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Gauge invariant reduction to the light front
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Department of Physics, The Flinders University of South Australia, Bedford Park, SA 5042, Australia

~Received 20 March 2003; published 30 July 2003!

The problem of constructing gauge invariant currents in terms of light-front bound-state wave functions is
solved by utilizing the gauging of equations method. In particular, we show how to construct perturbative
expansions of the electromagnetic current in the light-front formalism such that current conservation is satisfied
at each order of the perturbation theory.
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I. INTRODUCTION

Equal light-front~LF! ‘‘time’’ wave functions possess the
important property of having boost transformations wh
are kinematical. This feature makes the LF formalism a po
erful tool in the investigation of relativistic processes. Late
the LF approach has often been mentioned@1# in relation to
recent measurements of proton electromagnetic form fac
@2,3#. The LF formalism allows one to maintain Poinca´
invariance in a simple way, and this can be of great benefi
analyzing the physics behind any particular form-factor
havior@1,4,5#. In this respect it would be extremely desirab
to develop an approach to the problem of electromagn
currents which combines the three-dimensional nature of
boost invariant LF wave functions with gauge invarianc
The theory of gauge invariant currents has recently been
veloped for the usual four-dimensional Bethe-Salpeter~BS!
approach@6# and for its three-dimensional spectator redu
tion @7,8#. Here we shall extend this theory to obtain t
gauge invariant three-dimensional reduction to the LF.

So far, what has been known@9,10# is that, for any given
two-body BS Green functionG and two-body vertex func-
tion Gm @11#, one can derive a LF reduced vertex functi
Lm such that, when sandwiched between LF wave functi
@see Eq.~9!#, it gives the matrix element ofGm between BS
wave functions@see Eq.~5!#. The latter is the initial expres
sion for the transition current, and if it is gauge invaria
then the goal of constructing a gauge invariant curren
terms of the LF wave functions is achieved. Unfortunat
this is not satisfactory from a practical point of view becau
Lm represents an infinite series even in the simplest cas
the one-body Mandelstam currentGm5G0

m . In addition, the
potential V defining the LF wave function@see Eq.~4!# is
also only expressible as an infinite series.

The goal of this paper is to derive a conserved curren
terms of LF bound-state wave functions corresponding
any LF potential given by equal-time Feynman diagram
This enables us to go further: namely, to derive a ga
invariant expansion of the current when only a part of
potential is taken into account nonperturbatively. Curr
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conservation is satisfied at each order of the perturba
theory.

II. LF REDUCTION OF THE TWO-BODY EQUATION

Consider the Green function BS equation for the case
two scalar particles:1

G5G01G0KG. ~1!

Define the LF two-‘‘time’’ Green functionG̃(P,k,p) as @9#

G̃~P,k,p!5
1

~2p!2E dk2dp2G~P,k,p!, ~2!

where the underlined momentap5(p1,p') denote the LF
three-dimensional part of the four-vectorp5(p2,p1,p'),
wherep65(p06p3)/A2 andp'5(p1,p2). There is no ne-
cessity here to specify the precise form for the relative m
mentap and k; they could be chosen, for example, as t
initial and final momenta of the second particle. The equat
on the LF corresponding to the BS of Eq.~1! is

G̃5G̃01G̃0VG̃, ~3!

where the LF potential is@9,12,13#

V5G̃0
212G̃21

5G̃0
21@^G0KG0&1^G0KG0KG0&

2^G0KG0&G̃0
21^G0KG0&1•••#G̃0

21 . ~4!

Here the angular bracketŝ and & stand for equating LF
‘‘times’’ ~corresponding to the integration over relative L
energies! in the final and initial states, respectively, as in E
~2!. Note that products of LF operators~quantities labeled
with a tilde or enclosed by angular brackets! have implied
three-dimensional integrations over d3p5dp1dp'

5P1dxdp' in contrast to the four-dimensional integration
implied by products of BS quantities.

A similar expansion was first derived in@14# ~and later
rederived in many papers! for the projection onto the hyper

y
:

1The case of spinor particles will be considered elsewhere.
©2003 The American Physical Society21-1
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plane where particles have the same usual time. The infi
series of Eq.~4! for the LF potentialV suggests that the LF
wave function be expanded in orders of the strength of
BS potentialK. Our task is to construct gauge invariant cu
rents in terms of these LF wave functions.

III. GAUGE INVARIANT CURRENTS

In order to calculate electromagnetic or weak proper
of bound states, we need to construct the corresponding
rents. We first start with the BS approach where the elec
magnetic current can be obtained diagramatically by atta
ing a photon everywhere in Eq.~1! @6#. The resulting
expression consists of the matrix element of the vertex fu
tion Gm taken between initialC[C(P,p) and final C̄

[C̄(K,k) BS bound-state wave functions:

Jm~K,P!5C̄GmC, ~5!

where

Gm5G0
m1Km. ~6!

HereG0
m denotes the sum of single-particle currents andKm

is the interaction current. The vertex functionGm is related to
the gauged Green functionGm ~five-point function! by

Gm5GGmG. ~7!

Equation~5! is obtained from Eq.~7! by taking residues a
the initial and final bound-state poles@11#. The correspond-
ing axial current can be found in the same way by making
axial-vector insertion instead of attaching a photon. Defi
the LF two-time five-point Green functionG̃m and the cor-
responding vertex functionLm by @9#

G̃m~K,k;P,p!5
1

~2p!2E dk2dp2Gm~K,k;P,p!5G̃LmG̃.

~8!

Then it is easy to see that the current of Eq.~5! is also given
by a corresponding matrix element of LF quantities:

Jm~K,P!5C̃̄LmC̃, ~9!

whereC̃ is the LF bound-state wave function given by

C̃~P,p!5
1

2pE dp2C~P,p!. ~10!

The price paid for the relative simplicity of Eq.~9! ~involv-
ing the LF wave functionC̃ which depends only on physica
three-dimensional momenta! is the complexity of the LF ver-
tex functionLm which involves an infinite series in power
of K ~even for the case of one-body Mandelstam BS curre
Gm5G0

m) and the potentialV which is also given by an infi-
nite series, Eq.~4!.
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Clearly, if Lm is given ~in all its complexity! by Eq. ~8!

and C̃ is the bound-state solution of the LF bound-sta
equation defined by the homogeneous part of Eq.~3!,

C̃5G̃0VC̃, ~11!

then the current expressed as the matrix element of Eq.~9! is
conserved, as it is equal to the matrix element of Eq.~5!.
However, for practical applications, it is useful to develop
gauge invariant perturbation theory based on the expan
given by Eq.~4!. In this paper our task is to develop such
theory where gauge invariance is achieved at each orde
the perturbation. By contrast, in a recent series of papers@15#
this problem has been approached with the strategy of
proving gauge invariance by increasing the order of per
bation.

Our approach is founded on the fact that equating
times in the initial state (x1

12x2
150) and similarly in the

final state, which implies integration over relative ‘‘energie
in momentum space, as in Eq.~8!, does not change either th
Ward-Takahashi identity~WTI! or the Ward identity~WI!:
i.e.,

qmG̃m5êG̃2G̃ê, ~12!

whereq5K2P is the momentum transferred by the curre
to the initial bound state and where the operatorê shifts the
momenta and picks up the charges of the constituents
required. Its four-dimensional form can be found in@6#,
while in the present LF versionê is defined by

ê~K,k;P,p!5 i ~2p!7d4~K2P2q!@e1d3~k12p12q!

1e2d3~k22p22q!#

5 i ~2p!7d4~K2P2q!@e1d3~k22p2!

1e2d3~k12p1!#. ~13!

Hereei ~without a caret! is the i th-particle charge operator
We then define the gauging of a two-time quantity as, fi
the gauging of the corresponding four-dimensional quan
and, then, the equating of times in the initial and final stat
e.g., for the Green function we have

^G&m5~G̃!m5^Gm&. ~14!

It can be argued that Eq.~14! is not even a matter of defini
tion, if one recalls that ‘‘gauging’’ is equivalent to taking
functional derivative over an auxilary field associated with
given current@6#, and as such, does not depend on whethe
is taken before or after the times of the particles are equa

Using this definition, one can gauge Eq.~4!, in this way
obtainingVm expressed as a perturbation series with resp
to powers of the strength of the BS interactionK. A similar
perturbation series can be written forLm simply from its
definition in Eq.~8!. It is then easy to see that

Lm5L0
m1Vm, ~15!
1-2
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whereL0
m is defined in the same way asLm: namely,

L0
m5G̃0

21G̃0
mG̃0

21 . ~16!

Note that to obtain Eq.~15! one needs to use the fact that

@G̃0
21#m52L0

m , ~17!

which follows from formally gauging the identity operator a

@G̃0
21G̃0#m5G̃0

21G̃0
m1@G̃0

21#mG̃050. ~18!

The result of Eq.~15! is central to this paper and allows us
develop the sought-after gauge invariant perturbation the

It is evident that no matter how one defines the pertur
tion expansion of the LF potentialV, eachnth-order termVn

of the expansion of Eq.~4! and the corresponding termVn
m in

the expansion of Eq.~15! are related to each other via th
WTI’s

qmVn
m5êVn2Vnê. ~19!

The current calculated up tonth order is given by

Jn
m5C̃̄nS L0

m1(
i 51

n

Vi
mD C̃n , ~20!

whereC̃n is the corresponding LF bound-state wave fun
tion satisfying

S G̃0
212(

i 51

n

Vi D C̃n50. ~21!

Then with the help of Eq.~19! and the WTI forL0
m it is easy

to see thatJn
m is conserved.

To give a concrete example of a possible choice forVn ,
let us define it to be then-particle exchange contribution in
particle exchange model forK. In particular, if we writeK
5K11K21••• whereK1 is the BS one-particle exchang
term,K2 is the BS crossed two-particle exchange, etc., th
from Eq. ~4!, the leading order~LO! contribution to the LF
potential would be given by

V15G̃0
21^G0K1G0&G̃0

21 , ~22!

the next-to leading order~NLO! contribution by

V25G̃0
21@^G0K2G0&1^G0K1G0K1G0&

2^G0K1G0&G̃0
21^G0K1G0&#G̃0

21 , ~23!

and so on. To obtainV1
m we simply gauge Eq.~22!:

V1
m5G̃0

21^G0K1
mG0&G̃0

212L0
m^G0K1G0&G̃0

21

2G̃0
21^G0K1G0&L0

m1G̃0
21^G0

mK1G0&G̃0
21

1G̃0
21^G0K1G0

m&G̃0
21 . ~24!

The terms contributing toG̃0V1
mG̃0 are illustrated in Fig. 1.
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Apart from the term involvingK1
m , which corresponds to

attachments of a photon inside the kernel@Fig. 1~a!#, V1
m

contains attachments to the constituents—e
G̃0

21^G0
mK1G0&G̃0

21. The two terms with a negative sign ca
be thought of as subtractions to the last two terms@Fig. 1~b!#.
These subtract the contributions of the intermediate state
the constituents whose times are equal to each other, a
latter are exposed in the two-time free vertex functionL0

m of
Eq. ~26!. This can be seen by using Eq.~16! and noting that,
with the help of Eq.~27!, the subtraction terms can be re
placed in Eq.~26! by one-body currents:

2L0
m^G0K1G0&G̃0

212G̃0
21^G0K1G0&L0

m

52G̃0
21G̃0

mV12V1G̃0
mG̃0

21→22L0
m . ~25!

The current in LO is then

J1
m5F̄~L0

m1V1
m!F, ~26!

whereF is the solution of the LF bound-state equation
LO:

~G̃0
212V1!F50. ~27!

Conservation of the LO current of Eq.~26! follows from the
WTI’s for V1

m @Eq. ~19!# and the one-body vertex functio
L0

m and the equation for the bound state, Eq.~27!.
It is interesting to compare our prescription for constru

ing the LO current by gauging the LO LF potential@Eqs.
~15!, ~19!, and~24!# with the related results of Refs.@16,17#
for the case of the usual equal-time quasipotential appro
Using the gauging of equations method, it was shown
Refs. @16,17# that in order to obtain a gauge invariant tra
sition current, both the quasipotential and electromagn
current operator should be truncated at the same order o
coupling constant. Thus, in Refs.@16,17#, the construction of
the gauge invariant approximate current involves expans
of both the four-dimensional five-point Green function a
the quasipotential, whereas we only need the LF poten
given as part of a series expansion@Eq. ~4!#. Gauging just
this part~viz., the LF potential!, we derive the gauge invari
ant approximate current. This is a nice but formal feature

FIG. 1. Contributions toG̃0V1
mG̃0, whereV1

m is the gauged one-
particle-exchange light-front two-body quasipotential, as given
Eq. ~24!: ~a! gauged Bethe-Salpeter kernel contribution,~b! gauged
constituent contribution. Left~right! angular brackets indicate tha
the light-front ‘‘times’’ of the left ~right! constituent legs of the
enclosed Feynman diagrams are set equal. The subtracted se
term in ~b! removes the equal light-front ‘‘time’’ contribution com
ing from the intermediate state of the first term.
1-3
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our approach. A more important difference lies in the fa
that the boost transformation of the usual equal-time w
functions is dynamical; i.e., it depends on the interact
@16,17#. Our gauge invariant LF reduction offers wave fun
tions which depend only on three-dimensional momen
they have kinematical boost transformations and prov
gauge invariant currents, all at the same time. It is a diffic
task to construct the approximate gauge invariant curren
terms of the covariant wave functions projected onto the
perplaneP(x12x2)50 @9,16,17#. One of the ways for this to
be achieved would be in a modification of our gauging p
scription for such projected Green functions.

Finally, it is worth noting that we have not addressed
problem of dynamical three-dimensional rotation transform
tions inherent in the LF quasipotential approach. This pr
lem leads to wave functions that are not invariant under
tations. For instance, in the case of two scalar particles,
wave functions depend on two variables—say,x5p1/P1

and (p'2xP')2—rather than on one rotationally invarian
modulus of the three-dimensional relative momentum. D
spite this difficulty, the equal LF ‘‘time’’ approach still has a
advantage over the usual equal-time approach where the
of boost invariance leads to functions ofthree rotationally
invariant scalar combinations of the total and relative m
menta.

A. Currents at NLO

Above, we have formally solved the problem of co
structing conserved LF equal-time currents up to any orde
the interaction. In this subsection we would like to apply o
formalism to the case where only the LO term ofV is taken
into account exactly, with all higher order contributions b
ing included as a perturbation.

For this purpose, denote the LO contribution toV by V1
~it can be the single-particle exchange potential discus
above, or it can be defined some other way! and the contri-
butions making up the NLO term byD:

V5V11D1•••. ~28!

Denoting the correction to the wave functionF due toD by
dF, the following LF equation should be satisfied:

~F1dF!5G̃0~V11D!~F1dF!. ~29!

TreatingD as a perturbation and keeping terms that are
most linear inD, the wave function correctiondF can be
expressed as@18,19#

dF5F G̃1
bD1

iPm

4M2 S F̄
]D

]Pm F D GF, ~30!

where

G̃1
b5G̃12

iFF̄

P22M2
~31!
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is the LO Green functionG̃1 with the ~unperturbed! bound-
state pole subtracted off. The second term in Eq.~30! is just
a wave-function renormalization due to the dependence oD

on the total momentumPm. HereG̃1 satisfies the inhomoge
neous LF equation

G̃15G̃01G̃0V1G̃1 . ~32!

The full linear inD correction to the current matrix elemen
is @19#

dJm5F̄dL1
mF1F̄DmF1F̄L1

mdF1dF̄L1
mF, ~33!

where

L1
m5L0

m1V1
m . ~34!

The first term stems from the bound-state mass correctio
the LO vertex function: that is,

dL1
m5dM2

]L1
m

]M2
, ~35!

where@18#

dM25 i F̄DF. ~36!

The correction to the current, given by Eq.~33!, is conserved
by construction, since the exact current corresponding to
potentialV11D is conserved and so therefore should be
part that is linear inD. Nevertheless, it will be instructive to
show this current conservation explicitly. In this way we w
see that the first term in Eq.~33! is essential for curren
conservation.

B. Current conservation at NLO

Using the WTI forV1
m given in Eq.~19! and the corre-

sponding WTI’s for the one-body currentL0
m and for Dm,

one obtains

qmdJm52dM2F̄
]~ êG̃1

212G̃1
21ê!

]M2
F1F̄~ êD2Dê!F

2F̄~ êG̃1
212G̃1

21ê!dF2dF̄~ êG̃1
212G̃1

21ê!F.

~37!

In the above expressionq5P82P whereP and P8 are the
total initial and final momenta, respectively; in this respect
should be noted that in each of the summed terms above
quantities standing to the right of operatorê have total mo-
mentumP, while those standing to the left ofê have total
momentum P8. Exploiting the bound-state equation
G̃1

21F5F̄G̃1
2150 and making use of Eq.~30!, the previous

equation can be written as
1-4
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qmdJm52dM2F̄
]~ êG̃1

212G̃1
21ê!

]M2
F1F̄~ êD2Dê!F

2F̄êG̃1
21F G̃1

bD1
iPm

4M2 S F̄
]D

]Pm
F D GF

1F̄FDG̃1
b1

iPm8

4M2 S F̄
]D

]Pm8
F D G G̃1

21êF. ~38!

A further application of the bound-state equations gives

qmdJm52dM2F̄
]~ êG̃1

212G̃1
21ê!

]M2
F1F̄~ êD2Dê!F

2F̄êG̃1
21G̃1

bDF1F̄DG̃1
bG̃1

21êF. ~39!

One can see that the terms responsible for bound-state w
function renormalization drop out by themselves, wher
other terms contribute zero toqmdJm only as a result of
partial cancellation between each other. We will see be
that the renormalization terms are important in the cha
conservation relation as they account for the charge flow
in the intermediate states which are accounted for inD. Us-
ing Eq. ~31!, it is easy to show that forP25M2 ~see the
Appendix!

G̃1
21G̃1

b512 i
]G̃1

21

]M2
FF̄, G̃1

bG̃1
21512 iFF̄

]G̃1
21

]M2
,

~40!

where the derivative of the inverse Green function,N

5 i ]G̃1
21/]M2, also appears in the normalization conditio

for the bound-state wave function:

F̄NF51. ~41!

Using these results in Eq.~40! one obtains

qmdJm52dM2F̄8
]~ êG̃1

212G̃81
21ê!

]M2
F1~F̄8êNF!

3~F̄DF!2~F̄8D8F8!~F̄8N8êF!, ~42!

where we have explicitly indicated with a prime those qua
tities for which the total momentum isP8 and left unprimed
those for which the total momentum isP. The Lorentz in-
variance of the mass correction, Eq.~36!, then leads to cur-
rent conservation

qmdJm50. ~43!

C. Charge conservation at NLO

For a two-particle bound state, the requirement of ‘‘cha
conservation’’ is given by the condition

Jm~P,P!52~e11e2!Pm. ~44!
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It is straightforward to show that the LO currentJ1
m , given

by Eq.~26!, satisfies this condition@as indeed doesJn
m of Eq.

~20! for any n]. Here we show that exact charge conserv
tion holds also in the case whereJm is calculated to NLO in
perturbation theory. For this purpose, it will be sufficient
show that nmdJm(P,P)50 where n5P/AP2 is the unit
four-vector alongP.

We start by using the WI’s forL1
m andDm in Eq. ~33!. The

WI for L1
m can be written as

L1
m~P,k;P,p!52@G̃1

21#m~P,k;P,p!

5 i Fe2

]G̃1
21~P,k,p!

]km

1
]G̃1

21~P,k,p!

]pm
e21~e11e2!

3
]G̃1

21~P,k,p!

]Pm
G , ~45!

where we have taken the particular choicep5p2 and k
5k2 for the relative variables. The derivation o
nmdJm(P,P)50 for the two first terms involving]/]km and
]/]pm is very similar to the one given above for curre
conservation; therefore, we will consider only the case of
last term in Eq.~45!.

Any function F of the four-vectorP can be considered a
function of uPu5AP2 and any three independent compone
of n5P/uPu. In this case it is clear that

nm

]F~P!

]Pm
5

]F~ uPun!

]uPu
, ~46!

so that

nm

]

]Pm
5

]

]uPu
52uPu

]

]P2 . ~47!

To determine the contribution of the last term of Eq.~45! to
nmdJm, we need to consider the contractions

nmL1
m~P,k;P,p!52nm@G̃1

21#m~P,k;P,p!

→e
]G̃1

21~P,k,p!

]uPu
,

nmDm~P,k;P,p!→2e
]D~P,k,p!

]uPu
, ~48!

where e5e11e2 and the dependence onuPu is found by
writing Pm5uPunm. Then
1-5
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nmF̄L1
mdF→2euPuF̄

]G̃1
21

]P2 F G̃bD1
i

2 S F̄
]D

]P2 F D GF,

~49!

which for our purpose needs to be evaluated atP25M2.
Using the fact that

F̄
]G̃1

21

]M2
G̃1

b52
i

2
F̄S F̄

]2G̃1
21

~]M2!2
F D , ~50!

which follows from the derivation given in the Appendix
and the normalization condition of Eq.~41!, we obtain that

nmF̄L1
mdF→2 ieMF̄DFS F̄

]2G̃1
21

~]M2!2
F D

1eMS F̄
]D

]M2 F D , ~51!

nmdM2F̄
]L1

m

]M2 F→2ieMF̄DFS F̄
]2G̃1

21

~]M2!2
F D ,

~52!

nmF̄DmF→22eMS F̄
]D

]M2 F D . ~53!

Using Eq. ~51!, the corresponding expression fo
nmdF̄L1

mF, Eqs.~52! and~53! in Eq. ~33!, one obtains that
nmdJm50.

IV. CONCLUSIONS

The equality of the three-dimensional LF expression
the current, Eq.~9!, and the corresponding four-dimension
BS expression, Eq.~5!, has been known for a long time@9#.
However, this result is not very practical for calculation
purposes as both the LF vertex function, defined by Eq.~8!,
and the potential generating the LF wave function, Eq.~4!,
are represented by infinite series even if the underlying
kernelK is simple. In addition, it has so far not been notic
that between these two operators there is a direct conne
~even though they are given by series!; namely,Lm can be
obtained fromV by the procedure of gauging if the latter
properly defined in terms of two-time Green functions.
simple and natural definition of gauging in this paper is su
marized by Eqs.~14! and~18!, and makes the last stateme
clear. Our definition of gauging enables us to construct
current operator corresponding to any term of the serie
Eq. ~4!. In particular, we have given the explicit expressi
for the gauge invariant current@Eqs. ~26! and ~24!# corre-
sponding to the first term of Eq.~4!. This expression can b
used, for example, in studies of one-particle exchange m
els. Finally, we have shown how to account perturbativ
for the remainder of the terms in Eq.~4! by explicit construc-
tion of the current at NLO@Eq. ~33!#. Close examination
shows that all terms in Eq.~33! are important for curren
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conservation, which is a result of the cancellation betwe
their longitudinal parts.

The perturbation theory presented in this paper, in parti
lar the expression of Eq.~33!, could be applied, for example
to the calculation of meson cloud effects on the electrom
netic form factors, which are known to be important@1,20#.
Although a similar program for the Nambu–Jona-Lasin
~NJL! model has been demonstrated in Ref.@19#, this should
also be done in the LF approach. In this case, first the N
potentialD should be constructed to incorporate one-mes
exchange in all possible ways within the LO model. Ne
such aD should be gauged in order to derive the mes
exchange electromagnetic current operatorDm, etc.

The gauge invariant perturbation theory proposed in t
note is not specific to the LF approach and can, for exam
be applied to the spectator approach@7,8#. The spectator po-
tential corresponding to the example of Eq.~23! reads

V15K1 ,

V25K21K1G0K12K1ddK1 , ~54!

wheredd is the product of the single-particle propagatord
and the spectator on-mass-shelld function. Currents would
again be given in LO by Eq.~26! and in NLO by Eq.~33!;
however, rather than gauging the equal-time LF propagat
one would gauge the on-mass-shell propagators instead@7,8#.

APPENDIX

Here we derive the following three useful expressions
the case ofP25M2:

G̃1
21G̃1

b512 i
]G̃1

21

]M2
FF̄, G̃1

bG̃1
21512 iFF̄

]G̃1
21

]M2
,

~A1!

G̃1
b
]G̃1

21

]M2
F52

i

2 S F̄
]2G̃1

21

~]M2!2
F D F. ~A2!

To carry out the necessary algebra it is useful to introd
the following notation:

GP[G̃1~P,k,p!, GM[G̃1~P,k,p!uP25M2. ~A3!

Note that our bound-state wave functionF is covariant and
does not depend onP2, as discussed in Ref.@18#. Using this
notation and the definition ofG1

b given in Eq.~31!, it follows
that

GP
21GP

b 5GP
21S GP2

iFF̄

P22M2D 512
iGP

21

P22M2
FF̄.

~A4!

As GM
21F50, we obtain the first of the equations in Eq

~A1! in the limit P25M2; the second equation follows sim
larly. The last of the equations, Eq.~A2!, results from the
following algebra:
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GM
b

]GM
21

]M2
F5

]GM
b GM

21

]M2
F2

]GM
b

]M2
GM

21F5
]GM

b GM
21

]M2
F5

]GP
bGP

21

]P2 U
P25M2

F5F ]

]P2 S GP2
iFF̄

P22M2D GP
21G

P25M2

F

5F ]

]P2S 12
iFF̄GP

21

P22M2 D G
P25M2

F5 iFF̄F GP
21

~P22M2!2
2

1

~P22M2!

]GP
21

]P2 G
P25M2

F

5 iFF̄H 1

~P22M2!2 FGM
211~P22M2!

]GM
21

]M2
1

~P22M2!2

2

]2GM
21

~]M2!2G
2

1

~P22M2! F ]GM
21

]M2
1~P22M2!

]2GM
21

~]M2!2G1O~P22M2!J
P25M2

F

52
i

2 S F̄
]2GM

21

~]M2!2
F D F. ~A5!
.
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