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Covariant derivative expansion of the Yang-Mills effective action at high temperatures
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Integrating out fast varying quantum fluctuations about Yang-Mills fieddsand A,, we arrive at the
effective action for those fields at high temperatures. Assuming that the Aieltsd A, are slowly varying but
that the amplitude oA, is arbitrary, we find a nontrivial effective gauge invariant action both in the electric
and magnetic sectors. Our results can be used for studying correlation functions at high temperatures beyond
the dimensional reduction approximation, as well as for estimating quantum weights of classical static con-
figurations such as dyons.
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I. INTRODUCTION At lower temperatures the fluctuations in the values of the
Polyakov line increase and eventually the system undergoes
The range of medium temperatures is probably one of tha transition to the phase with Pr=0, known as the confine-
most interesting aspects of quantum chromodynamicenent phase. To study this phase transition or at least to ap-
(QCD). It is the region where the confinement- proach it from the high-temperature side, one needs to know
deconfinement phase transition is expected in the pure-gluée effective action for the Polyakov line in the whole range
or quenched variants of the theory, and where chiral symmeof its possible variation. Effective Lagrangians foy at high
try restoration is believed to occur in the full version, with temperatures have been constructed and studied by a number
light dynamical fermions. Pure-glue theories without dy-of author§11,12, however, the 1-loop kinetic energy for the
namical quarks have the advantage that one can characteri?@lyakov line is unknown. One of the aims of this paper is to
the order parameter and get insight into many interestindind it.
aspects of the phase transitidh-4]. To get a good theoret- Let us formulate the problem more mathematically. Non-
ical understanding of what is going on below and above th&ero temperatures explicitly break the 4D Euclidean symme-
phase transitions and to understand the microscopic mechtty of the theory down to the 3D Euclidean symmetry, so that
nism of the transitions themselves is one of the greatest chalhe spatialA; and timeA, components of the Yang-Mills
lenges in QCD. field play different roles and should be treated differently.
Unfortunately, the present theoretical tools to handle thes®ne can always choose a gauge whiyeis time indepen-
problems are insufficient: there are a precious few well-basedent. TakingA,(x) to be static is not a restriction of any kind
statements about high and intermediate temperatures. At venn the fields but merely a convenient gauge choice, and we
high temperatures the perturbation theory in the running coushall imply this gauge throughout the papft. is also a
pling constant can be developed. Especially the hardpossible gauge choice @t=0 but in that limiting case it is
thermal-loop resummation methob] proved essential. unnatural as one usually wishes to preserve the 4D symme-
However, perturbation theory necessarily explodes already itry.] As to the spatial componernts(x,t), they are, generally
a few-loop approximation due to the nonperturbative chrospeaking, time-dependent, although periodic in the time di-
momagnetic sector of non-Abelian gauge theofig®,7], rection. Putting the componern#s to zero is a gauge nonin-
thus limiting the applicability of perturbation theory to aca- variant restriction on the fields since any time-independent
demically high temperatur¢s]. The 1-loop[7,9] and 2-loop  gauge transformation will generate a nonz&ro Therefore,
[10] potential energies as functions of the “time” Yang-Mills the spatial derivatives of the Polyakov line in the gauge-
componentd, are known, which are periodic functions with invariant effective action can only appear esvariant de-
a period 27T of the eigenvalues of\, in the adjoint repre- rivativesincluding a nonzerd\, field.
sentation. The curvature of this potential gives the Debye The effective action studied in this paper is a functional of
mass. The potential has zero-energy minima for quantizethe background statid, field and, generally speaking, non-
values of A, corresponding to the Polyakov line assumingstatic A; fields, obtained by integrating out fast-varying
values from the center of the gauge group. At high temperaguantum oscillations about the background. The key ingredi-
tures the system oscillates around one of those trivial valuesnt is that we do not assun#g, to be small but sum up all
of the Polyakov line. powers inA,. Therefore we are actually computing the ef-
fective action for the Polyakov loop interacting, in a covari-
ant way, with the spatiak; fields. The resulting effective
*Email address: diakonov@nordita.dk action has to be invariant with respect to time-independent
"Email address: oswald@alf.nbi.dk gauge transformations and also with respect to certain re-
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sidual time-dependent gauge transformations which do ndhe background field does not fall off fast enough at spatial
induce nonstati®\, and support the periodicity o&;(x,t); infinity it gives a finite contribution. This is, e.g., the case
they will be discussed at the end of the paper. when the background field is that of the BPS dya&5].

An economic and aesthetic method of getting explicity  Actually, quantum determinants are UV divergent, giving
gauge invariant actions is based on the evaluation of funcrise to the renormalization of the bare coupling constant of
tional determinants[An equivalent method is computing the tree action. We perform an accurate regularization of the
1-loop Feynman graphs with arbitrary number of externaldeterminants by means of the Pauli-Villars scheme. As a re-
legs, however, it is technically more involved and does notult, the above functions are finite and the, H, functions
automatically support gauge invariance with respect to theontain the running-coupling terms
external field] In this case, the evaluation of functional de- (11/247)In[(T/A)consi, where A is the QCD scale in a
terminants is nontrivial as we expand it in theovariant  particular regularization scheme. We have determined the
derivatives of the field but sum up all powers of the ampli-value of the “const” in the argument of the logarithm and
tude ofA,. We develop a general technique for the covarianthence have learned the precise scale of the running coupling
derivative expansion which, in principle, can be worked outconstant at which it needs to be evaluated. Changing the
to any power of the derivatives. In this paper, however, weregularization scheme means the substitufit®l
find explicit expressions for the action with 0, 2, and 4 co-
variant derivatives. This enables us to find the leading terms )
both in the electric and magnetic sectors of the theory. Awoo=el22A — — 40.66x ex _31 _

Since 4D Euclidean invariance is broken by nonzero tem- PV MS ' N2 |
perature the electric and magnetic field strengths appear dif-

ferently in the action. The magnetic field strength is . . )
There are two different approaches to the effective action

a a a. abcabac and correspondingly two different variants of the resulting

Bi :§Eijk(‘9iAk_‘9kAj +ETATAY, 1) functionsF;,... . One can either exclude or include the
contribution of the stati¢zero Matsubara frequenkfluctua-

whereas the electric field strength consists of two pieces, théons to the effective action. One follows the former logic if

“static” and the “dynamical”: one wishes to get the effective action for static modes only.
In this case the potential ener§(A,) is not periodic and
Ed= D?bAZ— A;’ﬂ: aiAS+ eaCbAiCAZ— A?. 2) moreover it is formally UV divergent. One follows the latter

logic if one is interested, e.g., in finding full quantum correc-
In the SU(2) gauge theory to which we mostly restrict tions to semiclassical field configurations at nonzero tem-
ourselves in the present paper there are only a few gauge aperatures, the examples of such being dypig and cal-
Euclidean 3D invariants in the order we are interested inorons[18]. We compute the functions, , andH, , in both
These areAjA;, EFEZ, BYB? and E7FAY)?, (B2A)?. [For  variants.

higher gauge groups there will be more invariahte ef- Correspondingly, we think of two kinds of applications of
fective action(tree plus 1-loophas the form our results. One is for studying the fluctuations and correla-
tion functions of the Polyakov line in the region of tempera-
d3x 5 (EiA,)? tures where its average deviates considerably from the per-
Sef= + j - —TV(») +EfF1(v) +——=—Fy(») turbative center-of-group values and where the dimensional
As reduction(i.e., perturbativeapproximation fails. Another ap-
2 plication is for evaluating the weights of semiclassical ob-
+BZH (v)+ —Hy(v)+ - |, (3)  Jects appearing at nonzero temperatire].
4
m II. BASICS OF YANG-MILLS THEORY
y= T AT FINITE TEMPERATURE

The general definition of the partition function for statis-
The static potentiaV/(v) has been known for 20 yea8,9];  tical systems is
the functionsF, ,, H; , are the new findings of this paper:
they turn out to be quite nontrivial and can be expressed
through the digammat functions. TheE?AZ andB?Aj terms 2= (ne #"n)
of the effective actioricorresponding to the first terms of the n
Taylor expansion of our functionsiave been known before
[13] and one combinatiofactuallyF; +F, in our notationg
was actually found previously by considering a particular _ * - B&,
case ofA;=0 [14]. We agree with this previous work, how- 2 f davn(ae Ynla)
ever our results are, of course, more general. In addition to

the structures in Eq(3) we have found a full-derivative term :f dq fq(ﬁ)=quq(t) exd — fﬁdtH[q al )
in the effective action. This term is not necessarily zero: if 0 q(0)=dq 0 )

1
B= f} 4
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where H is the Hamiltonian of the system arf} are its  with nonzero color charge: if these are for some reason dy-
eigenvalues. In Yang-Mills theory the role of coordinaggs  namically suppressed it must be seen from the theory but not
played by the amplitudes of the gluon field§(x) and the imposed by hand. Therefore we shall admiindependent
Hamiltonian is Q’s but not integrate over them explicitly.

In order to put the partition function into a more custom-

1 (8 3l nao a2 ary four-dimensional form one introduces an interpolating
BH=_—| dX [ d*X[(AD)"+ (B, (6)  gauge transformatiof(x,,x) such that
2g-Jo
where the dot indicates time derivative aBfl is the mag- Q(X4,X) = R (12)
netic field(1). The partition function can be written as a path Q(x), X4=p.

integral over “trajectories’A;(x4,X) going from a “coordi-
nate” Al”) at x,=0 to the same coordinate a;=;; one
also has to integrate over this initial coordinate

Simultaneously one changes the integration variables from
Ai(X4,X) to

(0

Al (X4,%)=Q(X4,X)Ai(X4,X) QT (x4,%)
, _a(0) i(Ag 4 ilXg 4
AiBX=A DA;(X4,X)

= (0)
2= | oA A0 ~AP Q04,040 (X4,%) (12

and introduces, instead 6f(x,,x), the new variable

Xexp{—ifﬁde d3x[(A?)2+(B?)2]J. 7)
2g%Jo ' ' Au(Xq,X)=1Q(X4,X) 3,0 (X4,%). (13

However, in a gauge theory one sums not over all possibl&or example, if the interpolating gauge transformation is
but only over physical states, i.e., satisfying Gauss’ law. Intaken to be()(x4,x) = exp{ix, Tw*(X)t?}, thenA, is time inde-
the absence of external sources it means that only thoggendent and equal t8,(x)=Tw?(x)t%. We note that both
states need to be taken into account that are invariant undey,(x,,x) andA/(x,,x) are periodic in temporal direction.

gauge transformations The magnetic energy is gauge invariant: i.e.,
A)—=[A)]* P =000 A ) Q) +i1Q(x)T3,Q(x), TrB2(A)=TrB%(A!), (14)
Q(x) =expli wa(X)t?}. (8)  while the electric energy becomes
To restrict the summation to physical states, one has to TrE2=TrAi2:TrE’2, (15)

modify Eqg. (7). One projects to the physical, i.e., gauge in-
variant states by averaging the initial and final configurationsvhere
over gauge rotations. The YM partition function is therefore _ _
Bl =A = aiA—1[As AT]=A —[ViI(A)A;]. (16

thys: E <n|e7'8H|n>

phys States Therefore the full action density can be rewritten as a stan-
dard TF2,, where
! — A0 95(x)
_ (0) Ai(BX)=[A ]2 ) .
fDQlyz(x)DAI (X) 00~ (AO 509 DAi(X4,X) F=d,A,—3,A,—i[A, A,] (17)

1 (8 ' with A, (X4,x) denotingA/(x4,x) andA4(x4,X). Thus, Eq.
Xexp{ - ;j dx4f d3x[(A?)2+(B?)2]] . (90 (10 is equivalent to the more familiar partition function
g 0

1
Renaming the initial fielc[A§0)]nl(x)_>Ai(0) and introducing thys:J DA#exp{ _ _zf d4XFZVFZV] , (18)
the relative gauge transformatidi(x)=Q,(x)Q1(x) one 49

can rewrite this a/] where one integrates over gauge fields obeying periodic

o boundary conditions in time, meaning,(Xs,X)=A (X4
thys:f DA(X)DA(x) +8,x), with B=1/T.
Periodic fields can be decomposed into Fourier modes
(0)y0(x)
XJ[:Z') ] DA (x4,x)e" FHMAXa ] (10) i
A

Aﬂ(x4,x)=k:2_w Alwi,X)e“%  ,=27kT, (19

There is a subtle question whether one has to include inte-

gration over global gauge transformations, i.e.,wherew,=2mKkT are the so-called Matsubara frequencies,
x-independenf)’s in Eq.(10). If one does, it means that only which play the role of mass. In the limit—-o all nonzero
states with total color charge zero are admitted in the partiMatsubara modes become infinitely heavy. If one leaves only
tion function. A more cautious approach is to allow for statesthe static gluon modes it is called “dimensional reduction”
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[20], as the resulting theory is purely static. There is no dy-is the action of the background field. The quadratic form for
namics in the time direction anymore. At high, but not infi- a, in the background Lorenz gauge is given by

nite temperatures, this approximation is too crude. The non-

zero modes show up in loops and produce infinitely many Wf‘f’yz—[DZ(K)]abéw—2fa°bFfw(K). (24)
effective vertices. The aim of this paper is to find all these

infinite number of vertices restricted, however, to low mo-Integrating out the quantum fluctuations and ghosts yields
mentap<T, induced in the 1-loop order. two functional determinants,

Ill. ONE LOOP QUANTUM ACTION Z(A)=e*S(detw)~ *2de{ — D?), (25

As stressed in the Introduction, one can always choose th§o P
' that the 1-loop action is
background fieldA\, to be static. As to thé\,; field, we shall P

temporarilytakeit to be static: the generalization of the ef- S, 100=l0g(detW) ~ 2+ log det — D?). (26)
fective action to the case of time-dependeqt will be .
simple. Since the operator’@z,WW are built from covariant de-

To study the effects of the nonzero Matsubara modes Weyatives and the field strength only, this action is invariant
use a background field method and split the gluon fields intq,nger general gauge transformations of the background field.
a time independent background fietd,(x) and a presum- One can use this freedom to make thgcomponent static,

ably small quantum fluctuation fiela, (x4,x): which we shall always assume. The spatial componAnts
- are then, generally speaking, time dependent. For the most of
AL(Xg,X) = A, (X) Fa,(Xs,X). (20 the paper we shall assume ti#gtis time independent too. At

the end we shall be able to reconstruct terms withfrom

In this paper we coqs@der the quantum effec_ts at the 1'Iooﬁauge invariance but at the time being we shall take static
level. Then it is sufficient to expand the action around the,

backgroungl field up to quadratic order a)L The linear . in,d.egg(ralgetrf]]teggﬂggtltjrrgngglr%(g?i)oESlnvarlant under time
term ina,, is absent owing to the orthogonality of nonstatic

modes to static ones. We shall, however, also investigate the
contribution of the static fluctuation mode. In this case the
linear term is absent if, e.g., the background field satisfies the — __ _
equation of motion or if the static mode is varying in space Ai(x)—=U()A)UT(x) +iU (x)3UT(x). (28
faster than the background field. The quadratic form is, gen-

erally speaking, degenerate so that one has to fix the gaud@ this paper we restrict ourselves to t8&(2) color group,

for fluctuations. This gauge fixing is unrelated to the gaugavhich means that the action depends on the gauge and 3D
fixing of the background field. We choose the backgroundEuclidean invariantd3A3, EFE], BYBY, EFA], B{AZ, etc.

Ay(x)—U()AL)UT(x), 27)

Lorenz gaugeDM(K)aM= 0, where For higher groups there will be more invariants. We write the
background fields without an over bar from now on, as they
Dab(K):&Mé\ab+fachC (21)  are the only field variables left.
2 1

In fact the action can be presented as a series in the spatial
is the covariant derivative in the adjoint representation. Thigovariant derivativeD; . Since the electric field is given by
gauge brings in the Faddeev-Popov ghost determinant whicﬁia=DiabA2, an expansion in powers of the electric field
can be expressed as a Grassmann integral over ghost field@rresponds to a covariant gradient expansion of Ahe
For the partition function this yields fields. To get the magnetic field, we already need one more

power of D;, such asBf=3 e Ffj=7ece®®D;,D;1%
1 For theSU(2) gauge group, in the electrimagneti¢ sector
202(M) only two independent color vectors exi&f (BY) and Aj.
Therefore, we expect the following structure for the gauge-
invariant gradient expansion:

Z(A)=e*S= e+§f DaDXDX+exp| -

byp/b 2
x f d'xalWPeas— f d4xx+a(D,L>xa], (22

S =+f3 —T%V(v)+EZ (v)+wf (v)
wherey,x" are ghost fields and 1-loop T o Ai 2
B ! f d*x F2 (A)F2 (A) (23) +Bfh <v>+(B‘A“)2h (v)+ (29)
_ . 2n, 5 ..
4g2(M) pr | A;

In the explicit evaluation of the functional determinants we

Jackson and Okuf21] recommend to name the,A, =0 gauge find exactly the structuré29) and determine the functions
after the Dane Ludvig Lorenz and not after the Dutchman Hendrikf1,f2,h1,h, at all values of their argument which is in fact a
Lorentz, who certainly used this gauge too but several decades latalimensionless ratio= \AJAY/ (27 T).
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IV. THE FUNCTIONAL DETERMINANTS d3x d3p
-D?). =— | -2
We start with the evaluation of the ghost functional deter- log de(=D%)r f T Tk=,w f (2m)3
minant. As usual we subtract the zero gluon field contribu-

tion. Using the fact that detikexp Trlog K we can write % fm%(l_ewz) (36)
0
def — Di) 2 2
XPI0g 2 X Shlog(= D) ~loa(= )], X Tr{exe (D + i)+ (D, +ip)?]
M
(30 —ex{ s(iw)?+s(ipj)?]}. (37)

where Sp is a functional trace. We present the ratio of detef©wing to the periodic boundary conditions we have replaced

minants with the help of the Schwinger proper time repre-the integration ovep, by the sum over the Matsubara fre-

sentation22] quenciesw,=27kT and taken into account that thg inte-
gration goes from 0 tg3=1/T. Keeping in mind that the

) del — Di) (g o ) background field is time independent one can replace
log det —D?),=log———— = —f —Sp(esPu—e%y).
det - a7,) oS D§°— faPAg. (38)

(31
We define the adjoint matrix
In fact this ratio is logarithmically UV divergent, reflecting
the coupling constant renormalization. We use the Pauli- A=Al +i 0y 5% (39
Villars method to regularize the divergence. This corre- :
sponds to replacing the determinant by a “quadrupole forUPon which Eq(36) becomes
mula”

log det —D?) =—f d3x i d°p
de(—D?)—de(—D?), (32 e ) (2m)3
de(—D?2) dei— 2+ M? w
_ el 2,,,) el ,; 2) Xf d—s(l—e*SMz) 40)
de(—7;,) de(—Dj,+M"?) oS
:exp|_fxd?SSF[(l_e—st)(eSDi_esﬁi)]]_ (33) X Tr{exd s A2+ sD?+ 2isp,D; — sp?]
i —ex —s(w+ P} (@1

The functional trace in Eq33) can be taken by inserting any In the same way as for the ghost determin@@ we use the

full basis, so we are free to choose €.g., the plane-wave basig,,4rypole formula” and write the normalized and regular-
exp(x,p.). Then, by the definition of the functional trace, ;. gluon determinant as

one can write

4

d
Spe‘5K=Trf d*x Iimf P

y—xJ (2m)

1 (=ds
Iog(detW);r}’zzzfo < (1= e sM?)

4
X Spe” Wi — e 0™ (42)
Xexp —ipy)exp —sK)exp(ipx), (34)

which after an insertion of a plane wave basis and dragging
where Tr is the remaining matrix trace over color and, as th&XP(px) through the differential operator yields
case may be, Lorentz indices. One can now drag the latter " 5
plane-wave exponent though the differential operétamtil Iog(detW)*l’Z:}f 4 2 d°p
it cancels with the former. This results in the shift of the rno2 K= ) (2m)3
derivatives inside the differential operator and in the follow-
ing representation of the functional tral@3]:

*ds
X f ?(1—e*S""Z)Tr{exp:(s,él2+sDi2
0

d4
Spe’SK=Trf d4xf (27:;4er —sK(d,—d,+ip,)]1. +2ispD;—sp?)?Ps,,+2sfAOFS ]
(35) —exd —s(wi+p?)]}. (43

The 1 at the end is meant to emphasize that the shifted opA covariant gradient or derivative expansion is the expansion
erator acts on unity, so that, for example, any term that has @ D;, applied to.4? and Ffw. For example, to quadratic
d, in the exponent and is brought all the way to the right,order inD; it corresponds to summing up all 1-loop Feyn-
will vanish. According to Eq(35) we now have man diagrams with twad\, vertices carrying momenta, and
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any number oA, insertions at zero momentum. So far, both ~ VI. GENERAL TECHNIQUE FOR THE COVARIANT
Egs.(40) and(43) are independent of the gauge group. DERIVATIVE EXPANSION

In the next orders in the covariant derivative the calcula-
V. ZEROTH ORDER OF COVARIANT tion becomes more involved. We wish to keep all powers of
DERIVATIVE EXPANSION A4, but expand in powers d;. To expand the exponential
Zeroth order in the expansion Corresponds to Setnmg Of two noncommuting Operators A and B we use the fOI‘mu—
=0. For the gluon part43) the field strength does not con- 1as
tribute at this order since it is quadratic in the covariant de-
rivatives. Hence the gluonic contribution is (1/2)X4=
—2 times the ghost contribution, where the facter1(/2)
comes from the fact that the gluon determinant is taken to
this power[see Eq.(25)], and the Lorentz structure of the
gluons Tw,,, yields 4. At zeroth order of the covariant de-
rivative expansion one thus has

1
eA+B:eA+J dae®Bel~MA
0

1 1-a
+f daf dpe* Bef Bell @« AA+. ..
0 0

(50)
S1 -joop— [IOg dE( - DZ)](O)- (44)

The determinant is UV finite in this order, so one does notand

need to regularize it. For the explicit calculation one can 1

choose a gauge whemk, is diagonal in the fundamental [B,eA]:J dye”™[B,Ale(l 1A, (51)
representation, hence for ti88J(2) gauge group 0

_ sa3 _
=69, ¢=VAIAL (49 HereB denotes the combination of covariant derivatives in
the exponents in Eq40) or Eq.(43), A is everything that is

; H ab_ _a3b H b
The eigenvalues of the 83 matrix A*7=e*7¢+iwy left there. We encounter here the following commutators:

are (wy+ ¢, w— ¢, wy). It is obvious that upon summation
over all Matsubara frequencief (w,+ ¢)?] and f[(wy

— ¢)?] give the same. We hence obtain [Di, A]=[Di.D4]=—iFi;=—IiE;, (52
S0 +2f o d’p (~ds [Di,A%]=~i{AE}, (53)
1 -loop™— 3
k,_m (2m)2Jo s
5 ) where the electric field is in the adjoint representation, i.e.,
X e~ SP (e S(uk=9)* _ g~ suig (46)

ab__:racbhec
Integrating over proper timeand summing over Matsubara Shallinacy (54)

frequencies labeled bly gives
The strategy is to drag all derivatives to the right using

the master formulaé0),(51).
f e Iog( chM co#)

k= —o0
(47 VIl. ELECTRIC SECTOR

The p integration can be performed with the help of Ref. We are now going to find the second and third terms in
[24]. One obtains Eq. (29), i.e., terms quadratic in the covariant derivatide.
As expected, terms which are not gauge invariant cancel out
individually for the ghosts and the gluons. In the end three
. (49 different gauge invariant contributions remain. Writing down
mod2r T the ghost determinant as

1
(0) _ _ 3 2 N2
Sl—loop_ Jd X12772T¢ (27T—¢)

hence the dimensionless static potential is

dp
2 3

_(2m)? , VAL log det —D%); n= fd o) (2w
V(v)= 3 ve(1—v) mOdl, V= T (49

i i X xd—s(l—e‘SMz)Tr e SP[eAtB]
This result is well knowr{7,9]. We want to stress here that 0 S '

the term cubic inv arises solely from the zero Matsubara
frequency,k=0. It makes Eq(48) periodic in v with unit (59
period. It should be noted that without the zero frequency
contribution thep integration is UV divergent; the addition where A=s.42 and B=2ispiDi+sDi2 and expanding irB
of the w,=0 mode removes this divergence. with the use of Eqs(50),(51) we obtain[see Appendix B1
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d3p
(2m)3

flog det ~D?), 1=~ [ ox
k—foo
=ds
xf —(1-e"
o S

The gluon determinant is

M) eS| +1,].

(56)

dp
(2m)3

log(detw), Y= f d3x k
»ds

xf —(1—
o S

where this time A2’=(sA?)?"s,, and B2)=(sD?
+2ispD;)?5,,, +2$fa°bF° Expanding inB2’, and using
Egs.(50),(51) we find [see Appendix B1

e_SMz)Tre_sz‘S#V[eA+ B,

(57)

[log(detw),. 1/2]<2>

f d®p ds(
kf—oc (2m)2Jo 8

2
_e—SM )

|
x e~ s¥ 2|1+2|2+53 (58)
The gauge invariants in Eq&6),(58) are
I—3f1d 1+1 +2p2131
1=S . a5 a(l—a) 9S Za( )
X Trell-@sA%r 4 ElessA®l A E ), (59
1 2 2 2 .
l,=—g2 E—gspz TresA (2E7+i{A,[D; ,Ei1}),
(60)
o (! 1 (1-a)sA2z nasA?
l;=8s OdaETre Eie E;. (61)
The total 1-loop actiori26) is
SChople= +[Iog<detW>n Y2+ log det —D?), ,]¥
d®p [=ds
—+fd3 P [ Ca-es
k=== J (27)%)o S
|
X e~ SV |1+|2+§3 (62)
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¢=27wTv, where Gsv=<1. (63

The case wherm is outside this interval will be considered
separately. In the invariahy we will here only take the first
term and leave away the anticommutator. Its effect will be
shown later. In the sum over the Matsubara frequencies we
treat the zero mode separatgbee Appendix B 2 for details
For 1, and the first term i, the zero Matsubara frequency
yields each an IR divergent term, i.e., proportional to
lim,, .o(1/wy) and one finite term which is proportional to
1/¢. The “naked” IR divergencies cancel between the two
invariantsl ; , in such a way that both the ghost and the gluon
contribution are separately IR finite. The zero mode of the
invariantl; contributes only with a finite 3 term.

With our gauge choicedj= 53¢ we actually get two
structures E}E!+E?E?)f,(¢) and EZE?f5( ), which can
be written in invariant terms as

E?f,(v) and ﬂ[ (v)—

|A4l?

respectively. Adding up the ghost and the gluon result and

fa(»)], (64)

denoting 3;—f4) by f, we find the two functions defined in
Eq. (29):
11 | v v 20
f1= 4%2_2<Iogu—yE>—¢(—5)—¢(5)+E ,
(65)
11 [ v v) 20
fo= 48772_111 5|t 3| ) — (= v) =
(66)
f3= )= (V)= p(1=v)],
VAIAL
Y 67)
Here ¢ is the digamma function
J
¥(z)=—-logl'(2), (68)

ve is the Euler constant, and the argument of the logarithm
p is the cutoff that we have introduced in the sum over
Matsubara frequenci¢see Appendix B2 It is related to the
Pauli-Villars mass as

e’E,

e ¥ 69
This result for the Pauli-Villars scheme agrees wijitti]
where the scale of the running coupling constant in the di-
mensionally reduced theory was studied in M8 scheme.
The subtraction scales are related accordin§1®]. Using

For the explicit evaluation we have to do all the integrationsEd- (69) we can express the functiofig, 3 as

over a, s, p and the summation over the Matsubara frequen-
For convenience we rescale the field variable and f,=

cies wy.
introduce

11
4872

M ( V) (v 20
2|09m—lﬂ —E —lﬂ E +E’ (70)
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F1 F3 static quantum fluctuations. Subtracting the contributions of
the zero Matsubara frequency, which are of order, Me
obtain

- 7 T

0.1 0.5 0.9 0.1 0.5 0.9

s+l 313
2% T2 Y2

FIG. 1. F1(v) (left) andF3(») (right) without the constant first v
terms are shown for€v<1. The solid lines include the contribu- Fa(v)= > P\ — 2
tion of the zero Matsubara frequency, while it is subtracted in the oL

+ty

ﬁ—ww—w—w

dashed curves. (78)
11 v v 20 = 11 | A
S —— —= - ) — Fa(v)= 2lo —y(v)—(—v)|.
f, 48772[(/;( 5|t 2) Y(v)— P(1—v) 11J' a( pre]| Y7 Y (=)
(72 (79)
M Here we used the relation for the¢ function #(1+v)
fa= 182 2log,—=—¢(v) = h(1-v) . (72) = y(v)+ 1/v. Keeping in mind that
Recalling that the tree-level action has the bare coupling de-  —¢(X)— ¢(—X)=2[ yg+ L(3)X%+ (B)x*+ - -],
fined at the cutoff momenturil, (80)
EFEY aga 11 | M 49 Where{(n) is the Riemann zeta function, we see that the
2g%(M) T 2472 OgX’ (73 contribution of the nonzero Matsubara frequencies to the ef-

fective action is regular &,=0, and that the bare coupling
we see that the UV divergent Id¢ term cancels out in the constant should be replaced by the running one taken at the
sum of tree and 1-loop actions. The full action is finite andscale 4re” "ET~7.0555T, if the Pauli-VillarsA is used. If
can be presented in the form of E&) where the functions another regularization scheme is used, the scale should be

F12, are obtained fronf, , 3 by replacing the cutofM by  changed accordingly, see the Introduction. The plots of
the finite A parameter (without the first termpare also shown in Fig. 1.

Fj_:

A v v
-l —=—-ul=|+— B. The “equation of motion” term
2872 2 %t ¢( 2) v z)*‘lly} b | ! o
We finally compute the second term in the invaridpt

which we have so far left out. Its contribution is

F2:

11 (v) (V) 20
1872 W35 v —¢(l-v)— 1L dp [=ds
(79) SEM:TJ'd Xk;m (2m)® o s’

A 1 2 2
_ _ _ _ 2l - _ = SA“(; CE.
Fa= 12| 2100 5~ v(»)—u(l-n)|, XT|—s (2 gspz)Tre (|{A,[D|,E|]})},
s (81
A 76
YT 2aT (76) where the curly brackets denote the anticommutator. After all
. . ] _integrations and the summation owey it gives
The functions=, andF 5 without the first term are plotted in
Fig. 1. Both functions are singular At,— 0, which is due to ana bab
the contribution of the zero Matsubara frequency. 3 .. 1 [ (DiE)*A;  (DiEj)°A,
Sem=+ | d°%z%— - (82
127 dl VASAS

A. Electric sector without the zero Matsubara

frequency contribution Here the first term comes exclusively from the non-zero Mat-

The functionsF; and F, have so far been evaluated by subara frequencies, while the second term is the contribution
summing over all the Matsubara frequencies, including theof the zero Matsubara frequency alone. Equati®) is zero
static fluctuations around static gluon background fields. Thisf the classical equation of motion is satisfieste Appendix
is of interest for a number of physical cases. For the problenf\]. If the background field does not satisfy the equation of
of dimensional reduction, however, one does not include thenotion one can integrate E¢82) by parts which yields
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We find [see Appendix C]Lthat this term yields the same

1 1
Sem=+ zf d3x[ E?E?(Ai—f + 7 3(Ef’A;‘;) contribution to the action as the ghost determinant, but mul-
127 A | A4l tiplied by a factor of 12. The total contribution of the gluon
determinant to the 1-loop action in the magnetic sector is
X(EPAD)— 5, E?Ai(l_iﬂ _ (83  hence 10 times that of the ghost determinant.
Ay T The total 1-loop action in the magnetic sector is

2 _ —-1/2 2 2
Apart from the last term which is a full derivative the first [Shoplv= + [log(detW), 12+ log det — D?), (7

two can be added to the functiofig, found previously.

11 ” ods
= 3/2 d3x E _Tr(l—e_SMz)
VIIl. MAGNETIC SECTOR 487 kK== Jo s
2
We are now going to calculate the fourth and fifth terms in X (e5A°B,B,), (87)

Eq. (29, i.e., terms quadratic in the magnetic field. In anal- h he i . d th .
ogy to the derivation of the action for the electric sector, we'VNere the integration oves and the summation over Mat-

make an expansion in the spatial covariant derivabyeof subara frequencies s_,till have tp be performed. However, we
the functional determinants and collect powers of the mag.go npt need to do.'t anew since Qxactly the same gauge
netic field. Note that while the electric field only needed one'n,v"’lr""mt appeared in the invariah in the eIectrlc' sector,
power of a covariant derivative the magnetic field needs two'Vith the obvious replacemet; —B; , see Eq(60). Wlthloulr
For magnetic field squared we hence need an expansion #249€ choice we . obtain  two  structures, Bi'B;
fourth order in the covariant derivatives. In principle, in the +BiB)h:(») and B{B/hs(») which can be written in in-
fourth order in the covariant derivatives there is a mixedvarant terms as
term of the typeeijkeabCE?EJ-t’Bﬁf(A4), terms quartic irg;, (BiA,)?
and terms containing covariant derivativesiEfbut we do Bizhl( v) and 174
not consider them here. For that reason, we neglect all com- |A42
mutators[D;,A,], as they introduce additional powers of

E;. This simply means that we can drag all powers of the'®SPectively. ,
covariant derivativeD; as well as of the field strengttfs; Combining the ghost and the gluon result and denoting

through the exponentials @, as if they commuté. (hz—hy) by h, we find the two functions defined in E9)
For the ghost determinaiib5) we obtain[see Appendix

[ha(v)—hy(»)], (89

; ; ; : f 11
(_3 1] only one gauge invariant structure, which after integra- hy(v)= 3(v) + log
tion overp becomes 2 4872
11 M
1 = ds _ YE|_ —(1—
flogdet—D?), P~ [ % |/ = 967 4('°%+ 2| 7VmvdmY)
(89
XTr(1—e sM*)(es4°B,B,).
(84) _fa(v) 11
h2( V) 2 48772log/‘l’
For the gluon determinarn7) we get the same result times
a factor of —2 plus one additional term 11
=~ go 2rET WYL= )], (90)
1 1-« P &
T,=Tr f da J dpe*s4’(2se*° F )
’ ’ h f —11 21 g—NI 1
= = (0] - - - ’
« P sedTep! ) gli-a-sA? @5 3(v)="f3(v) 182 T Y e(l-w)
ij ’
which with F;”}Fibj =2B7BP and after integration ovex and e VAZAL 91)
B yields the same gauge invariant structure 27T) "
T4=432Tr(eSAszBk). 86) As beforeu is given by Eq.(69).

The UV divergent logarithm in Eq89) cancels the diver-
gence from the tree-level action which has the running cou-

5 _ o _ pling defined at the cutoff momentum
One obtains from the Jacobi identityF;;,A,]=i([D;,E;]

—[Dj.Ei]). Since we are not interested now in such terms in the Bag2 11 M

effective action, we shall assume that the magnetic field commutes =B2B2 log— (92
. 2 i 29N

with A,. 2g°(M) 24
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such that the sum of tree and 1-loop actions are UV finite. 11 A
The finite full action can be brought into the form of E§) Hi(v)= 512 Iogﬁ— J(v)—Y(—v)|. (99
where the functionsi, , ; are obtained fronh, , 5 by replac- A8 ™

ing the cutoffM by A: . . .
The IR singularity(96) is of course not present.

Fa(v) 11
Hi(v)= > + 2IOQ,LL IX. COMPARISON OF OUR RESULTS
48m TO PREVIOUS WORK
11 A Ve There have been two other publications with the aim to
= 9672 4 '09m+ o p(v)=P(1=-v)|, get an effective theory for QCD at high temperatures. In the
first one[25] gluon by gluon scattering at low momenta in
(93)  the nonzero temperature Yang-Mills theory is calculated in
terms of Feynman diagrams. In the second fi# an ef-
fective theory for the static modes &U(N) Yang-Mills
Ha(v)= ——[2yve—(v) = (1-w)], (94 theory in terms of a covariant derivative expansion is de-
96m rived. The author makes a series expansion of the functional
determinants, and goes up to six orders in the covariant de-
Hs(v)=F3(v) rivative. This corresponds to a 1-loop calculation with up to
11 A six external static gluons and their effective vertices. The
= 210g—=— (v)— Yp(1—v) |, zero Matsubara frequency contribution is not included.
4872 4T To compare our results to those of R¢®5] and[13] we

need to expand our functiorfg ,, h; , in powers ofA,. We
X/AgAg would like to stress that within our calculation we can go to
= 2aT) (95  arbitrary power ofA,, while Refs.[25] and[13] only go to
the quadratic order. For a comparison we look at the qua-
ratic terms inA, and obtain the following contribution:

14

When we sum over the Matsubara frequencies we find ag
in the case of the electric sector, that the zero Matsubara
frequency contributes both with a finite term which is pro- J' d3x ¢3) E[E2A2+3(EA4)2] (100
portional to 14 and a “naked” IR divergent part. The finite 7473 384 4 '
terms are included in the resul89) and(90). The separate

contribution of the IR divergent part is This agrees precisely with RdfL3] after collecting terms of
the orders above. Referen¢25] differs both in sign and
I 5 a (BiAy)?| 1 magnitude. For the magnetic part we can only compare to
lim — 18 d“x| ByBg— 2 | o (96)  Ref.[13], as only there the terms under consideration have
@x—0 A k been computed. To quadratic orderAp we obtain
In contrast to the electric sector, this divergence does not get
canceled. This is also clearly seen in terms of Feynman dia- 3,503 1 ae 2
: y y f X Topl B*A4+ (BA)?, (102

grams and corresponds to a singularity in the magnetic self-
energy of the gluons due to the zero Matsubara frequency in

and/or nonzero momenta of the background magnetic fielfoV line has been computed up to two derivatives in the
are taken into account. specific case of zerd,;. Although it may look as being a

gauge-noninvariant condition, in fact one of the gauge-
invariant structures can be extracted from that calculation.
Indeed, the gauge-invariant combinationE;A,)%/A3
projects out they; field. Therefore, what we call thig; func-

For a discussion of dimensional reduction at high tem+jon has been actually computed in that paper, and our result
peratures we again remove the contribution of the zero Mategincides with theirs.
subara frequency and obtain

A. Magnetic sector without the zero Matsubara
frequency contribution

X. TIME DEPENDENCE AND PERIODICITY IN A,

~ 11 A Ve
Hi(v)= 9672 4( logy—+ 5 | ~ v —¢(=v)|, So far we have considered only time-independent back-
(97) ground fieldsA, and A;. As stressed in the Introduction,
taking A, static is no restriction on the background but
11 merely a convenient gauge choice. However, taldngtatic
Ho(v)=— [2ye+ ¥(v)+ ¥(— )], (98) Is a restriction, and we would like to relax it, that is, to
9672 include terms in the effective action containing time deriva-
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tives A;. To the second order iA;, this can be done in a F1

very simple way. Namely, we notice that in deriving the

guantum action we have made use of the commutd&is

(53) which remain exactly the same if we replakgin A by

the more general operatbr,. The only difference is that the

resulting electric field should be now understood as the full

E2=D3PAP— A2, With this replacement, one gets the same

effective action(3) as in the case of a purely stal¢. As in 3ozt oz 3

the static case, it is limited to the second powertpfand FIG. 2. The functiorF ,(») with the constant paitt subtracted,

hence ofA, . Therefore, its applicability is restricted by the in different intervals.

condition that both spatial and time derivatives of the fields

are much less than the temperature. the invariance of the effective action under the gauge trans-
After fixing the gauge such tha&, is static one can per- formation(102), all the four functions need to heriodicin

form further a time-independent gauge rotation to makeu=A§/27rT with unit period.

A4(X) diagonal, i.e., belonging to the Cartan subalgebra at all So far we have computed those functions in the domain

spatial points. We shall use this gauge condition in this sec@<v<1, so to check the periodicity one has to know them

tion to simplify the discussion. For tH&U(2) gauge group it  outside this domain. Actually only the last step, namely, the

means that we takd,= ¢(7°/2). summation over Matsubara frequencies, has to be revisited.
Having fixed the gauge such thaj is static and diagonal The result is as follows. The static potentM{») and the

there is only an Abelian residual gauge symmetry left. Itfunctions H,(v), Hs(v), and F5(») are, indeed, periodic

consists of arbitrary time-independent gauge rotations aboyand evehin v, whereas the last functida;(v) is even but

the Cartan generators, and of a time-dependent gauge rotaet periodic.

tion (also about the Cartan axesf a special discrete type Indeed, for G<|v|<1 we find

compatible with periodicity of\;(x,t). For theSU(2) gauge

group this residual gauge symmetry is with respect to the v v 20
Abelian gauge transformation Fi(v)=— 4872 L+y > Tyl - 1 m :
t ot 10
A,—S'A,S+iS"9,S, (107
3 For 1<|v|<2 we find
S(x,t):exp{—i—[a(x)+27rtTn] , (102
2 ) 11 ty V) N w( V) 38
1\v)=- 23 Y
wheren is an integer, which follows from the requirement 48m° 2 2 11
that A;(x,t) remains periodic in time. One cannot take rota-
tions about axes other than the 3D one because it will make _ E i_ i (109
A, nondiagonal, and one cannot take the time dependence 1112 |08
other than linear because that would maketime depen-
dent. In components, the transformatid@®2) reads For 2<|v|<3 we find

AZ(x)=A3(x)+27Tn, meaning v'=v+n,

103 FL(%) Lty v)_ﬂ//( V) 3 56 24
v)=— —_ —_ | — —_——_—
(103 ! 4872 2 2 1y 12,2
rl _ 1 H 2
A/ 7(X,t)=cosBA; +sinBAT, 40 X 5 X 5 10
B(x,1)=a(x)+27Tnt, (104 113 2=[v[  4=[y]]’
Ai’z(X,t)Z—SinBAil+COSBA'2- (105 etc. By L we have denoted the constant patt=
—2log(A/4#T). This function is plotted in Fig. 2 and is
Ai’s(x,t)=Ai3+r7ia(X). (106) clearly not periodic.

The reason of this periodicity paradox is clear. By making

The effective action must be invariant under this transformathe time-dependent gauge transforna@ﬁS)—(lQG) we in-
tion, but is it? duce large time derivatives of th&~ fields, being of the

It is easy to check that the combinations of the fieldorder of 27T. The “dynamical” electric fieldA"* does not
strengthsB®B?, B{ B, E’E’, andEE (whereF'F* is  enter into the invariant8’B?, B{B{, and E’E?. There-
the short-hand notation fét'F+ F?F?) are invariant under fore, the corresponding functioms,(v), Hs(v), andF5(v)
the gauge transformatiofi03—(106). As follows from Eq.  should be periodic to support gauge invariance, which indeed
(3) these structures are multiplied by the functidfg(v), they are. One cannot and should not observe gauge invari-
H,(v), F3(v), andF,(v), respectively. Therefore to support ance in the structur& E;F,(») as it is only a quadratic
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Given that the Polyakov line in th&, static gauge is
APPENDIX A: NOTATION

P(x)= ex% i AA_I(_X)

its gauge-invariant eigenvalues are*'™ where »

= JAZAy/2mT. We have in fact computed the 1-loop effec- For SU2) t2 are half the Pauli matrices, and f6t(3) half

tive action for the eigenvalues of the Polyakov line, interactthe Gell-Mann matrices. Their commutator defines the gen-
ing with the Spatial components of the Ya.ng-Mi”S flmd erators of the adjoint representation

For theSU(2) gauge group the effective action is given by

Eq. (3) with the four functionsF, v) andH, 5(») defined (T,)Pe=—ifabe=jfach, (A2)

in Egs. (74),(75) and Eqs.(93),(94), respectively. All func- _ _ o
tions are singular and behave a#lAt smallA,, which is The field strength in the fundamental representation is de-
due to the contribution of the zero Matsubara frequency. Ifined as
should be stressed that the functiddg (v) being coeffi-

cients in front of the invariants quadratic in the magnetic

field, contain “naked” IR divergences which are regularized h

by higher orders of the magnetic field and/or field momen-"/€r€
tum. If the static fluctuation mode is excluded from the ef- V =9 —iA3ta (Ad)
fective action, all functions become finite and nonsingular; KoTH s

they are then given by Eq$77),(78) and Egs.(97),(98), s the covariant derivative in the fundamental representation.
respectively. If the background field does not satisfy the Tne field strength in adjoint representation becomes
Yang-Mills equations of motion, there is an additional term
(82. ' [D,.D, %= —fedapa =feadga | (A5)

As it should be expected, the functiohs; (v),F3(v)
=F1(v) +F,(v) and the static potentiaV(v) are periodic  whereD, is the covariant derivative in the adjoint represen-
functions ofv but F,(v) is not. The periodicity is related to tation
the gauge invariance of the effective action with respect to
fast time-dependent gauge transformations inducing large Dib=aﬂéab+fa°bA;. (A6)

electric field A;. For the particular structure related to
F.(v), this gauge invariance can only be revealed when a||:2r  AbCm e ’ ) >
powers of the electric field in the effective action are col-3° = —i1f*"*B% In particular, the gauge field which in the
lected. fundamental representatlonA\gl=Aita1 becomes in the ad-
For higher gauge groups there will be more invariantiQint representation
structures already in the quadratic order in the electric and cd_ _:ccdene _:fcedne
magnetic fields, and the coefficient functions will depend on Ay = IR =TTEEA, (A7)
all the eigenvalues of the Polyakov line, whose number i
N—1 for the SU(N) gauge group. It is worthwhile to gen-
eralize this work to higher groups, as well as to find the [D,,D,]=—iF = —iE, (A8)
1-loop affective action arising from integrating out fermions. e 4 t
One can think of two kinds of applications of our results. gxplicitly in the adjoint representation one has
One is for studying correlation functions, say, of the Polya-
kov lines at high temperatures but going beyond the approxi- E2°= —jfabdpdhal=—jfabdgd and EI=DI"AL.
mations used previously. One might be also interested in (A9)
evaluating the 1-loop weights of extended semiclassical ob-
jects, such as calorons with non-trivial holonomy and dyonsWe notice that the combination

The technique developed in this paper is applicable for such
studies. q ° Pap PP [D;,Ei]?°= —ifaP*DfEf (A10)

We normalize the generators of &UN) group as

: (110

ab:E b
Trtct 25‘3 . (AL)

[V,.V,]=—iF,,=—iF3 2, (A3)

any matrix in the adjoint representation we shall imply

SI'he electric field is in general defined Bs=F;,. Hence
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is zero if the background field satisfies the Yang-Mills equa- 4, (1 1-a L )sA2 2 asd?
tion of motionD%°F¢ ,=0. For Eq.(A10) we use the Jacobi T>=—3S°P JO dafo dpelt-WsA’pZeas (BS)
identity
fabefefc: fafefebc_ facefebf' (All)
4i 3.2 1 1-a
+=s°p° | da dsg
APPENDIX B: FUNCTIONAL DETERMINANTS 3 0 0
IN THE ELECTRIC SECTOR 1
(1-a-B+yp)sA? 1a(l-y)psA?
1. Managing functional traces XfodyTre TPRE{ A Ejpett s

We are interested here in extracting terms quadratic in the

electric field but having any power &&,. We expand the ><[e"‘SAZDi—iSafldye‘S“SAz{A,Ei}e(l_‘s)“SAz )
ghost functional determinar{t5) to quadratic order irD; 0
with the help of Eq(50) and obtain two contributions at this (B6)
order:
T,=Tr JldaeasA 25 DiZ,e(lw)SA2 (B1) We find thatT, is a sum of six terms, among which three are
0 gauge invariant and thrgagain denoted by an over bare
and not. We start with the not gauge invariant ones and show that

they cancel withT {; andﬂz

4 1 l1-a
T2=—§szp2Tr fo dafo dBe*sA’D,efsA’

2,5 sAZH2
XDie(l“"B)SAZ, 82) Ty= 3S°P Tr(e>* D7), (B7)
where forT, we used the fact thap;p; averaged over the
directions of the three-vectaqr; gives%ﬁijpz. With the com- — 8i ., (1t 1
mutators(51) and (52) it can be shown thal, is a sum of 122~ 3 SP fo daa(l-a) fo dy
four terms, two of which are gauge invariant and two are not
gauge invariantdenoted by an over bar X TresAlatvi-alf g glesA*L-N(A-a)p, |

Ty=Ty+ ot Tyt Ty, (B3) (B8)

where

_ 4i 1 1-a 1
1 Toxp= —S3pzf daf d,B,Bf dy
Tllz_szfo da(l—a)TreSAZ(ZEiZ-i-i{A,[Di ,Ei]}), 2 3 0 0 0
(B4) X TresA*A-a- BB g ElesA latA-Ip,

1 1 1 59
Ti= —233fo dafo d'yfO dé(1—a)?(1— 1)

X Tr esAz[l,ﬁ(l,y)(l,a)]{A E) The term_sﬂl from Eq. (B4) andT,, are of the same struc-
o ture. Their sum is

% esAzﬁ(l—y)(l—a){A,Ei},

— 2 N — 2s
T1=sTr(e**'D?), Tyt Ty=s1- sz (e47D?). (B10)

I 1 1

lez—ziszf daf dy(1—a)TresAlatvd-alf 4 g
0 0 This term vanishes upop integration since

XeSAZ(lfy)(lfa)Di _

As the action is gauge invariant, we expect the not gauge fmd3psrge—sp2:§fwd3pe—sp2. (B11)
invariant terms to cancel with those of the tefi; We will 0 2)o
show, that this is indeed the case.
Let us now turn toT,. DraggingD;’s to the right we
obtain For the evaluation of the other non-gauge-invariant terms we
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use some relations for integrations over parameters, valid for_

any functionf:

PHYSICAL REVIEW D 68, 025012 (2003

4i
—2is?(1—a)+ §s3p2(1— a)?

— — 1
T12+ T223+ sz: j da
0

1 1 L (1—e)? 4i
f daf dya(l—a)f(ay) =j de f(e), + =s°p?a(l—a)
0 0 NI 0 2 3
€ (B12 ) 5
XTresA (-ar 4 E}es*™eD;. (B15
1 1 1 After integration overa the term in the brackets
j daf dyaf(ay) =f dn(1=n)f(n),
0 0 —— 0 (B13) 2
7 [---]=—is? 1—§sp2) (B16)
1 l—a 1 1 becomes zero after integration oyeWe hence have shown
j daf dﬁﬁf dyfla+pBy) ZJ d8s(1—9)f(6). that all not gauge invariant terms cancel out, as was indeed
0 0 0 e — 0
5 (B14) expected.
There are three gauge invariant terms left. They can be
We find that simplified by using some more integration relations
1 5 1 1 111 s
fo daa (1—a>fodwf0 déf(a75>=gfo dE(1-€Pf(8), (B17)
3
1 l—a 1 1 1Z(1-¢)?
f daaf dﬁﬁf dvf d5f(a5+ﬁv)=f — D), (B18)
0 0 0 0 —_— 0
I
1 1 1 111
f daazf dyyf dof(ayd)= —f dr(1—K)*f(k). (B19
0 0 0 _e— 2Jo
|
Using them we find two gauge invariant structures 1,=T,

[1=TaoF Toga+ Tox

Y L B
s’ | da 2+a(1 a)
0

)

X Tret-asd® 4 ElessA®f A B,

1 3
—Ea(l—a)

2
+ §Sp2

[,5=Tq+ Ty
1 2
2| — _
2 95"2)

X TresA%(2E2+i{A,[D; ,E]}).

=-s

- —2f1dafl_adBTre“SAZ(ZsEi)e'BSAZ(ZsEi)
0 0

In the evaluation of the gluon determing5t7) there is one

more gauge invariant structure

X gllma=psA? (B22)
2 ! (1—a)sA?2 asA?
=—4s°| daTre Ee E;. (B23)
0
(B20) 2. Integrating over «, s, p and summing
over Matsubara frequencies
To obtain the action we have to integrate owers, mo-
mentump and sum over Matsubara frequencieg for the
three invariants we derived. For convenience we take out a
factor of 1/(272T)
(B21) 1 - d®p (=ds
> f d3x >, f P f —e P22,
2T k=== J (27)3Jo S
where j=1,2,3. (B24)
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a. The first invariant |,

After taking the trace in EqB20) explicitly and integrat-
ing over«a we find thatl; has the structure

l1=X(E'E!+ EZE?) + XEPED. (B25)

This is expected since our gauge choice Agris along the
third color direction, so the result should by symmetric in
E'2 Next we integrate over momentum, using thip
=4mp?dp. We find

277'2P1E Jo dp p2X1= ploe_swi—k plpe—5(¢+ w)?

+pyme S’ (B26)

2m°Py= f dp P’Xs= FJS;J‘E’_S(QHW)2Jr Pame (4w,
0

(B27)
where the coefficients are
_Vm(=3+s¢?) Jm
P10= 1&3/2¢2 455/2¢3(_ ¢+ Zwk)
J
, B28
" 4523 (p+ 2wy (628
_ VmB+4s¢?) mey  m
P= " 022 120sg 45203t 20p) |
(B29)
_ \mB+s¢?)  Nmey Vm
PInT T a2y 12Jsp 45PN~ dr 2wy
(B30)
+ 2
p3p: M, (831)
V5m(g— wy?
Pam= %wk) (B32)

Next we integrate oves. The integrals oves of the indi-
vidual terms inP, turn out to be UV divergent, however,

PHYSICAL REVIEW D 68, 025012 (2003

S;=lim

e—0

f:daplsf)

_ mod(4P+2¢%wi—160})  m(p+2wy)

120202 $>—4a?)  24h|p+ oy
Jalgrod  algrol  m(g-20
442 3¢3(p+2wy) 240ld—wy
_ _ .3
+7T|¢ o 7oy ' (B33
4¢?  3¢%(p—2wy)
The integral ovelP; is finite and we obtain
” m(p—w)? (Pt wy)?
=| dskP;= . (B34
R ey e e

The next and final step is to sum over the Matsubara frequen-
cies. We replacev, once by 27Tk and once by—2#Tk,
wherek=1, and add the two results, which has the advan-
tage, that we have to sum over the positive frequencies only.
The zero Matsubara frequency will be treated separately. The
field variable is rescaled according to

¢=27Tv, where G=v=<1. (B35)
This results in
fa 1 1 1 1
SI= Ikt =20 24—k | 24005 K)
- B36
C12(v+2k)’ (B36)
TS,= ! ! B3
5= 24(v+K) 24v—kK)’ (B37)

where the prime indicates that this is valid for nonzero Mat-
subara frequencies.

The contribution of the zero Matsubara frequency in Eqg.
(B33) consists of a finite and a divergent part. The former
becomes upon rescaling

1O =(lim T --:—i. B38
1 ( ) ( S_L)flnlte 8v ( )

w,—0

We shall show later that the divergent part cancels exactly
with a divergent term from the second invaridpt The sum
over the first term in Eq(B36) is logarithmically divergent.
We regularize it by introducing a cutoff in the sum. This is
equivalent to the Pauli-Villars regularization, since we find
that the cutoffu is related to the Pauli-Villars mass by

their sum is finite. Using a regularization, i.e., replacing the

integration kerneP, by lim._,o(P1s) we find the finite re-
sult

rn=7-7¢" (B39
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where yg is Euler’s constant. Summing over the non-zero
Matsubara frequencies and adding the finite contribution 27°Q,=

from the zero modé¢B38) we find

+1,(v)©

|1(V)=(k21 TS

3
=al o A=) (L)

1 14
2

(B40)

+¢(1+%)+2log,u, ,

where theys function is the logarithmic derivative of the
gamma function

J
P(z)= ﬁlogl“(z). (B41)

f:dp P*Ys
Jr

= 7 (e Sdtw?y g-s(¢-w)? B47)
T Jg( ). (
We integrate these functions oveend find
R.— J dsQy 1 1 N 2 )
= S T/,
v |¢+wk| |[p—wil |y
(B48)
i j dsQu= ( 1 1
= S .
= 2\ [p— “)k| [+ oy
(B49)

For the sum over the nonzero Matsubara frequencies we re-

In the case ofS; the zero Matsubara frequency yields Placewy once by 2rTk, once by—2nTk and add the two

only a finite part

19(v)= lim TS3—i

wy—0

(B42)

For the remaining sum ove$;, we add and subtract K./
terms to make them convergent:

1

+ ﬁ
(B43)

- 1 1 1

S ] (e
e 24(v+ 24(v+k) 24k 24v—k) 24k
The first two terms yieldy functions, and the last part be-

comes a logarithm after we introduce the cufefin the sum
over 1k. The sum over all frequencies finally yields

(0) _1 _ _ _ _
+13 (V)—2_4[ 2ye—p(v)—¢p(1—v)

2T

+2logu].

l3(v)=
(B44)

b. The second invariant J

We take the trace in Eq(B21) but without the term
{A,[D;,E;]} which is zero if the equation of motion is sat-
isfied by the background fielB2). Integration overa we
find the structure

l,=Y.(E'El+ E?E?) + Y4,ETED. (B45)

Next we integrate over momentum and obtain

27°Q,= fo dp p°Y;

T
24J§(

Ze—swi+ e_5(¢+wk)2+ e_5(¢_wk)2)’

(B46)

results. This yields

1 1
TR= =Tt 22—k 2405k (B0
TR— —* ! B51

37 12(v—k) 12(v+k)’ (B5D)

The contribution of the zero Matsubara frequencyRp
yields a finite and a divergent part where the former is

lim TR,

wy—0

Ovy= S B52
g1 ( ) ( )flnlte 24y ( )

The “naked” 1/wy divergencies came from E@B33) in I,

and from Eq.(B48) in |,. Both in the ghost and gluon de-
terminants the two invariants enter in the combinatign
+1,. Adding the terms which produce the divergences and
expanding inwy, we find

7| w0yl (*+ 22 wE— 16wd)
12¢2wi( p*—4wh)

W J—
v

T Wy 3
242 +0(w)),

(B53)

which obviously disappears as,— 0. Therefore the diver-
gent parts from the two invariants cancel each other.
Settingw,=0 in R5 gives only a finite result

(0)(1/)— lim TRy=

wkHO

~ (B54)

To sum over the nonzero Matsubara frequencies we use the
method of adding and subtractingklterms to make indi-
vidual sums convergent and introduce the cugoffor diver-

gent sums over k/terms. Adding all contributions we obtain
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= d3p 1
n=| 3 TR| +g1(»© | e , c2)
(k—l 1 ! (2’7T)3 (4775)3/2 (
1
=5l 2ve T ¥(v)+y(1-v)—4logu], (BSH) d’p _ 1
24 J 3p p] Sp2—2 —3/25” y (Cg)
(27) S (4ms)
9a(»)=| 2 TR, | +s(») f B L
(2m3 (29)2 (4m)¥?
1
=1—2[27E+ y(v)+y(1—v)—2logu]. (B56) X[ 8ij Okmt ik SjmT Sim ik,
(CH
c. The third invariant 15 to obtain
As in the case of the first two invariants we integrate and
sum over the third onéB22). We find again the same struc- * < ds
ture in the electric fields. Integrations oveturn out to be  [log det—D?),]{0s= — _3/2J 3 —
finite. In the sum ovemw, the zero mode only yields a finite k== Jo s

part, and for the nonzero modes we introduce the cutdfi (1
the sum over ¥ terms. The calculation is similar to the X TresA |1—2[Di ,D;j1[D; ,DJ-]].
previous case, and we present here only the results

(CH
2 v v . .
ji(v)= ——ZyE Yl — = —w > +2logpu|, As [D;,D;]= —iF;; the commutator squared gives
BS7) [D;.D;]?=~FyFjy =~ 2BBy, (C6)
Js()=[—2ye—¢(1-v)—¢(v)+2logpu], which leads us to
(B58)
[log det —D?)]{¥gnos:
wherej, is the function in front of E'E!+ E’E?) andj, L 1
. . 3 3 o
multiplies E{E; . :8773/2 12 kzw TTr(eSA BBy). (C7)

APPENDIX C: FUNCTIONAL DETERMINANTS IN THE

MAGNETIC SECTOR For the gluons we get the same result times a factor af

and one additional term
1. Managing functional traces

1 1-«
We are looking for terms quadratic in the magnetic field T4ETrf daf d/geaSAz(zSEachiCj)
but containing any power dk,. Since we are not interested 0 0
in terms containing the electric field, we can drag all powers 2 2

i X i ! i gt BsA dfef ya(l—a—pB)sA
of covariant derivatives through the exponentialsAgfas if xe (2se”F))e ' (C8

they commute. For the ghost contribution this gives ) L acb anb _ )
which with Fj;Fj; =2B, By and after integration ovex and

[log det — Dz)n]f\,lz?ghoSt B yields
f " dp [=ds T,=42Tr(e*°B,B,). (C9)
k——oc 2m)3Jo S
( ™ Its contribution to the action in the magnetic seator)
s 2 2
X Tre sPesA?) S S bep2y Lp, ,[D2D;D; =g
2 J d3 J S 5p2T4
(2i5)4 0 (27T)3 k—*w 0 S

+DiD2Dj+DiDJ—D2]+Tpipjpkp|DiDjDkD|].

oo ds 2
= d? —Tr(eSA BB C10
(1 ol 2 e Bd (C10

For the integration over momentum we use the followingis hence of the same structure as the ghost contribution, but
relations: multiplied by a factor of 12. In the last expression we used
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Eq. (C2) for the p integration. Adding the two contributions the invariantl, after the momentum integratiof346) and

of the gluon determinant we find thtog(detw), ¥%){2)
=10x[log det(— D?),]{Z.

2. Integrating over a, s, p and summing
over Matsubara frequencies

We have to integrate overand to sum over the Matsub-

ara frequencies. For the ghost contributi@v) we find that

it is apart from the factor in front of the integral equal to the

(B47). For the ghost determinant in the magnetic sector this
yields —1/(47?) times the functionsy, , defined in Egs.
(B55),(B56). Keeping in mind that the total action is 11
times the ghost contribution, we find

11 11
hi(v)==7—30:1(») and hs(»)==""505().
(C11

second invariant, that we computed for the electric sector, if
we replace electric field by magnetic field. For the preciselo obtain the functiorh, defined in Eq.(29) we denoteh,

coefficients, we have to compare EG.7) with the results for

:h3_h1.
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