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Effective field theories on noncommutative space-time
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We consider Yang-Mills theories formulated on a noncommutative space-time described by a space-time
dependent antisymmetric fieldumn(x). Using Seiberg-Witten map techniques, we derive the leading order
operators for the effective field theories that take into account the effects of such a background field. These
effective theories are valid for a weakly noncommutative space-time. It is remarkable to note that already
simple models forumn(x) can help to loosen the bounds on space-time noncommutativity coming from low
energy physics. Noncommutative geometry formulated in our framework is a potential candidate for new
physics beyond the standard model.
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I. INTRODUCTION

In recent years, considerable progress towards a con
tent formulation of field theories on noncommutative spa
time has been made. The idea that space-time coordin
might not commute at very short distances is neverthe
not new and can be traced back to Heisenberg@1#, Pauli @2#,
and Snyder@3#. A nice historical introduction to noncommu
tative coordinates is given in@4#. At that time the main mo-
tivation was the hope that the introduction of a new fund
mental length scale could help to get rid of the divergenc
in quantum field theory. A more modern motivation to stu
a space-time that satisfies the noncommutative relation

@ x̂m,x̂n#[ x̂mx̂n2 x̂nx̂m5 iumn, umnPC ~1!

is that it implies an uncertainty relation for space-time co
dinates,

DxmDxn>
1

2
uumnu, ~2!

which is the analogue to the famous Heisenberg uncerta
relations for momentum and space coordinates. Note
umn is a dimensional full quantity, dim(umn)5mass22. If
this mass scale is large enough,umn can be used as an ex
pansion parameter like\ in quantum mechanics. We ado
the usual convention: a variable or function with a hat is
noncommutative one. It should be noted that relations of
type ~1! also appear quite naturally in string theory mod
@5# or in models for quantum gravity@6#. It should also be
clear that the canonical case~1! is not the most generic cas
and that other structures can be considered, see, e.g.,@7# for
a review.

In order to consider field theories on a noncommutat
space-time, we need to define the concept of noncomm
tive functions and fields. Noncommutative functions a
fields are defined as elements of the noncommutative alg
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Â5
C^^x̂i

••• x̂n&&
R , ~3!

whereR are the relations defined in Eq.~1!. Â is the algebra
of formal power series in the coordinates subject to the re
tions ~1!. We also need to introduce the concept of a s
product. The Moyal-Weyl star product! @8# of two functions
f (x) and g(x) with f (x),g(x)PR4, is defined by a formal
power series expansion:

~ f !g!~x!5expS i

2
umn

]

]xm

]

]ynD f ~x!g~y!U
y→x

5 f •g1
i

2
umn]mg•]n f 1O~u2!. ~4!

Intuitively, the star product can be seen as an expansio
the product in terms of the noncommutative parameteru.
The star product has the following property:

E d4x~ f !g!~x!5E d4x~g! f !~x!

5E d4x f~x!g~x!, ~5!

as can be proven using partial integrations. This propert
usually called the trace property. Heref (x) and g(x) are
ordinary functions onR4.

Two different approaches to noncommutative field the
ries can be found in the literature. The first one is a nonp
turbative approach~see, e.g.,@9# for a review!, fields are
considered to be Lie algebra valued, and it turns out that o
U(N) structure groups are conceivable because the com
tator

@L̂,
!L̂8#5

1

2
$L̂a~x! ,

!L̂b8~x!%@Ta,Tb#

1
1

2
@L̂a~x! ,

!L̂b8~x!#$Ta,Tb% ~6!
©2003 The American Physical Society16-1
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of two Lie algebra valued noncommutative gauge parame

L̂5La(x)Ta and L̂85La8(x)Ta only closes in the Lie alge
bra if the gauge group under consideration is U(N) and if the
gauge transformations are in the fundamental representa
of this group. But, this approach cannot be used to desc
particle physics since we know that SU(N) groups are re-
quired to describe the weak and strong interactions. O
least there is no obvious way known to date to derive
standard model as a low energy effective action coming fr
a U(N) group. Furthermore it turns out that even in the U~1!
case, charges are quantized@10,11# and it is thus impossible
to describe quarks. The other approach has been devel
by Wess and his collaborators@12–15# ~see also@16,17#!.
The goal of this approach is to consider field theories
noncommutative spaces as effective theories. The main
ference from the more conventional approach is to cons
fields and gauge transformations which are not Lie alge
valued but which are in the enveloping algebra,

L̂5La
0~x!Ta1Lab

1 ~x!:TaTb:1Labc
2 ~x!:TaTbTc:1•••,

~7!

where : : denotes some appropriate ordering of the Lie al
bra generators. One can choose, for example, a symm
cally ordered basis of the enveloping algebra; one then
:Ta

ªTa and :TaTb5 1
2 $Ta,Tb% and so on. The mapping be

tween the noncommutative field theory and the effective fi
theory on a usual commutative space-time is derived by
quiring that the theory be invariant under both noncommu
tive gauge transformations and under the usual~classical!
commutative gauge transformations. These requirem
lead to differential equations whose solutions correspond
the Seiberg-Witten map@18# that appeared originally in the
context of string theory. It should be noted that the expans
which is performed in that approach is in a sense trivial si
it corresponds to a variable change. But, it is well suited
a phenomenological approach since it generates in a
structive way the leading order operators that describe
noncommutative nature of space-time. It also makes c
that, contrary to what one might expect@19,20#, the coupling
constants are not deformed, but the currents themselve
deformed.

We want to emphasize that the two approaches are fu
mentally different and lead to fundamentally different phy
cal predictions. In the approach where the fields are take
be Lie algebra valued, the Feynman rule for the phot
electron-positron interaction is given by

iggmexp~ ip1auabp2b!, ~8!

where p1m is the four-momentum of the incoming fermio
andp2n is the four-momentum of the outgoing fermion. On
could hope to recover the Feynman rule obtained in the c
where the fields are taken to be in the enveloping algebr

i

2
umn@pn~k”2m!2kn~p”2m!#2

i

2
kauabpbgm, ~9!

if an expansion of Eq.~8! in u is performed. However, this is
not the case, because some new terms appear in the app
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proposed in@12–17# due to the expansion of the fields in th
noncommutative parameter via the Seiberg-Witten map.
thus clear that the observables calculated with these F
man rules would be different from those obtained in@21#.
Note that the two different approaches nevertheless yield
same observables if the diagrams involved only have
shell particles.

Unfortunately it turns out that both approaches lead at
one loop level to operators that violate Lorentz invarian
Although it is not clear how to renormalize these mode
these bounds might be the sign that noncommutative fi
theories are in conflict with experiments. If these calculatio
are taken seriously, one finds the boundL2u,10229 @22#
~see also@23#!, whereL is the Pauli-Villars cutoff andu is
the typical inverse squared scale for the matrix elements
the matrixumn. In view of this potentially serious problem,
is desirable to formulate noncommutative theories that
avoid the bounds coming from low energy physics. It sho
nevertheless be noted that the operators discussed in@22#, of
the typemcc̄smncumn, are not generated by the theorie
developed in@12–17# at tree level. On the other hand, th
operators generated by the Seiberg-Witten expansion
compatible with the classical gauge invariance and with
noncommutative gauge invariance. It remains to be pro
that the operators discussed in@22# are compatible with the
noncommutative gauge invariance. If this is not the case
long as there are no anomalies in the theory, these opera
cannot be physical and must be renormalized. It has b
shown that in the approach proposed in@12–17#, anomalies
might be under control@24#. There are, nevertheless, boun
in the literature on the operatorsumnc̄FmnD” c which defini-
tively appear at tree level. One finds the constraintLNC
.10 TeV for the scale where noncommutative physics
come relevant@25#. This constraint comes again from expe
ments which are searching for Lorentz violating effects.

It is interesting to note that Snyder’s main point in h
seminal paper@3# was that noncommuting coordinates can
compatible with Lorentz invariance. But, despite some int
esting proposals@26–28#, it is still not clear how to construc
a Lorentz invariant gauge theory on a noncommutat
space-time.

It is not a surprise that theories formulated on a const
background field that select special directions in space-t
are severely constrained by experiments since those are
sically either type theories.

We will formulate an effective field theory for a field
theory on a noncommutative space-time which is para
etrized by an arbitrary space-time dependentu(x) parameter.
But, we will restrict ourselves to the leading order in th
expansion inu(x). In this case it is rather simple to use th
results obtain in@12–17# to generate the leading order oper
tors. We want to emphasize that it is not obvious how
generalize our results to produce the operators appearin
higher order in the expansion inu. One has to define a new
star product which resembles that obtained by Kontsevich
the case of a general Poisson structure onRn @29–31#. We
will then study different models foru(x), which allow us to
relax the bounds coming from low energy physics expe
6-2
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ments. The aim of this work is not to give a mathematica
rigorous treatment of the problem. We will only derive th
first order operators that take into account the effects o
space-time which is modified by a space-time depend
u(x) parameter.

II. A SPACE-TIME DEPENDENT u

The aim of this section is to derive an effective Lagran
ian for a noncommutative field theory defined on a spa
time satisfying the following noncommutative relation:

@ x̂m,x̂n#[ i ûmn~ x̂!, ~10!

where û( x̂) is a space-time dependent bivector field whi
depends on the noncommutative coordinates.

We first need to define the star product!x . It should be
noted that the!x product is different from the canonica
Weyl-Moyal product becauseû( x̂) is coordinate-dependen
Let us consider the noncommutative algebraÂ defined as

Â5
C^^x̂1, . . . ,x̂4&&

Rx
, ~11!
e,

02501
a
nt

-
-

whereRx are the relations~10!, and the usual commutativ
algebraA5C^^x1, . . . ,x4&&. We assume thatûmn( x̂) is such
that the algebraÂ possesses the Poincare´-Birkhoff-Witt
property. LetW:A→Â be an isomorphism of vector space
defined by the choice of a basis inÂ. The Poincare´-Birkhoff-
Witt property insures that the isomorphism maps the alge
of noncommutative functions on the entire algebra of co
mutative functions. The!x product extends this map to a
algebra isomorphism. The!x product is defined by

W~ f !xg![W~ f !•W~g!5 f̂ •ĝ. ~12!

We first choose a symmetrically ordered basis inÂ and ex-
press functions of commutative variables as power serie
the coordinatesxm,

f ~x!5(
i

a i 1••• i 4
~x1! i 1

•••~x4! i 4. ~13!

By definition, the isomorphismW identifies commutative
monomials with symmetrically ordered polynomials in no
commutative coordinates,
W:A→Â, ~14!

xm° x̂m,

xmxn°: x̂mx̂n:[
x̂mx̂n1 x̂nx̂m

2!
,

xmxnxs°: x̂mx̂nx̂s:[
x̂mx̂nx̂s1 x̂nx̂mx̂s1 x̂mx̂sx̂n1 x̂nx̂sx̂m1 x̂sx̂mx̂n1 x̂sx̂nx̂m

3!

A .
s

ich

e
r-
A function f is thus mapped to

f̂ ~ x̂!5W@ f ~x!#5(
i

a i 1••• i 4
:~ x̂1! i 1

•••~ x̂4! i 4:, ~15!

where the coefficientsa I have been defined in Eq.~13!. Us-
ing the isomorphismW, we can also mapûmn( x̂), which
appears in Eq.~10!, to commutative functionsumn(x). We
have

û~ x̂!5(
k

bk1•••k4
:~ x̂1!k1

•••~ x̂4!k4: ~16!

and therefore

u~x!5W21@ û~ x̂!#5(
k

bk1•••k4
~x1!k1

•••~x4!k4. ~17!

We want to assume thatu(x) defines a Poisson structur
i.e., satisfies the Jacobi identity
urs]sumn1ums]sunr1uns]surm50. ~18!

The quantization of a general Poisson structurea has been
solved by Kontsevich@29#. Kontsevich has shown that it i
necessary foru(x) to fulfill the Jacobi identity in order to
have an associative star product. To first order, the!K prod-
uct is given by the Poisson structure itself. The Kontsev
!K product is given by the formula

f !Kg5 f •g1
i

2
a i j ] i f •] jg1O~a2!. ~19!

A more detailed description can be found in@29# and explicit
calculations of higher orders of the!K product can be found
in @32,33#. Up to first order, the Kontsevich! product can be
motivated by the Weyl-Moyal product, which is of the sam
form ~see the Appendix!. The difference arises in higher o
der terms where thex dependence ofu is crucial. Derivatives
will not only act on the functionsf andg but also onu(x).
6-3
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We are interested in the!x product to first order and in a
symmetrically ordered basis ofÂ ~14!. As in Eq. ~19!, the
first order!x product is determined byumn(x), which corre-
sponds to a symmetrically ordered basis, cf. Eq.~12!,

f !xg~x!5 f •g~x!1
i

2
umn~x!]m f •]ng1O~u2!. ~20!

The ordinary integral equipped with this new star prod
does not satisfy the trace property, since this identity is
rived using partial integration, unless]mumn50. We need to
introduce a weight functionw(x) to make sure that the trac
operator defined as

Tr f̂ 5E d4xw~x! f̂ ~x! ~21!

has the following properties:

Tr f̂ f̂ †>0, ~22!

Tr f̂ ĝ5Tr ĝ f̂ .

We shall not try to construct the functionw(x), but assume
that it exists and has the following property:

E d4xw~x!@ f ~x!!xg~x!#

5E d4xw~x!@g~x!!xf ~x!#

5E d4xw~x! f ~x!g~x!. ~23!

This relation implies

2w~x!] iu
i j ~x!5] iw~x!u i j ~x!, ~24!

which is a partial differential equation forw(x) that can be
solved onceu i j (x) has been specified. Furthermore, we
sume that it is positive and falls to zero quickly enough wh
umn(x) is large, so that all integrals are well defined.

In the sequel we shall derive the consistency condition
a field theory on a space-time with the structure~10!. We
shall follow the construction proposed in@12–14# step by
step.

A. Classical gauge transformations

We consider Yang-Mills gauge theories with the Lie alg
bra @Ta,Tb#5 i f c

abTc, where theTa are the generators of th
gauge group. A field transforms as

dac5 ia~x!c~x! with a~x!5aa~x!Ta, ~25!

under a classical gauge transformation. We can conside
commutator of two successive gauge transformations,

~dadb2dbda!c~x!5 iaa~x!bb~x! f c
abc~x!. ~26!

The Lie algebra valued gauge potential transforms as
02501
t
-

-
n

r

-

he

daAm~x!5]ma~x!1 i @a~x!,Am#. ~27!

The field strength is constructed using the gauge poten
Fmn(x)5]mAn2]nAm1g@Am ,An# and the covariant deriva
tive is given byDm5]m2 igAm . These are the well-known
results already obtained by Yang-Mills a long time ago@34#.
This classical gauge invariance is imposed on the effec
theory, which we will derive.

B. Noncommutative gauge transformations

This effective theory should also be invariant under no
commutative transformations defined by

d̂L̂Ĉ5 i L̂~x!!xĈ ~x!. ~28!

Functions carrying a hat have to be expanded via a Seib
Witten map. We now consider the commutator of two no

commutative gauge transformationsL̂(x) and Ŝ(x),

~ d̂L̂d̂ Ŝ2 d̂Ŝd̂L̂!Ĉ~x!

5@L̂~x!!xŜ~x!2Ŝ~x!!xL̂~x!#!xĈ~x!

5@L̂~x! ,
!x Ŝ~x!#!xĈ~x!. ~29!

In order to fulfill the relation~29!, the gauge transforma
tions and thus the fields cannot be Lie algebra valued
must be enveloping algebra valued@see Eq.~7!#. This is the
main achievement of Wess’ approach@13#. This is also what
allows us to solve the charge quantization problem@15#.

Since we restrict ourselves to the leading order expans
in u(x), we can restrict ourselves to gauge transformatio

L̂a(x)@Am# whose x dependence is only coming from th
gauge potentialAm and from thex dependence of the class
cal gauge transformationa(x),

d̂L̂ĉ5 i L̂@Am#!xĈ~x!. ~30!

Subtleties might appear at higher orders inu(x). We assume
that u(x) is invariant under a gauge transformation. The o
erator x̂ is invariant under a gauge transformation. One c
as usual introduce covariant coordinatesX̂m5 x̂m1Âm. The
noncommutative field strength can be defined asF̂mn

5@X̂m,X̂n#2 ûmn(X̂). These results are very similar to thos
obtained for the Poisson structure in@31#.

C. Consistency condition and Seiberg-Witten map

As done in@12–14#, we impose that our fields transform
under the classical gauge transformations according to
~25! and under noncommutative gauge transformation
cording to Eq.~28!. We require that the noncommutativ

enveloping algebra valued gauge parametersL̂ and Ŝ fulfill
the following relation:
6-4
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~ d̂L̂d̂Ŝ2 d̂Ŝd̂L̂!!xĈ ~x!5~ i d̂L̂Ŝ@Am#2 i d̂ŜL̂@Am#1†L̂@Am# ,
!xŜ@Am#‡!!xĈ ~x!

[ŶL3Ŝ@Am#!xĈ~x!, ~31!
p
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tes
which defines the noncommutative gauge transformation
rametersL andS.

The Seiberg-Witten maps@18# have the remarkable prop
erty that ordinary gauge transformationsdAm5]mL
1 i @L,Am# and dC5 iL•C induce noncommutative gaug

transformations of the fieldsÂ,Ĉ with gauge parameterL̂ as
given above,

dÂm5 d̂Âm , dĈ5 d̂Ĉ. ~32!

The gauge parametersL̂, Ŝ, and ŶL3Ŝ are elements of
the enveloping Lie algebra,

L̂5la~x!Ta1Lab
1 :TaTb:1O~u2!, ~33!

Ŝ5sa~x!Ta1Sab
1 :TaTb:1O~u2!,

ŶL3Ŝ5yaTa1Yab
1 :TaTb:1O~u2!

with the understanding thatl, s, andy are independent o
u(x), andL1, S1, andY1 are proportional tou(x). Again
we restrict ourselves to the leading order terms inu(x).

One finds

@l,s#5 i y ~34!

in the zeroth order inu(x) and

idlS12 idsL11 iumn~x!$]ml,]ns%

1@l,S1#2@s,L1#[Y1 ~35!

in the leading order. TheAnsätze

L15
1

4
umn~x!$]ml,An%, ~36!

S15
1

4
umn~x!$]ms,An%,

Y15
1

4
umn~x!$]m~2 i @l,s#!,An%

solve Eq.~35!. This is the usual Seiberg-Witten map in th
leading order inu(x).

The matter fieldsĈ are also elements of the envelopin
Lie algebra

Ĉ @Am#5c1c1@Am#1O~u2!, ~37!

where c is independent ofu(x) and c1 is proportional to
u(x). Equation~30! becomes@12–14#
02501
a- dlc~x!5 il~x!c~x! ~38!

in the zeroth order inu(x), and

dlc1@Am#5 ilc1@Am#1 iLl
1c1@Am#

2
1

2
umn~x!]ml]nc ~39!

in the leading order inu(x). The solution is

c1@Am#52
1

2
umn~x!Am]nc1 i

1

4
umn~x!AmAnc. ~40!

This solution is identical to the one in the case of constanu.
The following relation is also useful to build actions:

c̄1@Am#5~c1@Am#!†g0

52
1

2
umn~x!]nc̄Am1 i

1

4
umn~x!c̄AmAn . ~41!

We shall now consider the gauge potential. It turns o
that things are much more complicated in that case than
are whenu is constant. We need to introduce the concept
covariant coordinates, as has been done in@12#. The non-
commutative coordinatesx̂i are invariant under a gaug
transformation,

d̂x̂i50. ~42!

This implies thatx̂iĈ is in general not covariant under
gauge transformation,

d̂~ x̂iĈ !5 i x̂ iL̂~ x̂!Ĉ Þ i L̂~ x̂!x̂iĈ . ~43!

To solve this problem, one introduces covariant coordina
X̂i @12# such that

d̂~X̂iĈ !5 i L̂~ x̂!X̂iĈ ~44!

with d̂X̂i5 i @L̂( x̂),X̂i #. TheAnsatz Xˆ i5 x̂i1B̂i( x̂) solves the
problem if B̂i( x̂) transforms as

d̂B̂i~ x̂!5 i @L̂~ x̂!,B̂i~ x̂!#2 i @ x̂i ,L̂~ x̂!# ~45!

under a gauge transformation. In our caseB̂i( x̂) is not the
gauge potential. We need to recall two relations,

@ f̂ ,
!xĝ#5 iu i j ~x!] i f ] jg1O~u3!, ~46!
6-5
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@xi
,

!xL̂#5 iu i j ~x!] jL̂1O~u2!.

Equation~45! then becomes

d̂B̂i~x!5u i j ~x!] jL̂~x!1 i @L̂~x! ,
!xB̂i~x!#. ~47!

Following @12#, we expandB̂i as follows:

B̂i5u i j ~x!Bj1B1i1O~u3!. ~48!

We obtain the following consistency relation forB̂i :

dlB1i5u i j ~x!] jL
12

1

2
ukl~x!$]kl] l@u i j ~x!Bj #

2]k@u i j ~x!Bj #] ll%1 i @l,B1i #1 i @L1,u i j ~x!Bj #.

~49!

These equations are fulfilled by theAnsätze

B1i52
1

4
ukl~x!$Bk ,] l@u i j ~x!Bj #1u i j ~x!Fl j

B%, ~50!

L15
1

4
u lm~x!$] ll,Bm%

whereFi j
B5] iBj2] jBi2 i @Bi ,Bj #. The Jacobi identity~18!

is required to show that theseAnsätzework.
The problem is to find the relation to the Yang-Mil

gauge potentialAm . If u is constant, the relation is trivial
B̂i5u imÂm . Our goal is to find a relation betweenÂm , de-
fined asD̂m5]m2 iÂm , and B̂i such that the covariant de
rivative D̂m transforms covariantly under a gauge transf
mation.

Let us consider the productX̂i!xĈ again. It transforms
covariantly according to Eq.~44!. Let us now consider

the object 2 i d̂m i
21(X̂)!x(X̂

i!xĈ), with dûm i
21(X̂)
02501
-

5 i @L̂ ,
!xûm i

21(X̂)#, i.e., û(X̂) is a covariant function ofX̂. The
object under consideration transforms according to

d̂„2 i ûm i
21~X̂!!x~X̂i!xĈ!…

52 i L̂!xûm i
21~X̂!!xX̂

i!xĈ. ~51!

We can thus define a covariant derivativeD̂m ,

D̂m!xĈ52 i ûm i
21~X̂!!xX̂

i!xĈ, ~52!

which transforms covariantly.
There is one new subtlety appearing in our case. Note

um i
21(X̂) depends on the covariant coordinateX̂m . We need to

expandum i
21(X̂) in u. This is done again via a Seiberg-Witte

map. The transformation property ofûmn
21 implies

dûmn
21~X̂!5 i @L̂ ,

!xûmn
21~X̂!#

52ukl~x!]ka] l@umn
0 ~x!#21

1 i †l,@umn
1 ~ x̂!#21

‡1•••, ~53!

where we have used the expansionû21(X̂)5@u0( x̂)#21

1@u1( x̂)#211O(u2) for û21(X̂). One finds

d~umn
0 !2150, ~54!

d~umn
1 !2152ukl]kl] l@umn

0 ~ x̂!#211 i †l,@umn
1 ~ x̂!#21

‡.

This system is solved by

~umn
0 !215umn

21~x!, ~55!

~umn
1 !215u i j ~x!Aj] iumn

21~x!.

Note that this expansion coincides with a Taylor expans
for ( ûmn

21)(X̂).
The Yang-Mills gauge potential is then given by
Âm~x!!xĈ5 d̂m i
21~X̂!!xB̂

i~x!!xĈ

5um i
21~x!B̂i~x!!xĈ1 i

1

2
uab~x!]aum i

21~x!]b@B̂i~x!!xĈ#1~um i
1 !21B̂i~x!Ĉ. ~56!

One finds

Am!xĈ5Bm!xĈ ~57!

Am
1 !xĈ5um i

21~x!B1i!xĈ1 i
1

2
uab~x!]aumn

21~x!]b@Bn~x!Ĉ#1@um i
1 ~x!#21u ia~x!Aa!xĈ ~58!

52
1

4
um i

21~x!ukl~x!] lu
i j ~x!$Ak ,Aj%Ĉ2

1

4
ukl~x!$Ak ,] lAm1Flm%Ĉ

1 i
1

2
uab~x!]aumn

21~x!]b@unr~x!ArĈ#1ukl~x!Al]kumn
21~x!una~x!AaĈ.
6-6
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The derivative term is more complex than it is usually,

2 i ûm i
21~X̂!!xx

i!xĈ5]mĈ1@um i
1 ~x!#21u ik~x!]kĈ1

i

2
uab~x!]aumn

21~x!]b@unr~x!]rĈ#1•••. ~59!

Note thatAm
1 !xĈ and the modified derivative are not Hermitian. We will have to take this into account when we bui

actions in the next section.

III. ACTIONS

In this section, we shall concentrate on the actions of quantum electrodynamics and of the standard model on a ba
described by au which is space-time–dependent. The main result is that the leading order operators are the same
constantu case, if one substitutesu by u(x). New operators with a derivative acting onu(x) also appear.

A. QED on an x-dependent space-time

An invariant action for the gauge potential is

Sg52
1

4
TrE w~x!F̂mn!xF̂

mnd4x, ~60!

whereF̂mn is defined as

F̂mn5 i @D̂m ,
!xD̂n#5 i @2 i ûm i

21~X̂!!xX̂
i
,
!x2 i ûn i

21~X̂!!xX̂
i #. ~61!

For the matter fields, we find

Sm5E w~x!Ĉ
¯

!x~ igmD̂m2m!Ĉd4x, ~62!

whereD̂mĈ5(]m2 iÂm)!xĈ. We can now expand the noncommutative fields inu(x) and insert the definition for the!x
product.

The Lagrangian for a Dirac field that is charged under a SU(N) or U(N) gauge group is given by

mĈ
¯

!xĈ5mc̄c1
i

2
mumn~x!Dmc̄Dnc, ~63!

Ĉ
¯

!xig
mD̂mĈ5c̄ igmDmc2

1

2
umn~x!Dmc̄grDnDrc2

i

2
umn~x!c̄grFrmDnc1terms with derivatives acting onu ~64!

and the gauge part is given by

F̂mn!xF̂
mn5FmnFmn1

i

2
umn~x!DmFrsDnFrs1

1

2
umn~x!$$Frm ,Fsn%,F

rs%2
1

4
umn~x!$Fmn ,FrsFrs%

2
i

4
umn~x!@Am ,$An ,FrsFrs%#1terms with derivatives acting onu. ~65!

The terms involving a derivative acting onu will be written explicitly in the action. They can be cast in a very compact w
after partial integration and some algebraic manipulations. The following two relations can be useful in these a
manipulations:

]mw~x!5urm
21~x!]auar~x!w~x!, ~66!

]aumn
21~x!52umr

21~x!@]aurs~x!#usn
21~x!. ~67!

One notices that some of the terms with a derivative acting onu are total derivatives,
025016-7
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E w~x!]m@umn~x!Gn#d4x52E ]m@w~x!#umn~x!Gnd4x

5E w~x!]m@umn~x!#Gnd4x ~68!

using partial integration and where the last step follows from the property~24!. These terms, therefore, do not contribute to t
action.

For the action we use partial integration, the cyclicity of the trace, and the property~68! and obtain to first order inu(x)

E w~x!Ĉ
¯

!x~ igmD̂m2m!Ĉd4x5E w~x!c̄~ igmDm2m!cd4x2
1

4E w~x!umn~x!c̄Fmn~ igmDm2m!cd4x

2
1

2E w~x!umn~x!c̄grFrmiD ncd4x

1
1

4E w~x!uma
21~x!urb~x!]buas~x!Drc̄gmDscd4x1H.c., ~69!

2
1

4
Tr

1

G2E w~x!F̂mn!xF̂
mnd4x52

1

4E w~x!FmnFmnd4x1
1

8
t1E w~x!usr~x!FsrFmnFmnd4x

2
1

2
t1E w~x!usr~x!FmsFnrFmnd4x1terms with derivatives acting onu, ~70!

wheret1 is a free parameter that depends on the choice of the matrixY ~see@15#!. We have not calculated explicitly the term
with derivatives acting onu for the gauge part of the action. These terms are model-dependent as they depend on the
of the matrixY. These terms will be calculated explicitly in a forthcoming publication. We used the following notation

GĈ (n)}gnĈ (n) and Tr
1

G2
F̂mn!xF̂

mn5
1

N (
n51

N
e2

gn
2 ~q(n)!2F̂mn

(n)!xF̂
(n) mn ~71!

and

F̂mnĈ (n)[eq(n)F̂mn
(n)Ĉ (n). ~72!

The usual coupling constante can be expressed in terms of thegn by

Tr
1

G2
Q25 (

n51

N
1

gn
2 ~q(n)!25

1

2e2
. ~73!

B. The standard model on anx-dependent space-time

The noncommutative standard model can also be written in a very compact way following@15#,

SNCSM5E d4x w~x!(
i 51

3

Ĉ
¯

L
( i )!xiD”̂ ĈL

( i )1E d4x w~x!(
i 51

3

Ĉ
¯

R
( i )!xiD”̂ ĈR

( i )2E d4x w~x!Tr
1

G2
F̂mn!xF̂

mn1E d4x w~x!

3@r0~D̂mF̂!†!xr0~D̂mF̂!2m2r0~F̂ !†!xr0~F̂ !2lr0~F̂ !†!xr0~F̂ !!xr0~F̂ !†!xr0~F̂ !#1E d4x w~x!

3S 2 (
i , j 51

3

Wi j $@ L̂
¯

L
( i )!xrL~F̂ !#!xêR

( j )%2 (
i , j 51

3

~W†! i j $ ē̂R
( i )!x@rL~F̂ !†!xL̂L

( j )#%2 (
i , j 51

3

Gu
i j $@Q̂
¯

L
( i )!xrQ̄~FC !#!xûR

( j )%

2 (
i , j 51

3

~Gu
†! i j $ ū̂R

( i )!x@rQ̄~F̄
ˆ

!†!xQ̂L
( j )#%2 (

i , j 51

3

Gd
i j $@Q̂
¯

L
( i )!xrQ~F̂ !#!xd̂R

( j )%

2 (
i , j 51

3

~Gd
†! i j $d̂

¯
R
( i )!x@rQ~F̂ !†!xQ̂L

( j )#% D . ~74!
025016-8
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The notations are the same as those introduced in@15#. The
only difference is the introduction of the weight functio
w(x). The expansion is performed as described in@15#.
There are new operators with derivatives acting onu(x), but
the terms suppressed byu(x) that do not involve derivatives
on u are the same as those found in@15#. One basically has
to replaceu by u(x) in all the results obtained in@15#.

C. Feynman rules

We shall concentrate on the vertex involving two ferm
ons and a gauge boson which is modified byu(x). One finds

E d4xe[ 2 ixm(bm2qm2km1pm)] S i

2
ũmn~b!@pn~k”2m!

2kn~p”2m!#2
i

2
kaũab~b!pbgmD , ~75!

whereũ is the Fourier transform ofu(x). This is the lowest
order vertex ing andu(x) which is model independent, i.e
independent oft1 ~see Fig. 1!. It is clear that the dominan
signal is a violation of the energy-momentum conservati
as some energy can be absorbed in the background fie
released from the background field. Similar effects will occ
for the three-gauge-boson interaction and for the tw
fermion–two-gauge-boson interactions.

IV. MODELS FOR u„x…

The functionu(x) is basically unknown. It depends on th
details of the fundamental theory which is at the origin of t
noncommutative nature of space-time. Recently, noncom
tative theories with a nonconstant noncommutative par
eter have been found in the framework of string theory@35–
38#. But, since we do not know what will eventually turn o
to be the fundamental theory at the origin of space-time n
commutativity, we can consider different models foru(x).
One particularly interesting example forũ(b) is a Heaviside
step function times a constant antisymmetric tensorũmn(b)
5u(b02LR)umn. The main motivation for such anAnsatzis
that mentioned in@15#; the noncommutative nature of spac
time sets in only at short distances. A Heaviside funct

FIG. 1. Correction to the two-fermion gauge boson vertex
02501
,
or
r
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u-
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n

simply implies that there is an energy threshold for the
fects of space-time noncommutativity. In that case, the ve
studied in Eq.~75! becomes

d4~bm2qm2km1pm!u~b02LR!

3S i

2
umn@pn~k”2m!2kn~p”2m!#2

i

2
kauabpbgmD ,

~76!

where u(b02LR) is the Heaviside step function. In othe
words, the energy of the decaying particle has to be ab
the energyLR corresponding to the distanceR. Note that we
now have two scales, namely the noncommutative scaleLNC
included in u and the scale corresponding to the distan
where the effects of noncommutative physics set in,LR . A
small scale of, e.g., 1 GeV forLR is sufficient to get rid of all
the constraints coming from low energy experiments and
particular from experiment that are searching for violatio
of Lorentz invariance. This implies that heavy particles a
more sensitive to the noncommutative nature of space-t
than the light ones. It would be very interesting to search
a violation of energy conservation in the top quark deca
since they are the heaviest particles currently accessible

Clearly, there are certainly models that are more appro
ate than a Heaviside step function. This issue is related
model building and is beyond the scope of the present pa
Our aim was to give a simple example of the type of mo
that can help to loosen the experimental constraints.

Another interesting possibility is thatumn transforms as a
Lorentz tensor:umn(x8)5Lr

mLs
n urs(x), in which case the

action we have obtained is Lorentz invariant. It is neverth
less not clear which symmetry acting onu( x̂), i.e., at the
noncommutative level, could reproduce the usual Lore
symmetry once the expansion inu is performed. There are
nevertheless examples of quantum groups, where a defor
Lorentz invariance can be defined@39,40#. Note that ifu(x)
develops a vacuum expectation value, Lorentz invarianc
spontaneously broken.

V. CONCLUSIONS

We have proposed a formulation of Yang-Mills fie
theory on a noncommutative space-time described b
space-time–dependent antisymmetric tensoru(x). Our re-
sults are only valid in the leading order of the expansion
u. It is nevertheless not obvious that these results can ea
be generalized. The basic assumption is thatu(x) satisfies
the Jacobi identity. This insures that the star product is as
ciative.

We have generalized the method developed by Wess
his collaborators to the case of a nonconstant fieldu, and we
have derived the Seiberg-Witten maps for the gauge trans
mations, the gauge fields, and the matter fields. The m
difficulty is to find the relation between the gauge potent
of the covariant coordinates and the Yang-Mills gauge pot
tial.

As expected, new operators with derivative acting onu
are generated in the leading order of the expansion inu. But,
6-9
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most of them drop out of the action because they corresp
to total derivatives.

The main difference between the constantu case is that
the energy momentum at each vertex is not conserved f
the particles point of view, i.e., some energy can be absor
or created by the background field. One can consider dif
ent models for the deformationu. It is interesting to note tha
already a simple model can help to avoid low energy phys
constraints. This implies that noncommutative physics
comes relevant again as a candidate for new physics be
the standard model in the TeV region.
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APPENDIX: THE !x PRODUCT

In this appendix, we shall derive the!x product using the
deformation quantization. We want to emphasize the fact
this approach only works in the leading order inu(x). In that
case it is rather straightforward to apply the formalism d
veloped in@12–14# with minor modifications, which we shal
describe.

We shall follow the usual procedure~see, e.g.,@7#!. Let us
consider the noncommutative algebraÂ defined as
C^^x̂1, . . . ,x̂4&&/Rx , whereRx is the relation~10! and the
usual commutative algebraA5C^^x1, . . . ,x4&&. Let W:A
→Â be an isomorphism of vector spaces. The!x product is
defined by

W~ f !xg![W~ f !•W~g!5 f̂ •ĝ. ~A1!

In general, we do not know how to construct this new s
product, but since we are only interested in the leading or
operators, all we need is to define the new star product in
leading order and this can be done easily, as describe
@12–14#, by considering the Weyl deformation quantizatio
procedure@41#,

f̂ 5W~ f !5
1

~2p!2E d4k exp~ ik j x̂
j ! f̃ ~k! ~A2!

with

f̃ ~k!5
1

~2p!2E d4k exp~2 ik jx
j ! f ~x!. ~A3!
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We now consider the!x product of two functionsf andg,

W~ f !xg!5
1

~2p!4E d4kd4p exp~ ik j x̂
j !

3exp~ ip j x̂
j ! f̃ ~k!g̃~p!. ~A4!

The coordinates are noncommutating. The Campbell-Ba
Hausdorff formula

eAeB5eA1B1(1/2)[A,B] 1(1/12)[[A,B],B] 2(1/12)[[A,B],A] 1•••

~A5!

is thus need to evaluate this expression. This is wher
potential problem arises. The commutator of two nonco
mutative coordinates is, in our case, by assumption not c
stant and it is not obvious whether the Campbell-Bak
Hausdorff formula will terminate. But, as already mention
previously, we are only interested in the leading order n
commutative corrections and we thus neglect the higher
der inu terms which will involve derivatives acting onu(x).

In the leading order inu we have

exp~ ik j x̂
j !exp~ ik j x̂

j !5expS i ~ki1pi !x̂
i2

i

2
u i j ~x!kipj1••• D

~A6!

and

W21@ û i j ~ x̂!#5u i j ~x!1O~u2!. ~A7!

One thus finds

f !xg~x!5E d4kd4pexpS i ~ki1pi !x̂
i2

i

2
u i j ~x!kipj1••• D

3 f̃ ~k!g̃~p!, ~A8!

where we define the!x product in the following way:

f !xg[ f •g1
i

2
umn~x!

] f ~x!

]xm

]g~y!

]yn U
y→x

[ f •g1
i

2
umn~x!

] f ~x!

]xm

]g~x!

]xn
, ~A9!

neglecting higher order terms inu that are unknown and
taking the limit y→x. It is interesting to note that it corre
sponds to the leading order of the star product defined fo
Poisson structure@29–31#. We want to insist on the fact tha
the results presented in this appendix cannot be genera
to higher order inu. This can be done using Kontsevich
method, which is unfortunately much more difficult t
handle.
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