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Covariant derivative expansion of the Yang-Mills effective action at high temperatures
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Integrating out fast varying quantum fluctuations about Yang-Mills fieldsAi and A4, we arrive at the
effective action for those fields at high temperatures. Assuming that the fieldsAi andA4 are slowly varying but
that the amplitude ofA4 is arbitrary, we find a nontrivial effective gauge invariant action both in the electric
and magnetic sectors. Our results can be used for studying correlation functions at high temperatures beyond
the dimensional reduction approximation, as well as for estimating quantum weights of classical static con-
figurations such as dyons.
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I. INTRODUCTION

The range of medium temperatures is probably one of
most interesting aspects of quantum chromodynam
~QCD!. It is the region where the confinemen
deconfinement phase transition is expected in the pure-
or quenched variants of the theory, and where chiral sym
try restoration is believed to occur in the full version, wi
light dynamical fermions. Pure-glue theories without d
namical quarks have the advantage that one can charact
the order parameter and get insight into many interes
aspects of the phase transition@1–4#. To get a good theoret
ical understanding of what is going on below and above
phase transitions and to understand the microscopic me
nism of the transitions themselves is one of the greatest c
lenges in QCD.

Unfortunately, the present theoretical tools to handle th
problems are insufficient: there are a precious few well-ba
statements about high and intermediate temperatures. At
high temperatures the perturbation theory in the running c
pling constant can be developed. Especially the ha
thermal-loop resummation method@5# proved essential
However, perturbation theory necessarily explodes alread
a few-loop approximation due to the nonperturbative ch
momagnetic sector of non-Abelian gauge theories@1,6,7#,
thus limiting the applicability of perturbation theory to ac
demically high temperatures@8#. The 1-loop@7,9# and 2-loop
@10# potential energies as functions of the ‘‘time’’ Yang-Mill
componentA4 are known, which are periodic functions wit
a period 2pT of the eigenvalues ofA4 in the adjoint repre-
sentation. The curvature of this potential gives the Deb
mass. The potential has zero-energy minima for quanti
values ofA4 corresponding to the Polyakov line assumi
values from the center of the gauge group. At high tempe
tures the system oscillates around one of those trivial va
of the Polyakov line.

*Email address: diakonov@nordita.dk
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At lower temperatures the fluctuations in the values of
Polyakov line increase and eventually the system underg
a transition to the phase with TrP50, known as the confine
ment phase. To study this phase transition or at least to
proach it from the high-temperature side, one needs to kn
the effective action for the Polyakov line in the whole ran
of its possible variation. Effective Lagrangians forA4 at high
temperatures have been constructed and studied by a nu
of authors@11,12#, however, the 1-loop kinetic energy for th
Polyakov line is unknown. One of the aims of this paper is
find it.

Let us formulate the problem more mathematically. No
zero temperatures explicitly break the 4D Euclidean symm
try of the theory down to the 3D Euclidean symmetry, so th
the spatialAi and timeA4 components of the Yang-Mills
field play different roles and should be treated differen
One can always choose a gauge whereA4 is time indepen-
dent. TakingA4(x) to be static is not a restriction of any kin
on the fields but merely a convenient gauge choice, and
shall imply this gauge throughout the paper.@It is also a
possible gauge choice atT50 but in that limiting case it is
unnatural as one usually wishes to preserve the 4D sym
try.# As to the spatial componentsAi(x,t), they are, generally
speaking, time-dependent, although periodic in the time
rection. Putting the componentsAi to zero is a gauge nonin
variant restriction on the fields since any time-independ
gauge transformation will generate a nonzeroAi . Therefore,
the spatial derivatives of the Polyakov line in the gaug
invariant effective action can only appear ascovariant de-
rivatives including a nonzeroAi field.

The effective action studied in this paper is a functional
the background staticA4 field and, generally speaking, non
static Ai fields, obtained by integrating out fast-varyin
quantum oscillations about the background. The key ingre
ent is that we do not assumeA4 to be small but sum up al
powers inA4. Therefore we are actually computing the e
fective action for the Polyakov loop interacting, in a cova
ant way, with the spatialAi fields. The resulting effective
action has to be invariant with respect to time-independ
gauge transformations and also with respect to certain
©2003 The American Physical Society12-1
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sidual time-dependent gauge transformations which do
induce nonstaticA4 and support the periodicity ofAi(x,t);
they will be discussed at the end of the paper.

An economic and aesthetic method of getting explici
gauge invariant actions is based on the evaluation of fu
tional determinants.@An equivalent method is computin
1-loop Feynman graphs with arbitrary number of exter
legs, however, it is technically more involved and does
automatically support gauge invariance with respect to
external field.# In this case, the evaluation of functional d
terminants is nontrivial as we expand it in the~covariant!
derivatives of the field but sum up all powers of the amp
tude ofA4. We develop a general technique for the covari
derivative expansion which, in principle, can be worked o
to any power of the derivatives. In this paper, however,
find explicit expressions for the action with 0, 2, and 4 c
variant derivatives. This enables us to find the leading te
both in the electric and magnetic sectors of the theory.

Since 4D Euclidean invariance is broken by nonzero te
perature the electric and magnetic field strengths appear
ferently in the action. The magnetic field strength is

Bi
a5

1

2
e i jk~] jAk

a2]kAj
a1eabcAj

bAk
c!, ~1!

whereas the electric field strength consists of two pieces,
‘‘static’’ and the ‘‘dynamical’’:

Ei
a5Di

abA4
b2Ȧi

a5] iA4
a1eacbAi

cA4
b2Ȧi

a . ~2!

In the SU(2) gauge theory to which we mostly restri
ourselves in the present paper there are only a few gauge
Euclidean 3D invariants in the order we are interested
These areA4

aA4
a , Ei

aEi
a , Bi

aBi
a and (Ei

aA4
a)2, (Bi

aA4
a)2. @For

higher gauge groups there will be more invariants.# The ef-
fective action~tree plus 1-loop! has the form

Seff51E d3x

T F2T4V~n!1Ei
2F1~n!1

~EiA4!2

A4
2

F2~n!

1Bi
2 H1~n!1

~BiA4!2

A4
2

H2~n!1•••G , ~3!

n5
AA4

aA4
a

2pT
.

The static potentialV(n) has been known for 20 years@7,9#;
the functionsF1,2, H1,2 are the new findings of this pape
they turn out to be quite nontrivial and can be expres
through the digammac functions. TheEi

2A4
2 andBi

2A4
2 terms

of the effective action~corresponding to the first terms of th
Taylor expansion of our functions! have been known befor
@13# and one combination~actuallyF11F2 in our notations!
was actually found previously by considering a particu
case ofAi50 @14#. We agree with this previous work, how
ever our results are, of course, more general. In additio
the structures in Eq.~3! we have found a full-derivative term
in the effective action. This term is not necessarily zero
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the background field does not fall off fast enough at spa
infinity it gives a finite contribution. This is, e.g., the cas
when the background field is that of the BPS dyon@15#.

Actually, quantum determinants are UV divergent, givi
rise to the renormalization of the bare coupling constant
the tree action. We perform an accurate regularization of
determinants by means of the Pauli-Villars scheme. As a
sult, the above functions are finite and theF1 , H1 functions
contain the running-coupling term
(11/24p2)ln@(T/L)const#, where L is the QCD scale in a
particular regularization scheme. We have determined
value of the ‘‘const’’ in the argument of the logarithm an
hence have learned the precise scale of the running coup
constant at which it needs to be evaluated. Changing
regularization scheme means the substitution@16#

LPV5e1/22LMS 5 40.663expS 2
3p2

N2 D LLat5 . . . .

There are two different approaches to the effective act
and correspondingly two different variants of the resulti
functions F1,2 . . . . One can either exclude or include th
contribution of the static~zero Matsubara frequency! fluctua-
tions to the effective action. One follows the former logic
one wishes to get the effective action for static modes o
In this case the potential energyV(A4) is not periodic and
moreover it is formally UV divergent. One follows the latte
logic if one is interested, e.g., in finding full quantum corre
tions to semiclassical field configurations at nonzero te
peratures, the examples of such being dyons@17# and cal-
orons@18#. We compute the functionsF1,2 andH1,2 in both
variants.

Correspondingly, we think of two kinds of applications
our results. One is for studying the fluctuations and corre
tion functions of the Polyakov line in the region of temper
tures where its average deviates considerably from the
turbative center-of-group values and where the dimensio
reduction~i.e., perturbative! approximation fails. Another ap
plication is for evaluating the weights of semiclassical o
jects appearing at nonzero temperature@19#.

II. BASICS OF YANG-MILLS THEORY
AT FINITE TEMPERATURE

The general definition of the partition function for stati
tical systems is

Z5(
n

^nue2bHun& Fb5
1

TG ~4!

5(
n
E dq cn* ~q!e2bEncn~q!

5E dq0E
q(0)5q0

q(b)5q0
Dq~ t ! expS 2E

o

b

dtH@q,q̇# D , ~5!
2-2
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where H is the Hamiltonian of the system andEn are its
eigenvalues. In Yang-Mills theory the role of coordinatesq is
played by the amplitudes of the gluon fieldsAi

a(x) and the
Hamiltonian is

bH5
1

2g2E0

b

dx4E d3x@~Ȧi
a!21~Bi

a!2#, ~6!

where the dot indicates time derivative andBi
a is the mag-

netic field~1!. The partition function can be written as a pa
integral over ‘‘trajectories’’Ai(x4 ,x) going from a ‘‘coordi-
nate’’ Ai

(0) at x450 to the same coordinate atx45b; one
also has to integrate over this initial coordinate

Z5E DAi
(0)~x!E

Ai (0,x)5Ai
(0)

Ai (b,x)5Ai
(0)

DAi~x4 ,x!

3expH 2
1

2g2E0

b

dx4E d3x@~Ȧi
a!21~Bi

a!2#J . ~7!

However, in a gauge theory one sums not over all poss
but only over physical states, i.e., satisfying Gauss’ law.
the absence of external sources it means that only th
states need to be taken into account that are invariant u
gauge transformations

Ai~x!→@Ai~x!#V(x)5V~x!†Ai~x!V~x!1 iV~x!†] iV~x!,

V~x!5exp$ iva~x!ta%. ~8!

To restrict the summation to physical states, one has
modify Eq. ~7!. One projects to the physical, i.e., gauge
variant states by averaging the initial and final configuratio
over gauge rotations. The YM partition function is therefo

Zphys5 (
phys states

^nue2bHun&

5E DV1,2~x!DAi
(0)~x!E

Ai (0,x)5[Ai
(0)] V1(x)

Ai (b,x)5[Ai
(0)] V2(x)

DAi~x4 ,x!

3expH 2
1

2g2E0

b

dx4E d3x@~Ȧi
a!21~Bi

a!2#J . ~9!

Renaming the initial field@Ai
(0)#V1(x)→Ai

(0) and introducing
the relative gauge transformationV(x)5V2(x)V1

†(x) one
can rewrite this as@7#

Zphys5E DV~x!DAi
(0)~x!

3E
Ai

(0)

[Ai
(0)] V(x)

DAi~x4 ,x!e2bH[Ai (x4 ,x)] . ~10!

There is a subtle question whether one has to include i
gration over global gauge transformations, i.
x-independentV ’s in Eq. ~10!. If one does, it means that onl
states with total color charge zero are admitted in the pa
tion function. A more cautious approach is to allow for sta
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with nonzero color charge: if these are for some reason
namically suppressed it must be seen from the theory but
imposed by hand. Therefore we shall admitx-independent
V ’s but not integrate over them explicitly.

In order to put the partition function into a more custom
ary four-dimensional form one introduces an interpolati
gauge transformationV(x4 ,x) such that

V~x4 ,x!5H 1, x450,

V~x!, x45b.
~11!

Simultaneously one changes the integration variables f
Ai(x4 ,x) to

Ai8~x4 ,x!5V~x4 ,x!Ai~x4 ,x!V†~x4 ,x!

1 iV~x4 ,x!] iV
†~x4 ,x! ~12!

and introduces, instead ofV(x4 ,x), the new variable

A4~x4 ,x!5 iV~x4 ,x!]4V†~x4 ,x!. ~13!

For example, if the interpolating gauge transformation
taken to beV(x4,x)5exp$ix4Tva(x)ta%, thenA4 is time inde-
pendent and equal toA4(x)5Tva(x)ta. We note that both
A4(x4 ,x) andAi8(x4 ,x) are periodic in temporal direction.

The magnetic energy is gauge invariant: i.e.,

TrB2~Ai !5TrB2~Ai8!, ~14!

while the electric energy becomes

TrE25TrȦi
25TrE82, ~15!

where

Ei85Ȧi82] iA42 i @A4 ,Ai8#5Ȧi82@¹i~A8!A4#. ~16!

Therefore the full action density can be rewritten as a st
dard TrFmn

2 , where

Fmn5]mAn2]nAm2 i @Am ,An# ~17!

with Am(x4 ,x) denotingAi8(x4 ,x) andA4(x4 ,x). Thus, Eq.
~10! is equivalent to the more familiar partition function

Zphys5E DAmexpH 2
1

4g2E d4xFmn
a Fmn

a J , ~18!

where one integrates over gauge fields obeying perio
boundary conditions in time, meaningAm(x4 ,x)5Am(x4
1b,x), with b51/T.

Periodic fields can be decomposed into Fourier mode

Am~x4 ,x!5 (
k52`

`

A~vk ,x!eivkx4, vk52pkT, ~19!

wherevk52pkT are the so-called Matsubara frequencie
which play the role of mass. In the limitT→` all nonzero
Matsubara modes become infinitely heavy. If one leaves o
the static gluon modes it is called ‘‘dimensional reductio
2-3
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@20#, as the resulting theory is purely static. There is no
namics in the time direction anymore. At high, but not in
nite temperatures, this approximation is too crude. The n
zero modes show up in loops and produce infinitely ma
effective vertices. The aim of this paper is to find all the
infinite number of vertices restricted, however, to low m
mentap,T, induced in the 1-loop order.

III. ONE LOOP QUANTUM ACTION

As stressed in the Introduction, one can always choose
background fieldA4 to be static. As to theAi field, we shall
temporarilytake it to be static: the generalization of the e
fective action to the case of time-dependentAi will be
simple.

To study the effects of the nonzero Matsubara modes
use a background field method and split the gluon fields
a time independent background fieldĀm(x) and a presum-
ably small quantum fluctuation fieldam(x4 ,x):

Am~x4 ,x!5Ām~x!1am~x4 ,x!. ~20!

In this paper we consider the quantum effects at the 1-l
level. Then it is sufficient to expand the action around
background field up to quadratic order inam . The linear
term in am is absent owing to the orthogonality of nonsta
modes to static ones. We shall, however, also investigate
contribution of the static fluctuation mode. In this case
linear term is absent if, e.g., the background field satisfies
equation of motion or if the static mode is varying in spa
faster than the background field. The quadratic form is, g
erally speaking, degenerate so that one has to fix the ga
for fluctuations. This gauge fixing is unrelated to the gau
fixing of the background field. We choose the backgrou
Lorenz gaugeDm(Ā)am50,1 where

Dm
ab~Ā!5]mdab1 f acbĀm

c ~21!

is the covariant derivative in the adjoint representation. T
gauge brings in the Faddeev-Popov ghost determinant w
can be expressed as a Grassmann integral over ghost fi
For the partition function this yields

Z~Ā!5e1S5e1S̄E DaDxDx1expH 2
1

2g2~M !

3E d4xam
b Wmn

bc an
c2E d4xx1a~Dm

2 !xaJ , ~22!

wherex,x1 are ghost fields and

S̄5 2
1

4g2~M !
E d4x Fmn

a ~Ā!Fmn
a ~Ā! ~23!

1Jackson and Okun@21# recommend to name the]mAm50 gauge
after the Dane Ludvig Lorenz and not after the Dutchman Hend
Lorentz, who certainly used this gauge too but several decades
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is the action of the background field. The quadratic form
am in the background Lorenz gauge is given by

Wmn
ab52@D2~Ā!#abdmn22 f acbFmn

c ~Ā!. ~24!

Integrating out the quantum fluctuations and ghosts yie
two functional determinants,

Z~Ā!5e1S̄~detW!21/2det~2D2!, ~25!

so that the 1-loop action is

S1-loop5 log~detW!21/21 log det~2D2!. ~26!

Since the operatorsD2,Wmn are built from covariant de-
rivatives and the field strength only, this action is invaria
under general gauge transformations of the background fi
One can use this freedom to make theA4 component static,
which we shall always assume. The spatial componentsAi
are then, generally speaking, time dependent. For the mo
the paper we shall assume thatAi is time independent too. A
the end we shall be able to reconstruct terms withȦi from
gauge invariance but at the time being we shall take st
Ai . Then the quantum action~26! is invariant under time-
independent gauge transformations

Ā4~x!→U~x!Ā4~x!U†~x!, ~27!

Āi~x!→U~x!Āi~x!U†~x!1 iU ~x!] iU
†~x!. ~28!

In this paper we restrict ourselves to theSU(2) color group,
which means that the action depends on the gauge and
Euclidean invariantsA4

aA4
a , Ei

aEi
a , Bi

aBi
a , Ei

aA4
a , Bi

aA4
a , etc.

For higher groups there will be more invariants. We write t
background fields without an over bar from now on, as th
are the only field variables left.

In fact the action can be presented as a series in the sp
covariant derivativeDi . Since the electric field is given by
Ei

a5Di
abA4

b , an expansion in powers of the electric fie
corresponds to a covariant gradient expansion of theA4
fields. To get the magnetic field, we already need one m
power of Di , such asBk

a5 1
2 e i jkFi j

a 5 1
4 e i jkecad@Di ,D j #

cd.
For theSU(2) gauge group, in the electric~magnetic! sector
only two independent color vectors existEi

a (Bi
a) and A4

a .
Therefore, we expect the following structure for the gaug
invariant gradient expansion:

S1-loop51E d3x

T F2T4V~n!1Ei
2f 1~n!1

~EiA4!2

A4
2

f 2~n!

1Bi
2h1~n!1

~BiA4!2

A4
2

h2~n!1•••G . ~29!

In the explicit evaluation of the functional determinants w
find exactly the structure~29! and determine the function
f 1 , f 2 ,h1 ,h2 at all values of their argument which is in fact
dimensionless ration5AA4

aA4
a/(2pT).

k
ter.
2-4
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IV. THE FUNCTIONAL DETERMINANTS

We start with the evaluation of the ghost functional det
minant. As usual we subtract the zero gluon field contrib
tion. Using the fact that detK5exp Tr log K we can write

exp log
det~2Dm

2 !

det~2]m
2 !

5exp Sp@ log~2Dm
2 !2 log~2]m

2 !#,

~30!

where Sp is a functional trace. We present the ratio of de
minants with the help of the Schwinger proper time rep
sentation@22#

log det~2D2!n[ log
det~2Dm

2 !

det~2]m
2 !

52E
0

`ds

s
Sp~esDm

2
2es]m

2
!.

~31!

In fact this ratio is logarithmically UV divergent, reflectin
the coupling constant renormalization. We use the Pa
Villars method to regularize the divergence. This cor
sponds to replacing the determinant by a ‘‘quadrupole f
mula’’

det~2D2!→det~2D2!r ,n ~32!

[
det~2Dm

2 !

det~2]m
2 !

det~2]m
2 1M2!

det~2Dm
2 1M2!

5expH 2E
0

`ds

s
Sp@~12e2sM2

!~esDm
2
2es]m

2
!#J . ~33!

The functional trace in Eq.~33! can be taken by inserting an
full basis, so we are free to choose e.g., the plane-wave b
exp(ixapa). Then, by the definition of the functional trac
one can write

Spe2sK5TrE d4x lim
y→x

E d4p

~2p!4

3exp~2 ipy!exp~2sK!exp~ ipx!, ~34!

where Tr is the remaining matrix trace over color and, as
case may be, Lorentz indices. One can now drag the la
plane-wave exponent though the differential operatorK until
it cancels with the former. This results in the shift of th
derivatives inside the differential operator and in the follo
ing representation of the functional trace@23#:

Spe2sK5TrE d4xE d4p

~2p!4
exp@2sK~]a→]a1 ipa!#1.

~35!

The 1 at the end is meant to emphasize that the shifted
erator acts on unity, so that, for example, any term that h
]a in the exponent and is brought all the way to the rig
will vanish. According to Eq.~35! we now have
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log det~2D2!r ,n52E d3x

T
T (

k52`

` E d3p

~2p!3

3E
0

`ds

s
~12e2sM2

! ~36!

3Tr$exp@s~D41 ivk!
21s~Di1 ipi !

2#

2exp@s~ ivk!
21s~ ipi !

2#%. ~37!

Owing to the periodic boundary conditions we have replac
the integration overp4 by the sum over the Matsubara fre
quenciesvk52pkT and taken into account that thex4 inte-
gration goes from 0 tob51/T. Keeping in mind that the
background field is time independent one can replace

D4
ab→ f acbA4

c . ~38!

We define the adjoint matrix

A ab5 f acbA4
c1 ivkd

ab ~39!

upon which Eq.~36! becomes

log det~2D2!r ,n52E d3x (
k52`

` E d3p

~2p!3

3E
0

`ds

s
~12e2sM2

! ~40!

3Tr$exp@sA 21sDi
212ispiDi2sp2#

2exp@2s~vk
21p2!#%. ~41!

In the same way as for the ghost determinant~30! we use the
‘‘quadrupole formula’’ and write the normalized and regula
ized gluon determinant as

log~detW!r ,n
21/25

1

2E0

`ds

s
~12e2sM2

!

3Sp~e2sWmn
ab

2es]2dmndab
!, ~42!

which after an insertion of a plane wave basis and dragg
exp(ipx) through the differential operator yields

log~detW!r ,n
21/25

1

2E d3x (
k52`

` E d3p

~2p!3

3E
0

`ds

s
~12e2sM2

!Tr$exp@~sA 21sDi
2

12ispiDi2sp2!abdmn12s facbFmn
c #

2exp@2s~vk
21p2!#%. ~43!

A covariant gradient or derivative expansion is the expans
in Di , applied toA 2 and Fmn

c . For example, to quadratic
order in Di it corresponds to summing up all 1-loop Fey
man diagrams with twoA4 vertices carrying momenta, an
2-5
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any number ofA4 insertions at zero momentum. So far, bo
Eqs.~40! and ~43! are independent of the gauge group.

V. ZEROTH ORDER OF COVARIANT
DERIVATIVE EXPANSION

Zeroth order in the expansion corresponds to settingDi
50. For the gluon part~43! the field strength does not con
tribute at this order since it is quadratic in the covariant
rivatives. Hence the gluonic contribution is2(1/2)345
22 times the ghost contribution, where the factor (21/2)
comes from the fact that the gluon determinant is taken
this power@see Eq.~25!#, and the Lorentz structure of th
gluons Trdmn yields 4. At zeroth order of the covariant de
rivative expansion one thus has

S1-loop
(0) 52@ log det~2D2!# (0). ~44!

The determinant is UV finite in this order, so one does
need to regularize it. For the explicit calculation one c
choose a gauge whereA4 is diagonal in the fundamenta
representation, hence for theSU(2) gauge group

A4
a5da3f, f5AA4

aA4
a. ~45!

The eigenvalues of the 333 matrix A ab5ea3bf1 ivkd
ab

are (vk1f,vk2f,vk). It is obvious that upon summatio
over all Matsubara frequenciesf @(vk1f)2# and f @(vk
2f)2# give the same. We hence obtain

S1-loop
(0) 512E d3x (

k52`

` E d3p

~2p!3E0

`ds

s

3e2sp2
$e2s(vk2f)2

2e2svk
2
%. ~46!

Integrating over proper times and summing over Matsubar
frequencies labeled byk gives

(
k52`

` E
0

`ds

s
e2s(vk2f)22sp2

52 logS ch
upW u
T

2cos
f

T
D .

~47!

The p integration can be performed with the help of Re
@24#. One obtains

S1-loop
(0) 52E d3x

1

12p2T
f2~2pT2f!2U

mod2pT

, ~48!

hence the dimensionless static potential is

V~n!5
~2p!2

3
n2~12n!2U

mod1

, n5
AA4

aA4
a

2pT
. ~49!

This result is well known@7,9#. We want to stress here tha
the term cubic inn arises solely from the zero Matsuba
frequency,k50. It makes Eq.~48! periodic in n with unit
period. It should be noted that without the zero frequen
contribution thep integration is UV divergent; the additio
of the vk50 mode removes this divergence.
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VI. GENERAL TECHNIQUE FOR THE COVARIANT
DERIVATIVE EXPANSION

In the next orders in the covariant derivative the calcu
tion becomes more involved. We wish to keep all powers
A4, but expand in powers ofDi . To expand the exponentia
of two noncommuting operators A and B we use the form
las

eA1B5eA1E
0

1

daeaABe(12a)A

1E
0

1

daE
0

12a

dbeaABebABe(12a2b)A1•••

~50!

and

@B,eA#5E
0

1

dgegA@B,A#e(12g)A. ~51!

Here B denotes the combination of covariant derivatives
the exponents in Eq.~40! or Eq. ~43!, A is everything that is
left there. We encounter here the following commutators:

@Di ,A#5@Di ,D4#52 iF i452 iEi , ~52!

@Di ,A 2#52 i $A,Ei%, ~53!

where the electric field is in the adjoint representation, i.e

Ei
ab5 i f acbEi

c . ~54!

The strategy is to drag all derivatives inB to the right using
the master formulas~50!,~51!.

VII. ELECTRIC SECTOR

We are now going to find the second and third terms
Eq. ~29!, i.e., terms quadratic in the covariant derivativeDi .
As expected, terms which are not gauge invariant cancel
individually for the ghosts and the gluons. In the end thr
different gauge invariant contributions remain. Writing dow
the ghost determinant as

log det~2D2!r ,n52E d3x (
k52`

` E d3p

~2p!3

3E
0

`ds

s
~12e2sM2

!Tr e2sp2
@eA1B#,

~55!

whereA5sA 2 and B52ispiDi1sDi
2 and expanding inB

with the use of Eqs.~50!,~51! we obtain@see Appendix B 1#
2-6
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@ log det~2D2!r ,n#E
(2)52E d3x (

k52`

` E d3p

~2p!3

3E
0

`ds

s
~12e2sM2

!e2sp2
@ I 11I 2#.

~56!

The gluon determinant is

log~detW!r ,n
21/25

1

2E d3x (
k52`

` E d3p

~2p!3

3E
0

`ds

s
~12e2sM2

!Tre2sp2dmn@eA1B#,

~57!

where this time Amn
ab5(sA 2)abdmn and Bmn

ab5(sDi
2

12ispiDi)
abdmn12s facbFmn

c . Expanding inBmn
ab and using

Eqs.~50!,~51! we find @see Appendix B 1#

@ log~detW!r ,n
21/2#E

(2)

5E d3x (
k52`

` E d3p

~2p!3E0

`ds

s
~12e2sM2

!

3e2sp2F2I 112I 21
I 3

2 G . ~58!

The gauge invariants in Eqs.~56!,~58! are

I 15s3E
0

1

daH 2
1

2
1a~12a!1

2

9
sp2F12

3

2
a~12a!G J

3Tr e(12a)sA 2
$A,Ei%e

asA 2
$A,Ei%, ~59!

I 252s2S 1

2
2

2

9
sp2DTr esA 2

~2Ei
21 i $A,@Di ,Ei #%!,

~60!

I 358s2E
0

1

da
1

2
Tr e(12a)sA 2

Eie
asA 2

Ei . ~61!

The total 1-loop action~26! is

@S1-loop
(2) #E51@ log~detW!n

21/21 log det~2D2!r ,n#E
(2)

51E d3x (
k52`

` E d3p

~2p!3E0

`ds

s
~12e2sM2

!

3e2sp2F I 11I 21
I 3

2 G . ~62!

For the explicit evaluation we have to do all the integratio
overa, s, p and the summation over the Matsubara frequ
cies vk . For convenience we rescale the field variable a
introduce
02501
s
-
d

f52pTn, where 0<n<1. ~63!

The case whenn is outside this interval will be considere
separately. In the invariantI 2 we will here only take the first
term and leave away the anticommutator. Its effect will
shown later. In the sum over the Matsubara frequencies
treat the zero mode separately@see Appendix B 2 for details#.
For I 1 and the first term inI 2 the zero Matsubara frequenc
yields each an IR divergent term, i.e., proportional
limvk→0(1/vk) and one finite term which is proportional t
1/f. The ‘‘naked’’ IR divergencies cancel between the tw
invariantsI 1,2 in such a way that both the ghost and the glu
contribution are separately IR finite. The zero mode of
invariant I 3 contributes only with a finite 1/f term.

With our gauge choiceA4
a5da3f we actually get two

structures (Ei
1Ei

11Ei
2Ei

2) f 1(f) and Ei
3Ei

3f 3(f), which can
be written in invariant terms as

Ei
2f 1~n! and

~EiA4!2

uA4u2
@ f 3~n!2 f 1~n!#, ~64!

respectively. Adding up the ghost and the gluon result a
denoting (f 32 f 1) by f 2 we find the two functions defined in
Eq. ~29!:

f 15
11

48p2 F2~ logm2gE!2cS 2
n

2D2cS n

2D1
20

11nG ,
~65!

f 25
11

48p2 FcS 2
n

2D1cS n

2D2c~n!2c~12n!2
20

11nG ,
~66!

f 35
11

48p2
@2~ logm2gE!2c~n!2c~12n!#,

n5
AA4

aA4
a

2pT
. ~67!

Herec is the digamma function

c~z!5
]

]z
logG~z!, ~68!

gE is the Euler constant, and the argument of the logarit
m is the cutoff that we have introduced in the sum ov
Matsubara frequencies@see Appendix B 2#. It is related to the
Pauli-Villars mass as

m5
M

4pT
egE. ~69!

This result for the Pauli-Villars scheme agrees with@11#
where the scale of the running coupling constant in the
mensionally reduced theory was studied in theMS scheme.
The subtraction scales are related according to@16#. Using
Eq. ~69! we can express the functionsf 1,2,3 as

f 15
11

48p2 F2 log
M

4pT
2cS 2

n

2D2cS n

2D1
20

11nG , ~70!
2-7
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f 25
11

48p2 FcS 2
n

2D1cS n

2D2c~n!2c~12n!2
20

11nG ,
~71!

f 35
11

48p2 F2 log
M

4pT
2c~n!2c~12n!G . ~72!

Recalling that the tree-level action has the bare coupling
fined at the cutoff momentumM,

Ei
aEi

a

2g2~M !
5Ei

aEi
a 11

24p2
log

M

L
, ~73!

we see that the UV divergent logM term cancels out in the
sum of tree and 1-loop actions. The full action is finite a
can be presented in the form of Eq.~3! where the functions
F1,2,3 are obtained fromf 1,2,3 by replacing the cutoffM by
the finiteL parameter

F15
11

48p2 F2 log
L

4pT
2cS 2

n

2D2cS n

2D1
20

11nG , ~74!

F25
11

48p2 FcS n

2D1cS n

2D2c~n!2c~12n!2
20

11nG ,
~75!

F35
11

48p2 F2 log
L

4pT
2c~n!2c~12n!G ,

n5
AA4

aA4
a

2pT
. ~76!

The functionsF1 andF3 without the first term are plotted in
Fig. 1. Both functions are singular atA4→0, which is due to
the contribution of the zero Matsubara frequency.

A. Electric sector without the zero Matsubara
frequency contribution

The functionsF1 and F2 have so far been evaluated b
summing over all the Matsubara frequencies, including
static fluctuations around static gluon background fields. T
is of interest for a number of physical cases. For the prob
of dimensional reduction, however, one does not include

FIG. 1. F1(n) ~left! andF3(n) ~right! without the constant first
terms are shown for 0<n<1. The solid lines include the contribu
tion of the zero Matsubara frequency, while it is subtracted in
dashed curves.
02501
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static quantum fluctuations. Subtracting the contributions
the zero Matsubara frequency, which are of order 1/n, we
obtain

F̃1~n!5
11

48p2 F2 log
L

4pT
2cS 2

n

2D2cS n

2D G , ~77!

F̃2~n!5
11

48p2 FcS 2
n

2D1cS n

2D2c~n!2c~2n!G ,
~78!

F̃3~n!5
11

48p2 F2 log
L

4pT
2c~n!2c~2n!G .

~79!

Here we used the relation for thec function c(11n)
5c(n)11/n. Keeping in mind that

2c~x!2c~2x!52@gE1z~3!x21z~5!x41•••#,
~80!

where z(n) is the Riemann zeta function, we see that t
contribution of the nonzero Matsubara frequencies to the
fective action is regular atA450, and that the bare couplin
constant should be replaced by the running one taken a
scale 4pe2gET'7.05551T, if the Pauli-VillarsL is used. If
another regularization scheme is used, the scale shoul
changed accordingly, see the Introduction. The plots ofF̃1,3
~without the first terms! are also shown in Fig. 1.

B. The ‘‘equation of motion’’ term

We finally compute the second term in the invariantI 2,
which we have so far left out. Its contribution is

SEM5
1

TE d3x (
k52`

` E d3p

~2p!3E0

`ds

s
e2sp2

3TF2s2S 1

2
2

2

9
sp2DTr esA 2

~ i $A,@Di ,Ei #%!G ,
~81!

where the curly brackets denote the anticommutator. After
integrations and the summation overvk it gives

SEM51E d3x
1

12p F ~DiEi !
aA4

a

pT
2

~DiEi !
bA4

b

AA4
cA4

c G . ~82!

Here the first term comes exclusively from the non-zero M
subara frequencies, while the second term is the contribu
of the zero Matsubara frequency alone. Equation~82! is zero
if the classical equation of motion is satisfied@see Appendix
A#. If the background field does not satisfy the equation
motion one can integrate Eq.~82! by parts which yields

e

2-8
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SEM51
1

12p2E d3xH Ei
aEi

aS p

uA4u
2

1

TD1
p

uA4u3
~Ei

aA4
a!

3~Ei
bA4

b!2] iFEi
aA4

aS p

uA4u
2

1

TD G J . ~83!

Apart from the last term which is a full derivative the fir
two can be added to the functionsf 1,2 found previously.

VIII. MAGNETIC SECTOR

We are now going to calculate the fourth and fifth terms
Eq. ~29!, i.e., terms quadratic in the magnetic field. In an
ogy to the derivation of the action for the electric sector,
make an expansion in the spatial covariant derivativeDi of
the functional determinants and collect powers of the m
netic field. Note that while the electric field only needed o
power of a covariant derivative the magnetic field needs t
For magnetic field squared we hence need an expansio
fourth order in the covariant derivatives. In principle, in t
fourth order in the covariant derivatives there is a mix
term of the typee i jkeabcEi

aEj
bBk

cf (A4), terms quartic inEi ,
and terms containing covariant derivatives ofEi but we do
not consider them here. For that reason, we neglect all c
mutators@Di ,A4#, as they introduce additional powers
Ei . This simply means that we can drag all powers of
covariant derivativeDi as well as of the field strengthsFi j
through the exponentials ofA4, as if they commute.2

For the ghost determinant~55! we obtain@see Appendix
C 1# only one gauge invariant structure, which after integ
tion overp becomes

@ log det~2D2!r ,n#M
(2)5

1

48p3/2E d3x (
k52`

` E
0

` ds

As

3Tr~12e2sM2
!~esA 2

BkBk!.

~84!

For the gluon determinant~57! we get the same result time
a factor of22 plus one additional term

T4[TrE
0

1

daE
0

12a

dbeasA 2
~2seacbFi j

c !

3ebsA 2
~2sed f eFi j

f !e(12a2b)sA 2
, ~85!

which with Fi j
a Fi j

b 52Bk
aBk

b and after integration overa and
b yields the same gauge invariant structure

T454s2Tr~esA 2
BkBk!. ~86!

2One obtains from the Jacobi identity@Fi j ,A4#5 i (@Di ,Ej #
2@D j ,Ei #). Since we are not interested now in such terms in
effective action, we shall assume that the magnetic field comm
with A4.
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We find @see Appendix C 1# that this term yields the sam
contribution to the action as the ghost determinant, but m
tiplied by a factor of 12. The total contribution of the gluo
determinant to the 1-loop action in the magnetic secto
hence 10 times that of the ghost determinant.

The total 1-loop action in the magnetic sector is

@S1-loop
(2) #M51@ log~detW!r ,n

21/21 log det~2D2!r ,n#M
(2)

5 2
11

48p3/2E d3x (
k52`

` E
0

` ds

As
Tr~12e2sM2

!

3~esA 2
BkBk!, ~87!

where the integration overs and the summation over Mat
subara frequencies still have to be performed. However,
do not need to do it anew since exactly the same ga
invariant appeared in the invariantI 2 in the electric sector,
with the obvious replacementEi→Bi , see Eq.~60!. With our
gauge choice we obtain two structures, (Bi

1Bi
1

1Bi
2Bi

2)h1(n) and Bi
3Bi

3h3(n) which can be written in in-
variant terms as

Bi
2h1~n! and

~BiA4!2

uA4u2
@h3~n!2h1~n!#, ~88!

respectively.
Combining the ghost and the gluon result and denot

(h32h1) by h2 we find the two functions defined in Eq.~29!

h1~n!5
f 3~n!

2
1

11

48p2
logm

5
11

96p2 F4S log
M

4pT
1

gE

2 D2c~n!2c~12n!G ,
~89!

h2~n!5
f 3~n!

2
2

11

48p2
logm

52
11

96p2
@2gE1c~n!1c~12n!#, ~90!

h3~n!5 f 3~n!5
11

48p2 F2 log
M

4pT
2c~n!2c~12n!G ,

n5
AA4

aA4
a

~2pT!
. ~91!

As beforem is given by Eq.~69!.
The UV divergent logarithm in Eq.~89! cancels the diver-

gence from the tree-level action which has the running c
pling defined at the cutoff momentumM

Bi
aBi

a

2g2~M !
5Bi

aBi
a 11

24p2
log

M

L
, ~92!

e
es
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such that the sum of tree and 1-loop actions are UV fin
The finite full action can be brought into the form of Eq.~3!
where the functionsH1,2,3 are obtained fromh1,2,3 by replac-
ing the cutoffM by L:

H1~n!5
F3~n!

2
1

11

48p2
logm

5
11

96p2 F4S log
L

4pT
1

gE

2 D2c~n!2c~12n!G ,
~93!

H2~n!5
11

96p2
@2gE2c~n!2c~12n!#, ~94!

H3~n!5F3~n!

5
11

48p2 F2 log
L

4pT
2c~n!2c~12n!G ,

n5
AA4

aA4
a

~2pT!
. ~95!

When we sum over the Matsubara frequencies we find
in the case of the electric sector, that the zero Matsub
frequency contributes both with a finite term which is pr
portional to 1/f and a ‘‘naked’’ IR divergent part. The finite
terms are included in the results~89! and ~90!. The separate
contribution of the IR divergent part is

lim
vk→0

1

p

11

48E d3xS Bk
aBk

a2
~BiA4!2

uA4u2 D 1

vk
. ~96!

In contrast to the electric sector, this divergence does not
canceled. This is also clearly seen in terms of Feynman
grams and corresponds to a singularity in the magnetic s
energy of the gluons due to the zero Matsubara frequenc
the loop, when the external gluons have zero moment
This singularity is regularized when higher terms inBi
and/or nonzero momenta of the background magnetic fi
are taken into account.

A. Magnetic sector without the zero Matsubara
frequency contribution

For a discussion of dimensional reduction at high te
peratures we again remove the contribution of the zero M
subara frequency and obtain

H̃1~n!5
11

96p2 F4S log
L

4pT
1

gE

2 D2c~n!2c~2n!G ,
~97!

H̃2~n!52
11

96p2
@2gE1c~n!1c~2n!#, ~98!
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H̃3~n!5
11

48p2 F2 log
L

4pT
2c~n!2c~2n!G . ~99!

The IR singularity~96! is of course not present.

IX. COMPARISON OF OUR RESULTS
TO PREVIOUS WORK

There have been two other publications with the aim
get an effective theory for QCD at high temperatures. In
first one@25# gluon by gluon scattering at low momenta
the nonzero temperature Yang-Mills theory is calculated
terms of Feynman diagrams. In the second one@13# an ef-
fective theory for the static modes ofSU(N) Yang-Mills
theory in terms of a covariant derivative expansion is d
rived. The author makes a series expansion of the functio
determinants, and goes up to six orders in the covariant
rivative. This corresponds to a 1-loop calculation with up
six external static gluons and their effective vertices. T
zero Matsubara frequency contribution is not included.

To compare our results to those of Refs.@25# and@13# we
need to expand our functionsf 1,2, h1,2 in powers ofA4. We
would like to stress that within our calculation we can go
arbitrary power ofA4, while Refs.@25# and @13# only go to
the quadratic order. For a comparison we look at the q
dratic terms inA4 and obtain the following contribution:

E d3x
z~3!

p4T3

11

384
@E2A4

213~EA4!2#. ~100!

This agrees precisely with Ref.@13# after collecting terms of
the orders above. Reference@25# differs both in sign and
magnitude. For the magnetic part we can only compare
Ref. @13#, as only there the terms under consideration ha
been computed. To quadratic order inA4 we obtain

E d3x
z~3!

p4T3

11

192
@B2A4

21~BA4!2#, ~101!

which again coincides exactly with the result derived in R
@13#. In addition, in Ref.@14# the 1-loop action for the Polya
kov line has been computed up to two derivatives in
specific case of zeroAi . Although it may look as being a
gauge-noninvariant condition, in fact one of the gaug
invariant structures can be extracted from that calculati
Indeed, the gauge-invariant combination (EiA4)2/A4

2

projects out theAi field. Therefore, what we call thef 3 func-
tion has been actually computed in that paper, and our re
coincides with theirs.

X. TIME DEPENDENCE AND PERIODICITY IN A4

So far we have considered only time-independent ba
ground fieldsA4 and Ai . As stressed in the Introduction
taking A4 static is no restriction on the background b
merely a convenient gauge choice. However, takingAi static
is a restriction, and we would like to relax it, that is,
include terms in the effective action containing time deriv
2-10
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tives Ȧi . To the second order inȦi , this can be done in a
very simple way. Namely, we notice that in deriving th
quantum action we have made use of the commutators~52!,
~53! which remain exactly the same if we replaceA4 in A by
the more general operatorD4. The only difference is that the
resulting electric field should be now understood as the
Ei

a5Di
abA4

b2Ȧi
a . With this replacement, one gets the sam

effective action~3! as in the case of a purely staticAi . As in
the static case, it is limited to the second power ofEi and
hence ofȦi . Therefore, its applicability is restricted by th
condition that both spatial and time derivatives of the fie
are much less than the temperature.

After fixing the gauge such thatA4 is static one can per
form further a time-independent gauge rotation to ma
A4(x) diagonal, i.e., belonging to the Cartan subalgebra a
spatial points. We shall use this gauge condition in this s
tion to simplify the discussion. For theSU(2) gauge group it
means that we takeA45f(t3/2).

Having fixed the gauge such thatA4 is static and diagona
there is only an Abelian residual gauge symmetry left.
consists of arbitrary time-independent gauge rotations ab
the Cartan generators, and of a time-dependent gauge
tion ~also about the Cartan axes! of a special discrete type
compatible with periodicity ofAi(x,t). For theSU(2) gauge
group this residual gauge symmetry is with respect to
Abelian gauge transformation

Am→S†AmS1 iS†]mS,

S~x,t !5expH 2 i
t3

2
@a~x!12ptTn#J , ~102!

wheren is an integer, which follows from the requireme
that Ai(x,t) remains periodic in time. One cannot take ro
tions about axes other than the 3D one because it will m
A4 nondiagonal, and one cannot take the time depende
other than linear because that would makeA4 time depen-
dent. In components, the transformation~102! reads

A48
3~x!5A4

3~x!12pTn, meaning n85n1n,
~103!

Ai8
1~x,t !5cosbAi

11sinbAi
2 ,

b~x,t !5a~x!12pTnt, ~104!

Ai8
2~x,t !52sinbAi

11cosbAi
2 , ~105!

Ai8
3~x,t !5Ai

31] ia~x!. ~106!

The effective action must be invariant under this transform
tion, but is it?

It is easy to check that the combinations of the fie
strengthsBi

3Bi
3 , Bi

'Bi
' , Ei

3Ei
3 , andEi

'Ei
' ~whereF'F' is

the short-hand notation forF1F11F2F2) are invariant under
the gauge transformation~103!–~106!. As follows from Eq.
~3! these structures are multiplied by the functionsH3(n),
H1(n), F3(n), andF1(n), respectively. Therefore to suppo
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the invariance of the effective action under the gauge tra
formation~102!, all the four functions need to beperiodic in
n5A4

3/2pT with unit period.
So far we have computed those functions in the dom

0,n,1, so to check the periodicity one has to know the
outside this domain. Actually only the last step, namely,
summation over Matsubara frequencies, has to be revis
The result is as follows. The static potentialV(n) and the
functions H1(n), H3(n), and F3(n) are, indeed, periodic
~and even! in n, whereas the last functionF1(n) is even but
not periodic.

Indeed, for 0,unu,1 we find

F1~n!52
11

48p2 FL1cS n

2D1cS 2
n

2D2
20

11unuG .
~107!

For 1,unu,2 we find

F1~n!52
11

48p2 FL1cS n

2D1cS 2
n

2D222
38

11n

2
8

11S 1

n2
2

1

un3u
D G . ~108!

For 2,unu,3 we find

F1~n!52
11

48p2 FL1cS n

2D1cS 2
n

2D232
56

11unu
2

24

11n2

2
40

11un3u
1

2

22unu
1

2

42unuG , ~109!

etc. By L we have denoted the constant partL5
22log(L/4pT). This function is plotted in Fig. 2 and is
clearly not periodic.

The reason of this periodicity paradox is clear. By maki
the time-dependent gauge transformation~103!–~106! we in-
duce large time derivatives of theAi

1,2 fields, being of the

order of 2pT. The ‘‘dynamical’’ electric fieldȦi
1,2 does not

enter into the invariantsBi
3Bi

3 , Bi
'Bi

' , and Ei
3Ei

3 . There-
fore, the corresponding functionsH1(n), H3(n), andF3(n)
should be periodic to support gauge invariance, which ind
they are. One cannot and should not observe gauge inv
ance in the structureEi

'Ei
'F1(n) as it is only a quadratic

FIG. 2. The functionF1(n) with the constant partL subtracted,
in different intervals.
2-11
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functional in Ȧi
1,2, which is insufficient. There is no period

icity requirement onF1(n). All powers of Ȧi
1,2/T ~and of

A4 /T) need to be collected in the effective action to che
the invariance under fast time-dependent gauge transfo
tions ~102!. This, however, lies beyond the scope of t
present study.

XI. CONCLUSIONS

Given that the Polyakov line in theA4 static gauge is

P~x!5expS i
A4~x!

T D , ~110!

its gauge-invariant eigenvalues aree6 ipn where n
5AA4

aA4
a/2pT. We have in fact computed the 1-loop effe

tive action for the eigenvalues of the Polyakov line, intera
ing with the spatial components of the Yang-Mills fieldAi .
For theSU(2) gauge group the effective action is given
Eq. ~3! with the four functionsF1,2(n) andH1,2(n) defined
in Eqs. ~74!,~75! and Eqs.~93!,~94!, respectively. All func-
tions are singular and behave as 1/A4 at smallA4, which is
due to the contribution of the zero Matsubara frequency
should be stressed that the functionsH1,2(n) being coeffi-
cients in front of the invariants quadratic in the magne
field, contain ‘‘naked’’ IR divergences which are regulariz
by higher orders of the magnetic field and/or field mome
tum. If the static fluctuation mode is excluded from the
fective action, all functions become finite and nonsingul
they are then given by Eqs.~77!,~78! and Eqs.~97!,~98!,
respectively. If the background field does not satisfy
Yang-Mills equations of motion, there is an additional te
~82!.

As it should be expected, the functionsH1,2(n),F3(n)
5F1(n)1F2(n) and the static potentialV(n) are periodic
functions ofn but F1(n) is not. The periodicity is related to
the gauge invariance of the effective action with respec
fast time-dependent gauge transformations inducing la
electric field Ȧi . For the particular structure related
F1(n), this gauge invariance can only be revealed when
powers of the electric field in the effective action are c
lected.

For higher gauge groups there will be more invaria
structures already in the quadratic order in the electric
magnetic fields, and the coefficient functions will depend
all the eigenvalues of the Polyakov line, whose numbe
N21 for the SU(N) gauge group. It is worthwhile to gen
eralize this work to higher groups, as well as to find t
1-loop affective action arising from integrating out fermion

One can think of two kinds of applications of our resul
One is for studying correlation functions, say, of the Poly
kov lines at high temperatures but going beyond the appr
mations used previously. One might be also interested
evaluating the 1-loop weights of extended semiclassical
jects, such as calorons with non-trivial holonomy and dyo
The technique developed in this paper is applicable for s
studies.
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APPENDIX A: NOTATION

We normalize the generators of anSU~N! group as

Tr tatb5
1

2
dab. ~A1!

For SU~2! ta are half the Pauli matrices, and forSU~3! half
the Gell-Mann matrices. Their commutator defines the g
erators of the adjoint representation

~Ta!bc52 i f abc5 i f acb. ~A2!

The field strength in the fundamental representation is
fined as

@¹m ,¹n#52 iF mn52 iF mn
a ta, ~A3!

where

¹m5]m2 iAm
a ta ~A4!

is the covariant derivative in the fundamental representat
The field strength in adjoint representation becomes

@Dm ,Dn#cd52 f cdaFmn
a 5 f cadFmn

a , ~A5!

whereDm is the covariant derivative in the adjoint represe
tation

Dm
ab5]mdab1 f acbAm

c . ~A6!

For any matrix in the adjoint representation we shall imp
Bab52 i f abcBc. In particular, the gauge field which in th
fundamental representation isAm5Am

a ta becomes in the ad
joint representation

Am
cd52 i f cdeAm

e 5 i f cedAm
e . ~A7!

The electric field is in general defined asEi[Fi4. Hence

@Di ,D4#52 iF i452 iEi . ~A8!

Explicitly in the adjoint representation one has

Ei
ab52 i f abdDi

dhA4
h52 i f abdEi

d and Ei
d5Di

dhA4
h .
~A9!

We notice that the combination

@Di ,Ei #
ab52 i f abeDi

ecEi
c ~A10!
2-12



a
i

th

s

no

ug

re

that

-

we

COVARIANT DERIVATIVE EXPANSION OF THE YANG- . . . PHYSICAL REVIEW D 68, 025012 ~2003!
is zero if the background field satisfies the Yang-Mills equ
tion of motionDm

acFmn
c 50. For Eq.~A10! we use the Jacob

identity

f abef e f c5 f a f ef ebc2 f acef eb f. ~A11!

APPENDIX B: FUNCTIONAL DETERMINANTS
IN THE ELECTRIC SECTOR

1. Managing functional traces

We are interested here in extracting terms quadratic in
electric field but having any power ofA4. We expand the
ghost functional determinant~55! to quadratic order inDi
with the help of Eq.~50! and obtain two contributions at thi
order:

T15Tr E
0

1

daeasA 2
sDi

2e(12a)sA 2
~B1!

and

T252
4

3
s2p2Tr E

0

1

daE
0

12a

dbeasA 2
Die

bsA 2

3Die
(12a2b)sA 2

, ~B2!

where forT2 we used the fact thatpipj averaged over the
directions of the three-vectorpi gives 1

3 d i j p
2. With the com-

mutators~51! and ~52! it can be shown thatT1 is a sum of
four terms, two of which are gauge invariant and two are
gauge invariant~denoted by an over bar!:

T15T111T121T̄111T̄12, ~B3!

where

T1152s2E
0

1

da~12a!Tr esA 2
~2Ei

21 i $A,@Di ,Ei #%!,

~B4!

T12522s3E
0

1

daE
0

1

dgE
0

1

dd~12a!2~12g!

3Tr esA 2[12d(12g)(12a)]$A,Ei%

3esA 2d(12g)(12a)$A,Ei%,

T̄115sTr~esA 2
D2!,

T̄12522is2E
0

1

daE
0

1

dg~12a!Tr esA 2[a1g(12a)]$A,Ei%

3esA 2(12g)(12a)Di .

As the action is gauge invariant, we expect the not ga
invariant terms to cancel with those of the termT2. We will
show, that this is indeed the case.

Let us now turn toT2. Dragging Di ’s to the right we
obtain
02501
-

e

t

e

T252
4

3
s2p2E

0

1

daE
0

12a

dbe(12a)sA 2
D2easA 2

~B5!

1
4i

3
s3p2E

0

1

daE
0

12a

dbb

3E
0

1

dgTr e(12a2b1gb)sA 2
$A,Ei%e

(12g)bsA 2

3H easA 2
Di2 isaE

0

1

dgedasA 2
$A,Ei%e

(12d)asA 2J .

~B6!

We find thatT2 is a sum of six terms, among which three a
gauge invariant and three~again denoted by an over bar! are
not. We start with the not gauge invariant ones and show
they cancel withT̄11 and T̄12

T̄2152
2

3
s2p2Tr~esA 2

D2!, ~B7!

T̄22a5
8i

3
s3p2E

0

1

daa~12a!E
0

1

dg

3Tr esA 2[a1g(12a)]$A,Ei%e
sA 2(12g)(12a)Di ,

~B8!

T̄22b5
4i

3
s3p2E

0

1

daE
0

12a

dbbE
0

1

dg

3Tr esA 2(12a2b1gb)$A,Ei%e
sA 2[a1b(12g)]Di .

~B9!

The termsT̄11 from Eq. ~B4! and T̄21 are of the same struc
ture. Their sum is

T̄111T̄215sF12
2sp2

3 G~esA 2
D2!. ~B10!

This term vanishes uponp integration since

E
0

`

d3psp2e2sp2
5

3

2E0

`

d3pe2sp2
. ~B11!

For the evaluation of the other non-gauge-invariant terms
2-13
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use some relations for integrations over parameters, valid
any functionf :

~B12!

~B13!

~B14!

We find that
02501
or
T̄121T̄22a1T̄22b5E

0

1

daF22is2~12a!1
4i

3
s3p2~12a!2

1
4i

3
s3p2a~12a!G

3Tr esA 2(12a)$A,Ei%e
sA 2aDi . ~B15!

After integration overa the term in the brackets

@•••#52 is2S 12
2

3
sp2D ~B16!

becomes zero after integration overp. We hence have shown
that all not gauge invariant terms cancel out, as was ind
expected.

There are three gauge invariant terms left. They can
simplified by using some more integration relations
~B17!

~B18!

~B19!
ut a
Using them we find two gauge invariant structures

I 1[T121T22a1T22b

5s3E
0

1

daH 2
1

2
1a~12a!

1
2

9
sp2F12

3

2
a~12a!G J

3Tr e(12a)sA 2
$A,Ei%e

asA 2
$A,Ei%, ~B20!

I 2[T111T21

52s2S 1

2
2

2

9
sp2D

3Tr esA 2
~2Ei

21 i $A,@Di ,Ei #%!. ~B21!

In the evaluation of the gluon determinant~57! there is one
more gauge invariant structure
I 3[T3

522E
0

1

daE
0

12a

dbTr easA 2
~2sEi !e

bsA 2
~2sEi !

3e(12a2b)sA 2
~B22!

524s2E
0

1

daTr e(12a)sA 2
Eie

asA 2
Ei . ~B23!

2. Integrating over a, s, p and summing
over Matsubara frequencies

To obtain the action we have to integrate overa, s, mo-
mentump and sum over Matsubara frequenciesvk for the
three invariants we derived. For convenience we take o
factor of 1/(2p2T)

1

2p2T
E d3x (

k52`

` E d3p

~2p!3E0

`ds

s
e2sp2

2p2TI j ,

where j 51,2,3. ~B24!
2-14
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a. The first invariant I1

After taking the trace in Eq.~B20! explicitly and integrat-
ing overa we find thatI 1 has the structure

I 15X1~Ei
1Ei

11Ei
2Ei

2!1X3Ei
3Ei

3 . ~B25!

This is expected since our gauge choice forA4 is along the
third color direction, so the result should by symmetric
E1,2. Next we integrate over momentum, using thatd3p
54pp2dp. We find

2p2P1[E
0

`

dp p2X15p10e
2svk

2
1p1pe2s(f1vk)2

1p1me2s(f2vk)2
, ~B26!

2p2P3[E
0

`

dp p2X35p3pe2s(f1vk)2
1p3me2s(f2vk)2

,

~B27!

where the coefficients are

p105
Ap~231sf2!

12s3/2f2
2

Ap

4s5/2f3~2f12vk!

1
Ap

4s5/2f3~f12vk!
, ~B28!

p1p52
Ap~31sf2!

24s3/2f2
2

Apvk

12Asf
2

Ap

4s5/2f3~f12vk!
,

~B29!

p1m52
Ap~31sf2!

24s3/2f2
1

Apvk

12Asf
1

Ap

4s5/2f3~2f12vk!
,

~B30!

p3p5
Asp~f1vk!

2

12
, ~B31!

p3m5
Asp~f2vk!

2

12
. ~B32!

Next we integrate overs. The integrals overs of the indi-
vidual terms inP1 turn out to be UV divergent, howeve
their sum is finite. Using a regularization, i.e., replacing t
integration kernelP1 by lime→0(P1se) we find the finite re-
sult
02501
e

S1[ lim
e→0

E
0

`

ds~P1se!

5
puvku~f412f2vk

2216vk
2!

12f2vk
2~f224vk

2!
2

p~f12vk!

24fuf1vku

1
puf1vku

4f2
2

puf1vku3

3f3~f12vk!
2

p~f22vk!

24fuf2vku

1
puf2vku

4f2
2

puf2vku3

3f3~f22vk!
. ~B33!

The integral overP3 is finite and we obtain

S3[E
0

`

dsP35
p~f2vk!

2

24uf2vku3
1

p~f1vk!
2

24uf1vku3
. ~B34!

The next and final step is to sum over the Matsubara frequ
cies. We replacevk once by 2pTk and once by22pTk,
wherek>1, and add the two results, which has the adv
tage, that we have to sum over the positive frequencies o
The zero Matsubara frequency will be treated separately.
field variable is rescaled according to

f52pTn, where 0<n<1. ~B35!

This results in

TS185
1

12k
1

1

12~n22k!
2

1

24~n2k!
1

1

24~n1k!

2
1

12~n12k!
, ~B36!

TS385
1

24~n1k!
2

1

24~n2k!
, ~B37!

where the prime indicates that this is valid for nonzero M
subara frequencies.

The contribution of the zero Matsubara frequency in E
~B33! consists of a finite and a divergent part. The form
becomes upon rescaling

l 1
(0)~n!5~ lim

vk→0
TS1!finite52

1

8n
. ~B38!

We shall show later that the divergent part cancels exa
with a divergent term from the second invariantI 2. The sum
over the first term in Eq.~B36! is logarithmically divergent.
We regularize it by introducing a cutoffm in the sum. This is
equivalent to the Pauli-Villars regularization, since we fi
that the cutoffm is related to the Pauli-Villars mass by

m5
M

4pT
egE, ~B39!
2-15
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where gE is Euler’s constant. Summing over the non-ze
Matsubara frequencies and adding the finite contribut
from the zero mode~B38! we find

l 1~n!5S (
k51

`

TS18D 1 l 1~n!(0)

5
1

24F2
3

n
2c~12n!2c~11n!1cS 12

n

2D
1cS 11

n

2D12 logmG , ~B40!

where thec function is the logarithmic derivative of th
gamma function

c~z!5
]

]z
logG~z!. ~B41!

In the case ofS3 the zero Matsubara frequency yield
only a finite part

l 3
(0)~n!5 lim

vk→0
TS35

1

24n
. ~B42!

For the remaining sum overS38 , we add and subtract 1/k
terms to make them convergent:

(
k51

` S 1

24~n1k!
2

1

24kD2S 1

24~n2k!
1

1

24kD1
1

12k
.

~B43!

The first two terms yieldc functions, and the last part be
comes a logarithm after we introduce the cutoffm in the sum
over 1/k. The sum over all frequencies finally yields

l 3~n!5S (
k51

`

TS38D 1 l 3
(0)~n!5

1

24
@22gE2c~n!2c~12n!

12 logm#. ~B44!

b. The second invariant I2

We take the trace in Eq.~B21! but without the term
$A,@Di ,Ei #% which is zero if the equation of motion is sa
isfied by the background field~82!. Integration overa we
find the structure

I 25Y1~Ei
1Ei

11Ei
2Ei

2!1Y3Ei
3Ei

3 . ~B45!

Next we integrate over momentum and obtain

2p2Q1[E
0

`

dp p2Y1

52
Ap

24As
~2e2svk

2
1e2s(f1vk)2

1e2s(f2vk)2
!,

~B46!
02501
n 2p2Q3[E
0

`

dp p2Y3

52
Ap

12As
~e2s(f1vk)2

1e2s(f2vk)2
!. ~B47!

We integrate these functions overs and find

R1[E
0

`

dsQ152
p

24S 1

uf1vku
1

1

uf2vku
1

2

uvku
D ,

~B48!

R3[E
0

`

dsQ352
p

12S 1

uf2vku
1

1

uf1vku
D .

~B49!

For the sum over the nonzero Matsubara frequencies we
placevk once by 2pTk, once by22pTk and add the two
results. This yields

TR1852
1

12k
1

1

24~n2k!
2

1

24~n1k!
, ~B50!

TR385
1

12~n2k!
2

1

12~n1k!
. ~B51!

The contribution of the zero Matsubara frequency inR1
yields a finite and a divergent part where the former is

g1
(0)~n!5 S lim

vk→0
TR1D finite52

1

24n
. ~B52!

The ‘‘naked’’ 1/vk divergencies came from Eq.~B33! in I 1
and from Eq.~B48! in I 2. Both in the ghost and gluon de
terminants the two invariants enter in the combinationI 1
1I 2. Adding the terms which produce the divergences a
expanding invk we find

puvku~f412f2vk
2216vk

2!

12f2vk
2~f224vk

2!
2

p

12uvku
5

pvk

2f2
1O~vk

3!,

~B53!

which obviously disappears asvk→0. Therefore the diver-
gent parts from the two invariants cancel each other.

Settingvk50 in R3 gives only a finite result

g3
(0)~n!5 lim

vk→0
TR352

1

12n
. ~B54!

To sum over the nonzero Matsubara frequencies we use
method of adding and subtracting 1/k terms to make indi-
vidual sums convergent and introduce the cutoffm for diver-
gent sums over 1/k terms. Adding all contributions we obtai
2-16
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g1~n!5S (
k51

`

TR18D 1g1~n!(0)

5
1

24
@2gE1c~n!1c~12n!24 logm#, ~B55!

g3~n!5S (
k51

`

TR38D 1g3~n!(0)

5
1

12
@2gE1c~n!1c~12n!22 logm#. ~B56!

c. The third invariant I3

As in the case of the first two invariants we integrate a
sum over the third one~B22!. We find again the same struc
ture in the electric fields. Integrations overs turn out to be
finite. In the sum overvk the zero mode only yields a finit
part, and for the nonzero modes we introduce the cutoffm in
the sum over 1/k terms. The calculation is similar to th
previous case, and we present here only the results

j 1~n!5F2

n
22gE2cS 2

n

2D2cS n

2D12 logmG ,
~B57!

j 3~n!5@22gE2c~12n!2c~n!12 logm#,
~B58!

where j 1 is the function in front of (Ei
1Ei

11Ei
2Ei

2) and j 3

multiplies Ei
3Ei

3 .

APPENDIX C: FUNCTIONAL DETERMINANTS IN THE
MAGNETIC SECTOR

1. Managing functional traces

We are looking for terms quadratic in the magnetic fie
but containing any power ofA4. Since we are not intereste
in terms containing the electric field, we can drag all pow
of covariant derivatives through the exponentials ofA4 as if
they commute. For the ghost contribution this gives

@ log det~2D2!n#M ,ghost
(2)

52E d3x (
k52`

` E d3p

~2p!3E0

`ds

s

3Tr e2sp2
esA 2H s2

2
D2D21

~2is!2s2

3!
pipj@D2DiD j

1DiD
2D j1DiD jD

2#1
~2is!4

4!
pipj pkplDiD jDkDl J .

~C1!

For the integration over momentum we use the followi
relations:
02501
d

s

E d3p

~2p!3
e2sp2

5
1

~4ps!3/2
, ~C2!

E d3p

~2p!3
pipje

2sp2
5

1

2s

1

~4ps!3/2
d i j , ~C3!

E d3p

~2p!3
pipj pkpme2sp2

5
1

~2s!2

1

~4ps!3/2

3@d i j dkm1d ikd jm1d imd jk#,

~C4!

to obtain

@ log det~2D2!n#M ,ghost
(2) 52

1

8p3/2E d3x (
k52`

` E
0

` ds

As

3Tr esA 2H 1

12
@Di ,D j #@Di ,D j #J .

~C5!

As @Di ,D j #52 iF i j the commutator squared gives

@Di ,D j #
252Fi j Fi j 522BkBk , ~C6!

which leads us to

@ log det~2D2!n#M ,ghost
(2)

5
1

8p3/2

1

12
2E d3x (

k52`

` E
0

` ds

As
Tr~esA 2

BkBk!. ~C7!

For the gluons we get the same result times a factor of22
and one additional term

T4[TrE
0

1

daE
0

12a

dbeasA 2
~2seacbFi j

c !

3ebsA 2
~2sed f eFi j

f !e(12a2b)sA 2
, ~C8!

which with Fi j
a Fi j

b 52Bk
aBk

b and after integration overa and
b yields

T454s2Tr~esA 2
BkBk!. ~C9!

Its contribution to the action in the magnetic sector~57!

1

2E d3xE
0

` d3p

~2p!3 (
k52`

` E
0

`ds

s
e2sp2

T4

5
2

8p3/2E d3x (
k52`

`
ds

As
Tr~esA 2

BkBk! ~C10!

is hence of the same structure as the ghost contribution,
multiplied by a factor of 12. In the last expression we us
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Eq. ~C2! for the p integration. Adding the two contribution
of the gluon determinant we find that@ log(detW)n

21/2#M
(2)

5103@ log det(2D2)n#M
(2) .

2. Integrating over a, s, p and summing
over Matsubara frequencies

We have to integrate overs and to sum over the Matsub
ara frequencies. For the ghost contribution~C7! we find that
it is apart from the factor in front of the integral equal to t
second invariant, that we computed for the electric secto
we replace electric field by magnetic field. For the prec
coefficients, we have to compare Eq.~C7! with the results for
ni

.

.
ys

J.

.

02501
if
e

the invariantI 2 after the momentum integration~B46! and
~B47!. For the ghost determinant in the magnetic sector t
yields 21/(4p2) times the functionsg1,2 defined in Eqs.
~B55!,~B56!. Keeping in mind that the total action is 1
times the ghost contribution, we find

h1~n!52
11

4p2
g1~n! and h3~n!52

11

4p2
g3~n!.

~C11!

To obtain the functionh2 defined in Eq.~29! we denoteh2
5h32h1.
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