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Effective field theories on noncommutative space-time
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We consider Yang-Mills theories formulated on a noncommutative space-time described by a space-time
dependent antisymmetric fielé*"(x). Using Seiberg-Witten map techniques, we derive the leading order
operators for the effective field theories that take into account the effects of such a background field. These
effective theories are valid for a weakly noncommutative space-time. It is remarkable to note that already
simple models forg**(x) can help to loosen the bounds on space-time noncommutativity coming from low
energy physics. Noncommutative geometry formulated in our framework is a potential candidate for new
physics beyond the standard model.
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. INTRODUCTION - CUR- - XYY

3
In recent years, considerable progress towards a consis- R
tent formulation of field theories on noncommutative space- . . . ~
time has been made. The idea that space-time coordinatdd1€r€R are the relations defined in EQ). A is the algebra

might not commute at very short distances is nevertheles? formal power series in the coordinates subject to the rela-

not new and can be traced back to Heisenb&tgPauli[2], tions (1). We also need to introduce the concept o]‘ a star
and Snydef3]. A nice historical introduction to noncommu- Preduct. The Moyal-Weyl star produet[8] of two functions

tative coordinates is given if#]. At that time the main mo- f(X) @ndg(x) with (x),g(x) eR*, is defined by a formal
tivation was the hope that the introduction of a new fundaPOWer SEres expansion:
mental length scale could help to get rid of the divergencies i P
in quantum field theory. A more modern motivation to study (f*g)(x):exp< — g —

Jd
)f(X)g(y)

a space-time that satisfies the noncommutative relation 25 oxtay” y—rx
(k0 X=X —XRE=i 00, e (D) i ;
=f.-g+-56*"9,0-9,f+0(6). (4)

: L . . . 2 K

is that it implies an uncertainty relation for space-time coor-

dinates, Intuitively, the star product can be seen as an expansion of

1 the product in terms of the noncommutative parameter

AXFAXY= Elﬁ’”l, (20 The star product has the following property:

which is the analogue to the famous Heisenberg uncertainty f d4x(f*g)(x)=f d*x(g*f)(x)

relations for momentum and space coordinates. Note that

6*¥ is a dimensional full quantity, din®*”)=mass?. If

this mass scale is large enough” can be used as an ex- ZJ d*xf(x)g(x), 5
pansion parameter liké in quantum mechanics. We adopt

the usual convention: a variable or function with a hat is aas can be proven using partia| integrations_ This property is
noncommutative one. It should be noted that relations of thgisually called the trace property. Heféx) and g(x) are
type (1) also appear quite naturally in string theory modelsgrdinary functions ork*.

[5] or in models for quantum gravity6]. It should also be Two different approaches to noncommutative field theo-
clear that the canonical cag#) is not the most generic case ries can be found in the literature. The first one is a nonper-
and that other structures can be considered, see[€ldar turbative approactisee, e.g.[9] for a review, fields are

a review. considered to be Lie algebra valued, and it turns out that only

In orFier to consider field_theories on a noncommutativey(N) structure groups are conceivable because the commu-
space-time, we need to define the concept of noncommutaator

tive functions and fields. Noncommutative functions and

fields are defined as elements of the noncommutative algebra R S 2
’ [A*A1]= S {Aa00" RgO0} T2, )
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of two Lie algebra valued noncommutative gauge parametensroposed irf12—17 due to the expansion of the fields in the
A=Aa(x)Ta and A’ = AL(x)T? only closes in the Lie alge- noncommutative parameter via the Seiberg-Witten map. It is
bra if the gauge group under consideration isy@nd if the thus clear that the ob;ervables calculated W|th these Feyn-
gauge transformations are in the fundamental representatidRan rules would be different from those obtained[21].

of this group. But, this approach cannot be used to describblote that the two different approaches nevertheless yield the
particle physics since we know that SUY groups are re- Same observables if the diagrams involved only have on-
quired to describe the weak and strong interactions. Or aghell particles.

least there is no obvious way known to date to derive the Unfortunately it turns out that both approaches lead at the
standard model as a low energy effective action coming fronone loop level to operators that violate Lorentz invariance.
a U(N) group. Furthermore it turns out that even in thellJ  Although it is not clear how to renormalize these models,
case, charges are quantiZd®,11] and it is thus impossible these bounds might be the sign that noncommutative field
to describe quarks. The other approach has been developgtkories are in conflict with experiments. If these calculations
by Wess and his collaboratof42—19 (see also[16,17).  are taken seriously, one finds the boundd< 10 2° [22]

The goal of this approach is to consider field theories onsee alsd23]), whereA is the Pauli-Villars cutoff and is
noncommutative spaces as effective theories. The main dithe typical inverse squared scale for the matrix elements of
ference from the more conventional approach is to considefye matrixg“”. In view of this potentially serious problem, it
fields and gauge transformations which are not Lie algebrgy gegjraple to formulate noncommutative theories that can
valued but which are in the enveloping algebra, avoid the bounds coming from low energy physics. It should

A:Ag(x)Ta+A;b(x):TaTb: + A2, () TATOTS 4+ .- nevertheless be noted that the operators discusge@2jnof .

7 the typem,yo,,6*", are not generated by the theories
developed iN12—17 at tree level. On the other hand, the
whetre : : denotes some appropriate ordering of the Lie algeeperators generated by the Seiberg-Witten expansion are
bra generators. One can choose, for example, a symmetigompatible with the classical gauge invariance and with the
cally ordered basis of the enveloping algebra; one then hasoncommutative gauge invariance. It remains to be proven
:T2:=T2 and T3TP=3{T2 T°} and so on. The mapping be- that the operators discussed[22] are compatible with the
tween the noncommutative field theory and the effective fielchoncommutative gauge invariance. If this is not the case, as
theory on a usual commutative space-time is derived by relong as there are no anomalies in the theory, these operators
quiring that the theory be invariant under both noncommutacannot be physical and must be renormalized. It has been
tive gauge transformations and under the ugigidssical  shown that in the approach proposed 12—17, anomalies
commutative gauge transformations. These requirementwight be under contrd24]. There are, nevertheless, bounds
lead to differential equations whose solutions correspond t¢h the literature on the operatO&#VJFWsz which defini-
the Seiberg-Witten mafl8] that appeared originally in the tively appear at tree level. One finds the constrainic
context of String theory. It should be noted that the eXpanSiO@ 10 TeV for the scale where noncommutative physics be-
which is performed in that approach is in a sense trivial sinceome relevanf25]. This constraint comes again from experi-
it COI’I’eSpondS to a variable Change. But, it is well suited forments which are Searching for Lorentz Vio'ating effects.
a phenomenological approach since it generates in a con- |t js interesting to note that Snyder’s main point in his
structive way the |eadiﬂg order Operators that describe thgemina] pape[rs] was that noncommuting coordinates can be
noncommutative nature of space-time. It also makes cleagompatible with Lorentz invariance. But, despite some inter-
that, contrary to what one might expg@®,20, the coupling  esting proposalg26—28, it is still not clear how to construct
constants are not deformed, but the currents themselves age | orentz invariant gauge theory on a noncommutative
deformed. space-time.

We want to emphasize that the two approaches are funda- |t is not a surprise that theories formulated on a constant
mentally different and lead to fundamentally different physi-packground field that select special directions in space-time
cal predictions. In the approach where the fields are taken tgre severely constrained by experiments since those are ba-
be Lie algebra valued, the Feynman rule for the photonsically either type theories.
electron-positron interaction is given by We will formulate an effective field theory for a field

igyﬂexqiplaaaﬁpzﬂ)’ ®) thepry on a non.commutative. space-time which is param-
etrized by an arbitrary space-time depend#t) parameter.
wherep,, is the four-momentum of the incoming fermion But, we Wi!| restrict ogrselves.t(_) the Iead_ing order in the
andp,, is the four-momentum of the outgoing fermion. One €xpansion ind(x). In this case it is rather simple to use the
could hope to recover the Feynman rule obtained in the cagé@sults obtain if12—17 to generate the leading order opera-

where the fields are taken to be in the enveloping algebra, tors. We want to emphasize that it is not obvious how to
generalize our results to produce the operators appearing at

o I " higher order in the expansion #h One has to define a new
Eaﬂ [P, (k=m) =k, (p—m)]— Ekaa Pogr", () star product which resembles that obtained by Kontsevich in
the case of a general Poisson structureR8n29-31. We
if an expansion of Eq8) in 6 is performed. However, this is  will then study different models fof(x), which allow us to
not the case, because some new terms appear in the approaetax the bounds coming from low energy physics experi-
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ments. The aim of this work is not to give a mathematicallywhereR, are the relationg10), and the usual commutative
rigorous treatment of the problem. We will only derive the algebrad=C((x%, ... x*). We assume that**(x) is such
first order operators that take into account the effects of at the algebral possesses the PoinceBakhoff-Witt

space-time which is modified by a space-time dependen b
G?X) parameter. y P P property. LetW: A— A be an isomorphism of vector spaces

defined by the choice of a basis.ih The Poincarirkhoff-
Il. A SPACE-TIME DEPENDENT @ Witt property ins_ures that_ the isomorphis_m maps the algebra
. _ o _ _ of noncommutative functions on the entire algebra of com-
The aim of this section is to derive an effective Lagrang-mutative functions. Ther, product extends this map to an

ian for a noncommutative field theory defined on a spacealgebra isomorphism. The, product is defined by
time satisfying the following noncommutative relation:

[X“,X"]=10%(X), (10 W(fxg)=W(f)-W(g)=T-g. (12)

We first choose a symmetrically ordered basisirand ex-
press functions of commutative variables as power series in
the coordinates”,

where #(X) is a space-time dependent bivector field which
depends on the noncommutative coordinates.

We first need to define the star produgt. It should be
noted that thex, product is different from the canonical _ _

B i i F00=20 @iy, (X' (X', (13

Weyl-Moyal product becausé(x) is coordinate-dependent. =~ Tipeig
Let us consider the noncommutative algebtalefined as
By definition, the isomorphism\W identifies commutative

- C((f(l, ce ,§<4)) : : : e
A= 22 (12) monomials with symmetrically ordered polynomials in non-
Rx commutative coordinates,
W: A— A, (14)
X'“H;('u,
N XX XXM
XEXV = XXV = ————
2!
XEXYX T XHXPX T = 30
|
A function f is thus mapped to 0°7 3, 0"+ OL79 0P+ 773, 0P =0, (18)

fO=WT(0]=2 e ... (XY (xh'=:, (15  The quantization of a general Poisson structurbas been

! solved by Kontsevich29]. Kontsevich has shown that it is
- . . _necessary foi¥(x) to fulfill the Jacobi identity in order to
Yvhere the coeﬁm@nta, have been deflneq 'rl I§(113) ' L_JS have an associative star product. To first order,stherod-
ing the isomorphismW, we can also ma@”’(x), which et is given by the Poisson structure itself. The Kontsevich
appears in Eq(10), to commutative function®*”(x). We * product is given by the formula
have

i
060=3 By ki GY5 (19 fecg=f-g+ zalaf 59+ 0(e. (19

A more detailed description can be found 28] and explicit
calculations of higher orders of thg, product can be found
in [32,33. Up to first order, the Kontsevich product can be
motivated by the Weyl-Moyal product, which is of the same
form (see the Appendjx The difference arises in higher or-

We want to assume tha@t(x) defines a Poisson structure, der terms where thedependence of is crucial. Derivatives
i.e., satisfies the Jacobi identity will not only act on the function$ andg but also onf(x).

and therefore

600 =WLH0]=2 Br...i, (XD (XD (A7)
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We are interested in the, product to first order and in a 8, A (X)=d,a(x)+i[a(x),A,] 27
symmetrically ordered basis ol (14). As in Eqg. (19), the

first orderx, product is determined bg*“"(x), which corre-  The field strength is constructed using the gauge potential
sponds to a symmetrically ordered basis, cf. ), F.(x)=d,A,—3d,A,+9[A,,A,] and the covariant deriva-
i tive is given byD ,=d,—igA, . These are the well-known
Fa@(X)=F-g(X)+ 5 07(X)d,.f - 9,9+0(6?). (20 res_ults already obtain_ed by YangTM?IIs a long time 484]. _

2 This classical gauge invariance is imposed on the effective

. . . ) . theory, which we will derive.
The ordinary integral equipped with this new star product

does not satisfy the trace property, since this identity is de-

rived using partial integration, unlegg 6*”=0. We need to B. Noncommutative gauge transformations
introduce a weight functiom(x) to make sure that the trace  This effective theory should also be invariant under non-
operator defined as commutative transformations defined by
Tri= f dxw(0)F(x) (21 Br=iA(0x T (x). (28
has the following properties: Functions carrying a hat have to be expanded via a Seiberg-
Witten map. We now consider the commutator of two non-
Trif’=0, (22)  commutative gauge transformationgx) and> (x),
Trig=Trgf. e e
9= e (3385~ &)V (0)
We shall not try to construct the functiom(x), but assume - A - A -
that it exists and has the following property: =[AC)*2(X) = Z(X) % A(X) %P (x)
f dxWOOL f(X)*,g(X)] =A™ S () W (%). 29
In order to fulfill the relation(29), the gauge transforma-
_ 4
_J d™XWOLG0X) *F (X)] tions and thus the fields cannot be Lie algebra valued but

must be enveloping algebra valuggbe Eq(7)]. This is the
:f d*xw(x)f(x)g(x). (23) main achievement of Wess’ approe{qts]._This is also what
allows us to solve the charge quantization prob[ds].
Since we restrict ourselves to the leading order expansion
in 6(x), we can restrict ourselves to gauge transformations

—w(x)d;6' (x)=a,w(x) 8 (x), (24 A,w[A,] whosex dependence is only coming from the

o o ) _ gauge potentiah,, and from thex dependence of the classi-
which is a partial differential equation fav(x) that can be 3| gauge transformatioa(x),

solved onced' (x) has been specified. Furthermore, we as-
sume that it is positive and falls to zero quickly enough when aln A A
6~*(x) is large, so that all integrals are well defined. OAP=TALA,]* W (X). (30)
In the sequel we shall derive the consistency condition for
a field theory on a space-time with the struct(i®). We  Subtleties might appear at higher orderg){ix). We assume
shall follow the construction proposed [i2-14 step by that 6(x) is invariant under a gauge transformation. The op-

step. eratorx is invariant under a gauge transformation. One can
as usual introduce covariant coordinad$=x*+ A*. The

noncommutative field strength can be defined %"
We Consider Yang'Mi”S gauge theories W|th the L|e alge'z[s\(#,)’\(‘}]_ bl“’(;() These resu'ts are Very Sim”ar to those

bra[ T2, T*]=if2"T¢, where theT? are the generators of the obtained for the Poisson structure[Bd].

gauge group. A field transforms as

This relation implies

A. Classical gauge transformations

Sp=ia(X)p(x) with a(x)=ay(x)T?, (25) C. Consistency condition and Seiberg-Witten map
As done in[12-14, we impose that our fields transform
der the classical gauge transformations according to Eq.
(25 and under noncommutative gauge transformation ac-

(8,845~ 850)P(X)=ia (X)ﬂb(x)fab(//(x) (26) cording to Eq.(28). We require that the noncommutative,

o o a . ~ ~
¢ enveloping algebra valued gauge parameteend 2. fulfill

The Lie algebra valued gauge potential transforms as the following relation:

under a classical gauge transformation. We can consider ﬂlﬁw
commutator of two successive gauge transformations,
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(3185~ 850 ()= (I 5 3[A, ]~ 1 BEALA, ]+ [A[A,TS[A, D (X)

=V os[A, 6P (), (31)
|
which defines the noncommutative gauge transformation pa- S (X)) =iN(X) h(X) (38

rametersA andX.
The Seiberg-Witten mad4.8] have the remarkable prop- in the zeroth order ir9(x), and
erty that ordinary gauge transformationsA,=d,A

+i[A,A,] and 8¥ =iA- ¥ induce noncommutative gauge SYMA=ING A T+IAYA,]

transformations of the field&, ¥ with gauge parametet as 1

given above, — 5 0" ()9 N0Y (39)

A= oA, V=5V G2 in the leading order ird(x). The solution is
The gauge parametef*s, s, and Y15 are elements of 1 1

the enveloping Lie algebra, zﬂl[AM]= 5 0" (X)A 0,4+ i 2 0" (X)ALA Y. (40)
A 1. b. 2
A=A ()THHAZ T+ 0(6%), (33 This solution is identical to the one in the case of constant

. The following relation is also useful to build actions:

3= 0y(X) T2+ 35, TATP: +0(67), B
. PIA= A 7
Yo = va T2+ Y5, TAT?: + 0(62)

1 — 1 —
with the understanding that, o, andv are independent of = EGW(X)‘?V‘/’A/L“ ZB’”(X) YALA, . (4D
6(x), andAl, 31 andY?! are proportional to9(x). Again
we restrict ourselves to the leading order term®(r). We shall now consider the gauge potential. It turns out
One finds that things are much more complicated in that case than they
] are whené is constant. We need to introduce the concept of
[N o]=iv (34) covariant coordinates, as has been don¢l®l. The non-
in the zeroth order irg(x) and commutative coordinateg' are invariant under a gauge

transformation,
i3t —i8,AT+i6""(x){9,\,0,0}

X =0. 42
+[\, 3 -[o,AY]=Y1 (35) 42
in the leading order. ThAnsaze This implies thatx' ¥ is in general not covariant under a
gauge transformation,
1
1_ = guv " n A ain A A A aan
AT= 207000 AL (36) AT =X AW #i A)XT 43)

1 v To solve this problem, one introduces covariant coordinates

2= 7070010, 0 AL, X' [12] such that
1 g Ai T = 1 A Y Ai )

Y= 2 00){0,(~iN, o)A} AEIZIALOX @

with 3X =i[A(X),X]. The Ansatz X=X +Bi(X) solves the

solve Eq.(35). This is the usual Seiberg-Witten map in the problem ifB'(X) transforms as

leading order ind(x).

_ The matter fields¥V are also elements of the enveloping 3@(;():i[/“\(;(),éi(;()]_i[;(i1j§(;()] (45)
Lie algebra
~ B 1 5 under a gauge transformation. In our ca¥éx) is not the
VAL =g+ yAl+0(67), (37) gauge potential. We need to recall two relations,
where ¢ is independent oB(x) and ¢! is proportional to PO 3
6(x). Equation(30) becomeg12-14 [f*g]=i6"(x)d; f3;9+0(67), (46)

025016-5



X. CALMET AND M. WOHLGENANNT

[X"*A]=i6(x)d;A+O(6?).
Equation(45) then becomes
8B'00=0100gAX)+I[AXBI(0)].  (47)
Following [12], we expand:%i as follows:

B'=¢'(x)B;+BY+0(6°). (48)

We obtain the following consistency relation fBt:

1 )
5B =6(x )ﬁjAl—EHk'(x){&k)\(9|[6'J(X)Bj]

— [0 (X)B; N +i[N,BY]+i[AL, 6 (x)B;].
(49
These equations are fulfilled by thesaze

1i:_1 kI ij _ ij B
B 40 OBk, ai[ 0" (x)B;]1+ 6" (x)Fy;},  (50)

Alzle'm(x){ax B}
4 [Ny Pm

where [ = 4;B; — d;B; —i[ B;,B;]. The Jacobi identity18)
is requwed to show that thes!msatzework

The problem is to find the relation to the Yang-Mills
If 6 is constant, the relation is trivial:

gauge potentiaA, .
Bi= 0'“A Our goal is to find a relation betweeni de-
fined asD =
rivative D,
mation.

Let us consider the prodqu(‘*X‘i' again. It transforms
covariantly according to Eq(44). Let us now consider

|Aﬂ, andB' such that the covariant de-
transforms covariantly under a gauge transfor-

—0;ﬁ<x>éi<x>*x~if+i%eaﬁx)aa 0,109 B0 % W]+ (

the object —id ()%, (XxF), with 80, 1(X)
|
AL (0 * 0 =5 1K) %, Bl (x) %, b
One finds
AM*Xﬁf:BM*X\if

N |
Ax, U =01 () B x, W +i Eaaﬁ’(x)aa MV(X)&B[B”(X)\P]—F[&

1
= 4 0,u|

1
+i Eﬁaﬂ(x)ﬁ

auy

PHYSICAL REVIEW D 68, 025016 (2003

=i[/A\TXA6;i1()A()], i.e., A(X) is a covariant function oX. The
object under consideration transforms according to

=10, () xx (X, 1))
= =i Ak Bt (K) %, Xix W (51)
We can thus define a covariant derivatﬁ)g,
B W= =i, L)%, X %, (52)

which transforms covariantly.
There is one new subtlety appearing in our case. Note that

9, (X) depends on the covariant coordinite. We need to
expanda;il(f() in 6. This is done again via a Seiberg-Witten
map. The transformation property 3;3 implies

80,0 =i[A ™D, ()]
= — 0M(x) g [ 6,(x)]
HiIN[OL,00] ]+, (53)

where we have used the expansion‘(X)=[6°(x)]*
+[64(X)]" 1+ 0(6?) for 6~ *(X). One finds

&6%,)71=0, (54)
&0,,) 1= —Mona 60,001 +ilN[65,00] 1]
This system is solved by
(69,) " 1=0,1(x), (55)

(67,) 1= 01 (X)A;3,0,,1(X).

Note that this expansion coincides with a Taylor expansion
for (6,,)(X).
The Yang-Mills gauge potential is then given by

6) " BI(x) V. (56)

(57)

()] L0 A >, W (58)

(%) (%) 9, 6" () { A A, Y- 19k|(>< HAGIA, +F|M}‘I'

LX) gl 0"P(X)A, U]+ 6¢( (X)AIO,, (X) 0" (X) AW

025016-6
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The derivative term is more complex than it is usually,

— 0, () * X, U =3, W+[ 62(x)] 20K () g ¥ + 'Ee“ﬁ( X)do 0, () 5[ 0"°(X) 9, W ]+ - - (59

a,u,v

Note thatA;lL*x\if and the modified derivative are not Hermitian. We will have to take this into account when we build the
actions in the next section.

IIl. ACTIONS

In this section, we shall concentrate on the actions of quantum electrodynamics and of the standard model on a background
described by & which is space-time—dependent. The main result is that the leading order operators are the same as in the
constantf case, if one substitute® by 6(x). New operators with a derivative acting @(x) also appear.

A. QED on an x-dependent space-time

An invariant action for the gauge potential is

Sy=— %Trj W(X)F#,,waWd4 (60)
whereF ,, is defined as
Fp=i[D,D,]=i[ =i 8, (X)X =18, (X)*,X']. (61)
For the matter fields, we find
sm:fw(x)xix(iyﬂbﬂ—m)«ifd“x, (62)

whereD W= (d,—iA )%, V. We can now expand the noncommutative fields{x) and insert the definition for the,
product.
The Lagrangian for a Dirac field that is charged under aNgUgr U(N) gauge group is given by

m@*x\if=mZ:erIEmaW(x)D#ZDV(//, (63

= JOP 1 — i —
W,iy*D W =¢i VMDM¢_§ 0*"(X)D ,y"D,D ,ip— > 0“7 (x)y"F D, ¢+ terms with derivatives acting ord (64)
and the gauge part is given by

. . 1 1
FuxxFr'=F, F‘“’-I— HW(X)DM pUD,,F""vLE0"“”(X){{FM,FUV} Fro}—— H“V(X){FM,,, P}

- — 0’”(x [A, 1A, F,,FP7}]+terms with derivatives acting or. (65

The terms involving a derivative acting aghwill be written explicitly in the action. They can be cast in a very compact way
after partial integration and some algebraic manipulations. The following two relations can be useful in these algebraic
manipulations:

LX) = 0,,7(X) 2 0P (X)W(X), (66)

o0, (X) == 0,2 (X)[3,6°7(X) 165, (X). (67)
One notices that some of the terms with a derivative acting ame total derivatives,
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f W(x)aM[G"V(x)F,,]d“x:—f d[w(x)]6*"(x)I ,d*

=J’ W(x)d,[ 0#"(x)]T ,d*x

(68)
using partial integration and where the last step follows from the prof@#jy These terms, therefore, do not contribute to the
action.

For the action we use partial integration, the cyclicity of the trace, and the proi&tand obtain to first order if(x)

. ~ — 1
f W(X)\If*x(iy"DM—m)\Pd“x:f W(X) (i y*D ,—m) gpd*x—

4f W(X) 0’”(X)EFW(i y*D,,—m) d*x
1 _
- EJ W(X) 0¥ (X) hy"F ,,iD ,ipd*x

4J W(X) 0,,2(X) 0°P(X) 307 (X)D ,hy*D ,pd*x + H.C

(69
1 4 1
" Ef WOOF 0 Frrdx=—7

1
4] W(X)Fqu””d4X+§t1f W(X) 67P(X)F 5, F ., F 7%

op' uv

2t1f w(x)87P(x)F ,,F VpF/”d"'erterms with derivatives acting o, (70)
wheret; is a free parameter that depends on the choice of the matsre[15]). We have not calculated explicitly the terms

with derivatives acting o for the gauge part of the action. These terms are model-dependent as they depend on the choice
of the matrixY. These terms will be calculated explicitly in a forthcoming publication. We used the following notations

R R 1.
GYMag,w™ and Tr = —F L F =1 E q(”))ZF(“)* F( pr (72)
and
F¥O=edMEwO, (72)
The usual coupling constastcan be expressed in terms of thg by
N
1 1 1
Tr—Q?%=D, —(qM)?=— 73
<29 2 ﬁ<q =2 (73)

B. The standard model on anx-dependent space-time

The noncommutative standard model can also be written in a very compact way folld@ilhg
3

3
1.
SNCSM:f d*x w(x) Z (')*X|D\If(')+f d*x w(x) 2 T i T - fd“xw(x)Tr 5 W*XF“"+fd4xw(x)

X [po(D @) "%, po(DH®) — u2po( D) Py po( D) = N po( @) 4ypo( D) % po( D) 5 po(P) ]+ f d*x W(x)
3

3

3
”21 WL Oy () ]%,0) - Z (WD, [ p () T4, LD}~ E G"{[Q(')*qu(cb)]*xu(’)}

3
—”_2=1<G YO %, p(P D), Q) — 2

) GHQY ’*pr (®)]x,dd}
ij=
3

-2, (Gy Aol ), Q0 .

(74)
025016-8
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The notations are the same as those introducgd5h The  simply implies that there is an energy threshold for the ef-
only difference is the introduction of the weight function fects of space-time noncommutativity. In that case, the vertex
w(x). The expansion is performed as described[15].  studied in Eq(75) becomes

There are new operators with derivatives actinggéx), but

the terms suppressed I8yx) that do not involve derivatives 54(b,u_qﬂ_ Kyt P, 0(0o— Ag)

on ¢ are the same as those found[ir5]. One basically has i i

to replaced by 6(x) in all the results obtained ifi5]. X Eaf“’[pv(lk—m)—kv(;zﬁ—m)]— Ekaeaﬁpﬁy" :

C. Feynman rules (76)

We shall concentrate on thg verte.x. involving two. fermi- \where 8(bo— Ag) is the Heaviside step function. In other
ons and a gauge boson which is modifieddfx). One finds  \ords, the energy of the decaying particle has to be above
i the energyA g corresponding to the distan&e Note that we
f dixel —ix#(b,—a,—k,+ pu”(—?’”(b)[m(k— m) now have two scales, namely the noncommutative stale
2 included in & and the scale corresponding to the distance
P where the effects of noncommutative physics setAip, A
-k, (p—m)]— Ekaﬁaﬁ(b)pﬁy") , (750  small scale of, e.g., 1 GeV foky is sufficient to get rid of all
the constraints coming from low energy experiments and in
~ . . o particular from experiment that are searching for violations
where¢ is the Fourier transform of(x). This is the lowest  of | orentz invariance. This implies that heavy particles are
order vertex ing and 6(x) which is model independent, i.e., more sensitive to the noncommutative nature of space-time
independent of; (see Fig. 1 Itis clear that the dominant than the light ones. It would be very interesting to search for
signal is a violation of the energy-momentum conservationg viplation of energy conservation in the top quark decays
as some energy can be absorbed in the background field gince they are the heaviest particles currently accessible.
released from the baCkgrOUnd field. Similar effects will occur C|ear|y, there are Certaimy models that are more appropri-
for the three-gauge-boson interaction and for the twosqte than a Heaviside step function. This issue is related to

fermion—two-gauge-boson interactions. model building and is beyond the scope of the present paper.
Our aim was to give a simple example of the type of model
IV. MODELS FOR 6(x) that can help to loosen the experimental constraints.

. . . Another interesting possibility is tha&*” transforms as a
The functiond(x) is basically unknown. It depends on the Lorentz tensor:6“*(x')=A*A"6*’(x), in which case the
. p g 1

details of the f_undamental theory V‘_’hiCh is at the origin of theaction we have obtained is Lorentz invariant. It is neverthe-
noncommutative nature of space-time. Recently, noncommL1

tative theories with a nonconstant noncommutative param©SS Not clear which symmetry acting @ix), i.e., at the

eter have been found in the framework of string thei@§— noncommutative level, could reproduce the usual Lorentz
38]. But, since we do not know what will eventually turn out SYMMetry once the expansion his performed. There are

to be the fundamental theory at the origin of space-time nonpevertheless examples of quantum groups, where a deformed

commutativity, we can consider different models fegx).  |Creéniz invariance can be defing8,40. Note that if6(x)
. . . ~ . - develops a vacuum expectation value, Lorentz invariance is
One particularly interesting example fé6¢b) is a Heaviside

~ spontaneously broken.
step function times a constant antisymmetric ten@tf(b)
= 0(by— AR) 6*”. The main motivation for such alinsatzs
that mentioned in15]; the noncommutative nature of space-
time sets in only at short distances. A Heaviside function We have proposed a formulation of Yang-Mills field
theory on a noncommutative space-time described by a

V. CONCLUSIONS

guv(b) space-time—dependent antisymmetric tengpx). Our re-
sults are only valid in the leading order of the expansion in
X 0. It is nevertheless not obvious that these results can easily

i be generalized. The basic assumption is th@at) satisfies

| the Jacobi identity. This insures that the star product is asso-

| ’(,b(k) ciative.

= We have generalized the method developed by Wess and
his collaborators to the case of a nonconstant fieldnd we
have derived the Seiberg-Witten maps for the gauge transfor-
mations, the gauge fields, and the matter fields. The main
difficulty is to find the relation between the gauge potential
of the covariant coordinates and the Yang-Mills gauge poten-

AM(Q) tial.
As expected, new operators with derivative actingn
FIG. 1. Correction to the two-fermion gauge boson vertex. are generated in the leading order of the expansiah iBut,

»(p)

025016-9
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most of them drop out of the action because they correspond/e now consider the, product of two functiong andg,
to total derivatives.

The main difference between the constantase is that _ 4y, 14 o
the energy momentum at each vertex is not conserved from W(f,g)= (277)4f d*kd"p explik;x')
the particles point of view, i.e., some energy can be absorbed o
or created by the background field. One can consider differ- xexp(ip;x)f(k)g(p). (A4)

ent models for the deformatiof It is interesting to note that
already a simple model can help to avoid low energy physic
constraints. This implies that noncommutative physics be-
comes relevant again as a candidate for new physics beyond eAgB— gA+B+(1/2)[A,B]+(1/12)[[A,B],B] ~(1/12)[[A,B] Al +- -
the standard model in the TeV region. (A5)

he coordinates are noncommutating. The Campbell-Baker-
ausdorff formula

ACKNOWLEDGMENTS is thug need to eva]uate this expression. This is where a

potential problem arises. The commutator of two noncom-

One of us(X.C.) would like to thank J. Gomis, M. mutative coordinates is, in our case, by assumption not con-
Graesser, H. Ooguri, and M. B. Wise for enlightening discusstant and it is not obvious whether the Campbell-Baker-
sions. He would also like to thank P. Schupp for a usefuHausdorff formula will terminate. But, as already mentioned
discussion. The authors are very grateful to B. Jurco and Jreviously, we are only interested in the leading order non-

Wess for interesting discussions. commutative corrections and we thus neglect the higher or-
der in @ terms which will involve derivatives acting of(x).
APPENDIX: THE *, PRODUCT In the leading order ird we have

In this appendix, we shall derive theg product using the Lo Lo : TN
deformation quantization. We want to emphasize the fact thael:xmijl)exp(lijl) - ex% (ki pi)X _5‘9” (X)kipj+ - --
this approach only works in the leading orderifx). In that (AB)
case it is rather straightforward to apply the formalism de-
veloped in[12—14 with minor modifications, which we shall &"d
describe.

We shall follow the usual procedu(see, e.g.[7]). Let us

consider the noncommutative algebral defined as One thus finds

CUXY, ... XM Ry, whereR, is the relation(10) and the o

usual commutative algebral=C((x, ... x%)). Let W:A f*xg(x)=f d4kd4pexp(i(ki+pi)x'—§0”(x)kipj+ .
— A be an isomorphism of vector spaces. Heproduct is

W 61(X)]= 61(x)+0(6?). (A7)

defined by xF(k)g(p), (A8)
W(fx,g)=W(f)-W(g)=F-g. (A1)  where we define the, product in the following way:

In general, we do not know how to construct this new star B i v af(x) ag(y)

product, but since we are only interested in the leading order frg=t-g+56"(x) Xt oy

operators, all we need is to define the new star product in the y—X

leading order and this can be done easily, as described in at(x) dg(x)

[12—-14, by considering the Weyl deformation quantization =f.g+ I_g,uV(X) , (A9)
procedurd 41], 2 ax* ox”
neglecting higher order terms if that are unknown and
f=W(f)= . f d*k exp(ik;x)) T (k) (A2)  taking the limity—x. It is interesting to note that it corre-
(2m) sponds to the leading order of the star product defined for a
. Poisson structurf29—-31. We want to insist on the fact that
with the results presented in this appendix cannot be generalized
to higher order ind. This can be done using Kontsevich’s
Tk)= f d*k exp(_iijj)f(x)_ (A3)  method, which is unfortunately much more difficult to
(2m)°? handle.
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