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A step beyond the bounce: Bubble dynamics in quantum phase transitions
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We study the dynamical evolution of a phase interface or bubble in the contexin@f*a g¢® scalar
guantum field theory. We use a self-consistent mean-field approximation derived from a 2PI effective action to
construct an initial value problem for the expectation value of the quantum field and two-point function. We
solve the equations of motion numerically in-1 dimensions and compare the results to the purely classical
evolution. We find that the quantum fluctuations dress the classical profile, affecting both the early time
expansion of the bubble and the behavior upon collision with a neighboring interface.
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[. INTRODUCTION this of course leaves out fluctuations and hence both virtual
or real particles.

During first order phase transitions, bubbles or domains of The inclusion of(self-consistentparticles or fluctuations
the lower free energy phasgue vacuumare nucleated in a leads to a panoply of new phenomena that must be consid-
metastable, or false vacuum, phase. Even at zero temperered for the complete description of the phase transition.
ture, bubbles are induced by quantum effects, but they maRecognizing this, Coleman left a number of open questions
also be thermally activated. The theory of droplet formation,concerning the effects of fluctuatiofzarticles on interfaces
describing the onset of nucleation, is by now venerably oldand vice vers43]. These issues are not manifest in the strict
and well established. It stretches back to the work of Beckecontext of the nucleation problem.
and Daing [1] and Langei2] in statistical physics and later The first of Coleman’s questions is, what happens when a
to that of Colemani3] in the context of relativistic quantum bubble encounters particles? This phenomenon is central to
fields, among otherf4,5]. scenarios of early Universe baryogenesis and has been ad-

The theory of droplet nucleation, although successfuldressed in this context by many auth@és-10. Baryogen-
leaves almost all dynamical questions unanswered: whatsis remains the most important motivation for the study of
happens to the system once the bubble is nucleated? Theibble wall dynamics in relativistic settings. Several works
general phenomenology of bubble expansion and coale$9,10] have recently addressed the problem of computing the
cence must address how a semiclassical field solltioe  asymptotic velocity and the shape of Higgs field bubbles at
bubble propagates in the presence of quantum or thermalemperatures near the electroweak phase transition. These
fluctuations for long times, i.e. how these fluctuations inter-approaches treat the bubble wall as a classical field back-
act quantum mechanically with the interface, and how theground immersed in a bath of thermal fluctuations which
full self-consistent system may be described classically bybey effective transport equations for their occupation num-
hydrodynamics, for example of front propagation in media. ber distributions. This treatment is appropriate if the bubble

All of these questions can be easily posed and are, imvall moves sufficiently slowly, contains only “soft gradi-
principle, answerable in the context of quantum field theoryents,” and if quantum coherence is unimportant. Thus a
Tackling them quantitatively, however, requires a combinatransport approach will necessarily fail at sufficiently low
tion of non-perturbative analytical and numerical techniquedemperatures and/or under severe supercooling. In these
that are just now beginning to emerge. The aim of the presemhore difficult cases, the direct field theoretical methods de-
paper is to take the first steps toward studying the nucleatiomeloped here become essential. Quantum first order phase
and dynamical propagation of bubbles together with theitransitions in non-relativistic systenj&1] may provide an
self-consistent quantum fluctuations in relativistic quantuminteresting laboratory for testing the non-relativistic analogue
field theory. of the zero-temperature methods described below.

The theory of droplet nucleation tells us that there are Coleman’s other questions are concerned with the possi-
subcritical bubbles which decay away and also supercriticability that bubbles may be induced by fluctuatio@sd per-
bubbles which feed on the energy released by the phase trahaps even created at particle scattering experimégis and
sition to grow until the true vacuum phase has obliterated th&vith particle production resulting from the collision of two
false vacuum entirely. Coleman dubbed this the fate of thdubble walls. Both phenomena necessitate a dynamical non-
false vacuuni3]. perturbative treatment of quantum field theory valid for long

Details of the dynamics described heuristically above ard¢imes. For this reason they have remained poorly understood.
notably absent. To address the question of what is the critical In recent years, the availability of numerical methods to
bubble size, what is the shape or profile of the bubble as isolve for the time evolution of quantum fields has given rise
expands, and whether the bubble wall experiences viscous a resurgence of interest in such problems. The causal for-
drag, we need a thorough understanding of the nonequilibmalism suited to initial value formulations of field theory
rium quantum field dynamics. A classical analysis based owmlynamics has been employed in various approximation
global properties of Lorentz invariance is presenf3h but  schemes in an effort to isolate the relevant features of a
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quantum kinetic theory from first principl¢43—-17. bubbles for very long timegossibly forever. The quantum
In this paper we consider a scalar quantum field theonevolution, on the other hand, displays the more expected
which exhibits a first-order phase transition. Assuming thabehavior wherein the bubbles disappear by transferring en-
the field is in the “false vacuum” before the transition and is ergy to intermediate frequencies on a time scale of the same
brought out of equilibrium by the nucleation of bubbles in order of magnitude as the bubble size.
this “true vacuum” phase, we study the detailed dynamics of In Sec. Il we summarize the semiclassical theory and its
bubbles which we impose as initial conditions. Because opredictions; we present our model and highlight some of the
the computational effort required in the quantum theory, weclassical dynamical details which emerge anew due to the
restrict our attention to (% 1)-dimensional spacetime. consideration of the dynamics as an initial value problem and
We consider the purely classical field evolution as well a-due to our specialization to (1) dimensions. In Sec. Il
a self-consistent quantum evolution in the Hartree approxiwe extend the analysis of the dynamics to a self-consistent
mation at zero temperature. The generalization of the formalHartree-like approximation and discuss the simplifications it
ism to include both higher-order interactiofi3] and/or fi-  involves. We summarize our results for the propagation and
nite temperature is straightforward. Thermal effects lead taollision of bubble walls in the quantum theory in Sec. IV. In
qualitatively different physics, and we intend to analyzeSec. V we discuss the many interesting possibilities for the
these physical consequences in detail in a future work. application of the methods of this paper to related questions
Before listing our main results, we would like to clarify as well as the refinements necessary to render the long-time
one issue concerning our study of the dynamics of quanturavolution of self-consistent quantum fluctuations more real-
field bubbles. Whether a bubble of true vacuum phase isstic.
critical is determined by the extremization of the energy, not
the Euclidean action. While this may be obvious from the
point of view of an initial value problem, there has tradition-
ally been some confusion of the criticetuclidean space- Ultimately, we would like to understand the quantum dy-
time) radius for the bounceRg with the critical (purely spa-  namical evolution of a generic bubble of true vacudm
tial) radius for growth, which we labdéRz. The two values duced perhaps by coupling to other fields or sourcege
are related in the thin wall approximation by a constant ofshould naturally do first what we can in the classical regime,

Il. (SEMI)CLASSICAL DYNAMICS

proportionality where we may apply the literature on semiclassical field
theory methods in the bubble nucleation problg8] and
Rge (d—1) connect to other numerical studigk9]. The relativistic pic-
R_B: d ture was elegantly framed by Coleman in RES], so we

shall parallel that analysis, working out a specific example in

in d spatial dimensions; hence for {11) dimensions, any full detail.

bubble is critical. More precisely, the critical bubble size is Coleman set out to compute the decay rate of the false
constrained in one dimension only by the thickness of the/acuum in a scalar theory described by the Lagrangian
bubble. This is not to say that the bounce does not accurately
describe(at least at the semiclassical leyéhe bubble that
results from vacuum tunneling. However, in the interest of
generality, we consider the possibility that bubbles of a dif-
ferent size may be induced. That said, the main results of thigy analogy with the semiclassical analysis of barrier penetra-
paper are as follows1) The bounce determines the correct tjon he obtained the exponent in the vacuum decay rate in
profile of the bubble wall, but induced, super-critical bubblesiemg of an instanton solution of Euclidean spacetime which

with larger or smaller radii still grow and asymptote 10 pg cgjled the bounce. The bounce function is a saddle point
shifted light cones. The bounce solution is unique and idengf the Euclidean action

tifiable in that it asymptotes to the light cone from the origin.
These results are already manifest in the classical descrip- )
tion. (2) Including quantum effects at the level of the Hartree S b]= J' ddXdT[ }(d_d’)
approximation does not change the qualitative features— 2\dr
constrained by Lorentz invariance—of bubble growth at zero

temperature. However, in much the same sense that quantufgnce it satisfies Euclidean “equations of motion.” The so-
fluctuations rerlder the quantum effective poter)tlal differenfytion is subject to appropriate boundary conditions at the
from the classical one, they do affect the detailed shape Gfrigin and at infinity. It is understood that such a function
the bounce. Hence3) the proper description of quantum \yji| always exist and will beO(D) invariant for D=d+1
bubble dynamics necessitates a self-consistent bounce Whi%‘ﬁacetime dimensions, thus depending only on a radial coor-

includes a prescription of the quantum fluctuations at th%inatep=\ﬁz+_x2 bu=bp(p). Then the bounce equation
time of nucleation.(4) The behavior of colliding bubbles and corresponding boundary conditions take the form
does indicate a qualitative difference between the classical

and quantum behavior. In our model, the classical bounce 2 B
appears remarkably stable against bubble coalescence— d_¢29+2%_ V(o)
exhibiting elastic collisions off neighboring expanding d

£=

N| =

(9,8)°= V(). 1)

2

+2 — | +V(¢), (2

1o

p p dp 8¢y ®
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: d¢ V(¢)
lim ¢(p)=¢+ and 5~  =0. 4 6
p—* p p=0 ¥ = 0
A happy consequence of the bounce solution is that the real 4

time classical equation of motion is just the analytic continu-
ation of the bounce equation to real time and thus is solved

by the analytic continuation of the bounce from Euclidean 2
spacetime to Minkowski, i.e. with—it,

Bu(p)— Pp(VX*—1t7). 5 0.5 1 1.5 &\27 é¢
The shape of the bounce becomes the profile of the bubble

wall, and this shape remains unaltered as the wall describes a

hyperbola in spacetime, reaching the speed of light asymp- FIG. 1. The classical potentiglower curvg for the bounce

totically. Lorentz invariance allows us to solve for the bubblecalculation with minima atp_ =0 and¢, =2.46. The upper curve
profile in all space and time and not as an initial value prob-s the degenerate potent{aee Eq(7)], used to compute in the thin

lem. wall approximation. Its second minimum occursdst 2.39.
A number of features of the spontaneous decay of the
false vacuum are severely constrained. The most favorable d=¢_=¢ot+0(y), p<R
shape of the bubble is constrained by stationarization of the
action. That its asymptotic velocity &s(or 1 in natural units ¢=dya(p—R), p=R
is enforced byO(D) invariance of the bounce in Euclidean
spacetime oO(D—1,1) Lorentz invariance. Thus it is im- ¢=¢,=0, p>R. (8

possible in the absence of Lorentz violating fluctuations for
the bubble wall to experience drag. Classically, any dradiere ¢,y is computed in the degenerate potential, i.e. by
would have to be put in by hand in the equations of motion. solving

Let us make the analysis concrete by specializing to a

potential of the form Phpar
>—=U"[ buail. 9
1 dp
V[$]=5m*¢>+ "+ g (6)
A 2
U[¢]= 2( 2+~ . 10
For the purposes of comparison with an analytic, thin-wall [$1=947 ¢ 29 (10
approximation, it is convenient to have a potential with de- ) ) )
generate minima in a simple parametric limit. We can rewriteT he solution has been obtained previousy]:
the potential in terms of the parameteﬁ% and y such that )
2 ()= —22 (11)
V[ ¢1=g¢*($*— b5)*— y¢?, (7 wal(P)= s

where ¢3=—\/2g and y=(\?/g—2m?)/4. The thin wall
approximation relies on neglecting the term proportional t
v. In practice the thin wall obtains in the limit where the

energy Tﬁergnce _between the two minime=V(¢-)  yym To complete the thin wall approximatidis deter-
—V(¢,)= Wgo vanishes. As a working example we use the nineq variationally, as the value that extremizes the Euclid-
parametersm®=4)\=—0.8 andg=0.07. Theny=0.29.  gan action. In the thin wall approximation to the action, the
With these choices the potential for the bounce calculation ighterface itself amounts to a surface term. whereas the con-
shown in Fig. 1. Also shown is the degenerate potential ( tripution from the two piecewise constant parts is propor-

=0). o . _tional to the bubble’s spacetime volume. Hence int+(1l)
We construct the bounce solution in the thin wall approxi-gimensions

mation, following Ref.[3], and by direct numerical integra-
tion. The thin wall bounce consists of solving for the con- Se=—mR%+27Ro, (12
figuration of ¢, piecewise inp such that

whereu = /8¢ ¢3:4.2l, andu? is the second derivative of
Sthe potentiall”[ ¢o] evaluated atpy. Up to a correction of
order e, it is the mass of excitations around the true mini-

whereo is a surface tension. The stationary point of Ekp)
is equivalently the zero-energy value Bfin configuration
We have verified that the addition of a simple drag teftq¢ in space:
the dynamical field equations does indeed result in an asymptotic
interface velocity smaller than that of light. The study of the sto- —Re+0=0, (13
chastic bubble wall trajectory in the presence of phenomenological
damping and noise is in itself an interesting problem, 2. so thatR= o/ e with

025014-3



Y. BERGNER AND L. M. A. BETTENCOURT

25

05 [

TIETETTTAT !
................... *s

PHYSICAL REVIEW D68, 025014 (2003

We have so far said nothing about induced vacuum decay,
in which a bubble may be nucleated with an arbitrary size
and shape. As seen in Ed.3), the spontaneous decay of the
vacuum via the bounce costs exactly no energy. However, if
the energy of an initial bubble configuration may be ac-
counted for from another source, it need not be zero. We
would like to know how such a bubble will evolve given
what we know about the bounce. We first consider varying
the size of the bubble without changing its interface profile.

Generally the fate of an induced bubble—growth or
decay—can be determined by considering the energetics of
the corresponding initial value problem. In this case, we do
not have a solution for all spacetime, but only a spatial pro-
file at some initial tima=0. We will assume that the bubble
wall is initially at rest, i.e. that its kinetic energy is z&r@he
total energy is given by

FIG. 2. The numerical solution for the bounce profiinty
and the thin wall approximation from Rgf21]. The thin wall ap-

proximation agrees well with the exact numerical computation

1 1
E- [ 0G5 (V6 V(g (19

where the static part can again be computed in the thin wall
limit. It is Egaic—= 0Sy— €Vy, WhereSy andV, are the sur-

2
+ U[(ﬁwall]}- (14

where it should, i.e. gp=R;=1.82.
U:j d [E<d¢wall
P2 dp face and volume of the bubble oh=D —1 spatial dimen-
sions. The energy has a local maximumRat=(d—1)o/e
With our parametersy=3.05, andR=1.82. The two solu- (recall that the bounce has an action extremumRat
tions, the exact bounce computed numerically and in the thirF do’/€). For the interface to move while globally conserv-
wall approximation, are shown in Fig. 2. ing energy it is necessary that it can lower its static energy,
We note that the thin wall bounce is a good approximatiors0 that the difference is converted into kinetic energy.
to the exact solution in the neighborhood of the inflectionBubbles withR>Re do so by growing while those witR
point, i.e. atp=R,=1.82. The true condition for the validity <Re must shrink. Henc&kg defines the critical radius for
of the approximatior{3] is that uR>1. With our param- growth. A particular case is that of the bounce which corre-
eters,u=\8gp2=4.21, so thauR=7.66>1, which is shy sponds to the choice d®g which enforcesEq,ic=0. The
of an order of magnitude larger than unity. In fact, as de-Pouncealwaysfalls in the clasR>Re and therefore always
picted in Fig. 2, the bubble wall does not appear very “thin.” 9rows. However, it is not the case that the bounce radius is
To confirm the predictions of the Euclidean solution andthe critical radius as defined by the onset of dynamical
test our numerical methods we now solve the classical redroWth. We plot an example of the energy in 3 spatial dimen-
time equations of motiorti.e. in Minkowksi spacgfor the ~ SIONS in Fig. 4a). _ _ _ _
field ¢ explicitly. As initial conditions, we use a bubble at  The case of (¥ 1) dimensions ¢=1 above is special
rest with the profile given by the approximate analytic formbecause the interface energy saturates: once the bubble is
(11). By following one point on the bubble wall with time, larger than twice the thickness of the wall, the “surface”

we observe the predicted trajectory, shown in Fig. 3. term no longer depends on the size of the bubble. Since the
bubble can gain kinetic energy by converting false vacuum, a

N . . . i y thin wall bubble willalways growin (1+1) dimensions, i.e.
Rg=0. This is seen clearly in Fig.(B), where the thin wall

approximation is again assumed. df is a measure of the

inverse thickness of the bubble, then the thin wall approxi-

mation amounts twR>1. In practice, the finite size of the

wall profile constraings so thatR.=1/u gives a lower limit

on the critical bubble size.

We verified this behavior numerically as well as the fact
that the thin wall prediction oRE"?=R3"'=1.817 is an
excellent approximation to the real critical value for bubble
growth in d=2, which occurs betweeR=1.810-1.815.
Changing the radius amounts to usidgp—R) with the

2This is a weak assumption from the point of view of the initial
value problem. From the Euclidean spacetime analysis, it is a con-
sequence, not an assumption.

FIG. 3. Spacetime trajectory for a {11)-dimensional bubble
started at rest at=0 is well described by the hyperbola

= JR?+1t? with R=1.82.
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FIG. 6. Schematic construction &0 of a solution to the real
time equations of motion for at>0.

invariant under a coordinate shift—x+x,. Consider cut-
ting the functiong,(x,t) alongx=0 att=0 and shifting the
positive x piece by a positive amount, and the negative
piece by—Xg. In the gap created in the center, we extend the
value of ¢(x=0) to be constant. This function looks exactly
like the bounce at the interfaces but has more true vacuum
sandwiched in the middle, see Fig. 6. The boundary condi-

FIG. 4. The dependence of energy and action on the radial cotions on the bouncé) ensure continuity up to and including

ordinate in the thin wall approximatioita) a “spherical” bubble in
3d. The critical radius for growtiRg is the maximum of the energy
and is smaller by a factor ofd~1)/d than the radiu®Rg which
maximizes that action and corresponds to the zero of enérgin
1d, the critical radiusRg goes to zero.

analytic form(11) and variableR as an initial condition. We

first derivates attx,. (Excising a homogeneous region in
the center, one can similarly generate a smaller bupbble.

A constant field in true vacuum is a static solution of the
equations of motion, hence the piecewise solution will be
static in the regionx|<x, and expand like the bounce out-
side this region. Moreover, we recall that althoughs de-
termined variationally in the thin wall approximation—this

show the trajectories obtained for bubbles with different ini-freedom is exploited by our initial condition—solving the
tial sizes in Fig. 5. Note that the trajectories for bubbles withynce equation directljunder the assumption d®(D)

radii smaller or larger than the bounce asymptote to shiftedymmetry determines uniquely. The coordinate shift trans-
light cones. Naively, one might have expected all solutions tgq,ms

approach the light cone from the origin.

In order to explain these trajectories, we explicitly con-

struct a piecewise solution for alteal) time with an arbi-

trarily initial size. The real time equations of motion are

10 ¢

®

S\~ R)—= ¢[ (xFx0)?~*~R],  (16)

so the trajectory of the interface is given by= (X,
+VR%+1?) in real time, implying that bubbles induced with
different sizes will asymptote to different light cones as in
Fig. 5.

So far we have altered the bubble size but not its profile.
Since to distort the shape would be to perform a variation in
function space, it is much more difficult to quantify the dif-
ference in the evolution of an arbitrary bubble from that of
the bounce. Heuristically, we understand that if a bubble
starts out with the wrong profile, it will try to change its
shape to the bounce before it expands as described above.
The critical size argument can be affected by this: since a

FIG. 5. Spacetime trajectories for the motion of several (1Small bubble shrinks as it deforms, a slightly supercritical

+1)-dimensional interfaces started at rest-ad and with different
bubble radii. All trajectories are well described by hyperbotae
+ (xo+ VRZ+1t?), with origins set at=0. Thus the interface ve-

bubble with the wrong shape may still collapse away. A large
initial bubble, on the other hand, will convert the false
vacuum energy into kinetic modes which both expand and

locity at large times approaches the speed of light as in the case dfistort the bubble. We have observed both types of behavior

the bounce, wherg,=0.

in numerical evolutions.
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. QUANTUM BUBBLES

Extending the analysis of the previous section to quantum
fields introduces a host of new challenges. From the point of
view of dynamical equations of motion, we must now con-
sider operator equations, which in fact translate into an infi-
nite Dyson-Schwinger hierarchy of equations for thpoint
Green’s functions of the theory. For practical purposes, the
hierarchy must be truncated somehow, and this truncation
introduces an approximation, often in the form of a self-
consistent ansat22]. Furthermore, even upon keeping a  FIG. 7. Vacuum bubble diagrams in the Hartree approximation
finite number of connected correlation functions the resultingor the 2PI effective action of our model. Lines denote the full
system of coupled equations still describes an infinite numpropagatorG in the nontrivial ¢ background.
ber of degrees of freedom with non-linear interactions. Such
a system must in general be solved numerically in a finite The starting point for the 2PI-CTP formalism is the effec-
computer, which can lead to artifactual effects. Thus it is oftive actionI'[ ¢,G] of [14]:
utmost importance to identify practical approximation
schemes that capture the qualitative essence of the dynamiclat
evolution of a quantum field theory as compared with its
classical counterpart. This challenge is not devoid of uncer-
tainty since not much is known about the evolution of truly

guantum many body systems far away from thermal equ'l'bWhereiD*1(¢) is the classical inverse propagator

&.Gl=9 o]+ ;iTrIn G 1+ %iTrD‘1(¢)G+F2(¢,G)

+ const, (17

rium.

The formulation of the problem can be cast into one for- 59 ]
malism which has been developed and explored in several iD Yx,y; )= 5 5 (18
works and has resurfaced in recent years with renewed vigor B(x)5h(y)

[14,15,17. It is based on a two-particle irreducibl@PI)
effective action for the field and the two-point function
I'[ ¢,G] formalized in the relativistic context by Cornwall, the shifted Laarandia] ¢— b+ o1,

Jackiw qnd TombouhiQ]T) [14]. The Schwmger—Ke!dysh In the Hartrgee agppro[ﬁmaﬁonfpglve consider 2P| diagrams
closed time pat{CTP) is employed to make causality ex- i, Fig. 7, hence,

plicit through an appropriate real time prescription in the

path integral time contour and associated Green’s functions;

hence it is frequently referred to as the CJT or the 2PI-CTP 2= —3J' d®x(\ + 159¢2)G(X,X)2—159J’ d*xG(x,x)°.

and I', sums the 2Pl vacuum to vacuum diagrams with
propagators set t& and interaction vertices obtained from

formalism. It is in the evaluation df[ ¢,G] that some sort (19
of expansion(in loops or in powers of the coupling constant
or in powers of 1N for example is carried out. We observe that the two-point function enters into the

In this paper we shall employ the 2PI-CTP formalism atHartree approximation only as a local function evaluated at
the level of the Hartree approximation, a mean-field approxi-one spacetime point. This is apparent from the diagrams in
mation which amounts to keeping the 2PI diagrams whicHig. 7 which, upon opening a line, become proper self-
are lowest order in coupling constanisubble diagramys ~ €nergy diagrams. The inclusion of any diagram with two or
The Hartree approximation is well understood to be equivamore vertices would introduce non-local kernels in the equa-
lent to a Gaussian variational ansatz in the Sdimger func-  tions of motion.
tional formalism[23] and results in Hamiltonian dynamics ~ The stationarity conditions on the effective action in the
[24]. It is also qualitatively similar to the systematic laye- absence of sources,
approximation at leading order inN./ For our purposesy

=1 and the Hartree approximation is motivated chiefly be- oI'l¢,G]_ oI ¢,G] o 20

cause it is extremely simplifying. A largd scalar theory is o¢ oG '

also inappropriate for the description of first order transition

dynamics as it results invariably in second order critical phejead to equations of motion for the field

nomenalunless theO(N) symmetry is explicitly broken,

whence criticality is erased and the transition becomes an ) ) 4 )

analytical crossover L+m+4N¢p“+6g¢™+12(N+59¢°)G(X,X)
Time evolution of spatially inhomogeneous quantum

fields, even at this level of approximation has only recently 2 A

been produced numerical[25-27. To our knowledge, the +909J d*xG(x,x)7) =0, @D

growth of a critical self-consistent quantum field bubble has

not been previously demonstrated. and for the Wightman two-point function
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[O+m?+ 12\ ¢p?+ 30gp* + 12(\ + 159 $2) G (X, X)

+90gG(x,x)2]G(x,x")=0. (22

PHYSICAL REVIEW 368, 025014 (2003
with

we= KEF .

(26)

Let us remark that there are logarithmic and quadraticThe mass in the dispersion relation is self-consistently de-
divergences in the bare theory in the self-energy and energyendent on the values of the mean field and fluctuations. The
momentum tensor, respectively. However, any scalar fieldog-divergent, zero-temperature part®fis renormalized by
theory in 1+ 1 dimensions is super-renormalizable using thethe subtraction of(x,t) evaluated ak=t=0,

standard counterterm procedure. For thfeinteraction, this

has been carried out explicitly in an early analysis of the

quantum effective potentigPR8]: the logarithmic divergence
from the scalar loop in (1) dimensions affects both the
mass and the quartic coupling constantwhich need to be

Gr(X,t)=G(x,t)—G(0,0). (27)

This is equivalent to mass and coupling constant renormal-
ization.

renormalized. In practice, even though we solve the equa- Finally we evolve the field and two-point functiofoy

tions of motion numerically on a discretized spatial lattice, . !
aalructed according to Egqs(21) and(22) on a discrete one-

we introduce time-independent counterterm subtractions
renormalization conditions for the “physical” mass, quartic

menas of evolving the mode functions from which it is con-

dimensional lattice. We employ a variety of lattices corre-

coupling and energy density in vacuum. We fix the physicapponding to different physical vqlu_mes and lattice spac.ings
(dresselimass to coincide with the bare mass of the classicand use a fourth order symplectic integrator to step in time.

theory, i.e. we employ a subtractiddetailed below which

The range in the number of lattice points was between 256

sets the two-point function to zero in the false vacuum. The2nd 2048, with typical lattice spacing of 1/64 to 1/128. Di-
quadratic divergence in the energy density is just the usugignostics performed at regular time intervals give a series of
zero-point energy of vacuum, and again we choose to set tHdnematic snapshots of the evolution and measure the com-

energy density in the false vacuum to zero.

ponents of the energy momentum tengdy,,) as well as the

In order to solve the system of equations, we need t@eParate components of the ene(@yo), i.e. potential, gra-

specify initial data for the field and the two-point function.

dient and kinetic energy.

This is more or less straightforward for the field expectation 1he results for the evolution of the quantum fields are

value, which we identify with the classical field bubble pro-
files of Sec. Il. Thus, as aansatz we initialize the quantum

shown in the next section, where they are also compared to
the purely classical field bubbles of Sec. Il.

field expectation to have the same shape as the bounce func-

tion described in Eq(11). The initial specification of the
two-point function, however, is informed by the full details

of the nonequilibrium ensemble. As a starting point, we use
the most naive initial conditions possible, which is to ignore

the formation of the initial bubble completely. In other
words, the two-point function is initialized for a zero- or

finite-temperature distribution about the false vacuum every-

e

Juantum modes respond to odnitially) classical back-

where in space, including inside the bubble. We are in th
process of improving this prescription and comment on thi
below.

We proceed by decomposing the equal-spacetime prop
gator in a mode basis. From here on we xwde denote the
space coordinate alone instead of spacetime xies (x,t)
and G(x*,x*) can be written as

Gt =2 [(xb)|F2ng(k)+1], (23
whereng(k) is the Bose-Einstein distribution
nB_eB“‘k—l' (24)

The mode functiongy are initialized in a plane wave basis
with the mass of excitations around the false vacuum:

eik-x

\2wk'

()= (29

IV. NUMERICAL RESULTS

In Sec. Il we have already discussed the paramount im-
portance of Lorentz symmetry in constraining many of the
properties of bubble wall propagation. These constraints
clearly also apply in the quantum theory at zero temperature.
The first clear difference is that the field profile corre-
ponding to the bubble is no longer purely classical. The

ground and partially screen it. The result is a dressed bubble,
an object with a quasi-classical profile around which the
vacuum is disturbed. This self-consistent object is Lorentz
invariant and once formed propagates adiabatically, i.e. with-
out further particle creation. Several snapshots of the mean
field and two-point function in Fig. 8 illustrate this behavior,
from initial formation to late propagation.

The next important effect of quantum fluctuations is es-
sentially static. Looking at Fig. 8 we also note that while the
“height” of the dressed bubbl§i.e. the true vacuum expec-
tation value(VEV) of the field is initialized at the classical
VEV, it will not remain at that value during bubble growth.
This is nothing remarkable, only a demonstration of the well
known fact that the quantum effective potential differs from
the classical potential, and their minima do not coincide. It
might make more sense to initialize the field with the true
vacuum expectation value given by the quantum effective
potential at some loop order. However, given the naive ini-
tialization of the two-point function that we employ here, the
field will still be perturbed away from this minimum inside
the bubble when the two-point function changes. The analyt-
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including the effect of the “roll” down to the minimum of
e the quantum effective potential. As the field VEV changes
> <> inside the bubble, it releases potential energy beyond what
' \/ ' U would happen from the movement of the interface—namely
: : bubble growth—alone. Since this energy is converted into
=025 kinetic and gradient energy of the field and fluctuations, this
s roll can be held responsible for a more rapid acceleration at

the initial stage of growth. The energy of the true vacuum in
VT N | I — the quantum case is also lower, so the rate of energy release

s u NPT by the bubble growth is larger. Hence, we see the quantum

AG AG

trajectories in Fig. 9 approach their asymptotic valagain

. unity) more quickly. This is the only significant departure
1=125 . t=25 from the particular hyperbolic trajectory predicted by a clas-
N sical analysis.

x * We also note that while the classical critical radius for

FIG. 8. Snapshots of the expectation value for classical an(grOWth was found t(_) b&.=0.35, the critical radius in the
quantum field (lower curves and two-point functionG (upper ~duantum evolution is aroun&.=0.45. In both cases, the
curve at increasing time intervals. The initial configuration shown cfitical radius for growth is a factor of 4 to 5 smaller than the
in the top left is almost identical in both cases. The evolution showdounce radiuRg while relatively closgwithin a factor of 2
the quantum bubble relaxing into the minimum energy configurai0 the lower limit in (1+1) dimensions for a wall with some
tion preferred by the quantum effective potential while beingthicknessu ™! (i.e. Re=1/u). In Sec. Il we foundu*
screened by quantum fluctuations. In so doing, it leaves behind=0.24.
excitations inside the bubble and accelerates more rapidly. For pre- It is worth considering whether the accelerated initial
sentation,G is shown shifted away from its actual valiequal to  growth and the observed changeRpcan be understood just
zero whereg=0). from a classical analysis of the bubble using the effective

potential instead of the bare potential. Recall that the particu-
ically computed quantum effective potential treats the meamar shape of the hyperbolic trajectory is determined in the
field as spatially homogeneous. Therefore it cannot be exthin-wall analysis by the shape of the potential through the
pected to describe accurately the dynamics of the bubble. WearameteRg . For example, we can compute the effective
discuss this problem and its solution in more detail belowpotential numerically using homogeneous fields and solving
and in Sec. V. a gap equation along the lines of earlier wofR8]. From

At zero temperature we observe both super- and sulthis, we can extract a quasi-classical potential and recalculate
critical bubbles in the quantum case which grow and decayRg and ! for this potential. We obtairRg=0.86 and
respectively, as in the classical case. We track the position gf ~1=0.25. We fit the observed value 8f;=1.3 from the
the bubble wall in time. Despite the fact that the quantumtrajectories in Fig. 9. While the classical thin-wall predic-
evolution introduces fluctuations absent in the classical cas¢ipns using the quantum effective potential give the correct
we see a bubble wall trajectory which is consistent with thequalitative changes, they predict the wrong magnitude of the
classical picture. We observe approximately hyperbolic tracorrection. We should also note that parametrically the thin
jectories which asymptotically approach the speed of lightwall approximation ought to be worse in the quantum case
as shown in Fig. 9. Figure 8 shows some of the quantitativgince nowuR=3.44, less than half its classical value.
differences between the classical and the quantum evolution, This rough calculation harkens back to several efforts at
applying the bounce analysis to quantum field models with,
for example, symmetry breaking due to radiative corrections
[30]. The problem in effect stems from the fact that the de-
grees of freedom which need to be traced over in the calcu-
lation of the effective potential cannot be properly integrated
out since they participate in the bubble dynamics. We believe
that a way out of this dilemma necessitates calculation of a
self-consistent bounce, i.e. not only the shape of the mean
field but also the full spectrum of interacting fluctuations in
its background as prescribed by an effective action. While
this is beyond the scope of the present work, we are pursuing
it for future publication. Furthermore, with this information
in hand, one could hopefully also bring to bear an analysis of

FIG. 9. The quantum Hartree approximation trajectories for ini-the dynamical viscosity experienced by the moving wall at
tial bubbles of various sizes are shown as pluses. The lines afénite temperature, as suggested by other recent results
interpolations of the classical trajectories shown in Fig. 5. The ini-[31,32.
tial acceleration of the quantum bubble wall is manifestly more In the meantime, the observed differences we have de-
rapid, and it approaches its lightcone asymptote more quickly.  scribed in the shape and trajectory of the purely classical

025014-8



A STEP BEYOND THE BOUNCE: BUBBLE DYNAMICS IN . .. PHYSICAL REVIEW 68, 025014 (2003

T " ' ' i ' as one example in a parameter family of polynomial poten-
op ) 1 tials (the sine-Gordon model appears as a limiting ase

A A A A A A N A N has shown that there are completely reflected states in one
direction from the soliton or bubble wdlB4]. This is just a
physical consequence of the difference in the mass of el-

9 ementary excitations about the two vacua: low-lying states in
§ ol the false vacuum cannot pass through the interface because
o they have no energy counterpart on the other side. We may

take this as suggestive evidence that the two bubble inter-
‘T T A ~ 1 faces must repel under these circumstances, although it can-
\
5

w \ sy A ,,//\‘\ /f\\ // \"\ / not guarantee the observed almost perfect reflection. If the
/ / {3/ N/ \/ \\/’ ‘\/ sign of they term in the potential7) is flipped, the initial
bubble will collapse and the interfaces will pass through each
T other, exploiting thep— — ¢ symmetry of the model as they
t emerge on the other side of the collision region. We verified
FIG. 10. Trajectories for bubble interfaces bouncing off of this behavior numerically. The classical scattering of our in-

neighboring interfaces. Connected curves show classical trajectorid€/faces is thus quite analogous to the scattering of solitons
for the bounce(bottom and distortions thereofupper curves N the sine-Gordon model where both types of behatper-
while quantum trajectories are shown as data points. The classickfCt reflection and perfect transmissjasbtain even though
bounce and the quantum data are plotted for lattice spacings of 1/61€ vacua are identicéB5]. In that case, it is soliton-soliton
and 1/128, but the trajectories overlap entirely. The quantum trajecor soliton-antisoliton solutions which display the two distinct
tory loses coherence quickly relative even to the distorted classicg0ssibilities.
bubbles. Quantum bubbles by contrast appear to dissipate energy
rather efficiently during collisions and especially during the

bubble and its dressed quantum counterpart are all that orRgopagatio.n.of the interface through the fluctuation§ crgated
may expect. At zero temperature, the qualitative characterid?y the collision. Although at the level of our approximation
tics of bubble propagation remain determined by the conIh? bubbles §t||| 'rebound initially from the col!|3|on, .they
straint of Lorentz invariance. Once finite temperature is con9uickly lose kinetic energy. By the second or third collision,
sidered, or alternately in the presence of a Lorentz-violatingt!l Sémblance of the initial configuration is lost. In order to
condensate, bubble propagation can change drastically, aﬁ@ders.tand the quantum, or at least semmlgssmal, scattering
the velocity of domain growth will in general not asymptote ©f the interfaces, one could perform a detailed study along
to that of light. the Ilngas of Ref[36], adapted for the self-consistent quantum
Turning now to the last of Coleman’s open questions, weevolution. o _
consider the effect of colliding bubbles in the classical and Ve present results in Fig. 10, where we plot the classical
quantum Hartree approximations. Due to the nature of ougNd quantum trajectories at two different lattice spacings
numerical simulations, we enforce periodic boundary condi{S@me physical volumen order to demonstrate that this ef-
tions on our one-dimensional lattice at the end points. Whefiect is not an artifact of the lattice discretization. We also plot
the bubble interface reaches the end of the lattice, it effecClassical trajectories of distor_ted bubbles to show that they
tively meets its mirror image or, equivalently, a neighboringdeécay on a much longer time scale than the quantum
bubble wall. Whether the interfaces bounce off of each othePubbles. The trajectories are obtained by following one field
or coalesce can then be observed. value near the true vacuum; in the quantum and classical
We note a surprising result: classically the bubble Wa”Sdistorte_d cases, the apparent loss of periodicity indicates that
do not coalesce. The collision of the interfaces does tempdluctuations around the true vacuum no longer have a coher-
rarily excite wavelengths near the bubble “penetration€nt structure. In Fig. 11 we plot a late time snapshot of the
depth” (the bubble thicknessat low amplitude, but this en- field evolution in the classical and quantum cases.
ergy appears to be re-exchanged with the bubble interface.
Furthermore, this is a special feature of the bounce profile
which is not robust under deformations of the shape of the
bubble: other initial bubbles do radiate and decay albeit In this paper we took the first steps towards showing how
slowly through collisions, see Fig. 10. We also verified thatself-consistent quantum fluctuations can be incorporated in
the stability of the bounce disappears inf2) dimensions the real time dynamics of bubble interfaces. We have shown
where collisions rapidly destroy the spherical symmetry ofthat a classical bubble profile becomes dressed by quantum
the bubble. fluctuations, which in turn affect the rate of conversion of the
The (1+ 1)-dimensional classical bounce solution exhib-false to true vacuum, i.e. the acceleration of the bubble ve-
its truly solitonic behavior in the sense that it is unaltered bylocity towards the speed of light. We have also found that the
scattering off of anothefsolitonic) bubble. This effect, well presence of quantum fluctuations promotes substantially
known to exist in integrable nonlinear syste[B8], is unex-  more efficient transport of the bubble wall energy into par-
pected in our model. In fact, Lohe has considered the lineatrticles at bubble collisions.
ized perturbations around the static solitda) of this model There is one inelegant feature of our analysis, namely that

V. DISCUSSION AND CONCLUSIONS
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4 y " T T " y " wards this implementation, which we intend to report in a
future work[37].
ab ] Knowledge of the spectrum of self-consistent fluctuations
will render the inclusion of medium effects such as finite
. / \ ] temperature more realistic. It also paves the way for other
generalizations of the model and improvements upon the ap-
/ \ proximation we have employed. A finite temperature analysis
T 1 in particular may be sensitive to higher loop order interac-
/ \ tions which give rise to viscosity effects in linear response
- T ~ around equilibrium. Through analysis of the energy-
momentum tenso(T,,) we can investigate the emergence
of hydrodynamic interface propagation from microscopic

4 9 2 ! . ! 2 s ‘ physics. We also intend to extend the model to include fer-
mions.
FIG. 11. Field expectation values for the quant(uppe) and There are many more directions in which a similar analy-

classical(lower) evolution after twelve collisions with neighboring sjs may be informative. From numerical solution of a sub-
bubbles(effected by means of periodic boundary conditionEhe  critical bubble which decays, we can read the spectrum of
classical bubble still maintains its shape, while the quantum bUbb'%symptotic states. It may be possible that the same states,
appears to have dissipated its energy into fluctuations around tr@pon time reversal, would provide the initial conditions nec-
true vacuum. essary to generate a bubble. Such an asymptotic configura-
tion is generically a complicated, correlated many-particle
state; however, its overlap with a two-body state may hint at
he probability of a bubble resonance in a scattering experi-
ent. Stable dynamical solutions such as breathers have long

the initial conditions for the quantum evolution were in-
formed by the classical bounce calculation in absentia of
self-consistent fluctuations. There should exist a solution t ‘ . ; .
the coupled Dyson-Schwinger equations which is analogou8€e" features of classical field theories. It is unknown

to the bounce, the analytic continuation of which amounts thhether they.are stahle upon inclusion of dynamlcal_quan-
a dressed bubble which expands without radiatiarticle tum effects. Finally, there has been a great deal of excitement

creation). Using this configuration as a starting point for an recently about extended objects such as branes and their dy-

initial value problem would eliminate the unwanted radiation"@MmIcs, collisions, etc. If there are fields confined to each

that we observed resulting from the early time response o ranein a homogeneou_s manner, then the e_ffe_ct of colliding
the vacuum to the nontrivial classical background. two branes can be cast into a problem very similar to the one

Starting from the 2PI-CTP formalism it is natural to gen- explored here with the addition of traces over transverse de-

eralize the one-loop computation of the false vacuum deca9rees of freedom.
rate to a self-consistent problem, where fluctuations and the
mean-field bubble profile are solved together. The self-
consistent nucleation rate and bubble evolution would be ac- We are grateful to K. Rajagopal for many useful discus-
curate to the same level of truncation as the effective actiogions and suggestions and for comments on the manuscript.
for any approximation, not limited to the Hartree exampleWe also acknowledge helpful comments from J. Berges, R.
above. We believe that this intermediate step is necessadackiw, L. Levitov and S. Todadri. This work was supported
before more subtle features of the long time evolution—in part by the DOE under research agreement No. DF-FC02-
inevitably entangled with the early time response—can b@®4ER40818. Y.B. is also supported by the NSF Graduate
analyzed quantitatively in detail. We have made progress toResearch program.
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