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Decoherence of histories and hydrodynamic equations for a linear oscillator chain

J. J. Halliwell
Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

~Received 15 May 2003; published 25 July 2003!

We investigate the decoherence of histories of local densities for linear oscillators models. It is shown that
histories of local number, momentum and energy density are approximately decoherent, when coarse grained
over sufficiently large volumes. Decoherence arises directly from the proximity of these variables to exactly
conserved quantities~which are exactly decoherent!, and not from environmentally induced decoherence. We
discuss the approach to local equilibrium and the subsequent emergence of hydrodynamic equations for the
local densities.
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I. INTRODUCTION

In a large and possibly complex quantum system, wh
dynamical variables naturally become classical for a w
variety of initial states? This question belongs to the gen
issue of emergent classicality from quantum theory, and
recently received a considerable amount of attention~see
Ref. @1# for an overview!. There are a number of differen
approaches to it, but common to most of them is the dem
stration of decoherence: that certain types of quantum st
of the system in question exhibit negligible interference, a
therefore superpositions of them are effectively equivalen
statistical mixtures.

Decoherence has principally been demonstrated for
situation in which there is a distinguished system, such a
particle, coupled to its surrounding environment@2,3#. More
generally, we may expect that decoherence comes a
when the variables describing the entire system of inte
naturally separate into ‘‘slow’’ and ‘‘fast,’’ whether or no
this separation corresponds to, respectively, system and
vironment.~See Ref.@4# for a discussion of the condition
under which the total Hilbert space may be written as a t
sor product of system and environment Hilbert spaces.! If the
system consists of a large collection of interacting identi
particles, as in a fluid for example, the natural set of sl
variables are the local densities: energy, momentum, num
charge etc. These variables, in fact, are also the varia
which provide the most complete description of the class
state of a fluid at a macroscopic level. The most gene
demonstration of emergent classicality therefore consist
showing that, for a large collection of interacting particl
described microscopically by quantum theory, the local d
sities become effectively classical. Although decohere
through the system-environment mechanism is expecte
play a role since the collection of particles are coupled
each other, it is of interest to explore the possibility that,
least in some regimes, decoherence could come about
different reason. Namely, because the local densities ar
most conserved if averaged over a sufficiently large volu
@5#. Hence, the approximate decoherence of local dens
would then be due to the fact that they are close to a se
exactly conserved quantities, and exactly conserved qua
ties obey superselection rules.

We will approach the question using the decoherent
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tories approach to quantum theory@5–10#. This approach has
proved particularly useful for discussing emergent classic
ity in a variety of contexts. In particular the issues outlin
above are most clearly expressed in the language of deco
ent histories. The central object of interest is the decohere
functional,

D~a,a8!5Tr@Pan
~ tn!•••Pa1

~ t1!rPa
18
~ t1!•••Pa

n8
~ tn!#.

~1!

The histories are characterized by the initial stateuC& and by
the strings of projection operatorsPa(t) ~in the Heisenberg
picture! at timest1 to tn ~anda denotes the string of alter
nativesa1•••an). Intuitively, the decoherence functional
a measure of the interference between pairs of historiesa,
a8. When it is zero foraÞa8, we say that the histories ar
decoherent and probabilitiesp(a)5D(a,a) obeying the
usual probability sum rules may be assigned to them. O
can then ask whether these probabilities are strongly pea
about trajectories obeying classical equations of motion.
the local densities, we expect that these equations will
hydrodynamic equations.

We are generally concerned with a system ofN particles
interacting through a potential and are therefore describe
the microscopic level by a Hamiltonian of the form

H5(
j

pj
2

2m
1(

,. j
Vj ,~qj2q,!. ~2!

We are particularly interested in the number densityn(x),
the momentum densityg(x) and the energy densityh(x),
defined by

n~x!5(
j

d~x2qj ! ~3!

g~x!5(
j

pjd~x2qj ! ~4!

h~x!5(
j

pj
2

2m
d~x2qj !1(

,. j
Vj ,~qj2q,!d~x2qj !.

~5!
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We are generally interested in the integrals of these qua
ties over small volumes, which will have the effect of sme
ing out thed functions. Integrated over an infinite volum
these become the total particle numberN, total momentumP
and total energyH, which are exactly conserved. It is als
often useful to work with the Fourier transforms of the loc
densities,

n~k!5(
j

eik•qj ~6!

g~k!5(
j

pje
ik•qj ~7!

h~k!5(
j

pj
2

2m
eik•qj1(

,. j
Vj ,~qj2q,!eik•qj . ~8!

These quantities tend to the exactly conserved quantitie
the limit k5uku→0.

There is a standard technique for deriving hydrodynam
equations for the local densities@11,12#. It starts with the
continuity equations expressing local conservation, wh
have the form,

]s

]t
1¹• j50 ~9!

wheres denotesn, g or h ~and the currentj is a second rank
tensor in the case ofg). It is then assumed that, for a wid
variety of initial states, conditions of local equilibrium a
established after a short period of time. This means tha
scales small compared to the overall size of the fluid,
large compared to the microscopic scale, equilibrium con
tions are reached in each local region, characterized b
local temperature, pressure etc. which vary slowly in sp
and time. Local equilibrium is described by the density o
erator

r5Z21expS 2E d3xb~x!@h~x!2m̄~x!n~x!2u~x!•g~x!# D
~10!

whereb, m̄ and u are Lagrange multipliers and are slow
varying functions of space and time.b is the inverse tem-
perature,u is the average velocity field, andm̄ is related to
the chemical potential which in turn is related to the avera
number density.@Note that the local equilibrium state is de
fined in relation to a particular coarse graining, here,
anticipated calculation of average values of the local de
ties. Hence it embraces all possible states that are effecti
equivalent to the state~10! for the purposes of calculatin
those averages.# The hydrodynamic equations follow whe
the continuity equations are averaged in this state. Th
equations form a closed set because the local equilibr
form depends ~in three dimensions! only on the five
Lagrange multiplier fieldsb, m̄, u and there are exactly five
continuity equations~9! for them.~More generally, it is pos-
02501
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sible to have closure up to a set of small terms which may
treated as a stochastic process. See Refs.@4,13#, for ex-
ample.!

The decoherent histories approach to quantum theory
fers the possibility of a much more general derivation
emergent classicality than that entailed in the standard d
vation of hydrodynamics. The standard derivation is rat
akin to the Ehrenfest theorem of elementary quantum m
chanics which shows that the averages of position and
mentum operators obey classical equations of motion. Y
description of emergent classicality must involve much m
than that@1#. Firstly, it must demonstrate decoherence of t
local densities, thereby allowing us to talk about probabilit
for their histories. Secondly, it should not be restricted to
special initial state. While it is certainly plausible that ma
initial states will tend to the local equilibrium state, the sta
dard derivation does not obviously apply to superpositions
macroscopic states, which are exactly the states a descrip
of emergent classicality is supposed to deal with.

This paper is part of a general program, initiated in Re
@14–16#, to obtain a more general derivation of hydrod
namic equations from the underlying quantum theory, us
the decoherent histories approach. The aim in particular i
consider reasonably general classes of initial states an
demonstrate decoherence of the local densities, without
pealing to environmentally induced decoherence, and
show that the probabilities for histories are peaked ab
equations of motion of the hydrodynamic type. In this pap
the particular system we will apply the program to is a ch
of linearly coupled oscillators.

The general sketch of the program, which we will wo
out in detail in this paper, is as follows. We start from t
simple observation that exactly conserved quantities de
an exactly decoherent set of histories, essentially becaus
projectors in the decoherence functional commute with
Hamiltonian @17#. It is therefore expected that the historie
will remain approximately decoherent as we go fromk50 to
nonzero values ofk in the local densitiesn(k),g(k),h(k). In
Ref. @14# it was shown that a useful way to organize this id
is to decompose the initial state of the system into a sup
position of statesun,g,h&, which are approximate eigenstate
of the local densities. It is then very plausible~and verifiable
in specific models! that such states remain approxima
eigenstates of the local densities under time evolution,
sufficiently smallk ~since it is clearly exactly true in the limi
k→0). Here, ‘‘sufficiently small’’ means thatk21 should be
much greater than the correlation length of each local den
eigenstate. The preservation in time of these states m
that histories of them will be approximately decoherent.

Given decoherence we may then look at the probabili
for histories. Decoherence also indicates that each eleme
the superposition of local density eigenstates may be tre
separately. We therefore consider the probabilities for his
ries of local densities with the local density eigenstate as
initial state. For sufficiently coarse-grained histories t
probabilities for the local densities are strongly peaked
each time about the average value of the local densities,
eraged in the local density eigenstateun,g,h&. Since the local
densities are sums of one-particle operators~to lowest order
8-2
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in interactions!, this is the same as averaging in the on
particle reduced density operatorr1 constructed by tracing
un,g,h&^n,g,hu over all but one particle states. The dens
operatorr1 is clearly not the same as the~one-particle ver-
sion of the! local equilibrium state~10!, although the two
states are clearly very similar, since they are both very lo
ized in the local densities. Hence, to complete the deriva
of the hydrodynamic equations, it is necessary to show
r1 tends to the local equilibrium state after a period of tim
This is clearly extremely plausible on physical grounds a
may be proved in explicit cases, as in this paper.~And in-
deed, this is much weaker than asserting thatany initial state
tends to the local equilibrium state.!

In brief, the whole story works in particular models co
tingent only on constructing local density eigenstates
showing that they have the desired properties: that they
preserved in form under time evolution for sufficiently sm
k, and that they are effectively equivalent to the local eq
librium distribution after a period of time. The point of th
paper is to show this for the linear oscillator chain.

The detailed connection between conservation and d
herence is discussed in Sec. II, as is the construction of
proximate eigenstates of the local densities. In Sec. III,
describe the dynamics of the linear oscillator chain. We c
sider two types of chain: the simple chain, where only nei
boring particles are coupled, and the bound chain, wh
each particle is in addition bound to an origin by a harmo
potential. We consider both finite and infinite chains. T
most important results are the correlation functions, wh
establishes the scale on which coarse graining is required
decoherence.

In Sec. IV, as a preparation for proving decoherence of
local densities of the chain of oscillators, we consider a s
plified set of variables, namely, the total momentum co
tained in a subsection of the chain. We show that the eig
states of this quantity remain approximate eigenstates u
time evolution as long as the size of the chain subsectio
much greater than the correlation length.

In Sec. V, we consider the local densities of the chain.
prove that approximate eigenstates remain approxim
eigenstates, fork21 much larger than the correlation leng
of the chain.

In Sec. VI, we consider the probabilities for histories.
the case of a finite simple chain, we show that the avera
of number and momentum density obey a closed set of e
tions ~although there is no evolution to local equilibrium
this case!. For the infinite bound chain, we show that th
density operatorr1 does indeed tend to the local equilibriu
state and we derive the resultant hydrodynamic equati
We discuss our results in Sec. VII.

The idea that local densities should define a natural se
decoherent histories as a result of their approximate con
vation was first put forward by Gell-Mann and Hartle@5#.
This idea, and the related possibility of deriving hydrod
namic equations, has been developed by numerous au
@13–16,18–20#. This work is perhaps most closely related
that of Brun and Hartle@18#, who analyze the linear oscilla
tor chain using the decoherent histories approach. Their
proach was rather different in that they considered coa
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grainings in which the center of mass coordinates of ch
subsections were specified, rather than the local dens
considered here, and they evaluated the decoherence
tional explicitly, rather than examine the evolution of eige
states of the variables of interest.

II. DECOHERENCE AND CONSERVATION

We begin by describing the connection between decoh
ence and conservation, It is well known that exactly co
served quantities are exactly decoherent@17#. The simple
reason for this is that the projectors commute with the u
tary evolution operator. The projectorsPak

on one side of the
decoherence functional~1! may therefore be brought u
against the projectorsPa

k8
on the other side, hence the dec

herence functional is diagonal.~In the situation considered
here, in which there are three conserved quantities involv
these quantities must in addition commute with each oth
but this is clearly the case.!

We would like to extend this idea to approximate dec
herence in the case of approximate conservation. It turns
that the above argument is better formulated in a differ
way for the purposes of generalization@14#. Suppose the
initial state is pure and consider the decoherence functio

D~a,a8!5Tr~Pan
Un21,n•••Pa2

U12Pa1
uC&

3^CuPa
18
U12

† Pa
28
•••Un21,n

† ! ~11!

where U12 is the usual unitary evolution operator betwe
times t1 and t2. Suppose the histories are projections on
some conserved quantity,Q. Now let the initial state be a
superposition of eigenstates ofQ,

uC&5
1

A2
~ uQ1&1uQ2&) ~12!

where

QuQa&5QauQa& ~13!

anda51,2. Since thePa’s are projections ontoQ, we have
PauQa&5uQa&, if a is suitably chosen, otherwise we g
PauQa&50. Hence the only non-zero off-diagonal terms
the decoherence functional are of the form,

D~a,a8!5
1

2
Tr~Pan

Un21,n•••Pa2
U12uQ1&

3^Q2uU12
† Pa

28
•••Un21,n

† !. ~14!

But Q is conserved, henceU12uQa&5uQa& and

D~a,a8!5
1

2
Tr~Pan

U•••Pa2
uQ1&^Q2uPa

28
•••U†!.

~15!

Proceeding in this way to the end of the chain,

D~a,a8!5^Q2uQ1&50 ~16!
8-3
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for all pairs of distinct historiesa,a8. Hence decoherenc
comes about because neither the projections nor the un
evolution disturb the statesuQa&, and hence the two orthogo
nal statesuQ1&, uQ2& are brought together at the final tim
and overlapped to give zero.

Let us now suppose that we have some operatorQ such
that under time evolution, its eigenstates are mapped
approximate eigenstates. That is, we initially have Eq.~13!,
but under evolution to timet,

Q~ t !uQa&'^Q~ t !&uQa& ~17!

~where the average on the right-hand side is in the s
uQa&). More precisely, this can be expressed as

~DQ~ t !!2

^Q~ t !&2 !1 ~18!

where

~DQ~ t !!25^Q2~ t !&2^Q~ t !&2. ~19!

Equation~18! means that the state remains strongly pea
in the variableQ under time evolution. The states are th
approximate eigenstates of the projectors at each time
long as the widths of the projectors are chosen to be m
greater than@DQ(t)#2. The same argument goes through
though this time only approximately. Approximate decoh
ence is therefore assured for sufficiently coarse-grained
tories of operatorsQ and superpositions of initial states ea
of which have the property that they remain strongly pea
in Q under time evolution@as characterized by Eq.~18!#.

A simple example is the case of the coherent states of
harmonic oscillator. These states are preserved in form u
time evolution, hence will always be approximate eigensta
of projections onto position, momentum, or phase space,
vided that the widths of the projections are chosen to
much greater than the uncertainties inp andq in the coherent
states. In this example, there is no obvious local conserva
law. For this reason, it is perhaps more accurate to spea
approximate determinism, rather than approximate conse
tion. So very broadly speaking, approximate decoherenc
histories will arise when there is an approximate determ
ism in the underlying quantum theory.

Returning to the local densities, we require a set of sta
un,g,h& which are eigenstates of all three local densiti
Since the local densities do not commute with each ot
except in the limitk→0, we can only find states which ar
approximate eigenstates. The number and momentum
sity are both operators of the form,

A5 (
n51

N

An ~20!

as is the local energy density, if we ignore the interact
term. For such operators it follows that

~DA!25(
n

~DAn!21 (
nÞm

s~An ,Am! ~21!
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and

^A&25(
n,m

^An&^Am&. ~22!

A state will be an approximate eigenstate of the operatorA if

~DA!2

^A&2
!1. ~23!

The expression for̂A&2 potentially involvesN2 terms, as
does the expression for (DA)2, but the latter will involve
only N terms if the correlation functionss(An ,Am) are very
small or zero fornÞm. So simple product states will b
approximate eigenstates and will have (DA)2/^A&2 of order
1/N. ~See Refs.@14,15# for more detailed examples this a
gument.!

Under time evolution, the interactions cause correlatio
to develop. However, the states will remain approxim
eigenstates as long as the correlations are sufficiently s
that the second term in Eq.~21! is much smaller than orde
N2. The interactions and the subsequent correlations
clearly necessary in order to get interesting dynamics an
particular the approach to local equilibrium. The interesti
questions is therefore whether there is a regime where
effects of interactions are small enough to permit decoh
ence but large enough to produce interesting dynamics.
fact that the variables we are interested in are locally c
served indicates that there is such a regime. The impor
point is that the local densities become arbitrarily close
exactly conserved quantities ask→0. This means that, a
any time, (DA)2/^A&2 becomes arbitrarily close to its initia
value ~which is of order 1/N) for sufficiently smallk.

In the examples we look at it in the following sections, w
will see that an uncorrelated initial state develops corre
tions with a typical lengthscale~or extending to a certain
number of particles down the chain!. These correlations typi-
cally then decay with time. What we will find is that th
second term in Eq.~21! will remain small as long ask21 is
much greater than the correlation length. Hence the
physical aspect is the locality of the interactions, mean
that only limited local correlations develop, together with t
coarse-graining scalek21 which may be chosen to be suffi
ciently large that the correlation scale is not seen. Differen
put, ask increases from zero, departing from exact decoh
ence, it introduces a lengthscalek21. Since the decoherenc
functional is a dimensionless quantity, clearly nothing s
nificant can happen untilk21 becomes comparable with an
other lengthscale in the system. The natural scale is the
relation length in the local density eigenstates.

The scheme described here would be executed most tr
parently if we used states which become exact eigenstate
the conserved quantities in the limitk→0, thereby always
maintaining the closest connection with exact conservat
In the next section we will in fact use Gaussians as the
proximate eigenstates, because they are the easiest sta
work with. These will not be exact eigenstates of the exac
conserved quantities in thek→0 limit, although this not in
fact matter very much, for reasons outlined above.~Fur-
8-4
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themore, the decoherence functional is always exactly d
onal for any initial state in thek→0 limit, for the reasons
stated at the beginning of this section, but we do not nee
exploit this here.!

III. CHAINS OF OSCILLATORS

In this and the following sections, we show how the ge
eral program outlined above may be worked out in detai
linear oscillator models. These have the advantage that
can be solved exactly. In particular, the time developmen
the correlation functions and eigenstates of the local de
ties can be computed reasonably explicitly.

A. The models and their classical solutions

We consider a chain of point particles which are coup
to each other by a nearest-neighbor linear interaction.
also allow the possibility that each particle is harmonica
bound to one of a series evenly distributed points, separ
by distanceb, say. The Hamiltonian is

H5 (
n51

N F pn
2

2m
1

n2

2
~qn2qn21!21

K

2
~qn2bn!2G ~24!

where bn5nb. We will consider the two casesK50 ~the
simple chain! andKÞ0 ~the harmonically bound chain!. In
the bound chain case, it is also useful to consider the c
bn50, which corresponds to the situation in which t
whole chain moves in a harmonic potential.~In fact, for the
classical solutions,bn is readily absorbed intoqn , but this
makes a difference to the local densities considered bel!
We initially consider a finite numberN of particles but we
also consider the case ofN infinite.

The equations of motion are

mq̈n1K~qn2bn!5n2~qn1122qn1qn21! ~25!

where we takeqN115q1. This system has been discuss
and solved in many places. A particularly useful referen
for the case of an infinite chain is the treatment by Hue
and Robertson@21,22#. ~See also Refs.@23–26#.! The solu-
tion may be found by introducing the normal modes,Qa ,

qn5bn1 (
a51

N
e2p ian/N

N1/2
Qa ~26!

which obey

Q̈a1va
2Qa50 ~27!

where

va5FK

m
1

4n2

m
sin2S pa

N D G1/2

. ~28!

The solution may be written

qn~ t !5bn1(
r 51

N F f r 2n~ t !qr~0!1
gr 2n~ t !

mV
pr~0!G ~29!
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where

f n~ t !5
1

N (
a51

N

e2p ian/Ncos~vat ! ~30!

gn~ t !

V
5

1

N (
a51

N

e2p ian/N
sin~vat !

va
. ~31!

Here,V25(K12n2)/m. The solution forpn(t) is given by

pn~ t !5mq̇n~ t !. ~32!

In the limit of an infinite number of particles the solutio
is

qn~ t !5bn1 (
r 52`

` F f r 2n~ t !qr~0!1
gr 2n~ t !

mV
pr~0!G .

~33!

For the simple chain,K50, the solution is then given in
terms of Bessel functions@21#, and we have

f r~ t !5J2r~2vt ! ~34!

wherev25n2/m, and

gr~ t !5VE
0

t

dt8J2r~2vt8!. ~35!

The appearance of the time integral in the expression
gr(t) is in fact related to the motion of the center of mass
the whole chain, which is not of interest for our conside
ations.~We imagine the whole system is contained someh
so that there is no wave packet spreading.! It also somewhat
obscures the discussion of correlations, which is the m
thing we are interested in. The relevant behavior ingr(t) is
best exhibited in terms of the difference variables,gr 11
2gr . Using a simple recurrence relation for the Bessel fu
tions, these are given by

gr 11~ t !2gr~ t !522VJ2r 11~2vt !. ~36!

We will discuss this in more detail below.
For the bound chain,KÞ0, it is most useful to work in

the regime in which the interaction between particles is mu
weaker than the binding to their origins, son2!K. In this
case, the solution then is@21#,

f r~ t !'Jr~gVt !cos~Vt2pr /2! ~37!

and

gr~ t !'Jr~gVt !sin~Vt2pr /2! ~38!

whereg5(v/V)2, sog!1.
The general behavior of the solutions in both cases

easily seen. The functionsf r 2n(t) andgr 2n(t) loosely rep-
resent the manner in which an initial disturbance of particlr
affects particlen after a timet, and is given in both the bound
8-5
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J. J. HALLIWELL PHYSICAL REVIEW D 68, 025018 ~2003!
and unbound case by the properties of Bessel functions.
call the following forms of the Bessel functions@27#. For
small arguments we have

Jn~x!5S x

2D nS 1

G~n11!
2

~x/2!2

2!G~n13!
1••• D . ~39!

@This is for n.0. For n,0 we useJ2n(x)5(21)nJn(x).#
For large arguments we have the asymptotic form

Jn~x!;S 2

pxD 1/2

cos~x2pn/22p/4!. ~40!

Hence the Bessel functions start out at zero@except forn
50, whereJ0(0)51], grow exponentially, and then go int
a slowly decaying oscillation. For largen and fixedx we
have

Jn~x!;~2pn!21/2S ex

2nD n

. ~41!

A point not immediately obvious from these standa
asymptotic forms, and which will turn out to be important,
that the different Bessel functions each go into their osci
tory regions at different values ofx. In particular, one can
estimate from the plots of the Bessel functions thatJn(x)
goes into its oscillatory regime whenx is of order n, by
which stageJn(x) is therefore of ordern21/2. In terms of the
behavior of the chain, this means that distant pairs of p
ticles never come to influence each other very much, e
after long periods of time: at short times, particles separa
by n have exponentially suppressed correlation, similar
xn/n! and at long times, their correlations are also su
pressed, similar ton21/2. This particular aspect turns out t
be crucial for our purposes.

Another important observation is that in the oscillato
regime, the Bessel functionJn(x) has only a very limited
dependence onn, namely it has the form~40! for somen,
plus the three possible phase shifts ofp/2. The significance
of this for the chain is that when the functionsf r 2n(t) and
gr 2n(t) have entered the oscillatory regime, the conditions
particles r and n and everywhere in between are appro
mately the same. This feature is clearly relevant to the
proach to local equilibrium.

B. Correlation functions

As described in Sec. II, we are interested in the time
velopment of eigenstates of the local densities, and this b
down to the behavior of the various correlation functions
the system. We define the correlation function

s~A,B!5
1

2
^AB1BA&2^A&^B&. ~42!

Because the system is linear the classical solutions desc
above may be used to discuss the solutions in the Heisen
picture in the quantum case. In fact, the only quantum c
culations in this paper have essentially been done alread
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Sec. II, and the remaining analysis is essentially the sam
for a classical stochastic system.

For simplicity, we will concentrate on Gaussian initi
states~which will of course remain Gaussian, because th
system is linear!, although these will be sufficient for ou
purposes. The variances of these Gaussians are restricte
the requirement that the state is pure.~They are also of
course restricted by the uncertainty principle.! We will con-
sider two different types of Gaussian initial states which c
be approximate eigenstates of the local densities. The
type we consider are product states, so have no initial co
lations between different particles. The second type are
coherent states of the normal modes, and are naturally
gested by the normal mode decomposition~26!. We will see
in the next section that these are eigenstates of the l
densities as long as the correlation functions remain su
ciently small.

1. Normal mode coherent states

Taking the second type first, we therefore consider the
of Gaussian states which have

s~Qa ,Qb* !5
\

2mva
dab ~43!

s~Ka ,Kb* !5
1

2
\mvadab ~44!

s~Qa ,Kb!50 ~45!

whereKa is the momentum conjugate toQa and note that
Qa* 5Q2a . Because these are the coherent states of the
monic oscillator, these correlation functions all remain of th
form under time evolution, and the only time development
the states is in terms of their centers,Qa(t), Ka(t), which
follow the classical equations of motion. For the case of
simple chain,K50, we haveva50 whena5N. This cor-
responds to the center of mass of the whole chain, and
be quite simply omitted.

In terms of the original coordinatesqn and pn , we have
the correlation functions

s~qn ,qm!5
1

N (
a51

N
\

2mva
e2p ia(n2m)/N ~46!

s~pn ,pm!5
1

N (
a51

N
1

2
\mvae2p ia(n2m)/N ~47!

s~qn ,pm!50. ~48!

These correlation functions are constant in time, and
feature makes this case a useful one to study. Also notice
(Dqn)2 and (Dpn)2 are independent ofn. The correlation
functions will typically decay very rapidly with increasin
un2mu, since they are sums of rapidly oscillating terms. Th
is especially true in the caseKÞ0 with K@n2, since then
8-6
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va , Eq. ~28!, is a constant to leading order.~We will see a
similar effect in more detail in the next subsection.! In the
caseK50, we have

va5
2n

m1/2
sinS pa

N D . ~49!

The correlation functions(pn ,pm) clearly still decays for
large un2mu, but this is less obvious fors(qn ,qm), Eq.
~46!, because the denominator becomes very small clos
a5N. However, if we eliminate by hand a small cluster
modes close toa5N, we get satisfactory decay propertie
for this correlation function, and we will assume that this h
been done.

2. Uncorrelated initial states for the infinite chain

We now consider uncorrelated initial states for the infin
chain, so the correlation functionss(qn ,qm), s(qn ,pm) and
s(pn ,pm) all vanish at the initial time fornÞm. We are
then interested in the behavior of these three types of co
lation functions at later times.

From the solution~33!, with the assumption of no initia
correlation between the particles, we have

s@qn~ t !,qm~ t !#5(
r

S f r 2n~ t ! f r 2m~ t !~Dqr !
2

1
1

m2V2
gr 2n~ t !gr 2m~ t !~Dpr !

2

1
1

mV
@ f r 2n~ t !gr 2m~ t !

1 f r 2m~ t !gr 2n~ t !#s~qr ,pr !D ~50!

and similarly fors@qn(t),pm(t)# ands@pn(t),pm(t)#. These
expressions simplify if we make the further assumption t
the initial values of (Dqr)

2, (Dpr)
2 ands(qr ,pr) are inde-

pendent ofr ~we will show below how to go beyond thi
assumption!. In this case we obtain

s@qn~ t !,qm~ t !#5anm~ t !~Dq!212enm~ t !s~q,p!1dnm~ t !

3~Dp!2 ~51!

s@qn~ t !,pm~ t !#5bnm~ t !~Dq!21@anm~ t !1knm~ t !#s~q,p!

1enm~ t !~Dp!2 ~52!

s@pn~ t !,pm~ t !#5cnm~ t !~Dq!212bnm~ t !s~q,p!1anm~ t !

3~Dp!2 ~53!

where

anm~ t !5(
r

f r 2n~ t ! f r 2m~ t ! ~54!
02501
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bnm~ t !5m(
r

f r 2n~ t ! ḟ r 2m~ t ! ~55!

cnm~ t !5m2(
r

ḟ r 2n~ t ! ḟ r 2m~ t ! ~56!

dnm~ t !5
1

m2V2 (
r

gr 2n~ t !gr 2m~ t !

~57!

enm~ t !5
1

mV2 (
r

gr 2n~ t !ġr 2m~ t !

~58!

knm~ t !5
1

V (
r

ḟ r 2n~ t !gr 2n~ t !. ~59!

Since the coefficientsf n(t) andgn(t) are all given by Besse
functions, these expressions can be evaluated using the
lowing Bessel function addition theorem:

Jn~2x!5 (
k52`

`

Jn2k~x!Jk~x!. ~60!

For the bound chain,KÞ0, the coefficients are@21#,

2anm~ t !5dnm1Jn2m~2gVt !cosF2Vt2
1

2
~n2m!pG

~61!

2bnm~ t !52mVJn2m~2gVt !sinF2Vt2
1

2
~n2m!pG

~62!

2cnm~ t !5~mV!2dnm2~mV!2Jn2m~2gVt !

3cosF2Vt2
1

2
~n2m!pG ~63!

dnm~ t !5~mV!24cnm~ t ! ~64!

enm~ t !52~mV!22bnm~ t ! ~65!

knm~ t !52~mV!22cnm~ t !. ~66!

All of these coefficients, and hence all of the correlati
functions, decay exponentially for largeun2mu. Further-
more, in the limitt→` we have

s@qn~ t !,qm~ t !#→ 1

2
dnmS ~Dq!21

1

m2V2
~Dp!2D ~67!

s@qn~ t !,pm~ t !#→0, ~68!

s@pn~ t !,pm~ t !#→ 1

2
dnm@m2V2~Dq!21~Dp!2#. ~69!
8-7
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We also find that̂ qn(t)&→bn and^pn(t)&→0 ast→`. We
thus obtain an equilibrium distribution, since the correspo
ing phase space distribution function for the whole chain

w5)
n

expS 2
1

kT F pn
2

2m
1

1

2
mV2~qn2bn!2G D ~70!

where we identify the temperature as

kT5
1

2m
@m2V2~Dq!21~Dp!2#. ~71!

For the simple chain,K50, we have@21#,

2anm~ t !5dnm1J2n22m~4vt ! ~72!

2bnm~ t !5mv@J2n22m21~4vt !2J2n22m11~4vt !#
~73!

2cnm~ t !5~mv!2@J2n22m12~4vt !1J2n22m22~4vt !

22J2n22m~4vt ! ~74!

2dn,m212dn,m1112dnm] ~75!

dnm~ t !5
t

2vm2 F E
0

4vt

J0~y!dy2J1~4vt !G
2

1

~2vm!2 (
j 51

un2mu E
0

4vt

J2 j 21~y!dy ~76!

enm~ t !5
1

4vmE
0

4vt

J2n22m~y!dy. ~77!

@The explicit form ofknm(t) is not required.# The first three
of these coefficients, as in the bound case, are exponen
suppressed for largeun2mu. This means that the behavior o
the correlations@pn(t),pm(t)#, which depends only on thes
three coefficients, has the expected behavior, but the o
correlation functions do not have this property. In particu
from the behavior ofs@qn(t),qm(t)#, the whole chain ap-
pears to become highly correlated. In the long-time limit,
find

s@qn~ t !,qm~ t !#→ 1

2
dnm~Dq!21

t

2vm2
~Dp!2 ~78!

s@qn~ t !,pm~ t !#→ 1

4vm
~Dp!2 ~79!

s@pn~ t !,pm~ t !#→ 1

2
~mv!2@2dnm2dn,m212dn,m11#

3~Dq!21
1

2
dnm~Dp!2 ~80!
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@where for simplicity we have takens(qn ,pn)50 initially#.
This is not an equilibrium distribution, and the behavior
@Dqn(t)#2 at late times indicates diffusive behavior.

This growth of correlations and variances is essentia
unphysical, since any realistic system is contained in so
way, so the spreading cannot proceed beyond the size o
container~and indeed there is no such effect in theKÞ0
case!. It is, however, difficult to factor out this unphysica
effect in a convenient way. The long-time limits of Ref.@21#,
which we have followed closely, are dominated by th
spreading effect in theK50 case. In an attempt to unde
stand this, the authors of Ref.@21# considered a different se
of models in Ref.@22#, in which the chain was fixed at on
end. This avoided the diffusive growth encountered abo
but still led to significant correlations between all particl
on the chain in the long-time limit. This in turn spoils th
desired behavior of the local densities, discussed below.
upshot of this is that it is not possible to prove decohere
of the local densities in the case of the infinite chain w
K50.

There are two simple ways in which the above results
easily generalized. First of all, note that although we
focusing on Gaussian initial states, expressions for the
relation functions such as Eq.~50! are in fact valid forany
initial state, because of the linearity of the dynamics.

Secondly, in deriving Eqs.~51!–~53!, we assumed that the
initial variances are independent ofr. This assumption was
necessary in order to be able to apply the Bessel func
addition theorem~60!, and thereby obtain explicit expres
sions for the coefficients,anm , bnm etc. This is too restric-
tive, since it means that certain hydrodynamic variab
@such as temperature, which depends on (Dpr)

2], are obliged
to be constant along the chain. One can see, however,
these results easily extend to the case in which the in
variances (Dqr)

2, (Dpr)
2 ands(qr ,pr) have a slow depen

dence onr along the chain. The point is that because of t
decay of the functionsf n2r , gn2r for large un2r u, the sum
over r in Eq. ~50! is effectively restricted to a finite range
namely, over the~actually quite small! range for which sig-
nificant correlations exist. As long as the initial varianc
vary significantly withr only on a range larger than the co
relation range, then the calculation of correlation functions
effectively equivalent to the case in which the variances
completely independent ofr. This means that in place of Eq
~51!, for example, we get the more general result

s@qn~ t !,qm~ t !#'anm~ t !~Dqr !
212enm~ t !s~qr ,pr !1dnm~ t !

3~Dpr !
2 ~81!

where r on the right-hand side is taken to be mid-way b
tweenn andm, and forn5m we get

@Dqn~ t !#2'ann~ t !~Dqn!212enn~ t !s~qn ,pn!1dnn~ t !

3~Dpn!2. ~82!

This simple observation is important for obtaining interesti
hydrodynamic equations because it allows for the possib
8-8
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of the system tending towardslocal equilibrium, rather than
equilibrium of the whole chain.

IV. COARSE GRAINING BY CHAIN SUBSECTIONS

Although we are ultimately interested in the local den
ties for the chain variables, we will first consider some si
pler variables whose analysis is highly instructive. Name
we take the variables of interest to be the total momentum
a subsection of the chain containingM particles, so we define

PM5 (
n51

M

pn ~83!

whereM!N. This is not quite the same as a locally co
served quantity, but it is very similar, since, for the simp
chain, the total momentum is conserved. ThereforePM is an
exactly conserved quantity whenM5N, and otherwise we
might expect it to be approximately conserved.

As outlined in Sec. II, to show that these variables
approximately decoherent, we need to show that initial sta
satisfying the condition

~DPM !2

^PM&2
!1 ~84!

will continue to satisfy it under time evolution, hence th
initial state remains an approximate eigenstate. We have

~DPM !25 (
n51

M

(
m51

M

s~pn ,pm! ~85!

and

^PM&25(
n,m

M

^pn&^pm&. ~86!

We take the case in which the initial correlations are zero
the initial variances are the same all along the chain, and
also take the initial value ofs(q,p) to be zero. We thus
obtain

@DPM~ t !#25CM~Dq!21AM~Dp!2 ~87!

where

AM~ t !5 (
n51

M

(
m51

M

anm~ t ! ~88!

CM~ t !5 (
n51

M

(
m51

M

cnm~ t ! ~89!

and the coefficientsanm(t) and cnm(t) are given by Eqs.
~72!,~74!. The two terms on the right are very similar, so f
simplicity will will concentrate on the second one.~Note also
that these terms do not suffer from the spreading prob
discussed in the previous section. This is an advantag
working with momenta, rather than positions.! From the ex-
pression~72!, we have
02501
-
-
,
in

e
es

d
e

m
of

AM~ t !5
1

2 (
n51

M

(
m51

M

J2n22m~4vt ! ~90!

~where we have assumed thatN is sufficiently large that it is
effectively equivalent to theN→` case!. Our aim is now to
show thatAM!M2 for all times, for then the condition~84!
will be satisfied.

The expression forAM cannot be evaluated exactly, but i
properties may be seen from the asymptotic forms of
Bessel functions~39!,~40!. For small times, when the Bess
functions are all in the exponential regime,J2n22m is expo-
nentially suppressed for largeun2mu. For larger times, the
Bessel functions start to go into their oscillatory form, whe
they are already small. Furthermore, because in the osc
tory regime they depend onn2m only through a simple
phase, most of the terms in the sum overn andm cancel out.
Proceeding along these lines one can see thatAM will not
come anywhere close toM2 except for small values ofM.
These features are easily confirmed by plottingAM(t) for
different values ofM. For example, withM55, AM(t)
quickly decays to a value of about 0.1, clearly much le
thanM2525, thereafter going into a slowly decaying osc
lation. As we shall see, the variances of the local densi
differ from the momentum of a chain subsection in that th
are more complicated functions of the correlation functio
for Gaussian states, but the physical understanding of t
behavior is essentially the same, which is why this sim
example is instructive.

V. DECOHERENCE OF LOCAL DENSITIES

We now come to the main point of this paper, which is
examiner the behavior of the local densities for the oscilla
chain. They are

n~x!5 (
n51

N

d~qn2x! ~91!

g~x!5 (
n51

N

pnd~qn2x! ~92!

h~x!5 (
n51

N F pn
2

2m
1

n2

2
~qn2qn21!2

1
1

2
K~qn2bn!2Gd~qn2x!. ~93!

Again it will often be very useful to work with the Fourie
transformed local densities,

n~k!5 (
n51

N

eikqn ~94!

g~k!5 (
n51

N

pneikqn ~95!
8-9
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h~k!5 (
n51

N F pn
2

2m
1

n2

2
~qn2qn21!21

1

2
K~qn2bn!2Geikqn.

~96!

The local number and local energy density are locally c
served. The local momentum density is locally conserv
only for the case of the simple chain,K50.

We consider states which are approximate eigenstate
the local densities. We will use Gaussian initial states,
we expect that these will be approximate eigenstates of
local densities if we choose the correlation functio
s(qn ,qm), s(qn ,pm) and s(pn ,pm) to be zero, or at leas
sufficiently small, fornÞm.

For the Gaussian states we consider here, the comput
of variances of the local densities is facilitated by the ide
tity,

K expS i(
n

@an~qn2^qn&!1bn~pn2^pn&!# D L ~97!

5expS 2(
n j

F1

2
ana js~qn ,qj !1anb js~qn ,pj !

1
1

2
bnb js~pn ,pj !G D . ~98!

All of the variances of interest will therefore be functions
the three basic types of correlation functionss(qn ,qm),
s(qn ,pm) and s(pn ,pm) discussed in Sec. III, and th
physical discussion will in fact be very closely related to th
of the simple case discussed in Sec. IV. Actually, the form
~98! also holds to quadratic order inan andbn for anystate,
so the results derived below on the basis of Gaussian s
will be valid for arbitrary states for smallk.

We consider first the Fourier transformed number den
n(k). In a general Gaussian state, we have

^n~k!&5(
j 51

N

^eikqj&5(
j 51

N

expS ik^qj&2
1

2
k2~Dqj !

2D
~99!

and

@Dn~k!#25^n†~k!n~k!&2u^n~k!&u2

5(
j 51

N

(
n51

N

^eikqj&^e2 ikqn&~ek2s(qj ,qn)21!.

~100!

The latter is to be compared with

u^n~k!&u25(
j 51

N

(
n51

N

^eikqj&^e2 ikqn&. ~101!

With an initially uncorrelated state we haves(qj ,qn)50 for
j Þn and we see that
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@Dn~k!#25(
j

u^eikqj&u2~ek2(Dqj )
2
21!. ~102!

From this we expect that

~Dn~k!!2!u^n~k!&u2 ~103!

as long ask21 does not probe on scales that are too sh
~compared toDqj ), so the state is an approximate eigensta

When there are correlations, as will arise over time,
expect that the state will still be an approximate eigens
on lengthscalesk21 which are much greater than the lengt
scale of correlation. Ask increases from zero we have

~Dn~k!!2

u^n~k!&u2 ;
k2~DX!2

N2 ~104!

whereX5( jqj ~the center of mass coordinate of the who
chain!. This will be very small as long ask21 is much larger
than the typical lengthscale of a single particle.@Dn(k)#2

starts to grow very rapidly withk, and Eq.~103! is no longer
valid, when k21 becomes less than the correlation leng
indicated bys(qj ,qn). Hence the state is strongly peake
about the mean as long as the coarse graining lengths
k21 remains much greater than the correlation length of
local density eigenstates.

Consider now the local momentum density. We have

^g~k!&5(
j

@^pj&1 iks~qj ,pj !#expS ik^qj&2
1

2
k2~Dqj !

2D
~105!

and at some length, we find

@Dg~k!#25(
jn

^eikqj&^e2 ikqn&~Ajn1Bjn1Cjn!

~106!

where

Ajn5s~pj ,pn!ek2s(qj ,qn) ~107!

Bjn5@^pn&2 iks~qn2qj ,pn!#@^pj&1 iks~qj2qn ,pj !#

3~ek2s(qj ,qn)21! ~108!

Cjn52 ik@^pn&2 iks~qn ,pn!#2 ik@^pj&1 iks~qj ,pj !#

1k2s~qj ,pn!s~qn ,pj !. ~109!

We require@Dg(k)#2 to be small in comparison to

u^g~k!&u25(
jn

^eikqj&^e2 ikqn&@^pj&^pn&1 ik^pn&s~qj ,pj !

2 ik^pj&s~qn ,pn!1k2s~qj ,pj !s~qn ,pn!#.

~110!

Despite the complexity of these terms the interpretation
reasonably simple. Ask→0,
8-10
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@Dg~k!#2

u^g~k!&u2
→~DP!2

^P&2
~111!

where P5( j pj is the total momentum, and it is easy
confirm that this is small~typically order 1/N) for the states
we are using. Ask increases from zero,@Dg(k)#2 will grow,
and will potentially contain of orderN2 terms, the same a
u^g(k)&u2. By inspecting the three terms Eqs.~107!–~110!,
however, one can see that each of them are prevented
generating orderN2 terms as long as, respectively, the co
relation functionss(pj ,pn), s(qj ,qn) and s(qj ,pn) are
suppressed forj Þn. As in the case of the number densit
(Dg(k))2/u^g(k)&u2 will start to grow appreciably ask21

approaches the lengthscale indicated bys(qj ,qn).
Consider now the energy density. The computation

@Dh(k)#2 is rather complicated, but since we are consider
Gaussian states, the final conditions on the correlation fu
tions will be very similar to those on the variance of t
momentum density considered above, so we will not ca
out the computation explicitly. Instead, we consider a simp
special case. Take the case where each oscillator is fixe
an origin atbj , and suppose that the binding to it is so stro
that each particle is well localized aroundbj . Then the inte-
gral over a volume of the energy densityh(x) is then ap-
proximately equivalent to taking a coarse graining consist
of the energy contained in a chain subsection, similar to S
IV. We therefore consider the variable

hM5(
j 51

M

hj ~112!

where

hj5
pj

2

2m
1

1

2
Kqj

2 ~113!

~neglecting the interaction term!. Following the general dis-
cussion of Sec. II, we will have (DhM)2!^hM&2 provided
that

(
jn

s~hj ,hn!!^hM&2 ~114!

so the left-hand side must be much smaller than orderM2.
The correlation functions(hj ,hn) is constructed from terms
like s(qj

2 ,qn
2) and similar functions, and we have

s~qj
2 ,qn

2!52s~qj ,qn!2 ~115!

~recalling that̂ qj&'bj since the particles are tightly bound!.
The discussion is then very similar to the case of Sec.
with essentially the same result, which is that the state is
approximate eigenstate as long asM@1.

We have now shown that Gaussian states will be appr
mate eigenstates of the local densities fork sufficiently small
compared to the correlation length determine bys(qj ,qn),
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and provided also that the other correlation functio
s(qj ,pn) and s(pj ,pn) are small for j Þn. ~These results
also hold for non-Gaussian states for smallk.! The results of
Sec. II show that all the correlation functions~excluding the
infinite chain in theK50 case! have the desired propertie
for all time. This proves the desired result that initial eige
states of the local densities remain approximate eigenst
under time evolution, for sufficiently smallk.

VI. HYDRODYNAMIC EQUATIONS
FOR THE LOCAL DENSITIES

We have shown in a variety of circumstances that eig
states of local densities are approximately preserved in f
under time evolution, on sufficiently coarse-grained sca
and therefore superpositions of them define decoherent
of histories. We may now therefore look at the diagonal e
ments of the decoherence functional, representing proba
ties for histories of these variables. These probabilities
peaked about the average values of the local densities, a
aged in the approximate eigenstates we have been cons
ing. ~This is reasonably obvious, but a more detailed pro
appears in the appendix of Ref.@15#.! We will now show that
these average values obey hydrodynamic equations.

A. Local conservation equations

The local densities satisfy the local conservation laws

ṅ~x!52
1

m

]g

]x
~116!

ġ~x!52
]t

]x
2Kxn~x!1K(

j
bjd~qj2x! ~117!

ḣ~x!52
] j

]x
. ~118!

They are actually more usefully written in momentum spa

ṅ~k!5
ik

m
g~k! ~119!

ġ~k!5 ikt~k!2K(
j

~qj2bj !e
ikqj ~120!

ḣ~k!5 ik j ~k! ~121!

where the currentst(k) and j (k) are given by

t~k!5(
j

pj
2

m
eikqj1n2(

j
qj

~eikqj 2122eikqj1eikqj 11!

ik
~122!
8-11
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j ~k!5(
j

pj

m S pj
2

2m
1

1

2
K~qj2bj !

21
1

2
n2~qj2qj 21!2Deikqj

~123!

1n2(
j

pj

m
~qj 112qj !

~eikqj2eikqj 11!

ik
. ~124!

~These are clearly finite ask→0.! These currents are rathe
complicated in configuration space, except in the case wh
we neglect the interaction term, when they are given by

t~x!5(
j

pj
2

m
d~qj2x! ~125!

j ~x!5(
j

pj

m S pj
2

2m
1

1

2
K~qj2bj !

2D d~qj2x!.

~126!

Equations~116!–~118! do not in general form a close
system, so do not lead to hydrodynamic equations. To g
closed set, it is necessary to average these equations in
of states depending on just three fields, thereby obtain
three equations for three unknowns. In the standard appro
to deriving hydrodynamics, the local equilibrium state
chosen. We will discuss this below in Sec. VI C, but first w
consider the simpler and instructive case of the normal m
coherent states.

B. Hydrodynamic equations in the case of normal mode
coherent states

We consider the simple chain,K50, in the normal mode
coherent states. As we have shown, these states are str
peaked in the local densities so such states define a dec
ent set of histories. The correlations functions of these st
are constant in time, so we do not expect a settling down
local equilibrium. However, it turns out that the averages
the local densities still obey a simple set of hydrodynam
equations, and this case turns out to be particularly trans
ent and instructive. Because the only dynamics in this cas
contained in the motion of the centers^qj&,^pj&, we need
consider only the local number and momentum densities,
the energy density~which may in fact be calculated from th
number and momentum densities in this case!. Closure of the
averaged conservation equations~119!,~120! is obtained in
this case because there are two equations and the state
pend on just two sets of quantities, the^qj& and the^pj&.

In a general Gaussian state we have

^n~k!&5(
j

expS ik^qj&2
1

2
k2~Dqj !

2D ~127!

^g~k!&5(
j

@^pj&1 iks~qj ,pj !#

3expS ik^qj&2
1

2
k2~Dqj !

2D ~128!
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^t~k!&5(
j

F 1

m
~^pj&1 iks~qj ,pj !!21CG

3expS ik^qj&2
1

2
k2~Dqj !

2D
1

n2

ik (
j

~^qj 11&22^qj&

1^qj 21&!expS ik^qj&2
1

2
k2~Dqj !

2D ~129!

where

Cj5
1

m
~Dpj !

21n2@s~qj 11 ,qj !22~Dqj !
21s~qj ,qj 21!#.

~130!

Now recall that the normal mode coherent states have
following special simplifying features:s(qj ,pj )50, and the
variances (Dqj )

2,(Dpj )
2 and correlation functions of the

form s(qj 11 ,qj ) are independent ofj. Also, we find that
Cj50 @which follows from taking the time derivative o
s(qj ,pj )50]. We therefore have

^n~k!&5(
j

expS ik^qj&2
1

2
k2~Dq!2D ~131!

^g~k!&5(
j

^pj&expS ik^qj&2
1

2
k2~Dq!2D ~132!

^t~k!&5tp~k!1tq~k! ~133!

where

tp~k!5(
j

1

m
^pj&

2expS ik^qj&2
1

2
k2~Dq!2D ~134!

tq~k!5
n2

ik (
j

~^qj 11&22^qj&1^qj 21&!

3expS ik^qj&2
1

2
k2~Dq!2D . ~135!

Generally, we do not expect to derive interesting hydrod
namic equations except in the long wavelength regim
Clearly in this case, this meansk22@(Dq)2. Going to this
regime ~whose significance will become apparent below!,
and reverting back to configuration space, we find

^n~x!&5(
j

d~^qj&2x! ~136!

^g~x!&5(
j

^pj&d~^qj&2x! ~137!

tp~x!5(
j

1

m
^pj&

2d~^qj&2x!. ~138!
8-12
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The quantitytq(x) is more complicated and will be dea
with below. In these expressions, since we are in the lo
wavelength regime, thed-functions are to be thought of a
smeared over a volume greater thanDq.

It is now very useful to introduce the velocity fieldv(x),
defined via

^pj&5mv~^qj&!5E dymv~y!d~^qj&2y! ~139!

which inserted in Eq.~137! yields

^g~x!&5mv~x!^n~x!&. ~140!

~This is in fact the standard relation between the veloc
field and the momentum density@11#.! Inserted also in Eq.
~138! we obtain

tp~x!5mv2~x!^n~x!&. ~141!

It is for deriving these last two equations that the long wa
length assumption is necessary. Most importantly,tp(x) is
expressed in terms of the two fieldsv(x),^n(x)&, which is
crucial for closure of the equations.

We need now to obtain a similarly simple expression
tq(x)&. As it stands, Eq.~135! will not lead to a simple
expression in terms ofv(x) and ^n(x)&. To proceed further
with this term we need to make simplifications. We are u
mately interested in deriving a wave equation for the num
density~which one might expect on the basis of the classi
equations of motion for theqj ). The key to this is to conside
small displacements of theqj about uniformly distributed
initial values, and then to consider the fluctuation in num
density about the constant background. We therefore wr

^qj&5 jd1dqj ~142!

whered is a constant representing the spacing between e
particle anddqj is a small displacement. The average nu
ber density fork22@(Dq)2 and to linear order indqj is then

^n~k!&5(
j

eik^qj & ~143!

5n0~k!1n1~k!1••• ~144!

where

n0~k!5(
j

eik jd ~145!

n1~k!5 ik( dqje
ik jd ~146!

and note thatn0(k) is constant. Inserted in the expression f
tq(k), Eq. ~135!, and assuming also thatk21@d, we find

tq~k!5d2n2n1~k!. ~147!

This now means that in configuration space we have
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^t~x!&5mv2~x!^n~x!&1d2n2n1~x!. ~148!

Inserting all of these results in the local conservati
equations~116!,~117!, we obtain a closed set of equations f
v(x) and ^n(x)&5n0(x)1n1(x) where

n0~x!5(
j

d~x2 jd ! ~149!

is a fixed background field~again interpreted as coars
grained over a length of orderDq). Explicitly, we have

]

]t
^n&52

]

]x
~^n&v ! ~150!

]

]t
~^n&v !52

]

]x S ^n&v21
d2n2

m
n1D . ~151!

The interesting special case is that in which the velocity fi
is small, in which case we may neglect thev2 term in Eq.
~151!. Then combining the two equations yields the wa
equation forn1(x),

]2n1

]t2
5c2

]2n1

]x2
~152!

wherec25d2n2/m.

C. Local equilibrium and hydrodynamic equations
for the KÅ0 case

We now consider the case of the infinite chain withK
Þ0. In this case, we expect that the local density eigenst
will settle down to a local equilibrium state after a period
time. We will justify this important step below, but first w
consider the consequences of a local equilibrium state,
standard assumption in derivations of hydrodynamics. T
state is characterized by the one-particle distribution funct
~Wigner function!

wj~pj ,qj !5 f ~qj !expS 2
@pj2mv~qj !#

2

2mkT~qj !
D ~153!

wheref, v andT are slowly varying functions of space an
time. ~This is the one-particle distribution function for pa
ticle j —it is labeled byj since the particles are distinguish
able.! If we now average the system Eqs.~116!–~118!, to-
gether with the currentst(x), j (x) in the local equilibrium
state, we obtain a closed system, since we get three equa
for three unknowns. In the case of negligible interactions a
bj50, we find

^n~x!&5N f~x! ~154!

^g~x!&5mv~x!N f~x! ~155!

^h~x!&5S 1

2
mv21

1

2
kT1

1

2
Kx2DN f~x! ~156!

^t~x!&5~mv21kT!N f~x! ~157!
8-13
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^ j ~x!&5S 3

2
vkT1

1

2
mv3DN f~x!1

K

2m
x2^g~x!&.

~158!

Inserted in Eqs.~116!–~118!, the above relations give
closed set of equations for the three variablesf, v and T.
After some rearrangement, these equations are

] f

]t
1v

] f

]x
52 f

]v
]x

~159!

]v
]t

1v
]v
]x

52
1

m

]u

]x
2

u

m f

] f

]x
2

Kx

m
~160!

]u

]t
1v

]u

]x
522u

]v
]x

~161!

whereu5kT. These are the equations for a one-dimensio
fluid moving in a harmonic potential@11#. Note that non-
trivial equations are obtained even though we have negle
the interaction terms in deriving them. The role of intera
tions is to ensure the approach to local equilibrium, as
discuss below.

In these expressions, the definition of the velocity field
equivalent to Eq.~139! and, similarly, the definition of the
temperature fields is essentially equivalent to,

(
j

1

2m
~Dpj !

2d~qj2x!5
1

2
kT~x!n~x! ~162!

~recalling that we are working at long wavelengths, so
d function is coarse grained over a scale of orderk21).
Hence temperature arises not from an environment, but f
the momentum fluctuations averaged over a coarse-grai
volume.

D. The approach to local equilibrium

Now the key point is that the states we are actually int
ested in are the approximate eigenstates of the local de
ties, evolved in time, or more precisely, the one-particle d
tribution function w1 constructed from those states.~Since
w1 is the quantity that will enter in the computation of an
averages of sums of one-particle quantities, such as the
densities.! This is not necessarily the same as the local eq
librium distribution, Eq.~153!, although they are clearly ver
similar. The averages of the local densities in the appro
mate eigenstates will therefore obey the hydrodynamic eq
tions derived above as long as we can show that the o
particle distribution function of these statesw1 approaches
the local equilibrium form Eq.~153! after some time.

The local equilibrium form Eq.~153! has s(qj ,pj )50
and all the other averages^pj&, ^qj&, (Dqj )

2 and (Dpj )
2

vary slowly in time and space~i.e., slowly with j ). @Clearly
s(qj ,pj ) has to be zero or small for local equilibrium sinc
it is the time derivative of (Dqj )

2 and (Dpj )
2.] Compare this

with the approximate eigenstates for the caseKÞ0 and the
infinite chain. They are Gaussians, so their one-particle
tribution functionw1 is entirely determined bŷpj&, ^qj&,
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(Dqj )
2, (Dpj )

2 ands(qj ,pj ). From Eqs.~51!–~53!, we see
that s(qj ,pj ) grows initially from zero, but then become
small at late times, while (Dqj )

2 and (Dpj )
2 approach a

constant plus a slowly decaying factor. Moreover, (Dqj )
2

and (Dpj )
2 depend onj only through their initial values,

which as discussed@see Eq.~82! for example#, vary slowly.
In addition, the centerŝqj (t)& and^pj (t)& go into a phase of
slow time dependence and limited dependence onj for times
sufficiently long for the Bessel functions to go into the
oscillatory phases. These asymptotic forms are approac
on a time scale (gV)21. Therefore, in this case, the loca
equilibrium form is indeed achieved at late times, and
average values of the local densities obey hydrodyna
equations.

The final picture we have is as follows. We can imagi
an initial state for the system which contains superpositi
of macroscopically very distinct states. Decoherence of h
tories indicates that these states may be treated separ
and we thus obtain a set of trajectories which may be
garded as exclusive alternatives each occurring with so
probability. Those probabilities are peaked about the aver
values of the local densities. We have argued that each l
density eigenstate may then tend to local equilibrium, an
set of hydrodynamic equations for the average values of
local densities then follow. We thus obtain a statistical e
semble of trajectories, each of which obeys hydrodynam
equations. These equations could be very different from
trajectory to the next, having, for example, significantly d
ferent values of temperature.~In the most general case the
could even be in different phases, for example one a gas,
a liquid.!

Decoherence requires the coarse-graining scalek21 to be
much greater than the correlation length of the local den
eigenstates, and the derivation of the hydrodynamic eq
tions requiresk22@(Dq)2. In brief, the emergence of th
classical domain occurs on length scales much greater
any of the scales set by the microscopic dynamics.

VII. SUMMARY AND DISCUSSION

We have shown that for the linear oscillator chain t
local densities define a decoherent set of histories of su
ciently coarse-grained scales. The key idea is to split
initial state into local density eigenstates and show that t
are preserved in form under time evolution. The subsequ
probabilities for histories are peaked about the average
ues of the local densities, and the equations of motion
them form a closed set of hydrodynamic form on sufficien
large scales, provided, in general, that sufficient time
elapsed for the local density eigenstates to settle down
local equilibrium.

It is perhaps of interest to comment on the time sca
involved. Decoherence through interaction with an enviro
ment involves a time scale, which is typically exceptiona
short. Here, however, there is no time scale associated
decoherence by approximate conservation. The eigens
of the local densities remain approximate eigenstates fo
time. There is, however, a time scale involved in obtaini
the hydrodynamic equations, namely, the time required fo
8-14
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local density eigenstate to approach local equilibrium. In t
model, this time scale is of order (gV)21 ~for the infinite
chain in theKÞ0 case!.

Another interesting general issue is the question of
relative roles of the decoherence through approximate c
servation considered here versus decoherence through
action with an environment. The point is that it is a quest
of length scales. We have demonstrated decoherence o
local densities starting with exact conservation at the larg
length scales and then moving inwards. In this way we w
able to prove decoherence without using an environment
certain sets of histories at very coarse-grained scales w
probabilities are peaked about classical paths. Howeve
general we would like to be able to assign probabilities
nonclassical trajectories. For example, what is the probab
that a system will follow an approximately classical traje
tory at a series of times, but then at one particular time
dergoes a very large fluctuation away from the classical
jectory? The approach adopted here indicates that
probability for this is approximately zero, to the level
approximation used. Yet this is a valid question that we c
test experimentally. It is at this stage that an environm
becomes necessary to obtain decoherence, and indeed
frequently seen in particular models that when there is de
herence of histories due to an environment, decoherenc
obtained for a very wide variety of histories, not just hist
ries close to classical. It is essentially a question of inform
tion. Decoherence of histories means that information ab
the histories of the system is stored somewhere@5,28#. Clas-
sical histories need considerably less information to spe
than nonclassical ones, and indeed specification of the t
local densities at any time is sufficient to specify their ent
classical histories. This is not enough for nonclassical his
ries, so an environment is required to store the informati

Note also that ‘‘environment’’ need not necessarily re
to an external environment. It could also include the inter
coordinates not fixed by the coarse graining. These did
play a role in the case considered here, but would beco
important at finer-grained levels, producing fluctuatio
about the evolution described by the hydrodynamic eq
tions, hand in hand with decoherence. This has been con
ered in Refs.@4,13#.

Given the need for an environment at finer-grained sca
it is then of interest to ask whether the local densities c
tinue to have an important role for many-body systems w
an environment becomes necessary for decoherence. G
fyingly, the answer is that the local densities, and particula
the number density, remain the naturally preferred variab
for a many-body system coupled to an external environm
as was recently shown@29#. It is normally claimed that po-
sition is the preferred variable in environmentally induc
decoherence, but this is for a single particle coupled to
environment and is in any case an approximation. Fo
many-body system coupled to a scattering environment, w
both described by many-body field theory, it was shown
Ref. @29# that number density is the naturally decoheri
variable~with momentum density, as its time derivative, al
entering in a natural way!. Hence there is a smooth matc
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with environmentally induced decoherence models as we
to finer scales.

It would be of interest to generalize to an oscillator cha
with nonlinear interactions. This is because in the line
chain, the energy in each mode is conserved, so there i
possibility of exchanging energy between modes, and
approach to local equilibrium is rather artificial.

It would also be of particular interest to look at a ga
Many-body field theory may be the appropriate medium
which to investigate this, following the lead of Ref.@29#. The
decoherent histories analysis might confer some interes
advantages over conventional treatments. For example,
particle dynamics of a gas is described by a Boltzmann eq
tion. One of the assumptions involved in the derivation of t
Boltzmann equation is that the initial state of the syst
contains no correlations, which is clearly very restricti
@11#. However, in the general approach used here it is nat
to break up any arbitrary initial state into a superposition
local density eigenstates, and that these may then be tre
separately because of decoherence. The local density e
states typically have small or zero correlations. Hence, de
herence gives some justification for one of the rather rest
titve assumptions of the Boltzmann equation.

We have not estimated the degree of decoherence in
models considered here, although it could be estimated
looking more closely at the approximations involved in g
ing from exact to approximate decoherence, described
Sec. II. However, there may be a more rigorous~but more
difficult! way of proving the results of this paper, whic
would allow the degree of decoherence to be estimated. T
would be to prove a theorem similar to that proved
Omnès for phase space projectors@8#. For a system ofN
particles with phase space coordinatesz5(p,q), Omnès con-
sidered~approximate! projection operators onto a regionG
(@\) of phase space, defined by

PG5E
G
dNzuz&^zu ~163!

where the statesuz& are some form of phase space localiz
states, such as coherent states. He showed that under c
reasonable conditions, the form of this projector is appro
mately preserved under unitary evolution, that is,

e( i /\)HtPGe2( i /\)Ht'PG t
~164!

whereG t is the original phase space region evolved along
classical phase space trajectories. It is easy to see that
ensures approximate decoherence of coarse-grained p
space histories and that the probabilities are peaked a
classical phase space paths. The result is therefore very s
lar in spirit to the present paper. It seems very plausible t
a similar result may be proved here for projections onto lo
densities. That is, we would like to construct a set of proj
tors onto the local densities,Pngh say, and then show tha
they are approximately mapped intoPntgtht

under unitary

evolution, wherent ,gt ,ht are related to the initial value
n,g,h by a closed set of evolution equations. Such a resu
not simply obtained by a coarse graining of the Omne`s re-
8-15
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sult, the issue being thatnt ,gt ,ht have to evolve according
to a closedset of equations, which is not straightforward
accomplish in general.~The phase space coordinatesp,q
evolve according to the Hamilton equations, which is clea
a closed set of equations, but truncations or coarse grain
of this set will generally not be closed.! Moreover, the
Omnès result breaks down when the underlying classical
namics is chaotic. The corresponding hydrodynamic desc
tion, however, being coarser grained, will generally not
chaotic and does not obviously break down, so this is a
a-
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tential advantage of the hydrodynamic approach. These
related issues will be pursued in a future publication.
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