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Becchi-Rouet-Stora symmetry restoration of chiral Abelian Higgs-Kibble theory
in dimensional renormalization with a nonanticommuting s
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The one-loop renormalization of the Abelian Higgs-Kibble model in a general 't Hooft gauge and with chiral
fermions is fully worked out within dimensional renormalization scheme with a nonanticommuinghe
anomalous terms introduced in the Slavnov-Taylor identities by the minimal subtraction algorithm are calcu-
lated and the asymmetric counterterms needed to restore the Becchi-Rouet-Stora symmetry, if the anomaly
cancellation conditions are met, are computed. The computations draw heavily from regularized action prin-
ciples and algebraic renormalization theory.
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I. INTRODUCTION the traceg[10,11], but in this case extra checks or proofs are
needed. The only dimensional regularization schésoene-
Because of the availability of high precision tests of thetimes called the Breitenlohner—Maison—'t Hooft—Veltman
standard model in particle accelerators, it is mandatory tdBMHV) schemé which is known rigorously7] to be con-
compute higher order quantum corrections and therefore tgistent in presence ofs is the original one devised by
investigate thoroughly consistent and systematic renormait Hooft and Veltman[2] and later systematized by Breiten-
ization schemes. Dimensional regularizatjar?] is the stan-  lohner and Maiso3] following the definition ofys in Ref.
dard regularization method applied to particle physics. Both12]. A similar scheme is considered in R¢f3] and an
its axiomatic and properties were rigorously established lon§*t€nsion has been recently propo§e_d in R64]. ) _
ago[3-5]. Its success as a practical regularization method " BMHV scheme, besides thed“dimensional” metrics
stems from the fact that in vectorlike nonsupersymmetricu»: & NW one is introducel®] §,,,, which can be consid-
gauge theories preserves enough properties so that the mifitéd as a “d—4)-dimensional covariant.” Definingy”
mal subtraction(MS) scheme[6] leads to a renormalized =9""—8*", g*" can be t,houghAt of as a projector over the
gauge invariant theorj2]. But the electroweak interactions [our-dimensional space” andg”” as a projector over
of the standard model are chiral and, unfortunately, in dimenth€ “(d—4)-dimensional” one. Moreover the tensor is
sional renormalization the algebraic propertiesygfcannot ~ considered to be a “four-dimensional covariant” object,
be maintained consistently as we move away from four diPe€cause it is assumed to satisfye, €, .,
mensiong 7]. Thus, in the so called “naive” prescription of = —27,554 sganf:lmiyﬁ(i). With the definition s
dimensional renormalizatiofNDR), commonly used in mul- =(i/4l)e,,  y*--y* and theassumption of cyclicityf
tiloop computations in the standard model, one assumet?]e S mbc;‘I”'Iﬂ'? it can be proved algebraica8j;
[ vs,7.]=0 and the cyclicity of the track8]. These assump- y ' P 9 '
tions have the consequen&5,7,9 that T{ Yy Vi, Vsl 1S TH[ yH1e -yt ] = TH Y0 - yP4ys] =i Trle
identically O in the dimensionally regularized theord (
#4), which is incompatible with the property in four dimen-

sions Tf y#1--yHay:]=i Trle in theories where a not
5 M. Mg

null tensore is needed. {vs, 7} =[ys.%*]=0, (1)
Therefore it seems unavoidable to find ambiguities as we
use NDR to carry out computations in any chiral theory withwhich is the same algebra of symbols than of the original one
fermionic loops with an odd number af5’s. However, it is  of 't Hooft and Veltman[2,5]. Notice thatys no longer an-
commonly claimed that with usual manipulations the resultticommutes withy, as it does in NDR.
ing ambiguities are proportional to the coefficient of thki- The four-dimensional projection of the minimal subtrac-
ral gauge anomaly—null in the standard model—and thetion (MS) of the singular part of the dimensionally regular-
“naive” prescription is then thought to be safé0]. Calcu- ized Feynman diagrams, their divergences having been also
lations to low orders in perturbation theory support this ideaminimally subtracted in advance, leads to a renormalized
but there is not a rigorous proof of it valid to all orders. quantum field theory3,4] that satisfies Hepp axionj45] of
Higher order computations within the SM have alreadyrenormalization theory, field equations, the action principles,
reached a point where the possible inconsistencies of NDRRnd Zimmerman-Bonneau identitig3,4,16. The reader can
cannot be simply forgotten. To avoid these algebraic inconfind a review in Ref[17].
sistencies it has been suggested not to assume the cyclicity of Not many computations have been done in the BMHV
scheme. Most of them involve theories without a chiral
gauge symmetry18], where there is no room for the intro-
*Email address: domingo@toboso.fis.ucm.es duction of spurious anomalies but subtleties related with eva-
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nescent operatof$] appear, or quantities related with axial sults with a MS procedure would be valuable. For reasons of
currents[12,19, where it gives correctly the essential axial simplicity and as a previous step, the present paper is de-
current anomalies. Several practical computations, takingoted to a simpler model, the Abelian Higgs-Kibble model
care of the fulfillment of Slavnov-Taylor identitieSTIs), with chiral fermions[32,33,26,30in a general gauge of the
but involving only some restricted set of diagrams, havet Hooft class. Compared with the models of REE7], this
been done in the case of the standard m¢2@J21,23 orin model presents the new feature of spontaneous symmetry

supersymmetric QED23]. In Ref. [22], the authors report a preaking, which makes more involved the restoration process
relevant finite difference between the results of NDR andys the (hidden BRS symmetry. Moreover, it is free of IR

BMHYV in two-loop diagrams of the standard model contain-

: : ; problems and it is very easy to write in an exhaustive manner
ing triangle subdiagrams.

In the BMHV sch h larization breaks th the list of the monomials needed, to all orders, in the resto-
nthe scheme ne reguiarization breaks the gaugg, procedure of its BRS symmetry. This makes the model

symmetry, and the MS procedure gives Green’s function o
which does not fulfill the STls, essential ingredients to guar-%l perfect training ground for future work on the standard

antee unitarity and gauge independence. The axioms of Iocg?oqel e}nd two-loop computa‘uons._ _Slnce algebre}lc renormal-
relativistic quantum field theories allows for local ambigu- |zat|c_)n is not well known tolpractltloners, we will show in
ities [15,24 to be removed by imposing renormalization detail each step of.the angnthm. .
conditions. The quantum action principl@5] tells us that The layout of this paper is as follows. In Sec. Il we give
any symmetry breaking term generated in the renormalizat-he cla§5|cal action, flelds_, and symmetry of the model. Sec-
tion process is local at the lowest nonvanishing order, and théon Il is devoted to a quick reminder of the general theory
question here is whether it is possible to remove the breakingf algebraic renormalization, suited to this model and which
terms of the STIs by adding to the classical action approprils independent of the order of the renormalization procedure.
ate local finite countertermg¢The removable breaking terms In Sec. IV the BMHV dimensional regularization of the
are calledspurious anomalie$9].) Algebraic renormaliza- model is presented. In Sec. V we use the techniques of Ref.
tion theory[26,27,2§ establish elegantly how and when this [17] to compute the breaking at one loop. Of course, the
process can be accomplished: when there are no obstructiopsrrect form of the anomaly is thus obtained and in Sec. VI,
in the form of (essentigl anomalies. This imposes anomaly following the lines of Sec. lll, the finite counterterms needed
cancellation conditions on the field representations. Thest restore the BRS symmetry in the anomaly free case are
anomalies belong to the cohomology of the Slavnov-Taylofinally computed. In Appendix A the explicit matrix form of
operator that governs the chiral gauge symmetry at the quanthe linearized Slavnov-Taylor operator, needed to do the
tum level. On the other hand, nonphysical or spuriouscomputation, is given. Appendix B is devoted to a pedagogi-
anomalies correspond to trivial objects in the cohomology. cal explicit computation of the BRS cohomology of order
Algebraic renormalization has been recently applied toone. In Appendix C the results for each diagram contributing
theoretical studies of the standard mofi29] and important to the one loop breaking are presented in full detail.
progress towards practical uses of noninvariant regulariza-
tion scheme$30,31 have been achieved. In R¢L7] a sys-
tematic computation of the finite one-loop counterterms Il. CLASSICAL ACTION
needed to restore the STI of non-Abelian gauge theories . ) ) ) o
without scalar fields in BMHV dimensional renormalization ~The CP symmetric four-dimensional classical action is the
was done. The modified action which gives gauge invarianfollowing:
results in MS of the BMHV scheme was explicitly given.
Especially use of the rigorous identifgee Ref[17] for no-
tations and a deduction based on the action principles of
dimensional regularizatiof8])

1
Sinv= f d4X[ - 4—gzFMVF“”+(D,L¢T)(D“¢)+M2¢T¢

SuTon)= | d¥x(sye) 2528 208 28 NS S is+ AP e
- (N) _ _
=SS TortSaSet’T'ow — 2, (Vafi ¢ Prifi+V2ti ¢ Ty PL)
PR T pr -
; f dix| 2 p @ _ _
SKo(x) 26 (x) = (V21 P s +V2T T Priy) | ()
jed

was made, which allowed at one loop level for a direct com-

putation of the breaking in terms of finite parts of diagrams

with an insertion of an evanescent operator, thus avoiding thelere A, is an Abelian gauge fieldp a scalar complex field,

evaluation of the left-hand sid&HS) of the STis. ¥ and ¢; are families of Dirac fermion field§ ,,=d,A,
Multiloop extension of these techniques and the explicit—4J,A, and D,¢=(d,—iA,)¢. This action is invariant

form of the two-loop modified action for the standard modelalso under the Abelian gauge transformatiois,=d, o,

which would give Becchi-Rouet-StordBRS) invariant re-  S¢=iw¢, Sih=iw(e P.+erPRr) ¥« provided that the
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TABLE |. Ghost number, dimension, conmmutativity, aG& transformation of fields, coordinates, and
the BRS operator. In the third row;1 (—1) means that the symbol commut@nticommutesand in last
one,D=+°C, whereC is the usual conjugation matrix. Note that the cho§#hproperties of the ghosts
make the BRS operatdP invariant.

S Xy P1(2) A, ] c c B K¢1(z) Ky
Gh. No. 1 0 0 0 0 1 -1 0 -1 -1
Dimen. 0 -1 1 1 3/2 0 2 2 3 5/2
Comm. -1 +1 +1 +1 -1 -1 -1 +1 -1 +1
_ _ AL i — -t - — ty-1
cp s X (D) A" Dyt c c B (—)Kyy, —KD
fermion charges satisfy andX=4,A"+ p¢, is the most general gauge-fixing func-
o tional which is linear, preserveSP symmetry, has the ap-
eii=erit1l ifiel, propriate ghost number, and is consistent with power count-
o ing (see Table)l ¢ andp are the gauge parameters. We have
e;j=er;—1 if jed. (4)  omitted the index labeling the fermion families, a notation

We shall id breaking d that we shall keep unless otherwise stated. We havegget
e shall consider spontaneous symmetry breaking due ta 0, ande,, = O+ . Therefore{r . L, are not free pa-

a nonvanishing vacuum expectation valeV) of the real ., aters but convenient shorthand fet if ke | and—1 if
component ofg. Let us now write the classical BRS invari- ked

ant action The BRS transformation is

So= Sinvt Sert Sexts )
S$1=—hoC, SPhr=(v+¢1)C,

where

S | d“x[—4%;2FWF““+[<D,L¢+>(D“¢>+M2¢+¢ SUTIeL (P 0Pl
MDD =)oy 10 +idy sy=iy{(0+1)Pr+ 0P ]c,

+ i o+ AL(9+1)PL+ PRI} sA,=d,c, sc=0, sc=B
T Y ' '

—f[<v+¢1>$¢/+ir¢2%5w]]
sB= :;qui =sK,=sK,=0, (7)

1 _ 3
sepzf d4xs[§§cB+a =f d4x§BZ+B(aMAM+p¢2)

which leavesS, invariant due to the anticommutativity o
in four dimensions.

—C[#d,+p(¢1tv)]c, If u2=\v? there are no linear terms in the classical ac-
tion (5). This is equivalent to the renormalization condition

S :f K., s+ K, Sho+K. S+ sk 6 which sets to zero the VEV of the field,. The quadratic
et 0,501 Ko bt Kysytsuk, © terms in Eq.(5) give the propagators, which are shown in

Fig. 1 for u?=\v?. Note that the propagators with fields
only contribute to the one particle irreduciliePl) Feynman
diagrams at the tree level and that no special value will be
chosen for the parameter; i.e., there will b&¢, mixing at

'the tree level and beyond in the loop expansion. Notice also
that although the theory is Abelian, the ghost fields are not
free: they interact withp, through the gauge-fixing part of

If the field redefinitionsA, —2gA, , @—2gw are done the  he action. This makes the BRS-TyutiBRST) formalism
model coincides with the model of Sec. IV A of R¢83], with ¢ very convenient to use.

(") being our fermions of type=+1 (r=-1) and their charge
f our (2eg+1)g/2 [(2eg—1)g/2].

2Antifields” or sources to the_trivial BRS var_iations &, andc IIl. ALGEBRAIC RENORMALIZATION
could also have easily been introduced. This would make more
clear the study and interpretation of the cohomologi at order 0, The classical actiort5) is a solution, over the space of
but they are neither relevant nor necessary for the practical purposésP-invariant integrated polynomials of ghost number 0 and
we pursue in this paper. mass dimension 4, to the Slavnov-Taylor identi8f )

In this action,v is a parameter with dimension of mags,
and ¢, are real scalar fields; is the ghost field¢ the anti-
ghost field,B is the Lautrup-Nakanishi field{4 are the ex-
ternal fields coupled to the corresponding BRS variatfons
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— 2
I VAV AVAVAVAVE 18 Gfg,)cxmuz(k) = (—i)g? [m (glh#z _ ku1kuz) +& k2—p2/€ k“lkﬂz]

k vg) k= (k2=pu)® ¥
T e O = e G Gilon ) = i ir=ieys
TET ogwen MV - sy
uwyT --------- GOLK (k) = E—f?% ‘T_____ G(g;z(k)= (=) 720
B @w= iy T 4 W= gyl

FIG. 1. Free field propagators if?=\v2. For convenience, the following abbreviation has been defigled/g%. Momentumk flows
from the second to the first field of Green functiops.u,, andu, are Lorentz indicesa and 8 are the indices of Dirac matrices and will
be ommitted.

S ) S, 6S 8Sy 8S T T ST T ST
d*x! (d.c CI+B—_C|+ ol O | 0% Ol N or 5I‘£ 5F£
“USAL 5 0K, Sy 0K, 8 S(I)= [ d'x) (9,0) ——+ e
. 0, 0b1 Ky, 02 oA, Ky bb 5K, 542
8Sy 6Sy  6Sy S ~ ~ -~ ~
5KCI &;I n 5ch| _C'}:o, (8) , o0 of o or 12
v v oY o s — =
Ky o Ky sy
which rules the BRS invariance of the theory, and to the
gauge-fixing equation From now, a tilde will indicate dependence on the same
S, fields asI’ does.
- —§B+(9 Af+ peby, 9) Let us introduce the linearized Slavnov-Taylor operator
. : : N s OF & 5F &
which is the equation of motion of the Lagrange multiplier S}EJ Xy (0,0) —+——+— —
field B. oA, O¢y oKy 0Ky Sy
Any functional F satisfying both equations, also satisfies
the ghost equation 6F & 6F &8 6F & O6F &
[ [ — + —_— —_—
OF oF _, L 5bz 5K, oK, Ob2 O K, oK, 5y
5Kk, (10

SF 6 O6F &
After renormalization of the perturbative expansion, the 1PI + _—Rfr SKk— s (13
generating functiondr will be required to be, in the sense of Sih Oy v oy
a formal series of functionals if, a deformation ofS; con-
strained by the same equations. If the renormalization proce
dure respects both the gauge-fixing and ghost equations,

which has the nilpotency properties

will have the form SFS(F)=0, VF,
TL1,b2.A,,1,1,C,C,B,Ky Ky Ky Kyl SrSF=0, if S(F)=0. (14)
£ o For F equal to the classical actid@, we have the important
=f d4x§BZ+ B(d,A*+pe,)—clc linear operator
+f[¢l!¢21AM1d/1%C1K¢11R¢2 bE‘S‘écl' (15)
=Ky, pC.K, Ky, (12) The local part of maximal dimension four bfat a deter-
mined order in the perturbative expansion and prior to impo-
so that the left hand side of the STI will read sition of the STI is an arbitrary linear combination of the
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following basis of the spac@o of the integrated Lorentz In a noninvariant renormalization scheme, the renormal-
scalarCP-invariant polynomials in the fields and their de- 12€d STI will have a breaking

rivatives with maximal canonical dimension 4 and ghost
number O(note that we choose the same first twenty mono-
mials as in Ref[26)):

élzj b1, ézzf ¢1Zv ‘éng ¢22,

3(T)=AT, (17)

the right-hand sidéRHS) of last equation being the insertion
of a CP-invariant integrated local operator of maximal di-
mension 4 and ghost number 1.

Now, in accordance with the algebraic theory of renormal-
ization and supposing that the breaking vanish at lower or-
ders of the perturbative expansion, the insertion at onder
simply a local integrated polynomialA. I'=#"A(M
+0O(A""1) which can be decomposed as a linear combina-
tion of the following basis of the spaéél of CP invariant
actionlike polynomials of maximal dimension 4 and ghost
number 1(again, we choose a basis following the strategy in
Ref. [26]):

Pé4EJ' ¢.°, ESEJ 105, éeEf ¢,",
o= [ ot w= [ 902 = [ G0 0.

élozf (9,02) (" b2), éllzf bo(d,A%),

€= f AuP1(* b)),

Bia= f A, by dy), Br= f A A%, Be= f A APy,
= f A ALD 2, B= f A AL D, Brg= f (9,A")?,
Bo= f (0,A,—3,A,)%, Byp= f (AL A%)?,
"énzf Ky, #2C, “ezzzf R¢Zc, “e23zf R¢2¢>1c,
C f i,
~e25EJWPL¢,, ézezf%ﬁpR¢,

By= f YAP s, Bpe= f YAPRY,
oy f b= bryPri+ P1yP LY,

e f bl Ysih= doPriy— dotPL,

By= f (K PLy— yPRK)C,

észEf (K;ﬂPR‘/’_EPLKZ)C- (16)

U= [ g, To= [ droe, o= [ 0,
U= [ 0200 T= [ (e, Te= [ 0000
7= f pr¢p,°C, Tg= f p2(Or)c, To= f p1(Oo)c,
U= [ (b doc, Tu= [ (0,800,
w= | AL,

U= [ (GA 0, Tuim [ (0,800:%,
U= [ A oc,

W= [ (0,4 67%, Tur= [ Audaa o
Ulssf 0(2,AMc,

Tigo= f ALA(FAY)C, Tip= f A Ao,
U21Ef AﬂA”'d)l(ﬁZC,

Tpo= f A AH(I"A")c,

This means that we have the freedom to add to the starting

action any actionlike term of the forid=>32 X'g,, eachx’

=
being a formal series ifi of orderO(%).

U235J'E75‘//Ca 7124EJ- 3#(E7”PL1//)C,
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'Uzszf %(JY“PRWQ
Uzezf by, TJ27EJ briysic,

Thpg= f € sy qpea IPIAR2) (GHIARS)C, (189)

thatis,A(" =328 AWy, . Notice that, incidentally, external

fields do not appear in the basis due to power counting and

the property of the Abelian ghostc=0.
The projection of the breaking over the direction of the
last element of the basis constitutes the anomaly of th

theory, for it can be shown that the linear systéx(™
=AM has an(underdeterminadsolution if and only if the

coefficientA?®™ vanishes. This can be established by using

cohomological methods: the first expression in 84) leads

to bA=0, which is the famous consistency condition, and,

the second expression in E(.4) implies b?=0; hence A
=anomaly+bX, the anomaly belonging to the ghost number

one nontrivial cohomology space of theoperator. See Ap-
pendix B for a proof of this statement by explicit computa-
tion.

Now, let us define the matrix elements of the operdtor
restricted to its action fron, to V; in the following manner

b8 =b,;'u; [explicit values of these matrix elements 8y
in Eq. (5) are given in Appendix A Then, the linear system

27
> by XMW=RIM j=1,...,32 (19
=1

always has a solution up to @(A") arbitrary linear com-
bination ofb invariants. Thes® invariants are any basis of
the kernelK, of the restricted linear operatdy,=b: V,

—V,. We can choose for example the following basisaf
for all values ofé:

-1 1 )

Ilz_Zelgz_Zf F;LVFM 1 (20)

~ B,+¢

I=ve+ 22 32] ¢,

- w2 wr  EtE, By

I3 1% el-l— 7€2+ 783+U(e4+e5)+ 4 ?
Zj (¢7¢)%,

T4= 8oyt Bpgtir8ap= f VPP Gt it doysy,

PHYSICAL REVIEW D68, 025009 (2003

Ts=(u?—3\v2)8;— 3\v8,— Av8;— AvB;— (8, +78s5)

+é11+ U’é14+’é15+~é22_ féz4

:‘Bf K¢l’

To= (2 —Av2)v8+ (2 —3Nv2)8,— 3\v8,— Av8s

-\ (’ée ‘Fég) +ég _’é12+’é13+ U'él5+’é15+’é21+’é23
—féy= bf Ky, P1,

i.7: (MZ_ \v 2)@3_ 2\ Ués_ )\(‘é7 +é8) +§10+ véll_é12

e ~ ~ ~ ~ ~ e
+ el3+ €177 €91~ Uy~ €93 rfe30

:Bf K¢2¢2,

Tg=— 28,5~ 2(1 + )87+ v Byt Bgt+irfEsg
=Bj (K PL+ yPRK3),

To= — 28— 2085+ v fEoy+ fBog+irfE s
=Bf (K Prip+ yP LK),

T10= 0(€g+ 810 V11— €15 €131 85— V€ —€s9)

— 18— ir B33,

T11=(0+71)(Bg+ 810t V811~ €1+ €131+ €21~ V8~ Epa)
+r€ostir (6+r)es,

which is fixed by choosing an appropriate set of normaliza-
tion conditions.

Notice that the rank obg is dim of V,—dim of Ky=21

<dim of V;, so that, in general, for arbitrary values of the
breaking, the systeni19) would be an incompatible one.
Then its compatibility when substituting in it the values of
the breaking obtained by explicit computation turns to be a
nontrivial check of the correctness of the computation itself.
Finally, if there is no anomaly, the breaking at oraeonly
consists of cohomologically trivial terms and, thus by adding
7750 = —#"X(" to the previous action the breaking is can-
celed at the orden.

IV. DIMENSIONALLY REGULARIZED ACTION

If we want the regularized action principle of Breiten-
lohner and Maison to be applicable, we must define the regu-
larized kinetic terms in the same form as the four-
dimensional ones. The regularized kinetic terms are thus
uniquely defined. Not so the interaction terms. For instance,
the Dirac matrix part of the fermion-gauge-boson vertex has
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= f‘;?:/-)c.A aﬁ(pl,pz;q =0) = FIG. 2. Feynman rule of the
) ’ insertion of the integrated break-
i R R ) R )

= ZlC+W)G+k) - -], "9 £4.(29.

the following equivalent forms in 4 dimensiong*P can lead upon minimal subtraction to other values for renor-

=Pry*=Pry*P,. But these forms are not equal in the malized Green functions; each value corresponding to a

d-dimensional space-time of dimensional regularization berenormalization scheme. Hence, the different values we

cause of the nonanticommutativity f. Of course, the gen- spoke of should be related by finite counterterms.

eralization of the interaction to the dimensional regulariza- In order not to deal with cumbersome propagators we set

tion space is not unique, and any choiceegaially correct  u?=\v? in the regularized classical. Notice that for this

And yet, some choices will be more convenient than otherschoice of u? the starting action can be interpreted as the
In the case at hand it would be far more convenient to us@sual spontaneous symmetry breaking action.

a dimensionally regularized action which has the discrete

simmetries of the four-dimensional classical action. Indeed,

if the dimensionally regularized action were roP invari- V. ONE LOOP STI BREAKING IN BMHV DIMENSIONAL

ant, we would have to enlarge the basis of the relevant spaces RENORMALIZATION

presented in Sec. Il witlCP-noninvariant monomials. This

would make the computations very lengthy. Even with theMaison—which basically state that the usual formal manipu-

restriction of CP symmetry the regularized action is not lations of path integrals are allowed in the dimensionally

unique: there is alw_ays the free_dom of adding explicit eva'regularized theory—it can be shown that the equation of mo-
nescent operators, i.e., proportionalde 4. Here we shall

adopt the simplest choice available and generalize in the OL_'Ei_on holds in dimensional regularization and renormalization
vious way tod-dimensional space-time the BRS variations 3,4,9. Therefore, the gauge fixing) and ghost10) equa-

and vertices of the actiof6), “barring” the boson-fermion tions holds for both the regularized and MS renormalized 1PI
' g . generating functional if the dimensionally regularized ac-

vertex. For the latter vertex, we shall use the following regu-- f . o d i it i dified by th

larized form: tion of previous section is used, or if it is modified by the

addition of terms independent & and depending on and
E[ilg_f_AM(eLVMpL_f_eR?MPR)]lp’ (21)  Kg, only through the combinatiok ,, =K, —pc. Hence,
we will restrict the possible finite counterterms of the regu-

.e., the CP-invariant or “Hermitian” regularized form, |arized action to live in the spadé, whose basis was given
which can be cast in the following nongauge invariant ex-in Eq. (16). Of course, as in the previous section, we have

By using the action principles of Breitenlohner and

pression: several possible d-dimensional” generalizations of a given
—_— four-dimensional finite counterterm. Two such generaliza-
YD +igbip. (22 tions will differ in a “d-dimensional” integrated evanescent

operator of orderi, which modifies the value of finite four-
dimensional quantities only at ord&f. We choose the gen-
eralizations whose forms in thed“dimensional” algebra of
covariants are exactly the same as in Ed).

In Ref.[17], again by invoking the action principles, the
Sdsozsdf ddxilﬁz“aﬂlp identity (2) was derived, and it was proved using it that at the

one-loop level the breaking of the renormalized STIl—its

RHS—simplifies to

Hence, the regularized actidh, we shall start with will
not be BRS invariant. The regularized breaks&,, com-
ing from the last term of Eq(22), will read, thus,

1 _ — -
- f 4% Gl +20)0, (W 0) +1 (57757, 0))

] ] AW=[N[A]- TRV +bS, (24)
EAEJ d9%A(X). (23

The Feynman rule of the insertion of this anomalous breakWhereN[A]-T'g denotes the insertion of a normal product as
ing is given in Fig. 2. defined in Refs[4,5]: the minimally subtracted generating

The breaking is ar(implicit) “(d—4) object,” i.e., an functional of diagrams with an insertion of the regularized
evanescent operator or an operator which vanishes in theperatorA. Notice that after algebraic manipulations of the
four-dimensional projection, and, clearly, this would be alsoFeynman integrand of these diagrams with an insertion of an
true for any other dimensional regularization classical actiorevanescent operator, an explidit 4 factor can appear in the
we might have chosen. Other choices of regularized verticesumerators to be canceled with the-4 coming from the
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divergence of denominators, giving thus a local renormalize@ouming 1PI diagrams with and insertion®dfand any quan-
value, as expected from the general algebraic renormalizagm or BRS external field as legéi) setg”* to g** andg**
tion theory. to zero, i.e., set to zero every hatted objeit) find finite
We could, of course, compute the breaking by evaluatingoyr-dimensional integrated operators such as the Feynman
the relevant zero and one-loop 1PI functions, inserting themyles of its tree-level insertions match the resultsiof
in the LHS of STIs and Working out the functional deriva- We have Carried out the procedure Spe”ed out above in a
tives. But, itis Clearly more efficient to Compute the breakingcomp|ete|y automatic manner by using our OWIRATH-
directly using Eq(24). EMATICA™ [34] routines and thewATHEMATICA package
With the aid of the Bonneau identities of Ré#], the  «tracer’ [35], which manages properly and carefully the
anomalous normal produ¢24), i.e., a normal _pdeUCt of an  BMHV s algebra. The input of the programs consists of the
evanescent operator, can be decomposed in terms of sorggfinition of Feynman rules and the expression of the dia-
basis of standard normal pI’OdUCtS, i.e., normal prodUCtS Cérams in terms Of Symbo"c Feynman ru'es_ For the dimen_
nonevanescent operators. See Rfsl7] for examples. But  sjonally regularized action of Sec. IV, the one-loop contribu-
at lowest order, this technique reads practically the same &fons to the 1P| functions with a breaking insertion réads
the direct computation of the one-loop finite part dfA] [results after stefii) for each relevant diagram are shown in
-TR: (i) compute the finite part of all divergent by power Appendix Q:

(—6f22+k,*)k, "

=R(1)uq
FAc;N[A](kl) 3 ' (25
~R(1)uqpn —4i 5
AAc;N[A](kl’k2): 3 (B0+1+367) e(ky Ko} {m2}),
~ R(1)pq sz ke Ky k)= 2(k1“3+ k2“3+ k3#3)gM1M2 ) 2(k1’u2+ k2M2+ ksﬂz)g,ul,us ) 2(k1’u1+ k2M1+ k3’“)g’“‘2"3
AAAqN[&]( 1,82,83)= 3 3 3 ,
~ 4i
RL) _ e 22 2
sz)ZC;N[A](kl)_ 3 f U(6f kl ),

=~ 4i
R(1) . _ 2 22 oL 2_ap 2_ L2
Ly g,enay(Kuke) = = F5(18f 3k, %= 3k, 2= 3K, - ko —ky?),

~R(1)

. o ea
L 4 0,0,0nia) (K1 K2 ka) =16 0,

~R(1)

“ — ;£ 4
F¢1¢1¢2C;N[A](k1 ,k2,k3) - 48|f v,

~R(1)

¢1¢1¢1¢20;N[A](k1 ’ k2 1k3 ’ k4) =48if 4,

R(1)

¢1¢2</’2</’2c;N[5]( Ki,Kz,Ks,k,)=16if 4,

=R(Duy o
A¢1C:N[A](k1’k2)— afcvk, ",
~R(1)uq - -
A¢1¢1C:N[&](klvk2,k3)— 4f2K 1,
“Ruy

Ad, M;N[A](kl Ko Kg) = — 412 K "1+ 2(k, Tk, )],

~R(l),ul,u2A o Qif2 pins
AA¢2C;N[A](k1,k2,k3)— 8if 2vgr12,

3In order to avoid any typesetting mistake, the following results have been automatically inserted frqsX theput of the programs. The
code of the programs which do all computations and generate gkeolitput can be found at arXiv:hep-th in the source format of this
preprint.
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=R pimp

AAd, doC; N[A](klykg kg k) =— 8if2 grake

TR Ky ky) = —{f[3pr +4g?6(1+ 6r)v(5+§’)]y5}_ 9%(20+1)(5+ & )k,
pyc; N[A]( 1R/ 6 12
9%(26+1)(5+ &k, [—12f2r+g%(20+r+26%r)(5+¢&") Ky ys
- +
12 12
+[—12f2r+g2(20+r+202r)(5+§’)]k275
12 '

—2f9%0(1+6r)(5+¢&")y

R(l 5

aweinra] (K1 K2 Ka) = 3 ’

Tha Akkk—2if2 5+¢")1
WIMZC?N[A]( 1,K2, 3)—3 g°0(6+r)(5+&")l,

where e(kl,kz,{,ul},{,uz})zeaﬁﬂlﬂzklakzﬁ andl is the unit of the spinor space. Note that no significant simplification is
achieved by using the standard choiceRpfgaugep= év.

Then, the coefficientd (V) of the breaking in the basid8) of four-dimensional integrated operators can be automatically
obtained with the aid of the formuldstep(iii )]

1 (1 _TRA) _ x (1) _ ™R
A7 —F¢2C;N[A](k1—0), A5 F¢ 4y cN[A](kl 0k,=0),
1~ 1~
XM_ RO % R(1) i
Ay =73 F¢23c:N[A] A ~ 21 r¢12¢2c;N[A]’
AL 250 T . R (1)__
Ag’=—coeff. of k;“ in F¢ZC;N[A] (ky), A% 3|F¢ cN[A],
A= 1T“R(1) AP = —coeff. of k2 in T" ™ = (ky,kp)
7T 31 ¢4, %aNA] T8 T b1hoCN[A]N 11 R2)
AL _ TR(1) . T _ _ - TR .
Ay’ =—coeff. of k2 in F¢ ¢cN[A](k1’k2)’ A3y = —coeff. of ky-k; in F¢1¢2c;N[A](kl’k2)’
(1) _ M1 R(1)ug T _ 1 R(1)pq
A i coeff. of k;™* in FA ,N[A](kl)’ A% i coeff. of k,™* in FA¢ N[A](kl k),

(1) _ 1 R(1)uq
A coeff. of k,"* in I‘A¢ . N[A](kl'kz)

—i . R(1)p
R = —coeff. of k,** in FA¢2 iy (Kka Ka),

~ . R(1)
AlY=—i coeff. of {k,"*,k;*} in FA¢ "ClN[A](k1 kp,Ks),

~ —i =R
(1~ My 1
AYe= 5 coeff. of k,"* in FA¢22C;N[A](k1,k2,k3),

- . R(1)
A= —j coeff. of (k1“1 in TA¢ ;IN[A](kl,kz,ka)

FROA

A —j Ml 2 5
Ajg =i coeff. of k,"k,” in I' GN[A]

(kq,k2),
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Afg=—i coeff. of {grirak, "3 grirak 3 grarsk 12,
m 7 " . =RV pqpopg
gﬂlﬂzks 2,gM2M3k2 1,g//«2#3k3 1} in FAAAC‘N[A] (k11k2|k3):
A(l)—}coeff of g“#2 in T RLsare A(l)—lcoeﬂ‘ of g“#2 in T Rkapa
20 9 AA¢,C;N[AT’ 219 AA¢ d,CiN[AT
< (1 . . =R()pqpopm
ALY=—icoeff. of {grirek "3 grirsk, 2, grarsk 1) in FAAAQL[ZA]s(kl'kZ’ki“)’
AL T~R(@D)
A57=coeff. of y5 in FWC N[A](kl 0,k,=0),

A(l)——|coef‘f of {KiPL,K:P} in F ipc; N[A](kl 2)

. R(1
— —i(coeff. of k;—coeff. of kyys) in T wfﬂc)N[A](kl,kz),

~R(1
A =—icoeff. of {kyPg,koPg} in T (./,C)N[A](kl*kZ)

R(1
= —i(coeff. of k;+coeff. of k;ys) in Fw(u,c)N[A](kl'kZ)’

(1) _TRO) (1)_ ~R(1) R
Azs Fwtﬁch[A], A coeff. of y5 in FW(“N[A],

w_1 papoap TROr1L2
A —Ecoeff of g#1 K1.Kop N FAA N[A]( kq,ks), (26)

where, for example, “coeff. ofk5*,k5*} in X" stands for “coefficient ofki* in X or coefficient ofi* in X" (that is, they must
be equal
The results, consistent when several formulas for a coefficient are possible, thus obtained read

~ - - —8f%

(4m)?RY=—8f*%3, (4m)?R5)=—24f%2  (4m)7AF=——, 27
- - —4f% ~

(4m)?AY = —24t%, (4m)PAd= 3 (4m)?AY = —8f4,

f4 - - _ 2
. (4m?Ag=—af? (4m)hg=——

(4m)?AP = 3

(4m)?Ag=—412,  (4m)?A{)=-2f%>, (4m)?A(}=0,

(4m)?AY=—4f%, (4m)2A)=-2f2, (4m)ZAF=0,

~ ~ o —1
(4m)?AfY=—2f, (4m)?A{)=-8f" (4m)?Aiy=—-,
) 2 ~ ~
(477)2A<1g>=§, (4m)2AS =4f%, (4m)ZAL) =412,
oy 1
(4m)?A5Y) = 3

- —i
(4m) A% = ?f[3pr+4920(1+ or)v(5+¢&)],
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—{[—6f2r+g%(20+r+6°r)(5+¢')]}

(4m)?A%) =

6 :
(4m) R r[—6f2+g;92(5+ g’)],
(4m)2KLL = —2fg26( 03—)1—!’)(54‘ &) ’ (477)25(217>=_T2if920(1+ o) (54 £),
(am)?Rg = 230 TH36D)

3

This breaking is simplified a bit with the choice of gaugfe= —5.
Note that if only a fermion is present of type, for example;, + 1, then the anomaly coefficient is not zero for any value
of # and that by adding fermions of the same type, the coefficient anomaly cannot be canceled. Fermions of both types are
needed. For example, there is cancellation of the anomaly in the case of two fermiong, with=0 andr,=+1, r,=
—1 or in the case of two fermions with;=1, 6,=—1 andr,=+1, r,=—1. Remembering the definitiore,= 6, and
e = O+, with r,=*1, the obtained coefficient of the anomaly can be written in the more familiar form

- 1 2
A= (@2 3k2 (el—ed (29)

el

but the constraint$4) should never be forgotten.

VI. RESTORATION OF BRS SYMMETRY: FINITE COUNTERTERMS

We know from the algebraic theory of renormalization presented in the third section that the linear @&téas to be
compatible, but its solution is not unique. Facts which cannot be trivially deduced frorf2&q.Using the values of the

coefficientsA(?) , found in the previous section, this turns to be the case and one of the solutions is
(4m)2%%GH=81%3, (4m)2X(R=12f%2, (4m)%XG%= (29
(4m)ZXGL=8f%, (4m)&XGL~" (4m)%L=2f4,

—2f4
3

(4m)%%65 . (4m)%XG4=0, (4m)%%GR=

212
(47)%%500= —— (4m)*611=0, (4m)*G1=0,

(4m)2XEH =412, (4m)xXGH= 1202, (4m)%RGHs= 2%,

-1
(477)27(5)%{6:1:21 (477)%6117_3‘(2: (477)}81{8_ 6

-1
(4m)%X615=0. (4m) 3= 75+ (4m)%52:=0,

(4m)%%59,=0, (4m)3X§55=0,

f[3pr+4g26(1+ 6r)v(5+¢' )]

(4 7T) X01%4 6r

(4m)2X545=0, (47)%%536=0,

[—6f2r+g2(20+r+6%r)(5+¢")]

(47) %637~ 5 :
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—{r[-6f2+g*¢*(5+ &)1}

0,28~ 6

(47)%%G3

2fg20(6+r)(5+¢&")

0,29 3

2%(1)

(4m)%%G4=0, (4m)%X§3,=0,

(4m)%%§4,=0.

Therefore, the general solution for the finite countertermsrder to blindly carry out computations in a noninvariant

up to one-loop order reads

11

32
hSY = —ﬁEl X5, +h|21 eV, (30)

= =
with the basi®; being given by Eq(16) and the symmetric
termsZ; by Eg. (20). Therefore, the parametric family of
regularized actionsS;=S,+#S{), with K4 =K, —pC,
gives, by minimal subtraction in the BMHV scheme, all pos-
sible CP-symmetric renormalized theories, compatible with
the tree-level actiori5) and power counting renormalizabil-
ity, and satisfying up to one-loop level both the §8) and
the gauge-fixing equatio®).

Notice that, if 9#0 and 6+r#0 (=0 or 6+r=0),
there is a seveneightjdimensional family of solutions, or
equivalently, of normalization conditions, which does not
imply finite counterterms depending on BRS external fields
The restriction to this family would certainly simplify the
two-loop analysis of Eq(2). In a more general regulator

independent context, the simplificatory power given by thef
freedom in the choice of normalization conditions have been

stressed in Ref$30,31].
Finally, note that although the starting classical action o
order#® was chosen to satisfu?=\v? so that the mono-
mial [ ¢»; does not appear in the action, we have the freedo
to impose anyO(%") mean value on the field thanks to the

trivial finite countertermd,, Z; andZg. Setting that value to

renormalization procedure such as the BMHV scheme is for
chiral gauge theories. Such noninvariant renormalization
procedures seem to be unavoidable in a near future for doing
trustable high-precision tests of relevant quantum field theo-
ries such as the standard model, and mastery of these tech-
nigues will be needed.

Although at first sight the method looks cumbersome for
the practitioners, we want to stress that once the general
expression for a noninvariant modified action have been
found at some order of the perturbative expansion the auto-
matic evaluation of renormalized diagrams satisfying the
symmetries of the theory is not much more difficult than the
conventional procedures, because we need to do only a mini-
mal subtraction of all Feynman integrals obtained from the
Feynman rules of the given modified action. Certainly, the
algebra is a bit more tedious and there are more Feynman
rules in the modified action than in the conventional one, but
howadays all this is perfectly admissible for the current com-
puter codes.

The simplicity of the Abelian Higgs-Kibble model allows
or explicit and order independent expressions for the pos-
sible counterterms. Thus not obscuring the main steps of the

falgebraic method and making it very suitable for a future

study at two-loop order, this study could be easily extended
to the physically relevant standard model. The arbitrariness

Mt the choice of the regularizations of vertices and finite

counterterms could be a key to simplify the computations at
higher loop orders of the RHS of E€R) using for example

zero would just define one of the normalization conditionssjmilar techniques to the ones in RgL3].

mentioned at the end of Sec. Ill.

VIl. CONCLUSIONS
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APPENDIX A: MATRIX ELEMENTS OF THE LINEARIZED ST OPERATOR

Using the definition(15), theb variations of the fields are
bA,=sA,=d,c,

bp1=s¢1=—¢sc,

bor=s¢,=(v+dy)c,

by=sy=ic[(6+1)P_+ 6PR]¢,

by
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by=sy=iy[(6+1)Pg+ 6P ]c,

bc=0,
B, - O %% f
b= %— M—e.o.m. (0] ¢1

=~ Oy~ (8,A) o= 2A"(3, ) + A A (v + 1) + u(v+ 1) =N (v + 1)+ ¢, (v + ) +K g c— Ty,

__ o0 S,
bK¢2=572=572=e.o.m. of = pB=—l¢ho+ (9,A*) (v + by) +2AH(3, 1)
AN o+ pP = NL(0+ b1) 2+ b, 1o Ky c—irf grysip,
~ar° . _ _
bK¢,=5—¢=e.o.m. of y=y[ih—A((0+1)P + OPR)]+T[(v+ 1) Y+ir dohys]—icK, [ (6+1)P + OPg],
~ e -
bK;=5—$=e.o.m. of y=[16+A(0+T1)P L+ PR y— [ (v+ 1) y+ir doysy]+ic[(6+1)Pr+ 6P K.

Therefore, applying these variations to the ba$® of V, and expanding the results in the bagi§) of V;, the matrix
elements of this restriction di, defined ash&=b, Ju;, are easily found. The first 23 rows and 20 columns of matrix

B
{bOi }1gj<28 1=<i=32 are

-1 0 2 O 0 0O O 0 O 0O 0 O 0 0 0 0 0O 0 0 O
o -2 2 0O 2 O 0 0O 0 O 0 O 0 0 0 0 0O 0 0 O
0 0 0O 0 -1 0 44 0 0 O 0 O 0 0 0 0 0O 0 0 O
0 0 0O -3 2 0o 0 2 0 0 0 ©O 0 0 0 0 0O 0 0 O
0 0 0O O 0 0O 0 O O0-2v 1 O 0 0 0 0 0O 0 0 O
0 0 0 O 0 -4 O 2 0 0 o0 O 0 0 0 0 0O 0 0 O
0 0 0O O 0 O 4 -2 0 O 0O O 0 0 0 0 0O 0 0 O
0 0 0O ©O 0 O o0 0 2 0 0O 0 -1 O 0 0 0 0 0 O
0 0 0 0 0 0O 0 O 0 -2 0 -1 0O 0 0 0 0O 0 0 O
0 0 0 0 0 0O 0 o o0 ©O 0-1 -1 O 0 0 0 0 0 O
0 0 O 0 0 0o 0 O O 0 v O 0o -2 0 0 0 0 0 O
0 0 O 0 0 0o 0 O o oO 0—-v v 0 -2 O 0O 0 0 O
0 0 O 0 0 0o 0 o o0 ©O 1-v O 0O -2 O 0O 0 0 O
0 0 O 0 0 0O 0O O o0 o 0-1 O 0 0O -2 0 0 0 O
0 0 O 0 0 0O 0 o o0 ©O 0-1 1 0 0O -4 0 00 O
0 0O O 0 0 O 0O O o0 oO 0O O 1 0 0 0-2 0 0 O
0 0O O 0 0 O o0 O o0 ©O 0-1 1 0 0 0O -4 00 O
0 0 O 0 0 0 0O 0O 0 O 0 O 0 0 0 0 0 0
0 0 O 0 0 0 0O O o0 O 0 O 0 0 0 0 0 0-8
0 0O 0 O 0 0 0O 0O o0 O 0 O 0 0-1 0 22 0 0 O
0 O 0 O 0 0 O O o0 © 0O O 0 0 0-2 2 00 O
0 0O 0 O 0 0 O O o0 o© 0O O 0 0 0 0 0O 0 0-4
0 0O 0 O 0 0 0O O 0O O 0O O 0 0 0 0 0O 0 0 O
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the columns 21 to 32 are

v(u?=Av?) ul—rv? 0 0 0O 0 0 0 o 0 0 0
w?=3\v?2 —2xv  w?-n? 0 0O 0 0O 0 © 0 0 0
—(\v) -\ 0 0 0 0 0 0 O 0 0 0
—3\v -\ -2x0 0 0O 0 0 0 O 0 0 0
0 -1 0 0 0O 0 0 0 O 0 0 0
-\ 0 -\ 0 0O 0 0 0 o 0 0 0
-\ 0 -\ 0 0O 0 0 0 O 0 0 0
-1 0 0 0 0O 0 0 0 O 0 0 0
0 0 -1 0 0O 0 0 0 o 0 0 0
0 0 0 0 0O 0 0 0 o 0 0 0
0 v 0 0 0 0 0 0 O 0 0 0
0 2 0 0 0O 0 0 0 O 0 0 0
0 1 v 0 0O 0 0 0 O 0 0 0
0 0 1 0 0O 0 0 0 O 0 0 0
0 0 2 0 0O 0 0 0 O 0 0 0
-1 0 0 0 0O 0 0 0 0 0 0 0
-2 0 0 0 0O 0 0 0 O 0 0 0
0 0 0 0 0O 0 0 0 O 0 0 0
0 0 0 0 0O 0 0 0 O 0 0 0
v 1 0 0 0O 0 0 0 O 0 0 0
1 0 1 0 0O 0 0 0 0 0 0 0
0 0 0 0 0O 0 0 0 © 0 0 0
0 —ifr 0 —-ir 0 0 0 0 0 v —(fv) fv
0 0 0 0O #+r 0 -1 0 O [ 0
0 0 0 0 0 # 0 -1 0 0 [
—f 0 0 0 0 0 O 0 -1 —ir —ifr ifr
0 0 —ifr 0 0O 0 0 0 -ir 1 —f f
0 0 0 0 0O 0 0 0 O 0 0 0

and the rest of its elements are 0.

APPENDIX B: EXPLICIT SOLUTION OF THE ORDER ONE COHOMOLOGY OF b

Let T)i be the space of integrated Lorentz sc&l&invariant polynomials in the fieldg,, ¢,, A, , ¥, J Y, C, Kd)l’ R¢2,
Ky, andK), of maximal canonical dimension 4 and ghost numiber

We defineWV, ,,=bV; andK;={Ze V,/bZ=0}. Due to nilpotency ob, W,CK;C V.

Solving explictly the cohomology of order one bfmeans to find the elements Bf which are closed, i.e., ik; but not
exact, i.e., not if’;. Those nontrivial elements of the cohomology are tertiedanomaly

In order to do so, we introduce a basis 1y

= f $1(0c)c, Tp= f ¢, *(0c)e, Tg= J $2"(Do)e,

4= f A a(3,C), Ts= f A“prha(9,0)C, Te= f (3,A")A*(d,0)c,
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U= f ("AM)A(d,0)C, Tg= f (*A")A(d,C)C

and the matrix of the restricted linear operafoy=b: V,—V, as bu;j=b, ;'Gx. The columns 5 to 22 of matrix

™ k
{bl j}1SKs81§jSZ8 are

-1 00 0O0v v 0 -210 0 O O O O OO O

0O 00 OO O O-100 0O v 0 O 2 0
0O 00 0O O O O O O0- 0O 1 0 0 O 0
0O 00 OO O O O OUO 0O 0 0-1 0 0 2
0o 0000 O OO OO O O O O 1 0 0-2
o o000 o0 OO oOOoO OoO o o o o oo

and the rest of its elements are 0.
A basis of the kernek; of b is, therefore,

u~71:nzs, -72:TJL -73:TJz,

u~74:ﬁs- ?75:34, u~76:T16-

F=Tq, Jg=Tg, Jo=T11,

710:ﬁ181 31123231 77122324,

713=T125, ~~714271261 \~715:T127,

Tie=vlUs+Tg, Ji7=TUs+T3, Jrg=2Usg+Tny,

Tho= = 2Us+ 2yt Upg, Jag=TUsat 2Usst+ Uz, Jor=20Ts— 2Us—Tya+ T,
Tap=—20Tg+ T+ vligp+ Tyg+ Tyt Tps.

Note that dim ofK; —dim of W, =1, so the anomaly is expanded by only one element,ofApplying on each element of
the basis of the kerndl; a linear independence test against the set of linear independent columns of thebgmatitich
expands the image of the operatyy, it is inmediately found that7; =Ti,g is the anomaly, as affirmed in Sec. III.

APPENDIX C: BREAKING 1-LOOP FEYNMAN DIAGRAMS

Notation

oot (ke k)

4 ~
(2m)*S(ky+-+KntKmi1) X Xy X GN[A]

SN[AT-TRY[ by, by A, 1, #,C, T Ky Ky Ky K] ‘
‘()‘Xl'u1 (Xq): '5xpup(xp) 5Xplup+1(xp+ )7 X n(Xm) 6C(Xm+ 1)‘ “

= f dxg: - A% g€ KXt Fkme 1Xme 1)

=0

will stand for the minimally substracted one loop 1P! functions with one insertion of the integrated brédgldiigand the

fields X1 X5 - X,,Cc as external legsX; represents any field 01>1,¢2,A,¢/,Z (all 1PI diagrams with at least a ghost or an
antighost or and external BRS field are convergent by power counting, and therefore null when taking into account the
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(4) (it)12 (ii)123 (tv)1234
FIG. 3. Feynman diagrams with bosons needed to compute the 1PI breaking fui€tipns

insertion of the evanescent breaking operatgy---u, are the Lorentz indices of the corresponding bosons ;M- - - X, .
kq,....ky are the independent outgoing momenta of the fig&,- --X,,.

1. Bosonic diagrams

~R(1)py s
o k=), (C1a

~R(1
T (1) peqpep

20y g) = (i) 12+ (i) 21,

~R(1) .
FAAA‘;L’EZT(kl,kZ,ks)=(|||)123+ permutations of 123,

~R(1
I Ky

AAAACN[A] k4) = (iv) 1234+ permutations of 1234.

The renormalized result for each diagram of Fig. 3 is

(4m)%(i)= %I(sz 2=k, ?)k, 1,

2(30+r+36%r)e(ky ks, , 2i i
(4,“,)2(")12: ( )6; 1:02 {Ml} {MZ}) +3(29+r)(klﬂlklﬂz_k2M1k2M2)_§(20+r)(k12_k22)g,u1ﬂ2,

o (1+967+50r+66°r)e(ky {ma} {pal {ps)) | (+26r)e(ko {pa} {na} {n®})
(4a)“(iii) 105= 3 * 3

14+96%+50r +66°% ) e(Kks, , , i
. ( )36( 3. {mit {nat {unsl) flas 02+ 1)k Fogrine

i i i
3 (1F20%+20r)k,"0g#1#2+ 2 (1+30%+30r ky"°g"1#2— 2 (1+36%+30r k, “?g1#3

i i
(1+66°+66r)k,"?gHirs— §(1+302+ 30r)k,"?gr1#3+ §(1+302+30r)k1“19//-2#3

W]

i
+ 5 (1+267+20r)k, g 25+ 2 (1+ 0%+ 0r k" 1gH2es,

wl

_ 2 3
(4m)2(V) 0 20(1+66°+40r+30 ;)6({,“1},{#2},{#3}7{#4}). (C1b

Note that although the four boson diagram is divergent bydiscreteCP symmetry by the renormalization scheme, we
power counting, the total result for the assocciated 1Pl funchave computed explicitly the value of the diagrdiw) of
tion must be zero due t€P invariance of the regularized Fig. 3, which is not zero, and, as can easily seen in last
action and the dimensional renormalization procedure. As aquation, the total result after suming all permutations turns
check of the automated programs and of the preservation @b be the expected result zero. That is, the disc@Resym-
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(@)

metry is reflected in perturbative dimensional renormaliza-

tion as a cancellation between permuted diagrams.

2. Diagrams linear and quadractic in scalar fields

TR

¢2C;N[A](kl):(i)’
=R(1)

b1boCN[A (C2a

(K, kg) = (i) +(iii).
The renormalized result for each diagram of Fig. 4 is

42y (—6f22%+k,?)

(4m)2(i)= 3 : (C2b)
2 £2(— 18202+ 3k, >+ 3k, - ko + k,?)
(4m)(ii)= T
(a2 = 2 £2(—18f202+ 3k, 2+ 3ky - ko + ko?)

3

3. Diagrams with three scalar fields

T~R(1) R

¢2¢2¢>2c;N[A](kl Ko ,K3)=(i)1051 permut. of 123,

T-R(1)

¢1¢1¢2C?N[5](k1 K2 ,K3) = (i) 125+ (il ) 123+ (V) 123

+permut. of 12, (C3a

where, due to the locality and dimensionality of breaking
terms, all the permutations should be obviously equal.
The renormalized result for each diagram of Fig. 5 is

- 8f%
3

(47)2(0) 105=

(4m)2(ii) 105= — 8f %,

(49)123

(%)123

FIG. 5. Feynman diagrams with three scalar field

PHYSICAL REVIEW D 68, 025009 (2003

FIG. 4. Feynman diagrams lin-
ear or quadratic in scalar fields
needed to compute the 1P| break-
ing functions(C2).

(idd)

(41)2(iii ) 5= — 8%,

(47)2%(iv) 105= — 8f%. (C3b
4. Diagrams with four scalar fields
~R(1) R
¢1¢>1¢1¢2c:N[A1(k1’k2’k3 ka)
= (1) 12341 (1) 1234+ (i) 1234+ (V) 1234
+permut. of 123, (C4a

~R(1)

dryyyeinia) KL K2 Ka Ka)

= (Vi) 12341 (Vil) 12341 (Viil ) 1234+ permut. of 234,

where, again, all the permutations must be the same.
The renormalized result for each diagram of Fig. 6 is

(47)2(i) 1034= — 2%,
(4m)2(ii) 103~ — 2f%,
(4r)2(jii ) 1034= — 2f%,
(47)2(iV) 1034= — 2%,

—10f*
3

(47)3(V) 1235~

(47)2(Vi) 125~ 214,
(A7) %(Vii) 1234= 24,

—10f*

(4m)2(Viii ) 1935~ —5—

3 (C4b

I

(v)123

(14i)123

s needed to compute the 1PI breaking fui@3jons
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(v)1234 (vi)1234 (vii)1234 (viii) 1234

FIG. 6. Feynman diagrams with four scalar fields needed to compute the 1PI breaking fufC#ans

5. Diagrams with two or three boson and scalar fields ) 4f2(1+ 6%+ Or)vgrara
~ R (47)%(iX) 125= 3 '
1 _ . .e
L psoniag(Kuka) =D+ (i), (C53
" o —4f2(—1+26%+20r)vgrir2
~ ) N - ,
Amgllc;N[A](kl,kZaks):(l")123+(|V)123+(V)123 (4m)" (X123 3
+permut. of 23, . 4F2(1+ 6%+ Or)vgrire
(47)2(Xi) 123= 3 :
TR (K ko ka) = (Vi) st (Vi) 1o (Vi) 125
AdydpCiN[AT 1172 ! ! !
+permut. of 23, 6. Diagrams with four boson and scalar fields
~R(1)ppn . ..
~R(1) . . ~ (kq, ko, kg, kq)=(i + (i -+ (i
FAAd)ﬂcl.l;z[A](klakakQ:(|X)123+(X)123+(X|)123 AA¢1¢ZC;N[A]( 1,K2,K3,Kq) = (1) 12341 (1) 12341 (iii ) 1234
2 )
+ permut. of 12. + (V) 1234+ (V) 1234+ (Vi) 1234

+ (Vii) 12341 (Viii ) 1234
+ (1X) 1234 (Xi) 12341 (Xii) 1234

+permut. of 12. (C6a

The renormalized result for each diagram of Fig. 7 is
(4m)2(i)=—2if?% k,“1, (C5b)

(4m)%(ii) = _z”zvklﬂly The renormalized result for each diagram of Fig. 8 is

(4)2(iii ) 105= —iF2(k, "1+ k"), (47)2(1) 1034= 2F20( 0+ 1) gr1ir2,
(47)2(iv) 1= T 2(k, 1+ k"), B 2f2(1+ 62+ oOr)gHar2
123 2 3 (47)2(ii) 1034~ 3 ;

(4m)2(V)125= —iF2(K, "1+ K, D),
| (47)2(iii ) 1034= — 226( 6+ 1) gH1re,
. =1
(47) (Vi) 125= —~ F2(3k, "+ 4k, "1+ Bk, 262(1+ 0+ or)gras

3 ’

(477)2(iV)1234:
(4’77)2(Vii)123= - if2(k2:“'1+ ksﬂl),
| (47)3(V) 103~ — 2120( 0+ 1)g 102,
20\giii ___I 2 M1 M1 M1
(4r)“(Viii ) 103= 3 f9(3k, "4 5k, "1+ 4k, (A7) 2(Vi) p= — 26260( 01 )gH152,
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(iz)123

(x)123 (zi)123

FIG. 7. Feynman diagrams with two or three boson and scalar fields needed to compute the 1P| breaking {@&gtions

2f2(1+ 6%+ Or)grar
3 1

(47)2(Vil) 193~

2f2(1+ 6%+ or)grirz

(4)?(Viii ) 1234= 3 ,

2f%(1+ 62+ Or)gHir2

(41)%(iX) 1234~ 3 ,

(47)2(X) 1235~ — 2f20( 9+ 1) gHir2,

2f2(1+ 6+ or)gH1r2

(41)%(Xi) 1934~ 3 ,

(477)2(Xii ) 1034~ 2F26( 6+ r)gH1#e,

(C6b

7. Diagrams with fermion fields
l:z(fc);N[&](kl,kz)z(i)—i-(ii)+(iii)+(iv)+(v)+(vi)+(vii).
(C7a

The renormalized result for each diagram of Fig. 9 is

) —i
(4m)3(i)= 7f2f(2fv Y5+ Kiyst+Kays),

. i
(4m)3(ii)= éfzr(ZfU Y5~ K1ys— Kz vs),

=2
(477)2(|||)=Tf926(1+ 0r)v(5+ &) ys 2(26

|
-~ 559
i
+r)(5+¢&" )k — 1—2g2(29+r)(5+ Nk,
i
+ 592(20+r+262r)(5+ gr)kl’}/5

i
+ 1—292(26+r+262r)(5+ ENkyys,

(am2(iv)= 5 1ol (26+ )11 y5],

(4m)2(0)= 7 fol(20+1)1+1 ],

(4m)%(vi)=0,
(4)?(vii)=0. (C7b
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(4)1234 (it)1234 (4%) 1234 (tv)1234

(iz)1234 (z)1234 (z1)1234 (w11)1234

FIG. 8. Feynman diagrams with four boson and scalar fields needed to compute the 1PI breaking f(@6tions

D)

(v) (vi) (vid)

FIG. 9. Feynman diagrams with fermion fields needed to compute the 1PI breaking furi@i®ns
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(vi)

FIG. 10. Feynman diagrams with one scalar and fermion fields needed to compute the 1PI breaking f(@8tions

8. Diagrams with ¢, and fermion fields

) (am )i = 5 P ys,
T ey (Ka ko k) = (1) -+ (i) (i) (iv) + (v)

+ (Vi) + (Vi) + (viil).  (C83

(4m)2(iv)= 5 v,
Note that there are other possible diagrams at one loop with 2
the same external legs, but due to power counting they are
convergent.

The renormalized result for each diagram of Fig. 10 is —i
(4m)*(v)= 5 Tg*0(1+0r)(5+ &) ¥s,

(4m)(i)=— Frys, (cab

y (4m)2(vi) = - FG20(1+ 0r)(5-+ &) ofs,
(am)2(ii) = 5 Prys,

(v) (vi) (vit) (viit)
FIG. 11. Feynman diagrams with one scalar and fermion fields needed to compute the 1P| breaking f(®8tions
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(4)3(vii)=0,
(477)2(viii)=0.

9. Diagrams with ¢, and fermion fields

f;ﬁzc;m(kl,kz,k3):(i)+(ii)+(iii)+(iv)+(v)+(vi)

+ (vii) + (viii ). (C99

PHYSICAL REVIEW D68, 025009 (2003

Again there are other convergent diagrams at one loop with

the same external legs.
The renormalized result for each diagram of Fig. 11 is

3

(4m)2(i)= g (C9b)

fY
(477)2(")=7,

_(£3
(4m)(iii ) = (; D,
__(£3
(4m)%(iv)= (; “),
_ 2 ’
(4m)2(v) = [fg 0(6+3r)(5+§ )I[],
_ 2 '
(4m)2(vi)= [fg 0(0+3r)(5+§ )I[]'
(47)2(vii)=0,
(47)?(viii )=0.
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