, H)~=5 7 (2=~ (B3)
S= 2TD9f dxpe (@ott) f d%{1—a%+ (dity) %+ (d;t,)?

will turn out to be important later.

+pi[(at—2a%(9ity)?— 28%(ditp)’] For vanishing field strength the homogeneous rolling
. _ o .
+o.fat—2a2(a1 )2+ 2a2(d:t.)2 tachyon solutionT=T(x") presented in Ref[19] has an
pal (9ita) (2"} asymptotic expansion for large
p 2 2-3a2 To(x%)=x°+ e(x%) + higher, (B4)
=2TD9£f d®e | = (2—a?)— (3ity)? ¢
a 3 a2
where
+(1-2a’p,+2a? ito) 2+ 4 . - 7 ™
(1—2a%p; +28%p,) (91to) >+ [ (at) “term] “(x0) = Izexr{_g(xo)z _ (85)

(A12)
Hereé&, the energy density of the above homogeneous rolling
tachyon solution, is defined by the following Hamiltonian

(In the last line we have performed the integration ax&) density formula:

This is the tachyonicSbrane effective action, which re-
sembles a Minahan-Zwiebach mod&5]. The differences

between them are as followst) The sign of 0it;)? term is _ HeT,e- e\ —de( 7+ F) }‘(z)—Tﬁ—.Z O0F(2) .
negative, indicating that this mode represents the translation ST oz

along the time direction(2) The worldvolume metric defin- (B6)
ing this theory is Euclidean. These two properties are shared

with the S-brane action obtained in our previous paper. Note thatT4(x°) is a function dependent on the integration

Although we have adopted a derivative truncation as the&onstant implicitly. The S-brane tensior$, is just the value
starting point(Al) and also a special solutidA3), we be-  of the action(B1) into which the solutioriT, is substituted
lieve that this effective actiofA12) may capture essential (while the integration over the spatial worldvolume is left
features of the tachyoni§-branes. unperformed, to give the worldvolume of ti&brang. Al-
though the complexity of the functiotF(z) obstructs the
analytic evaluation of the action, we can read off the inte-
grand in the asymptotic regiorR®~o. Noting thatz ap-
proaches—1 in this limit

APPENDIX B: EVALUATION OF THE TACHYON
ENERGY OF THE BOOSTED S-BRANE

Though the energy of thedeformed S-brane configura-
tions has been studied in Sec. Ill, Sec. IV, and R8f, the \/?2 T 02
overall normalization of theS-brane action has not been z~-1- X _E(X )
specified there. This can be fixed in principle in the deriva-
tion of theS-brane actions in Sec. Il C and Rg3]. Itis clear  we obtain
that the factoiS, in Ref.[3], which is an “S-brane tension,”
can be computed by substituting the rolling tachyon solution———
into the original tachyon action. This tensi8p is, therefore, 1950 far, among many tachyonic Lagrangians, only the BSFT
not fixed since it is dependent on the rolling tachyon energy agrangians reproduce the D-brane tensions correctly and consis-
E. This situation is different from the case of static tachyontently.
defects of D-branes where the tension is fixed completely. 2%We have rescaled the tachyon from that of Rgf9] as T

Let us evaluateés, using the BSFT Lagrangian as a start- — T/ /4.

: (B7)
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-1 and this approximation is very good for nonzetoand large
F1,. For this solution the argumentis

_ o2l 1 7 T
Lnonsps~ — T8~ ™) (‘E){— = X —E(XO)2

__ VT apoyne 88) z=[~T?+GHa = =—(Ty)*  (B1D)
5 .
where the prime denotes a derivative with respect to the ar-

This means that the value &, which is given by the inte- gument of the functio, i.e. in the above

gral of L,onspsoverx?, is in fact finite and may be approxi-

mated as

5Tcl(a)
oa

(B18)

a=coshyx%+sinhy, /G x!

So~ — (B9)

T.=
VgTsz dXOe—vT(XO)2/2: _ % ¢
— 0 2 ’
SlnceT’I approaches 1z approaches- 1 everywhere except

Let us move on to the evaluation of the energy of the
9y =0 in the limitF,, — . This means that in the evaluation

boostedSbrane which is a timelike object. It is straightfor- X fth h h
ward to show that the rolling tachyon solution in the pres-Of the energyb‘]—‘/éz [the second term in E4B6)] is muc

ence of a constant magnetic field is also a solution of thdarger than [the first term in Eq(B6)] due to the expansion
non-BPS D2-brane systefB1) (B3), so the Hamiltonian at’=0 is given by

T=Tyx%, F,,=const. (B10)
¢ B H=T,exf — m(sinhy /G x) 2]\ —del( 7+ F)2(T)2——— ( )
Basically we can turn on the constant field strength trans-
verse to theS-brane freely. Next, consider the boosted solu-

tion =Texd — m(sinhy/G1xH)2]V1+F] 2(costty)
T=Ty(x%), Fy,=const B11 SF(z
C|( ) lX ( ) X(TC|)2 ( )
where
x9" =x%coshy+x*\Gy; sinhy. (B12) = Toex] — m(sinhy\/G.x")?]J1+F7 2(costy)
Here the open string metric is 1
2 ZT H 1\2
wr=diag — 1,1+ FlX,1+ Fi,)- (B13 ?exr[ m(sinhyG1x7)7]
One can show that EqB11) is again a solutioft of the
non-BPS D2-brane systef81). In the limit =&J1+ lex cosity. (B19)
Fiy—e (B14 This is independent of!, and we have shown that the back-
the Sbrane becomes timelike and in this case the tachyodfound rolling tachyon energy is still present everywhere,
configuration is approximately even in the limitF,,—%. (The above result is consistent
with the original roIImg tachyon withF,, =0 and y=0,
~(\JGy;sinhy)xt, (815  since this should give the energy)

Let us consider higher order terms in the Hamiltonian to

which resembles the usual D-string kink solution. This sug-S€€ the localization of the energy which should correspond to
gests that the energy is localizedxat=0. the energy of the boostegibrane. In the I|m|t(Bl4) it turns

We keep this in mind and proceed to carefully evaluateout that the next-to-leading order term coming from the ex-
the Hamiltonian ax®=0 for simplicity. The asymptotic ex- pansion of the potential terer 7% can be ignored. First, we

pansion ofT at x°=0 is expand the function for largex® atx°=0 as
- 1 7 T 1,2 T T
T=sinhy{Gyx~+ 4—5ex —E(smhy GyxY) 7= —1— \/%exp{—g(sinhy\/G_nxl)z
+ higher (B16)

7,
- ?Zexp[ — mr(sinhy\/Gx%) 2]+ higher. (B20)
2The nontrivial check is on the equations of motion for the gauge

fields. The tachyon equation of motion is trivially satisfied since weThen the Hamiltonian is evaluated to the next-to-leading or-
made a boost respecting the open string metric. der as
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Hg1=So|sinhy|8(x1). (B25)

Remarkably this agrees with the finite energy contribution in
Eq. (B22) using theS-brane tension of EqB9).

Lastly we provide a comment on this localized energy. In
the final expressionB22), the Sbrane contribution was
found to be negative. This suggests that $ibrane has a

Here the second term in the first line is from the higher Ordernegative energy, which agrees with the result of the boundary

evaluation of §F/6z in Eq. (B6), while the second line
comes from evaluation of th&(z) term in the Hamiltonian

(B6). Interestingly, though these two exponential terms be

come infinitely small in the limitF,,—o, they are com-
bined and approach & function whose coefficient is finite.

More precisely, the above expression is arranged in this limi

as

T,
H=¢&J1+FZ cosfy— /72|sinhy| s(xY). (B22)

state analysis in which the time-time component of the
boostedS-brane boundary state is given by a negative value

as opposed to the usual boundary states [iot)( strings. In
this appendix we have shown why this does not result in any
Pf the usual problems. While the contribution of tBédrane
IS negative, there is an additional leading order energy con-
tribution in Eq. (B22) which is due to the energy of the
background rolling tachyon, and so the total energy is still
positive.

The picture is reminiscent of anti-particles in the “Dirac

So, in addition to the homogeneous energy of the backsea.” The boostedsbrane is like something existing in a
ground rolling tachyon, we have a localized energy with acloud of fundamental strings. Since our non-BPS D-brane
finite coefficient. This second term should be identified withformulation did not take care of the radiation of the funda-

the energy of the boostesll -brane.

mental strings, it keeps the energy and effect of all these

We now show that the localized energy contribution westrings which are supposed to radiate aw@mne of the ef-

just calculated agrees with the Hamiltonian of ®-brane
action. The action of a stati81-brane located at'=0 is

Sg1= sof dxCdxtdy s(xH) VE?—1.

Using this action, one finds that tt&l-brane Hamiltonian
density is

(B23)

1
Hg1=Sy———

S1 SO \/m
Now this electric fieldE is the induced electric field as seen
in Eq. (5.24. After taking the limitF,,—~, we haveE=

—cothy. Substituting this into theS-brane Hamiltonian
(B24), we obtain

8(xY). (B24)

fects of this cloud of fundamental strings might possibly be
to make theSbrane energy negatiyeActually, the string
cloud will dissipate, and th&brane with strings attached to

it will become a D-brane with strings attached taiHere we
have to distinguish the strings on the non-BPS D-brane
which will decay away, from strings stuck to tBebrane) As

a final remark, the energy of the background rolling tachyon
in Eq. (B19) diverges in the limitF,,—o. The validity of
some of the calculations are not so rigorous due to this sin-
gular limit. Although the booste8-brane is expected to cap-
ture the late time behavior of the spike solution in Sec. I,
apparently this divergence comes from the fact that we have
not taken into account the curved worldvolume of the
Sbrane in the spike solution wheFg,, is divergent only at
r=0. In this sense the correspondence between the spike
solution and the booste8brane is not exact.
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