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On the apparent convergence of perturbative QCD at high temperature

J.-P. Blaizot and E. Iancu
Service de Physique The´orique, CE Saclay, F-91191 Gif-sur-Yvette, France

A. Rebhan
Institut für Theoretische Physik, Technische Universita¨t Wien, A-1040 Vienna, Austria

~Received 31 March 2003; published 10 July 2003!

The successive perturbative estimates of the pressure of QCD at high temperatureT show no sign of
convergence, unless the coupling constantg is unrealistically small. Exploiting known results of an effective
field theory which separates hard~order 2pT) and soft~ordergT) contributions, we explore the accuracy of
simple resummations which at a given loop order systematically treat hard contributions strictly perturbatively,
but soft contributions without truncations. This turns out to improve significantly the two-loop and the three-
loop results in that both remain below the ideal-gas value, and the degree of renormalization scale dependence
decreases as one goes from two to three loop order, whereas it increases in the conventional perturbative
results. Including the four-loop logarithms recently obtained by Kajantieet al., we find that this trend continues
and that with a particular sublogarithmic constant the untruncated four-loop result is close to the three-loop
result, which itself agrees well with available lattice results down to temperatures of about 2.5Tc . We also
investigate the possibility of optimization by using a variational~‘‘screened’’! perturbation theory in the
effective theory. At two loops, this gives a result below the ideal gas value and also closer to lattice results than
the recent two-loop hard-thermal-loop-screened result of Andersenet al. While at three-loop order the gap
equation of dimensionally reduced screened perturbation theory does not have a solution in QCD, this is
remedied upon inclusion of the four-loop logarithms.

DOI: 10.1103/PhysRevD.68.025011 PACS number~s!: 11.10.Wx, 12.38.Mh
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I. INTRODUCTION

One could expect weak coupling calculations to lead
reasonable estimates of the QCD free energy at high t
peratureT, a regime where indeed the gauge coupling
comes small because of asymptotic freedom. But exp
perturbative calculations, which have been pushed in re
years up to orderg5 @1–7#, do not exhibit any sign of con
vergence, as depicted in Fig. 1; they rather show increa
ambiguities due to the dependence on the renormaliza
point, signaling a complete loss of predictive power.

Various mathematical extrapolation techniques have b
tried, such as Pade´ approximants@8,9# and Borel resumma
tion @10#. The resulting expressions are indeed smooth fu
tions of the coupling, better behaved than polynomial
proximations truncated at orderg5 or lower, with a weaker
dependence on the renormalization scale. However, w
these methods do improve the situation somewhat, it is
to say that they offer little physical insight into the source
the difficulty.

Recognizing that an important effect of thermal fluctu
tions is to give mass to the excitations, thereby screen
long range interactions, it has been suggested to incorpo
such screening effects in the tree-level Lagrangian and
rect for double counting by adding suitable counterterms
the interactions. Such a scheme has been implemented
some success in scalar field theory under the name
screened perturbation theory~SPT! @11–14#. It has been ex-
tended to QCD by including at the tree level the entire n
local Lagrangian of the hard thermal loops~HTL! @15–18#,
which is referred to as HTL perturbation theory~HTLPT!.

A different approach, motivated physically by the succe
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of the quasiparticle picture, is based on the so-cal
F-derivable approximations@19–21# ~see also Peshier@22#!.
This approach takes advantage of remarkable simplificat
which occur in the calculation of the entropy at two loop
the skeleton expansion. Together with furth
approximations1 for the self-energies based on hard therm
loops, this led to results for the thermodynamical functio
which are consistent with lattice calculations for tempe
tures above 2.5Tc .

This paper reconsiders the known results up to orderg5 in
the light of the simple observation that the accuracy of p
turbation theory is not the same at all momentum sca
Thus, while perturbation theory at the scaleT is an expansion
in powers ofg2, the perturbation theory at the scalegT is an
expansion in powers ofg and is therefore less accurate. It
when they are treated strictly perturbatively that the soft c
tributions turn out to completely spoil apparent convergen
as exemplified by the~soft! contribution of orderg3 which
leads to a pressure exceeding the ideal gas value. The
idea that we want to pursue is to decouple approximation
the hard and the soft sectors: in the hard sector, we shall
perturbation theory since it is accurate; in the soft sector
shall go ~minimally! beyond perturbation theory, with th
remarkable result that the apparent convergence of pertu
tive QCD at high temperatures is dramatically improve
This, in our opinion, lends support to the more ambitio

1A full F-derivable approximation has been worked out succe
fully in scalar field theory@23#, for which recently also the questio
of renormalizability could be answered affirmatively in Ref
@24,25#.
©2003 The American Physical Society11-1
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BLAIZOT, IANCU, AND REBHAN PHYSICAL REVIEW D 68, 025011 ~2003!
attempts to reorganize perturbation theory by novel res
mation techniques.

The tools to deal with various momentum scales in fi
theory are well developed and involve the construction
effective theories. In fact, the perturbative results throu
orderg5, first calculated in Refs.@4,5#, have been rederived
and confirmed by Braaten and Nieto@7# by an elegant and
efficient effective-field-theory method which separates c
tributions from hard, soft, and supersoft momentum sca
2pT, gT, and g2T, respectively. In Euclidean space, th
only soft modes are static ones, and the effective field th
ries for these are therefore dimensionally reduced@28–30# to
three-dimensional ones. The dimensionally reduced the
consists of massive adjoint scalar fieldsA0

a and massless
three-dimensional Yang-Mills fields~with couplinggE) and,
following Braaten and Nieto, we shall refer to it as electr
static QCD~EQCD! in the following. The corresponding ef
fective three-dimensional Lagrangian is

LEQCD5
1

4
Fi j

a Fi j
a 1

1

2
~DiA0!a~DiA0!a1

1

2
mE

2A0
aA0

a

1
1

8
lE~A0

aA0
a!21dLEQCD ~1!

where the parameters are determined perturbatively
matching@7#. In lowest order we have

mE
25~11Nf /6!g2T2, gE

25g2T, ~2!

and @31#

lE5
92Nf

12p2 g4T. ~3!

FIG. 1. Strictly perturbative results for the thermal pressure
pure glue QCD normalized to the ideal-gas value, as a functio
T/Tc ~assumingTc /LMS 51.14). The various gray bands bound
by differently dashed lines show the perturbative results to orderg2,
g3, g4, andg5, with modified minimal subtraction (MS) renormal-

ization pointm̄ varied betweenpT and 4pT. The thick dark-gray
line shows the continuum-extrapolated lattice results from R
@26#; the lighter one behind that of a lattice calculation using
renormalization-group-~RG-! improved action@27#.
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In fact, lE starts to contribute to the pressure only at ord
g6. For this reason we shall ignore this particular coupling
most of the following, as well as all the other vertices co
tained indLEQCD .

The thermal pressure of the 4-dimensional theory can
decomposed into contributions from the hard modes;T,
calculable by standard perturbation theory, and soft contri
tions governed by Eq.~1! which involves both perturbatively
calculable contributions up to orderg5T4 and nonperturba-
tive ones coming from the fact that the effective theory
the modesAi(xW ) is a confining theory. However, the latte
magnetic contributions start at orderg6 and cannota priori
be made responsible for the poor apparent convergence
is seen up to orderg5.

We shall then focus in this paper on the soft contributio
i.e. those coming from the momentum scalegT. In principle
these can be calculated using perturbation theory, but as c
from Eqs.~1! and~2! the corresponding expansion parame
is gE

2/mE;g, so that the perturbative expansion converg
only slowly, more slowly than the perturbative expansion
the hard sector. As a minimal step towards a nonperturba
treatment of the soft sector, we shall perform a simple lo
expansion of Eq.~1!, keeping the parametersmE andgE as
given in terms ofg by the matching conditions and not ex
panding them out in powers ofg in the final result. As we
shall see, this simple method leads to a significant impro
ment over the strict perturbative results. We also consider
effect of including the four-loop logarithms recently obtain
by Kajantie et al., and again find that strict perturbatio
theory has large scale dependences which are drasticall
duced when keeping soft contributions untruncated. Fo
particular choice of the sublogarithmic constant the untr
cated four-loop result is moreover close to the three-lo
result, which itself agrees well with available lattice resu
down to temperatures of about 2.5Tc .

In Sec. III we consider a simple variational improveme
of perturbation theory in the form of dimensionally reduc
screened perturbation theory~DRSPT!. This turns out to be
much simpler than HTLPT, while also allowing us to resu
screening masses in a gauge invariant manner. At two-l
order it leads to a result significantly closer to lattice da
than two-loop HTLPT, which suggests that the partial failu
of the latter as observed in@17,18# is due to spurious hard
contributions. At three-loop order, the gap equation
DRSPT has no real solution, but this is remedied upon inc
sion of the four-loop logarithms.

In the final section we summarize and discuss our res
and try to put them into perspective with other technique

II. DIMENSIONAL REDUCTION BEYOND STRICT
PERTURBATION THEORY

In the following we adhere to Ref.@7# in the treatment of
the dimensionally reduced effective theory responsible
the contributions from the scalegT, but we deviate in that
we shall not treat the soft sector strictly perturbatively. W
shall organize our presentation by considering the succes
approximations obtained by expanding the contributions
the hard modes to the pressure in powers ofas5g2/(4p).
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ON THE APPARENT CONVERGENCE OF PERTURBATIVE . . . PHYSICAL REVIEW D 68, 025011 ~2003!
Each order in this expansion defines also the accuracy
which the parameters of the effective Lagrangian are de
mined through perturbative matching conditions. Howev
at each level of approximation we shall consider the effec
treating the contributions of the soft sector more complet
by refraining from the specific truncations usually employ
in a strictly perturbative expansion.

A. One-loop order

In massless QCD at one-loop order, the only contribut
to the thermal pressure~identical to minus the free energy! is
coming predominantly from hard momenta. Introducing
momentum cutoffLE to separate the hard scale 2pT from
the scalegT, one gets a contribution from the soft sect
proportional toTLE

3 , compensating a similar term in th
interaction-free one-loop contribution from hard modes. O
ends up with the standard ideal-gas resultP05p2T4(8/45
17Nf /60) for Nf quarks and 3 colors.

Reference@7# avoids the introduction of momentum cu
offs by using dimensional regularization for the purpose
both ultraviolet and infrared regularizations. Doing so, t
one-loop result exclusively comes from the hard modes:
this level of approximation where all interactions are n
glected, the soft~zero! modes are to be taken as massle
and their contribution vanishes in dimensional regularizat
where scaleless integrals are set to zero.

B. Two-loop order

The two-loop~orderas! contribution of hard modes to th
pressure is still independent of a cutoffLE , if this is handled
by dimensional regularization. It reads@1#

Phard
(2) 52

2p

3 S 11
5

12
Nf DasT

4. ~4!

At this level of approximation, the soft modes describ
by EQCD are massive, the mass being given by the lead
order Debye mass~2!. The one-loop contribution to the pres
sure from EQCD is now, on dimensional grounds, prop
tional to mE

3 times an overall factor ofT. If only this contri-
bution is added to Eq.~4!, the result is the ill-behaved strictl
perturbative result to orderg3 displayed in Fig. 1. However
in the soft sector, we need not restrict ourselves to this o
loop approximation, but rather treat more completely the
teractions which are present inLEQCD . Thus, with the pa-
rameters of EQCD determined by matching with t
perturbative calculation at the present level of accuracy,
shall consider also the two-loop contributions from the
mensionally reduced effective theory. This yields the follo
ing contribution to the pressure:

PEQCD
(1)1(2)52T fM

(1)1(2) ~5!

with f M
(1)1(2) given by @7#

f M
(1)1(2)52

2

3p
mE

31
3

8p2 S 1

e
14 ln

LE

2mE
13DgE

2mE
21d f E ,

~6!
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whereLE is the scale of dimensional regularization in th
soft sector, which may be loosely associated with the se
ration scale between the soft and the hard momenta. Ch
ing the countertermd f E by minimal subtraction,

d f E52
3

8p2 gE
2mE

2 1

e
, ~7!

leaves behind a dependence onLE . Eventually, ln(LE) has
to combine with a matching logarithm arising from the ha
scales for whichLE provides the infrared cutoff. This in fac
happens after a careful perturbative matching at three-l
order @see Eq.~9!#.

Together Eqs.~4! and ~5! are accurate through orde
g4log(1/g), with an error of orderg4 as to be expected from
a two-loop calculation. The coefficient of theg4log(1/g)
term is correct provided2 LE is set to a constant timesT.
From its role in dimensional reduction, it should be smal
than 2pT but larger thangT. However, as remarked in Re
@7#, the introduction of cutoffs through dimensional regula
ization leaves their relationship to momentum cutoffs un
termined, and there could be a different relationship betw
the scale of dimensional regularization and effective mom
tum cutoffs depending on whether the latter act as IR or
UV cutoffs. Reference@7# even found that the scaleLE

should be chosenlarger than the UV scalem̄;2pT in order
to have optimal convergence of the hard contributions.
simplicity and to facilitate the comparison with other calc
lations where a similar identification is made, we shall p
LE5m̄ in the following, i.e. introduce only one scale fo
dimensional regularization, and refrain from modifying it b
hand depending on whether the various logarithms can
identified as arising from regularization in the IR or in th
UV.3

In Fig. 2 we give the numerical evaluation of the fu
2-loop result obtained as indicated above, for pure-glue Q
andT betweenTc and 5Tc in analogy to the strictly pertur-
bative results of Fig. 1. We always use the standard4 pertur-
bative solution to the two-loop renormalization group equ
tion for as assuming Tc /LMS 51.14. The UV
renormalization scalem̄ is varied about a central value 2pT
by a factor of 2, and it should be kept in mind that th
variation also traces some of the ambiguity in choosingLE .
The resulting total scale dependence is comparable to

2If LE is chosen to be parametrically smaller than 2pT by mul-
tiplying it by a fractional powergc with 0,c,1, then the coeffi-
cient of g4ln(1/g) is wrong by a factor ofc.

3The ambiguity of the choice ofLE can alternatively be under
stood as arising from the freedom to renormalize the effec
3-dimensional theory differently than by minimal subtraction. B
cause in the next subsection we shall compare with HTLPT@15–18#
where only minimal subtraction of additional divergences has b
considered, we stick to minimal subtraction in the following.
should be kept in mind, however, that there is a source of additio
renormalization scheme dependence.

4This is practically indistinguishable from the full 2-loop solutio
as soon asT*2Tc ~see the Appendix of Ref.@32#!.
1-3
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BLAIZOT, IANCU, AND REBHAN PHYSICAL REVIEW D 68, 025011 ~2003!
scale dependence of the perturbative order-g4 result. But in
contrast to both the result to orderg3, to which it is pertur-
batively equivalent, and the order-g4 result, the untruncated
2-loop result of dimensional reduction remains below
ideal-gas and thus has overlap with the lattice results, wh
the former do not have.

Remarkably, the partial inclusion of order-g4 effects aris-
ing from a two-loop evaluation of EQCD is superior to
complete order-g4 evaluation in strict perturbation theory
Although the former has an uncanceledLE dependence in
addition to the normalm̄ dependence, numerically the tot
scale dependence is not worse but even slightly better
that of the perturbative order-g4 result.

If we had not putlE to zero on grounds that it start
contributing only at orderg6, we would have obtained th
additional 2-loop term

f M
(2)u

lE
5

5

8p2 mE
2lE . ~8!

Inserting the leading-order value oflE , Eq. ~3!, this contri-
bution is not only of orderg6, but it is also numerically quite
small in comparison with the other two-loop contributio
~6! even wheng;1.

C. Three-loop order

The three-loop contribution of the hard modes to the pr
sure is no longerLE independent, because it has to
matched with the minimally subtracted, and th
LE-dependent, EQCD theory. This has been calculated in@7#

as5

5In Eq. ~54! of Ref. @7# the terms corresponding to the second a
fourth terms on the right-hand side~RHS! of Eq. ~9! have a differ-
ent sign due to a typographical error.

FIG. 2. Two-loop pressure in pure-glue QCD with untrunca

EQCD contributions whenm̄ is varied betweenpT and 4pT ~broad
gray band! in comparison with the lattice result from Ref.@26#
~thick dark-gray curve!. The narrow darker-gray band above th
former is the result of 2-loop DRSPT considered in Sec. III A;

lower boundary corresponds to the extremal value when varyingm̄.
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Phard
(3) 5

8p2

45
T4H 244.9117.24Nf20.415Nf

2

1135S 11
Nf

6 D ln
LE

2pT
2

165

8 S 11
5

12
Nf D

3S 12
2

33
Nf D ln

m̄

2pTJ S as

p D 2

. ~9!

Similarly, the mass parameter of EQCD can be obtained b
matching calculation of two-loop self-energies as@7#

mE
25~2pT!2

as

p H S 11
Nf

6 D1
as

4p
F5122g

122 ln
m̄

4pT
1

Nf

3
S 1

2
28 ln 217g17 ln

m̄

4pT
D

1
Nf

2

9
S 122g22 ln

m̄

pT
D G J . ~10!

As for the three-loop contribution from the soft secto
this is given by the finite and thusLE-independent expres
sion calculated in Ref.@7# ~neglectinglE contributions now!:

f M
(3)5

9

8p3 S 89

24
2

11

6
ln 21

1

6
p2DgE

4mE . ~11!

In a strictly perturbative evaluation which drops all term
of order g6, the sum of the hard and soft contributions a
LE independent as they should be. That is, at orderg4, the
term} ln LE in Eq. ~9! cancels against the corresponding o
in Eq. ~5!. These perturbative contributions, evaluated n
merically, give the result marked ‘‘g5’’ in Figs. 1 or 3.

FIG. 3. Three-loop pressure in pure-glue QCD with untrunca

EQCD contributions whenm̄ is varied betweenpT and 4pT
~medium-gray band!; the dotted lines indicate the position of th
band when only the leading-order result formE is used. The broad
light-gray band underneath is the strictly perturbative result to or
g5 with the same scale variations. The solid line gives the re

upon extremalization~PMS! with respect tom̄ ~which does not have
solutions below;1.3Tc); the dash-dotted line corresponds to fa

est apparent convergence~FAC! in mE
2 , which setsm̄'1.79pT.
1-4
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However, our aim is to go beyond such perturbative
sults, and as a simple approximation in this direction,
consider keeping the soft contributions~6! and ~11! untrun-
cated when the perturbatively determinedmE

2 is inserted.
This then corresponds to a selective summation of high
order effects that may help improve the convergence of p
turbation theory, although these higher order terms areLE
dependent.6

SettingLE5m̄ the ambiguity in choosingLE contributes
to the scale dependence and is included in our error band
m̄ is varied around its central value.7 The result is shown in
Fig. 3. Despite the incomplete cancellation ofLE in the un-
truncated evaluation of the three-loop result, we observ
considerable reduction of the total scale dependence c
pared to strict perturbation theory.

Furthermore, compared to the full two-loop result, t
three-loop result stays within the~rather large! uncertainties
of the former. While the uncertainties remain sizable even
three-loop order, the overall picture is a remarkable impro
ment over strict perturbation theory, where the results ju
about the ideal-gas value and the renormalization scale
pendenceincreasessteadily with the highest power ofg
reached.

It is interesting to observe that very similar results a
obtained if only the lowest order Debye mass~2! is used in
this calculation, in place of the full orderg4 expression~10!.
This is displayed in Fig. 3 by the dotted lines. It indicat
that what matters here is the accuracy with which one tre
the soft sector, more than the accuracy with which the
rameters ofLEQCD are determined.

Whereas in the untruncated two-loop result the scale
pendence is monotonic and does not allow for its eliminat
by a principle of minimal sensitivity~PMS!, such an elimi-
nation turns out to be possible in the three-loop resu8

Choosing as(m̄) according to the 2-loop renormalizatio
group equation, we find an extremum of the untrunca
three-loop result as a function ofm̄. As shown in Fig. 3, the
corresponding pressure values are in fact remarkably clos
the lattice data forT*3Tc .

The extremum is only a local one with respect tom̄. For
large temperaturesT*10Tc it occurs atm̄;2pT, which fol-
lowing Ref.@7# we have taken as a central value because
the spacing of the Matsubara frequencies. For smaller t
peratures, the required value ofm̄ increases and exceed
4pT below T;3Tc , where the lattice data start to devia
from the three-loop pressure. For still smaller temperatu

6Specifically, they lead to ag6ln(g) contribution with the constan
under the logarithm carrying the ambiguity inLE if the latter is
proportional toT. Numerically, however, thisg6ln(g) contribution is
completely negligible compared to the recently determined@33#
perturbativeg6ln(g) contribution appearing at 4-loop order.

7These error bands would of course be widened by an indepen
variation, so the scheme dependences displayed in our figure
certainly underestimated to some extent.

8This is possible in fact only if the complete order-g4 expression
for the Debye mass is used.
02501
-
e

r-
r-

as

a
m-

at
-
p
e-

ts
-

e-
n

.

d

to

is
-

s

T&2Tc the requiredm̄ becomes unreasonably large, and
nally for T&1.3Tc the local extremum disappears com
pletely. ~The strictly perturbative result, on the other han
has a monotonic, i.e. runaway, scale dependence for allT.!

For completeness, we also give the numerical results
tained by includingNf52 and 3 massless quark flavors. Th
scale selected by the minimal sensitivity turns out to
slightly higher than atNf50; it also becomes large forT
&2Tc , but the extremum exists down toTc now. There exist
no reliable continuum extrapolated lattice data for this c
yet, but in Ref.@34# an estimatedcontinuum extrapolation
has been given forNf52 light quark flavors. This is com-
pared with the extremalized full 3-loop results in Fig. 4. T
fact that the casesNf52 and 3 are nearly degenerate@when
normalized to the respective ideal-gas values and plotted
function ofT/Tc with the respective critical temperature~as-
sumed to be 1.14LMS)] is consistent with lattice results@34#
and is very similar to the pattern observed in the ‘‘next-
leading approximation’’~NLA ! results of Ref.@20# for the
entropy.

D. Four-loop order

In an impressive four-loop calculation, the authors of R
@33# have recently determined the last coefficient in the p
turbative expansion of thermal pressure of QCD that can
computed analytically. At four-loop order in the effectiv
theory ~1! there appear two logarithmic terms whose coe
cents have been obtained as@33#

Psoft
(4)/T5Ng

~NgE
2 !3

~4p!4 S F43

12
2

157p2

768 G ln
LE

gE
2

1F43

4
2

491p2

768 G ln
LE

mE
1cD , ~12!

where the first logarithm is in fact from the magnetosta
sector. To obtain the completeg6ln g contribution in the
QCD pressure one now also needsgE

2 to orderg4, given in
Ref. @35# as ~for Nf50)

nt
are

FIG. 4. PMS-extremalized full-three-loop pressure in QCD w
Nf50 ~solid line!, Nf52 ~dashed line!, and Nf53 ~dash-dotted
line! in comparison with the estimated continuum extrapolation
QCD with 2 light quark flavors of Ref.@34#.
1-5
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gE
254pasH 11

as

4p
F22S ln

m̄

4pT
1g D 11G J . ~13!

The constantc in Eq. ~12!, however, is strictly nonperturba
tive and can in principle be determined by lattice simulatio
of the dimensionally reduced theory, but requires even m
~also analytical! work @33#.

Also, the four-loop contribution toPhard is not yet known,
but all the terms proportional tog6 and involving explicit
logarithms of m̄ or LE are determined by them̄ and LE
independence of the total pressure to orderg6 and have been
given explicitly in Ref.@33#—only a constant timesg6 thus
remains undetermined. Equating againLE with m̄, the four-
loop contribution to be added to the above three-loop
when evaluated with Eq.~13! can be written as~again for
Nf50 only!

P(4)5
8p2

45
T4H 21945

16
ln2

m̄

2pT
12676.4 ln

m̄

2pTJ S as

p D 3

1
27

32p4S F43

12
2

157p2

768 G ln T

gE
2 1F43

4
2

491p2

768 G ln T

mE

17.57d DgE
6T, ~14!

where for easier comparison with Ref.@33# we have col-
lected all undetermined constants to this order in a new c
stantd, chosen such that thegE

6T contribution in Eq.~14!,
when expanded ing, is proportional to ln(1/g)1d.

The unknown coefficientd of course leaves the numeric
outcome completely open until the required analytical a
numerical calculations will have been performed. Howev
it has been observed in Ref.@33# that this coefficient could
well be such that the perturbative result follows closely
4D lattice results. In obtaining numerical results, Ref.@33# in
fact used a particular optimized renormalization scheme,
troduced in@35#, which also involves keeping the paramete
of the effective theory unexpanded.~References@36,33# also
mentioned that this reduces the scale dependence.!

In Fig. 5 we present our numerical results obtained
adding the 4-loop terms~14! to the full 3-loop result of the
previous section, but now evaluated with Eq.~13! in all
terms involvinggE , for the possibilitiesd50, 1/3, 2/3. This
differs from @33# in that we treat hard contributions strictl
perturbatively and only soft ones without truncations. F
thermore, we use the perturbative 2-loop running coupli9

and varym̄ about 2pT by a factor of 2 as above. The result
which are displayed by the medium-gray areas, show a
markably small scale variation. By contrast, the strictly p

9Reference@33# found d'0.7 to give results which agree we
with the 4D lattice results. The difference to our central value of
is mainly due to the fact that we used 2-loop rather than 1-lo
running coupling. Like Ref.@33# we included also the contribution
~8!, which is however fairly small.
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turbative evaluation~given for d51/3 only! shows anin-
creasedscale dependence when compared to the 3-l
results.

Also like in the previous 3-loop case, we find that th
untruncated result has again a nonmonotonic scale de
dence which makes it possible to fix the scale by PMS.10 The
result is again close to the FAC choice considered previou
as well. The strictly perturbative result on the other hand,
a runaway scale dependence for almost allT.

III. SCREENED PERTURBATION THEORY
IN THE SOFT SECTOR

In massless scalar field theories, which have a poorly c
vergent perturbative series for the thermal pressure simila
what is found in QCD, Karsch, Patko´s and Petreczky and
others@11–14# have proposed to ameliorate the situation
a variationally improved perturbation theory which uses
simple mass term as variational parameter. In this so-ca
screened perturbation theory the mass term is part of
tree-level Lagrangian as well as the interactions, where
counted like a one-loop counterterm.

This approach has been extended to QCD by Ander
et al. @15–18# by using the hard-thermal-loop action in plac
of a simple mass term, turning its prefactor, which is prop
tional to the Debye mass squared, into a variational par
eter. This HTL-screened perturbation theory has been
cently carried through to two-loop order in QCD in Ref
@17,18#. The result is perturbatively correct to orderg4ln(g)
and has been found to give rather stable results which

3
p

10This has been observed also before in Ref.@37#, but using one-
loop running and the particular parametrization of Ref.@33#.

FIG. 5. Four-loop pressure in pure-glue QCD including the
cently determinedg6ln(1/g) contribution of@33# together with three
values for the undetermined constantd in Eq. ~14! when evaluated

fully with m̄ varied betweenpT and 4pT ~medium-gray bands!.
The broad light-gray band underneath is the strictly perturba
result to orderg6 corresponding to the central valued51/3. The
solid line gives the untruncated result withd51/3 extremalized

with respect tom̄ ~which does not have solutions below;1.9Tc);
the dash-dotted line corresponds to fastest apparent converg

~FAC! in mE
2 , which setsm̄'1.79pT.
1-6
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smaller than the ideal-gas pressure, but significantly ab
the lattice results.

In this section we investigate the possibility of improvin
the soft contributions considered above to two and three l
order by a dimensionally reduced screened perturba
theory for EQCD defined by trivially rewriting the EQCD
Lagrangian according to

LEQCD5
1

4
Fi j

a Fi j
a 1

1

2
~DiA0!a~DiA0!a1

1

2
~mE

21dm2!A0
aA0

a

2
1

2
dm2A0

aA0
a . ~15!

As above we takemE
2 to be determined by perturbativ

matching to orderg2 andg4 when calculating the pressure
two and three loop order, respectively, and we neglectlE
because, as we have seen above, it starts to contribute on
orderg6 with small numerical effects.

A. Two-loop order

In DRSPT to two-loop order, the result for the pressure
given by the sum of Eqs.~4! and ~5! except that the latte
now involves

f M
(1)1(2)52

2

3p
m31

3

8p2 S 1

e
14 ln

LE

2m
13DgE

2m21
m

p
dm2

1d f E
DRSPT, ~16!

where m25mE
21dm2 according to Eq.~15!. The term

m/pdm2 arises from a one-loop diagram where the coun
termdm2, which itself has to be counted as a one-loop qu
tity, has been inserted.

SPT generally produces additional UV divergences a
associated scheme dependences, which can be seen h
that the pole term in the second term on the right-hand s
of Eq. ~16! no longer matches Eq.~7!. Following Refs.@11–
14,17,18# we treat those by minimal subtraction. This mea
that we introduce a countertermd f E

DRSPT with d f E
DRSPT

2d f E}gE
2dm2(1/e), which can be discarded in the pertu

bative matching as being of higher order and will disapp
in fact at the next loop order~see below!. However, the re-
placement ofmE

2 by mE
21dm2 has the effect of modifying

the dependence onLE at the present loop order.
The untruncated two-loop result, including now Eq.~16!

in place of Eq.~6!, can be optimized by a variational prin
ciple ~principle of minimal sensitivity! for dm2. This leads to
the variational mass

m25mE
223as~m̄ !TmS 4 ln

LE

2m
11D . ~17!

As before and similar to what is done in Refs.@17,18# we
equateLE andm̄. Since the latter is always set proportion
to T, this gives rise to a termdm2}g3T2ln(g), like in the
actual next-to-leading order Debye mass in QCD@38#; how-
ever, both coefficient and sign are different~and the loga-
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rithm involves an UV rather than an IR cutoff!. This is no
contradiction, however, since the variational mass~like the
effective mass parametermE) is not identical with the Debye
mass responsible for the exponential screening behavio
the full electrostatic propagator. In fact, we shall see bel
that at higher loop orders the gap equation does not conta
logarithmic term.

The simple ‘‘gap equation’’~17! is different from the one
obtained in 2-loop HTLPT@17,18#.11 It is much simpler in
form, and it turns out to have a numerical solution that b
haves differently from that of 2-loop HTLPT. While the la
ter increases sharply at large coupling, the solution of
~17! saturates at the valuem'0.503T asas increases when
Nf50 andLE5m̄52pT @for larger ~smaller! m̄ the satura-
tion occurs at smaller~larger! values; form̄,1.4pT there is
a maximum value ofas beyond which solutions no longe
connect continuously to the perturbative leading-ord
result—for instance, for our lowest valuem̄5pT this re-
strictsas to less than 0.34, which however presents no pr
lem to the following application#.

The thermal pressure at two-loop DRSPT is obtained
evaluating Eq.~16! at the solution of Eq.~17! and combining
it with the hard contribution~4!. The result for pure-glue
QCD is given in Fig. 2 where it is compared with the u
truncated two-loop result which uses the perturbat
leading-order mass instead of the solution of the gap eq
tion ~17!. In Fig. 6 the two-loop DRSPT result is furthermo
compared to the result of the two-loop HTLPT calculation
Ref. @17# and the ‘‘NLA’’ result of Ref. @20# which is based
on the F-derivable two-loop expression for the entrop
evaluated with HTL propagators that include next-to-lead
order corrections to asymptotic thermal masses. We find
the two-loop DRSPT result has a rather small scale dep
dence like the two-loop HTLPT result, but is significant
below the latter and thus closer to the lattice data. The n

11When fermions are included in 2-loop HTLPT@18# the latter
gives rise to a gap equation for fermions as well, whereas in DRS
fermions contribute only through the parametermE .

FIG. 6. The two-loop DRSPT result for pure-glue QCD~gray
band! in comparison with the two-loop HTLPT result of Ref.@17#
~dashed lines! and the ‘‘NLA’’ result of Ref. @20# ~dash-dotted

lines!, all with m̄ varied around 2pT by a factor of 2.
1-7
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BLAIZOT, IANCU, AND REBHAN PHYSICAL REVIEW D 68, 025011 ~2003!
linear scale dependence of the DRSPT result in fact mak
possible to eliminate the scale dependence by a principl
minimal sensitivity. The result is given by the lower boun
ary of the DRSPT band in Fig. 6. This optimized DRSP
result happens to lie right at the center of the estimated e
of the NLA result of Ref.@20# for T.3Tc @the fact that the
latter sharply drops close toTc is in fact not a prediction of
the NLA result but comes from the necessity to fix an in
gration constant which has been chosen such thatP(Tc)
50].

Here we have neglected the soft 2-loop contribution
volving lE of Eq. ~8! because HTLPT does not include
comparable term. When Eq.~8! is included, the 2-loop gap
equation is modified by an extra contribution (25/3p)(9
2Nf)as

2Tm on the right-hand side of Eq.~17!. Its ~rather
small! effect is displayed on the occasion of the comparis
with 4-loop DRSPT in Fig. 7.

B. Three-loop order

The three-loop free energy of EQCD in DRSPT can
easily derived from the results of Ref.@7#:

f M
(1)1(2)1(3)52

2

3p
m31

3

8p2 S 1

e
14 ln

LE

2m
13DgE

2mE
2

1
9

8p3 S 89

24
2

11

6
ln 21

1

6
p2DgE

4 m1
m

p
dm2

1
3

4p2 gE
2dm22

1

4pm
~dm2!2, ~18!

wherem25mE
21dm2 is now defined with the order-g4 result

for mE
2 , Eq. ~10!, and where up to two insertions of the SP

countertermdm2 have to be included.
At this order thedm2 counterterm of DRSPT restores th

UV divergent part to be proportional tomE
2 @second term on

FIG. 7. The 4-loop DRSPT result for pure-glue QCD~3 solid
lines corresponding tom̄5pT, 2 pT,4 pT and d51/3) in com-
parison with the two-loop DRSPT result@now evaluated with the
contribution ~8! included# and the untruncated 4-loop withd
51/3.
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the RHS of Eq.~18!#, and because no further pole term
appear at three-loop order, the additional UV divergence
SPT drop out altogether.

The attempt to determinem by a variational principle
leads to the simple quartic gap equation

G(3)~m![
1

8
~m22mE

2 !21
gE

2Nc

4p
~m22mE

2 !m

1S gE
2Nc

4p D 2S 89

24
2

11

6
ln 21

1

6
p2Dm2

50, ~19!

which we have written out for general color numberNc .
However, one can readily prove that this equation has
solution that connects continuously to the perturbative re
mE asas→0 @for any value ofNc ; also inclusion of the term
~8! does not change this situation#.

The same problem in fact occurs in SPT in scalarf4

theory to three-loop order@13#. Like Ref. @13# one may look
for alternative prescriptions to set up a gap equation. T
simplest conceivable option, however, clearly is to setdm2

50. This trivially connects to perturbation theory an
amounts to our previous suggestion of keeping the 3-lo
contributions of EQCD untruncated, which is in fact mo
natural sincemE in EQCD is just a mass parameter. Fort
nately, the now nonlinear scale dependences can be e
nated by a principle of minimal sensitivity, as we have d
cussed above, so in a sense our above improvement ma
taken as a trivial implementation of DRSPT, with the var
tional parameter being the renormalization and separa
scale rather than an additional mass term.

C. Four-loop order

In DRSPT to four-loop order~neglectinglE contribu-
tions! we have

f M
(4)52

27gE
6

32p4 S F43

12
2

157p2

768 G lnLE

gE
2 1F43

4
2

491p2

768 G
3 ln

LE

m
1cD 2

9gE
4

16p3 S 89

24
2

11

6
ln 21

1

6
p2D dm2

m

2
3gE

2

8p2

~dm2!2

m2 2
~dm2!3

24pm3 , ~20!

which is to be added to Eq.~18!, evaluated now also withgE
2

to orderg4 as given by Eq.~13!.
The variational gap equation associated with the sum

Eqs.~18! and~20! does not involve the unknown constantc
and is therefore known completely to ordergE

6 @in fact, the
contribution ~8! proportional tolE does not enter either
while lE

2 contributions to Eq.~20! are already of orderg9 or
higher#. This equation is now of sixth order inm and reads
1-8
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G(4)~m!5~m22mE
2 !G(3)~m!12S gE

2Nc

4p D 3F43

4
2

491p2

768 Gm3

50. ~21!

As it turns out, the inclusion of the 4-loop logarithm lifts th
impasse encountered with DRSPT at 3-loop order: ther
now a ~unique! solution to the 4-loop gap equation whic
does connect continuously to perturbation theory and wh
is given by the quadratic gap equation12

m25mE
220.33808gE

2Ncm, ~22!

which appears as a factor ofG(4)(m) and whose only solu-
tion with real and positivem is given by

m5AmE
21~0.16904gE

2Nc!
220.16904gE

2Nc . ~23!

It is intriguing that the quadratic gap equation~22! is of
the same form as the one adopted in the NLA approxima
of Ref. @20# for the asymptotic thermal masses, and also
coefficients in the two gap equations happen to be very c
(0.338Nc versusNc /p). However, it should be emphasize
that the gap equation of DRSPT has no physical mean
outside of DRSPT. Indeed there is no reason to expect
leading correction tomE as prescribed by the 4-loop DRSP
gap equation to remain the same at 5-loop level, if at t
order solutions exist at all. At any given loop order, the d
viation of m from mE only influences the orders beyond th
perturbative accuracy.

Numerically, the deviation ofm as given by Eq.~22! from
the perturbative valuemE has some effect as displayed
Fig. 7. It turns out that the 4-loop DRSPT differs from th
untruncated 4-loop result of the previous section in that it
a significantly largerg7 coefficient~by a factor of almost 6
whenm̄52pT). As a consequence, this gives a slightly d
ferent ‘‘prediction’’ for the unknowng6 constantd, but oth-
erwise the results are quite similar to those obtained in
simple untruncated evaluation.

In fact, at 4-loop order the order-g7 coefficient could in
principle be calculated completely, ifmE

2 is determined to
3-loop accuracy and relevant higher-dimension operator
the effective theory are included.~The orderg6 coefficient of
course remains beyond the reach of perturbation theory! In
this case, however, 4-loop DRSPT would spoil the achie
perturbative accuracy, because it changes theg7 coefficient
without correcting these changes through the SPT coun
terms, which only take care of orders up to and includ
m3T@(dm2)/m2#3;g6T4. Thus, beginning at 4-loop orde
~DR!SPT ceases to be a possible improvement over~trun-
cated or untruncated! perturbation theory.

12The numerical coefficient therein is given by the~real! root of a
cubic equation involving the somewhat unwieldy constants app
ing in Eqs.~18! and ~20! and could in principle be given in close
~but lengthy! form.
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IV. LARGE- Nf LIMIT

We finally consider also the recently solved large-Nf limit
of QCD @39–41# which has been proposed as a testi
ground for improvements of perturbation theory. In this lim
only terms involving productsasNf are kept in the above
results andas itself is taken to zero. The dimensionally re
duced theory is therefore non-interacting in the large-Nf
limit and the soft contributions are given exactly byf M5
2(2/3p)mE

3 . Still, at a given loop order for the hard contr
butions, we can investigate the difference between a stri
perturbative evaluation off M versus an untruncated on
which resums an infinite number of terms with odd powe
in g. Also the gap equations of DRSPT become trivial~but
solvable!: they all amount to settingm25mE

2 .
The results of a numerical evaluation of the untrunca

two-loop and three-loop results are compared with the ex
result of Ref.@40# in Fig. 8. Again one can observe a gre
reduction of the scale dependence by going from two-loop
three-loop order. Compared to the strictly perturbative res
to orderg5 ~not displayed in Fig. 8! the reduction of the size
of the scheme dependence is less important than in the p
glue case; e.g., atg2Nf510 the reduction is about 16%.

Also in contrast to the pure-glue case, the three-loop
sult has a monotonic scale dependence, so the scale ca
be fixed by minimal sensitivity. As remarked in Ref.@40#, m̄
could instead be fixed by fastest apparent convergence.
quiring e.g. that theas

2 term inmE
2 vanish leads to the choic

m̄/T5pe1/22g'0.93pT. For this value the untruncate
3-loop result coincides with the result to orderg5 in strict
perturbation theory, which in turn agrees quite well with t
exact result up to rather large coupling@40#. So while this
comparison does not favor one over the other, it shows
with an optimal choice of the renormalization scale both
perturbative result to orderg5 and the untruncated 3-loo
result fare rather well in the large-Nf limit.

If one applies the same prescription to the 3-loop resul
EQCD in pure-glue QCD, one is lead to settingm̄/T

r-

FIG. 8. The exact result of the thermal pressure in the limit
largeNf from Ref. @40#, normalized to that of free gluons and as

function of g2Nf(m̄5pe2gT) ~solid line!, in comparison with the
untruncated two-loop and three-loop results~darker and lighter gray

areas, respectively!, each withm̄ varied around a central value o
2pT by a factor ofe. The dash-dotted line corresponds to fast
apparent convergence.
1-9
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BLAIZOT, IANCU, AND REBHAN PHYSICAL REVIEW D 68, 025011 ~2003!
54pe2g25/22'1.79pT. This is lower but close to the scal
selected by minimal sensitivity of the untruncated 3-loop
sult. Correspondingly, the numerical result following fro
the FAC choice is fairly close to the one obtained from mi
mal sensitivity~dash-dotted and solid line in Fig. 3, respe
tively!, at least forT*3Tc , which appears to validate th
PMS results.13

V. DISCUSSION AND CONCLUSION

We have found that the scale dependence and con
gence of the results for the thermal pressure from pertu
tive QCD at high temperature are significantly improv
when the contributions from soft scales as given by the
fective dimensionally reduced theory EQCD are not trea
in strict perturbation theory.

In particular, we have explored the predictions of a sim
loop expansion of EQCD, in which, after strictly perturbati
matching of the parameters of the effective Lagrangian,
results are not subsequently expanded out in powers ofg and
truncated. The result obtained at the two-loop level in t
scheme includes contributions to orderg4ln g completely
while being incomplete to orderg4 and is such that the pres
sure no longer exceeds the ideal-gas limit. The scale de
dence is large; however, the three-loop result is within
estimated boundaries of the two-loop result. This three-lo
result has a smaller scale dependence than that of strict
turbation theory to orderg5, and moreover the scale depe
dence is nonmonotonic so that it can be eliminated b
principle of minimal sensitivity. The correspondingly opt
mized result is rather close to the lattice data on the c
tinuum limit of pure-glue QCD forT*3Tc . When including
4-loop effects, in particular the recently determinedg6ln g
contribution of Ref.@33#, we find that this trend continue
and, in line with @33,37#, that it is quite possible that al
higher-order contributions add up to a very small correct
above;3Tc .

We have also considered variationally improv
‘‘screened’’ perturbation theory in the dimensionally reduc
theory~DRSPT!, where it is a much simpler, gauge invaria
alternative to HTLPT~though not extensible to dynami
quantities, as HTLPT in principle is!. The result for the pure-
glue pressure when improved through 2-loop DRSPT tu
out to be significantly lower than that of HTLPT and forT
*3Tc fairly close to the lattice results as well as to t
results of Ref.@20#.

An obvious advantage of DRSPT over HTLPT is that
does not modify the theory at hard momentum scales, wh

13The upper boundary of the range of the three-loop results sh
in Fig. 8 follows the exact result to even much larger values. Th

is in fact a choice ofm̄'0.75pT for both the untruncated three
loop result and the strictly perturbative result, where they beco
almost indistinguishable from the exact result. A renormalizat
scale close to this turns out to be favored by applying FAC to
perturbative result to orderg6, which has been extracted numer
cally in the large-Nf limit @41#, but which is strictly non-
perturbative in real QCD.
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the HTL approximation in general breaks down. The lat
continues to be a good approximation at hard momen
scales only at soft virtuality. In the entropy-based HTL r
summations of Ref.@20# it turns out that the contributions ar
predominantly coming from hard momenta close to the lig
cone. In the HTLPT approach, on the other hand, spuri
contributions at hard momenta occurring at a given loop
der are corrected for by the specific counterterms of HTL
at next loop order, so this may present a problem at low lo
orders. Our two-loop DRSPT results seem to indicate t
this is indeed the reason for the difficulties of two-loo
HTLPT @17,18#.

An unsatisfactory feature of DRSPT, as observed bef
in SPT applied to scalar field theories and thus not unlik
to affect HTLPT as well, is that at three-loop order the ma
gap equation does not have solutions which connect to
turbation theory. This impasse happens to be lifted by
inclusion of soft four-loop logarithms, and the result is th
close to that obtained by a simple untruncated evaluation
all soft contribtions. Nevertheless, the gap equations
~DR!SPT have no particular physical interpretation@as dis-
cussed after Eqs.~17! and~23!#, which casts some doubt o
the systematics of SPT and its usefulness in improving p
turbation theory.

Evidently, our main result is that the convergence beh
ior of successive approximations to the pressure is dram
cally improved by abandoning strict perturbation theory
the soft sector. Treating this sector beyond strict perturba
theory is in fact closer in spirit to the so-calledF-derivable
approximations@42# which are the basis for the resummatio
techniques developed in Refs.@19,20#. Such approximations
when implemented in the soft sector, may represent an in
esting alternative to DRSPT. DRSPT has a single variatio
parameter, the mass of electrostatic gluons. While this
the advantage of great simplicity as well as gauge invarian
the full self-energy of electrostatic gluons is a nonlocal qu
tity. One might consider aF-derivable approach which doe
not have the need for the specific counterterms of SPT
try to construct improved approximations, which are in pr
ciple gauge dependent, though such gauge dependence
strongly suppressed at the variational point@43#.

It would be interesting to compare such a dimensiona
reducedF-derivable approach with the one based on
entropy formalism of Refs.@19,20#. In the latter, the empha
sis is on dynamical quasiparticles, which at two-loop ord
are interaction free. It should be noted that this approac
dependent on a real-time formalism which does not lend
self to dimensional reduction. Indeed, it involves differen
ating thermal distribution functions at the stationary poi
where the temperature dependence of spectral funct
drops out. However, the relevant theory for the soft mod
~including hard ones with soft virtuality! is known: at leading
order this involves the non-local hard-thermal-loop effect
action @44–46#!. In fact, the real-time approach might hav
advantages when it comes to including the effects of h
chemical potentialsm. In this case dimensional reductio
does not occur. The quasiparticle approach on the other h
appears promising for covering the thermodynamics in
entireT-m plane@47–49#.
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We intend to investigate these matters in future wo
From the present study we conclude that perturbative Q
at high temperature is not limited toT@105Tc as previously
thought@4,6#, but when supplemented by appropriate resu
mation techniques for soft physics, seems to be capabl
remarkably good quantitative predictions down toT
;2.5Tc .
e
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