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Becchi-Rouet-Stora symmetry restoration of chiral Abelian Higgs-Kibble theory
in dimensional renormalization with a nonanticommuting g5

D. Sánchez-Ruiz*
Departamento de Fı´sica Teo´rica I, Universidad Complutense, 28040 Madrid, Spain

~Received 25 February 2003; published 8 July 2003!

The one-loop renormalization of the Abelian Higgs-Kibble model in a general ’t Hooft gauge and with chiral
fermions is fully worked out within dimensional renormalization scheme with a nonanticommutingg5 . The
anomalous terms introduced in the Slavnov-Taylor identities by the minimal subtraction algorithm are calcu-
lated and the asymmetric counterterms needed to restore the Becchi-Rouet-Stora symmetry, if the anomaly
cancellation conditions are met, are computed. The computations draw heavily from regularized action prin-
ciples and algebraic renormalization theory.
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I. INTRODUCTION

Because of the availability of high precision tests of t
standard model in particle accelerators, it is mandatory
compute higher order quantum corrections and therefor
investigate thoroughly consistent and systematic renorm
ization schemes. Dimensional regularization@1,2# is the stan-
dard regularization method applied to particle physics. B
its axiomatic and properties were rigorously established l
ago @3–5#. Its success as a practical regularization meth
stems from the fact that in vectorlike nonsupersymme
gauge theories preserves enough properties so that the
mal subtraction~MS! scheme@6# leads to a renormalized
gauge invariant theory@2#. But the electroweak interaction
of the standard model are chiral and, unfortunately, in dim
sional renormalization the algebraic properties ofg5 cannot
be maintained consistently as we move away from four
mensions@7#. Thus, in the so called ‘‘naive’’ prescription o
dimensional renormalization~NDR!, commonly used in mul-
tiloop computations in the standard model, one assu
@g5 ,gm#50 and the cyclicity of the trace@8#. These assump
tions have the consequence@3,5,7,9# that Tr@gm1

¯gm4
g5# is

identically 0 in the dimensionally regularized theory (d
Þ4), which is incompatible with the property in four dimen
sions Tr@gm1

¯gm4g5#5 i TrIem1¯m4
in theories where a no

null tensore is needed.
Therefore it seems unavoidable to find ambiguities as

use NDR to carry out computations in any chiral theory w
fermionic loops with an odd number ofg5’s. However, it is
commonly claimed that with usual manipulations the res
ing ambiguities are proportional to the coefficient of the~chi-
ral gauge! anomaly—null in the standard model—and t
‘‘naive’’ prescription is then thought to be safe@10#. Calcu-
lations to low orders in perturbation theory support this id
but there is not a rigorous proof of it valid to all order
Higher order computations within the SM have alrea
reached a point where the possible inconsistencies of N
cannot be simply forgotten. To avoid these algebraic inc
sistencies it has been suggested not to assume the cyclic
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the trace@10,11#, but in this case extra checks or proofs a
needed. The only dimensional regularization scheme@some-
times called the Breitenlohner–Maison–’t Hooft–Veltma
~BMHV ! scheme# which is known rigorously@7# to be con-
sistent in presence ofg5 is the original one devised by
’t Hooft and Veltman@2# and later systematized by Breiten
lohner and Maison@3# following the definition ofg5 in Ref.
@12#. A similar scheme is considered in Ref.@13# and an
extension has been recently proposed in Ref.@14#.

In BMHV scheme, besides the ‘‘d-dimensional’’ metrics
gmn , a new one is introduced@3# ĝmn , which can be consid-
ered as a ‘‘(d24)-dimensional covariant.’’ Definingḡmn

5gmn2ĝmn, ḡmn can be thought of as a projector over th
‘‘four-dimensional space’’ andĝmn as a projector over
the ‘‘(d24)-dimensional’’ one. Moreover thee tensor is
considered to be a ‘‘four-dimensional covariant’’ objec
because it is assumed to satisfyem1¯m4

en1¯n4

52SpPS4
sgnpPi51

4 ḡminp(i)
. With the definition g5

5( i /4!)em1¯m4
gm1

¯gm4 and theassumption of cyclicityof

the symbol Tr, it can be proved algebraically@3#:

Tr@gm1
¯gm4g5#5Tr@ ḡm1

¯ḡm4g5#5 i TrIem1¯m4
;

$g5 ,gm%5$g5 ,ĝm%52g5ĝm52ĝmg5 ,

$g5 ,ḡm%5@g5 ,ĝm#50, ~1!

which is the same algebra of symbols than of the original o
of ’t Hooft and Veltman@2,5#. Notice thatg5 no longer an-
ticommutes withgm as it does in NDR.

The four-dimensional projection of the minimal subtra
tion ~MS! of the singular part of the dimensionally regula
ized Feynman diagrams, their divergences having been
minimally subtracted in advance, leads to a renormaliz
quantum field theory@3,4# that satisfies Hepp axioms@15# of
renormalization theory, field equations, the action principl
and Zimmerman-Bonneau identities@3,4,16#. The reader can
find a review in Ref.@17#.

Not many computations have been done in the BMH
scheme. Most of them involve theories without a chi
gauge symmetry@18#, where there is no room for the intro
duction of spurious anomalies but subtleties related with e
©2003 The American Physical Society09-1
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nescent operators@5# appear, or quantities related with axi
currents@12,19#, where it gives correctly the essential axi
current anomalies. Several practical computations, tak
care of the fulfillment of Slavnov-Taylor identities~STIs!,
but involving only some restricted set of diagrams, ha
been done in the case of the standard model@20,21,22# or in
supersymmetric QED@23#. In Ref. @22#, the authors report a
relevant finite difference between the results of NDR a
BMHV in two-loop diagrams of the standard model conta
ing triangle subdiagrams.

In the BMHV scheme the regularization breaks the gau
symmetry, and the MS procedure gives Green’s functi
which does not fulfill the STIs, essential ingredients to gu
antee unitarity and gauge independence. The axioms of l
relativistic quantum field theories allows for local ambig
ities @15,24# to be removed by imposing renormalizatio
conditions. The quantum action principle@25# tells us that
any symmetry breaking term generated in the renormal
tion process is local at the lowest nonvanishing order, and
question here is whether it is possible to remove the brea
terms of the STIs by adding to the classical action appro
ate local finite counterterms.~The removable breaking term
are calledspurious anomalies@9#.! Algebraic renormaliza-
tion theory@26,27,28# establish elegantly how and when th
process can be accomplished: when there are no obstruc
in the form of ~essential! anomalies. This imposes anoma
cancellation conditions on the field representations. Th
anomalies belong to the cohomology of the Slavnov-Tay
operator that governs the chiral gauge symmetry at the q
tum level. On the other hand, nonphysical or spurio
anomalies correspond to trivial objects in the cohomolog

Algebraic renormalization has been recently applied
theoretical studies of the standard model@29# and important
progress towards practical uses of noninvariant regular
tion schemes@30,31# have been achieved. In Ref.@17# a sys-
tematic computation of the finite one-loop counterter
needed to restore the STI of non-Abelian gauge theo
without scalar fields in BMHV dimensional renormalizatio
was done. The modified action which gives gauge invari
results in MS of the BMHV scheme was explicitly give
Especially use of the rigorous identity~see Ref.@17# for no-
tations and a deduction based on the action principles
dimensional regularization@3#!

Sd~GDR![E ddx~sdw!
dGDR

dw
1

dGDR

dKF

dGDR

dF

5sdS0•GDR1sdSct
~n!
•GDR

1E ddxF dSct
~n!

dKF~x!
•GDRG dGDR

dF~x!
~2!

was made, which allowed at one loop level for a direct co
putation of the breaking in terms of finite parts of diagra
with an insertion of an evanescent operator, thus avoiding
evaluation of the left-hand side~LHS! of the STIs.

Multiloop extension of these techniques and the expl
form of the two-loop modified action for the standard mod
which would give Becchi-Rouet-Stora~BRS! invariant re-
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sults with a MS procedure would be valuable. For reason
simplicity and as a previous step, the present paper is
voted to a simpler model, the Abelian Higgs-Kibble mod
with chiral fermions@32,33,26,30# in a general gauge of the
’t Hooft class. Compared with the models of Ref.@17#, this
model presents the new feature of spontaneous symm
breaking, which makes more involved the restoration proc
of the ~hidden! BRS symmetry. Moreover, it is free of IR
problems and it is very easy to write in an exhaustive man
the list of the monomials needed, to all orders, in the res
ration procedure of its BRS symmetry. This makes the mo
a perfect training ground for future work on the standa
model and two-loop computations. Since algebraic renorm
ization is not well known to practitioners, we will show i
detail each step of the algorithm.

The layout of this paper is as follows. In Sec. II we giv
the classical action, fields, and symmetry of the model. S
tion III is devoted to a quick reminder of the general theo
of algebraic renormalization, suited to this model and wh
is independent of the order of the renormalization procedu
In Sec. IV the BMHV dimensional regularization of th
model is presented. In Sec. V we use the techniques of
@17# to compute the breaking at one loop. Of course,
correct form of the anomaly is thus obtained and in Sec.
following the lines of Sec. III, the finite counterterms need
to restore the BRS symmetry in the anomaly free case
finally computed. In Appendix A the explicit matrix form o
the linearized Slavnov-Taylor operator, needed to do
computation, is given. Appendix B is devoted to a pedago
cal explicit computation of the BRS cohomology of ord
one. In Appendix C the results for each diagram contribut
to the one loop breaking are presented in full detail.

II. CLASSICAL ACTION

TheCP symmetric four-dimensional classical action is t
following:

Sinv5E d4xH 2
1

4g2 FmnFmn1~Dmf†!~Dmf!1m2f†f

2l~f†f!21 (
kPI øJ

c̄k@ i ]”1A” ~eLkPL1eRkPR!#ck

2(
i PI

~& f ifc̄ i PRc i1& f if
†c̄ i PLc i !

2(
j PJ

~& f jfc̄ j PLc j1& f jf
†c̄ j PRc j !J . ~3!

HereAm is an Abelian gauge field,f a scalar complex field,
c i and c j are families of Dirac fermion fieldsFmn[]mAn

2]nAm and Dmf[(]m2 iAm)f. This action is invariant
also under the Abelian gauge transformationsdAm5]mv,
df5 ivf, dck5 iv(eLkPL1eRkPR)ck provided that the
9-2
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TABLE I. Ghost number, dimension, conmmutativity, andCP transformation of fields, coordinates, an
the BRS operator. In the third row,11 ~21! means that the symbol commutes~anticommutes! and in last
one,D[g0C, whereC is the usual conjugation matrix. Note that the chosenCP properties of the ghosts
make the BRS operatorCP invariant.

s xm f1(2) Am c c c̄ B Kf1(2)
Kc

Gh. No. 1 0 0 0 0 1 21 0 21 21
Dimen. 0 21 1 1 3/2 0 2 2 3 5/2
Comm. 21 11 11 11 21 21 21 11 21 11

CP s xm (2)f1(2) 2Am
Dc̄ t 2c 2 c̄ 2B (2)Kf1(2) 2K

c̄

t
D21
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fermion charges satisfy1

eLi5eRi11 if i PI ,

eL j5eR j21 if j PJ. ~4!

We shall consider spontaneous symmetry breaking du
a nonvanishing vacuum expectation value~VEV! of the real
component off. Let us now write the classical BRS invar
ant action

Scl5Sinv1SGF1Sext, ~5!

where

Sinv5E d4xH 2
1

4g2 FmnFmn1@~Dmf1!~Dmf!1m2f1f

2l~f1f!2#f5~1/& !~f11v1 if2!

1c̄$ i ]”1A” @~u1r !PL1uPR#%c

2 f @~v1f1!c̄c1 ir f2c̄g5c#J
SGF5E d4xsF1

2
j c̄B1 c̄SG5E d4x

j

2
B21B~]mAm1rf2!

2 c̄@]m]m1r~f11v !#c,

Sext5E d4xKf1
sf11Kf2

sf21Kcsc1sc̄K c̄ . ~6!

In this action,v is a parameter with dimension of mass,f1
andf2 are real scalar fields,c is the ghost field,c̄ the anti-
ghost field,B is the Lautrup-Nakanishi field,KF are the ex-
ternal fields coupled to the corresponding BRS variation2

1If the field redefinitionsAm→2gAm , v→2gv are done the
model coincides with the model of Sec. IV A of Ref.@33#, with c
(c8) being our fermions of typer 511 (r 521) and their charge
f our (2eR11)g/2 @(2eR21)g/2#.

2‘‘Antifields’’ or sources to the trivial BRS variations ofAm andc
could also have easily been introduced. This would make m

clear the study and interpretation of the cohomology ofb̃ at order 0,
but they are neither relevant nor necessary for the practical purp
we pursue in this paper.
02500
to

,

and S5]mAm1rf2 is the most general gauge-fixing func
tional which is linear, preservesCP symmetry, has the ap
propriate ghost number, and is consistent with power cou
ing ~see Table I!. j andr are the gauge parameters. We ha
omitted the index labeling the fermion families, a notati
that we shall keep unless otherwise stated. We have seteRk
[uk andeLk[uk1r k . Therefore,$r k%kPI øJ are not free pa-
rameters but convenient shorthand for11 if kPI and21 if
kPJ.

The BRS transformation is

sf152f2c, sf25~v1f1!c,

sc5 ic@~u1r !PL1uPR#c,

sc̄5 i c̄@~u1r !PR1uPL#c,

sAm5]mc, sc50, sc̄5B,

sB5sKf i
5sKc5sKc̄50, ~7!

which leavesScl invariant due to the anticommutativity ofg5
in four dimensions.

If m25lv2 there are no linear terms in the classical a
tion ~5!. This is equivalent to the renormalization conditio
which sets to zero the VEV of the fieldf1 . The quadratic
terms in Eq.~5! give the propagators, which are shown
Fig. 1 for m25lv2. Note that the propagators withB fields
only contribute to the one particle irreducible~1PI! Feynman
diagrams at the tree level and that no special value will
chosen for ther parameter; i.e., there will beAf2 mixing at
the tree level and beyond in the loop expansion. Notice a
that although the theory is Abelian, the ghost fields are
free: they interact withf1 through the gauge-fixing part o
the action. This makes the BRS-Tyutin~BRST! formalism
very convenient to use.

III. ALGEBRAIC RENORMALIZATION

The classical action~5! is a solution, over the space o
CP-invariant integrated polynomials of ghost number 0 a
mass dimension 4, to the Slavnov-Taylor identity~STI!

re

es
9-3
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FIG. 1. Free field propagators ifm25lv2. For convenience, the following abbreviation has been defined:j85j/g2. Momentumk flows
from the second to the first field of Green functions.m, m1 , andm2 are Lorentz indices.a andb are the indices of Dirac matrices and wi
be ommitted.
4
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E d xH ~]mc!
dAm

1B
d c̄

1
dKf1

df1

1
dKf2

df2

1
dScl

dKc

dScl

dc
1

dScl

dK c̄

dScl

dc̄
J 50, ~8!

which rules the BRS invariance of the theory, and to
gauge-fixing equation

dScl

dB
5jB1]mAm1rf2 , ~9!

which is the equation of motion of the Lagrange multipli
field B.

Any functionalF satisfying both equations, also satisfi
the ghost equation

dF
d c̄

1hc1r
dF

dKf2

50. ~10!

After renormalization of the perturbative expansion, the 1
generating functionalG will be required to be, in the sense o
a formal series of functionals in\, a deformation ofScl con-
strained by the same equations. If the renormalization pro
dure respects both the gauge-fixing and ghost equationG
will have the form

G@f1 ,f2 ,Am ,c,c̄,c,c̄,B,Kf1
,Kf2

,Kc ,K c̄#

5E d4x
j

2
B21B~]mAm1rf2!2 c̄hc

1G̃@f1 ,f2 ,Am ,c,c̄,c,Kf1
,K̃f2

[Kf2
2r c̄,Kc ,K c̄#, ~11!

so that the left hand side of the STI will read
02500
e

I

e-

S̃~ G̃ ![E d4xH ~]mc!
dAm

1
dKf1

df1

1
dK̃f2

df2

1
dG̃

dKc

dG̃

dc
1

dG̃

dK c̄

dG̃

dc̄
J . ~12!

From now, a tilde will indicate dependence on the sa

fields asG̃ does.
Let us introduce the linearized Slavnov-Taylor operato

S̃F̃[E d4xH ~]mc!
d

dAm

1
dF̃
df1

d

dKf1

1
dF̃

dKf1

d

df1

1
dF̃
df2

d

dK̃f2

1
dF̃

dK̃f2

d

df2

1
dF̃
dc

d

dKc

1
dF̃
dKc

d

dc

1
dF̃
dc̄

d

dK c̄

1
dF̃
dK c̄

d

dc̄
J , ~13!

which has the nilpotency properties

S̃F̃S̃~F̃!50, ;F̃,

S̃F̃S̃F̃50, if S̃~F̃!50. ~14!

For F̃ equal to the classical actionS̃cl we have the importan
linear operator

b̃[S̃S̃cl
. ~15!

The local part of maximal dimension four ofG̃ at a deter-
mined order in the perturbative expansion and prior to im
sition of the STI is an arbitrary linear combination of th
9-4
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following basis of the spaceṼ0 of the integrated Lorentz
scalarCP-invariant polynomials in the fields and their d
rivatives with maximal canonical dimension 4 and gho
number 0~note that we choose the same first twenty mo
mials as in Ref.@26#!:

ẽ1[E f1 , ẽ2[E f1
2, ẽ3[E f2

2,

ẽ4[E f1
3, ẽ5[E f1f2

2, ẽ6[E f1
4,

ẽ7[E f2
4, ẽ8[E f1

2f2
2, ẽ9[E ~]mf1!~]mf1!,

ẽ10[E ~]mf2!~]mf2!, ẽ11[E f2~]mAm!,

ẽ12[E Amf1~]mf2!,

ẽ13[E Amf2~]mf1!, ẽ14[E AmAm, ẽ15[E AmAmf1 ,

ẽ16[E AmAmf1
2, ẽ17[E AmAmf2

2, ẽ18[E ~]mAm!2,

ẽ19[E ~]mAn2]nAm!2, ẽ20[E ~AmAm!2,

ẽ21[E Kf1
f2c, ẽ22[E K̃f2

c, ẽ23[E K̃f2
f1c,

ẽ24[E c̄c,

ẽ25[E c̄ i ]”PLc, ẽ26[E c̄ i ]”PRc,

ẽ27[E c̄A” PLc, ẽ28[E c̄A” PRc,

ẽ29[E f1c̄c5f1c̄PRc1f1c̄PLc,

ẽ30[E f2c̄g5c5f2c̄PRc2f2c̄PLc,

ẽ31[E ~KcPLc2c̄PRK c̄!c,

ẽ32[E ~KcPRc2c̄PLK c̄!c. ~16!

This means that we have the freedom to add to the star
action any actionlike term of the formX̃5( i 51

32 x̃i ẽi , eachx̃i

being a formal series in\ of orderO(\).
02500
t
-

g

In a noninvariant renormalization scheme, the renorm
ized STI will have a breaking

S̃~ G̃ !5D̃•G̃, ~17!

the right-hand side~RHS! of last equation being the insertio
of a CP-invariant integrated local operator of maximal d
mension 4 and ghost number 1.

Now, in accordance with the algebraic theory of renorm
ization and supposing that the breaking vanish at lower
ders of the perturbative expansion, the insertion at ordern is

simply a local integrated polynomialD̃. G̃5\nD̃ (n)

1O(\n11) which can be decomposed as a linear combi
tion of the following basis of the spaceṼ1 of CP invariant
actionlike polynomials of maximal dimension 4 and gho
number 1~again, we choose a basis following the strategy
Ref. @26#!:

ũ1[E f2c, ũ2[E f1f2c, ũ3[E f2
3c,

ũ4[E f1
2f2c, ũ5[E ~hf2!c, ũ6[E f1

3f2c,

ũ7[E f1f2
3c, ũ8[E f2~hf1!c, ũ9[E f1~hf2!c,

ũ10[E ~]mf1!~]mf2!c, ũ11[E ~]mAm!c,

ũ12[E Am~]mf1!c,

ũ13[E ~]mAm!f1c, ũ14[E ~]mAm!f1
2c,

ũ15[E Amf1~]mf1!c,

ũ16[E ~]mAm!f2
2c, ũ17[E Amf2~]mf2!c,

ũ18[E h~]mAm!c,

ũ19[E AmAn~]mAn!c, ũ20[E AmAnf2c,

ũ21[E AmAmf1f2c,

ũ22[E AmAm~]nAn!c,

ũ23[E c̄g5cc, ũ24[E ]m~c̄gmPLc!c,
9-5
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ũ25[E ]m~c̄gmPRc!c,

ũ26[E f2c̄cc, ũ27[E f1c̄g5cc,

ũ28[E «m1m2m3m4
~]m1Am2!~]m3Am4!c, ~18!

that is,D̃ (n)5( j 51
28 D̃ j (n)ũ j . Notice that, incidentally, externa

fields do not appear in the basis due to power counting
the property of the Abelian ghostscc50.

The projection of the breaking over the direction of t
last element of the basis constitutes the anomaly of
theory, for it can be shown that the linear systemb̃X̃(n)

5D̃ (n) has an~underdetermined! solution if and only if the
coefficientD̃28(n) vanishes. This can be established by us
cohomological methods: the first expression in Eq.~14! leads
to b̃D̃50, which is the famous consistency condition, an
the second expression in Eq.~14! implies b̃250; hence,D̃
[anomaly1b̃X̃, the anomaly belonging to the ghost numb
one nontrivial cohomology space of theb̃ operator. See Ap-
pendix B for a proof of this statement by explicit comput
tion.

Now, let us define the matrix elements of the operatob̃

restricted to its action fromṼ0 to Ṽ1 in the following manner
b̃ẽi[b̃0 i

juj @explicit values of these matrix elements forScl

in Eq. ~5! are given in Appendix A#. Then, the linear system

(
j 51

27

b̃0 i
j x̃i ~n!5D̃ j ~n!, i 51, . . . ,32 ~19!

always has a solution up to anO(\n) arbitrary linear com-
bination of b̃ invariants. Theseb̃ invariants are any basis o
the kernel K̃0 of the restricted linear operatorb̃0[b̃: Ṽ0

→Ṽ1 . We can choose for example the following basis ofK̃0
for all values ofu:

Ĩ152
1

4
ẽ1952

1

4 E FmnFmn, ~20!

Ĩ25vẽ11
ẽ21ẽ3

2
5E f†f,

Ĩ35v3ẽ11
3v2

2
ẽ21

v2

2
ẽ31v~ ẽ41ẽ5!1

ẽ61ẽ7

4
1

ẽ8

2

5E ~f†f!2,

Ĩ45vẽ241ẽ291 irẽ305E vc̄c1f1c̄c1 ir f2c̄g5c,
02500
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Ĩ55~m223lv2!ẽ123lvẽ22lvẽ32lvẽ32l~ ẽ41ẽ5!

1ẽ111vẽ141ẽ151ẽ222 f ẽ24

5b̃E Kf1
,

Ĩ65~m22lv2!vẽ11~m223lv2!ẽ223lvẽ42lvẽ5

2l~ ẽ61ẽ8!1ẽ92ẽ121ẽ131vẽ151ẽ161ẽ211ẽ23

2 f ẽ295b̃E Kf1
f1 ,

Ĩ75~m22lv2!ẽ322lvẽ52l~ ẽ71ẽ8!1ẽ101vẽ112ẽ12

1ẽ131ẽ172ẽ212vẽ222ẽ232 ir f ẽ30

5b̃E Kf2
f2 ,

Ĩ8522ẽ2522~r 1u!ẽ271v f ẽ241 f ẽ291 ir f ẽ30

5b̃E ~KcPLc1c̄PRK c̃!,

Ĩ9522ẽ2622uẽ281v f ẽ241 f ẽ291 ir f ẽ30

5b̃E ~KcPRc1c̄PLK c̄!,

Ĩ105u~ ẽ91ẽ101vẽ112ẽ121ẽ131ẽ212vẽ222ẽ23!

2rẽ262 ir uẽ32,

Ĩ115~u1r !~ ẽ91ẽ101vẽ112ẽ121ẽ131ẽ212vẽ222ẽ23!

1rẽ251 ir ~u1r !ẽ31,

which is fixed by choosing an appropriate set of normali
tion conditions.

Notice that the rank ofb̃0 is dim of Ṽ02dim of K̃0521
,dim of Ṽ1 , so that, in general, for arbitrary values of th
breaking, the system~19! would be an incompatible one
Then its compatibility when substituting in it the values
the breaking obtained by explicit computation turns to be
nontrivial check of the correctness of the computation its
Finally, if there is no anomaly, the breaking at ordern only
consists of cohomologically trivial terms and, thus by addi
\nS̃fct

(n)52\nX̃(n) to the previous action the breaking is ca
celed at the ordern.

IV. DIMENSIONALLY REGULARIZED ACTION

If we want the regularized action principle of Breiten
lohner and Maison to be applicable, we must define the re
larized kinetic terms in the same form as the fou
dimensional ones. The regularized kinetic terms are t
uniquely defined. Not so the interaction terms. For instan
the Dirac matrix part of the fermion-gauge-boson vertex h
9-6
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FIG. 2. Feynman rule of the
insertion of the integrated break
ing Eq. ~23!.
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the following equivalent forms in 4 dimensions:gmPL
5PRgm5PRgmPL . But these forms are not equal in th
d-dimensional space-time of dimensional regularization
cause of the nonanticommutativity ofg5 . Of course, the gen
eralization of the interaction to the dimensional regulari
tion space is not unique, and any choice isequally correct.
And yet, some choices will be more convenient than oth

In the case at hand it would be far more convenient to
a dimensionally regularized action which has the discr
simmetries of the four-dimensional classical action. Inde
if the dimensionally regularized action were notCP invari-
ant, we would have to enlarge the basis of the relevant sp
presented in Sec. III withCP-noninvariant monomials. This
would make the computations very lengthy. Even with t
restriction of CP symmetry the regularized action is n
unique: there is always the freedom of adding explicit e
nescent operators, i.e., proportional tod24. Here we shall
adopt the simplest choice available and generalize in the
vious way tod-dimensional space-time the BRS variatio
and vertices of the action~5!, ‘‘barring’’ the boson-fermion
vertex. For the latter vertex, we shall use the following reg
larized form:

c̄@ i ]”1Am~eLḡmPL1eRḡmPR!#c, ~21!

i.e., the CP-invariant or ‘‘Hermitian’’ regularized form,
which can be cast in the following nongauge invariant e
pression:

i c̄D”̄ c1 i c̄]”̂c. ~22!

Hence, the regularized actionS0 we shall start with will
not be BRS invariant. The regularized breakingsdS0 , com-
ing from the last term of Eq.~22!, will read, thus,

sdS05sdE ddxic̄ĝm]mc

5E ddx
1

2
c$~r 12u!]m~c̄ĝmc!1r ~ c̄ĝmg5]Jmc!%

[D̂[E ddxD̂~x!. ~23!

The Feynman rule of the insertion of this anomalous bre
ing is given in Fig. 2.

The breaking is an~implicit! ‘‘( d24) object,’’ i.e., an
evanescent operator or an operator which vanishes in
four-dimensional projection, and, clearly, this would be a
true for any other dimensional regularization classical act
we might have chosen. Other choices of regularized vert
02500
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can lead upon minimal subtraction to other values for ren
malized Green functions; each value corresponding to
renormalization scheme. Hence, the different values
spoke of should be related by finite counterterms.

In order not to deal with cumbersome propagators we
m25lv2 in the regularized classical. Notice that for th
choice of m2 the starting action can be interpreted as t
usual spontaneous symmetry breaking action.

V. ONE LOOP STI BREAKING IN BMHV DIMENSIONAL
RENORMALIZATION

By using the action principles of Breitenlohner an
Maison—which basically state that the usual formal manip
lations of path integrals are allowed in the dimensiona
regularized theory—it can be shown that the equation of m
tion holds in dimensional regularization and renormalizat
@3,4,5#. Therefore, the gauge fixing~9! and ghost~10! equa-
tions holds for both the regularized and MS renormalized
generating functionalG if the dimensionally regularized ac
tion of previous section is used, or if it is modified by th
addition of terms independent ofB and depending onc̄ and
Kf2

only through the combinationK̃f2
5Kf2

2r c̄. Hence,
we will restrict the possible finite counterterms of the reg
larized action to live in the spaceṼ0 whose basis was given
in Eq. ~16!. Of course, as in the previous section, we ha
several possible ‘‘d-dimensional’’ generalizations of a give
four-dimensional finite counterterm. Two such generaliz
tions will differ in a ‘‘d-dimensional’’ integrated evanesce
operator of order\, which modifies the value of finite four
dimensional quantities only at order\2. We choose the gen
eralizations whose forms in the ‘‘d-dimensional’’ algebra of
covariants are exactly the same as in Eq.~16!.

In Ref. @17#, again by invoking the action principles, th
identity ~2! was derived, and it was proved using it that at t
one-loop level the breaking of the renormalized STI—
RHS—simplifies to

D̃~1!5†N@D̂#•GR
‡

~1!1bS̃fct
~1! , ~24!

whereN@D̂#•GR denotes the insertion of a normal product
defined in Refs.@4,5#: the minimally subtracted generatin
functional of diagrams with an insertion of the regulariz
operatorD̂. Notice that after algebraic manipulations of th
Feynman integrand of these diagrams with an insertion o
evanescent operator, an explicitd24 factor can appear in the
numerators to be canceled with thed24 coming from the
9-7
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divergence of denominators, giving thus a local renormali
value, as expected from the general algebraic renorma
tion theory.

We could, of course, compute the breaking by evaluat
the relevant zero and one-loop 1PI functions, inserting th
in the LHS of STIs and working out the functional deriv
tives. But, it is clearly more efficient to compute the breaki
directly using Eq.~24!.

With the aid of the Bonneau identities of Ref.@4#, the
anomalous normal product~24!, i.e., a normal product of an
evanescent operator, can be decomposed in terms of s
basis of standard normal products, i.e., normal products
nonevanescent operators. See Refs.@4,17# for examples. But
at lowest order, this technique reads practically the sam
the direct computation of the one-loop finite part ofN@D̂#
•GR: ~i! compute the finite part of all divergent by pow
02500
d
a-

g
m

me
of

as

counting 1PI diagrams with and insertion ofD̂ and any quan-
tum or BRS external field as legs;~ii ! setḡmn to gmn andĝmn

to zero, i.e., set to zero every hatted object;~iii ! find finite
four-dimensional integrated operators such as the Feyn
rules of its tree-level insertions match the results of~ii !.

We have carried out the procedure spelled out above
completely automatic manner by using our ownMATH-

EMATICA™ @34# routines and theMATHEMATICA package
‘‘ TRACER’’ @35#, which manages properly and carefully th
BMHV g’s algebra. The input of the programs consists of t
definition of Feynman rules and the expression of the d
grams in terms of symbolic Feynman rules. For the dim
sionally regularized action of Sec. IV, the one-loop contrib
tions to the 1PI functions with a breaking insertion read3

@results after step~ii ! for each relevant diagram are shown
Appendix C#:
his
G̃
Ac;N@D̂#

R~1!m1 ~k1!5
~26 f 2v21k1

2!k1
m1

3
, ~25!

G̃
AAc;N@D̂#

R~1!m1m2~k1 ,k2!5
24i

3
~3u1r 13u2r !e~k1 ,k2$m1%,$m2%!,

G̃
AAAc;N@D̂#

R~1!m1m2m3~k1 ,k2 ,k3!5
2~k1

m31k2
m31k3

m3!gm1m2

3
1

2~k1
m21k2

m21k3
m2!gm1m3

3
1

2~k1
m11k2

m11k3
m1!gm2m3

3
,

G̃
f2c;N@D̂#

R~1!
~k1!5

4i

3
f 2v~6 f 2v22k1

2!,

G̃
f1f2c;N@D̂#

R~1!
~k1 ,k2!5

4i

3
f 2~18f 2v223k1

223k1
223k1•k22k2

2!,

G̃
f2f2f2c;N@D̂#

R~1!
~k1 ,k2 ,k3!516i f 4v,

G̃
f1f1f2c;N@D̂#

R~1!
~k1 ,k2 ,k3!548i f 4v,

G̃
f1f1f1f2c;N@D̂#

R~1!
~k1 ,k2 ,k3 ,k4!548i f 4,

G̃
f1f2f2f2c;N@D̂#

R~1!
~k1 ,k2 ,k3 ,k4!516i f 4,

G̃
Af1c;N@D̂#

R~1!m1 ~k1 ,k2!524 f 2vk1
m1,

G̃
Af1f1c;N@D̂#

R~1!m1 ~k1 ,k2 ,k3!524 f 2k1
m1,

G̃
Af2f2c;N@D̂#

R~1!m1 ~k1 ,k2 ,k3!524 f 2@k1
m112~k2

m11k3
m1!#,

G̃
AAf2c;N@D̂#

R~1!m1m2 ~k1 ,k2 ,k3!528i f 2vgm1m2,

3In order to avoid any typesetting mistake, the following results have been automatically inserted from the TEX output of the programs. The
code of the programs which do all computations and generate the TEX output can be found at arXiv:hep-th in the source format of t
preprint.
9-8
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G̃
AAf1f2c;N@D̂#

R~1!m1m2 ~k1 ,k2 ,k3 ,k4!528i f 2gm1m2,

G̃
cc̄c;N@D̂#

R~1!
~k1 ,k2!5

2$ f @3rr 14g2u~11ur !v~51j8!#g5%

6
2

g2~2u1r !~51j8!k” 1

12

2
g2~2u1r !~51j8!k” 2

12
1

@212 f 2r 1g2~2u1r 12u2r !~51j8!#k” 1g5

12

1
@212 f 2r 1g2~2u1r 12u2r !~51j8!#k” 2g5

12
,

G̃
cc̄f1c;N@D̂#

R~1!
~k1 ,k2 ,k3!5

22 f g2u~11ur !~51j8!g5

3
,

G̃
cc̄f2c;N@D̂#

R~1!
~k1 ,k2 ,k3!5

2i

3
f g2u~u1r !~51j8!I,

wheree(k1 ,k2 ,$m1%,$m2%)[eabm1m2
k1

ak2
b and I is the unit of the spinor space. Note that no significant simplification

achieved by using the standard choice ofRj gauger[jv.
Then, the coefficientsD̃ j

(1) of the breaking in the basis~18! of four-dimensional integrated operators can be automatic
obtained with the aid of the formulas@step~iii !#

D̃1
~1!5G̃

f2c;N@D̂#

R~1!
~k1[0!, D̃2

~1!5G̃
f1f2c;N@D̂#

R~1!
~k1[0,k2[0!,

D̃3
~1!5

1

3!
G̃

f
2

3c;N@D̂#

R~1!
, D̃4

~1!5
1

2!
G̃

f
1

2f2c;N@D̂#

R~1!
,

D̃5
~1!52coeff. of k1

2 in G̃
f2c;N@D̂#

R~1!
~k1!, D̃6

~1!5
1

3!
G̃

f
1

3c;N@D̂#

R~1!
,

D̃7
~1!5

1

3!
G̃

f1f
2

3c;N@D̂#

R~1!
, D̃8

~1!52coeff. of k1
2 in G̃

f1f2c;N@D̂#

R~1!
~k1 ,k2!,

D̃9
~1!52coeff. of k2

2 in G̃
f1f2c;N@D̂#

R~1!
~k1 ,k2!, D̃10

~1!52coeff. of k1•k2 in G̃
f1f2c;N@D̂#

R~1!
~k1 ,k2!,

D̃11
~1!52 i coeff. of k1

m1 in G̃
Ac;N@D̂#

R~1!m1 ~k1!, D̃12
~1!52 i coeff. of k2

m1 in G̃
Af1c;N@D̂#

R~1!m1 ~k1 ,k2!,

D̃13
~1!52 coeff. of k1

m1 in G̃
Af1c;N@D̂#

R~1!m1 ~k1 ,k2!,

D̃14
~1!5

2 i

2
coeff. of k1

m1 in G̃
Af

1
2c;N@D̂#

R~1!m1 ~k1 ,k2 ,k3!,

D̃15
~1!52 i coeff. of $k2

m1,k3
m1% in G̃

Af
1

2c;N@D̂#

R~1!m1 ~k1 ,k2 ,k3!,

D̃16
~1!5

2 i

2
coeff. of k1

m1 in G̃
Af

2
2c;N@D̂#

R~1!m1 ~k1 ,k2 ,k3!,

D̃17
~1!52 i coeff. of $k2

m1,k3
m1% in G̃

Af
2

2c;N@D̂#

R~1!m1 ~k1 ,k2 ,k3!,

D̃18
~1!5 i coeff. of k1

m1k1
2 in G̃

Ac;N@D̂#

R~1!m1 ~k1 ,k2!,
025009-9
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D̃19
~1!52 i coeff. of $gm1m2k2

m3,gm1m2k1
m3,gm1m3k1

m2,

gm1m2k3
m2,gm2m3k2

m1,gm2m3k3
m1% in G̃

AAAc;N@D̂#

R~1!m1m2m3~k1 ,k2 ,k3!,

D̃20
~1!5

1

2
coeff. of gm1m2 in G̃

AAf2c;N@D̂#

R~1!m1m2 , D̃21
~1!5

1

2
coeff. of gm1m2 in G̃

AAf1f2c;N@D̂#

R~1!m1m2 ,

D̃22
~1!52 i coeff. of $gm1m2k3

m3,gm1m3k2
m2,gm2m3k1

m1% in G̃
AAAc;N@D̂#

R~1!m1m2m3~k1 ,k2 ,k3!,

D̃23
~1!5coeff. of g5 in G̃

cc̄c;N@D̂#

R~1!
~k1[0,k2[0!,

D̃24
~1!52 i coeff. of $k” 1PL ,k” 2PL% in G̃

cc̄c;N@D̂#

R~1!
~k1 ,k2!

52 i ~coeff. of k” 12coeff. of k” 1g5! in G̃
cc̄c;N@D̂#

R~1!
~k1 ,k2!,

D̃25
~1!52 i coeff. of $k” 1PR ,k” 2PR% in G̃

cc̄c;N@D̂#

R~1!
~k1 ,k2!

52 i ~coeff. of k” 11coeff. of k” 1g5! in G̃
cc̄c;N@D̂#

R~1!
~k1 ,k2!,

D̃26
~1!5G̃

cc̄f2c;N@D̂#

R~1!
, D̃27

~1!5coeff. of g5 in G̃
cc̄f1c;N@D̂#

R~1!
,

D̃28
~1!5

1

2
coeff. of «m1m2abk1ak2b in G̃

AAc;N@D̂#

R~1!m1m2~k1 ,k2!, ~26!

where, for example, ‘‘coeff. of$k2
m1,k3

m1% in X’’ stands for ‘‘coefficient ofk2
m1 in X or coefficient ofk3

m1 in X’’ ~that is, they must
be equal!.

The results, consistent when several formulas for a coefficient are possible, thus obtained read

~4p!2D̃1
~1!528 f 4v3, ~4p!2D̃2

~1!5224f 4v2, ~4p!2D̃3
~1!5

28 f 4v
3

, ~27!

~4p!2D̃4
~1!5224f 4v, ~4p!2D̃5

~1!5
24 f 2v

3
, ~4p!2D̃6

~1!528 f 4,

~4p!2D̃7
~1!5

28 f 4

3
, ~4p!2D̃8

~1!524 f 2, ~4p!2D̃9
~1!5

24 f 2

3
,

~4p!2D̃10
~1!524 f 2, ~4p!2D̃11

~1!522 f 2v2, ~4p!2D̃12
~1!50,

~4p!2D̃13
~1!524 f 2v, ~4p!2D̃14

~1!522 f 2, ~4p!2D̃15
~1!50,

~4p!2D̃16
~1!522 f 2, ~4p!2D̃17

~1!528 f 2, ~4p!2D̃18
~1!5

21

3
,

~4p!2D̃19
~1!5

2

3
, ~4p!2D̃20

~1!54 f 2v, ~4p!2D̃21
~1!54 f 2,

~4p!2D̃22
~1!5

1

3
,

~4p!2D̃23
~1!5

2 i

6
f @3rr 14g2u~11ur !v~51j8!#,
025009-10
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~4p!2D̃24
~1!5

2$@26 f 2r 1g2~2u1r 1u2r !~51j8!#%

6
,

~4p!2D̃25
~1!5

r @26 f 21g2u2~51j8!#

6
,

~4p!2D̃26
~1!5

22 f g2u~u1r !~51j8!

3
, ~4p!2D̃27

~1!5
22i

3
f g2u~11ur !~51j8!,

~4p!2D̃28
~1!5

2~3u1r 13u2r !

3
.

This breaking is simplified a bit with the choice of gaugej8[25.
Note that if only a fermion is present of type, for example,r 511, then the anomaly coefficient is not zero for any val

of u and that by adding fermions of the same type, the coefficient anomaly cannot be canceled. Fermions of both t
needed. For example, there is cancellation of the anomaly in the case of two fermions withu15u250 and r 1511, r 25
21 or in the case of two fermions withu151, u2521 and r 1511, r 2521. Remembering the definitionseRk[uk and
eLk[uk1r k with r k561, the obtained coefficient of the anomaly can be written in the more familiar form

D̃28
~1!5

1

~4p!2

2

3 (
kPI øJ

~eLk
3 2eRk

3 ! ~28!

but the constraints~4! should never be forgotten.

VI. RESTORATION OF BRS SYMMETRY: FINITE COUNTERTERMS

We know from the algebraic theory of renormalization presented in the third section that the linear system~19! has to be
compatible, but its solution is not unique. Facts which cannot be trivially deduced from Eq.~26!. Using the values of the
coefficientsD̃ i

(1) , found in the previous section, this turns to be the case and one of the solutions is

~4p!2x̃0,1
~1!58 f 4v3, ~4p!2x̃0,2

~1!512 f 4v2, ~4p!2x̃0,3
~1!50, ~29!

~4p!2x̃0,4
~1!58 f 4v, ~4p!2x̃0,5

~1!50, ~4p!2x̃0,6
~1!52 f 4,

~4p!2x̃0,7
~1!5

22 f 4

3
, ~4p!2x̃0,8

~1!50, ~4p!2x̃0,9
~1!50,

~4p!2x̃0,10
~1! 5

2 f 2

3
, ~4p!2x̃0,11

~1! 50, ~4p!2x̃0,12
~1! 50,

~4p!2x̃0,13
~1! 54 f 2, ~4p!2x̃0,14

~1! 5 f 2v2, ~4p!2x̃0,15
~1! 52 f 2v,

~4p!2x̃0,16
~1! 5 f 2, ~4p!2x̃0,17

~1! 53 f 2, ~4p!2x̃0,18
~1! 5

21

6
,

~4p!2x̃0,19
~1! 50, ~4p!2x̃0,20

~1! 5
21

12
, ~4p!2x̃0,21

~1! 50,

~4p!2x̃0,22
~1! 50, ~4p!2x̃0,23

~1! 50,

~4p!2x̃0,24
~1! 5

f @3rr 14g2u~11ur !v~51j8!#

6r
,

~4p!2x̃0,25
~1! 50, ~4p!2x̃0,26

~1! 50,

~4p!2x̃0,27
~1! 5

@26 f 2r 1g2~2u1r 1u2r !~51j8!#

6
,

025009-11
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~4p!2x̃0,28
~1! 5

2$r @26 f 21g2u2~51j8!#%

6
,

~4p!2x̃0,29
~1! 5

2 f g2u~u1r !~51j8!

3
,

~4p!2x̃0,30
~1! 50, ~4p!2x̃0,31

~1! 50, ~4p!2x̃0,32
~1! 50.
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Therefore, the general solution for the finite counterter
up to one-loop order reads

\S̃fct
~1!52\(

i 51

32

x̃0,i
~1!ẽi1\(

l 51

11

cl
~1!Il , ~30!

with the basisẽi being given by Eq.~16! and the symmetric
terms Il by Eq. ~20!. Therefore, the parametric family o
regularized actionsS1[S01\S̃fct

(1) , with K̃f2
5Kf2

2r c̄,
gives, by minimal subtraction in the BMHV scheme, all po
sible CP-symmetric renormalized theories, compatible w
the tree-level action~5! and power counting renormalizabi
ity, and satisfying up to one-loop level both the STI~8! and
the gauge-fixing equation~9!.

Notice that, if uÞ0 and u1rÞ0 (u50 or u1r 50),
there is a seven-~eight-!dimensional family of solutions, o
equivalently, of normalization conditions, which does n
imply finite counterterms depending on BRS external fiel
The restriction to this family would certainly simplify th
two-loop analysis of Eq.~2!. In a more general regulato
independent context, the simplificatory power given by
freedom in the choice of normalization conditions have be
stressed in Refs.@30,31#.

Finally, note that although the starting classical action
order \0 was chosen to satisfym25lv2 so that the mono-
mial *f1 does not appear in the action, we have the freed
to impose anyO(\n) mean value on the field thanks to th
trivial finite countertermsĨ2 , Ĩ3 andĨ6 . Setting that value to
zero would just define one of the normalization conditio
mentioned at the end of Sec. III.

VII. CONCLUSIONS

Algebraic renormalization theory has mainly been us
for demonstrative purposes~however, see Refs.@30,31#!. In
this paper, we have shown a pedagogical example wh
makes manifest that the theoretical tools provided by
algebraic renormalization theory are of utmost importance
02500
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order to blindly carry out computations in a noninvaria
renormalization procedure such as the BMHV scheme is
chiral gauge theories. Such noninvariant renormalizat
procedures seem to be unavoidable in a near future for d
trustable high-precision tests of relevant quantum field th
ries such as the standard model, and mastery of these
niques will be needed.

Although at first sight the method looks cumbersome
the practitioners, we want to stress that once the gen
expression for a noninvariant modified action have be
found at some order of the perturbative expansion the a
matic evaluation of renormalized diagrams satisfying
symmetries of the theory is not much more difficult than t
conventional procedures, because we need to do only a m
mal subtraction of all Feynman integrals obtained from
Feynman rules of the given modified action. Certainly, theg
algebra is a bit more tedious and there are more Feyn
rules in the modified action than in the conventional one,
nowadays all this is perfectly admissible for the current co
puter codes.

The simplicity of the Abelian Higgs-Kibble model allow
for explicit and order independent expressions for the p
sible counterterms. Thus not obscuring the main steps of
algebraic method and making it very suitable for a futu
study at two-loop order, this study could be easily extend
to the physically relevant standard model. The arbitrarin
of the choice of the regularizations of vertices and fin
counterterms could be a key to simplify the computations
higher loop orders of the RHS of Eq.~2! using for example
similar techniques to the ones in Ref.@13#.
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APPENDIX A: MATRIX ELEMENTS OF THE LINEARIZED ST OPERATOR b̃0

Using the definition~15!, the b̃ variations of the fields are

b̃Am5sAm5]mc,

b̃f15sf152f2c,

b̃f25sf25~v1f1!c,

b̃c5sc5 ic@~u1r !PL1uPR#c,
9-12
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b̃c̄5sc̄5 i c̄@~u1r !PR1uPL#c,

b̃c50,

b̃Kf1
5

dG̃0

df1
5

dS0

df1
5e.o.m. of f1

52hf12~dmAm!f222Am~dmf2!1AmAm~v1f1!1m2~v1f1!2l@~v1f1!21f2
2#~v1f1!1K̃f2

c2 f c̄c,

b̃K̃f2
5

dG̃0

df2
5

dS0

df2
5e.o.m. of f22rB52hf21~]mAm!~v1f1!12Am~]mf1!

1AmAmf21m2f22l@~v1f1!21f2
2#f22Kf1

c2 ir f c̄g5c,

b̃Kc5
]G̃0

dc
5e.o.m. of c̄5c̄@ i ]”Q2A” „~u1r !PL1uPR…#1 f @~v1f1!c̄1 ir f2c̄g5#2 icKc@~u1r !PL1uPR#,

b̃K c̄5
dG̃0

dc̄
5e.o.m. of c5@ i ]”Q1A” „~u1r !PL1uPR…#c2 f @~v1f1!c1 ir f2g5c#1 ic@~u1r !PR1uPL#K c̄ .

Therefore, applying these variations to the basis~16! of Ṽ0 and expanding the results in the basis~18! of Ṽ1 , the matrix
elements of this restriction ofb̃, defined asb̃ẽi[b̃0 i

juj , are easily found. The first 23 rows and 20 columns of ma

$b̃0 i
j%

1< j <28 1< i<32
are

21 0 2v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 22 2 0 2v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 21 0 4v 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 23 2 0 0 2v 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 22v 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 24 0 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 4 22 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 21 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 22 0 21 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 21 21 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 v 0 0 22 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2v v 0 22 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 2v 0 0 22 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 22 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 21 1 0 0 24 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 22 0 0 0

0 0 0 0 0 0 0 0 0 0 0 21 1 0 0 0 24 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 028

0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 2v 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 024

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
025009-13



D. SÁNCHEZ-RUIZ PHYSICAL REVIEW D68, 025009 ~2003!
the columns 21 to 32 are

v~m22lv2! m22lv2 0 0 0 0 0 0 0 0 0 0

m223lv2 22lv m22lv2 0 0 0 0 0 0 0 0 0

2~lv ! 2l 0 0 0 0 0 0 0 0 0 0

23lv 2l 22lv 0 0 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0 0 0 0 0

2l 0 2l 0 0 0 0 0 0 0 0 0

2l 0 2l 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0

0 0 21 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 v 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0

0 1 v 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

v 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 2 i f r 0 2 ir 0 0 0 0 0 v 2~ f v ! f v

0 0 0 0 u1r 0 21 0 0 0 i 0

0 0 0 0 0 u 0 21 0 0 0 i

2 f 0 0 0 0 0 0 0 21 2 ir 2 i f r i f r

0 0 2 i f r 0 0 0 0 0 2 ir 1 2 f f

0 0 0 0 0 0 0 0 0 0 0 0

and the rest of its elements are 0.

APPENDIX B: EXPLICIT SOLUTION OF THE ORDER ONE COHOMOLOGY OF b̃

Let Ṽi be the space of integrated Lorentz scalarCP-invariant polynomials in the fieldsf1 , f2 , Am , c, c̄, c, c, Kf1
, K̃f2

,

Kc , andK c̄ of maximal canonical dimension 4 and ghost numberi.
We defineW̃i 11[b̃Ṽi andK̃i[$ĨPṼi /b̃Ĩ50%. Due to nilpotency ofb̃, W̃i,K̃i,Ṽi .
Solving explictly the cohomology of order one ofb̃ means to find the elements ofṼ1 which are closed, i.e., inK̃1 but not

exact, i.e., not inW̃1 . Those nontrivial elements of the cohomology are termedthe anomaly.
In order to do so, we introduce a basis forṼ2 :

ṽ1[E f1~hc!c, ṽ2[E f1
2~hc!c, ṽ3[E f2

2~hc!c,

ṽ4[E Amf2~]mc!, ṽ5[E Amf1f2~]mc!c, ṽ6[E ~]nAn!Am~]mc!c,
025009-14
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ṽ7[E ~]nAm!An~]mc!c, ṽ8[E ~]mAn!An~]mc!c

and the matrix of the restricted linear operatorb̃1[b̃: Ṽ1→Ṽ2 as b̃ũ j[b̃1 j
kṽk . The columns 5 to 22 of matrix

$b̃1
k

j% 1<k<81< j <28
are

1
21 0 0 0 v 2v 0 21 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2
1

2
0 0 0 1 2

1

2
0 0 0 0 0 0 0

0 0 0 0 0
1

2
0 0 0 0 0 1 2

1

2
0 0 0 0 0

0 0 0 0 0 0 0 21 0 0 0 0 v 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 21 0 1 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 022

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2
and the rest of its elements are 0.

A basis of the kernelK̃1 of b̃1 is, therefore,

J̃15ũ28, J̃25ũ1 , J̃35ũ2 ,

J̃45ũ3 , J̃55ũ4 , J̃65ũ6 ,

J̃75ũ7 , J̃85ũ8 , J̃95ũ11,

J̃105ũ18, J̃115ũ23, J̃125ũ24,

J̃135ũ25, J̃145ũ26, J̃155ũ27,

J̃165vũ51ũ9 , J̃175ũ51ũ13, J̃1852ũ191ũ22,

J̃19522ũ512ũ121ũ20, J̃205ũ1412ũ151ũ21, J̃2152vũ522ũ102ũ141ũ16,

J̃22522vũ51ũ101vũ121ũ141ũ151ũ17.

Note that dim ofK̃12dim of W̃151, so the anomaly is expanded by only one element ofṼ1 . Applying on each element o
the basis of the kernelK̃1 a linear independence test against the set of linear independent columns of the matrixb̃0 , which
expands the image of the operatorb̃0 , it is inmediately found thatJ̃15ũ28 is the anomaly, as affirmed in Sec. III.

APPENDIX C: BREAKING 1-LOOP FEYNMAN DIAGRAMS

Notation:

~2p!4d~k11¯1km1km11!G̃
X1X2¯Xmc;N@D̂#

R~1!m1¯mp ~k1 ,¯,km!

5E dx1¯dxm11ei ~k1x11¯1km11xm11!
dN@D̂#•GR~1!@f1 ,f2 ,A,c,c̄,c,c̄,Kf1

,Kf2
,Kc ,K c̄#

dX1m1
,~x1!¯dXpmp

~xp!dXpmp11
~xp11!¯dXm~xm!dc~xm11!U

X[0

will stand for the minimally substracted one loop 1PI functions with one insertion of the integrated breakingN@D̂# and the
fields X1X2¯Xmc as external legs.Xi represents any field off1 ,f2 ,A,c,c̄ ~all 1PI diagrams with at least a ghost or a
antighost or and external BRS field are convergent by power counting, and therefore null when taking into acco
025009-15
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insertion of the evanescent breaking operator!. m1¯mp are the Lorentz indices of the corresponding bosons inX1X2¯Xm .
k1 ,...,km are the independent outgoing momenta of the fieldsX1X2¯Xm .

1. Bosonic diagrams

G̃
Ac;N@D̂#

R~1!m1 ~k1!5~ i!, ~C1a!

G̃
AAc;N@D̂#

R~1!m1m2~k1 ,k2!5~ ii !121~ ii !21,

G̃
AAAc;N@D̂#

R~1!m1m2m3~k1 ,k2 ,k3!5~ iii !1231permutations of 123,

G̃
AAAAc;N@D̂#

R~1!m1m2m3m4~k1 ,k2 ,k3 ,k4!5~ iv!12341permutations of 1234.

The renormalized result for each diagram of Fig. 3 is

~4p!2~ i!5
2 i

3
~6 f 2v22k1

2!k1
m1,

~4p!2~ ii !125
2~3u1r 13u2r !e~k1 ,k2 ,$m1%,$m2%!

3
1

2i

3
~2u1r !~k1

m1k1
m22k2

m1k2
m2!2

i

3
~2u1r !~k1

22k2
2!gm1m2,

~4p!2~ iii !1235
~119u215ur 16u3r !e~k1 ,$m1%,$m2%,$m3%!

3
1

~12ur !e~k2 ,$m1%,$m2%,$m
3%!

3

1
~119u215ur 16u3r !e~k3 ,$m1%,$m2%,$m3%!

3
1

i

3
~11u21ur !k1

m3gm1m2

1
i

3
~112u212ur !k2

m3gm1m21
i

3
~113u213ur !k3

m3gm1m22
i

3
~113u213ur !k1

m2gm1m3

2
i

3
~116u216ur !k2

m2gm1m32
i

3
~113u213ur !k3

m2gm1m31
i

3
~113u213ur !k1

m1gm2m3

1
i

3
~112u212ur !k2

m1gm2m31
i

3
~11u21ur !k3

m1gm2m3,

~4p!2~ iv!12345
22u~116u214ur 13u3r !e~$m1%,$m2%,$m3%,$m4%!

3
. ~C1b!

FIG. 3. Feynman diagrams with bosons needed to compute the 1PI breaking functions~C1!.
b
n

s
n

e

last
rns
Note that although the four boson diagram is divergent
power counting, the total result for the assocciated 1PI fu
tion must be zero due toCP invariance of the regularized
action and the dimensional renormalization procedure. A
check of the automated programs and of the preservatio
02500
y
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a
of

discreteCP symmetry by the renormalization scheme, w
have computed explicitly the value of the diagram~iv! of
Fig. 3, which is not zero, and, as can easily seen in
equation, the total result after suming all permutations tu
to be the expected result zero. That is, the discreteCP sym-
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FIG. 4. Feynman diagrams lin
ear or quadratic in scalar field
needed to compute the 1PI brea
ing functions~C2!.
za

ng
metry is reflected in perturbative dimensional renormali
tion as a cancellation between permuted diagrams.

2. Diagrams linear and quadractic in scalar fields

G̃
f2c;N@D̂#

R~1!
~k1!5~ i!,

G̃
f1f2c;N@D̂#

R~1!
~k1 ,k2!5~ ii !1~ iii !. ~C2a!

The renormalized result for each diagram of Fig. 4 is

~4p!2~ i!5
4 f 2v~26 f 2v21k1

2!

3
, ~C2b!

~4p!2~ ii !5
2 f 2~218f 2v213k1

213k1•k21k2
2!

3
,

~4p!2~ iii !5
2 f 2~218f 2v213k1

213k1•k21k2
2!

3
.

3. Diagrams with three scalar fields

G̃
f2f2f2c;N@D̂#

R~1!
~k1 ,k2 ,k3!5~ i!1231permut. of 123,

G̃
f1f1f2c;N@D̂#

R~1!
~k1 ,k2 ,k3!5~ ii !1231~ iii !1231~ iv!123

1permut. of 12, ~C3a!

where, due to the locality and dimensionality of breaki
terms, all the permutations should be obviously equal.

The renormalized result for each diagram of Fig. 5 is

~4p!2~ i!1235
28 f 4v

3
,

~4p!2~ ii !123528 f 4v,
02500
- ~4p!2~ iii !123528 f 4v,

~4p!2~ iv!123528 f 4v. ~C3b!

4. Diagrams with four scalar fields

G̃
f1f1f1f2c;N@D̂#

R~1!
~k1,k2 ,k3 ,k4!

5~ i!12341~ ii !12341~ iii !12341~ iv!1234

1permut. of 123, ~C4a!

G̃
f1f2f2f2 c;N@D̂#

R~1!
~k1 ,k2 ,k3 ,k4!

5~vi!12341~vii !12341~viii !12341permut. of 234,

where, again, all the permutations must be the same.
The renormalized result for each diagram of Fig. 6 is

~4p!2~ i!1234522 f 4,

~4p!2~ ii !1234522 f 4,

~4p!2~ iii !1234522 f 4,

~4p!2~ iv!1234522 f 4,

~4p!2~v!12345
210f 4

3
,

~4p!2~vi!123452 f 4,

~4p!2~vii !123452 f 4,

~4p!2~viii !12345
210f 4

3
. ~C4b!
FIG. 5. Feynman diagrams with three scalar fields needed to compute the 1PI breaking functions~C3!.
9-17
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FIG. 6. Feynman diagrams with four scalar fields needed to compute the 1PI breaking functions~C4!.
5. Diagrams with two or three boson and scalar fields

G̃
Af1c;N@D̂#

R~1!m1 ~k1 ,k2!5~ i!1~ ii !, ~C5a!

G̃
Af1f1c;N@D̂#

R~1!m1 ~k1 ,k2 ,k3!5~ iii !1231~ iv!1231~v!123

1permut. of 23,

G̃
Af2f2c;N@D̂#

R~1!m1 ~k1 ,k2 ,k3!5~vi!1231~vii !1231~viii !123

1permut. of 23,

G̃
AAf2c;N@D̂#

R~1!m1m2 ~k1 ,k2 ,k3!5~ ix!1231~x!1231~xi!123

1permut. of 12.

The renormalized result for each diagram of Fig. 7 is

~4p!2~ i!522i f 2vk1
m1, ~C5b!

~4p!2~ ii !522i f 2vk1
m1,

~4p!2~ iii !12352 i f 2~k1
m11k3

m1!,

~4p!2~ iv!1235 i f 2~k2
m11k3

m1!,

~4p!2~v!12352 i f 2~k1
m11k2

m1!,

~4p!2~vi!1235
2 i

3
f 2~3k1

m114k2
m115k3

m1!,

~4p!2~vii !12352 i f 2~k2
m11k3

m1!,

~4p!2~viii !1235
2 i

3
f 2~3k1

m115k2
m114k3

m1!,
02500
~4p!2~ ix!1235
4 f 2~11u21ur !vgm1m2

3
,

~4p!2~x!1235
24 f 2~2112u212ur !vgm1m2

3
,

~4p!2~xi!1235
4 f 2~11u21ur !vgm1m2

3
.

6. Diagrams with four boson and scalar fields

G̃
AAf1f2c;N@D̂#

R~1!m1m2 ~k1 ,k2 ,k3 ,k4!5~ i!12341~ ii !12341~ iii !1234

1~ iv!12341~v!12341~vi!1234

1~vii !12341~viii !1234

1~ ix!12341~xi!12341~xii !1234

1permut. of 12. ~C6a!

The renormalized result for each diagram of Fig. 8 is

~4p!2~ i!123452 f 2u~u1r !gm1m2,

~4p!2~ ii !12345
2 f 2~11u21ur !gm1m2

3
,

~4p!2~ iii !1234522 f 2u~u1r !gm1m2,

~4p!2~ iv!12345
2 f 2~11u21ur !gm1m2

3
,

~4p!2~v!1234522 f 2u~u1r !gm1m2,

~4p!2~vi!1234522 f 2u~u1r !gm1m2,
9-18
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FIG. 7. Feynman diagrams with two or three boson and scalar fields needed to compute the 1PI breaking functions~C5!.
2 2 m m
~4p!2~vii !12345
2 f ~11u 1ur !g 1 2

3
,

~4p!2~viii !12345
2 f 2~11u21ur !gm1m2

3
,

~4p!2~ ix!12345
2 f 2~11u21ur !gm1m2

3
,

~4p!2~x!1234522 f 2u~u1r !gm1m2,

~4p!2~xi!12345
2 f 2~11u21ur !gm1m2

3
,

~4p!2~xii !123452 f 2u~u1r !gm1m2.
~C6b!

7. Diagrams with fermion fields

G̃
cc̄c;N@D̂#

R~1!
~k1 ,k2!5~ i!1~ ii !1~ iii !1~ iv!1~v!1~vi!1~vii !.

~C7a!

The renormalized result for each diagram of Fig. 9 is
02500
~4p!2~ i!5
2 i

2
f 2r ~2 f vg51k” 1g51k” 2g5!,

~4p!2~ ii !5
i

2
f 2r ~2 f vg52k” 1g52k” 2g5!,

~4p!2~ iii !5
22i

3
f g2u~11ur !v~51j8!g52

i

12
g2~2u

1r !~51j8!k” 12
i

12
g2~2u1r !~51j8!k” 2

1
i

12
g2~2u1r 12u2r !~51j8!k” 1g5

1
i

12
g2~2u1r 12u2r !~51j8!k” 2g5 ,

~4p!2~ iv!5
i

4
f r@~2u1r !I2rg5#,

~4p!2~v!5
2 i

4
f r@~2u1r !I1rg5#,

~4p!2~vi!50,

~4p!2~vii !50. ~C7b!
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FIG. 8. Feynman diagrams with four boson and scalar fields needed to compute the 1PI breaking functions~C6!.

FIG. 9. Feynman diagrams with fermion fields needed to compute the 1PI breaking functions~C7!.
025009-20
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FIG. 10. Feynman diagrams with one scalar and fermion fields needed to compute the 1PI breaking functions~C8!.
wi
a

8. Diagrams with f1 and fermion fields

G̃
cc̄f1c;N@D̂#

R~1!
~k1 ,k2 ,k3!5~ i!1~ ii !1~ iii !1~ iv!1~v!

1~vi!1~vii !1~viii !. ~C8a!

Note that there are other possible diagrams at one loop
the same external legs, but due to power counting they
convergent.

The renormalized result for each diagram of Fig. 10 is

~4p!2~ i!5
2 i

2
f 3rg5 , ~C8b!

~4p!2~ ii !5
2 i

2
f 3rg5 ,
02500
th
re

~4p!2~ iii !5
i

2
f 3rg5 ,

~4p!2~ iv!5
i

2
f 3rg5 ,

~4p!2~v!5
2 i

3
f g2u~11ur !~51j8!g5 ,

~4p!2~vi!5
2 i

3
f g2u~11ur !~51j8!g f 5 ,
FIG. 11. Feynman diagrams with one scalar and fermion fields needed to compute the 1PI breaking functions~C9!.
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~4p!2~vii !50,

~4p!2~viii !50.

9. Diagrams with f2 and fermion fields

G̃
cc̄f2c;N@D̂#

R~1!
~k1 ,k2 ,k3!5~ i!1~ ii !1~ iii !1~ iv!1~v!1~vi!

1~vii !1~viii !. ~C9a!

Again there are other convergent diagrams at one loop w
the same external legs.

The renormalized result for each diagram of Fig. 11 is

~4p!2~ i!5
f 3I
2

, ~C9b!

~4p!2~ ii !5
f 3I
2

,

,

.

02500
th

~4p!2~ iii !5
2~ f 3I!

2
,

~4p!2~ iv!5
2~ f 3I!

2
,

~4p!2~v!5
2@ f g2u~u1r !~51j8!I#

3
,

~4p!2~vi!5
2@ f g2u~u1r !~51j8!I#

3
,

~4p!2~vii !50,

~4p!2~viii !50.
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