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Decoherence of histories and hydrodynamic equations for a linear oscillator chain
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We investigate the decoherence of histories of local densities for linear oscillators models. It is shown that
histories of local number, momentum and energy density are approximately decoherent, when coarse grained
over sufficiently large volumes. Decoherence arises directly from the proximity of these variables to exactly
conserved quantitieevhich are exactly decohergnind not from environmentally induced decoherence. We
discuss the approach to local equilibrium and the subsequent emergence of hydrodynamic equations for the
local densities.
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[. INTRODUCTION tories approach to quantum thedB10]. This approach has
proved particularly useful for discussing emergent classical-
In a large and possibly complex quantum system, whichty in a variety of contexts. In particular the issues outlined
dynamical variables naturally become classical for a wideabove are most clearly expressed in the language of decoher-
variety of initial states? This question belongs to the genera@nt histories. The central object of interest is the decoherence
issue of emergent classicality from quantum theory, and hainctional,
recently received a considerable amount of attentieee
Ref. [1] for an overview. There are a number of different D(a,a@')=TiI{[P, (ty)- Py (t)pPa(ty)- - Pyr(ty)].
approaches to it, but common to most of them is the demon- (1)
stration of decoherence: that certain types of quantum states
of the system in question exhibit negligible interference, andrhe histories are characterized by the initial stat¢ and by
therefore superpositions of them are effectively equivalent tdéhe strings of projection operatof,(t) (in the Heisenberg
statistical mixtures. picture) at timest; to t, (and @ denotes the string of alter-
Decoherence has principally been demonstrated for theativesa;- - - «). Intuitively, the decoherence functional is
situation in which there is a distinguished system, such as a measure of the interference between pairs of histaries
particle, coupled to its surrounding environmg®f3]. More  a'. When it is zero fora# a’, we say that the histories are
generally, we may expect that decoherence comes abodecoherent and probabilitieg(a)=D(a,a) obeying the
when the variables describing the entire system of interesisual probability sum rules may be assigned to them. One
naturally separate into “slow” and “fast,” whether or not can then ask whether these probabilities are strongly peaked
this separation corresponds to, respectively, system and eabout trajectories obeying classical equations of motion. For
vironment. (See Ref[4] for a discussion of the conditions the local densities, we expect that these equations will be
under which the total Hilbert space may be written as a tenhydrodynamic equations.
sor product of system and environment Hilbert spadéthe We are generally concerned with a systemNoparticles
system consists of a large collection of interacting identicainteracting through a potential and are therefore described at
particles, as in a fluid for example, the natural set of slowthe microscopic level by a Hamiltonian of the form
variables are the local densities: energy, momentum, number,
charge etc. These variables, in fact, are also the variables Pj
which provide the most complete description of the classical H=2 512 Vie(dj—de)- 2
state of a fluid at a macroscopic level. The most general . )

demonstration of emergent classicality therefore consists C{;\/e are particularly interested in the number density)

showing that, for a large collection of interacting particles . :

described microscopically by quantum theory, the local den;-[jhe. momentum densitg(x) and the energy densiti(x),
g ) . efined by

sities become effectively classical. Although decoherence

through the system-environment mechanism is expected to

play a role since the collection of particles are coupled to nx)= > 8(x—q;) (3)

each other, it is of interest to explore the possibility that, at i

least in some regimes, decoherence could come about for a

different reason. Namely, because the local densities are al-

most conserved if averaged over a sufficiently large volume g(x)z}j: p;8(x—a;) (4)
[5]. Hence, the approximate decoherence of local densities

would then be due to the fact that they are close to a set of 2

exactly conserved quantities, and exactly conserved quanti- h(x)=2 &5(x—q-)+2 Vi(gi— o) (x—q;).

ties obey superselection rules. T 2m A e e !

We will approach the question using the decoherent his- (5)
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We are generally interested in the integrals of these quantsible to have closure up to a set of small terms which may be
ties over small volumes, which will have the effect of smear-treated as a stochastic process. See Réfd.3], for ex-

ing out the § functions. Integrated over an infinite volume, ample)

these become the total particle numbgtotal momentunP The decoherent histories approach to quantum theory of-
and total energyH, which are exactly conserved. It is also fers the possibility of a much more general derivation of
often useful to work with the Fourier transforms of the local emergent C|assica|ity than that entailed in the standard deri-

densities, vation of hydrodynamics. The standard derivation is rather
akin to the Ehrenfest theorem of elementary quantum me-
n(k)=2 elk-q; 6) chanics which shows that the averages of position and mo-

]

mentum operators obey classical equations of motion. Yet a
description of emergent classicality must involve much more
. than thaf 1]. Firstly, it must demonstrate decoherence of the
g(k)= Z p; e'k i (7)  local densities, thereby allowing us to talk about probabilities
! for their histories. Secondly, it should not be restricted to a
special initial state. While it is certainly plausible that many
_ P; ik.q ik-q initial states will tend to the local equilibrium state, the stan-
h(k)_; >m€ ‘+€Zj Vie(d;—qe)e™ . (8 dard derivation does not obviously apply to superpositions of
macroscopic states, which are exactly the states a description
ﬂf emergent classicality is supposed to deal with.

This paper is part of a general program, initiated in Refs.
('[14—16, to obtain a more general derivation of hydrody-
namic equations from the underlying quantum theory, using
ﬁhe decoherent histories approach. The aim in particular is to
consider reasonably general classes of initial states and to
demonstrate decoherence of the local densities, without ap-

Jo pealing to environmentally induced decoherence, and to
—+V.j=0 (99  show that the probabilities for histories are peaked about
ot equations of motion of the hydrodynamic type. In this paper
the particular system we will apply the program to is a chain
whereo denotes, g or h (and the current is a second rank  of linearly coupled oscillators.
tensor in the case @). It is then assumed that, for a wide  The general sketch of the program, which we will work
variety of initial states, conditions of local equilibrium are out in detail in this paper, is as follows. We start from the
established after a short period of time. This means that ogimple observation that exactly conserved quantities define
scales small compared to the overall size of the fluid, bukn exactly decoherent set of histories, essentially because the
large compared to the microscopic scale, equilibrium condiprojectors in the decoherence functional commute with the
tions are reached in each local region, characterized by Ramiltonian[17]. It is therefore expected that the histories
local temperature, pressure etc. which vary slowly in spacgill remain approximately decoherent as we go fremO0 to
and time. Local equilibrium is described by the density op-nonzero values df in the local densities(k),g(k),h(k). In
erator Ref.[14] it was shown that a useful way to organize this idea
is to decompose the initial state of the system into a super-
_ — osition of statesn,g,h), which are approximate eigenstates
p=2 1exp< - f d)BOOTN() = L(ON() ~U(x) - g(x)] gf the local denfirt]igs. I>t is then very IEpjwﬁ)ausihjlaand vegrifiable
(10) in specific models that such states remain approximate
- eigenstates of the local densities under time evolution, for
where 8, n andu are Lagrange multipliers and are slowly sufficiently smallk (since it is clearly exactly true in the limit
varying functions of space and timg. is the inverse tem- k—0). Here, “sufficiently small” means thdt™ ! should be
perature,u is the average velocity field, and is related to  much greater than the correlation length of each local density
the chemical potential which in turn is related to the averageeigenstate. The preservation in time of these states means
number densityfNote that the local equilibrium state is de- that histories of them will be approximately decoherent.
fined in relation to a particular coarse graining, here, the Given decoherence we may then look at the probabilities
anticipated calculation of average values of the local densifor histories. Decoherence also indicates that each element of
ties. Hence it embraces all possible states that are effectivethe superposition of local density eigenstates may be treated
equivalent to the stat€lO) for the purposes of calculating separately. We therefore consider the probabilities for histo-
those averagelsThe hydrodynamic equations follow when ries of local densities with the local density eigenstate as the
the continuity equations are averaged in this state. Thesaitial state. For sufficiently coarse-grained histories the
equations form a closed set because the local equilibriumprobabilities for the local densities are strongly peaked at
form depends(in three dimensions only on the five each time about the average value of the local densities, av-
Lagrange multiplier fieldg, w«, u and there are exactly five eraged in the local density eigenstateg,h). Since the local
continuity equationg9) for them.(More generally, it is pos- densities are sums of one-particle operattoslowest order

2

These guantities tend to the exactly conserved quantities i
the limit k=|k|—0.

There is a standard technique for deriving hydrodynami
equations for the local densitigd1,12. It starts with the
continuity equations expressing local conservation, whic
have the form,
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in interactiony, this is the same as averaging in the one-grainings in which the center of mass coordinates of chain
particle reduced density operatpy constructed by tracing subsections were specified, rather than the local densities
[n,g,h)(n,g,h| over all but one particle states. The density considered here, and they evaluated the decoherence func-
operatorp, is clearly not the same as tljene-particle ver- tional explicitly, rather than examine the evolution of eigen-
sion of the local equilibrium state(10), although the two States of the variables of interest.

states are clearly very similar, since they are both very local-

ized in the local densities. Hence, to complete the derivation Il. DECOHERENCE AND CONSERVATION

of the hydrodynamic equations, it is necessary to show that
p, tends to the local equilibrium state after a period of time.
This is clearly extremely plausible on physical grounds an
may be proved in explicit cases, as in this pagand in-
deed, this is much weaker than asserting #mtinitial state
tends to the local equilibrium state.

We begin by describing the connection between decoher-
nce and conservation, It is well known that exactly con-
erved quantities are exactly decoherghf]. The simple
reason for this is that the projectors commute with the uni-
tary evolution operator. The projectd?%k on one side of the

In brief, the whole story works in particular models con- decoherence functiongll) may therefore be brought up

tingent only on constructing local density eigenstates an@9@inst the projector,, on the other side, hence the deco-
showing that they have the desired properties: that they argerence functional is diagondlin the situation considered
preserved in form under time evolution for sufficiently small here, in which there are three conserved quantities involved,
k, and that they are effectively equivalent to the local equi-these quantities must in addition commute with each other,
librium distribution after a period of time. The point of this but this is clearly the case.
paper is to show this for the linear oscillator chain. We would like to extend this idea to approximate deco-
The detailed connection between conservation and decdwerence in the case of approximate conservation. It turns out
herence is discussed in Sec. Il, as is the construction of aghat the above argument is better formulated in a different
proximate eigenstates of the local densities. In Sec. Ill, wevay for the purposes of generalizatigh4]. Suppose the
describe the dynamics of the linear oscillator chain. We coninitial state is pure and consider the decoherence functional,
sider two types of chain: the simple chain, where only neigh-
boring particles are coupled, and the bound chain, where
each particle is in addition bound to an origin by a harmonic
potential. We consider both finite and infinite chains. The
most important results are the correlation functions, which ) ) )
establishes the scale on which coarse graining is required fgyNere Us, IS the usual unitary evolution operator between
decoherence. timest,; andt,. Suppose the histories are projections onto
In Sec. IV, as a preparation for proving decoherence of th€0mMe conserved quantit@. Now let the initial state be a
local densities of the chain of oscillators, we consider a simSUP€rposition of eigenstates Qf
plified set of variables, namely, the total momentum con- 1
tained in a subsection of the chain. We show that the eigen- _ =
states of this quantity remain approximate eigenstates under ) \/§(|Ql>+|Q2>) (12
time evolution as long as the size of the chain subsection is
much greater than the correlation length. where
In Sec. V, we consider the local densities of the chain. We
prove that approximate eigenstates remain approximate QlQa)=QalQa) (13)

. 71 .
eigenstates, fok™* much larger than the correlation length anda=1,2. Since thé®,’s are projections ont®, we have

of the chain. P.|Q.)=|Q.), if a is suitably chosen, otherwise we get

In Sec. VI, we consider the probabilities for histories. In P 105=0. H th | H-di [t f
the case of a finite simple chain, we show that the averages® Qa)=0. Hence € only non-zero ofi-diagonal terms o
e decoherence functional are of the form,

of number and momentum density obey a closed set of equé—
tions (although there is no evolution to local equilibrium in

D(gug,):Tr(PanUn—l,n' o Pa2U12Pal|q,>

X<‘P|Paiuzlr.2paé' : 'Uxfl,n) (ll)

1
this casg For the infinite bound chain, we show that the D(a,a’)= ETr(P“ Un-1n " Pa,U1d Q1)
density operatop,; does indeed tend to the local equilibrium - !
state and we derive the resultant hydrodynamic equations. X(Q |UT P ,...ut ) (14)
21~ 12 a, n—1n/-

We discuss our results in Sec. VII.
The idea that local densities should define a natural set :
decoherent histories as a result of their approximate cons<§F-Ut Qis conserved, hendd 1 Qa)=[Qa) and
vation was first put forward by Gell-Mann and Harflg]. 1
This idea, and the related possibility of deriving hydrody- D(e,a")= ETr(PanU' .. Pa2|Q1><Q2|Paé' TLY
namic equations, has been developed by numerous authors (15)
[13-16,18-20 This work is perhaps most closely related to
that of Brun and Hart|é18], who analyze the linear oscilla- Proceeding in this way to the end of the chain,
tor chain using the decoherent histories approach. Their ap-
proach was rather different in that they considered coarse D(g,g’)=(Qz|Ql>=0 (16
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for all pairs of distinct historiesyr,a’. Hence decoherence and
comes about because neither the projections nor the unitary
evolution disturb the state®,), and hence the two orthogo- 2_
nal state§Q), |Q,) are brought together at the final time (A _n,zm (An){Am)- (22
and overlapped to give zero.

Let us now suppose that we have some oper@auch A state will be an approximate eigenstate of the operatibr
that under time evolution, its eigenstates are mapped into

approximate eigenstates. That is, we initially have @), (AA)? <1 23
but under evolution to timé (A>2 '
Q(1)|Qa)~(Q(1))|Qa) (170 The expression fofA)? potentially involvesN? terms, as

does the expression foA@)?, but the latter will involve

(where the average on the right-hand side is in the statgp), N terms if the correlation functions(A, ,A,,) are very
|Qa)). More precisely, this can be expressed as small or zero forn#m. So simple product states will be
approximate eigenstates and will haveA)?/(A)? of order

2
%<1 (18)  1N. (See Refs[14,15 for more detailed examples this ar-
(Q(1)) gument)
Under time evolution, the interactions cause correlations
where to develop. However, the states will remain approximate
2 2 2 eigenstates as long as the correlations are sufficiently small
(AQ(1))"=(Q*(1) —(Q(1)*". (19 that the second term in EqR1) is much smaller than order

2 . . .
Equation(18) means that the state remains strongly peaket!l\I - The Interactions and the sgbsequ_ent correlz_mons are
Clearly necessary in order to get interesting dynamics and in

in the variableQ under time evolution. The states are then articular the approach to local equilibrium. The interestin
approximate eigenstates of the projectors at each time apsuestions is thgrpefore whether th?are is a r.e ime where tﬁe
long as the widths of the projectors are chosen to be mucgﬁects of interactions are small enough to germit decoher-
greater thaf AQ(t)]?. The same argument goes through al- lougn 1o p .
CE . . ence but large enough to produce interesting dynamics. The
though this time only approximately. Approximate decoher- : ; .
. - . . fact that the variables we are interested in are locally con-
ence is therefore assured for sufficiently coarse-grained his- D ) \ ;
) " S served indicates that there is such a regime. The important
tories of operator§) and superpositions of initial states each ™ . "~ " S
. . oint is that the local densities become arbitrarily close to
of which have the property that they remain strongly peakechactl conserved quantities &s-0. This means that, at
In Q under time evolutioras characterized by E¢L8)]. n tir}rlle (AA)2/<A>("EI becomes arbit.raril close to its in,itial
A simple example is the case of the coherent states of th@ I)(Je(wr;ich is of order 1) for sufficier?ftl smallk
harmonic oscillator. These states are preserved in form undé(lam the examples we Iook)at it in the follglwin selctions we
time evolution, hence will always be approximate eigenstates P 9 '

of projections onto position, momentum, or phase space, pr will see that an uncorrelated initial state develops correla-

vided that the widths of the projections are chosen to b lons with a typical Iengthscal(aor extending to a certain
much greater than the uncertaintiepiandq in the coherent humber of particles down the chaifThese correlations typi-

states. In this example, there is no obvious local conservatioﬁally tgetn de_ca3é V\gtlr; “Tﬂe- What we I}NI” Tnd 'Sktb?t. the
law. For this reason, it is perhaps more accurate to speak épcor? erT mthq(. tth rem|a|tn smla af; Oﬂg a thls K
approximate determinism, rather than approximate conservanuch greater than the correiation iengin. rience the key

tion. So very broadly speaking, approximate decoherence hysical aspect is the locality of the interactions, meaning
histories will arise when there is an approximate determin- at only '"T"Fed local correlgtlons develop, together with the
ism in the underlying quantum theory coarse-graining scale ! which may be chosen to be suffi-

Returning to the local densities, we require a set of stategiemIy Ia_rge that the correlation Sca'? is not seen. Differently
[n,g,h) which are eigenstates of all three local densitiesPUt ask increases from zero, departing from exact decoher-

. . 71 .
Since the local densities do not commute with each otheri?nce: It 'rl‘tf"d“%‘?s a Ie_ngtlhscésle ) S.|nce Itheldecohhgrencg
except in the limitk— 0, we can only find states which are unctional Is a dimensionless quantity, clearly nothing sig-

g _1 . _
approximate eigenstates. The number and momentum deHlflcant can happep unt™* becomes comparable W'th an
sity are both operators of the form, other lengthscale in the system. The natural scale is the cor-

relation length in the local density eigenstates.
N The scheme described here would be executed most trans-
A= A, (200  parently if we used states which become exact eigenstates of
n=1 the conserved quantities in the linkt—0, thereby always

] o . ) ~maintaining the closest connection with exact conservation.
as is the local energy density, if we ignore the interaction, the next section we will in fact use Gaussians as the ap-

term. For such operators it follows that proximate eigenstates, because they are the easiest states to
work with. These will not be exact eigenstates of the exactly
(AA2= (AA,)2+ D o(A, A (21) conserved quantities in tHe—0 limit, altholugh this not in
n nzm fact matter very much, for reasons outlined aboteur-
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themore, the decoherence functional is always exactly diagahere
onal for any initial state in th&—0 limit, for the reasons

stated at the beginning of this section, but we do not need to 1N i N
exploit this here. fa(D=5 0;1 e cog w,t) (30)
I1l. CHAINS OF OSCILLATORS N ;
gn(t)zi 2 eZWian/NSIn(wat) (31)
In this and the following sections, we show how the gen- Q N&= w,

eral program outlined above may be worked out in detail in
linear oscillator models. These have the advantage that theere, 2%= (K + 2»?)/m. The solution forp,(t) is given by
can be solved exactly. In particular, the time development of
the correlation functions and eigenstates of the local densi- Pn(t)=may(t). (32

ties can be computed reasonably explicitly.
In the limit of an infinite number of particles the solution

A. The models and their classical solutions is
We consider a chain of point particles which are coupled o g (1)
to each other by a nearest-neighbor linear interaction. We  q.(t)=b,+ >, |f,_.(t)q,(0)+ —=p,(0)].
also allow the possibility that each particle is harmonically r=—e mQ

bound to one of a series evenly distributed points, separated (33

by distanceb, say. The Hamiltonian is For the simple chainK=0, the solution is then given in

N 2 2 K terms of Bessel function®21], and we have
H=S [0 (= n 02+ 5 (Gn=bp)?| (29
A-1(2m 2 2 f (1) =J,(2wt) (34

whereb,=nb. We will consider the two case€=0 (the  \yherew2=1?/m, and

simple chain andK # 0 (the harmonically bound chainin

the bound chain case, it is also useful to consider the case t

b,=0, which corresponds to the situation in which the gr(t):Qf dt'Jo (20t’). (35
. . . . 0

whole chain moves in a harmonic potentidh fact, for the

classical solutionsp, is readily absorbed int@,, but this The appearance of the time integral in the expression for

mak_e? a d|fferen_ce to the_ local densities c0n5|dered bblo"\’gr(t) is in fact related to the motion of the center of mass of
We initially consider a finite humbeX of particles but we

! der th NFinfinit the whole chain, which is not of interest for our consider-
a s$h00n3| etr_ € c?se i Infinite. ations.(We imagine the whole system is contained somehow
€ equations of motion are so that there is no wave packet spreaditigalso somewhat
- CnN_ 2 . obscures the discussion of correlations, which is the main
MOy + K(dq=0p) = v(An+1— 200 +0n-1) (29 thing we are interested in. The relevant behaviogiift) is

where we takeqy.,=0;. This system has been discussedhest exhibited .in terms of the diffe_rence variables, 1
and solved in many places. A particularly useful reference_ 9r - USing a simple recurrence relation for the Bessel func-
for the case of an infinite chain is the treatment by Huertdions, these are given by

and Robertsof21,27. (See also Refd.23-24.) The solu-

tion may be found by introducing the normal modes, , Or+1() = 9r(1) = = 20T 1(201). (36)
N g2mian/N We will discuss this in more detail below.
qn=b,+ 2 —Q, (26) For the bound chaink#0, it is most useful to work in
a=1 N¥ the regime in which the interaction between particles is much
, weaker than the binding to their origins, $6<K. In this
which obey case, the solution then [&1],
Qut ®iQ,=0 27 f,(t)~J,(yQt)cog Ot — 71 /2) (37)
where and

1/2

N (29 0:(t)=J, (yQt)sin(Qt—7r/2) (39

K 412 Ta
e[ 7
m m

_ , where y=(w/Q)?, soy<1.
The solution may be written The general behavior of the solutions in both cases is
N g (1) easily seen. The functiorfs _,(t) andg,_,(t) loosely rep-
t)=b.+ f (). (0)+=2=" 0 } 29 resent the manner in which an initial disturbance of particle
An(t) =Py 21 [ (D0 +=0a—PA(0)] (29 affects particlen after a timet, and is given in both the bound
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and unbound case by the properties of Bessel functions. R&ec. Il, and the remaining analysis is essentially the same as
call the following forms of the Bessel functio&7]. For  for a classical stochastic system.

small arguments we have For simplicity, we will concentrate on Gaussian initial
states(which will of course remain Gaussian, because they
x\" 1 (x/2)? system is linear although these will be sufficient for our
In(x) = 2/ \T(n+1) N 21T (n+3) el (39 purposes. The variances of these Gaussians are restricted by

the requirement that the state is puf@hey are also of
[This is forn>0. Forn<0 we useJ_,(x)=(—1)"J,(x).]  course restricted by the uncertainty princip/e will con-

For large arguments we have the asymptotic form sider two different types of Gaussian initial states which can
be approximate eigenstates of the local densities. The first

1z type we consider are product states, so have no initial corre-

Jn(X)N(R cogx—mn/2—m/4). (40)  Jations between different particles. The second type are the

coherent states of the normal modes, and are naturally sug-
Hence the Bessel functions start out at zEemcept forn ~ 9ested by the normal mode decompositiag). We will see
=0, whereJ,(0)=1], grow exponentially, and then go into in the next section that these are eigenstates of the local

a slowly decaying oscillation. For large and fixedx we densities as long as the correlation functions remain suffi-
have ciently small.

n 1. Normal mode coherent states
) (41

Jn<x>~(2wn)—1’2(e—x

2n Taking the second type first, we therefore consider the set

of Gaussian states which have

A point not immediately obvious from these standard
asymptotic forms, and which will turn out to be important, is .
that the different Bessel functions each go into their oscilla- 0(Qaq 'QB):W‘SM (43)
tory regions at different values of In particular, one can ¢
estimate from the plots of the Bessel functions thgtx) 1
goes into its oscillatory regime whexis of ordern, by (K, KE)=5hMw, 6,5 (44)
which stagel, (x) is therefore of orden™ %2, In terms of the 2
behavior of the chain, this means that distant pairs of par-
ticles never come to influence each other very much, even d(Q.,Kp)=0 (49
after long periods of time: at short times, particles separated
by n have exponentially suppressed correlation, similar tovhereK, is the momentum conjugate @, and note that
x"/n! and at long times, their correlations are also sup-Q*=Q_,. Because these are the coherent states of the har-
pressed, similar tm~ Y2, This particular aspect turns out to monic oscillator, these correlation functions all remain of this
be crucial for our purposes. form under time evolution, and the only time development of

Another important observation is that in the oscillatory the states is in terms of their cente€,(t), K,(t), which
regime, the Bessel functiod,(x) has only a very limited follow the classical equations of motion. For the case of the
dependence on, namely it has the forn§40) for somen, simple chainK=0, we havew,=0 whena=N. This cor-
plus the three possible phase shiftsrd2. The significance responds to the center of mass of the whole chain, and may
of this for the chain is that when the functiofs_,(t) and  be quite simply omitted.
0:_n(t) have entered the oscillatory regime, the conditions at In terms of the original coordinatess, and p,,, we have
particlesr and n and everywhere in between are approxi-the correlation functions
mately the same. This feature is clearly relevant to the ap-

proach to local equilibrium. 1N g pia(n /N
— mia(nN—m
o(Gn Gm) = 2 5o-e (46)
B. Correlation functions
As described in Sec. Il, we are interested in the time de- N _

velopment of eigenstates of the local densities, and this boils a(Pn,Pm) =g > Eﬁmwaezm"(”‘m)’“ 47
down to the behavior of the various correlation functions of a=1
the system. We define the correlation function

o(qn,Pm)=0. (48)

1
U(A'B):§<AB+ BA)—(A)B). (42 These correlation functions are constant in time, and this

feature makes this case a useful one to study. Also notice that
Because the system is linear the classical solutions describédq,)? and (Ap,)? are independent ofi. The correlation
above may be used to discuss the solutions in the Heisenbefgnctions will typically decay very rapidly with increasing
picture in the quantum case. In fact, the only quantum caltn—m|, since they are sums of rapidly oscillating terms. This
culations in this paper have essentially been done already iis especially true in the cagé+0 with K>1?, since then
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w,, EQ.(28), is a constant to leading ord€k\Ve will see a .
similar effect in more detail in the next subsectjolm the Bam()=m> f_a(O)F,_ (1) (55
caseK=0, we have '

o 20 Sin(ﬂ) 9 Con( )= T (- n(V) (56)
a2 N |
. . . 1
The correlation func_uo_nr(pn,pm) plearly still decays for dp(t) = . E 9r (1) (1)
large [n—m|, but this is less obvious foer(q,,q,), EQ. m<Q“ T
(46), because the denominator becomes very small close to (57
a=N. However, if we eliminate by hand a small cluster of
modes close tax=N, we get satisfactory decay properties 1 .
for this correlation function, and we will assume that this has enm(t) = Y 2 Jr-n(t)Gr—m(t)
been done.
(58)
2. Uncorrelated initial states for the infinite chain 1 _
We now consider uncorrelated initial states for the infinite Kom(D) =& Z fr—n(t)gr—n(t). (59

chain, so the correlation functionsq,,,dm), o(dn,Pm) and
o(pn.Pm) all vanish at the initial time fon#m. We are  Since the coefficients,(t) andg,(t) are all given by Bessel
then interested in the behavior of these three types of corrgunctions, these expressions can be evaluated using the fol-

lation functions at later times. _ ~ lowing Bessel function addition theorem:
From the solution33), with the assumption of no initial

correlation between the particles, we have *
In(29= 2 In k90X (60)

= f,_ fr_ Ag,)?
oLn(1).Gn(V)] 2 r=n(Of-m((A0)) For the bound chairk #0, the coefficients arf21],

1 [ 1 |
+ Wgr_n(t)gr_m('t)(Apr)2 2a,m(t) = Snm+ JIn_m(2yQt)cos 20t — E(n— m)
_ (61)

1
+ m[frfn(t)gr—m(t)

2b,m(t)=—mQJ,_ m(2vQt)sin 20t — %(n— m)
_ (62)

+f (D9 () ]o(ar,pr) (50

chm(t):(mﬂ)zénm_(mQ)Z‘Jnfm(ZVQt)

and similarly foro] q,(t),pm(t)] anda| p,(t),pm(t)]. These 1

expressions simplify if we make the further assumption that XCOf{ 20— (n—m)m (63
the initial values of Aq,)?, (Ap,)? ando(q, ,p,) are inde-
pendent ofr (we will show below how to go beyond this

_ -4
assumption In this case we obtain Anm(t) = (M) ~"Cam(t) (64)
o1 (1), Grn(1)]=Bnr(1) (AQ)?+ 2801 (G, P) + U D) o)== (M) bV (69
X(Ap)z (51) Knm(t) = _(mQ)_ZCnm(t)- (66)

U[qn(t),pm(t)]:bnm(t)(Aq)2+[anm(t)+knm(t)]ﬂ'(q,p) All OT these coefficients, and hence all of the correlation
functions, decay exponentially for large—m|. Further-

+enm(t)(Ap)? (520  more, in the limitt—o we have
[pn(t)rpm(t)]:Cnm(t)(Aq)2+2bnm(t) (qrp)+anm(t) 1
’ y oD, Gn(D)] 5 S (A0)Z+ — 5 (Ap)? (67)
X(Ap)? (53) m>Q
where ol dn(t),Pm(t)]—0, (68)
1
(1) =2 frn(Df (V) (54 olpy(),pr(D)]— 5 80 MQAAQ?+(AP)Z]. (69)
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We also find thatq,(t))—b, and({p,(t))—0 ast—«~. We  [where for simplicity we have takem(q,,p,)=0 initially].
thus obtain an equilibrium distribution, since the correspondThis is not an equilibrium distribution, and the behavior of
ing phase space distribution function for the whole chain is[ Aq,(t)]? at late times indicates diffusive behavior.

This growth of correlations and variances is essentially
pﬁ 5 5 unphysical, since any realistic system is contained in some
om T 5m (dn—bp) (700 way, so the spreading cannot proceed beyond the size of the

container(and indeed there is no such effect in te:0
case. It is, however, difficult to factor out this unphysical
effect in a convenient way. The long-time limits of REZ1],
1 which we have followed closely, are dominated by this
kT= =—[m2Q2(Aq)%+(Ap)?]. (71  spreading effect in th&=0 case. In an attempt to under-
2m stand this, the authors of R¢R1] considered a different set
of models in Ref[22], in which the chain was fixed at one

1

Wzl;[ GX%—ﬁ

where we identify the temperature as

For the simple chainK=0, we have[21], end. This avoided the diffusive growth encountered above,
but still led to significant correlations between all particles
28ym(t) = Snmt J2n-2m(4wt) (72 on the chain in the long-time limit. This in turn spoils the
desired behavior of the local densities, discussed below. The
2bym()y=mo[Jyn_om-1(4wt) —Jon_ome1(dot)] upshot of this is that it is not possible to prove decoherence
(73 of the local densities in the case of the infinite chain with
K=0.
2Cm(1) = (M) Jon—oms 2(4ot) + Ion_om—2(4wt) There are two simple ways in which the above results are
easily generalized. First of all, note that although we are
—2J5n_om(4wt) (74) focusing on Gaussian initial states, expressions for the cor-
relation functions such as E0) are in fact valid forany
—O6nm-1"%nm+1+26nn] (75 initial state, because of the linearity of the dynamics.

Secondly, in deriving Eq$51)—(53), we assumed that the
initial variances are independent nf This assumption was
necessary in order to be able to apply the Bessel function

t 4ot
dym(t)= —Z{J Jo(y)dy—J;(4ot)
2om?| Jo addition theorem(60), and thereby obtain explicit expres-

1 Inml §ions fpr thg coefficients,m, b””ﬁ etc. This is too restr_ic-
— f Jo_1(y)dy (76)  five, since it means that certain hydrodynamic variables
(2om)? =1 . [such as temperature, which depends &p,)?], are obliged
to be constant along the chain. One can see, however, that
1 (4ot these results easily extend to the case in which the initial
(D)= 7 . Jon-2m(y)dy. (77 variances Aq,)?, (Ap,)? anda(q,,p,) have a slow depen-

dence orr along the chain. The point is that because of the

decay of the function$,_,, g,_, for large|n—r|, the sum
verr in Eq. (50) is effectively restricted to a finite range,
amely, over thdactually quite smajlrange for which sig-

nificant correlations exist. As long as the initial variances

vary significantly withr only on a range larger than the cor-

; ) . ; §Elation range, then the calculation of correlation functions is

correlation functions do not have this property. In part'CUIar’eﬁectively equivalent to the case in which the variances are

from the behavior .Ofa[q“(t)’q“"(t)]’ the whole _chair_1 aP-  completely independent of This means that in place of Eq.
pears to become highly correlated. In the long-time limit, we(51) for example, we get the more general result
find ' ’

[The explicit form ofk,(t) is not required. The first three
of these coefficients, as in the bound case, are exponential
suppressed for largea—m|. This means that the behavior of
the correlatioro[ p,(t),pm(t) ], which depends only on these
three coefficients, has the expected behavior, but the oth

U[qn(t)’Qm(t)]%anm(t)(Aqr)z"' 2e,m(t) o (g, ,pr) +dpp(t)

1 t
U[Qn(t),CIm(t)]H§5nm(ACI)2+ m(Ap)2 (78) X(Ap,)? (81)
1 wherer on the right-hand side is taken to be mid-way be-
olgn(t),pm(t)]— m(Ap)2 (79 tweenn andm, and forn=m we get

1 [Aqn(t)]zmann(t)(Aqn)z"' 2e,,(1) o (dn,Pn) +dpn(t)
G[pn(t)vpm(t)]_’E(mw)2[25nm_ Onm-1"%n,m+1] X(Apn)z. (82

(80) This simple observation is important for obtaining interesting

1
2, = 2
X(AQ)TF 2 Onm(AP) hydrodynamic equations because it allows for the possibility
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of the system tending towardscal equilibrium, rather than MM
equilibrium of the whole chain. Au(t)=5 21 Zl Jon—om(4wt) (90)
n=1 m=
IV COARSE GRAINING BY CHAIN SUBSECTIONS (where we have assumed this sufficiently large that it is
Although we are ultimately interested in the local densi-effectively equivalent to th&l— o casg. Our aim is now to
ties for the chain variables, we will first consider some sim-show thatAy,<M? for all times, for then the conditio(84)
pler variables whose analysis is highly instructive. Namelywill be satisfied.
we take the variables of interest to be the total momentum in The expression fof,, cannot be evaluated exactly, but its
a subsection of the chain containilgparticles, so we define properties may be seen from the asymptotic forms of the
" Bessel function$39),(40). For small times, when the Bessel
. — 2 83 functions are all in the exponential regin®,, -, iS expo-
M™T Pn nentially suppressed for larga—m|. For larger times, the
Bessel functions start to go into their oscillatory form, where
where M <N. This is not quite the same as a locally con-they are already small. Furthermore, because in the oscilla-
served quantity, but it is very similar, since, for the simpletory regime they depend on—m only through a simple
chain, the total momentum is conserved. Theref®gis an  phase, most of the terms in the sum oxmemdm cancel out.
exactly conserved quantity whevl =N, and otherwise we Proceeding along these lines one can see Ayatwill not
might expect it to be approximately conserved. come anywhere close tol? except for small values dfl.
As outlined in Sec. Il, to show that these variables areThese features are easily confirmed by plottig(t) for
approximately decoherent, we need to show that initial statedifferent values ofM. For example, withM=5, Ay(t)

satisfying the condition quickly decays to a value of about 0.1, clearly much less
) thanM?2= 25, thereafter going into a slowly decaying oscil-

(APw) < (84) lation. As we shall see, the variances of the local densities

(Pu)? differ from the momentum of a chain subsection in that they

are more complicated functions of the correlation function,
will continue to satisfy it under time evolution, hence the for Gaussian states, but the physical understanding of their
initial state remains an approximate eigenstate. We have behavior is essentially the same, which is why this simple
example is instructive.

M M
(APW)?=2 > o(Py,Pm) (85
n=1m=1 V. DECOHERENCE OF LOCAL DENSITIES
and We now come to the main point of this paper, which is to
" examiner the behavior of the local densities for the oscillator
) chain. They are
(Pw)?=2 (Po)(Prm)- (86)
n,m N
We take the case in which the initial correlations are zero and n(x)= ngl 8(An=x) (9D
the initial variances are the same all along the chain, and we
also take the initial value oé(q,p) to be zero. We thus N
obtain 900= 3, Pod(d—X) (92
[APu(D)]*=Cu(Aq)*+Au(Ap)? (87)
N 2 2
where - Pnh ¥ 2
. h()=2, |55+ (Gn=dn-1)
Au(D= 2, 2 ann(t) (88) 1 ,
n=sme +§K(qn_bn) 5(qn_x)- (93)
M M
Cu(t)= 21 21 Com(1) (89  Again it will often be very useful to work with the Fourier
el me transformed local densities,
and the coefficienta,,(t) andc,(t) are given by Egs. N
(72),(74). The two terms on the right are very similar, so for K= elkan 94
simplicity will will concentrate on the second on@lote also n( )_n=l € (94)
that these terms do not suffer from the spreading problem
discussed in the previous section. This is an advantage of N
working with momenta, rather than positionsrom the ex- g(k) = 2 pekdn (95)
pression(72), we have e
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eik%.

(96)

N 2 2

S LA 2 Lo —p )2
h(k)= 2, | 5045 (G =n-0)*+ 5 K(dn=by)

The local number and local energy density are locally con-
served. The local momentum density is locally conserved

only for the case of the simple chai{=0.

We consider states which are approximate eigenstates
the local densities. We will use Gaussian initial states, an

PHYSICAL REVIEW D 68, 025018 (2003

[An(k)]?=23 [(el)[2(eCa~1). (102
]
From this we expect that
(An(k))2<|<n(k))|2 (103

as long ask~ ! does not probe on scales that are too short

géompared ta\q;), so the state is an approximate eigenstate.

When there are correlations, as will arise over time, we

we expect that these will be approximate eigenstates of thgy yect that the state will still be an approximate eigenstate

local densities if we choose the correlation functions
o(9n,9m), o(dn,pm) and o (p,,pm) to be zero, or at least

sufficiently small, forn#m.

For the Gaussian states we consider here, the computation
of variances of the local densities is facilitated by the iden-

tity,
<exr{i; [an(qn_<qn>)+,8n(pn_<pn>)])> (97)

1
Eanajo'(qn aqj)+ anlgjo'(qnapj)

=exp{—2

nj

1
+Eﬁnﬂj0(pnrpj)D- (99

All of the variances of interest will therefore be functions of

the three basic types of correlation function$q,,q.),

o(gy,pm) and o(p,,pPm) discussed in Sec. lll, and the

on lengthscalek ! which are much greater than the length-
scale of correlation. A& increases from zero we have

(An(k))® kE(AX)?
((n(k)* N2

(104

whereX=ZX;q; (the center of mass coordinate of the whole
chain. This will be very small as long ds ! is much larger
than the typical lengthscale of a single partidlan(k)]?
starts to grow very rapidly witk, and Eq.(103) is no longer
valid, whenk ™! becomes less than the correlation length
indicated byo(q;,q,). Hence the state is strongly peaked
about the mean as long as the coarse graining lengthscale
k™! remains much greater than the correlation length of the
local density eigenstates.

Consider now the local momentum density. We have

1
(9(k) =3 [{p)) +ika(a, ,p,->]exp(ik<q,->—§k2mqj>2

physical discussion will in fact be very closely related to that (109
of the simple case discussed in Sec. IV. Actually, the formulayng at some length, we find
(98) also holds to quadratic order i, and 3,, for any state,
so the results derived below on the basis of Gaussian states . .
will be valid for arbitrary states for smak. [Ag(k) =2 (e*%)(e™ ™M) (Ajy+Bjn+Cjn)

We consider first the Fourier transformed number density n (106)
n(k). In a general Gaussian state, we have

where
N N 1
— ikajy — i 2 2
(n(k)) =2 (=2, exp|ik(ay)~ 5K*(Aqy) Ain=0(p; ,pn) &1 (107

(99

Bin=[(pPn)—ika(dn—d;,pn)1[{p;) +iko(aj—an.p;)]
and X(ekz(r(qj An) — 1) (1098

An(k)12=(nT(k)n(k))—[{n(k)}|? ) ) . )
[antJ"=(n"()n(k)) = |{n()| Cin= — IKL(Pr)— ikr(Gnpr) 1~ iK[(py) +iker(d )]

+k20(qj,pn) o (dn,Pj)- (109

N N

:2 2 <eikq1'><e—ikqn>(ek20'(q]' ) 1),
j=1n=1

We require[ Ag(k)]? to be small in comparison to

(100
The latter is to be compared with |<g(k)>|2=2 (e (e [ (p;){pn) +ik(pnyo(d;,p;)
in
N N .
|(n(k))|2=2 E <eikqj><efikqn>_ (101 _|k<pj>U(Qn:pn)+k20(qj:pj)U(anpn)]-
j=1n=1

With an initially uncorrelated state we hawéq; ,q,) =0 for
j#n and we see that

(110

Despite the complexity of these terms the interpretation is
reasonably simple. Ak—0,
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[Ag(k)]? (AP)? and provided also that the other correlation functions
q (k)>|2_) (Py? (11D o(q;,ps) and o(p;,p,) are small forj#n. (These results
9 also hold for non-Gaussian states for snkgllThe results of

Sec. Il show that all the correlation functiofexcluding the
infinite chain in theK=0 case¢ have the desired properties
we are using. Ak increases from zerdAg(k)]2 will grow, for all time. This proves 't.he desirgd result that initia}l eigen-
and will potentially contain of ordeN? terms, the same as states (_)f the Ioca_l densities remain approximate eigenstates
|<9(k)>|2- By inspecting the three terms Eq4.07)—(110), under time evolution, for sufficiently smail
however, one can see that each of them are prevented from
generating ordeN? terms as long as, respectively, the cor- VI. HYDRODYNAMIC EQUATIONS
relation functionsa(p;,p,). o(q;.q,) and o(q;.p,) are FOR THE LOCAL DENSITIES
suppresg,ed for;t?. As in the case of the number de_nlsny, We have shown in a variety of circumstances that eigen-
(Ag(k))“/[{g(k))|* will start to grow appreciably ak states of local densities are approximately preserved in form
approaches the lengthscale indicatedoify; ,dy). , under time evolution, on sufficiently coarse-grained scales,
Consider now the energy density. The computation ofyng therefore superpositions of them define decoherent sets
[Ah(k)]? is rather complicated, but since we are considering histories. We may now therefore look at the diagonal ele-
(_Baussw?m states, th(_a fl'nal conditions on the co'rrelatlon funGnents of the decoherence functional, representing probabili-
tions will be very similar to those on the variance of the ties for histories of these variables. These probabilities are
momentum density considered above, so we will not carmyeaked about the average values of the local densities, aver-
out the computation explicitly. Instead, we consider a S|mpleraged in the approximate eigenstates we have been consider-
special case. Take the case where each oscillator is fixed ;gg_ (This is reasonably obvious, but a more detailed proof
an origin atb; , and suppose that the binding to it is so strongappears in the appendix of REL5].) We will now show that

that each particle is well localized aroubg. Then the inte-  these average values obey hydrodynamic equations.
gral over a volume of the energy denstyx) is then ap-

proximately equivalent to taking a coarse graining consisting
of the energy contained in a chain subsection, similar to Sec.

where P=ZX;p; is the total momentum, and it is easy to
confirm that this is smalltypically order 1N) for the states

A. Local conservation equations

IV. We therefore consider the variable The local densities satisfy the local conservation laws,
M . lag
hM:JZl h; (112 nx)=-—- (116)
where
. aT
g(x)=—5—Kxn(x)+K§j: b; 8(q;—x) (117
h-—p—j2+3|< 2 (113
iT2m 2"
. i
(neglecting the interaction tepmFollowing the general dis- h(x)=—— (119
cussion of Sec. Il, we will haveAhy)?<(hy)? provided
that They are actually more usefully written in momentum space,
2 . ik
% a(hj,hp) <(hy) (114 n(k)=—g(k) (119

so the left-hand side must be much smaller than ohdér
The correlation functiorr(h; ,h;)) is constructed from terms . . ”
like o(g7,q%) and similar functions, and we have g(k)ZIkT(k)—KEj: (gj—bj)e™ i (120

o(q7,9%) =20(0; ,0n)? (115

(recalling that{q;)~b; since the particles are tightly bound

The discussion is then very similar to the case of Sec. Ivwhere the currents(k) andj(k) are given by

with essentially the same result, which is that the state is an

approximate eigenstate as longs>1. 2 . G
We have now shown that Gaussian states will be approxi—T(k): D &eiqu_ 23 g, (e*di-1— 2§'kq1 +e'kdj+1)

mate eigenstates of the local densitieskaufficiently small 7 m T ik

compared to the correlation length determinedyy; ,q,), (122

h(k)=ikj(k) (122)
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. pi(p; 1 1 . 1 ,
i00=2 1 5 T 2K =b)*+ 5070 -0;-0)? | &* (r(0)=2, {E«poﬂka(qj,p,—))%c
(123

; 1. 2
< P (elkaj — ik 1) Xex;{lk(qﬁ 2k (Aq;)
Y (O ) (124 ,

i v
to > (aj+2)—2(q;)
(These are clearly finite ds—0.) These currents are rather '

complicated in configuration space, except in the case where _ 1
we neglect the interaction term, when they are given by +<q;1>)e><p< ik(d;)— §k2(Aq1)2) (129
2
pi where
70 =2 18 =X) (125
1
) CJZE(ADJ)Z"‘ vz[(r(qu,qj)—Z(qu)Z%— o(Qj,9j-1)]-
=S PP L) s (130
100=2 1 5 * 2K (@02 8= ).

(126) Now recall that the normal mode coherent states have the
following special simplifying featuresr(q; ,p;) =0, and the
Equations(116)—(118 do not in general form a closed Vvariances ‘(xqj)z,(Apj)2 and correlation functions of the
system, so do not lead to hydrodynamic equations. To get gorm o(q;.,q;) are independent of. Also, we find that
closed set, it is necessary to average these equations in a §gt=0 [which follows from taking the time derivative of
of states depending on just three fields, thereby obtaining(q;,p;) =0]. We therefore have
three equations for three unknowns. In the standard approach L
to deriving hydrodynamics, the local equilibrium state is . . 2 2
chosen. We will discuss this below in Sec. VIC, but first we (n(k))—; exp| ik(a;)— Ek (A9) ) (13D
consider the simpler and instructive case of the normal mode
coherent states. 1
(9(k)=2 <pj>exr( ik(a) — §k2<Aq>2) (132
B. Hydrodynamic equations in the case of normal mode :
coherent states <T( k))= Tp(k) + Tq(k) (133
We consider the simple chaik,=0, in the normal mode
coherent states. As we have shown, these states are stronﬁwere
peaked in the local densities so such states define a decoher- 1 1
ent set of histories. The correlations functions of these states p(K)= 2 —(p,—)zex;{ ik(q,—)— _kZ(Aq)Z) (134
are constant in time, so we do not expect a settling down to L 2
local equilibrium. However, it turns out that the averages of 5
the local densities still obey a simple set of hydrodynamic _v _
equations, and this case turns out to be particularly transpar- 7q(K =3¢ ; ((Gj+2) =200 +(j-1))
ent and instructive. Because the only dynamics in this case is L
contained in the motion of the centefs;),(p;), we need . 2 2
consider only the local number and megrrJ1>er<1tL112n densities, not Xexr{ tk(a) = Ek (A9) ) (139
the energy densitfwhich may in fact be calculated from the
number and momentum densities in this ga€dosure of the ~ Generally, we do not expect to derive interesting hydrody-
averaged conservation equatiofid9,(120) is obtained in namic equations except in the long wavelength regime.
this case because there are two equations and the states @dearly in this case, this meahs ?>(Aq)®. Going to this

pend on just two sets of quantities, thgy) and the(p;). regime (whose significance will become apparent below
In a general Gaussian state we have and reverting back to configuration space, we find
1
(n(k))=2 ex ik<qj>—§k2<qu>2) (127) (nG)=21 o({ay)=x) (136
J
(9(K)=3 [(p)+iko(q;.p))] (900)=2 (p)3((a))=x) (137)
J
i Li2ag)? => L tp02ac(an - 138
xexp| ik(d;)~ 5 K*(Aq)) (129 7o(X) =2 (i) 8((e) =X). (139
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The quantity 7,(x) is more complicated and will be dealt (T(x)>=muz(x)<n(x)>+d2v2n1(x). (148

with below. In these expressions, since we are in the long-

wavelength regime, thé-functions are to be thought of as  Inserting all of these results in the local conservation

smeared over a volume greater th&q. equationg116),(117), we obtain a closed set of equations for
It is now very useful to introduce the velocity fieldx), v (x) and(n(x))=nq(x)+n;(x) where

defined via

No(x) =2 8(x—jd) (149
(o =mo(a) = [ dymoyiaay-y) (39 J
is a fixed background fieldagain interpreted as coarse
which inserted in Eq(137) yields grained over a length of ordexq). Explicitly, we have

(9(x))=mo(x){n(x)). (140

(This is in fact the standard relation between the velocity
field and the momentum densift1].) Inserted also in Eq. J 9 , d2,2
(138 we obtain E((n)v): - 5((n>v + ?m). (1521

d _d
)= = (o) (150

_ 2
Tp(X) = Mo (x){n(x)). (14D The interesting special case is that in which the velocity field

It is for deriving these last two equations that the long wave-> small, in which case we may neglect the term in Eq.

length assumption is necessary. Most importantjy(x) is (elilgl'ti;—:?gmcngmmg the two equations yields the wave
expressed in terms of the two field$x),(n(x)), which is q B
crucial for closure of the equations. a2n a2n

We need now to obtain a similarly simple expression for 2l ! (152
7q(X)). As it stands, Eq(135 will not lead to a simple at? ax?
expression in terms af(x) and(n(x)). To proceed further
Wit?] this term we need(to) maké s(inli)lifica'it)ions. We are ulti-wherec®=d?»?/m.
mately interested in deriving a wave equation for the number

density(which one might expect on the basis of the classical C. Local equilibrium and hydrodynamic equations
equations of motion for the;). The key to this is to consider for the K#0 case
small diSplacementS of thﬂj about Uniformly distributed We now consider the case of the infinite chain wih

initial values, and then to consider the fluctuation in number. o, |n this case, we expect that the local density eigenstates
density about the constant background. We therefore write || settle down to a local equilibrium state after a period of
. time. We will justify this important step below, but first we
(g)=jd+&q; (142 consider the consequences of a local equilibrium state, the
andard assumption in derivations of hydrodynamics. This
ate is characterized by the one-particle distribution function
(Wigner function

whered is a constant representing the spacing between eacﬁ
particle andsq; is a small displacement. The average num-
ber density fok~2>(Aq)? and to linear order iq; is then

. w;i(pi,q)="F(qg;)ex _W (153
(n(k))y=">, ekia) (143 YRR 2mkT(q;)
]
wheref, v andT are slowly varying functions of space and
=No(K) +ny(k)+--- (144 time. (This is the one-particle distribution function for par-
ticle j—it is labeled byj since the particles are distinguish-
where able) If we now average the system Eq416)—(118), to-
gether with the currents(x), j(x) in the local equilibrium
no(K) = E elkid (145 state, we obtain a closed system, since we get three equations
] for three unknowns. In the case of negligible interactions and
b;j=0, we find
ny(k)=ik >, 8g;e' (146) (n(x))=Nf(x) (154)
and note thahy(k) is constant. Inserted in the expression for (9(x))=muv (x)Nf(x) (159
74(K), Eq.(135), and assuming also thit *>d, we find 1 1 1
h(x))=| zmv2+ s kT+-Kx? |Nf 1
ro(K)=d202n,(K). (147 (h(x))=| Zmu™+ ZKT+5Kx7INT(x) (156
This now means that in configuration space we have (7(x))=(mv2+KkT)Nf(x) (157
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_ 3 1 K (Aq;)? (Ap;)? ando(q;,p;). From Egs(51)—(53), we see
(J(x))=(§va+§mu3>Nf(x)+ﬁx%g(x)). that o(q; ,p;) grows initially from zero, but then becomes
(158  small at late times, while Xq;)* and (Ap;)* approach a
constant plus a slowly decaying factor. Moreovext;q()2
Inserted in Egs.(116—(118), the above relations give a and (Ap;)? depend onj only through their initial values,
closed set of equations for the three variatfles and T.  which as discussefbee Eq.(82) for exampld, vary slowly.

After some rearrangement, these equations are In addition, the center&y;(t)) and(p;(t)) go into a phase of

slow time dependence and limited dependencgfontimes

of of Jv _ . . .

4y —=—f— (159 sufficiently long for the Bessel functions to go into their

at IxX X oscillatory phases. These asymptotic forms are approached
on a time scale Q) . Therefore, in this case, the local

‘9_”+Ua_vz_ 100 0 o Kx (160  equilibrium form is indeed achieved at late times, and the

at Ix madx mfdix m average values of the local densities obey hydrodynamic
equations.

3_9+v¢9_9: _20190 (161 The final picture we have is as follows. We can imagine

an initial state for the system which contains superpositions
of macroscopically very distinct states. Decoherence of his-
wheref=kT. These are the equations for a one-dimensionajories indicates that these states may be treated separately
fluid moving in a harmonic potentiglll]. Note that non- and we thus obtain a set of trajectories which may be re-
trivial equations are obtained even though we have neglectegarded as exclusive alternatives each occurring with some
the interaction terms in deriving them. The role of interac-probability. Those probabilities are peaked about the average
tions is to ensure the approach to local equilibrium, as wealues of the local densities. We have argued that each local
discuss below. density eigenstate may then tend to local equilibrium, and a
In these expressions, the definition of the velocity field isset of hydrodynamic equations for the average values of the
equivalent to Eq(139 and, similarly, the definition of the |ocal densities then follow. We thus obtain a statistical en-
temperature fields is essentially equivalent to, semble of trajectories, each of which obeys hydrodynamic
1 1 equations. These equations could be very different from one
il N2S(M ) — trajectory to the next, having, for example, significantly dif-
E 2m(Ap') o(q; x)—2kT(x)n(x) (162 ferent values of temperaturéin the most general case they
could even be in different phases, for example one a gas, one
(recalling that we are working at long wavelengths, so thea liquid.)
8 function is coarse grained over a scale of or#ter). Decoherence requires the coarse-graining scafeto be
Hence temperature arises not from an environment, but frormuch greater than the correlation length of the local density
the momentum fluctuations averaged over a coarse-grainingigenstates, and the derivation of the hydrodynamic equa-
volume. tions requiresk 2> (Aq)?. In brief, the emergence of the
classical domain occurs on length scales much greater than
D. The approach to local equilibrium any of the scales set by the microscopic dynamics.

Now the key point is that the states we are actually inter-
ested in are the approximate eigenstates of the local densi-
ties, evolved in time, or more precisely, the one-particle dis- We have shown that for the linear oscillator chain the
tribution functionw, constructed from those stateSince |ocal densities define a decoherent set of histories of suffi-
w; is the quantity that will enter in the computation of any ciently coarse-grained scales. The key idea is to split the
averages of sums of one-particle quantities, such as the locitial state into local density eigenstates and show that they
densities). This is not necessarily the same as the local equiare preserved in form under time evolution. The subsequent
librium distribution, Eq.(153), although they are clearly very probabilities for histories are peaked about the average val-
similar. The averages of the local densities in the approxiues of the local densities, and the equations of motion for
mate eigenstates will therefore obey the hydrodynamic equahem form a closed set of hydrodynamic form on sufficiently
tions derived above as long as we can show that the onearge scales, provided, in general, that sufficient time has
particle distribution function of these states approaches elapsed for the local density eigenstates to settle down to
the local equilibrium form Eq(153 after some time. local equilibrium.

The local equilibrium form Eq(153 has o(q;,p;)=0 It is perhaps of interest to comment on the time scales
and all the other average®;), (q;), (Aq;)*> and Ap;)®>  involved. Decoherence through interaction with an environ-
vary slowly in time and space.e., slowly withj). [Clearly  ment involves a time scale, which is typically exceptionally
a(q;,p;) has to be zero or small for local equilibrium since short. Here, however, there is no time scale associated with
it is the time derivative oquj)2 and (Apj)z.] Compare this decoherence by approximate conservation. The eigenstates
with the approximate eigenstates for the cKse0 and the of the local densities remain approximate eigenstates for all
infinite chain. They are Gaussians, so their one-particle distime. There is, however, a time scale involved in obtaining
tribution functionw, is entirely determined byp;), (d;), the hydrodynamic equations, namely, the time required for a

VIl. SUMMARY AND DISCUSSION
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local density eigenstate to approach local equilibrium. In thiswvith environmentally induced decoherence models as we go

model, this time scale is of order/{)) ! (for the infinite  to finer scales.

chain in theK+#0 casg. It would be of interest to generalize to an oscillator chain
Another interesting general issue is the question of thavith nonlinear interactions. This is because in the linear

relative roles of the decoherence through approximate corfhain, the energy in each mode is conserved, so there is no

servation considered here versus decoherence through inté0ssibility of exchanging energy between modes, and the

action with an environment. The point is that it is a question@PProach to local equilibrium is rather artificial.

of length scales. We have demonstrated decoherence of the !t Would also be of particular interest to look at a gas.

local densities starting with exact conservation at the largedt!2ny-body field theory may be the appropriate medium in

length scales and then moving inwards. In this way we wer hich to investigate this, following the lead of Rg29]. The

able to prove decoherence without using an environment, fc)(fjecoherent histories anal_y5|s might confer some interesting
. L . advantages over conventional treatments. For example, one-
certain sets of histories at very coarse-grained scales whosg . X .
robabilities are peaked about classical paths. However, i article dynamics of a gas is described by a Boltzmann equa-
P P P ' ’ tion. One of the assumptions involved in the derivation of the

general we would like to be able to assign probabilities t0g 1, mann equation is that the initial state of the system
nonclassical trajgctorles. For examp_le, what is thg proba.b|I|t¥30m(,;linS no correlations, which is clearly very restrictive
that a system will follow an approximately classical trajec-[11]. However, in the general approach used here it is natural
tory at a series of times, but then at one particular time Unyg preak up any arbitrary initial state into a superposition of
dergoes a very large fluctuation away from the classical trappcal density eigenstates, and that these may then be treated
jectory? The approach adopted here indicates that thgeparately because of decoherence. The local density eigen-
probability for this is approximately zero, to the level of states typically have small or zero correlations. Hence, deco-
approximation used. Yet this is a valid question that we carherence gives some justification for one of the rather restric-
test experimentally. It is at this stage that an environmentitve assumptions of the Boltzmann equation.

becomes necessary to obtain decoherence, and indeed it isWe have not estimated the degree of decoherence in the
frequently seen in particular models that when there is decomodels considered here, although it could be estimated by
herence of histories due to an environment, decoherence goking more closely at the approximations involved in go-
obtained for a very wide variety of histories, not just histo-ing from exact to approximate decoherence, described in
ries close to classical. It is essentially a question of informaSec. Il. However, there may be a more rigorgbst more

tion. Decoherence of histories means that information aboufifficult) way of proving the results of this paper, which
the histories of the system is stored somewlir2g]. Clas- would allow the degree of decoher.er?ce to be estimated. This
sical histories need considerably less information to specifyvould be to prove a theorem similar to that proved by

than nonclassical ones, and indeed specification of the thréaMne& for phase space projectdi8]. For a system oN
local densities at any time is sufficient to specify their entireP@rticles with phase space coordinateg(p,q), Omnes con-

classical histories. This is not enough for nonclassical histoSidered(@pproximatg projection operators onto a regidn
ries, so an environment is required to store the information(>) of phase space, defined by

Note also that “environment” need not necessarily refer
to an external environment. It could also include the internal przf dVz|z)(Z| (163
coordinates not fixed by the coarse graining. These did not r
play a role in the case considered here, but would become )
important at finer-grained levels, producing fluctuationswhere the statefz) are some form of phase space localized -
about the evolution described by the hydrodynamic equaStates, such as coherent states. He showed that under certain

tions, hand in hand with decoherence. This has been consi#easonable conditions, the form of this projector is approxi-
ered in Refs[4,13). mately preserved under unitary evolution, that is,

Given the need for an environment at finer-grained scales,
it is then of interest to ask whether the local densities con-

tinue to have an important role for many-body systems when ) o )
an environment becomes necessary for decoherence. Graffherel’ is the original phase space region evolved along the

fyingly, the answer is that the local densities, and particularlyclassical phase space trajectories. It is easy to see that this
the number density, remain the naturally preferred variable§NSures approximate decoherence of coarse-grained phase
for a many-body system coupled to an external environmengPace histories and that the probablhtl(_es are peaked apogt
as was recently showj9]. It is normally claimed that po- cla§S|ca! phase space paths. The result is therefore very simi-
sition is the preferred variable in environmentally induced!@" in Spirit to the present paper. It seems very plausible that
decoherence, but this is for a single particle coupled to af Similar result may be proved here for projections onto local
environment and is in any case an approximation. For gensities. That is, we Wolu_ld like to construct a set of projec-
many-body system coupled to a scattering environment, witfiors onto the local densitie® g, say, and then show that
both described by many-body field theory, it was shown inthey are approximately mapped inf, 4 under unitary

Ref. [29] that number density is the naturally decoheringevolution, wheren,,g,,h; are related to the initial values
variable(with momentum density, as its time derivative, alson,g,h by a closed set of evolution equations. Such a result is
entering in a natural way Hence there is a smooth match not simply obtained by a coarse graining of the Omne-

e(i/ﬁ)Hthe*(i/ﬁ)Ht~ |:>Ft (164
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sult, the issue being that; g, ,h; have to evolve according tential advantage of the hydrodynamic approach. These and
to aclosedset of equations, which is not straightforward to related issues will be pursued in a future publication.
accomplish in general(The phase space coordinatpg
evolve according to the Hamilton equations, which is clearly
a closed set of equations, but truncations or coarse grainings
of this set will generally not be closedMoreover, the | am very grateful to Jim Hartle and Todd Brun for very
Omnes result breaks down when the underlying classical dyimany discussions on the topic of this paper over a long pe-
namics is chaotic. The corresponding hydrodynamic descripriod of time and to Todd Brun for his critical reading of the
tion, however, being coarser grained, will generally not bemanuscript. | would also like to thank Peter Dodd for useful
chaotic and does not obviously break down, so this is a podiscussions.
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