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Hydrodynamic fluctuations, long-time tails, and supersymmetry
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Hydrodynamic fluctuations at a nonzero temperature can cause slow relaxation toward equilibrium even in
observables which are not locally conserved. A classic example is the stress-stress correlator in a normal fluid,
which, at zero wave number, behaves at large times d€. A novel feature of the effective theory of
hydrodynamic fluctuations in supersymmetric theories is the presence of Grassmann-valued classical fields
describing macroscopic supercharge density fluctuations. We show that hydrodynamic fluctuations in super-
symmetric theories generate essentially the same long-time power-law tails in real-time correlation functions
that are known in simple fluids. In particularta®? long-time tail must exist in the stress-stress correlator of
N=4 supersymmetric Yang-Mills theory at non-zero temperature, regardless of the value of the coupling.
Consequently, this feature of finite-temperature dynamics can provide an interesting test of the AdS/CFT
correspondence. However, the coefficient of this long-time tail is suppressed by a factd)a‘gof(lh the
gravitational side, this implies that these long-time tails are not present in the classical supergravity limit; they
must instead be produced by one-loop gravitational fluctuations.
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. INTRODUCTION number, one finds~ %2 behavior ind spatial dimensions, or
equivalently, nonanalytiex%? terms in the small-frequency

Holographic AdS/CFT duality implies that properties of hehavior of the associated finite-temperature spectral
strongly coupled largéd, quantum field theories can be de- densities> These long-time tails are a generic feature of sys-
duced by doing calculations in classicé&upeigravity = tems which behave as fluids on arbitrarily long time and
[1-4]. The correspondence is believed to hold at non-zerdarge distance scales; their existence, and the value of the
temperatures, and can be helpful in extracting informatiorpower-law exponent, are insensitive to the microscopic de-
about both supersymmetric and non-supersymmetric theoridails of the theory. Hence, long-time tails in real-time thermal
[5]. The most well-known example of AdS/CFT duality is correlators may be added to the small set of observables
N=4 supersymmetric Yang-Mills theory with the gauge about which one can make firm predictions even in strongly
groupSU(N,), in 3+1 dimensions, which is believed to be coupled theories.
dual to type 1IB string theory on the AgS S background We will apply our general results to the long-time behav-
[4]. However, to date, there are very few physical propertiedor of thermal correlation functions iIBU(N;) N=4 super-
which can be independently calculated on both sides of theymmetric Yang-Mills theory. Because this is a scale invari-
duality and thus used as non-trivial tests of the finite tem-ant quantum field theory, it cannot have phase transitions at
perature version of the correspondence. any non-zero temperatut@ infinite volume.® In particular,

In this paper we focus on the low-frequency real-timeit must act like a fluid at all non-zero temperatures, and
dynamics(rather than static thermodynamia a finite tem-  hence should have a valid hydrodynamic description of its
perature field theory. The relevant degrees of freedom ar®ng-time dynamics. Consequently, one sho(flar reasons
hydrodynamic fluctuations, by which one means those dewe will discus$ expect the zero-wave-number stress-stress
grees of freedom whose relaxation time diverges with thecorrelator to show power-law relaxation,
wavelength' A suitable version of hydrodynamics is the ap-

ropriate form for an effective theory characterizing these i
gegeees of freedom. As we will discugs in detail, Oné:] conse- J AT (), T ~t % @
guence of hydrodynamic fluctuations at a non-zero tempera-
ture is the presence of long-time power-law tails in real-timeggt—; oo,
correlation functions of conserved currefs-8|. For corre-
lations in the spatial parts of these currents at zero wave———

2More precisely, the spectral density divided by which is re-
lated to the power spectrum of thermal fluctuations, has a non-
*Email address: pkovtun@u.washington.edu analytic |w|~2"2 term at low frequency, unlesd=4n+2 in
TEmail address: yaffe@phys.washington.edu which case an additional || is present. In many respects, long-
YIn normal fluids, the relevant hydrodynamic degrees of freedontime hydrodynamic tails are analogous to the non-analytic chiral
are fluctuations in energy and momentum density, or equivalentlyogarithms which appear in one-loop chiral perturbation theaty
temperature and local fluid velocity. Hydrodynamic variables canzero temperatujedue to quantum fluctuations of massless Gold-
also include fluctuations in charge densities associated with angtone bosons.
globally conserved currents, as well as order parameter phase fluc*TheN.— = theory has a phase transition in finite volume. This is
tuations(Goldstone modegsn theories with spontaneously broken irrelevant for our considerations. See RE5] for more detailed
continuous symmetries. discussion of the phase diagram.
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On the gravitational side of the AAS/CFT correspondencedynamics of small perturbations about some equilibrium
the stress-stress correlator can be extracted from the absorgtate.
tion cross sectiorr(w) for scattering of gravitons by non-
extremal three-brand8,10]. This calculation was performed A. Hydrodynamic variables
by Policastro and Starinef41]. In the case when the gravi-
ton frequencyw was small, Policastro, Son and Starinets
[12] interpreted the zero-frequency limit as the shear viscos
ity of N=4 supersymmetric Yang-Mills plasma. In REf1],
the small frequency behavior of the cross section was foun
to have the formo(w)=0(0)+O(w?). However, if the
stress-stress correlator does exhibit the power-law(1ajl

To construct the appropriate effective hydrodynamics for
a particular physical system, one has to identify the relevant
low-frequency degrees of freedafimydrodynamic variablgs
nd find the equations of motion which govern their
ynamics® As in any effective field theory, the symmetries,
and symmetry realizations, of the underlying microscopic

then AAS/CFT duality implies that the corresponding gravi—theory will constrain the form of the effective theory. Al
ton cross section should be non-analytic at smalind be- remaining deperjdence on the ricroscopic theory W'”. be iso-
have asr(w) — o(0)~ | w| /2. lated in the partlculfar v_alues of some finite set of adjustable

This apparent contradiction is the motivation for this pa_parameters appearing in the effective theory. In the case of
per. Our goal is to determine the coefficient of the |0ng_timehyQ(odynam|cs,.thesg Input parameters include transport co-
tail in the stress-stress correlatdy, and in analogous corr- efficients(viscosity, diffusivity, conductivity, et¢.and equi-

elators involving spatial parts of other conserved currents. Tgbr_lruhm t:ermodyn?rfmc guncn_ons. hvdrod ic d i
do so, we will have to construct the correct effective descrip- € degrees of freedom In a hydrodynamic description

tion of low-frequency, long-distance dynamics in supersym—v.viII include a minimal set of fields, whose thermal expecta-
metric theories. We \;viII find that supersymmetor super- tion values distinguish the possible equilibrium states of the

conforma) invariance of a quantum field theory does nottheory. Among these are the energy and momentum densi-

preclude the existence of long-time tails, in accord with hy—t'es’ which we will denote as
drodynamic expectations. However, in laiye gauge theo- e=T® #'=T0°, 2
ries, we will find that a lb(lﬁ suppression appears in the
amplitude of long-time tails. Thus, on the gravity side of theas well as the charge densitieg= Jg of any other conserved
correspondence, the small-frequency non-analyticity cannaturrentsJy .> The argument for this is as follows.
be seen in classical supergravityonsidered in Ref[11]), The usual grand canonical ensemble, with statistical den-
but should emerge from a one-loop calculation on a planesity operato?
symmetric AdS black hole background.
The paper is organized as follows. Section Il reviews
what is meant by an effective hydrodynamic theory and sum-
marizes the properties of hydrodynamic fluctuations in typi-Puilt from the conserved charges
cal high temperature relativistic theories. Included is a dis-
cussion of why hydrodynamics predicts that fluctuations in pvzf d3x T(x), NaEJ d3ng(x), (4)
the stress tensoF!, at zero wave number, decay &s’? at
long times due to their coupling to both sound waves anddescribes a manifold of time-independent equilibrium states

transverse momentum density fluctuations. In Sec. Il we

construct effective hydrodynamics for supersymmetric theo!" which variations in the thermodynamic paramegéra.”,

ries, and argue that long-time tails are necessarily stiIf"Ind #a produce space-independent variations in the energy

present. The treatment of hydrodynamic fluctuations in Secgens'ty’ momentum density, and o_the_r Ch_arge densme_s._ in
Il and Il is applicable to general field theories. In Sec. IV we other .W(.)r(.js’ |nf|n|te_ wayelength_ variations in these densities
specialize the general resultsA6=4 supersymmetric Yang- have infinite relaxation timéprecisely because they are den-

Mills theory in the context of the AdS/CFT correspondence.s't.'es. of gonserved chargeﬁut in any local, Causal theory_,
this implies that arbitrarily long wavelength variations in

these densities must have relaxation times which diverge

p=2"teP(uP "+ raNa) 3

Il. EFFECTIVE HYDRODYNAMICS

scrl;lg)i/r?ro?gena:jmlr?:mr??sy (l;)fe ;llfr\:ve er?ngls sans,;ﬁnicg\r/]elg;]ect);y g:c-j “4Because the effective hydrodynamic theory describes dissipative
. 9 y y 9 .~ dynamics, it is easier to work directly with the equations of motion
time scales which are large compared to any relevant micrg;

. . . . . han with a classical Lagrangian formulation.
scopic scal¢13,14. Itis a Class'ca_l field theory, whose fields SUntil otherwise stated, we assume that such symmetry currents
can be regarded as expectation values

e . N SOM€ NORYe ordinary bosonic vector fieldse., not supercurrents
equilibrium thermal ensemble of microscopic quantum op- éye yse a ¢ +++) metric convention@="1/T is the inverse
erators averaged over spatial volumes large compared to Mismperaturep” is the rest frame 4-velocitysatisfyingu?=—1),
croscopic length scales. The beauty of a hydrodynami@nd ., are chemical potentials. We assume that translation invari-
description is that it applies to any system which acts like ance is a symmetry of the theory, and that this symmetry is not
fluid on sufficiently long distance scales, regardless of th&pontaneously broken. We work in thréat, infinite) spatial di-
strength of microscopic interactions. We will be concernedmensions throughout our analysis, but all results generalize trivially
specifically with near-equilibrium behavior and the resultingto d>3 spatial dimensions.
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with wavelength. Consequently, fluctuations in conserved B. Constitutive relations

charge densities remain relevant variables on arbitrarily long The resulting hydrodynamic description for this general
time scales, and must be retained in an effective hydrodye|ass of theories takes the form of exact local conservation

namic theory. laws for the conserved currents,
If the theory under consideration is in a phase with spon-
taneously broken continuous symmetry, then the pliase a3, TH"(x)=0, (5
orientatior) of the relevant order parameter is also needed to
uniquely characterize equilibrium states, and fluctuations in d,J5(x)=0, (6)

the order parameter orientation will become another hydro-

dynamic degree of freedofWell known examples include together with constitutive relations, valid on sufficiently long
superfluid helium, where the phase of the condensate wawéme and distance scales, expressing the fluxes of conserved
function becomes a hydrodynamic variable and is responguantities(i.e., spatial parts of conserved curréras local
sible for the appearance of second so(ibd]. Another ex-  functionals of the hydrodynamic variables themselvtbe
ample is the chiral limit of QCD, whose hydrodynamic vari- densities of conserved charg@®As in any effective theory,
ables include theSU(N;) orientation of the chiral possible terms appearing in these constitutive relations must
condensate, fluctuations in which describe piph8]. At a  be consistent with the symmetries of the underlying theory,
second order phase transition, long wavelength fluctuationdnd may be classified according to the number of spatial
in the magnitude of an order parameter acquire divergerfi€rivatives, and powers of fields representing departures
relaxation timegdue to critical slowing dowy and also be- from equilibrium. This is the analogue of the usual power
come relevant hydrodynamic degrees of freedom. Finally, foFOunting in an effective field theory. ,

gauge theories in a Coulomb phase, long wavelength mag- We will focus on the dynamics of fluctuations away from

netic fields have divergent relaxation times and must be re2°M€ charge conjugation invariant equilibrium state, for

tained in a hydrodynamic description; the effective theory inwhich all chem_ical potentials vani.sh.. Therefore, the charge
densityn,(x) will only be non-vanishing due to some per-

this case is termed magneto-hydrodynamics. ; ve ; =
In the following discussion we will assume, for simplicity, turbat_lon away frpm the equilibrium state of interest. Simi-
if we work in the rest frame of the system, then the

that all these complications are absent. That is, we assum@V: , ; St

that the theory under consideration is in a phase of unbrokefflomentum densityr(x) will also be non-vanishing only due

global symmetry, is not in a Coulomb phase, and is not sit!C @ departure from our given equilibrium state.

ting precisely at a second order phase transition. Also for 1€ only terms, linear in deviations from our equilibrium

simplicity, we will assume that the theory possesses charg%tate* which can appear in the resulting constitutive equation

conjugation symmetries under which any global conserved®r the charge fluxes have the form

chargesN, transform non-trivially. We further assume that )

the equal-timeglor more generally, imaginary-timehermal Ja=—DapVnyp, (7)

correlation functions of the theory exhibit a finite correlation

length. This is basically just a restatement of our assumewhereD =D,y is, in general, a matrix of diffusion coeffi-

unbroken global symmetry, the absence of Coulomb phaseients characterizing, in a linear response approximation, the

gauge fields, and non-critical behavior. Finally, we assumdlux induced by a spatially non-uniform charge density.

that the theory under consideration is an interacting theoryhese diffusion coefficients are input parameters to the ef-

which describes a sensible equilibrating thermodynamidective hydrodynamic$. Terms with three or more spatial

system—no discussion of hydrodynamic behavior is appli-derivatives are also allowed by symmetry but, for sufficiently

cable to a non-interacting theory. All these assumptions hold

in typical field theories without (1) gauge fields, at suffi-

ciently high temperatures. 10More generally, one may formulate constitutive relations which,

in addition to terms involving hydrodynamic variables, also contain
noise terms representing the influence of short-distance degrees of

"For theories with approximate symmetries, an approximatelyffeedom on the quantity of interest. Such noise terms convert the

conserved charge density will only act like a hydrodynamic degredydrodynamic equations of motion into Langevin equations, and

of freedom on time scales which are short compared to the meafllow the effective hydrodynamic theory to generate the correct

time between charge non-conserving reactions. equal time correlations of long wavelength equilibrium fluctuations.
8Despite the pervasive misuse of the phrase “spontaneously brddowever, these noise terms will not be relevant for our purposes,

ken gauge symmetry,” Higgs phases of gauge theories are not exand will be ignored throughout our discussion.

amples of spontaneous breaking of any physical symnig&ly and Hin terms of equilibrium correlation functions in the underlying

do not imply the existence of an enlarged manifold of physicalMicroscopic theory, diffusion coefficients are given by the Kubo

equilibrium states, or the presence of additional hydrodynamic deformula (D x)ap= 2lim,, oS d*xeé“’(1{J1(x),J,(0)}), where

grees of freedom. (---y=Z"ufe PH...] is an equilibrium thermal averagey
This includes non-Abelian gauge theories with most any matter=||x,,| is the charge susceptibility matrixyap=dn,/d(Bump)

field content, because interacting scalar fields, fermions, and non=[(N,N,)—(Na){Np)]/V, andV is the spatial volume. The Kubo

Abelian gauge fields all develop finite spatial correlation lengths aformula makes manifest the Onsager relation stating Ehatis a

high temperature. symmetric matrix.
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long-wavelength fluctuations, will be negligible compared totively, of the chosen equilibrium state with vanishing charge
the above single derivative terms. It should be emphasizednd momentum densities. Then the stress tensor of a nearby

that the constitutive relatiofi) is not an operator identity, equilibrium state with energy density+ e, momentum
unlike Eq. (6) Rather it is a relation between eXpeCtation densityﬂ-’ and Charge densitigsa' expanded to second or-

values of operators in non-equilibrium states, valid onlyger in deviations away from the reference state, has the form
when those operators are averaged over a volume large com-

pared to relevant microscopic scales.

Of course, terms can also appear in the constitutive equa-
tion for j, which are non-linear in the departure from the
given equilibrium state. At quadratic ord&it is possible to
add a term of the right symmetry which involves no spatial )

w

; B SN )
TIJ|equi|.:5IJ P+U558+—§(58) +—,’:abnanb_l)s:
2 2 W

gradients, and is proportional to the product of charge and +T7 (13
momentum density fluctuations,
ja=—DapV Np+ kN, (8)  where 5s=T%—¢ is the fluctuation in energy density,

Since this new term involves no spatial derivatives, the co=(7Plde) s the speed of soundi=0"P/de?, and Zap
efficient « is completely determined by thermodynamic de-=3d°P/dnadny,. (Energy derivatives are to be evaluated at
rivatives which stay within the manifold of equilibrium constant charge density, and vice verséo terms linear in
states. Namely, an equilibrium state with non-vanishingla can be present due to the assumed charge conjugation
chemical potentia|5, when viewed in an arbitrary referencénvariance of the reference equilibrium state. An exercise in
frame, will have an energy-momentum tensor of the perfecthermodynamic derivatives shows that

fluid form,

—_ —_— 71 —_—
TH'= (a4 P)ukur+ Pgh, © v2= T2 2(9 ~Zc, (14
de  IB\IB B
and conserved currents
J4=n,u*, (10) é=[(1+2v3)C t—wr"HHy/B, (15)

wheren,, ¢, and P are the equilibrium charge densities, _ _

energy density, and pressure, respectively, in the rest frame Eap=[(x Hap—WIhp /8. (16)

of the fluid, andu” is the rest-frame 4-velocit? Hence, for

infinitesimal boosts away from the rest frame, the momenyye have defined and y as the mean square fluctuation in
tum density and charge flux are related to the flow velocCityenergy or charge per unit volume,

via

w=(e+P)v, 4=y, (11) CE<H2>conn/V: (17)
implying that the coefficienk appearing in the constitutive B
relation(8) equals ¢+ 7P) 1. For later convenience, we will Xab=(NaNb)con/V, (18)
denote the enthalpy density, which is the sum of energy den-
sity and pressure, as andT'""" and "'NNH as “amputated” third order connected

correlators of energy and charge,
w=eg+ P, (12

SOK=W_1 and w=wv. 1—‘HHHEC_3<H3>connlvi (19)

In the constitutive relation for the spatial strégk, terms
without spatial derivatives are also completely determined by Fg‘bNHEC_l(X_1)aa'(X_1)bb'<Na'Nb/"')conn/V, (20)

equilibrium thermodynamics. LQE, e, and P denote the

inverse temperature, energy density, and pressure, respec- . S . o
with V the spatial volumey . . .) denoting an expectation in

the reference equilibrium state, and * the matrix inverse

12Terms higher than quadratic are irrelevant for our purposes. Thif X=lxanl- E'Ote th?'[ the heat capacity per unit volume
will be discussed further at the end of Sec. Il E. ¢,=de/dT=p"C, while the charge susceptibilityn,/dpuy

3The local rest frame of any thermal system, at a particular event™ BXab-

x, may always be defined as the frame in which the momentum Terms linear in momentum density can also appear in the
densityar(x) vanishes. The local flow velocity in any other frame is constitutive relation for stress, but only when combined with

then defined as the velocity needed to boost to the local rest fram@ Spatial gradient so as to yield a rank-2 tensor. Two linearly
This implies that the local 4-velocity”(x) is, in general, the time-  independent structures are possible, proportional to the shear
like eigenvector ofT* (x). or divergence of the vector field, so that
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I 1 1 2 density fluctuations, inserting=—DVn into the conserva-
Ti=§1| P+vise+ 55(58)2+ EEabnanb—vgz tion law g;n=—V-j yields the usual diffusion equation
w (6,—DV?)n=0. (We have suppressed indices distinguishing
ol ) o o ) multiple charge densities_,, but in g_enelal i_s a matrix of
+ —- y N Vom—y (Vi +Via— 281 V. m). diffusion constant$.Inserting a spatial Fourier transform,

d3k "
(21) = [ pe ) (24)
T
The coefficientsy, and y,, are conventionally written as

¢ immediately gives
')’gE p— 77]5 21 (22)
w

w n(t,k)=e"¥*Ptn(0k), (25)

with ¢ and # the bulk and shear viscosities, respectivély.
All other terms, consistent with symmetries, which could showing that fluctuations with wave vectérrelax diffu-

be added to the constitutive relatiof®) or (21) involve  Sively at a ratek’D which vanishes quadratically &s-0.

either more gradients, or more powers of fluctuations awajMomentum density fluctuations may be decomposed into

from equilibrium relative to the terms included in E§) or ~ longitudinal and transverse parts,

(21), and so are negligible for sufficiently small, long-

wavelength fluctuation® d3k

17(t,X)=J

The above constitutive relation for the stress tensor sim- e X [kamy(t,k)+m, (t,K)],  (26)
plifies considerably in scale-invariant theories. The traceless-
ness of the energy-momentum ten§df, =0, is an operator .
identity in such theories, valid in both equilibrium and non- where k-7, (t,k)=0. For transverse momentum fluctua-
equilibrium statesat vanishing chemical potentialConse-  tions, the conservation relation='=—V;T" plus the con-
quently, in any scale invariant theory the equation of state istitutive relation(21) again combine to give a diffusion equa-
exactlys =3P, the speed of sound.=1/y/3, and the ther- tion, (3;—y,V?) @, =0, so that
modynamic curvature§ and Z vanish identically® as does
the bulk viscosityl. Therefore, the constitutive relation for ﬂl(t,k):e—kzy”t w, (0K). (27)
the stress tensoi2l) in a scale invariant theory takes the
simpler form Because energy and momentum densities are both conserved
quantities, fluctuations in energy and longitudinal momen-
L Eaij ﬂz) tum density are coupled. One finds that both quantities sat-
isfy the damped oscillator equation —@7— ysk?d;
5 —v2k?) de(t,k)=0, where .= Y+ 3y, and that
_ yn(viﬂ_j_l_vjﬂ_i_ §5ij V"n'). (23) k|7 (t,k)=id;6e(t,Kk). In the long wavelength limit {,|k|
<vs), one has weakly damped sound waves,

)3

1
+=
w

T = 5l

Pros
§8

C. Linearized hydrodynamics im)(t,k) 2Kty t( cog|klvgt)  sin(|k|vgt)
= S
If one retains only terms linear in fluctuations in the con- | v¢de(t,k) —sin(|klvst) coq|K|vgt)
stitutive relations(8) and(21), then it is trivial to solve the )
resulting linearized hydrodynamic equations. For charge P (0K) (28)
vs0e(0K)/’

YKubo formulas for the bulk and shear viscosities afe propagating at the sound speed and whose energy attenu-
=(B/2)lim,,_ofd*xe“"(3{P(x),P(0)}), and 7  ates at a rate of2ys.
=(BI20)lim,, oS d*xeé*(1{s(x),s7(0)}), where P=3Ti and
si=Ti—Ps are the trace and traceless parts of the stress tensor,
respectively.

91t turns out that the non-linear interactions of hydrodynamic ~ The non-equilibrium linear response resy®$), (27) and
fluctuations cause the coefficients of higher order terms to becom&8), describing the relaxation of specific perturbations away
scale dependent quantities, just like couplings in a typical effectivdrom equilibrium, may be converted into equivalent results
field theory[17]. for real-time correlation functions characterizing the spec-

8Hence, for scale invariant theories=4s, C=4e/g, IHHH  trum of fluctuations in the equilibrium thermal ensemble.
=ple?, and INNH=y~"1/w. These relations also follow by

simple thermodynamics, given a free enefgy VT* and suscepti-
bility xan~T°. "This is sometimes referred to as Onsager’s postulate.

D. Real-time correlators
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Consider, for example, the two-point correlation of charge At k):[(gij_kikj)e—kzy”\tl
density fluctuations® mm

T Kk e~ (W22t cog |klv ) 1(3P?)/V,
Ao, (LK) = f dxe kX% {ny(t.X).1,(00)}). (29 (339

Fort>0, one may insert the linear response re2f and  where A.i.i(t,k)=/de ™ X(3{#(t,x),7/(0,0)}), etc.,
find"? andC is the mean square fluctuation in energy per unit vol-
ume defined in Eq.17). The mean-square fluctuation in total
spatial momentum may be deduced from the equilibrium re-
lation (11) between momentum density and flow velocity,
which implies

where x(K)=||xap(K)|| is the variance matrix of equal-time

charge density fluctuations,

Annt.K)=[Aq o (LK) =Py (k), (30

(PP 1om __

L= =wTel, (34)
3ya—ikx/1 V B ol

Xab(k):f d*xe” " (3 {na(X),np(0)}). (31

or (1P?)/V=wT. Hence the mean square fluctuations in mo-

In the smallk regime where a hydrodynamic description is ,antum and energy are related by the velocity of sound,

valid, one may replace this variance by its sniallimit,

which is the charge susceptibility matrixintroduced previ-

ously, (1p?) = —
3 o zﬂ)_ 2 2(?_8
y o IWET G =usT oy

=vZC. (35)

llin:)Xab(k):[<NaNb>_<Na><Nb>]/V=Xab- (32

E. Long-time tails

Analogous results for the real-time correlations of energy  consider a spatial charge flux integrated over all space,
and momentum densities are

= 3y i
A, (t,K) =&~ W%l cog [Klu t)C, (333 Ta) _f dxJa(tx). (36

. i A (UK yt] o If non-linear terms in the constitutive relation fiy are ig-
1Atk =Ko e D sin| ko) C, (330 nored, this zero wave number charge flux has r% coupling to
hydrodynamic variables due to the gradient in the linear
iA”j(t,k):(R,‘/Us)ef(uz)k%s\t\ sin([K|v)(EP?)/V, —DVn part of _its con;titutive relation. Hence, a linear re-
(330 sponse analysis predicts _that the' zero wave n.umber flux
should relax on a short, microscopic time sc&l@his con-
clusion is wrong, because the charge flux does couple to

18The effective hydrodynamic theory, in which fields are classical,hydr()dynamIC degrees of freedom, even at zero wave num-

cannot distinguish  between the symmetrized correlatmber' through the non-linears/w term in its constitutive re-

({n(t),n(0)}) and the Wightman correlatam(t)n(0)). In fre- lation (8). Although this term is quadratic in deviations away

- ) from the chosen equilibrium state, because it contains no
quency space, this difference is smaller than the correlators them-

selves by a factor ofiw/T, which is negligible in the low fre- spatlal gradients it Wlllialways dominate over thg single gra-
quency domain where the hydrodynamic description is valid. Wed'ent —DVn term of linear response for sufficiently long
have chosen to write expressions involving the symmetrized Cor\_/vavelengths. ) .
relator just because this correlation function is always (ealHer- To evaluate the zero-wave-numbgd;(t)J,(0)) cor-
mitian operators relator correctly for large times, one needs only to express
%For t<0, one may use time reversér CPT plus rotation  these currents in terms of the product of charge and momen-
invariance to show thatA,,(—t,k)=A,.(t,k). Consequently, a tum density fluctuations, and then insert the res(@® and
Fourier transform in time gives A,(w,k)=2k’D[w? (33d) for the spectrum of these fluctuations. One finds the
+(k?D)?]"y.  Combined with the Ward identity well-known result for correlations in simple fluid6]:
a#(%{J”(x),J”(O)}FO, one finds associated hydrodynamic forms
for the charge-current correlator, A,j(w,k)=20k'D[ w?

+ (kZD)_Z]’l)(, and the current-current correlatod iy (w,k) 20This may be seen explicitly from the linear response form of the
=2w?8"D[w?+ (k?D)?] " x. As required, this current-current cor- current-current correlatoA” (w,k) shown in footnote 19, whose
relator is consistent with the Kubo formula of footnote 11. —0 limit is frequency independent, lim A" (w,k)=246"Dy.
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. ) 1 ) )
VGO0, = = [ @3 tnat 0.0 0,00 00
1 ) )
= vﬁf d3x(3 {na(t,x),np(0,0)1)(3 {7'(t,x), 7 (0,0)})
= Vﬁf (ZT)sAnanb(t,k)Aﬂ.iﬂ.j(t,_k)

T f d3k
=— 4l
w (2m)313

T oY 1
—  x( + (exponential decay (37
w 12[[<D+y,,>w|tl]3’2 ] "

2

1
e —KEO Ity 1 3e*kz[D+(1’2)7s1|t‘cos(|k|v Hx
ab

Factorizing the first correlation function into a product of A completely analogous long-time tail must also be
two-point correlators is justified because, in the srkaily-  present in the zero wave number stress-stress correlator due
drodynamic regime, the distribution of fluctuations is arbi-to the coupling of the stress tensor to products of energy,
trarily close to Gaussiaft. After inserting the explicit forms momentum, and charge density fluctuations. Inserting the
of Cnn, (t,k) and C_i_i(t,k) in the third step, an angular constitutive relation(21), and evaluating all the terms which

average over the direction &f was performed. In the final can contribute 10 a long-time tail is straightforward, but

step, the term involving longitudinal momentum fluctuationsSllghtly tedious. This calculation is summarized in the Ap-
' . — . . endix. Here we will specialize to the simpler case of a scale
does not contribute to thie *? long-time tail because of the b P P

invariant theory, for which
oscillating cosine; this term only gives rise to an exponen-

tially falling O[exp{— %|tjv2/(D+%yJ}] contribution. The

above treatment is essentially perturbation theory for small T"(I)EJ d3x T (t,x)
fluctuations in the long-lived degrees of freedom; upon fac-

torization, the two-point correlators of conserved densities s qil= 1

are taken to evolve according to linear response. f d*xj 8| P+ 398(t.x)

This calculation is illustrated graphically in Fig. 1. It is
important to understand that the one-loop diagram in this 1 .
figure is a depiction of the origin of the long-time tail in the + =Hp 7"(t,%) W”(t,X)}, (39
effective hydrodynamic theory; this is not a Feynman dia- w
gram of the underlying microscopic thedfy - o o y
where HJ =36, 8.+ 36,6, — 56 8y i @ projector onto
traceless symmetric tensors. Therefore the zero-wave-

21The essential point is that hydrodynamic variables represent midUmber stress-stress correlator in the hydrodynamic regime
croscopic fields averaged over spatial volumes which are large conS
pared to the “correlation volume#® (where¢ is the static correla-
tion length. Hence, a hydrodynamic fluctuation with wavelength
A> ¢ may be regarded as averaging over roughl§j® essentially
independent correlation volumes. By the central limit theorem, the
distribution of such an average will approach a Gaussian distribu- i
tion as the number of independent samples becomes large. Residual
non-Gaussian correlations in fluctuations with wave numbers of or-
der k will generate corrections to the resyR7) which are sup-
pressed by an additional factor [3¢%, leading to sub-dominant Aﬂ,-wj
O(t®) corrections to the final result.

22In terms of Feynman diagrams of the fundamental theory, each FIG. 1. Graphical depiction of the effective hydrodynamic cal-
propagator of Fig. 1 involves a resummation of an infinite series oftulation of the long-time tail in théJ (t)JL(0)) correlator. Propa-
ladder-like graphs in non-gauge theor[d8,19, or a vastly more gators in the effective theory characterize the relaxation of con-
complicated set of diagrams in gauge theofi28]. Attempting to  served densities according to linearized hydrodynamics. External
calculate the coefficient of the long-time tail by evaluating and sum-vertex factors represent the coefficients of non-linear terms in the
ming the required set of perturbative graphs in the underlyingconstitutive relations for the currents. Only the charge diffusion and
theory is extremely ill advised; using the appropriate effectivetransverse shear modes contribute to the leading long-time tail in
theory is infinitely easier. current-current correlators.
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Azmopp This reflects the direct coupling between stress and fluctua-
tions in energy density. At zero wave number, these become
fluctuations in the total energyn the equilibrium grand ca-

T4 Tkl nonical ensemb)e which are strictly conserved in time.
Hence, one finds that the leading long-time behavior of the
connected zero-wave-number stress-stress correlator in a
A scale invariant theory 13
e

FIG. 2. lllustration of the effective hydrodynamic calculation of
the long-time tail in the(T"(t)T¥!(0)) correlator. External vertex 1 ~1(3 {T'(t), TX(0)})com
factors represent the coefficients of non-linear terms in the consti-

tutive relation for the stress tensor, and are proportional to the pro- 4 i K= 3\3%7?
jectorH}) , defined in the text. Both transverse shear and propagat- §5| SMeT+ 151\ 2 +7
ing sound modes contribute to the long-time tail in the stress-stress
correlator. 1 1 1 T2
X —5ik51'+—5”51k——5”5"')—. (42
Voo {TH (D), TR0
:f d3x iHinimHkl Adding any higher-order terms to the stress tensor consti-
w2 pa tutive relation (23) will generate sub-dominant power-law
tails in Eq. (42) proportional to|t|~%?2 |t|~"2 etc. This is
1 m n
Xz {m"M(t,x) 7" (t,x),77(0,0)7(0,0)}) because such higher-order terms will contain either addi-
tional spatial gradients or additional powers of fluctuations
1
+ §5ij5kl<%{S(tix),s(oyo)b _ (39) away from equilibrium. In either case, one finds contribu-

tions which scale with higher powers kbfask— 0, implying
additional powers of 1.

The first term may be evaluated using the same logic

as above. Retaining only pieces which contribute to _

the connected correlator [i.e. (3{T(t),T¥(0)}) F. Low frequency hehavior

_ /il Kl :
(THOXTE(0))], one finds The long-time tails present in the current-current cor-

relator (37) or the stress-stress correlatd?) automatically
imply that the Fourier transforms of these correlation func-
tions cannot be analytic at zero frequeftq little analysis
shows that ifG(t) ~ a/|t|*? at large times ther

1 y
= f d3x HY) HE(G{7™(,%) (1, %), 7P(0,0) 79(0,0)}) conn

=%HLLHH';LJ d3x(3{#™(t,x),7"(0,0)})
X{(2{m"(t,x), 7(00)})

3
= iHHmH o f ﬂAwme(tak)Awan(t, —k) Z30nce again, this result is for three spatial dimensionsd 8
w? PaJ (2m)3 spatial dimensions, the same analysis leads (& long-time
tail. In two or fewer spatial dimensions, hydrodynamic fluctuations
272 ij 3372 1 are sufficiently infrared-singular that the—0 limits in the Kubo
=715 Mkl 7 W (40 formulas in footnotes 11 and 14 fail to exist. Instead, one finds that
K transport coefficients exhibit non-trivial scale dependence on arbi-
. . . . . ) ) trarily long length scalef21].
This calculation is depicted graphically in Fig. 2. Once 24hjs follows from the standard argument showing that if an
again, contr|bu_t|ons which fall expo.nenually ywth time have integrable functionG(w) is analytic in a strip of width 3 sur-
been dropped in the last step. The final term in@§) gives  ynding the real axis, then its Fourier transfo@(t) falls off
a time-independent contribution: exponentially a®(e~ "), as may be seen by shifting the contour
of integration.

SMore generally, if G(t)~alt , then the leading non-
analyticity in G(w) for small frequency is G(w)
~a[i@DEDA D 2T (dI2)]|w| 4722 for d odd, G(w)
:f;w-j&m_ (41) ~a[77(—l)d/4/F(d/2)]|w|(d72)/72 for d=4n, and G(w)

9 ~a[(—1) @221 (d/2)]]| ]| @~ 2n|w| for d=4n+2.

|7d/2

1. 1 .
55”5“J d3x<%{s(t,x),s(0,0)}>=56“6K'Asg(t,k=0)
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- _ weak and strong coupling regimes. Assuming this is the case,

G(w)=J dt €' G(t)~ — V87 a|w|Y*+ (analytic term, the cross-over timébeyond which the long-time tail domi-
(43) nates over the short time transientgll become arbitrarily

large asN.—.2° For any fixed time;, thet %2 tail will not

asw— 0. Consequently, in three spatial dimensions, the Foube visible in the leading largd, behavior of the stress-stress

rier transforms of the real-time zero-wave-number correlacorrelator, but will instead appear as a sub-leadimﬁﬂela-

tors (3{J5(1),3(0)}) and (3{T(t),T'(0)}) must have tive correction:

square root branch points at zero frequency whose coeffi-

2\ a-tir -3
cients are related via E¢43) to the amplitudes of their long- (Tij(DT(0))~O(Ng) e "7+ 0O(1) t~ >

time tails.
In thermal equilibrium, the spectral density of any two Exactly the same result is true of the long-time tail in
operatorsA andB, current-current correlators. Diffusion constants @xgl) as
N.— (at least in weakly coupled hot gauge theofi2g])
pAB(w)EJ dt&“t([A(),B(0)]), (44) and therefore for fixed time the Iong time tgll in the current
correlator(37) also scales a®(1/Nf) relative to the short

is directly related to the Fourier transform of the correspond—?( r)ne transientstwhich scale the same as the susceptibility

ing symmetrized correlator In both cases, the result that long-time tails become sub-

_ leading effects at largil . may be regarded as a consequence
pap(w)=2 tank(,Bw/Z)f dte“ (3 {A(t),B(0)}). of the fact that equilibrium velocity fluctuations are “anoma-
(45) lously” small whenN.— . As noted earlier in Sec. Il B, the

flow velocity equals the momentum density divided by the
Consequently, the current-current or stress-stress spectr@iithalpy. Therefore, the mean square fluctuations in average
densities, divided byBw, must have the same non- flow velocity are directly related to the mean square fluctua-
analyticity atw=0 as do the Fourier transformed real-time tions in total momentum. Using the previous re<@H), one
correlators. For example, in a scale-invariant theory one halas

i 0 43y ai X0/ 1T . 'P! !
wJ' dx® d®x &' ([ T;;(x), T(0) ] <5'U_J>=<P I3>=5—I:O(NC’2) (48)

1 1 1
5 0ik0ji + 5 6l Ojk— 3 6ij O

2 2 3 asN.—» for fixed volume. More generally, this means that
X [5©+ 5D w| Y2+ O(|w|3?)], (46) the; fluct_uationg in flow velocity average_d over a patch of
fluid of linear sizeL have a 1IN suppressiorton top of the
with expectedL ~*? behavioy. Consequently, in the spatial cur-

o rent densityj= —DVn+nv, the non-lineanv contribution
w is 1N, suppressed relative to the lineatDVn term. Ex-
;) NCY actly the same conclusion holds for the terms quadratic in
flow velocity in the stress tensdR3) as compared to the
linear terms involving the gradient of the velocity.

T 3 3/2
(0)— M= || =
S 45, s 6077[(2) +7}

G. Large N scaling

The stress-stress correlator will, of course, have short time
transient contributions in addition to its long time power-law

tail. In largeN, gauge theorieor largeN matrix models if We now wish to generalize the preceding discussion of
the 't Hooft couplingg®N, is held fixed as\. becomes large, hydrodynamic fluctuations to the case of supersymmetric
then the short time contribution to theonnectedl stress-  theories. For ease of presentation, in this section we consider
stress correlator will scale alZ, just because there are theories with\/=1 supersymmetry in four dimensions. Such
O(N?) degrees of freedom. In %gntrast, from H42) one  theories possess a set of conserved supercurrents, which we
sees that the coefficient of the*'< long time tail will be i u Q@ i .
O(1) asNg if the shear viscosity divided by the en- will denote by S/ (x) and S (x), which are Lorentz vector
thalpy, v,,= »/w, has a finite, non-zero large, limit. This

ratio is effectively a microscopic relaxation time, the mean 26Completely analogous nonuniformities between the large dis-
free time for large angle scattering of elementary excitation$ance and largeN limits are well known in other contexts. For

in the system. In weakly coupled high temperature gaug@xample, adjoint representation Wilson loopsSi{N,) Yang-Mills
theories, this ratio does have a finite laiyg limit [22].  theory have a cross-over from area-law to perimeter-law behavior
Presumably this is generally true, at least in theories ke on a distance scale which divergeshys—. And variousSU(N)

=4 supersymmetric Yang-Mills theory which are strongly symmetric two-dimensional models have correlators which fall with
believed not to have any phase transition separating theitistance like/x| ~*™ [23].

IIl. SUPERSYMMETRIC HYDRODYNAMICS
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spinors. The corresponding conserved supercharges satisfypersymmetry transformatiofisThis is reflected in the fact

the supersymmetry algebf4, that at finite temperature bosons and fermions obey different
statistics(Bose-Einstein or Fermi-Diracas well as in the
Qg ,67}:20%%' (49) fact that bosonic and fermionic fields obey different bound-

ary conditions(periodic versus anti-periodidn Euclidean
] functional integrals representing equilibrium thermal sys-
The theory may also have a chitd(1) symmetry R sym-  {ems. But it is important to understand that the non-
metry), whose charg&k does not commute with the super- jnvariance of thermal ensembles under supersymmetry does
charges, not imply that the supercurrent fails to be conserved. The
conservation of the supercurrent,

[QalR]:Qa! [Qd!R]:_Qd! (50) ﬂMSZ(X):O (52)

as well as various additional internal symmetries Whosgs an operator identity, valid in any physical state. Since ther-
chargesN, do commute with the supercharges. For definite-y | averages are just linear combinations of expectation val-
ness, we will assume that the theory does H&symmetry,  yes in physical states, the conservation of the supercurrent

and that this symmetry is not spontaneously brcﬁ?gn. implies that the thermal supercurrent correlation function sat-
Since the supercurrents are conserved, one might expegies the Ward identif

that fluctuations in supercharge densities will be unable to

relax locally, just as ordinary current conservation directly a, C'Z;(X)IO_ (53
leads to diffusive relaxation of bosonic conserved charge

densities. And slow relaxation of supercharge densities magimilarly, taking thermal expectations of both sides of the
in turn generate long-time tails mosonicobservables which  supersymmetry algebi@9) shows that mean square fluctua-
can couple quadratically to supercharge densities. In otheions in supercharge are directly related to the total energy of
words, even though supercharge densities are fermionic ophe thermal ensemble. A spatial Fourier transform of the
erators with vanishing expectation value in any conventionaWard identity(53) gives

statistical ensemble, the dynamics of supercharge fluctua-

tions may produce distinctive effects in ordinary bosonic ob- 006%('(1): — ikjég“ﬁ(k,t):O(k), (54)
servables. We will see that these expectations are largely
correct. which directly shows that long wavelength fluctuations in

supercharge density must relax arbitrarily slowly.

A. Supercharge fluctuations

The hydrodynamic nature of supercharge densities is re-2%qrmally, the transformation of a statistical density maisix
flected in the long-time behavior of the corresponding correynder any infinitesimal symmetry transformation is defined by the
lation function, condition that Trgp ©)=Tr(p 0), where® is any observable.

_ This is a generalization of the relation between the Sdinger and
Chp(X)=(S(x)S5(0)). (51)  Heisenberg pictures, and expresses the equivalence between the ac-
tive and passive views of symmetry transformationsgIfs the
Finite-temperature thermal ensembles are not invariant und&enerator of the transfqrmation, then the infinitesimal_transforma—
tion of the observable i$O=[G,O]. For normal(bosoni¢ sym-
metries, this of course implies thap=—[g,p], so invariance un-
2\We follow the notations of Wess and Bagg@#] for spinors. In der the symmetry means the densi_ty _m_atri?commutes with the
_ - | symmetry generatog. But for an infinitesimal supersymmetry
particular, undotted early greek indicesp, . .. label ¢,0) two-  transformation, G=¢Q, with ¢ an external Grassmann
component Weyl spinors, while corresponding dotted indices labebpinor which anticommutes with all fermionic operators. In this
(0,3) conjugate Weyl spinors. These indices are raised or loweredase, one has Tp(£Q,0])=Tr(&p[Q,01)=Tr([£p,Q]O)

using the antisymmetric tensae,;=e*?=e€,;=€?=1, so that =Tr({p,£Q} O), so the variation of the density matrix is the anti-
Q.= —£,Q° andE@,: _aa&_ Extended Pauli matrices are Commutator with the supersymmetry generatdip={p,{Q}
“Z,isE(_ll") and;mﬁz(_ 1,— &), and the spinor representation =&{p,Q}, nqt the commutato(We assume throughout thﬁta}nd
f the Lorentz group ares*) ,;Eé((r#.;mﬁ O are bosonic oper_ators—possnbly_ constructed by multiplying odd

generito_rs 0 S - g P o a 4\ aa numbers of fermionic operators by independent external Grassmann
—o.,0"F) and (U”V)QBE%(U”MUZB—UW“UQ:B)- spinors) Therefore, even though the equilibrium canonical en-

28n N'=1 supersymmetry, conservation of thé1) R symmetry  semblep=Z"'e #" commutes with the supercharg this does
current requires scale invariance. Non-scale invariant theories wilhot mean that the canonical ensemble is invariant under supersym-
have anomalies in thR symmetry current, although it is often then metry.
possible to combine the anomaloRsymmetry with an anomalous  *°This assumes one suitably defines the short-distance subtraction
chiral symmetry to yield a non-anomaloBssymmetry. If there is  in the renormalization of the product of supercurrents to remove
no non-anomalouR symmetry, then th&-charge density will not  what would otherwise be contact terms on the right hand side. One
be a hydrodynamic degree of freedom. For such theories, ignore atian always do so, provided the supersymmetric theory under dis-
mention of theR-symmetry current in the following discussion. cussion exists.
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B. Super-thermodynamics —— B UZBEBG-S)

Having realized that supercharge densities are hydrody- o o .
namic degrees of freedom in supersymmetric theories, we =B E&Y(e oO—Wmu)aB uP, (56)
would like to construct the appropriate hydrodynamic equa-
tions in complete analogy with the earlier non- where O(u?) corrections have been dropped in the last
supersymmetric treatment. To do so, we must construct thequality. Here§ is an independent Grassmann spinor. The
appropriate constitutive relations for the spatial part of thentermediate expectations in E&6) denote expectation val-
supercurrentand theR-symmetry current and also under- ues in the usual canonical ensembiéth 4-velocityu), and
stand possible new terms involving products of supercharg#ace cyclicity and the supersymmetry algept8) have been
densities which might appear in the constitutive relations foused. Expanding to higher order in and x would lead to
the stress tensor and other ordinary symmetry currents.  corrections of ordejx? which will not be relevant for our
As discussed previously, non-derivative terms in constitupurposes. Similarly,
tive relations are completely determined by equilibrium ther-

modynamic derivatives of the free energy. This is true pro- V—l<§a6d>ﬂ ;Ev—lTr(;,SEdad)
vided one has introduced chemical potentials conjugate to all ' o o .
conserved densities of interest. To do this for a supersymmet- =B u%eoc’—wo- Uaj &P, (57)

ric theory, we must first understand the generalization of or-
dinary thermodynamics to “equilibrium” ensembles in up to corrections of order?u [and O(u?)].
which there is a non-zero expectation value of the super- Naively, one would expect the generalized partition func-
charge, produced by turning on a super-chemical potential.tion

To construct an equilibrium state with non-zero super- o o
charge density, consider generalizing the usual statistical op-  Z(B,u,u,u)=Trexd B(u,P’+ uQ,+ 1, Q%] (58
erator(3) by adding supercharges multiplied by Grassmann-

valued super-chemical potentidfs, to be a generating function for expectation values of super-
_ charges and products of supercharges. However, this is not
p=Z Yexd B(u,P"+ uQ,+ 1;,QY]. (55  true. Although the two terms we have added to the exponen-

o _ _ _ tial defining ps both commute with the total momentuRt,

To simplify expressions, we are temporarily suppressing anyhey do not commute with each other. As a result, the deriva-
chemical potentials for bosonic conserved charges. Note thgle (9/9)InZ(8,u,u,x) does not equaB(Q). In fact, the
the addition of spinorial chemical potentials coupled to thegeneralized partition function is completely independent of
supercharge®, andQ, maintains translation invariance of the super-chemical potentials, and simply equals the usual
the equilibrium state but explicitly breaks rotation invari- (physica) partition function,
ance.

In the ensemble described py, the supercharged,, and Z(B,u,p, ) =2Z(pB,u,0,0)="Tref"". (59)
Q,, have non-zero expectation values proportionaktand

. . . . — To see this, first note that
u, respectively. More precisely, to first order inand u,

VHEQu) i=Tr(ps £°Qu)1V THpe @P = pe T (PP’ ], (60

=— B(pQ, £°QIV

=— B EWP(3{Q,. QY iTr[eﬁ“up”-.-]=Tr (—1)Fieﬂuup”-.- . (6Y)
du® du®

and therefore

IThough fermionic chemical potentials may seem peculiar, ondiere (—1)7=e*™z is the operator which multiplies all
can regard them as a non-dynamical gravitino field, to which thedosonic states by-1 and all fermionic states by 1. This
theory is coupled. It should be stressed that these generalized de@perator commutes witP" and anticommutes with the su-
sity operators do not have the usual statistical interpretation. Theipercharges. Next, factorize the exponentiali;rusing the
diagonal matrix elements, although commuting, are not real numpaker-Campbell-Hausdorff formula,
bers, and therefore cannot be viewed as statistical probabilities.

Nevertheless, th_e_se_ generalized der_13ity Qperators may formally beeﬁ(uypu#aQaJr;&@): 0BUPY oBuQ, eﬁﬁzﬁ&

regarded as equilibrium ensembles, in which generalized thermody-

namic reIatiqns hold. T_he logical alternative Qf introducir_\g real- xe_(llz)BZ[MaQa’;dad]

valued chemical potentials for supercharges is formally inconve-

nient a_nd also fails tq yield any satisffa(_:tory physical interpretat?on. — eBuQ, eﬁ;daa oBP(U” Bu” o’ 1)
In particular, a density matrix containing a real-valued chemical '
potential for supercharges, when applied to the union of two disjoint (62)
physical systems, does not factorize, even if the two systems are

causally disconnecte®5]. Consequently,
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which commute the the supercharges. But if a non-zero

J _
E —yZ(,B,u,,u,,u,) chemicgl potenting for thg R charge is present, then the
I generalized partition function does acquire dependence on
1 P the fermionic chemical potentials. The lowest such term is
== Tr| (—1)F—ePr eBraQ® BP (U= Bu o), n) proportional touuug; this term is directly related to the
B ou” equilibrium form of theR-charge current shown below.
. L, — N — = In a similar fashion, one may evaluate the generalized
=Tr[(-1)7(Q,~ Bol, u*P,)efr Quefri? equilibrium expectation values of the bosonic symmetry cur-

rents and the supercurrents. Ordinary bosonic conserved cur-
rents commute with the supercharges, and hence are unaf-
fected by super-chemical potentials. In the presence of non-
zero ordinary chemical potentials,

X @BP (U= Bu 7l n )]
—Ti[(—1)F A+ eBraQ" @BP (U~ Bu® o), 1)
X(=Qy— ,B(T;aﬁapv)]

_ - <‘]g>u,ﬁzﬁa ut (67)
=T{(=1)7(=Q,+ Boy, u"P,)efr el

as usual, Whel’e‘_la is the equilibrium density of the con-

X @BPuU" =B o m)], (63)  served chargél,. For the supercurrents one finds

The penultimate step uses the anticommutatiorQoivith Ay —— — BTN (%6 P+ O w2 68

(—1)F and trace cyclicity to moveQ from the left to the (€ Su)ui= BT (7 0" +Oup’), (689

right end of the trace. The final step uses the supersymmetry o — v =5 —

algebra to commut€) through the exponential @: (€"San) = —BT (190, ;E7)+O(up), (68b)

[Qy,eﬁ;dadkﬁE’{Qy,ay}eﬁ;évad whereT#*=wu*u’+Pg*" is the usual equilibrium form of
o [ the stress-energy tensor. These results reflect the supersym-
=2B o, u'P,efra, (64  metry transformations
Since the last line in Eq63) is minus the second line, this {Qg ,§§}=2T*Vo-gd+(space-time gradients (693

shows that §/du”)Z(B,u,u,u)=0. One may show that
(9l dp;)Z(B,u, ;) =0 in a completely similar fashion.

In other words, although adding fermionic chemical po-
tentials to the statistical operator induces non-zero expecta- _
tions values for the supercharge densities, it does not chang@d {Q ,ShL, 1Q; .S} being pure space-time gradients.
the partition function at all. This means that the “thermody- (The expectation value of the space-time gradient terms van-
namic pressure,” defined ag8¥) InZ, is not affected by ish in all translationally invariant equilibrium statg&or the
the presence of non-zero equilibrium supercharge densities.=0 components of these commutators, the unspecified
In fact, this is required if the thermodynamic pressure is tospace-time gradients are strictly spatial gradients which van-
agree with the microscopic pressure, defined in terms of thish on spatial integration, so that the anti-commutation rela-
expectation value of the stress tengde 1 Tr(ps T;)). Tosee  tions (69) are consistent with the supersymmetry algebra
that the microscopic pressure is ajsandependent, one may (49)- For theR-symmetry current, one finds
repeat the steps shown in E@3) when there is an addi-
tional insertion of the stress-energy tensor. This yields

{Qz.Sht=2T", o+ (space-time gradients (69b)

— 1 - , —
(I =R U= 5 BT (0 i) + O (i),
’ (70

B ou®

A 1 F A
(M) i=5((~DIQu. T (69
whereng, is the equilibriumR-charge density in the absence

But the supersymmetry transformation of the stress-energO;:#]’i)CeaH Choetgqr:figllspgrt;gallrsérr:r:ﬁet?\ré?l-?rﬁ/?glritcl)%lnqust;t% er;
tensor involves spacetime derivatives of the supercurren b

(see, €.9.[26)) of the supercharges with the current,

i [Q..J&]=S,+ (space-time gradients (719
[Qu. T*1= = 54(0"),79,Sp+ ()" 3,8}, (66) B B

[Q.,Jk]=—S, +(space-time gradients  (71b
whose expectatiof65) vanishes in the translationally invari-

ant equilibrium ensemble. Note that the relation(70) implies that non-zero super-

None of the above results are affected by the presence @hemical potentials induce a non-zéeharge density even
non-zero chemical potentials for ordinary conserved chargewhen theR-charge chemical potential vanishes.
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C. Supersymmetric constitutive relations The quadratic coupling to supercharge densities follows di-

We can now construct the required constitutive relationd€Ctly from the(generalizel equilibrium form (70) for the

for the stress tensor and supercurrent. As before, we wiffXPectation of th& current, combined with relatiov2).
need to include all possible terms which are linear in fluc- | N€ remaining constitutive relations are those of the su-

tuations away from a reference equilibrium stéathosen to Percurrents. The appropriate form is more complicated than
have vanishing charge, supercharge, and spatial momentuf’ POSOnic currents because the supercharge density is a
densitieg involving one spatial derivative, as well as terms SPINor. There are two independent rotationally covariant
without derivatives which are linear or quadratic in fluctua-OrMS in which a spatial gradient can be app‘I'|edBto a spinor
tions. Neglected terms involving either more derivatives orP« t0 form a vector spinor, namely'p,, and (@), Vi ps
more fluctuations will not affect the leading long-time tails in Consequently, the supercurrent constitutive relations have
stress-stress or current-current correlators. the form

We will usep, andp,, to denote théGrassmann valugd 5
supercharge densities in the non-equilibrium ensemble of in- i i ij i—o
terF()ast. In gquilibrium, the relatior(§8(; imply that the super- Se=—DsV'pe=Dyl(0"), Vipp- ;_(U )’ ps
charge densities are related to the super-chemical potentials
via

1P
- B +=pom+ :Zwk(U'Ek)aﬁ Pg; (769
pu=B(z00—War-u) i, e e

— — o, — _ _
pa=mBufleotowe e, (T2 g by, D, @), - oy (o),
neglectingO(u?) corrections. For the reasons discussed in €
the preceding subsection, to quadratic order in deviations I - R o
away from the reference equilibrium state, the pressure con- +=p, 77'+_—277kp;3(5ko')ﬁa. (76b
tains no coupling to supercharge densities. Consequently, the € €

constitutive relation for the stress is identical to the previous o ) )
result(21), except for the inclusion dR-charge density fluc- HereDs,D,, are two new diffusion constants, which multi-

tuations along with other bosonic charge fluctuatitfns, ply the two structures allowed by rotation invariaféethe
remaining non-derivative terms are dictated by the equilib-

_ 1 1 1 rium results(68), when expanded to first order in flow ve-
P+uvioe+= E(6e)2+ = EapnaNp+ = ErNG locity. The third term, which is linear in supercharge density,
2 2 2 o
reflects the fact that a constant supercharge density is not
rotationally invariant, and hence induces a non-zero constant

T = 5l

I
_vgi + WTWJ_ y 8 V@ spatial supercurrent. The convective terms are more compli-
w w cated than jusp,7'/w, because of the presence of this linear
5 non-derivative term. If the suBersymmetric theory in ques-
— 77}( Vigd+vig— §5‘l V-l (73) tion is also scale invariant, theﬁ‘Sﬂ must vanish, as it is in
the same supersymmetry multiplet as the trace of the energy-

momentum tensor. Applying this constraint to the constitu-

The consitutive relations for bosonic internal symmetrytive relation(76), one finds that the two diffusion constants
currents are unchanged from the non-supersymmetric case o ) . . .
must coincide D =Dy, in scale-invariant supersymmetric

theories.
. Ng
Ja=—DapVnp+ —, (74)
w D. Relaxation of supercharge fluctuations
while the new constitutive relation for tHe-symmetry cur- The constitutive relatior{76), combined with conserva-
rent is tion of the supercurrent, allows one to determine how long-
o wavelength fluctuations in supercharge density relax. Insert-
) ngmr P _ —p ing the constitutive relation into the continuity equation
JrR=7 DRV”R+T T ogePa T P (79 4,p,=—V-S,, neglecting the non-linear convective terms,

and Fourier transforming in space yields

9+ Dk?) P —icdk-oa®) Plps(tk)=0, (7
32In writing the constitutive relatiori73), we have assumed, for [(9+ Dk) 5 —icd 7 1P stk (77

simplicity, that the global bosonic symmetry currejtare all vec-

tors, rather than pseudo-vectors, and that parity is a symmetry of the_, ) o _
theory. This prevents & ,zn,Ng Cross term from appearing in the Assuming parity invariance of the theory ensures that the diffu-
constitutive relatior{73) for the stress, and likewise ensures that theSion constants for the left and right handed supercurrents are the
R-charge density does not mix with other global charge densities i$a@me. The Kubo formula for the supercharge diffusion conggnt

the constitutive relation&74) and (75) for the currents. is eDg=—lim,, o35 /d*x ei“’XOEO"*BCEB(x).
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where 05577/; The solution in the smak- limit shows
weakly damped, propagating behavior,

pa(t,K)=e PK1[ 58 cog |K|cd)

+i(k-0a®) P sin([klcd)]pg(0K).  (78)

PHYSICAL REVIEW D68, 025007 (2003

constitutive relation(73) that supercharge density fluctua-
tions have no effect on the leading long-time tail in the
stress-stress correlator. Consequently, the stress-stress cor-
relator has the same form as in the non-supersymmetric case
[i.e., EqQ.(42) for scale-invariant theories, or EA11) for

the general caggrovided theR charge is included as one of

the global bosonic charges. Similarly, the leading long-time

This is a propagating collective excitat_io.n which is distincttajls (37) in correlators of ordinary bosonic symmetry cur-
from normal sound. In some respects, it is analogous to segents are unaffected by the presence of supercharge density

ond sound in a superfluid. Note that the velodity P/e of

fluctuations.

these “supersound waves” is always less than the ordinary In contrast, the presence of a quadratic supercharge den-

speed of sound = \dPlde. In scale invariant theorieg,g

=1/3 whilev,=1/\/3. These collective excitations in super-

charge density were previously identifigdnd found to
propagate at speetd) in Ref.[27].

Just as in the previous non-supersymmetric analysis, t
linearized non-equilibrium relaxatiof78) may be converted
into a statement about the time dependence of the equilib-

rium supercharge density correlator. Let

C(t,K) o= f d3xe’ik'X(Sg(t,x)goﬁ(O,O)), (79

h
j A3 (2 {50600, (00}

sity term in the constitutive relatiofr5) for the R-symmetry
current means that the long-time tail in tResymmetry cur-
rent correlator is affected by supercharge fluctuations. One
finds that the leading large time behavior is

5k'[ (TIW) xr ic? .

12| [(Dgty,) w12 [2Dgmlt]1%2)

If the same analysis is applied to the spatial supercurrent

where the expectation value is in the reference equilibriunyorrejation function, one finds that the second oragr

state with vanishing chemical potentials. The srkdiimit of

the equal time correlator is fixed by the supersymmet

algebra®*

C(0k=0),4=—s0"

o (80)

Consequently, the linear response re$t®) is equivalent to

the statement that, in the smélllimit, the equilibrium su-

percharge correlator for large times has the form
C(t,K) 5= —ze P< N[ o7 cog|K|cd)

+i(k- 0) o sin([Klcgd)]. (81)

One finds the same result for the smhlbehavior of the
supercharge correlator with the opposite ordering,

C(t,K) o= J d3x e“k'x(gz(t,x)sg(0,0))

=—geDs kz"‘[ag-ﬁ cog |klcd)
+i(k- o) psin([Klcd)]. (82)

E. Supersymmetric long-time tails

As in the non-supersymmetric case, second order terms ignd

terms in the constitutive relatiofr6) do not generate long-

ime tails. Because the speed of ordinary soung (and

supersoundd,) differ, fluctuationgwith the same wave vec-
tor) in momentum density and supercharge density cannot
remain in phase. This is analogous to the fact that only trans-
verse momentum density fluctuations, not longitudinal sound
waves, contribute to the long-time tafB7) of ordinary
current-current correlators. So the supercurrent correlator
(S,(t)S,(0)), at k=0, should decay exponentially in
time3®

The differing long-time behaviors of the stress tensor and
supercurrent correlators does not conflict with the fact that
the stress-energy tensor and supercurrents belong to the same
supersymmetry multiplet. The supersymmetry algebra im-
plies simple relations between-(1)" inserted thermal cor-
relation functions of conserved currents, but not between
conventional thermal correlation functions, for the reasons
noted in footnote 29.

IV. LONG-TIME TAILS IN  N=4 SUPERSYMMETRIC
YANG-MILLS THEORY

As a specific application, the above discussitivially
generalizegl may be applied toAN=4 supersymmetric
SU(N.) Yang-Mills theory, at the origin of the moduli space
at non-zero temperatutfeOnce again, hydrodynamic

the constitutive relations are sufficient to understand the
leading long-time tails irk=0 correlators of all conserved
currents. Proceeding in exactly the same way as in Sec. Il E

- _ "3%Becausec,<vs, one finds that higher-ordgr=" terms in the
one sees from the absence of anyterm in the stress tensor

supercurrent constitutive relation also do not generdigher-
ordep power-law tails.
3The vacuum degeneracy associated with a non-trivial moduli
34n our conventionsg®=—1, soC(t=0k=0) is strictly posi-  space is lifted at non-zero temperature. For sufficiently high tem-
tive, as the equal-time correlation function of any operator with itsperatures, the only stable equilibrium states lie at the origin of
Hermitian conjugate must be. moduli space.

025007-14



HYDRODYNAMIC FLUCTUATIONS, LONG-TIME TAILS, . .. PHYSICAL REVIEW D 68, 025007 (2003

degrees of freedom are densities of conserved charges. ift,t,)=348,,. The resulting long-time tails in the
N=4 supersymmetric Yang-Mills theory, the supersymmetryrR-symmetry current correlatofgt k=0) are

algebrd’ is generated by the charges of the dilation current

i5=x,T#", the special conformal currents{=2x,x"T4 3u/1 ik y

—X2TH, and the special supersymmetry currerfs, d™(z {jra(t.X).]r6(0.0)})

=x,0.. k" andSh. =x, o, Sk, in addition to the stress-
energy tensoff*” and supercurrentS}, ,§Xd. The index — TRIEIT: "
A=1,... 4 is theextended supersymmetry label. There are 16¢ [(Dr+v,) @[t]]¥?*  216[2Dgt]]

also 15 bosonidR-symmetry currents, whose charges gener—_l_he equivalent small-frequency expansion of the speciral
ate a non-anomalous glob&8UJ(4)g symmetry. quiv quency expansi P

The currentgf, K{, S4,, andSk;, are all constructed density is given by
from the energy-momentum tensor and ordinary supercurqy , . |
rents. Therefore, the time evolution of the charge densities of | dt d*xe'“Y([jra(t,X),irp(0.0)])
these currents is completely determined by the time evolu-

tion of the energy-momentum tensor and the supercurrent. In = =5, 54 (c(®+c®, /|w|)+O(|w|3’2), (86)

other words,j3, K2, 89, andSQ,, are not new hydrody-

namic degrees of freedom, independent oM, SQ, and ~ Where
52&. No Abelian magnetic fields appear as hydrodynamic
degrees of freedom, since the gauge group of the theory is
SU(N), not U(N.). Moreover, holographic arguments im-
ply that the theory at non-zero temperature has a mass gap 1
[5], in accord with the assumption of finite correlation length n_ AR 32 -3
made in Sec. . == =12t y,)] ¥~ 575 7D (87H

The discussion of supercharge fluctuations in the previous
section generalizes easily to the case\6f 4 supersymme- In writing expressiong84) and (85) we have used the fact
try. In particular, the constitutive relation for the stress tensotthat in a thermal state without chemical potentials for the
has the same forrti73), except for the addition of a funda- SU(4)g charges, the matrix of diffusion constants, as well as
mentalSU(4)g index on the superchargpg,, and an adjoint  the R charge susceptibility, must be invariants of the group:
index on theR-charge densitieBg, (i.e.,a=1,...,15). The (DRg)ap=Dr Sap,(XR)ab= XR Sab-
theory is scale invariant, and therefare: 3P, and the bulk The amplitudes of the long-time tails for the stress tensor
viscosity vanishes, as does the coefficight. Hence, fluc- ~ correlator(42), and theR-current correlato(85), depend on
tuations in theR-charge densities do not contribute to con-the values of the equilibrium energy densitythe R-charge
stitutive relation for stress to second order, which thereforgusceptibilityyg, the shear viscosity), andR-charge diffu-
must have the same for(23) as in a non-supersymmetric sjon constanDg. These parameters must be treated as input
scale-invariant theory. Consequently, the long-time tail forfrom short-distance physics. In a weakly coupled theory,
the stress tensor correlat@t k=0) is given by the previous these quantities can be computed in perturbation theory, but
result (42), and the equivalent small frequency form of the no field-theoretic calculation is available when the coupling
spectral density is given by E46). constant is large. However, the AdS/CFT correspondence

The constitutive relation for supercurreft6) stays un-  predicts specific values for these parameters/in4 super-
changed to second ord@xcept for the addEon of the index symmetric Yang-Mills theory in the limit of largé, and
A, and the specialization t®,=D, and Ple=1/3). No large 't Hooft coupling. The equilibrium energy density is
long-time tail is present in the supercurrent correlator, for theevaluated from the thermodynamics of the dual anti—de Sit-
reasons discussed in the previous section. Hence, the correr black hole, and is predicted to be
sponding spectral density is analytic at zero frequency. 5

The constitutive relations for thHe-symmetry currents be- 37

— °7 214
come =3 NET=. (89

XrT & Sap 1 s

(89

2D
c0) = %XR, (873

The shear viscosity is evaluated as the zero-frequency limit
o NRam 1 — AB=B of the absorption cross-section of gravitons by the black
Jra= ~DrVNRrat W ;;PAd(ta) o pep,  (84) three-brangwith gravitons polarized parallel to the brane
[12], and is predicted to be

H o
wheret, are the generators &U(4), normalized so that n= §N§T3. (89)

%’See, for example, Ref26], for an introduction to theV’=4 Hence, in this limit the ratioy,= nlw is predicted to equal
algebra. 1/(4wT). The diffusion constant and susceptibility for
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SU(4)g charges are extracted from the pole structure of thélack hole background is not known analyticaffyHowever,
thermal correlation function ofSU(4)g charge densities it would be quite interesting to reproduce hydrodynamic re-
[28], and are predicted to be sults like Eq.(92) directly from supergravity loop correc-
tions. Just verifying the form of the small-frequency non-
analyticity from the gravity amplitudes, without computing
1 the precise coefficient, would be a worthwhile goal.
DR:m' (90) Finally, given that in various AdS/CFT-like scenarios,
finite-temperature field theories are believed to be exactly
equivalent to string theories on backgrounds with thermal
horizons, it is natural to expect that there must exist a corre-
spondence between appropriate effective theories as well.
Namely, string theories on thermal backgrounds should have
low-energy descriptions which are dual to effective long dis-
XR=—N§T3- (91 tance descriptions of finite-temperature field theories, spe-
8 cifically hydrodynamics and kinetic theoryin weakly
coupled regimes As we have seen, constructing a string
theory dual of hydrodynamics will necessarily require incor-
The supercharge diffusion constabt has, to our knowl- porating string loop effects in order to reproduce aspects of
edge, not yet been evaluated, but should be computable Hgng distance dynamics, such as long-time tails, which are
the methods of Ref.28]. sensitive to the non-linearities of hydrodynamics.
Although these strong couplin@nd largeN,) limits of
transport coefficients, susceptibility, and energy density can-

and
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1 )
= f o d®x € ([T (%), T(0)])
w APPENDIX: LONG-TIME TAIL IN STRESS-STRESS

CORRELATOR
1 1 1 3
=| 59k + 5 6 0= 3 ij bk | T
In a theory, which is not necessarily scale invariant, in-
T, 56+ 632 [7|w] 2 serting the stress tensor constitutive relati@i) into the_
>Ne™ %0 T +0(|w[*) (92)  zero-wave-number connected stress-stress correlator gives

for the spectral density of the stress-stress correlator in the
strong coupling, largeN. limit. This correlator is a non- =12 {Tii(t) TK(0)}) ¢omn
trivial probe of the real-time dynamics of strongly coupled
supersymmetric Yang-Mills plasma. Because the AdS/CFT P
prediction of the supercharge diffusion consténtis cur- =38 5 vsWT+=H \Hg Baman o qa(t)
rently lacking, we cannot give an equally explicit result for w
the R-symmetry current spectral densii§6). £ ¢
The result(92) displays the expected Nf relative sup- + =3 Hi Beg, mpma(t) + —=Hh, 64 B mon (1)
pression of the non-analytic part, and also shows that the 2w
ratio of the leading analytic to the leading non-analytic piece 5
does not depend on the coupling consigyy, of the gauge + & SN B,, , (1) + 227 5 5K By o ppi()s
theory in the strong coupling limit. In the language of the 4 ' 4 allb el
AdS/CFT correspondenca;’/Rf\dS= 1/\/gY2MNC, and 4mgq (A1)
=g2,,. The ten-dimensional gravitational constanscales
as gsa’ 2~R}‘WS(NC. Thus, it is string/supergravity loops, ) o o )
proportional tox?, which are responsible for Mf correc-  whereH! =146+ 36,8, —v261 6y, and
tions in field theory correlators. The corresponding one-loop
amplitudes are not straightforward to evaluate, given that—
even the scalar propagator on the plane-symmetric AdS3&or progress in this direction, see REZ9].

I
it
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B i i,k (1) = f d*(3 {7 (t, ) 7 (t,%), 7(0,0)7'(0.0)}) conn: (A2)
B i os(t) = f d* (3 {7 (t,) 7 (t,%), £(0,0)%})conn (A3)
Bee.nimi(t)= f d*x (3 {&(t,%)% '(0.0)7 (0.0} conn: (Ad)

Beo,es(t)= f d*x (3 {e(t,%)% £(0,0)%}) conns (A5)

By.op wopg ()= f d*x (3 {pa(t:X) po(t,X), pc(0.0) pa(0.0)}) conn- (AB)

Evaluating these correlators in the hydrodynamic regime, as described in Sec. Il E, yields

d3k
B,n.iﬂ.j'ﬂ.kﬂ.l(t):J\ (ZT)s[Aﬂ.iﬂ.k(t,k)Aﬂ.jﬂ.l(t,—k)'i‘A,n.iﬂ.l(t,k) ALkt —K)]

w2 T2 81+ o+ 8o 2616+ 7 (6% + 6851
- + , (A7)
15 (4mydt))>? (87y,|th*?
d3k w2 T2 5
Brin ee(t) = Beg mini(t)= f 2 Agig(t,K) Agi(t,— k)~ : (A8)
”’ i (2m® " | 3v2 (4mydlt)¥?
B (t)—j dk 2A, . (t,k) A, (t,—k) weT? ! (A9)
(2m® T ve (4mydt)¥?
d3k
5 el 5 r !+ 5 rq’ 5 el
12 12 12 _1/2 Ya’c’ 9b'd a’d’ Ob’c
~ Xaa' Xob' Xco' Xdd : (A10)
aa’tbb’Acc’Add [47T(Dar+Dbr)|t|]3/2
In writing the result(/A10), we have chosen to use a basis for conserved charges in which the symmetricym&fixy/? is
diagonal and has eigenvalufd3}.
Setting everything together yields
i — 5, 1 [(X?E x"Dap)®  2T%(1 1 1
VIG{TI(1), THO0) ) =6 8 TWoi+ = 8 6 +——| 568+ = 8 6k—3 8 6
<2{ ( ) ( )}> ij ¢kl s’ o Y ki < [4’7T(Da+Db)|t|]3/2 15 | 2 ik ]l 2 il 9jk 3 i Kkl
3 2
a2, P 2=
1 7 2 5 (1 3Us+ sz fW) 4(1_305)2 (All)
X + — 0jj Ok| + ,
(4myth¥? (8my,|th¥2] 9 (4mygth? (87y,|th¥?
up to terms vanishing faster than~%? as|t| — .
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