
PHYSICAL REVIEW D 68, 025014 ~2003!
A step beyond the bounce: Bubble dynamics in quantum phase transitions

Yoav Bergner and Luı´s M. A. Bettencourt
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

~Received 14 June 2002; published 15 July 2003!

We study the dynamical evolution of a phase interface or bubble in the context of alf41gf6 scalar
quantum field theory. We use a self-consistent mean-field approximation derived from a 2PI effective action to
construct an initial value problem for the expectation value of the quantum field and two-point function. We
solve the equations of motion numerically in 111 dimensions and compare the results to the purely classical
evolution. We find that the quantum fluctuations dress the classical profile, affecting both the early time
expansion of the bubble and the behavior upon collision with a neighboring interface.
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I. INTRODUCTION

During first order phase transitions, bubbles or domain
the lower free energy phase~true vacuum! are nucleated in a
metastable, or false vacuum, phase. Even at zero temp
ture, bubbles are induced by quantum effects, but they m
also be thermally activated. The theory of droplet formati
describing the onset of nucleation, is by now venerably
and well established. It stretches back to the work of Bec
and Döring @1# and Langer@2# in statistical physics and late
to that of Coleman@3# in the context of relativistic quantum
fields, among others@4,5#.

The theory of droplet nucleation, although success
leaves almost all dynamical questions unanswered: w
happens to the system once the bubble is nucleated?
general phenomenology of bubble expansion and coa
cence must address how a semiclassical field solution~the
bubble! propagates in the presence of quantum or ther
fluctuations for long times, i.e. how these fluctuations int
act quantum mechanically with the interface, and how
full self-consistent system may be described classically
hydrodynamics, for example of front propagation in med

All of these questions can be easily posed and are
principle, answerable in the context of quantum field theo
Tackling them quantitatively, however, requires a combi
tion of non-perturbative analytical and numerical techniqu
that are just now beginning to emerge. The aim of the pres
paper is to take the first steps toward studying the nuclea
and dynamical propagation of bubbles together with th
self-consistent quantum fluctuations in relativistic quant
field theory.

The theory of droplet nucleation tells us that there
subcritical bubbles which decay away and also supercrit
bubbles which feed on the energy released by the phase
sition to grow until the true vacuum phase has obliterated
false vacuum entirely. Coleman dubbed this the fate of
false vacuum@3#.

Details of the dynamics described heuristically above
notably absent. To address the question of what is the cri
bubble size, what is the shape or profile of the bubble a
expands, and whether the bubble wall experiences visc
drag, we need a thorough understanding of the nonequ
rium quantum field dynamics. A classical analysis based
global properties of Lorentz invariance is present in@3#, but
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this of course leaves out fluctuations and hence both vir
or real particles.

The inclusion of~self-consistent! particles or fluctuations
leads to a panoply of new phenomena that must be con
ered for the complete description of the phase transiti
Recognizing this, Coleman left a number of open questi
concerning the effects of fluctuations~particles! on interfaces
and vice versa@3#. These issues are not manifest in the str
context of the nucleation problem.

The first of Coleman’s questions is, what happens whe
bubble encounters particles? This phenomenon is centra
scenarios of early Universe baryogenesis and has been
dressed in this context by many authors@6–10#. Baryogen-
esis remains the most important motivation for the study
bubble wall dynamics in relativistic settings. Several wor
@9,10# have recently addressed the problem of computing
asymptotic velocity and the shape of Higgs field bubbles
temperatures near the electroweak phase transition. T
approaches treat the bubble wall as a classical field ba
ground immersed in a bath of thermal fluctuations wh
obey effective transport equations for their occupation nu
ber distributions. This treatment is appropriate if the bub
wall moves sufficiently slowly, contains only ‘‘soft gradi
ents,’’ and if quantum coherence is unimportant. Thus
transport approach will necessarily fail at sufficiently lo
temperatures and/or under severe supercooling. In th
more difficult cases, the direct field theoretical methods
veloped here become essential. Quantum first order ph
transitions in non-relativistic systems@11# may provide an
interesting laboratory for testing the non-relativistic analog
of the zero-temperature methods described below.

Coleman’s other questions are concerned with the po
bility that bubbles may be induced by fluctuations~and per-
haps even created at particle scattering experiments@12#! and
with particle production resulting from the collision of tw
bubble walls. Both phenomena necessitate a dynamical n
perturbative treatment of quantum field theory valid for lo
times. For this reason they have remained poorly underst

In recent years, the availability of numerical methods
solve for the time evolution of quantum fields has given r
to a resurgence of interest in such problems. The causal
malism suited to initial value formulations of field theor
dynamics has been employed in various approximat
schemes in an effort to isolate the relevant features o
©2003 The American Physical Society14-1
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Y. BERGNER AND L. M. A. BETTENCOURT PHYSICAL REVIEW D68, 025014 ~2003!
quantum kinetic theory from first principles@13–17#.
In this paper we consider a scalar quantum field the

which exhibits a first-order phase transition. Assuming t
the field is in the ‘‘false vacuum’’ before the transition and
brought out of equilibrium by the nucleation of bubbles
this ‘‘true vacuum’’ phase, we study the detailed dynamics
bubbles which we impose as initial conditions. Because
the computational effort required in the quantum theory,
restrict our attention to (111)-dimensional spacetime.

We consider the purely classical field evolution as well
a self-consistent quantum evolution in the Hartree appro
mation at zero temperature. The generalization of the form
ism to include both higher-order interactions@18# and/or fi-
nite temperature is straightforward. Thermal effects lead
qualitatively different physics, and we intend to analy
these physical consequences in detail in a future work.

Before listing our main results, we would like to clarif
one issue concerning our study of the dynamics of quan
field bubbles. Whether a bubble of true vacuum phase
critical is determined by the extremization of the energy,
the Euclidean action. While this may be obvious from t
point of view of an initial value problem, there has traditio
ally been some confusion of the critical~Euclidean space
time! radius for the bounce,RB with the critical~purely spa-
tial! radius for growth, which we labelRE . The two values
are related in the thin wall approximation by a constant
proportionality

RE

RB
5

~d21!

d

in d spatial dimensions; hence for (111) dimensions, any
bubble is critical. More precisely, the critical bubble size
constrained in one dimension only by the thickness of
bubble. This is not to say that the bounce does not accura
describe~at least at the semiclassical level! the bubble that
results from vacuum tunneling. However, in the interest
generality, we consider the possibility that bubbles of a d
ferent size may be induced. That said, the main results of
paper are as follows:~1! The bounce determines the corre
profile of the bubble wall, but induced, super-critical bubb
with larger or smaller radii still grow and asymptote
shifted light cones. The bounce solution is unique and id
tifiable in that it asymptotes to the light cone from the orig
These results are already manifest in the classical des
tion. ~2! Including quantum effects at the level of the Hartr
approximation does not change the qualitative feature
constrained by Lorentz invariance—of bubble growth at z
temperature. However, in much the same sense that qua
fluctuations render the quantum effective potential differ
from the classical one, they do affect the detailed shape
the bounce. Hence,~3! the proper description of quantum
bubble dynamics necessitates a self-consistent bounce w
includes a prescription of the quantum fluctuations at
time of nucleation.~4! The behavior of colliding bubbles
does indicate a qualitative difference between the class
and quantum behavior. In our model, the classical bou
appears remarkably stable against bubble coalescen
exhibiting elastic collisions off neighboring expandin
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bubbles for very long times~possibly forever!. The quantum
evolution, on the other hand, displays the more expec
behavior wherein the bubbles disappear by transferring
ergy to intermediate frequencies on a time scale of the s
order of magnitude as the bubble size.

In Sec. II we summarize the semiclassical theory and
predictions; we present our model and highlight some of
classical dynamical details which emerge anew due to
consideration of the dynamics as an initial value problem a
due to our specialization to (111) dimensions. In Sec. III
we extend the analysis of the dynamics to a self-consis
Hartree-like approximation and discuss the simplification
involves. We summarize our results for the propagation a
collision of bubble walls in the quantum theory in Sec. IV.
Sec. V we discuss the many interesting possibilities for
application of the methods of this paper to related questi
as well as the refinements necessary to render the long-
evolution of self-consistent quantum fluctuations more re
istic.

II. „SEMI …CLASSICAL DYNAMICS

Ultimately, we would like to understand the quantum d
namical evolution of a generic bubble of true vacuum~in-
duced perhaps by coupling to other fields or sources!. We
should naturally do first what we can in the classical regim
where we may apply the literature on semiclassical fi
theory methods in the bubble nucleation problem@2,3# and
connect to other numerical studies@19#. The relativistic pic-
ture was elegantly framed by Coleman in Ref.@3#, so we
shall parallel that analysis, working out a specific example
full detail.

Coleman set out to compute the decay rate of the fa
vacuum in a scalar theory described by the Lagrangian

L5
1

2
~]mf!22V~f!. ~1!

By analogy with the semiclassical analysis of barrier pene
tion, he obtained the exponent in the vacuum decay rat
terms of an instanton solution of Euclidean spacetime wh
he called the bounce. The bounce function is a saddle p
of the Euclidean action,

SE@f#5E ddxdtH 1

2 S df

dt D 2

1
1

2 S df

dxW
D 2

1V~f!J , ~2!

hence it satisfies Euclidean ‘‘equations of motion.’’ The s
lution is subject to appropriate boundary conditions at
origin and at infinity. It is understood that such a functio
will always exist and will beO(D) invariant for D5d11
spacetime dimensions, thus depending only on a radial c
dinater5At21x2, fb5fb(r). Then the bounce equatio
and corresponding boundary conditions take the form

d2fb

dr2 1
D21

r

dfb

dr
5

dV~fb!

dfb
, ~3!
4-2
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A STEP BEYOND THE BOUNCE: BUBBLE DYNAMICS IN . . . PHYSICAL REVIEW D68, 025014 ~2003!
lim
r→`

f~r!5f1 and
df

dr U
r50

50. ~4!

A happy consequence of the bounce solution is that the r
time classical equation of motion is just the analytic contin
ation of the bounce equation to real time and thus is sol
by the analytic continuation of the bounce from Euclide
spacetime to Minkowski, i.e. witht→ i t ,

fb~r!→fb~Ax22t2!. ~5!

The shape of the bounce becomes the profile of the bu
wall, and this shape remains unaltered as the wall describ
hyperbola in spacetime, reaching the speed of light asy
totically. Lorentz invariance allows us to solve for the bubb
profile in all space and time and not as an initial value pr
lem.

A number of features of the spontaneous decay of
false vacuum are severely constrained. The most favor
shape of the bubble is constrained by stationarization of
action. That its asymptotic velocity isc ~or 1 in natural units!
is enforced byO(D) invariance of the bounce in Euclidea
spacetime orO(D21,1) Lorentz invariance. Thus it is im
possible in the absence of Lorentz violating fluctuations
the bubble wall to experience drag. Classically, any d
would have to be put in by hand in the equations of motio1

Let us make the analysis concrete by specializing t
potential of the form

V@f#5
1

2
m2f21lf41gf6. ~6!

For the purposes of comparison with an analytic, thin-w
approximation, it is convenient to have a potential with d
generate minima in a simple parametric limit. We can rew
the potential in terms of the parametersf0

2 andg such that

V@f#5gf2~f22f0
2!22gf2, ~7!

where f0
252l/2g and g5(l2/g22m2)/4. The thin wall

approximation relies on neglecting the term proportional
g. In practice the thin wall obtains in the limit where th
energy difference between the two minimae5V(f2)
2V(f1)5gf0

2 vanishes. As a working example we use t
parametersm254,l520.8 and g50.07. Then g50.29.
With these choices the potential for the bounce calculatio
shown in Fig. 1. Also shown is the degenerate potentialg
50).

We construct the bounce solution in the thin wall appro
mation, following Ref.@3#, and by direct numerical integra
tion. The thin wall bounce consists of solving for the co
figuration off, piecewise inr such that

1We have verified that the addition of a simple drag termh] tf in
the dynamical field equations does indeed result in an asymp
interface velocity smaller than that of light. The study of the s
chastic bubble wall trajectory in the presence of phenomenolog
damping and noise is in itself an interesting problem, see@20#.
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f5f25f01O~g!, r!R

f5fwall~r2R!, r.R

f5f150, r@R. ~8!

Here fwall is computed in the degenerate potential, i.e.
solving

d2fwall

dr2
5U8@fwall#, ~9!

U@f#5gf2S f21
l

2gD 2

. ~10!

The solution has been obtained previously@21#:

fwall
2 ~r!5

f0
2

11emr
, ~11!

wherem5A8gf0
254.21, andm2 is the second derivative o

the potentialU9@f0# evaluated atf0. Up to a correction of
order e, it is the mass of excitations around the true min
mum. To complete the thin wall approximationR is deter-
mined variationally, as the value that extremizes the Euc
ean action. In the thin wall approximation to the action, t
interface itself amounts to a surface term, whereas the c
tribution from the two piecewise constant parts is prop
tional to the bubble’s spacetime volume. Hence in (111)
dimensions

SE52pR2e12pRs, ~12!

wheres is a surface tension. The stationary point of Eq.~12!
is equivalently the zero-energy value ofR in configuration
space:

2Re1s50, ~13!

so thatR5s/e with

tic
-
al

FIG. 1. The classical potential~lower curve! for the bounce
calculation with minima atf250 andf152.46. The upper curve
is the degenerate potential@see Eq.~7!#, used to compute in the thin
wall approximation. Its second minimum occurs atf52.39.
4-3
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Y. BERGNER AND L. M. A. BETTENCOURT PHYSICAL REVIEW D68, 025014 ~2003!
s5E drF1

2 S dfwall

dr D 2

1U@fwall#G . ~14!

With our parameters,s53.05, andR51.82. The two solu-
tions, the exact bounce computed numerically and in the
wall approximation, are shown in Fig. 2.

We note that the thin wall bounce is a good approximat
to the exact solution in the neighborhood of the inflecti
point, i.e. atr.Rc51.82. The true condition for the validity
of the approximation@3# is that mR@1. With our param-
eters,m5A8gf0

254.21, so thatmR57.66@1, which is shy
of an order of magnitude larger than unity. In fact, as d
picted in Fig. 2, the bubble wall does not appear very ‘‘thin

To confirm the predictions of the Euclidean solution a
test our numerical methods we now solve the classical
time equations of motion~i.e. in Minkowksi space! for the
field f explicitly. As initial conditions, we use a bubble a
rest with the profile given by the approximate analytic fo
~11!. By following one point on the bubble wall with time
we observe the predicted trajectory, shown in Fig. 3.

FIG. 2. The numerical solution for the bounce profile~points!
and the thin wall approximation from Ref.@21#. The thin wall ap-
proximation agrees well with the exact numerical computat
where it should, i.e. atr.Rc51.82.

FIG. 3. Spacetime trajectory for a (111)-dimensional bubble
started at rest att50 is well described by the hyperbolax
5AR21t2 with R51.82.
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We have so far said nothing about induced vacuum de
in which a bubble may be nucleated with an arbitrary s
and shape. As seen in Eq.~13!, the spontaneous decay of th
vacuum via the bounce costs exactly no energy. Howeve
the energy of an initial bubble configuration may be a
counted for from another source, it need not be zero.
would like to know how such a bubble will evolve give
what we know about the bounce. We first consider vary
the size of the bubble without changing its interface profi

Generally the fate of an induced bubble—growth
decay—can be determined by considering the energetic
the corresponding initial value problem. In this case, we
not have a solution for all spacetime, but only a spatial p
file at some initial timet50. We will assume that the bubbl
wall is initially at rest, i.e. that its kinetic energy is zero.2 The
total energy is given by

E5E ddx
1

2
~] tfb!

21
1

2
~¹fb!

21V~fb!, ~15!

where the static part can again be computed in the thin w
limit. It is Estatic5sSd2eVd , whereSd andVd are the sur-
face and volume of the bubble ind5D21 spatial dimen-
sions. The energy has a local maximum atRE5(d21)s/e
~recall that the bounce has an action extremum atRB
5ds/e). For the interface to move while globally conser
ing energy it is necessary that it can lower its static ene
so that the difference is converted into kinetic ener
Bubbles withR.RE do so by growing while those withR
,RE must shrink. HenceRE defines the critical radius fo
growth. A particular case is that of the bounce which cor
sponds to the choice ofRB which enforcesEstatic50. The
bouncealwaysfalls in the classR.RE and therefore always
grows. However, it is not the case that the bounce radiu
the critical radius as defined by the onset of dynami
growth. We plot an example of the energy in 3 spatial dime
sions in Fig. 4~a!.

The case of (111) dimensions (d51 above! is special
because the interface energy saturates: once the bubb
larger than twice the thickness of the wall, the ‘‘surfac
term no longer depends on the size of the bubble. Since
bubble can gain kinetic energy by converting false vacuum
thin wall bubble willalways growin (111) dimensions, i.e.
RE50. This is seen clearly in Fig. 4~b!, where the thin wall
approximation is again assumed. Ifm is a measure of the
inverse thickness of the bubble, then the thin wall appro
mation amounts tomR@1. In practice, the finite size of the
wall profile constrainsm so thatRc.1/m gives a lower limit
on the critical bubble size.

We verified this behavior numerically as well as the fa
that the thin wall prediction ofRE

d525RB
d5151.817 is an

excellent approximation to the real critical value for bubb
growth in d52, which occurs betweenR51.81021.815.
Changing the radius amounts to usingf(r2R) with the

2This is a weak assumption from the point of view of the initi
value problem. From the Euclidean spacetime analysis, it is a c
sequence, not an assumption.

n

4-4
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A STEP BEYOND THE BOUNCE: BUBBLE DYNAMICS IN . . . PHYSICAL REVIEW D68, 025014 ~2003!
analytic form~11! and variableR as an initial condition. We
show the trajectories obtained for bubbles with different i
tial sizes in Fig. 5. Note that the trajectories for bubbles w
radii smaller or larger than the bounce asymptote to shi
light cones. Naively, one might have expected all solutions
approach the light cone from the origin.

In order to explain these trajectories, we explicitly co
struct a piecewise solution for all~real! time with an arbi-
trarily initial size. The real time equations of motion a

FIG. 4. The dependence of energy and action on the radial
ordinate in the thin wall approximation:~a! a ‘‘spherical’’ bubble in
3d. The critical radius for growthRE is the maximum of the energy
and is smaller by a factor of (d21)/d than the radiusRB which
maximizes that action and corresponds to the zero of energy.~b! In
1d, the critical radiusRE goes to zero.

FIG. 5. Spacetime trajectories for the motion of several
11)-dimensional interfaces started at rest att50 and with different
bubble radii. All trajectories are well described by hyperbolaex5

6(x01AR21t2), with origins set att50. Thus the interface ve
locity at large times approaches the speed of light as in the cas
the bounce, wherex050.
02501
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invariant under a coordinate shiftx→x1x0. Consider cut-
ting the functionfb(x,t) alongx50 at t50 and shifting the
positivex piece by a positive amountx0 and the negativex
piece by2x0. In the gap created in the center, we extend
value off(x50) to be constant. This function looks exact
like the bounce at the interfaces but has more true vacu
sandwiched in the middle, see Fig. 6. The boundary con
tions on the bounce~4! ensure continuity up to and includin
first derivates at6x0. ~Excising a homogeneous region
the center, one can similarly generate a smaller bubble.!

A constant field in true vacuum is a static solution of t
equations of motion, hence the piecewise solution will
static in the regionuxu,x0 and expand like the bounce ou
side this region. Moreover, we recall that althoughR is de-
termined variationally in the thin wall approximation—th
freedom is exploited by our initial condition—solving th
bounce equation directly@under the assumption ofO(D)
symmetry# determinesR uniquely. The coordinate shift trans
forms

f~Ax22t22R!→f@A~x7x0!22t22R#, ~16!

so the trajectory of the interface is given byx56(x0

1AR21t2) in real time, implying that bubbles induced wit
different sizes will asymptote to different light cones as
Fig. 5.

So far we have altered the bubble size but not its profi
Since to distort the shape would be to perform a variation
function space, it is much more difficult to quantify the di
ference in the evolution of an arbitrary bubble from that
the bounce. Heuristically, we understand that if a bub
starts out with the wrong profile, it will try to change it
shape to the bounce before it expands as described ab
The critical size argument can be affected by this: sinc
small bubble shrinks as it deforms, a slightly supercritic
bubble with the wrong shape may still collapse away. A la
initial bubble, on the other hand, will convert the fals
vacuum energy into kinetic modes which both expand a
distort the bubble. We have observed both types of beha
in numerical evolutions.

o-

of

FIG. 6. Schematic construction att50 of a solution to the real
time equations of motion for allt.0.
4-5
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III. QUANTUM BUBBLES

Extending the analysis of the previous section to quan
fields introduces a host of new challenges. From the poin
view of dynamical equations of motion, we must now co
sider operator equations, which in fact translate into an i
nite Dyson-Schwinger hierarchy of equations for then-point
Green’s functions of the theory. For practical purposes,
hierarchy must be truncated somehow, and this trunca
introduces an approximation, often in the form of a se
consistent ansatz@22#. Furthermore, even upon keeping
finite number of connected correlation functions the result
system of coupled equations still describes an infinite nu
ber of degrees of freedom with non-linear interactions. S
a system must in general be solved numerically in a fin
computer, which can lead to artifactual effects. Thus it is
utmost importance to identify practical approximatio
schemes that capture the qualitative essence of the dynam
evolution of a quantum field theory as compared with
classical counterpart. This challenge is not devoid of unc
tainty since not much is known about the evolution of tru
quantum many body systems far away from thermal equi
rium.

The formulation of the problem can be cast into one f
malism which has been developed and explored in sev
works and has resurfaced in recent years with renewed v
@14,15,17#. It is based on a two-particle irreducible~2PI!
effective action for the field and the two-point functio
G@f,G# formalized in the relativistic context by Cornwal
Jackiw and Tomboulis~CJT! @14#. The Schwinger-Keldysh
closed time path~CTP! is employed to make causality ex
plicit through an appropriate real time prescription in t
path integral time contour and associated Green’s functio
hence it is frequently referred to as the CJT or the 2PI-C
formalism. It is in the evaluation ofG@f,G# that some sort
of expansion~in loops or in powers of the coupling consta
or in powers of 1/N for example! is carried out.

In this paper we shall employ the 2PI-CTP formalism
the level of the Hartree approximation, a mean-field appro
mation which amounts to keeping the 2PI diagrams wh
are lowest order in coupling constants~bubble diagrams!.
The Hartree approximation is well understood to be equi
lent to a Gaussian variational ansatz in the Schro¨dinger func-
tional formalism@23# and results in Hamiltonian dynamic
@24#. It is also qualitatively similar to the systematic large-N
approximation at leading order in 1/N. For our purposes,N
51 and the Hartree approximation is motivated chiefly b
cause it is extremely simplifying. A largeN scalar theory is
also inappropriate for the description of first order transit
dynamics as it results invariably in second order critical p
nomena@unless theO(N) symmetry is explicitly broken,
whence criticality is erased and the transition becomes
analytical crossover#.

Time evolution of spatially inhomogeneous quantu
fields, even at this level of approximation has only recen
been produced numerically@25–27#. To our knowledge, the
growth of a critical self-consistent quantum field bubble h
not been previously demonstrated.
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The starting point for the 2PI-CTP formalism is the effe
tive actionG@f,G# of @14#:

G@f,G#5S@f#1
1

2
iTr ln G211

1

2
iTrD21~f!G1G2~f,G!

1const, ~17!

whereiD 21(f) is the classical inverse propagator

iD 21~x,y;f!5
dS@f#

df~x!df~y!
~18!

and G2 sums the 2PI vacuum to vacuum diagrams w
propagators set toG and interaction vertices obtained from
the shifted LagrangianL@f→f1w#.

In the Hartree approximation, we consider 2PI diagra
in Fig. 7, hence,

G2523E d2x~l115gf2!G~x,x!2215gE d2xG~x,x!3.

~19!

We observe that the two-point function enters into t
Hartree approximation only as a local function evaluated
one spacetime point. This is apparent from the diagram
Fig. 7 which, upon opening a line, become proper se
energy diagrams. The inclusion of any diagram with two
more vertices would introduce non-local kernels in the eq
tions of motion.

The stationarity conditions on the effective action in t
absence of sources,

dG@f,G#

df
5

dG@f,G#

dG
50, ~20!

lead to equations of motion for the field

S h1m214lf216gf4112~l15gf2!G~x,x!

190gE d2xG~x,x!2Df50, ~21!

and for the Wightman two-point function

FIG. 7. Vacuum bubble diagrams in the Hartree approximat
for the 2PI effective action of our model. Lines denote the f
propagatorG in the nontrivialf background.
4-6



ti
rg
e

th

th

e

u
e

ic
ca
ic

h
u

t t

t
n.
io
o-

fu

ls
s
re
r
r
ry
th
hi

op

is

de-
The

al-

n-

e-
gs
e.

256
i-

s of
om-

re
d to

im-
he
ints
ure.
e-
he

ble,
he
ntz
ith-
ean
r,

s-
he
-
l
.
ell
m
. It
ue
ive
ini-
e

e
lyt-

A STEP BEYOND THE BOUNCE: BUBBLE DYNAMICS IN . . . PHYSICAL REVIEW D68, 025014 ~2003!
@h1m2112lf2130gf4112~l115gf2!G~x,x!

190gG~x,x!2#G~x,x8!50. ~22!

Let us remark that there are logarithmic and quadra
divergences in the bare theory in the self-energy and ene
momentum tensor, respectively. However, any scalar fi
theory in 111 dimensions is super-renormalizable using
standard counterterm procedure. For thef6 interaction, this
has been carried out explicitly in an early analysis of
quantum effective potential@28#: the logarithmic divergence
from the scalar loop in (111) dimensions affects both th
mass and the quartic coupling constantl, which need to be
renormalized. In practice, even though we solve the eq
tions of motion numerically on a discretized spatial lattic
we introduce time-independent counterterm subtractions
renormalization conditions for the ‘‘physical’’ mass, quart
coupling and energy density in vacuum. We fix the physi
~dressed! mass to coincide with the bare mass of the class
theory, i.e. we employ a subtraction~detailed below! which
sets the two-point function to zero in the false vacuum. T
quadratic divergence in the energy density is just the us
zero-point energy of vacuum, and again we choose to se
energy density in the false vacuum to zero.

In order to solve the system of equations, we need
specify initial data for the field and the two-point functio
This is more or less straightforward for the field expectat
value, which we identify with the classical field bubble pr
files of Sec. II. Thus, as anansatz, we initialize the quantum
field expectation to have the same shape as the bounce
tion described in Eq.~11!. The initial specification of the
two-point function, however, is informed by the full detai
of the nonequilibrium ensemble. As a starting point, we u
the most naive initial conditions possible, which is to igno
the formation of the initial bubble completely. In othe
words, the two-point function is initialized for a zero- o
finite-temperature distribution about the false vacuum eve
where in space, including inside the bubble. We are in
process of improving this prescription and comment on t
below.

We proceed by decomposing the equal-spacetime pr
gator in a mode basis. From here on we usex to denote the
space coordinate alone instead of spacetime, i.e.xm5(x,t)
andG(xm,xm) can be written as

G~x,t !5(
k

uck~x,t !u2@2nB~k!11#, ~23!

wherenB(k) is the Bose-Einstein distribution

nB5
1

ebvk21
. ~24!

The mode functionsck are initialized in a plane wave bas
with the mass of excitations around the false vacuum:

ck~x!5
eik•x

A2vk

, ~25!
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with

vk5Ak21m2. ~26!

The mass in the dispersion relation is self-consistently
pendent on the values of the mean field and fluctuations.
log-divergent, zero-temperature part ofG is renormalized by
the subtraction ofG(x,t) evaluated atx5t50,

GR~x,t !5G~x,t !2G~0,0!. ~27!

This is equivalent to mass and coupling constant renorm
ization.

Finally we evolve the field and two-point function~by
menas of evolving the mode functions from which it is co
structed! according to Eqs.~21! and ~22! on a discrete one-
dimensional lattice. We employ a variety of lattices corr
sponding to different physical volumes and lattice spacin
and use a fourth order symplectic integrator to step in tim
The range in the number of lattice points was between
and 2048, with typical lattice spacing of 1/64 to 1/128. D
agnostics performed at regular time intervals give a serie
cinematic snapshots of the evolution and measure the c
ponents of the energy momentum tensor^Tmn& as well as the
separate components of the energy^T00&, i.e. potential, gra-
dient and kinetic energy.

The results for the evolution of the quantum fields a
shown in the next section, where they are also compare
the purely classical field bubbles of Sec. II.

IV. NUMERICAL RESULTS

In Sec. II we have already discussed the paramount
portance of Lorentz symmetry in constraining many of t
properties of bubble wall propagation. These constra
clearly also apply in the quantum theory at zero temperat

The first clear difference is that the field profile corr
sponding to the bubble is no longer purely classical. T
quantum modes respond to our~initially ! classical back-
ground and partially screen it. The result is a dressed bub
an object with a quasi-classical profile around which t
vacuum is disturbed. This self-consistent object is Lore
invariant and once formed propagates adiabatically, i.e. w
out further particle creation. Several snapshots of the m
field and two-point function in Fig. 8 illustrate this behavio
from initial formation to late propagation.

The next important effect of quantum fluctuations is e
sentially static. Looking at Fig. 8 we also note that while t
‘‘height’’ of the dressed bubble@i.e. the true vacuum expec
tation value~VEV! of the field# is initialized at the classica
VEV, it will not remain at that value during bubble growth
This is nothing remarkable, only a demonstration of the w
known fact that the quantum effective potential differs fro
the classical potential, and their minima do not coincide
might make more sense to initialize the field with the tr
vacuum expectation value given by the quantum effect
potential at some loop order. However, given the naive
tialization of the two-point function that we employ here, th
field will still be perturbed away from this minimum insid
the bubble when the two-point function changes. The ana
4-7
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Y. BERGNER AND L. M. A. BETTENCOURT PHYSICAL REVIEW D68, 025014 ~2003!
ically computed quantum effective potential treats the m
field as spatially homogeneous. Therefore it cannot be
pected to describe accurately the dynamics of the bubble
discuss this problem and its solution in more detail bel
and in Sec. V.

At zero temperature we observe both super- and s
critical bubbles in the quantum case which grow and dec
respectively, as in the classical case. We track the positio
the bubble wall in time. Despite the fact that the quant
evolution introduces fluctuations absent in the classical c
we see a bubble wall trajectory which is consistent with
classical picture. We observe approximately hyperbolic
jectories which asymptotically approach the speed of lig
as shown in Fig. 9. Figure 8 shows some of the quantita
differences between the classical and the quantum evolu

FIG. 8. Snapshots of the expectation value for classical
quantum field ~lower curves! and two-point functionG ~upper
curve! at increasing time intervals. The initial configuration show
in the top left is almost identical in both cases. The evolution sho
the quantum bubble relaxing into the minimum energy configu
tion preferred by the quantum effective potential while bei
screened by quantum fluctuations. In so doing, it leaves be
excitations inside the bubble and accelerates more rapidly. For
sentation,G is shown shifted away from its actual value~equal to
zero wheref50).

FIG. 9. The quantum Hartree approximation trajectories for
tial bubbles of various sizes are shown as pluses. The lines
interpolations of the classical trajectories shown in Fig. 5. The
tial acceleration of the quantum bubble wall is manifestly mo
rapid, and it approaches its lightcone asymptote more quickly.
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including the effect of the ‘‘roll’’ down to the minimum of
the quantum effective potential. As the field VEV chang
inside the bubble, it releases potential energy beyond w
would happen from the movement of the interface—nam
bubble growth—alone. Since this energy is converted i
kinetic and gradient energy of the field and fluctuations, t
roll can be held responsible for a more rapid acceleration
the initial stage of growth. The energy of the true vacuum
the quantum case is also lower, so the rate of energy rel
by the bubble growth is larger. Hence, we see the quan
trajectories in Fig. 9 approach their asymptotic value~again
unity! more quickly. This is the only significant departu
from the particular hyperbolic trajectory predicted by a cla
sical analysis.

We also note that while the classical critical radius f
growth was found to beRc50.35, the critical radius in the
quantum evolution is aroundRc50.45. In both cases, the
critical radius for growth is a factor of 4 to 5 smaller than t
bounce radiusRB while relatively close~within a factor of 2!
to the lower limit in (111) dimensions for a wall with some
thicknessm21 ~i.e. Rc.1/m). In Sec. II we foundm21

50.24.
It is worth considering whether the accelerated init

growth and the observed change inRc can be understood jus
from a classical analysis of the bubble using the effect
potential instead of the bare potential. Recall that the part
lar shape of the hyperbolic trajectory is determined in
thin-wall analysis by the shape of the potential through
parameterRB . For example, we can compute the effecti
potential numerically using homogeneous fields and solv
a gap equation along the lines of earlier works@29#. From
this, we can extract a quasi-classical potential and recalcu
RB and m21 for this potential. We obtainRB50.86 and
m2150.25. We fit the observed value ofRB51.3 from the
trajectories in Fig. 9. While the classical thin-wall predi
tions using the quantum effective potential give the corr
qualitative changes, they predict the wrong magnitude of
correction. We should also note that parametrically the t
wall approximation ought to be worse in the quantum ca
since nowmR.3.44, less than half its classical value.

This rough calculation harkens back to several efforts
applying the bounce analysis to quantum field models w
for example, symmetry breaking due to radiative correctio
@30#. The problem in effect stems from the fact that the d
grees of freedom which need to be traced over in the ca
lation of the effective potential cannot be properly integra
out since they participate in the bubble dynamics. We beli
that a way out of this dilemma necessitates calculation o
self-consistent bounce, i.e. not only the shape of the m
field but also the full spectrum of interacting fluctuations
its background as prescribed by an effective action. Wh
this is beyond the scope of the present work, we are pursu
it for future publication. Furthermore, with this informatio
in hand, one could hopefully also bring to bear an analysis
the dynamical viscosity experienced by the moving wall
finite temperature, as suggested by other recent res
@31,32#.

In the meantime, the observed differences we have
scribed in the shape and trajectory of the purely class
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A STEP BEYOND THE BOUNCE: BUBBLE DYNAMICS IN . . . PHYSICAL REVIEW D68, 025014 ~2003!
bubble and its dressed quantum counterpart are all that
may expect. At zero temperature, the qualitative characte
tics of bubble propagation remain determined by the c
straint of Lorentz invariance. Once finite temperature is c
sidered, or alternately in the presence of a Lorentz-violat
condensate, bubble propagation can change drastically,
the velocity of domain growth will in general not asympto
to that of light.

Turning now to the last of Coleman’s open questions,
consider the effect of colliding bubbles in the classical a
quantum Hartree approximations. Due to the nature of
numerical simulations, we enforce periodic boundary con
tions on our one-dimensional lattice at the end points. W
the bubble interface reaches the end of the lattice, it ef
tively meets its mirror image or, equivalently, a neighbori
bubble wall. Whether the interfaces bounce off of each ot
or coalesce can then be observed.

We note a surprising result: classically the bubble wa
do not coalesce. The collision of the interfaces does tem
rarily excite wavelengths near the bubble ‘‘penetrati
depth’’ ~the bubble thickness! at low amplitude, but this en
ergy appears to be re-exchanged with the bubble interf
Furthermore, this is a special feature of the bounce pro
which is not robust under deformations of the shape of
bubble: other initial bubbles do radiate and decay alb
slowly through collisions, see Fig. 10. We also verified th
the stability of the bounce disappears in (211) dimensions
where collisions rapidly destroy the spherical symmetry
the bubble.

The (111)-dimensional classical bounce solution exh
its truly solitonic behavior in the sense that it is unaltered
scattering off of another~solitonic! bubble. This effect, well
known to exist in integrable nonlinear systems@33#, is unex-
pected in our model. In fact, Lohe has considered the line
ized perturbations around the static soliton~11! of this model

FIG. 10. Trajectories for bubble interfaces bouncing off
neighboring interfaces. Connected curves show classical traject
for the bounce~bottom! and distortions thereof~upper curves!,
while quantum trajectories are shown as data points. The clas
bounce and the quantum data are plotted for lattice spacings of
and 1/128, but the trajectories overlap entirely. The quantum tra
tory loses coherence quickly relative even to the distorted class
bubbles.
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as one example in a parameter family of polynomial pot
tials ~the sine-Gordon model appears as a limiting case!; he
has shown that there are completely reflected states in
direction from the soliton or bubble wall@34#. This is just a
physical consequence of the difference in the mass of
ementary excitations about the two vacua: low-lying state
the false vacuum cannot pass through the interface bec
they have no energy counterpart on the other side. We m
take this as suggestive evidence that the two bubble in
faces must repel under these circumstances, although it
not guarantee the observed almost perfect reflection. If
sign of theg term in the potential~7! is flipped, the initial
bubble will collapse and the interfaces will pass through e
other, exploiting thef→2f symmetry of the model as the
emerge on the other side of the collision region. We verifi
this behavior numerically. The classical scattering of our
terfaces is thus quite analogous to the scattering of solit
in the sine-Gordon model where both types of behavior~per-
fect reflection and perfect transmission! obtain even though
the vacua are identical@35#. In that case, it is soliton-soliton
or soliton-antisoliton solutions which display the two distin
possibilities.

Quantum bubbles by contrast appear to dissipate en
rather efficiently during collisions and especially during t
propagation of the interface through the fluctuations crea
by the collision. Although at the level of our approximatio
the bubbles still rebound initially from the collision, the
quickly lose kinetic energy. By the second or third collisio
all semblance of the initial configuration is lost. In order
understand the quantum, or at least semiclassical, scatte
of the interfaces, one could perform a detailed study alo
the lines of Ref.@36#, adapted for the self-consistent quantu
evolution.

We present results in Fig. 10, where we plot the class
and quantum trajectories at two different lattice spacin
~same physical volume! in order to demonstrate that this e
fect is not an artifact of the lattice discretization. We also p
classical trajectories of distorted bubbles to show that t
decay on a much longer time scale than the quan
bubbles. The trajectories are obtained by following one fi
value near the true vacuum; in the quantum and class
distorted cases, the apparent loss of periodicity indicates
fluctuations around the true vacuum no longer have a co
ent structure. In Fig. 11 we plot a late time snapshot of
field evolution in the classical and quantum cases.

V. DISCUSSION AND CONCLUSIONS

In this paper we took the first steps towards showing h
self-consistent quantum fluctuations can be incorporated
the real time dynamics of bubble interfaces. We have sho
that a classical bubble profile becomes dressed by quan
fluctuations, which in turn affect the rate of conversion of t
false to true vacuum, i.e. the acceleration of the bubble
locity towards the speed of light. We have also found that
presence of quantum fluctuations promotes substant
more efficient transport of the bubble wall energy into p
ticles at bubble collisions.

There is one inelegant feature of our analysis, namely
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Y. BERGNER AND L. M. A. BETTENCOURT PHYSICAL REVIEW D68, 025014 ~2003!
the initial conditions for the quantum evolution were i
formed by the classical bounce calculation in absentia
self-consistent fluctuations. There should exist a solution
the coupled Dyson-Schwinger equations which is analog
to the bounce, the analytic continuation of which amounts
a dressed bubble which expands without radiation~particle
creation!. Using this configuration as a starting point for a
initial value problem would eliminate the unwanted radiati
that we observed resulting from the early time response
the vacuum to the nontrivial classical background.

Starting from the 2PI-CTP formalism it is natural to ge
eralize the one-loop computation of the false vacuum de
rate to a self-consistent problem, where fluctuations and
mean-field bubble profile are solved together. The s
consistent nucleation rate and bubble evolution would be
curate to the same level of truncation as the effective ac
for any approximation, not limited to the Hartree examp
above. We believe that this intermediate step is neces
before more subtle features of the long time evolution
inevitably entangled with the early time response—can
analyzed quantitatively in detail. We have made progress

FIG. 11. Field expectation values for the quantum~upper! and
classical~lower! evolution after twelve collisions with neighborin
bubbles~effected by means of periodic boundary conditions!. The
classical bubble still maintains its shape, while the quantum bub
appears to have dissipated its energy into fluctuations around
true vacuum.
na
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wards this implementation, which we intend to report in
future work @37#.

Knowledge of the spectrum of self-consistent fluctuatio
will render the inclusion of medium effects such as fin
temperature more realistic. It also paves the way for ot
generalizations of the model and improvements upon the
proximation we have employed. A finite temperature analy
in particular may be sensitive to higher loop order intera
tions which give rise to viscosity effects in linear respon
around equilibrium. Through analysis of the energ
momentum tensor̂Tmn& we can investigate the emergen
of hydrodynamic interface propagation from microscop
physics. We also intend to extend the model to include
mions.

There are many more directions in which a similar ana
sis may be informative. From numerical solution of a su
critical bubble which decays, we can read the spectrum
asymptotic states. It may be possible that the same st
upon time reversal, would provide the initial conditions ne
essary to generate a bubble. Such an asymptotic config
tion is generically a complicated, correlated many-parti
state; however, its overlap with a two-body state may hin
the probability of a bubble resonance in a scattering exp
ment. Stable dynamical solutions such as breathers have
been features of classical field theories. It is unkno
whether they are stable upon inclusion of dynamical qu
tum effects. Finally, there has been a great deal of excitem
recently about extended objects such as branes and thei
namics, collisions, etc. If there are fields confined to ea
brane in a homogeneous manner, then the effect of collid
two branes can be cast into a problem very similar to the
explored here with the addition of traces over transverse
grees of freedom.
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