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The successive perturbative estimates of the pressure of QCD at high tempé@rathosv no sign of
convergence, unless the coupling constaig unrealistically small. Exploiting known results of an effective
field theory which separates haforder 27T) and soft(ordergT) contributions, we explore the accuracy of
simple resummations which at a given loop order systematically treat hard contributions strictly perturbatively,
but soft contributions without truncations. This turns out to improve significantly the two-loop and the three-
loop results in that both remain below the ideal-gas value, and the degree of renormalization scale dependence
decreases as one goes from two to three loop order, whereas it increases in the conventional perturbative
results. Including the four-loop logarithms recently obtained by Kajaeited., we find that this trend continues
and that with a particular sublogarithmic constant the untruncated four-loop result is close to the three-loop
result, which itself agrees well with available lattice results down to temperatures of abdut 2\ also
investigate the possibility of optimization by using a variatioff@creened”) perturbation theory in the
effective theory. At two loops, this gives a result below the ideal gas value and also closer to lattice results than
the recent two-loop hard-thermal-loop-screened result of Andezsah While at three-loop order the gap
equation of dimensionally reduced screened perturbation theory does not have a solution in QCD, this is
remedied upon inclusion of the four-loop logarithms.
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I. INTRODUCTION of the quasiparticle picture, is based on the so-called
d-derivable approximationsl9—21] (see also Peshi¢22)).

One could expect weak coupling calculations to lead toThis approach takes advantage of remarkable simplifications
reasonable estimates of the QCD free energy at high tenwhich occur in the calculation of the entropy at two loop in
peratureT, a regime where indeed the gauge coupling bethe skeleton expansion. Together with  further
comes small because of asymptotic freedom. But expliciapproximation$ for the self-energies based on hard thermal
perturbative calculations, which have been pushed in recembops, this led to results for the thermodynamical functions
years up to ordeg® [1-7], do not exhibit any sign of con- which are consistent with lattice calculations for tempera-
vergence, as depicted in Fig. 1; they rather show increasingires above 2.
ambiguities due to the dependence on the renormalization This paper reconsiders the known results up to ogdén
point, signaling a complete loss of predictive power. the light of the simple observation that the accuracy of per-

Various mathematical extrapolation techniques have beeturbation theory is not the same at all momentum scales.
tried, such as Padapproximantg8,9] and Borel resumma- Thus, while perturbation theory at the scales an expansion
tion [10]. The resulting expressions are indeed smooth funcin powers ofg?, the perturbation theory at the sc@@ is an
tions of the coupling, better behaved than polynomial ap-expansion in powers af and is therefore less accurate. It is
proximations truncated at order or lower, with a weaker when they are treated strictly perturbatively that the soft con-
dependence on the renormalization scale. However, whil@ibutions turn out to completely spoil apparent convergence,
these methods do improve the situation somewhat, it is faias exemplified by thésoft) contribution of orderg® which
to say that they offer little physical insight into the source ofleads to a pressure exceeding the ideal gas value. The main
the difficulty. idea that we want to pursue is to decouple approximations in

Recognizing that an important effect of thermal fluctua-the hard and the soft sectors: in the hard sector, we shall use
tions is to give mass to the excitations, thereby screeningerturbation theory since it is accurate; in the soft sector we
long range interactions, it has been suggested to incorporaghall go (minimally) beyond perturbation theory, with the
such screening effects in the tree-level Lagrangian and coremarkable result that the apparent convergence of perturba-
rect for double counting by adding suitable counterterms taive QCD at high temperatures is dramatically improved.
the interactions. Such a scheme has been implemented witthis, in our opinion, lends support to the more ambitious
some success in scalar field theory under the name of
screened perturbation theof8$PT) [11-14. It has been ex-
tended to QCD by including at the tree level the entire non- 1A full ®-derivable approximation has been worked out success-
local Lagrangian of the hard thermal loofl$TL) [15-18,  fully in scalar field theorf23], for which recently also the question
which is referred to as HTL perturbation thedifTLPT). of renormalizability could be answered affirmatively in Refs.

A different approach, motivated physically by the succesg24,25.
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In fact, Ag starts to contribute to the pressure only at order

N ™~ - g®. For this reason we shall ignore this particular coupling in
N~ g e most of the following, as well as all the other vertices con-
g3 \\\\\ . ta'ned |n5£E CD-

1.2 M~ ] Q

The thermal pressure of the 4-dimensional theory can be
1 I ] decomposed into contributions from the hard modes,
calculable by standard perturbation theory, and soft contribu-
tions governed by Ed1) which involves both perturbatively
calculable contributions up to ordgPT* and nonperturba-
tive ones coming from the fact that the effective theory for

the modesA;(x) is a confining theory. However, the latter
magnetic contributions start at ordg? and cannot priori
be made responsible for the poor apparent convergence that

FIG. 1. Strictly perturbative results for the thermal pressure oflS S€€n up to ordeg®.
pure glue QCD normalized to the ideal-gas value, as a function of \We shall then focus in this paper on the soft contributions,
T/T, (assumingl./Axs = 1.14). The various gray bands bounded i.€. those coming from the momentum scgl® In principle
by differently dashed lines show the perturbative results to agler  these can be calculated using perturbation theory, but as clear
g%, g* andg®, with modified minimal subtractionMS) renormal-  from Eqgs.(1) and(2) the corresponding expansion parameter
ization pointu varied betweenrT and 47 T. The thick dark-gray IS gé/mEfvg, so that the perturbative expansion converges
line shows the continuum-extrapolated lattice results from Refonly slowly, more slowly than the perturbative expansion in
[26]; the lighter one behind that of a lattice calculation using anthe hard sector. As a minimal step towards a nonperturbative
renormalization-grouptRG-) improved actior{27]. treatment of the soft sector, we shall perform a simple loop

expansion of Eq(1), keeping the parametemsz andgg as

attempts to reorganize perturbation theory by novel resumgiven in terms ofg by the matching conditions and not ex-
mation techniques. panding them out in powers af in the final result. As we

The tools to deal with various momentum scales in fieldshall see, this simple method leads to a significant improve-
theory are well developed and involve the construction ofment over the strict perturbative results. We also consider the
effective theories. In fact, the perturbative results througheffect of including the four-loop logarithms recently obtained
orderg®, first calculated in Refd4,5], have been rederived by Kajantie et al, and again find that strict perturbation
and confirmed by Braaten and Nigtd] by an elegant and theory has large scale dependences which are drastically re-
efficient effective-field-theory method which separates conduced when keeping soft contributions untruncated. For a
tributions from hard, soft, and supersoft momentum scalesparticular choice of the sublogarithmic constant the untrun-
27T, gT, and g°T, respectively. In Euclidean space, the cated four-loop result is moreover close to the three-loop
only soft modes are static ones, and the effective field theoresult, which itself agrees well with available lattice results
ries for these are therefore dimensionally redy@®+30to  down to temperatures of about Z5&
three-dimensional ones. The dimensionally reduced theory In Sec. Ill we consider a simple variational improvement
consists of massive adjoint scalar field§ and massless of perturbation theory in the form of dimensionally reduced
three-dimensional Yang-Mills fieldgvith couplinggg) and, ~ screened perturbation theofRSPT. This turns out to be
following Braaten and Nieto, we shall refer to it as electro-much simpler than HTLPT, while also allowing us to resum
static QCD(EQCD) in the following. The corresponding ef- Screening masses in a gauge invariant manner. At two-loop
fective three-dimensional Lagrangian is order it leads to a result significantly closer to lattice data
than two-loop HTLPT, which suggests that the partial failure
of the latter as observed 17,18 is due to spurious hard
contributions. At three-loop order, the gap equation of
DRSPT has no real solution, but this is remedied upon inclu-
sion of the four-loop logarithms.

In the final section we summarize and discuss our results
and try to put them into perspective with other techniques.

1 1 1
Leqeo=7 FiiFi+ 5 (DiRo)*(DiAg)*+ 5 MEATAS
1 apay2
+ g)\E(Avo) + 0Leqcp ()

where the parameters are determined perturbatively by

. II. DIMENSIONAL REDUCTION BEYOND STRICT
matching[7]. In lowest order we have

PERTURBATION THEORY

) In the following we adhere to Ref7] in the treatment of
the dimensionally reduced effective theory responsible for
the contributions from the scalgT, but we deviate in that
we shall not treat the soft sector strictly perturbatively. We
shall organize our presentation by considering the successive
3) approximations obtained by expanding the contributions of
the hard modes to the pressure in powersrgf g2/ (4 ).

mZ=(1+N¢/6)g?T?, g2=g°T,

and[31]

)\E:
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Each order in this expansion defines also the accuracy wittvhere A¢ is the scale of dimensional regularization in the
which the parameters of the effective Lagrangian are deteisoft sector, which may be loosely associated with the sepa-
mined through perturbative matching conditions. Howeverration scale between the soft and the hard momenta. Choos-
at each level of approximation we shall consider the effect ofng the countertern®fz by minimal subtraction,

treating the contributions of the soft sector more completely

by refraining from the specific truncations usually employed 3 , .1

in a strictly perturbative expansion. ofe=— 829EMe s @

A. One-loop order leaves behind a dependence Ap. Eventually, In(\g) has

In massless QCD at one-loop order, the only contributiorf® combine with a matching logarithm arising from the hard
to the thermal pressuféentical to minus the free enerpig scales for which\ g provides the mfrared cutqff. This in fact
coming predominantly from hard momenta. Introducing ahappens after a careful perturbative matching at three-loop
momentum cutoffA to separate the hard scaler® from  order[see Eq(9)].
the scalegT, one gets a contribution from the soft sector , 109€ther Eqs.(4) and (5) are accurate through order
proportional toTAZ, compensating a similar term in the 9 109(10), with an error of ordeg” as to be expected from

interaction-free one-loop contribution from hard modes. One® tWo-loop calculation. The coefficient of thg*log(1/9)

ends up with the standard ideal-gas resjt= 7°T4(8/45 "[:erm I'St corlrec;t g(OVldéfdAE“s jet tFO a.tcoRsta}gtbtlmeE. I
+7N,/60) for N; quarks and 3 colors. rom its role in dimensional reduction, it should be smaller

Referencd 7] avoids the introduction of momentum cut- than 27T but larger tharg T. However, as remarked in Ref.

offs by using dimensional regularization for the purpose ofl 7] the introduction of cutoffs through dimensional regular-

both ultraviolet and infrared regularizations. Doing so, the!Zation leaves their relationship to momentum cutoffs unde-

one-loop result exclusively comes from the hard modes: afermined, and there could be a different relationship between
this level of approximation where all interactions are ne-the scale of dimensional regularization and effective momen-

glected, the softzerg modes are to be taken as masslesstum cutoffs depending on whether the latter act as IR or as

and their contribution vanishes in dimensional regularization?V CUtoffs. Reference7] even found that the scalde

where scaleless integra|s are set to zero. should be Choselarger than the UV SCH'QLNZTI'T in order

to have optimal convergence of the hard contributions. For
simplicity and to facilitate the comparison with other calcu-

lations where a similar identification is made, we shall put

Ag=p in the following, i.e. introduce only one scale for
dimensional regularization, and refrain from modifying it by
hand depending on whether the various logarithms can be
identified as arising from regularization in the IR or in the
asT4, 4 Lv3
In Fig. 2 we give the numerical evaluation of the full

2-loop result obtained as indicated above, for pure-glue QCD
nd T betweenT. and 5T in analogy to the strictly pertur-
ative results of Fig. 1. We always use the stantiaettur-
bative solution to the two-loop renormalization group equa-
tion for @5 assuming T./Ays=1.14. The UV

B. Two-loop order

The two-loop(ordera,) contribution of hard modes to the
pressure is still independent of a cutdft , if this is handled
by dimensional regularization. It reafis]

1 5N
+1—2f

2m
2
Plar= — 3

At this level of approximation, the soft modes described
by EQCD are massive, the mass being given by the leadin
order Debye mas&). The one-loop contribution to the pres-
sure from EQCD is now, on dimensional grounds, propor
tional tom? times an overall factor of. If only this contri- lizati & i ied about tral valuerd
bution is added to Ed4), the result is the ill-behaved strictly renormarization scal@ 1S varied abou: a centrat vaiuler

; . - by a factor of 2, and it should be kept in mind that this
perturbative resuilt to ordeg® displayed in Fig. 1. Howeyer, variation also traces some of the ambiguity in choosing

loop approximation, but rather treat more completely the in(i—rhe resulting total scale dependence is comparable to the

teractions which are present B qcp. Thus, with the pa-

rameters of EQCD determined by matching with the , _ _
perturbati\{e calculation at the present_lev_el of accuracy, W%p:;irjl\gE iLSb;hzsf?:ctt%r?S Sgﬁgg%tx?r:%irzilfr Eﬂﬁ?hbeycrggfl;i-
shall consider also the two-loop contributions from the di- | 4 . '
. - o cient of g”In(1/g) is wrong by a factor ot.
mensionally reduced effective theory. This yields the follow- 3The ambiguity of the choice ahg can alternatively be under-

ing contribution to the pressure: stood as arising from the freedom to renormalize the effective
3-dimensional theory differently than by minimal subtraction. Be-
cause in the next subsection we shall compare with HTISF18
where only minimal subtraction of additional divergences has been
considered, we stick to minimal subtraction in the following. It
should be kept in mind, however, that there is a source of additional
renormalization scheme dependence.

“This is practically indistinguishable from the full 2-loop solution
(6) as soon ag = 2T, (see the Appendix of Ref32]).

PELLE)— — T @ ®

with f{P*(® given by[7]

2 3 /1 A
D+@)=— — 34— | = E 2,2
i 37_rmE+ 8w2(e+4|n_2mE+3 ggMmg+ ofg,
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FIG. 2. Two-loop pressure in pure-glue QCD with untruncated  F|G. 3. Three-loop pressure in pure-glue QCD with untruncated
EQCD contributions whep is varied betweenrT and 47T (broad  EQCD contributions wheru is varied betweensT and 4T
gray band in comparison with the lattice result from Rd26]  (medium-gray bang the dotted lines indicate the position of this
(thick dark-gray curve The narrow darker-gray band above the pand when only the leading-order result fog is used. The broad
former is the result of 2-loop DRSPT considered in Sec. Il A} its jight-gray band underneath is the strictly perturbative result to order
lower boundary corresponds to the extremal value when vagying g° with the same scale variations. The solid line gives the result

upon extremalizatioPMS) with respect tqu (which does not have
scale dependence of the perturbative ogfbresult, But in  solutions below~1.3T.); the dash-dotted line corresponds to fast-
contrast to both the result to ordgf, to which it is pertur-  est apparent convergen@@AC) in mZ, which setsu~1.797T.
batively equivalent, and the ordgf-result, the untruncated
2-loop result of dimensional reduction remains below the 87
ideal-gas and thus has overlap with the lattice results, which Pﬁg)rdzﬁT“[ 244.9+17.24N;—0.419N?
the former do not have.

Remarkably, the partial inclusion of ordgf-effects aris- N;
ing from a two-loop evaluation of EQCD is superior to a +13'5< + 5 In
complete ordeg* evaluation in strict perturbation theory.

Although the former has an uncanceld¢ dependence in

addition to the normal dependence, numerically the total X
scale dependence is not worse but even slightly better than

that of the perturbative ordey? result.

If we had not put\g to zero on grounds that it starts
contributing only at ordeg®, we would have obtained the

221 8 | tTN

@ 2
g

Similarly, the mass parameter of EQCD can be obtained by a
matching calculation of two-loop self-energies[@$

Ag 165( 5 )
+ f

Mm
In-—

1= 33N ) 27T

additional 2-loop term
m2— (207222 [ 14 ) 1 25| 54 00,
E T 6 4
f(l\/2|)|)\E:Wmé)\E' (8) o Nf 1 ;
+22|nm+? 5—8 In2+7y+7 |nm
Inserting the leading-order value 8t , Eq. (3), this contri- N2 —
bution is not only of ordeg®, but it is also numerically quite +1- 2y—2 In—) ] (10)
small in comparison with the other two-loop contributions 9
(6) even wheng~1.
As for the three-loop contribution from the soft sector,
this is given by the finite and thu& g-independent expres-
C. Three-loop order sion calculated in Ref7] (neglecting\ g contributions now.
The three-loop contribution of the hard modes to the pres- o /g9 11 1
sure is no longerAg independent, because it has to be 3 4
matched with the minimally subtracted, and thus ff\"):8 (24 6 5%t % 6" )gEmE' (1)

Ag-dependent, EQCD theory. This has been calculatéd]in
as In a strictly perturbative evaluation which drops all terms
of orderg®, the sum of the hard and soft contributions are
A independent as they should be. That is, at ogferthe
%In Eq. (54) of Ref.[7] the terms corresponding to the second andterme«In Ag in Eq. (9) cancels against the corresponding one
fourth terms on the right-hand sidBHS) of Eq. (9) have a differ-  in Eq. (5). These perturbative contributions, evaluated nu-
ent sign due to a typographical error. merically, give the result markedg®” in Figs. 1 or 3.
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However, our aim is to go beyond such perturbative re-  P/P,
sults, and as a simple approximation in this direction, we
consider keeping the soft contributiof® and(11) untrun- 0.95
cated when the perturbatively determinmﬁ is inserted.

This then corresponds to a selective summation of higher- 6e
order effects that may help improve the convergence of per- 0.85
turbation theory, although these higher order terms /fage
dependent. 0.8
SettingAg= u the ambiguity in choosing\g contributes 0.75
to the scale dependence and is included in our error bands as
w is varied around its central valdéThe result is shown in %7 i5 2 25 3 35 4 45 5
Fig. 3. Despite the incomplete cancellation/of in the un- TIT,

truncated evaluation of the three-loop result, we observe a
considerable reduction of the total scale dependence com- FIG. 4. PMS-extremalized full-three-loop pressure in QCD with
pared to strict perturbation theory. N;=0 (solid line), Ny=2 (dashed ling and N;=3 (dash-dotted
Furthermore, compared to the full two-loop result, theline) in comparison with the estimated continuum extrapolation of
three-loop result stays within tHeather large uncertainties ~ QCD with 2 light quark flavors of Ref.34].
of the former. While the uncertainties remain sizable even at .
three-loop order, the overall picture is a remarkable improveT=<2T, the requiredu becomes unreasonably large, and fi-
ment over strict perturbation theory, where the results jummally for T<1.3T. the local extremum disappears com-
about the ideal-gas value and the renormalization scale deletely. (The strictly perturbative result, on the other hand,
pendenceincreasessteadily with the highest power aj  has a monotonic, i.e. runaway, scale dependence fdr.)all
reached. For completeness, we also give the numerical results ob-
It is interesting to observe that very similar results aretained by includingN¢=2 and 3 massless quark flavors. The
obtained if only the lowest order Debye md&$ is used in  scale selected by the minimal sensitivity turns out to be
this calculation, in place of the full ordef* expressior(10).  slightly higher than aN;=0; it also becomes large foF
This is displayed in Fig. 3 by the dotted lines. It indicates<2T_, but the extremum exists down 1Q now. There exist
that what matters here is the accuracy with which one treatso reliable continuum extrapolated lattice data for this case
the soft sector, more than the accuracy with which the payet, but in Ref.[34] an estimatedcontinuum extrapolation
rameters ofCgqcp are determined. has been given foN;=2 light quark flavors. This is com-
Whereas in the untruncated two-loop result the scale depared with the extremalized full 3-loop results in Fig. 4. The
pendence is monotonic and does not allow for its eliminatiorfact that the caseN;=2 and 3 are nearly degeneratehen
by a principle of minimal sensitivityPMS), such an elimi- normalized to the respective ideal-gas values and plotted as a
nation turns out to be possible in the three-loop reébult. function of T/T with the respective critical temperatufas-
Choosing as(x) according to the 2-loop renormalization sumed to be 1.14ys)] is consistent with lattice resul{84]
group equation, we find an extremum of the untruncatedind is very similar to the pattern observed in the “next-to-
three-loop result as a function af. As shown in Fig. 3, the '€ading approximation(NLA) results of Ref.[20] for the
corresponding pressure values are in fact remarkably close frOPY-
the lattice data fom=3T,.
The extremum is only a local one with respectito For D. Four-loop order
large temperatureb= 10T, it occurs atu~2# T, which fol- In an impressive four-loop calculation, the authors of Ref.
lowing Ref.[7] we have taken as a central value because it i$33] have recently determined the last coefficient in the per-
the spacing of the Matsubara frequencies. For smaller temturbative expansion of thermal pressure of QCD that can be
peratures, the required value of increases and exceeds computed analytically. At four-loop order in the effective
47T below T~3T,, where the lattice data start to deviate theory (1) there appear two logarithmic terms whose coeffi-
from the three-loop pressure. For still smaller temperature§ents have been obtained [3S]

(Ng2)%([43 1572] Ag
AT= " | —= —|In—
6, . 6 . . . Psoﬂ/T Ng 4 n 2
Specifically, they lead to g°In(g) contribution with the constant (4) 12 768 O
under the logarithm carrying the ambiguity ikg if the latter is )
proportional toT. Numerically, however, thig®In(g) contribution is 43 491w Ag
completely negligible compared to the recently determifi@g] 2 768 lnm_E+C , (12)

perturbativeg®In(g) contribution appearing at 4-loop order.

"These error bands would of course be widened by an independent ) ) o )
variation, so the scheme dependences displayed in our figures apdhere the first logarithm is in fact from the magnetostatic

certainly underestimated to some extent. sector. To obtain the completg®ing contribution in the
®This is possible in fact only if the complete ordgt-expression QCD pressure one now also neegfsto orderg®, given in
for the Debye mass is used. Ref.[35] as(for N;=0)
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P/R ]

+1

22( -2 vy

2_ @s
Og=4mag) 1+ — T

= . (13

full 4loop, § = 0, 1/3, 2/3
0.9 - \

The constant in Eq. (12), however, is strictly nonperturba-
tive and can in principle be determined by lattice simulations
of the dimensionally reduced theory, but requires even more
(also analytical work [33].

Also, the four-loop contribution t&},5,4iS nNot yet known,
but all the terms proportional tg® and involving explicit

logarithms of u or Ag are determined by the. and Ag
independence of the total pressure to ogfeand have been
given explicitly in Ref.[33]—only a constant timeg® thus T/T.

remains undetermined. Equating agaip with 4, the four- FIG. 5. Four-loop pressure in pure-glue QCD including the re-
loop contribution to be added to the above three-loop on@ently determined®in(1/g) contribution of 3] together with three

when evallll)Jated with Eq13) can be written agagain for  yajues for the undetermined constahin Eq. (14) when evaluated
N¢=0 only

0.8
0.7}

0.6

fully with ;varied betweensT and 47T (medium-gray bands
The broad light-gray band underneath is the strictly perturbative

872 (21945  u w | result to orderg® corresponding to the central value=1/3. The
P(‘1)=4—5 4 16 In2m+2676.4lﬁm (? solid line gives the untruncated result with=1/3 extremalized
with respect tou (which does not have solutions belowl.9T.);
27 [[43 1577%| T [43 4917°] T the dash-dotted line corresponds to fastest apparent convergence

+ 3274 112 768 lng_% 4 768 Inm_E (FAC) in m2, which setsu~1.797T.

+7578 gET, (14) turbative evaluationgiven for §=1/3 only) shows anin-
creasedscale dependence when compared to the 3-loop
results.

where for easier comparison with RéB3] we have col- Also like in the previous 3-loop case, we find that the

lected all undetermined constants to this order in a new coridntruncated result has again a nonmonotonic scale depen-
stants, chosen such that thgfT contribution in Eq.(14), ~ dence which makes it possible to fix the scale by PW[H“?
when expanded i, is proportional to In(ig) + 6. result is again qlose to the FAC choice considered previously
The unknown coefficiend of course leaves the numerical @S Well. The strictly perturbative result on the other hand, has
outcome completely open until the required analytical and® 'unaway scale dependence for almostrall
numerical calculations will have been performed. However,
it has been observed in RéB3] that this coefficient could
well be such that the perturbative result follows closely the
4D lattice results. In obtaining numerical results, R88] in
fact used a particular optimized renormalization scheme, in- In massless scalar field theories, which have a poorly con-
troduced in35], which also involves keeping the parametersvergent perturbative series for the thermal pressure similar to
of the effective theory unexpande@Reference$36,33 also  what is found in QCD, Karsch, Patkaand Petreczky and
mentioned that this reduces the scale dependence. others[11-14 have proposed to ameliorate the situation by
In Fig. 5 we present our numerical results obtained bya variationally improved perturbation theory which uses a
adding the 4-loop termél4) to the full 3-loop result of the simple mass term as variational parameter. In this so-called
previous section, but now evaluated with E4.3) in all  screened perturbation theory the mass term is part of the
terms involvinggg , for the possibilitiess=0, 1/3, 2/3. This  tree-level Lagrangian as well as the interactions, where it is
differs from[33] in that we treat hard contributions strictly counted like a one-loop counterterm.
perturbatively and only soft ones without truncations. Fur- This approach has been extended to QCD by Andersen
thermore, we use the perturbative 2-loop running couplinget al.[15—1§ by using the hard-thermal-loop action in place
and varyu about 27T by a factor of 2 as above. The results, Of a simple mass term, turning its prefactor, which is propor-
which are displayed by the medium-gray areas, show a relional to the Debye mass squared, into a variational param-
markably small scale variation. By contrast, the strictly per-eter. This HTL-screened perturbation theory has been re-
cently carried through to two-loop order in QCD in Refs.
[17,18. The result is perturbatively correct to ordghn(g)
9Referencd 33] found 5~0.7 to give results which agree well and has been found to give rather stable results which are
with the 4D lattice results. The difference to our central value of 1/3
is mainly due to the fact that we used 2-loop rather than 1-loop
running coupling. Like Ref[33] we included also the contribution  °This has been observed also before in R&7], but using one-
(8), which is however fairly small. loop running and the particular parametrization of R88].

Ill. SCREENED PERTURBATION THEORY
IN THE SOFT SECTOR
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smaller than the ideal-gas pressure, but significantly above

the lattice results.

In this section we investigate the possibility of improving
the soft contributions considered above to two and three loo
order by a dimensionally reduced screened perturbatio
theory for EQCD defined by trivially rewriting the EQCD
Lagrangian according to

1 1 1
Leqeo= 7 FijFij+ 5 (DiA0)3(DiAg)*+ 5 (mE+ om?) ASAG
1 2papa

As above we take’né to be determined by perturbative
matching to ordeg? andg* when calculating the pressure to
two and three loop order, respectively, and we neglgct

PEBYCAL REVIEW D 68, 025011 (2003

1.05~
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FIG. 6. The two-loop DRSPT result for pure-glue QGgray
bang in comparison with the two-loop HTLPT result of Ré¢f.7]
(dashed lines and the “NLA" result of Ref.[20] (dash-dotted

lineg), all with ;varied around ZT by a factor of 2.

because, as we have seen above, it starts to contribute only at

orderg® with small numerical effects.

A. Two-loop order

rithm involves an UV rather than an IR cutpffThis is no
contradiction, however, since the variational mégse the
effective mass parameter;) is not identical with the Debye

In DRSPT to two-loop order, the result for the pressure isnass responsible for the exponential screening behavior of

given by the sum of Eq94) and (5) except that the latter
now involves

3’7Tm 87°

+ 5f ERSPT,

1)+(2)
FLH@) -

1 Ag s o, M
(Z+4Inﬁ+3 ggm +;5m
(16)

where m?*=mZ+ ém? according to Eq.(15). The term

m/ 7 dm? arises from a one-loop diagram where the countern =0 andAg=w=2=T [for larger (

term ém?, which itself has to be counted as a one-loop quan
tity, has been inserted.
SPT generally produces additional UV divergences an

associated scheme dependences, which can be seen here’in

that the pole term in the second term on the right-hand sid
of Eq. (16) no longer matches Eq7). Following Refs[11—

the full electrostatic propagator. In fact, we shall see below
that at higher loop orders the gap equation does not contain a
logarithmic term.

The simple “gap equationt17) is different from the one
obtained in 2-loop HTLPT17,18.1 It is much simpler in
form, and it turns out to have a numerical solution that be-
haves differently from that of 2-loop HTLPT. While the lat-
ter increases sharply at large coupling, the solution of Eg.
(17) saturates at the value~0.503 as a, increases when

smalley u the satura-
tion occurs at smalleflargep values; foru<1.4xT there is

& maximum value ofxg beyond which solutions no longer

connect continuously to the perturbative leading-order
gesult—for instance, for our lowest valye= T this re-

strictsa to less than 0.34, which however presents no prob-

14,17,18 we treat those by minimal subtraction. This meansleM to the following applicatioh

that we introduce a counterternaf27SFT with &f2RSPT
—5oncgE5m2(1/e), which can be discarded in the pertur-

bative matching as being of higher order and will disappeaf'

in fact at the next loop ordgisee below. However, the re-
placement ofmZ by mZ+ sm? has the effect of modifying
the dependence ofig at the present loop order.

The untruncated two-loop result, including now E#6)
in place of Eq.(6), can be optimized by a variational prin-
ciple (principle of minimal sensitivityfor sm?. This leads to
the variational mass

2 2 R Ae
m°=mg—3ag(u)Tm| 4 Inﬁ+ 1

7

As before and similar to what is done in Ref47,1§ we

equateAg and u. Since the latter is always set proportional
to T, this gives rise to a termdm?<g>T?In(g), like in the
actual next-to-leading order Debye mass in Q[3B]; how-
ever, both coefficient and sign are differgaind the loga-

The thermal pressure at two-loop DRSPT is obtained by
evaluating Eq(16) at the solution of Eq(17) and combining
it with the hard contribution(4). The result for pure-glue
QCD is given in Fig. 2 where it is compared with the un-
truncated two-loop result which uses the perturbative
leading-order mass instead of the solution of the gap equa-
tion (17). In Fig. 6 the two-loop DRSPT result is furthermore
compared to the result of the two-loop HTLPT calculation of
Ref.[17] and the “NLA" result of Ref.[20] which is based
on the ®-derivable two-loop expression for the entropy
evaluated with HTL propagators that include next-to-leading
order corrections to asymptotic thermal masses. We find that
the two-loop DRSPT result has a rather small scale depen-
dence like the two-loop HTLPT result, but is significantly
below the latter and thus closer to the lattice data. The non-

When fermions are included in 2-loop HTLH1LS] the latter
gives rise to a gap equation for fermions as well, whereas in DRSPT
fermions contribute only through the parametas.
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P/PRy 5 the RHS of Eq.(18)], and because no further pole terms
appear at three-loop order, the additional UV divergences of
SPT drop out altogether.

The attempt to determinen by a variational principle
leads to the simple quartic gap equation

2-loop DRSPT 4-loop DRSPT (6 = 1/3)
|

0.9

0.8 full 4-loop (§ =1/3)
0.7 )
1 geN
06 GO(m)= g (m*—mg)*+ = —(m*~mZ)m
. g2N.\?(89 11 1
1.5 2 2.5 3 3.5 4 4.5 5 Ec = — 2| m?
+ N2+ -7 m
T/T, 4 24 6 6
FIG. 7. The 4-loop DRSPT result for pure-glue QG® solid =0, (19

lines corresponding tau==T, 2 #T,4 #T and §=1/3) in com-
parison with the two-loop DRSPT resuhiow evaluated with the which we have written out for general color numheg.
contribution (8) included and the untruncated 4-loop witld However, one can readily prove that this equation has no
=1/3. solution that connects continuously to the perturbative result
mg asa— 0 [for any value ofN.; also inclusion of the term
linear scale dependence of the DRSPT result in fact makes {8) does not change this situatipn
possible to eliminate the scale dependence by a principle of The same problem in fact occurs in SPT in scafdr
minimal sensitivity. The result is given by the lower bound- theory to three-loop orddd 3]. Like Ref.[13] one may look
ary of the DRSPT band in Fig. 6. This optimized DRSPTfor alternative prescriptions to set up a gap equation. The
result happens to lie right at the center of the estimated errgiimplest conceivable option, however, clearly is to &ef
of the NLA result of Ref[20] for T>3T, [the fact that the =0. This trivially connects to perturbation theory and
latter sharply drops close fB, is in fact not a prediction of amounts to our previous suggestion of keeping the 3-loop
the NLA result but comes from the necessity to fix an inte-contributions of EQCD untruncated, which is in fact most
gration constant which has been chosen such Bt natural sincemg in EQCD is just a mass parameter. Fortu-
=0]. nately, the now nonlinear scale dependences can be elimi-
Here we have neglected the soft 2-loop contribution in-nated by a principle of minimal sensitivity, as we have dis-
volving Ag of Eq. (8) because HTLPT does not include a cussed above, so in a sense our above improvement may be
Comparab|e term. When E(B) is induded, the 2_|00p gap taken as a trivial implementation of DRSPT, with the varia-
equation is modified by an extra contributior-§/37)(9  tional parameter being t.he renormalization and separation
—Nj)a2Tm on the right-hand side of Eq17). Its (rather scale rather than an additional mass term.
smal) effect is displayed on the occasion of the comparison
with 4-loop DRSPT in Fig. 7. C. Four-loop order
In DRSPT to four-loop orderneglectingAg contribu-
B. Three-loop order tions) we have

The three-loop free energy of EQCD in DRSPT can be

easily derived from the results of R¢f]: fa_ _ 279¢ 43 1577* n£+ 43 491r?
M 327*\|12 768 | g2 |4 768
2 3 (1 Ag
i@ =— —m®+ o —+4In7~+3|gEmE Ag ogt (89 11 _ 1 |om?
77 T\€ XIn—+c|—-==3|55— %2+ 77| —
m 167°\24 6 6
9o (89 11 e oom_ )
+W ﬂ—€|n2+g’ﬁ gg M+ ;5m ~ 392 (5m2)2_(5m2)3 20
872 m? 24mm3’
3 1
+ mgé5m2— m(&nz)z, (18)  which is to be added to E¢18), evaluated now also withZ

to orderg* as given by Eq(13).

The variational gap equation associated with the sum of
wherem?= mé+ ém? is now defined with the ordeg? result  Egs.(18) and(20) does not involve the unknown constant
for mé, Eq.(10), and where up to two insertions of the SPT and is therefore known completely to ordg& [in fact, the
countertermém? have to be included. contribution (8) proportional toAg does not enter either,

At this order thedm? counterterm of DRSPT restores the while )\é contributions to Eq(20) are already of ordeg® or
UV divergent part to be proportional mé [second term on highen. This equation is now of sixth order im and reads
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9N,
41

343 49172 1.1
o 3
4 768 P/PRy ]
=0. (21)

G®(m)=(m?—m2)G®(m)+2

0.9

As it turns out, the inclusion of the 4-loop logarithm lifts the
impasse encountered with DRSPT at 3-loop order: there is
now a (unique solution to the 4-loop gap equation which y =

X . ) 0.7 S oe,
does connect continuously to perturbation theory and which N\ full 3Joop i
is given by the quadratic gap equattén \

I\Y

0.6 5 10 15 20 256 30 35 40
m?=mz—0.338082Nm, (22

FIG. 8. The exact result of the thermal pressure in the limit of

which appears as a factor G(‘l)(m) and whose On|y solu- largeN; from Ref. [40], normalized to that of free gluons and as a

tion with real and positiven is given by function ongNf(;: me” "T) (solid ling), in comparison with the
untruncated two-loop and three-loop resuttarker and lighter gray

areas, respectivelyeach With; varied around a central value of
27T by a factor ofe. The dash-dotted line corresponds to fastest
apparent convergence.

m=mz2+(0.1690492N,)?>—0.1690492N,. (23

It is intriguing that the quadratic gap equati@®) is of
the same form as the one adopted in the NLA approximation IV. LARGE- N¢ LIMIT
of Ref.[20] for the asymptotic thermal masses, and also the
coefficients in the two gap equations happen to be very cIosSf
(0.338\, versusN. /). However, it should be emphasized
that the gap equation of DRSPT has no physical meaning
outside of DRSPT. Indeed there is no reason to expect thg,q,ts anda, itself is taken to zero. The dimensionally re-

leading correction tang as prescribed by the 4-loop DRSPT ced theory is therefore non-interacting in the lakge-
gap equation to remain the same at 5-loop level, if at thaj

order solutions exist at all. At any given loop order, the de fimit and t?e Soft contributions are given exactly by =

viation of m from mg only influences the orders beyond the ;(.2/377)m5' S“”.’ ata given loop _order for the hard contri-

perturbative accuracy. utions, we can investigate the difference between a strictly
Numerically, the deviation afn as given by Eq(22) from per_turbanve evalu_at!on ofy versus an unt_runcated one

2 ) . which resums an infinite number of terms with odd powers

the perturbative valueng has some effect as displayed in in g. Also the gap equations of DRSPT become trivialit

Fig. 7. It turns out that the 4-loop DRSPT differs from the ) )

untruncated 4-loop result of the previous section in that it ha§°|vable' they all amount to setting”=mg .

a significantly largerg’ coefficient(by a factor of almost 6

The results of a numerical evaluation of the untruncated
o , . two-loop and three-loop results are compared with the exact
whenp=2mT). As a consequence, this gives a slightly dif- o5t of Ref.[40] in Fig. 8. Again one can observe a great
ferent “prediction” for the unknowrg® constants, but oth-yoqyction of the scale dependence by going from two-loop to
erwise the results are quite similar to those obtained in theree-00p order. Compared to the strictly perturbative result
simple untruncated evaluation. » . to orderg® (not displayed in Fig. Bthe reduction of the size
In fact, at 4-loop order the ordgz' czogfﬂment could in 4f the scheme dependence is less important than in the pure-
principle be calculated completely, ifig is determined to glue case; e.g., @?N;=10 the reduction is about 16%.
3-loop accuracy and relevant higher-dimension operators in  ajso in contrast to the pure-glue case, the three-loop re-
the effective theory are include€The orderg® coefficient of  gyit has a monotonic scale dependence, so the scale cannot

course remains beyond the reach of perturbation thebry. (ge fixed by minimal sensitivity. As remarked in RE40], ;

this case, however, 4-loop DRSPT would spoll the'a'ch|eve ould instead be fixed by fastest apparent convergence. Re-
perturbative accuracy, because it changesgtheoefficient Lifing e.a. that thee? term inm?2 vanish leads to the choice
without correcting these changes through the SPT counted?'"""9 €G- s E

: . : a2y ;
terms, which only take care of orders up to and mcludm(‘g,u«/"'—7'rE>1 7~0.937T. For this value the untruncated
m3T[ (sm?)/m2]3~g®T*. Thus, beginning at 4-loop order, 3-loop result coincides with the result to ordgt in strict
(DR)SPT ceases to be a possible improvement ¢tren-  Perturbation theory, which in turn agrees quite well with the

cated or untruncategerturbation theory. exact result up to rather large couplifg0]. So while this
comparison does not favor one over the other, it shows that

with an optimal choice of the renormalization scale both the
: 5
2The numerical coefficient therein is given by trea) root of a perturbative result to _ordeg and the_untruncated 3-loop
cubic equation involving the somewhat unwieldy constants appea®Sult fare rather well in the largés limit.
ing in Egs.(18) and (20) and could in principle be given in closed  |f one applies the same prescription to the 3-loop result of
(but lengthy form. EQCD in pure-glue QCD, one is lead to setting/T

We finally consider also the recently solved lafgehmit
QCD [39-41 which has been proposed as a testing
round for improvements of perturbation theory. In this limit
nly terms involving productsxN; are kept in the above
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=4me 7522~ 1.797T. This is lower but close to the scale the HTL approximation in general breaks down. The latter
selected by minimal sensitivity of the untruncated 3-loop re-continues to be a good approximation at hard momentum
sult. Correspondingly, the numerical result following from scales only at soft virtuality. In the entropy-based HTL re-
the FAC choice is fairly close to the one obtained from mini-summations of Ref.20] it turns out that the contributions are
mal sensitivity(dash-dotted and solid line in Fig. 3, respec- predominantly coming from hard momenta close to the light
tively), at |6613$t forT=3T,, which appears to validate the cone. In the HTLPT approach, on the other hand, spurious
PMS results’ contributions at hard momenta occurring at a given loop or-
der are corrected for by the specific counterterms of HTLPT
at next loop order, so this may present a problem at low loop
orders. Our two-loop DRSPT results seem to indicate that
We have found that the scale dependence and convethis is indeed the reason for the difficulties of '[W0-|00p
gence of the results for the thermal pressure from perturbadTLPT [17,18].
tive QCD at high temperature are significantly improved An unsatisfactory feature of DRSPT, as observed before
when the contributions from soft scales as given by the efin SPT applied to scalar field theories and thus not unlikely
fective dimensionally reduced theory EQCD are not treatedo affect HTLPT as well, is that at three-loop order the mass
in strict perturbation theory. gap equation does not have solutions which connect to per-
In particular, we have explored the predictions of a simpleturbation theory. This impasse happens to be lifted by the
loop expansion of EQCD, in which, after strictly perturbative inclusion of soft four-loop logarithms, and the result is then
matching of the parameters of the effective Lagrangian, thglose to that obtained by a simple untruncated evaluation of
results are not subsequently expanded out in powegsaotl ~ all soft contribtions. Nevertheless, the gap equations of
truncated. The result obtained at the two-loop level in thissDR)SPT have no particular physical interpretati@s dis-
scheme includes contributions to ordgfing completely — cussed after Eqg17) and(23)], which casts some doubt on
while being incomplete to order* and is such that the pres- the systematics of SPT and its usefulness in improving per-
sure no longer exceeds the ideal-gas limit. The scale depefHrbation theory.
dence is large; however, the three-loop result is within the Evidently, our main result is that the convergence behav-
estimated boundaries of the two-loop result. This three-loopor of successive approximations to the pressure is dramati-
result has a smaller scale dependence than that of strict petally improved by abandoning strict perturbation theory in
turbation theory to ordeg®, and moreover the scale depen- the soft sector. Treating this sector beyond strict perturbation
dence is nonmonotonic so that it can be eliminated by dheory is in fact closer in spirit to the so-callde-derivable
principle of minimal sensitivity. The correspondingly opti- approximationg42] which are the basis for the resummation
mized result is rather close to the lattice data on the contechniques developed in Refd9,20. Such approximations,
tinuum limit of pure-glue QCD fof=3T,. When including When implemented in the soft sector, may represent an inter-
4-loop effects, in particular the recently determingtn g esting alternative to DRSPT. DRSPT has a single variational
contribution of Ref.[33], we find that this trend continues Parameter, the mass of electrostatic gluons. While this has
and, in line with[33,37), that it is quite possible that all the advantage of great simplicity as well as gauge invariance,

higher-order contributions add up to a very small correctiorthe full self-energy of electrostatic gluons is a nonlocal quan-
above~3T,. tity. One might consider &-derivable approach which does

We have also considered Variationa”y improved not have the need for the specific counterterms of SPT and

“screened” perturbation theory in the dimensionally reducedtry to construct improved approximations, which are in prin-
theory(DRSPT), where it is a much simpler, gauge invariant ciple gauge dependent, though such gauge dependences are
alternative to HTLPT(though not extensible to dynamic Strongly suppressed at the variational pg#].
quantities, as HTLPT in principle)isThe result for the pure- It would be interesting to compare such a dimensionally
glue pressure when improved through 2-loop DRSPT turngeduced®-derivable approach with the one based on the
out to be significantly lower than that of HTLPT and for ~ entropy formalism of Refd.19,20. In the latter, the empha-
=3T, fairly close to the lattice results as well as to theSis is on dynamical quasiparticles, which at two-loop order
results of Ref[20]. are interaction free. It should be noted that this approach is
An obvious advantage of DRSPT over HTLPT is that it dependent on a real-time formalism which does not lend it-

does not modify the theory at hard momentum scales, wher&€lf to dimensional reduction. Indeed, it involves differenti-
ating thermal distribution functions at the stationary point,

where the temperature dependence of spectral functions

13The upper boundary of the range of the three-loop results showH"OPS out. However, the relevant theory for the soft modes
in Fig. 8 follows the exact result to even much larger values. Therdincluding hard ones with soft virtualitys known: at leading
is in fact a choice ofu~0.75xT for both the untruncated three- ©Order this involves the non-local hard-thermal-loop effective
loop result and the strictly perturbative result, where they becom@ction[44—4@). In fact, the real-time approach might have
almost indistinguishable from the exact result. A renormalizationddvantages when it comes to including the effects of high
scale close to this turns out to be favored by applying FAC to thechemical potentialse. In this case dimensional reduction
perturbative result to ordeg®, which has been extracted numeri- does not occur. The quasiparticle approach on the other hand
cally in the largeN; limit [41], but which is strictly non- appears promising for covering the thermodynamics in the
perturbative in real QCD. entireT-u plane[47-49.

V. DISCUSSION AND CONCLUSION
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