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Hydrodynamic fluctuations, long-time tails, and supersymmetry

Pavel Kovtun* and Laurence G. Yaffe†

Department of Physics, University of Washington, Seattle, Washington 98195-1560
~Received 15 March 2003; published 7 July 2003!

Hydrodynamic fluctuations at a nonzero temperature can cause slow relaxation toward equilibrium even in
observables which are not locally conserved. A classic example is the stress-stress correlator in a normal fluid,
which, at zero wave number, behaves at large times ast23/2. A novel feature of the effective theory of
hydrodynamic fluctuations in supersymmetric theories is the presence of Grassmann-valued classical fields
describing macroscopic supercharge density fluctuations. We show that hydrodynamic fluctuations in super-
symmetric theories generate essentially the same long-time power-law tails in real-time correlation functions
that are known in simple fluids. In particular, at23/2 long-time tail must exist in the stress-stress correlator of
N54 supersymmetric Yang-Mills theory at non-zero temperature, regardless of the value of the coupling.
Consequently, this feature of finite-temperature dynamics can provide an interesting test of the AdS/CFT
correspondence. However, the coefficient of this long-time tail is suppressed by a factor of 1/Nc

2 . On the
gravitational side, this implies that these long-time tails are not present in the classical supergravity limit; they
must instead be produced by one-loop gravitational fluctuations.

DOI: 10.1103/PhysRevD.68.025007 PACS number~s!: 11.10.Wx, 11.25.Tq, 11.30.Pb
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I. INTRODUCTION

Holographic AdS/CFT duality implies that properties
strongly coupled large-Nc quantum field theories can be d
duced by doing calculations in classical~super!gravity
@1–4#. The correspondence is believed to hold at non-z
temperatures, and can be helpful in extracting informat
about both supersymmetric and non-supersymmetric theo
@5#. The most well-known example of AdS/CFT duality
N54 supersymmetric Yang-Mills theory with the gaug
groupSU(Nc), in 311 dimensions, which is believed to b
dual to type IIB string theory on the AdS53S5 background
@4#. However, to date, there are very few physical proper
which can be independently calculated on both sides of
duality and thus used as non-trivial tests of the finite te
perature version of the correspondence.

In this paper we focus on the low-frequency real-tim
dynamics~rather than static thermodynamics! of a finite tem-
perature field theory. The relevant degrees of freedom
hydrodynamic fluctuations, by which one means those
grees of freedom whose relaxation time diverges with
wavelength.1 A suitable version of hydrodynamics is the a
propriate form for an effective theory characterizing the
degrees of freedom. As we will discuss in detail, one con
quence of hydrodynamic fluctuations at a non-zero temp
ture is the presence of long-time power-law tails in real-ti
correlation functions of conserved currents@6–8#. For corre-
lations in the spatial parts of these currents at zero w

*Email address: pkovtun@u.washington.edu
†Email address: yaffe@phys.washington.edu
1In normal fluids, the relevant hydrodynamic degrees of freed

are fluctuations in energy and momentum density, or equivale
temperature and local fluid velocity. Hydrodynamic variables c
also include fluctuations in charge densities associated with
globally conserved currents, as well as order parameter phase
tuations~Goldstone modes! in theories with spontaneously broke
continuous symmetries.
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number, one findst2d/2 behavior ind spatial dimensions, or
equivalently, nonanalyticvd/2 terms in the small-frequency
behavior of the associated finite-temperature spec
densities.2 These long-time tails are a generic feature of s
tems which behave as fluids on arbitrarily long time a
large distance scales; their existence, and the value of
power-law exponent, are insensitive to the microscopic
tails of the theory. Hence, long-time tails in real-time therm
correlators may be added to the small set of observa
about which one can make firm predictions even in stron
coupled theories.

We will apply our general results to the long-time beha
ior of thermal correlation functions inSU(Nc) N54 super-
symmetric Yang-Mills theory. Because this is a scale inva
ant quantum field theory, it cannot have phase transition
any non-zero temperature~in infinite volume!.3 In particular,
it must act like a fluid at all non-zero temperatures, a
hence should have a valid hydrodynamic description of
long-time dynamics. Consequently, one should~for reasons
we will discuss! expect the zero-wave-number stress-str
correlator to show power-law relaxation,

E d3x^$Ti j ~ t,x!,Tkl~0!%&;t23/2, ~1!

as t→`.

ly
n
ny
c-

2More precisely, the spectral density divided byv, which is re-
lated to the power spectrum of thermal fluctuations, has a n
analytic uvu(d22)/2 term at low frequency, unlessd54n12 in
which case an additional lnuvu is present. In many respects, long
time hydrodynamic tails are analogous to the non-analytic ch
logarithms which appear in one-loop chiral perturbation theory~at
zero temperature! due to quantum fluctuations of massless Go
stone bosons.

3TheNc→` theory has a phase transition in finite volume. This
irrelevant for our considerations. See Ref.@5# for more detailed
discussion of the phase diagram.
©2003 The American Physical Society07-1
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On the gravitational side of the AdS/CFT corresponden
the stress-stress correlator can be extracted from the ab
tion cross sections(v) for scattering of gravitons by non
extremal three-branes@9,10#. This calculation was performe
by Policastro and Starinets@11#. In the case when the grav
ton frequencyv was small, Policastro, Son and Starine
@12# interpreted the zero-frequency limit as the shear visc
ity of N54 supersymmetric Yang-Mills plasma. In Ref.@11#,
the small frequency behavior of the cross section was fo
to have the forms(v)5s(0)1O(v2). However, if the
stress-stress correlator does exhibit the power-law tail~1!,
then AdS/CFT duality implies that the corresponding gra
ton cross section should be non-analytic at smallv and be-
have ass(v)2s(0);uvu1/2.

This apparent contradiction is the motivation for this p
per. Our goal is to determine the coefficient of the long-tim
tail in the stress-stress correlator~1!, and in analogous corr
elators involving spatial parts of other conserved currents
do so, we will have to construct the correct effective desc
tion of low-frequency, long-distance dynamics in supersy
metric theories. We will find that supersymmetry~or super-
conformal! invariance of a quantum field theory does n
preclude the existence of long-time tails, in accord with h
drodynamic expectations. However, in largeNc gauge theo-
ries, we will find that a 1/Nc

2 suppression appears in th
amplitude of long-time tails. Thus, on the gravity side of t
correspondence, the small-frequency non-analyticity can
be seen in classical supergravity~considered in Ref.@11#!,
but should emerge from a one-loop calculation on a pla
symmetric AdS black hole background.

The paper is organized as follows. Section II revie
what is meant by an effective hydrodynamic theory and su
marizes the properties of hydrodynamic fluctuations in ty
cal high temperature relativistic theories. Included is a d
cussion of why hydrodynamics predicts that fluctuations
the stress tensorTi j , at zero wave number, decay ast23/2 at
long times due to their coupling to both sound waves a
transverse momentum density fluctuations. In Sec. III
construct effective hydrodynamics for supersymmetric th
ries, and argue that long-time tails are necessarily
present. The treatment of hydrodynamic fluctuations in S
II and III is applicable to general field theories. In Sec. IV w
specialize the general results toN54 supersymmetric Yang
Mills theory in the context of the AdS/CFT corresponden

II. EFFECTIVE HYDRODYNAMICS

Hydrodynamics may be viewed as an effective theory
scribing the dynamics of a thermal system on length a
time scales which are large compared to any relevant mi
scopic scale@13,14#. It is a classical field theory, whose field
can be regarded as expectation values in some n
equilibrium thermal ensemble of microscopic quantum o
erators averaged over spatial volumes large compared to
croscopic length scales. The beauty of a hydrodyna
description is that it applies to any system which acts lik
fluid on sufficiently long distance scales, regardless of
strength of microscopic interactions. We will be concern
specifically with near-equilibrium behavior and the resulti
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dynamics of small perturbations about some equilibriu
state.

A. Hydrodynamic variables

To construct the appropriate effective hydrodynamics
a particular physical system, one has to identify the relev
low-frequency degrees of freedom~hydrodynamic variables!
and find the equations of motion which govern the
dynamics.4 As in any effective field theory, the symmetrie
and symmetry realizations, of the underlying microsco
theory will constrain the form of the effective theory. A
remaining dependence on the microscopic theory will be i
lated in the particular values of some finite set of adjusta
parameters appearing in the effective theory. In the cas
hydrodynamics, these input parameters include transport
efficients~viscosity, diffusivity, conductivity, etc.! and equi-
librium thermodynamic functions.

The degrees of freedom in a hydrodynamic descript
will include a minimal set of fields, whose thermal expec
tion values distinguish the possible equilibrium states of
theory. Among these are the energy and momentum de
ties, which we will denote as

«[T00, p i[Ti0, ~2!

as well as the charge densitiesna[Ja
0 of any other conserved

currentsJa
m .5 The argument for this is as follows.

The usual grand canonical ensemble, with statistical d
sity operator6

r̂5Z21eb(unPn1maNa) ~3!

built from the conserved charges

Pn[E d3x Tn0~x!, Na[E d3x Ja
0~x!, ~4!

describes a manifold of time-independent equilibrium sta
in which variations in the thermodynamic parametersb, un,
and ma produce space-independent variations in the ene
density, momentum density, and other charge densities
other words, infinite wavelength variations in these densi
have infinite relaxation time~precisely because they are de
sities of conserved charges!. But in any local, causal theory
this implies that arbitrarily long wavelength variations
these densities must have relaxation times which dive

4Because the effective hydrodynamic theory describes dissipa
dynamics, it is easier to work directly with the equations of moti
than with a classical Lagrangian formulation.

5Until otherwise stated, we assume that such symmetry curr
are ordinary bosonic vector fields~i.e., not supercurrents!.

6We use a (2111) metric convention.b[1/T is the inverse
temperature,un is the rest frame 4-velocity~satisfyingu2521),
andma are chemical potentials. We assume that translation inv
ance is a symmetry of the theory, and that this symmetry is
spontaneously broken. We work in three~flat, infinite! spatial di-
mensions throughout our analysis, but all results generalize trivi
to d.3 spatial dimensions.
7-2
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HYDRODYNAMIC FLUCTUATIONS, LONG-TIME TAILS, . . . PHYSICAL REVIEW D 68, 025007 ~2003!
with wavelength. Consequently, fluctuations in conserv
charge densities remain relevant variables on arbitrarily l
time scales, and must be retained in an effective hydro
namic theory.7

If the theory under consideration is in a phase with sp
taneously broken continuous symmetry, then the phase~or
orientation! of the relevant order parameter is also needed
uniquely characterize equilibrium states, and fluctuations
the order parameter orientation will become another hyd
dynamic degree of freedom.8 Well known examples include
superfluid helium, where the phase of the condensate w
function becomes a hydrodynamic variable and is resp
sible for the appearance of second sound@14#. Another ex-
ample is the chiral limit of QCD, whose hydrodynamic va
ables include the SU(Nf) orientation of the chiral
condensate, fluctuations in which describe pions@16#. At a
second order phase transition, long wavelength fluctuat
in the magnitude of an order parameter acquire diverg
relaxation times~due to critical slowing down!, and also be-
come relevant hydrodynamic degrees of freedom. Finally,
gauge theories in a Coulomb phase, long wavelength m
netic fields have divergent relaxation times and must be
tained in a hydrodynamic description; the effective theory
this case is termed magneto-hydrodynamics.

In the following discussion we will assume, for simplicit
that all these complications are absent. That is, we ass
that the theory under consideration is in a phase of unbro
global symmetry, is not in a Coulomb phase, and is not
ting precisely at a second order phase transition. Also
simplicity, we will assume that the theory possesses cha
conjugation symmetries under which any global conser
chargesNa transform non-trivially. We further assume th
the equal-time~or more generally, imaginary-time! thermal
correlation functions of the theory exhibit a finite correlati
length. This is basically just a restatement of our assum
unbroken global symmetry, the absence of Coulomb ph
gauge fields, and non-critical behavior. Finally, we assu
that the theory under consideration is an interacting the
which describes a sensible equilibrating thermodyna
system—no discussion of hydrodynamic behavior is ap
cable to a non-interacting theory. All these assumptions h
in typical field theories without U~1! gauge fields, at suffi-
ciently high temperatures.9

7For theories with approximate symmetries, an approxima
conserved charge density will only act like a hydrodynamic deg
of freedom on time scales which are short compared to the m
time between charge non-conserving reactions.

8Despite the pervasive misuse of the phrase ‘‘spontaneously
ken gauge symmetry,’’ Higgs phases of gauge theories are no
amples of spontaneous breaking of any physical symmetry@15#, and
do not imply the existence of an enlarged manifold of physi
equilibrium states, or the presence of additional hydrodynamic
grees of freedom.

9This includes non-Abelian gauge theories with most any ma
field content, because interacting scalar fields, fermions, and
Abelian gauge fields all develop finite spatial correlation lengths
high temperature.
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B. Constitutive relations

The resulting hydrodynamic description for this gene
class of theories takes the form of exact local conserva
laws for the conserved currents,

]mTmn~x!50, ~5!

]mJa
m~x!50, ~6!

together with constitutive relations, valid on sufficiently lon
time and distance scales, expressing the fluxes of conse
quantities~i.e., spatial parts of conserved currents! as local
functionals of the hydrodynamic variables themselves~the
densities of conserved charges!.10 As in any effective theory,
possible terms appearing in these constitutive relations m
be consistent with the symmetries of the underlying theo
and may be classified according to the number of spa
derivatives, and powers of fields representing departu
from equilibrium. This is the analogue of the usual pow
counting in an effective field theory.

We will focus on the dynamics of fluctuations away fro
some charge conjugation invariant equilibrium state,
which all chemical potentials vanish. Therefore, the cha
densityna(x) will only be non-vanishing due to some pe
turbation away from the equilibrium state of interest. Sim
larly, if we work in the rest frame of the system, then t
momentum densityp(x) will also be non-vanishing only due
to a departure from our given equilibrium state.

The only terms, linear in deviations from our equilibriu
state, which can appear in the resulting constitutive equa
for the charge fluxes have the form

ja52Dab“nb , ~7!

whereD5iDabi is, in general, a matrix of diffusion coeffi
cients characterizing, in a linear response approximation,
flux induced by a spatially non-uniform charge densi
These diffusion coefficients are input parameters to the
fective hydrodynamics.11 Terms with three or more spatia
derivatives are also allowed by symmetry but, for sufficien

y
e
an

o-
x-

l
e-

r
n-
t

10More generally, one may formulate constitutive relations whi
in addition to terms involving hydrodynamic variables, also cont
noise terms representing the influence of short-distance degre
freedom on the quantity of interest. Such noise terms convert
hydrodynamic equations of motion into Langevin equations, a
allow the effective hydrodynamic theory to generate the corr
equal time correlations of long wavelength equilibrium fluctuatio
However, these noise terms will not be relevant for our purpos
and will be ignored throughout our discussion.

11In terms of equilibrium correlation functions in the underlyin
microscopic theory, diffusion coefficients are given by the Ku

formula (Dx)ab5
1
6 limv→0*d4xeivx0

^ 1
2 $Ja

i (x),Jb
i (0)%&, where

^•••&5Z21tr@e2bH
•••# is an equilibrium thermal average,x

5ixabi is the charge susceptibility matrix,xab5]na /](bmb)
5@^NaNb&2^Na&^Nb&#/V, andV is the spatial volume. The Kubo
formula makes manifest the Onsager relation stating thatDx is a
symmetric matrix.
7-3
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P. KOVTUN AND L. G. YAFFE PHYSICAL REVIEW D68, 025007 ~2003!
long-wavelength fluctuations, will be negligible compared
the above single derivative terms. It should be emphas
that the constitutive relation~7! is not an operator identity
unlike Eq. ~6!. Rather it is a relation between expectati
values of operators in non-equilibrium states, valid on
when those operators are averaged over a volume large
pared to relevant microscopic scales.

Of course, terms can also appear in the constitutive eq
tion for ja which are non-linear in the departure from th
given equilibrium state. At quadratic order12 it is possible to
add a term of the right symmetry which involves no spa
gradients, and is proportional to the product of charge
momentum density fluctuations,

ja52Dab“nb1knap. ~8!

Since this new term involves no spatial derivatives, the
efficient k is completely determined by thermodynamic d
rivatives which stay within the manifold of equilibrium
states. Namely, an equilibrium state with non-vanish
chemical potentials, when viewed in an arbitrary referen
frame, will have an energy-momentum tensor of the perf
fluid form,

Tmn5~«1P!umun1Pgmn, ~9!

and conserved currents

Ja
m5naum, ~10!

where na , «, and P are the equilibrium charge densitie
energy density, and pressure, respectively, in the rest fr
of the fluid, andum is the rest-frame 4-velocity.13 Hence, for
infinitesimal boosts away from the rest frame, the mom
tum density and charge flux are related to the flow veloc
via

p5~«1P!v, ja5nav, ~11!

implying that the coefficientk appearing in the constitutive
relation~8! equals («1P)21. For later convenience, we wil
denote the enthalpy density, which is the sum of energy d
sity and pressure, as

w[«1P, ~12!

so k5w21 andp5wv.
In the constitutive relation for the spatial stressTi j , terms

without spatial derivatives are also completely determined
equilibrium thermodynamics. Letb̄, «̄, and P̄ denote the
inverse temperature, energy density, and pressure, res

12Terms higher than quadratic are irrelevant for our purposes. T
will be discussed further at the end of Sec. II E.

13The local rest frame of any thermal system, at a particular ev
x, may always be defined as the frame in which the momen
densityp(x) vanishes. The local flow velocity in any other frame
then defined as the velocity needed to boost to the local rest fra
This implies that the local 4-velocityun(x) is, in general, the time-
like eigenvector ofT n

m (x).
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tively, of the chosen equilibrium state with vanishing char
and momentum densities. Then the stress tensor of a ne
equilibrium state with energy density«̄1d«, momentum
densityp, and charge densitiesna , expanded to second or
der in deviations away from the reference state, has the f

Ti j uequil.5d i j F P̄1vs
2d«1

1

2
j~d«!21

1

2
Jabnanb2vs

2 p2

w̄
G

1
p ip j

w̄
, ~13!

where d«[T002 «̄ is the fluctuation in energy density,vs

[(]P̄/]«̄)1/2 is the speed of sound,j[]2P̄/]«̄2, and Jab

[]2P̄/]na]nb . ~Energy derivatives are to be evaluated
constant charge density, and vice versa.! No terms linear in
na can be present due to the assumed charge conjuga
invariance of the reference equilibrium state. An exercise
thermodynamic derivatives shows that

vs
25

]P̄
]«̄

5
]P̄
]b̄

S ]«̄

]b̄
D 21

5
w̄

b̄
C21, ~14!

j5@~112vs
2!C212w̄GHHH#/b̄, ~15!

Jab5@~x21!ab2w̄Gab
NNH#/b̄. ~16!

We have definedC andx as the mean square fluctuation
energy or charge per unit volume,

C[^H2&conn/V, ~17!

xab[^NaNb&conn/V, ~18!

andGHHH andGNNH as ‘‘amputated’’ third order connecte
correlators of energy and charge,

GHHH[C23^H3&conn/V, ~19!

Gab
NNH[C21~x21!aa8~x21!bb8^Na8Nb8H&conn/V, ~20!

with V the spatial volume,̂ . . . & denoting an expectation in
the reference equilibrium state, andx21 the matrix inverse
of x[ixabi . Note that the heat capacity per unit volum
cv[]«/]T5b2C, while the charge susceptibility]na /]mb
5bxab .

Terms linear in momentum density can also appear in
constitutive relation for stress, but only when combined w
a spatial gradient so as to yield a rank-2 tensor. Two linea
independent structures are possible, proportional to the s
or divergence of the vector field, so that

is

nt
m

e.
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Ti j 5d i j F P̄1vs
2d«1

1

2
j~d«!21

1

2
Jabnanb2vs

2 p2

w̄
G

1
p ip j

w̄
2gzd

i j
“•p 2gh~¹ ip j1¹ jp i2 2

3 d i j
“•p!.

~21!

The coefficientsgz andgh are conventionally written as

gz[
z

w̄
, gh[

h

w̄
, ~22!

with z andh the bulk and shear viscosities, respectively.14

All other terms, consistent with symmetries, which cou
be added to the constitutive relations~8! or ~21! involve
either more gradients, or more powers of fluctuations aw
from equilibrium relative to the terms included in Eq.~8! or
~21!, and so are negligible for sufficiently small, long
wavelength fluctuations.15

The above constitutive relation for the stress tensor s
plifies considerably in scale-invariant theories. The tracele
ness of the energy-momentum tensor,T m

m 50, is an operator
identity in such theories, valid in both equilibrium and no
equilibrium states~at vanishing chemical potentials!. Conse-
quently, in any scale invariant theory the equation of stat
exactly «̄53P̄, the speed of soundvs51/A3, and the ther-
modynamic curvaturesj andJ vanish identically,16 as does
the bulk viscosityz. Therefore, the constitutive relation fo
the stress tensor~21! in a scale invariant theory takes th
simpler form

Ti j 5d i j S P̄1
1

3
d« D1

1

w̄
S p ip j2

1

3
d i j p2D

2ghS ¹ ip j1¹ jp i2
2

3
d i j

“•pD . ~23!

C. Linearized hydrodynamics

If one retains only terms linear in fluctuations in the co
stitutive relations~8! and ~21!, then it is trivial to solve the
resulting linearized hydrodynamic equations. For cha

14Kubo formulas for the bulk and shear viscosities arez

5(b/2)limv→0*d4xeivt^ 1
2 $P(x),P(0)%&, and h

5(b/20)limv→0*d4xeivx0
^ 1

2 $si j (x),si j (0)%&, where P[ 1
3 Tii and

si j [Ti j 2Pd i j are the trace and traceless parts of the stress ten
respectively.

15It turns out that the non-linear interactions of hydrodynam
fluctuations cause the coefficients of higher order terms to bec
scale dependent quantities, just like couplings in a typical effec
field theory@17#.

16Hence, for scale invariant theoriesw̄5
4
3 «̄, C54«̄/b̄, GHHH

5
5

16 b̄/ «̄2, and GNNH5x21/w̄. These relations also follow by
simple thermodynamics, given a free energyF;VT4 and suscepti-
bility xab;T3.
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density fluctuations, insertingj52D“n into the conserva-
tion law ] tn52“• j yields the usual diffusion equatio
(] t2D¹2)n50. ~We have suppressed indices distinguishi
multiple charge densities, but in generalD is a matrix of
diffusion constants.! Inserting a spatial Fourier transform,

n~ t,x![E d3k

~2p!3
eik•xn~ t,k!, ~24!

immediately gives

n~ t,k!5e2k2Dtn~0,k!, ~25!

showing that fluctuations with wave vectork relax diffu-
sively at a ratek2D which vanishes quadratically ask→0.
Momentum density fluctuations may be decomposed i
longitudinal and transverse parts,

p~ t,x!5E d3k

~2p!3
eik•x @ k̂p i~ t,k!1p'~ t,k!#, ~26!

where k̂•p'(t,k)[0. For transverse momentum fluctu
tions, the conservation relation] tp

i52¹jT
i j plus the con-

stitutive relation~21! again combine to give a diffusion equa
tion, (] t2gh¹2)p'50, so that

p'~ t,k!5e2k2ght p'~0,k!. ~27!

Because energy and momentum densities are both conse
quantities, fluctuations in energy and longitudinal mome
tum density are coupled. One finds that both quantities
isfy the damped oscillator equation (2] t

22gs k2] t

2vs
2k2)d«(t,k)50, where gs[gz1 4

3 gh , and that
ukup i(t,k)5 i ] td«(t,k). In the long wavelength limit (gsuku
!vs), one has weakly damped sound waves,

S ip i~ t,k!

vsd«~ t,k!
D 5e2~1/2!k2gst S cos~ ukuvst ! sin~ ukuvst !

2sin~ ukuvst ! cos~ ukuvst !
D

3S ip i~0,k!

vsd«~0,k!
D , ~28!

propagating at the sound speedvs , and whose energy attenu
ates at a rate ofk2gs .

D. Real-time correlators

The non-equilibrium linear response results~25!, ~27! and
~28!, describing the relaxation of specific perturbations aw
from equilibrium, may be converted into equivalent resu
for real-time correlation functions characterizing the sp
trum of fluctuations in the equilibrium thermal ensemble17

or,

e
e

17This is sometimes referred to as Onsager’s postulate.
7-5
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Consider, for example, the two-point correlation of char
density fluctuations,18

Ananb
~ t,k!5E d3xe2 ik•x^ 1

2 $na~ t,x!,nb~0,0!%&. ~29!

For t.0, one may insert the linear response result~25! and
find19

Ann~ t,k![iAnanb
~ t,k!i5e2k2Dtx~k!, ~30!

wherex(k)[ixab(k)i is the variance matrix of equal-tim
charge density fluctuations,

xab~k!5E d3xe2 ik•x^ 1
2 $na~x!,nb~0!%&. ~31!

In the small-k regime where a hydrodynamic description
valid, one may replace this variance by its smallk limit,
which is the charge susceptibility matrixx introduced previ-
ously,

lim
k→0

xab~k!5@^NaNb&2^Na&^Nb&#/V5xab . ~32!

Analogous results for the real-time correlations of ene
and momentum densities are

A««~ t,k!5e2(1/2)k2gsutu cos~ ukuvst !C, ~33a!

iAp i«~ t,k!5 k̂ivse
2(1/2)k2gsutu sin~ ukuvst !C, ~33b!

iA«p j~ t,k!5~ k̂ j /vs!e
2(1/2)k2gsutu sin~ ukuvst !^

1
3 P2&/V,

~33c!

18The effective hydrodynamic theory, in which fields are classic
cannot distinguish between the symmetrized correla

^ 1
2 $n(t),n(0)%& and the Wightman correlator̂n(t)n(0)&. In fre-

quency space, this difference is smaller than the correlators th
selves by a factor of\v/T, which is negligible in the low fre-
quency domain where the hydrodynamic description is valid.
have chosen to write expressions involving the symmetrized
relator just because this correlation function is always real~for Her-
mitian operators!.

19For t,0, one may use time reversal~or CPT plus rotation
invariance! to show thatAnn(2t,k)5Ann(t,k). Consequently, a
Fourier transform in time gives Ann(v,k)52k2D@v2

1(k2D)2#21x. Combined with the Ward identity

]m^ 1
2 $Jm(x),Jn(0)%&50, one finds associated hydrodynamic form

for the charge-current correlator, AnJl(v,k)52vklD@v2

1(k2D)2#21x, and the current-current correlator,AJiJl(v,k)
52v2d i l D@v21(k2D)2#21x. As required, this current-current co
relator is consistent with the Kubo formula of footnote 11.
02500
e
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Ap ip j~ t,k!5@~d i j 2 k̂i k̂ j !e2k2ghutu

1 k̂i k̂ je2(1/2)k2gsutu cos~ ukuvst !#^
1
3 P2&/V,

~33d!

where Ap ip j(t,k)[*d3xe2 ik•x^ 1
2 $p i(t,x),p j (0,0)%&, etc.,

andC is the mean square fluctuation in energy per unit v
ume defined in Eq.~17!. The mean-square fluctuation in tot
spatial momentum may be deduced from the equilibrium
lation ~11! between momentum density and flow velocit
which implies

^Pi Pj&
V 5

1

b

]p i

]v j
5w̄Td i j , ~34!

or ^ 1
3 P2&/V5w̄T. Hence the mean square fluctuations in m

mentum and energy are related by the velocity of sound

^ 1
3 P2&

V 5Tw̄5T2
]P̄
]T

5vs
2T2

]«̄

]T
5vs

2C. ~35!

E. Long-time tails

Consider a spatial charge flux integrated over all spac

Ja~ t ![E d3x ja~ t,x!. ~36!

If non-linear terms in the constitutive relation forja are ig-
nored, this zero wave number charge flux has no couplin
hydrodynamic variables due to the gradient in the line
2D¹n part of its constitutive relation. Hence, a linear r
sponse analysis predicts that the zero wave number
should relax on a short, microscopic time scale.20 This con-
clusion is wrong, because the charge flux does couple
hydrodynamic degrees of freedom, even at zero wave n
ber, through the non-linearnp/w̄ term in its constitutive re-
lation ~8!. Although this term is quadratic in deviations awa
from the chosen equilibrium state, because it contains
spatial gradients it will always dominate over the single g
dient 2D¹n term of linear response for sufficiently lon
wavelengths.

To evaluate the zero-wave-number^Ja
i (t)Jb

j (0)& cor-
relator correctly for large times, one needs only to expr
these currents in terms of the product of charge and mom
tum density fluctuations, and then insert the results~30! and
~33d! for the spectrum of these fluctuations. One finds
well-known result for correlations in simple fluids@6#:

l,
r

m-

e
r-

20This may be seen explicitly from the linear response form of
current-current correlatorAil (v,k) shown in footnote 19, whosek
→0 limit is frequency independent, limk→0Ail (v,k)52d i l Dx.
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V21^ 1
2 $Ja

i ~ t !,Jb
j ~0!%&5

1

w̄2E d3x^ 1
2 $na~ t,x!p i~ t,x!,nb~0,0!p j~0,0!%&

5
1

w̄2E d3x^ 1
2 $na~ t,x!,nb~0,0!%&^ 1

2 $p i~ t,x!,p j~0,0!%&

5
1

w̄2E d3k

~2p!3
Ananb

~ t,k!Ap ip j~ t,2k!

5
T

w̄
d i j E d3k

~2p!3 F2

3
e2k2(D1gh)utux1

1

3
e2k2[D1(1/2)gs] utucos~ ukuvst !xG

ab

5
T

w̄

d i j

12 H 1

@~D1gh!putu#3/2
xJ

ab

1~exponential decay!. ~37!
of
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Factorizing the first correlation function into a product
two-point correlators is justified because, in the small-k hy-
drodynamic regime, the distribution of fluctuations is ar
trarily close to Gaussian.21 After inserting the explicit forms
of Cnanb

(t,k) and Cp ip j(t,k) in the third step, an angula

average over the direction ofk was performed. In the fina
step, the term involving longitudinal momentum fluctuatio
does not contribute to thet23/2 long-time tail because of the
oscillating cosine; this term only gives rise to an expon

tially falling O[exp$2 1
4 utuvs

2/(D11
2gs)%] contribution. The

above treatment is essentially perturbation theory for sm
fluctuations in the long-lived degrees of freedom; upon f
torization, the two-point correlators of conserved densit
are taken to evolve according to linear response.

This calculation is illustrated graphically in Fig. 1. It
important to understand that the one-loop diagram in
figure is a depiction of the origin of the long-time tail in th
effective hydrodynamic theory; this is not a Feynman d
gram of the underlying microscopic theory.22

21The essential point is that hydrodynamic variables represent
croscopic fields averaged over spatial volumes which are large c
pared to the ‘‘correlation volume’’j3 ~wherej is the static correla-
tion length!. Hence, a hydrodynamic fluctuation with waveleng
l@j may be regarded as averaging over roughly (l/j)3 essentially
independent correlation volumes. By the central limit theorem,
distribution of such an average will approach a Gaussian distr
tion as the number of independent samples becomes large. Res
non-Gaussian correlations in fluctuations with wave numbers of
der k will generate corrections to the result~37! which are sup-
pressed by an additional factor ofuku3j3, leading to sub-dominan
O(t23) corrections to the final result.

22In terms of Feynman diagrams of the fundamental theory, e
propagator of Fig. 1 involves a resummation of an infinite series
ladder-like graphs in non-gauge theories@18,19#, or a vastly more
complicated set of diagrams in gauge theories@20#. Attempting to
calculate the coefficient of the long-time tail by evaluating and su
ming the required set of perturbative graphs in the underly
theory is extremely ill advised; using the appropriate effect
theory is infinitely easier.
02500
-

-

ll
-
s

is

-

A completely analogous long-time tail must also
present in the zero wave number stress-stress correlator
to the coupling of the stress tensor to products of ene
momentum, and charge density fluctuations. Inserting
constitutive relation~21!, and evaluating all the terms whic
can contribute to a long-time tail is straightforward, b
slightly tedious. This calculation is summarized in the A
pendix. Here we will specialize to the simpler case of a sc
invariant theory, for which

Ti j ~ t ![E d3x Ti j ~ t,x!

5E d3xH d i j F P̄1
1

3
d«~ t,x!G

1
1

w̄
Hmn

i j pm~ t,x!pn~ t,x!J , ~38!

where Hmn
i j [ 1

2 dm
i dn

j 1 1
2 dn

i dm
j 2 1

3 d i j dmn is a projector onto
traceless symmetric tensors. Therefore the zero-wa
number stress-stress correlator in the hydrodynamic reg
is
i-

m-

e
u-
ual
r-

h
f

-
g

FIG. 1. Graphical depiction of the effective hydrodynamic c
culation of the long-time tail in thêJa

i (t)Jb
j (0)& correlator. Propa-

gators in the effective theory characterize the relaxation of c
served densities according to linearized hydrodynamics. Exte
vertex factors represent the coefficients of non-linear terms in
constitutive relations for the currents. Only the charge diffusion a
transverse shear modes contribute to the leading long-time ta
current-current correlators.
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V 21^ 1
2 $Ti j ~ t !,Tkl~0!%&

5E d3xH 1

w̄2
Hmn

i j Hpq
kl

3^ 1
2 $pm~ t,x!pn~ t,x!,pp~0,0!pq~0,0!%&

1
1

9
d i j dkl^ 1

2 $«~ t,x!,«~0,0!%&J . ~39!

The first term may be evaluated using the same lo
as above. Retaining only pieces which contribute

the connected correlator @i.e. ^ 1
2 $Ti j (t),Tkl(0)%&

2^Ti j (t)&^Tkl(0)&], one finds

1

w̄2E d3x Hmn
i j Hpq

kl ^ 1
2 $pm~ t,x!pn~ t,x!,pp~0,0!pq~0,0!%&conn

5
2

w̄2
Hmn

i j Hpq
kl E d3x^ 1

2 $pm~ t,x!,pp~0,0!%&

3^ 1
2 $pn~ t,x!,pq~0,0!%&

5
2

w̄2
Hmn

i j Hpq
kl E d3k

~2p!3
Apmpp~ t,k!Apnpq~ t,2k!

5
2T2

15
Hkl

i j F S 3

2D 3/2

17G 1

~8pghutu!3/2
. ~40!

This calculation is depicted graphically in Fig. 2. On
again, contributions which fall exponentially with time hav
been dropped in the last step. The final term in Eq.~39! gives
a time-independent contribution:

1

9
d i j dklE d3x^ 1

2 $«~ t,x!,«~0,0!%&5
1

9
d i j dklA««~ t,k50!

5
4

9
«̄Td i j dkl. ~41!

FIG. 2. Illustration of the effective hydrodynamic calculation
the long-time tail in thê Ti j (t)Tkl(0)& correlator. External vertex
factors represent the coefficients of non-linear terms in the con
tutive relation for the stress tensor, and are proportional to the
jector Hmn

i j defined in the text. Both transverse shear and propa
ing sound modes contribute to the long-time tail in the stress-st
correlator.
02500
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o

This reflects the direct coupling between stress and fluc
tions in energy density. At zero wave number, these beco
fluctuations in the total energy~in the equilibrium grand ca-
nonical ensemble!, which are strictly conserved in time
Hence, one finds that the leading long-time behavior of
connected zero-wave-number stress-stress correlator
scale invariant theory is23

V 21^ 1
2 $Ti j ~ t !,Tkl~0!%&conn

;
4

9
d i j dkl«̄T1

2

15 F S 3

2D 3/2

17G
3S 1

2
d ikd j l 1

1

2
d i l d jk2

1

3
d i j dklD T2

~8pghutu!3/2
. ~42!

Adding any higher-order terms to the stress tensor con
tutive relation ~23! will generate sub-dominant power-law
tails in Eq. ~42! proportional toutu25/2, utu27/2, etc. This is
because such higher-order terms will contain either ad
tional spatial gradients or additional powers of fluctuatio
away from equilibrium. In either case, one finds contrib
tions which scale with higher powers ofk ask→0, implying
additional powers of 1/utu.

F. Low frequency behavior

The long-time tails present in the current-current c
relator ~37! or the stress-stress correlator~42! automatically
imply that the Fourier transforms of these correlation fun
tions cannot be analytic at zero frequency.24 A little analysis
shows that ifG(t);a/utu3/2 at large times then25

23Once again, this result is for three spatial dimensions. Ind.3
spatial dimensions, the same analysis leads to autu2d/2 long-time
tail. In two or fewer spatial dimensions, hydrodynamic fluctuatio
are sufficiently infrared-singular that thev→0 limits in the Kubo
formulas in footnotes 11 and 14 fail to exist. Instead, one finds
transport coefficients exhibit non-trivial scale dependence on a
trarily long length scales@21#.

24This follows from the standard argument showing that if

integrable functionG̃(v) is analytic in a strip of width 2d sur-
rounding the real axis, then its Fourier transformG(t) falls off
exponentially asO(e2dutu), as may be seen by shifting the conto
of integration.

25More generally, if G(t);autu2d/2, then the leading non-

analyticity in G̃(v) for small frequency is G̃(v)

;a@ i (d21)(d11)/4A2p/G(d/2)#uvu(d22)/2 for d odd, G̃(v)

;a@p(21)d/4/G(d/2)#uvu(d22)/2 for d54n, and G̃(v)
;a@(21)(d12)/42/G(d/2)#uvu(d22)/2lnuvu for d54n12.
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G̃~v!5E dt eivt G~ t !;2A8p auvu1/21~analytic terms!,

~43!

asv→0. Consequently, in three spatial dimensions, the F
rier transforms of the real-time zero-wave-number corre

tors ^ 1
2 $Ja

i (t),Jb
j (0)%& and ^ 1

2 $Ti j (t),Tkl(0)%& must have
square root branch points at zero frequency whose co
cients are related via Eq.~43! to the amplitudes of their long
time tails.

In thermal equilibrium, the spectral density of any tw
operatorsA andB,

rAB~v![E dt eivt ^@A~ t !,B~0!#&, ~44!

is directly related to the Fourier transform of the correspo
ing symmetrized correlator

rAB~v!52 tanh~bv/2!E dt eivt ^ 1
2 $A~ t !,B~0!%&.

~45!

Consequently, the current-current or stress-stress spe
densities, divided bybv, must have the same non
analyticity atv50 as do the Fourier transformed real-tim
correlators. For example, in a scale-invariant theory one

1

vE dx0 d3x eivx0
^@Ti j ~x!,Tkl~0!#&

5S 1

2
d ikd j l 1

1

2
d i l d jk2

1

3
d i j dklD

3@s(0)1s(1)uvu1/21O~ uvu3/2!#, ~46!

with

s(0)54h, s(1)52
T

60p F S 3

2D 3/2

17G S w̄

h D 3/2

. ~47!

G. Large Nc scaling

The stress-stress correlator will, of course, have short t
transient contributions in addition to its long time power-la
tail. In largeNc gauge theories~or largeN matrix models! if
the ’t Hooft couplingg2Nc is held fixed asNc becomes large
then the short time contribution to the~connected! stress-
stress correlator will scale asNc

2 , just because there ar
O(Nc

2) degrees of freedom. In contrast, from Eq.~42! one
sees that the coefficient of thet23/2 long time tail will be
O(1) as Nc→` if the shear viscosity divided by the en
thalpy, gh5h/w, has a finite, non-zero largeNc limit. This
ratio is effectively a microscopic relaxation time, the me
free time for large angle scattering of elementary excitati
in the system. In weakly coupled high temperature ga
theories, this ratio does have a finite largeNc limit @22#.
Presumably this is generally true, at least in theories likeN
54 supersymmetric Yang-Mills theory which are strong
believed not to have any phase transition separating t
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weak and strong coupling regimes. Assuming this is the c
the cross-over time~beyond which the long-time tail domi
nates over the short time transients! will become arbitrarily
large asNc→`.26 For any fixed timet, the t23/2 tail will not
be visible in the leading largeNc behavior of the stress-stres
correlator, but will instead appear as a sub-leading 1/Nc

2 rela-
tive correction:

^Ti j ~ t !Tkl~0!&;O~Nc
2! e2t/t1O~1! t23/2.

Exactly the same result is true of the long-time tail
current-current correlators. Diffusion constants areO(1) as
Nc→` ~at least in weakly coupled hot gauge theories@22#!
and therefore for fixed timet, the long time tail in the curren
correlator~37! also scales asO(1/Nc

2) relative to the short
time transients~which scale the same as the susceptibil
x).

In both cases, the result that long-time tails become s
leading effects at largeNc may be regarded as a consequen
of the fact that equilibrium velocity fluctuations are ‘‘anom
lously’’ small whenNc→`. As noted earlier in Sec. II B, the
flow velocity equals the momentum density divided by t
enthalpy. Therefore, the mean square fluctuations in ave
flow velocity are directly related to the mean square fluct
tions in total momentum. Using the previous result~34!, one
has

^v̄ i v̄ j&5
^Pi Pj&

w̄2V 2
5

d i j

w̄

T

V 5O~Nc
22! ~48!

asNc→` for fixed volume. More generally, this means th
the fluctuations in flow velocity averaged over a patch
fluid of linear sizeL have a 1/Nc suppression~on top of the
expectedL23/2 behavior!. Consequently, in the spatial cu
rent densityj52D“n1nv, the non-linearnv contribution
is 1/Nc suppressed relative to the linear2D“n term. Ex-
actly the same conclusion holds for the terms quadratic
flow velocity in the stress tensor~23! as compared to the
linear terms involving the gradient of the velocity.

III. SUPERSYMMETRIC HYDRODYNAMICS

We now wish to generalize the preceding discussion
hydrodynamic fluctuations to the case of supersymme
theories. For ease of presentation, in this section we cons
theories withN51 supersymmetry in four dimensions. Suc
theories possess a set of conserved supercurrents, whic
will denote bySa

m(x) and S̄ȧ
m(x), which are Lorentz vector-

26Completely analogous nonuniformities between the large
tance and largeN limits are well known in other contexts. Fo
example, adjoint representation Wilson loops inSU(Nc) Yang-Mills
theory have a cross-over from area-law to perimeter-law beha
on a distance scale which diverges asNc→`. And variousSU(N)
symmetric two-dimensional models have correlators which fall w
distance likeuxu21/N @23#.
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spinors. The corresponding conserved supercharges sa
the supersymmetry algebra,27

$Qb ,Q̄ġ%52sbġ
m Pm . ~49!

The theory may also have a chiralU(1) symmetry (R sym-
metry!, whose chargeR does not commute with the supe
charges,

@Qa ,R#5Qa , @Q̄ȧ ,R#52Q̄ȧ , ~50!

as well as various additional internal symmetries who
chargesNa do commute with the supercharges. For defini
ness, we will assume that the theory does haveR symmetry,
and that this symmetry is not spontaneously broken.28

Since the supercurrents are conserved, one might ex
that fluctuations in supercharge densities will be unable
relax locally, just as ordinary current conservation direc
leads to diffusive relaxation of bosonic conserved cha
densities. And slow relaxation of supercharge densities m
in turn generate long-time tails inbosonicobservables which
can couple quadratically to supercharge densities. In o
words, even though supercharge densities are fermionic
erators with vanishing expectation value in any conventio
statistical ensemble, the dynamics of supercharge fluc
tions may produce distinctive effects in ordinary bosonic o
servables. We will see that these expectations are lar
correct.

A. Supercharge fluctuations

The hydrodynamic nature of supercharge densities is
flected in the long-time behavior of the corresponding cor
lation function,

Cȧb
mn~x![^S̄ȧ

m~x!Sb
n ~0!&. ~51!

Finite-temperature thermal ensembles are not invariant u

27We follow the notations of Wess and Bagger@24# for spinors. In

particular, undotted early greek indicesa,b, . . . label (12 ,0) two-
component Weyl spinors, while corresponding dotted indices la

(0,1
2 ) conjugate Weyl spinors. These indices are raised or lowe

using the antisymmetric tensore215e125e 2̇1̇5e 1̇2̇51, so that

jaQa52jaQa and j̄ ȧQ̄ȧ52 j̄ ȧQ̄ȧ. Extended Pauli matrices ar
saḃ

m
[(21,s) ands̄mȧb[(21,2s), and the spinor representatio

generators of the Lorentz group are (smn)a
b[ 1

4 (saȧ
m s̄nȧb

2saȧ
n s̄mȧb) and (s̄mn) ḃ

ȧ
[ 1

4 (s̄mȧasaḃ
n

2s̄nȧasaḃ
m ).

28In N51 supersymmetry, conservation of theU(1) R symmetry
current requires scale invariance. Non-scale invariant theories
have anomalies in theR symmetry current, although it is often the
possible to combine the anomalousR symmetry with an anomalou
chiral symmetry to yield a non-anomalousR symmetry. If there is
no non-anomalousR symmetry, then theR-charge density will not
be a hydrodynamic degree of freedom. For such theories, ignor
mention of theR-symmetry current in the following discussion.
02500
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supersymmetry transformations.29 This is reflected in the fac
that at finite temperature bosons and fermions obey diffe
statistics~Bose-Einstein or Fermi-Dirac!, as well as in the
fact that bosonic and fermionic fields obey different boun
ary conditions~periodic versus anti-periodic! in Euclidean
functional integrals representing equilibrium thermal sy
tems. But it is important to understand that the no
invariance of thermal ensembles under supersymmetry d
not imply that the supercurrent fails to be conserved. T
conservation of the supercurrent,

]mSa
m~x!50 ~52!

is an operator identity, valid in any physical state. Since th
mal averages are just linear combinations of expectation
ues in physical states, the conservation of the supercur
implies that the thermal supercurrent correlation function s
isfies the Ward identity30

]m Cȧb
mn~x!50. ~53!

Similarly, taking thermal expectations of both sides of t
supersymmetry algebra~49! shows that mean square fluctu
tions in supercharge are directly related to the total energ
the thermal ensemble. A spatial Fourier transform of
Ward identity~53! gives

]0C̃ȧb
0n ~k,t !52 ik j C̃ȧb

j n ~k,t !5O~k!, ~54!

which directly shows that long wavelength fluctuations
supercharge density must relax arbitrarily slowly.

el

d

ill

all

29Formally, the transformation of a statistical density matrixr
under any infinitesimal symmetry transformation is defined by
condition that Tr(dr O)5Tr(r dO), whereO is any observable.
This is a generalization of the relation between the Schro¨dinger and
Heisenberg pictures, and expresses the equivalence between th
tive and passive views of symmetry transformations. IfG is the
generator of the transformation, then the infinitesimal transform
tion of the observable isdO5@G,O#. For normal~bosonic! sym-
metries, this of course implies thatdr52@G,r#, so invariance un-
der the symmetry means the density matrixr commutes with the
symmetry generatorG. But for an infinitesimal supersymmetr
transformation, G5jaQa with j an external Grassman
spinor which anticommutes with all fermionic operators. In th
case, one has Tr(r @jQ,O#)5Tr(jr @Q,O#)5Tr(@jr,Q# O)
5Tr($r,jQ% O), so the variation of the density matrix is the an
commutator with the supersymmetry generator,dr5$r,jQ%
5j $r,Q%, not the commutator.~We assume throughout thatr and
O are bosonic operators—possibly constructed by multiplying o
numbers of fermionic operators by independent external Grassm
spinors.! Therefore, even though the equilibrium canonical e
sembler5Z21 e2bH commutes with the superchargeQ, this does
not mean that the canonical ensemble is invariant under super
metry.

30This assumes one suitably defines the short-distance subtra
in the renormalization of the product of supercurrents to rem
what would otherwise be contact terms on the right hand side.
can always do so, provided the supersymmetric theory under
cussion exists.
7-10
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B. Super-thermodynamics

Having realized that supercharge densities are hydro
namic degrees of freedom in supersymmetric theories,
would like to construct the appropriate hydrodynamic eq
tions in complete analogy with the earlier no
supersymmetric treatment. To do so, we must construct
appropriate constitutive relations for the spatial part of
supercurrent~and theR-symmetry current!, and also under-
stand possible new terms involving products of supercha
densities which might appear in the constitutive relations
the stress tensor and other ordinary symmetry currents.

As discussed previously, non-derivative terms in const
tive relations are completely determined by equilibrium th
modynamic derivatives of the free energy. This is true p
vided one has introduced chemical potentials conjugate to
conserved densities of interest. To do this for a supersymm
ric theory, we must first understand the generalization of
dinary thermodynamics to ‘‘equilibrium’’ ensembles
which there is a non-zero expectation value of the sup
charge, produced by turning on a super-chemical potent

To construct an equilibrium state with non-zero sup
charge density, consider generalizing the usual statistical
erator~3! by adding supercharges multiplied by Grassma
valued super-chemical potentials,31

r̂s[Z21 exp@b~unPn1maQa1m̄ȧQ̄ȧ!#. ~55!

To simplify expressions, we are temporarily suppressing
chemical potentials for bosonic conserved charges. Note
the addition of spinorial chemical potentials coupled to
superchargesQa andQ̄ȧ maintains translation invariance o
the equilibrium state but explicitly breaks rotation inva
ance.

In the ensemble described byr̂s, the superchargesQa and
Q̄ȧ have non-zero expectation values proportional tom̄ and
m, respectively. More precisely, to first order inm and m̄,

V 21^jaQa&m,m̄[Tr~ r̂s jaQa!/V
52b^m̄ȧQ̄ȧ jaQa&/V
52b jam̄ḃ^ 1

2 $Qa ,Q̄ḃ%&/V

31Though fermionic chemical potentials may seem peculiar,
can regard them as a non-dynamical gravitino field, to which
theory is coupled. It should be stressed that these generalized
sity operators do not have the usual statistical interpretation. T
diagonal matrix elements, although commuting, are not real n
bers, and therefore cannot be viewed as statistical probabili
Nevertheless, these generalized density operators may formal
regarded as equilibrium ensembles, in which generalized therm
namic relations hold. The logical alternative of introducing re
valued chemical potentials for supercharges is formally incon
nient and also fails to yield any satisfactory physical interpretati
In particular, a density matrix containing a real-valued chemi
potential for supercharges, when applied to the union of two disj
physical systems, does not factorize, even if the two systems
causally disconnected@25#.
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52bja saḃ
n

m̄ḃ^Tn
0&

5b ja~ «̄ s02w̄s•u!aḃ m̄ ḃ, ~56!

where O(u2) corrections have been dropped in the la
equality. Herej is an independent Grassmann spinor. T
intermediate expectations in Eq.~56! denote expectation val
ues in the usual canonical ensemble~with 4-velocityu), and
trace cyclicity and the supersymmetry algebra~49! have been
used. Expanding to higher order inm and m̄ would lead to
corrections of ordermm̄2 which will not be relevant for our
purposes. Similarly,

V 21^j̄ ȧQ̄ȧ&m,m̄[V 21Tr~ r̂s j̄ ȧQ̄ȧ!

5b ma~«̄ s02w̄s•u!aḃ j̄ ḃ, ~57!

up to corrections of orderm2m̄ @andO(u2)].
Naively, one would expect the generalized partition fun

tion

Z~b,u,m,m̄ ![Tr exp@b~unPn1maQa1m̄ȧQ̄ȧ!# ~58!

to be a generating function for expectation values of sup
charges and products of supercharges. However, this is
true. Although the two terms we have added to the expon
tial defining r̂s both commute with the total momentumPn,
they do not commute with each other. As a result, the der
tive (]/]m)lnZ(b,u,m,m̄) does not equalb^Q&. In fact, the
generalized partition function is completely independent
the super-chemical potentials, and simply equals the u
~physical! partition function,

Z~b,u,m,m̄ !5Z~b,u,0,0!5Tr ebunPn
. ~59!

To see this, first note that

Tr@ma ebunPn
•••#5ma Tr@~21!FebunPn

•••#, ~60!

and therefore

]

]ma
Tr@ebunPn

•••#5TrF ~21!F
]

]ma
ebunPn

•••G . ~61!

Here (21)F[e2p iJz is the operator which multiplies al
bosonic states by11 and all fermionic states by21. This
operator commutes withPn and anticommutes with the su
percharges. Next, factorize the exponentials inr̂s using the
Baker-Campbell-Hausdorff formula,

eb(unPn1maQa1m̄ȧQ̄ȧ)5ebunPn
ebmaQa ebm̄ȧQ̄ȧ

3e2(1/2)b2[maQa , m̄ȧQ̄ȧ]

5ebmaQa ebm̄ȧQ̄ȧ
ebPn(un2bma saȧ

n m̄ȧ).

~62!

Consequently,
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1

b

]

]mg
Z~b,u,m,m̄ !

5
1

b
TrF ~21!F

]

]mg
ebmaQa ebm̄ȧQ̄ȧ

ebPn(un2bma saȧ
n m̄ȧ) G

5Tr@~21!F~Qg2bsgȧ
n m̄ȧPn!ebmaQa ebm̄ȧQ̄ȧ

3ebPn(un2bma saȧ
n m̄ȧ)#

5Tr@~21!F ebmaQa ebm̄ȧQ̄ȧ
ebPn(un2bma saȧ

n m̄ȧ)

3~2Qg2bsgȧ
n m̄ȧPn!#

5Tr@~21!F~2Qg1bsgȧ
n m̄ȧPn!ebmaQa ebm̄ȧQ̄ȧ

3ebPn(un2bma saȧ
n m̄ȧ)#. ~63!

The penultimate step uses the anticommutation ofQ with
(21)F and trace cyclicity to moveQ from the left to the
right end of the trace. The final step uses the supersymm
algebra to commuteQ through the exponential ofQ̄:

@Qg ,ebm̄ȧQ̄ȧ
#5bm̄ġ$Qg ,Q̄ġ%ebm̄ȧQ̄ȧ

52b sgġ
n m̄ġPn ebm̄ȧQ̄ȧ

. ~64!

Since the last line in Eq.~63! is minus the second line, thi
shows that (]/]mg)Z(b,u,m,m̄)50. One may show tha
(]/]m̄ġ)Z(b,u,m,m̄)50 in a completely similar fashion.

In other words, although adding fermionic chemical p
tentials to the statistical operator induces non-zero expe
tions values for the supercharge densities, it does not cha
the partition function at all. This means that the ‘‘thermod
namic pressure,’’ defined as (bV)21lnZ, is not affected by
the presence of non-zero equilibrium supercharge densi
In fact, this is required if the thermodynamic pressure is
agree with the microscopic pressure, defined in terms of
expectation value of the stress tensor,P[ 1

3 Tr( r̂s Tii ). To see
that the microscopic pressure is alsom independent, one ma
repeat the steps shown in Eq.~63! when there is an addi
tional insertion of the stress-energy tensor. This yields

1

b

]

]ma
^Tlr&m,m̄5

1

2
^~21!F@Qa ,Tlr#&m,m̄ . ~65!

But the supersymmetry transformation of the stress-ene
tensor involves spacetime derivatives of the supercur
~see, e.g.,@26#!,

@Qa ,Tmn#52
i

2
$~smr!a

b]rSb
n 1~snr!a

b ]rSb
m%, ~66!

whose expectation~65! vanishes in the translationally invar
ant equilibrium ensemble.

None of the above results are affected by the presenc
non-zero chemical potentials for ordinary conserved char
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which commute the the supercharges. But if a non-z
chemical potentialmR for the R charge is present, then th
generalized partition function does acquire dependence
the fermionic chemical potentials. The lowest such term
proportional tomm̄mR; this term is directly related to the
equilibrium form of theR-charge current shown below.

In a similar fashion, one may evaluate the generaliz
equilibrium expectation values of the bosonic symmetry c
rents and the supercurrents. Ordinary bosonic conserved
rents commute with the supercharges, and hence are u
fected by super-chemical potentials. In the presence of n
zero ordinary chemical potentials,

^Ja
m&m,m̄5n̄a um ~67!

as usual, wheren̄a is the equilibrium density of the con
served chargeNa . For the supercurrents one finds

^ja Sa
l&m,m̄52b T̄ n

l ~ja saḃ
n

m̄ḃ!1O~mm̄2!, ~68a!

^j̄ ȧS̄ȧl&m,m̄52b T̄ n
l ~masaḃ

n
j̄ ḃ!1O~m2m̄ !, ~68b!

whereT̄mn5w̄umun1P̄ gmn is the usual equilibrium form of
the stress-energy tensor. These results reflect the super
metry transformations

$Qb ,S̄ȧ
l%52 T n

l sbȧ
n 1~space-time gradients!, ~69a!

$Q̄ḃ ,Sa
l%52 T n

l saḃ
n

1~space-time gradients!, ~69b!

and $Qb ,Sa
l%, $Q̄ḃ ,S̄ȧ

l% being pure space-time gradient
~The expectation value of the space-time gradient terms v
ish in all translationally invariant equilibrium states.! For the
l50 components of these commutators, the unspeci
space-time gradients are strictly spatial gradients which v
ish on spatial integration, so that the anti-commutation re
tions ~69! are consistent with the supersymmetry algeb
~49!. For theR-symmetry current, one finds

^JR
l&m,m̄5n̄R ul2

1

2
b2T̄ n

l ~masaḃ
n

m̄ḃ!1O~m2m̄2!,

~70!

wheren̄R is the equilibriumR-charge density in the absenc
of super-chemical potentials. The term quadratic in sup
chemical potentials arises from the non-trivial commutat
of the supercharges with theR current,

@Qa ,JR
m#5Sa

m1~space-time gradients!, ~71a!

@Q̄ȧ ,JR
m#52S̄ȧ

m1~space-time gradients!. ~71b!

Note that the relation~70! implies that non-zero super
chemical potentials induce a non-zeroR-charge density even
when theR-charge chemical potential vanishes.
7-12
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C. Supersymmetric constitutive relations

We can now construct the required constitutive relatio
for the stress tensor and supercurrent. As before, we
need to include all possible terms which are linear in flu
tuations away from a reference equilibrium state~chosen to
have vanishing charge, supercharge, and spatial mome
densities! involving one spatial derivative, as well as term
without derivatives which are linear or quadratic in fluctu
tions. Neglected terms involving either more derivatives
more fluctuations will not affect the leading long-time tails
stress-stress or current-current correlators.

We will usera and r̄ ȧ to denote the~Grassmann valued!
supercharge densities in the non-equilibrium ensemble o
terest. In equilibrium, the relations~68! imply that the super-
charge densities are related to the super-chemical poten
via

ra5b~«̄s02w̄s•u!aḃm̄ ḃ,

r̄ ȧ52b mb~«̄ s02w̄s•u!bȧ , ~72!

neglectingO(u2) corrections. For the reasons discussed
the preceding subsection, to quadratic order in deviati
away from the reference equilibrium state, the pressure c
tains no coupling to supercharge densities. Consequently
constitutive relation for the stress is identical to the previo
result~21!, except for the inclusion ofR-charge density fluc-
tuations along with other bosonic charge fluctuations,32

Ti j 5d i j F P̄1vs
2d«1

1

2
j~d«!21

1

2
Jabnanb1

1

2
JRnR

2

2vs
2 p2

w̄
G1

p ip j

w̄
2gzd

i j
“•p

2ghS ¹ ip j1¹ jp i2
2

3
d i j

“•pD . ~73!

The constitutive relations for bosonic internal symme
currents are unchanged from the non-supersymmetric ca

ja52Dab“nb1
na p

w̄
, ~74!

while the new constitutive relation for theR-symmetry cur-
rent is

jR52DR“nR1
nRp

w̄
2

P̄
2«̄2

r̄ ȧ s̄ȧb rb . ~75!

32In writing the constitutive relation~73!, we have assumed, fo
simplicity, that the global bosonic symmetry currentsja are all vec-
tors, rather than pseudo-vectors, and that parity is a symmetry o
theory. This prevents aJaRnanR cross term from appearing in th
constitutive relation~73! for the stress, and likewise ensures that t
R-charge density does not mix with other global charge densitie
the constitutive relations~74! and ~75! for the currents.
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The quadratic coupling to supercharge densities follows
rectly from the~generalized! equilibrium form ~70! for the
expectation of theR current, combined with relation~72!.

The remaining constitutive relations are those of the
percurrents. The appropriate form is more complicated t
for bosonic currents because the supercharge density
spinor. There are two independent rotationally covari
forms in which a spatial gradient can be applied to a spi
ra to form a vector spinor, namely¹ ira and (s i j )a

b ¹j rb .
Consequently, the supercurrent constitutive relations h
the form

Sa
i 52Ds¹

ira2Ds~s i j !a
b¹jrb2

P̄
«̄

~s i s̄0!a
b rb

1
1

«̄
ra p i1

P̄
«̄2

pk~s i s̄k!a
b rb , ~76a!

S̄ȧ
i 52Ds¹

i r̄ ȧ2Ds¹j r̄ ḃ~ s̄ j i !ȧ
ḃ
2

P̄
«̄

r̄ ḃ ~ s̄0s i ! ȧ
ḃ

1
1

«̄
r̄ ȧ p i1

P̄
«̄2

pkr̄ ḃ ~ s̄ks i ! ȧ
ḃ . ~76b!

Here Ds ,Ds are two new diffusion constants, which mult
ply the two structures allowed by rotation invariance.33 The
remaining non-derivative terms are dictated by the equi
rium results~68!, when expanded to first order in flow ve
locity. The third term, which is linear in supercharge dens
reflects the fact that a constant supercharge density is
rotationally invariant, and hence induces a non-zero cons
spatial supercurrent. The convective terms are more com
cated than justrap i /w̄, because of the presence of this line
non-derivative term. If the supersymmetric theory in que
tion is also scale invariant, thens̄mSm must vanish, as it is in
the same supersymmetry multiplet as the trace of the ene
momentum tensor. Applying this constraint to the consti
tive relation~76!, one finds that the two diffusion constan
must coincide,Ds5Ds , in scale-invariant supersymmetri
theories.

D. Relaxation of supercharge fluctuations

The constitutive relation~76!, combined with conserva
tion of the supercurrent, allows one to determine how lon
wavelength fluctuations in supercharge density relax. Ins
ing the constitutive relation into the continuity equatio
] t ra52“•Sa , neglecting the non-linear convective term
and Fourier transforming in space yields

@~] t1Dsk
2!da

b2 ics~k•ss̄0!a
b#rb~ t,k!50, ~77!

he

in

33Assuming parity invariance of the theory ensures that the di
sion constants for the left and right handed supercurrents are
same. The Kubo formula for the supercharge diffusion constantDs

is «̄Ds52 limv→0
1

12*d4x eivx0
s̄0ȧbCȧb

i i (x).
7-13
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where cs[P̄/ «̄. The solution in the small-k limit shows
weakly damped, propagating behavior,

ra~ t,k!5e2Dsk
2t @da

b cos~ ukucst !

1 i ~ k̂•ss̄0!a
b sin~ ukucst !#rb~0,k!. ~78!

This is a propagating collective excitation which is distin
from normal sound. In some respects, it is analogous to
ond sound in a superfluid. Note that the velocitycs5P̄/ «̄ of
these ‘‘supersound waves’’ is always less than the ordin

speed of soundvs5A]P̄/]«̄. In scale invariant theories,cs

51/3 while vs51/A3. These collective excitations in supe
charge density were previously identified~and found to
propagate at speedcs) in Ref. @27#.

Just as in the previous non-supersymmetric analysis,
linearized non-equilibrium relaxation~78! may be converted
into a statement about the time dependence of the equ
rium supercharge density correlator. Let

C~ t,k!aḃ[E d3x e2 ik•x^Sa
0~ t,x!S̄ḃ

0
~0,0!&, ~79!

where the expectation value is in the reference equilibri
state with vanishing chemical potentials. The smallk limit of
the equal time correlator is fixed by the supersymme
algebra,34

C~0,k50!aḃ52 «̄saḃ
0 . ~80!

Consequently, the linear response result~78! is equivalent to
the statement that, in the smallk limit, the equilibrium su-
percharge correlator for large times has the form

C~ t,k!aḃ52 «̄e2Dsk
2utu@saḃ

0 cos~ ukucst !

1 i ~ k̂•s!aḃ sin~ ukucst !#. ~81!

One finds the same result for the smallk behavior of the
supercharge correlator with the opposite ordering,

C̄~ t,k!aḃ[E d3x e2 ik•x^S̄ḃ
0
~ t,x!Sa

0~0,0!&

52 «̄ e2Ds k2utu@saḃ
0 cos~ ukucst !

1 i ~ k̂•s!aḃ sin~ ukucst !#. ~82!

E. Supersymmetric long-time tails

As in the non-supersymmetric case, second order term
the constitutive relations are sufficient to understand
leading long-time tails ink50 correlators of all conserve
currents. Proceeding in exactly the same way as in Sec.
one sees from the absence of anyr̄r term in the stress tenso

34In our conventions,s0521, soC(t50,k50) is strictly posi-
tive, as the equal-time correlation function of any operator with
Hermitian conjugate must be.
02500
t
c-

ry

he

b-

y

in
e

E,

constitutive relation~73! that supercharge density fluctua
tions have no effect on the leading long-time tail in t
stress-stress correlator. Consequently, the stress-stress
relator has the same form as in the non-supersymmetric
@i.e., Eq. ~42! for scale-invariant theories, or Eq.~A11! for
the general case# provided theR charge is included as one o
the global bosonic charges. Similarly, the leading long-ti
tails ~37! in correlators of ordinary bosonic symmetry cu
rents are unaffected by the presence of supercharge de
fluctuations.

In contrast, the presence of a quadratic supercharge
sity term in the constitutive relation~75! for theR-symmetry
current means that the long-time tail in theR-symmetry cur-
rent correlator is affected by supercharge fluctuations. O
finds that the leading large time behavior is

E d3x ^ 1
2 $ j R

k ~ t,x!, j R
l ~0,0!%&

;
dkl

12 H ~T/w̄!xR

@~DR1gh!putu#3/2
1

1
4 cs

2

@2Dsputu#3/2J . ~83!

If the same analysis is applied to the spatial supercur
correlation function, one finds that the second orderpr
terms in the constitutive relation~76! do not generate long
time tails. Because the speed of ordinary sound (vs) and
supersound (cs) differ, fluctuations~with the same wave vec
tor! in momentum density and supercharge density can
remain in phase. This is analogous to the fact that only tra
verse momentum density fluctuations, not longitudinal sou
waves, contribute to the long-time tail~37! of ordinary
current-current correlators. So the supercurrent correl

^S̄ȧ
i (t)Sa

j (0)&, at k50, should decay exponentially in
time.35

The differing long-time behaviors of the stress tensor a
supercurrent correlators does not conflict with the fact t
the stress-energy tensor and supercurrents belong to the
supersymmetry multiplet. The supersymmetry algebra
plies simple relations between (21)F inserted thermal cor-
relation functions of conserved currents, but not betwe
conventional thermal correlation functions, for the reaso
noted in footnote 29.

IV. LONG-TIME TAILS IN NÄ4 SUPERSYMMETRIC
YANG-MILLS THEORY

As a specific application, the above discussion~trivially
generalized! may be applied toN54 supersymmetric
SU(Nc) Yang-Mills theory, at the origin of the moduli spac
and at non-zero temperature.36 Once again, hydrodynamic

s

35Becausecs,vs, one finds that higher-orderrpn terms in the
supercurrent constitutive relation also do not generate~higher-
order! power-law tails.

36The vacuum degeneracy associated with a non-trivial mo
space is lifted at non-zero temperature. For sufficiently high te
peratures, the only stable equilibrium states lie at the origin
moduli space.
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HYDRODYNAMIC FLUCTUATIONS, LONG-TIME TAILS, . . . PHYSICAL REVIEW D 68, 025007 ~2003!
degrees of freedom are densities of conserved charge
N54 supersymmetric Yang-Mills theory, the supersymme
algebra37 is generated by the charges of the dilation curr
j D
m5xnTmn, the special conformal currentsKl

m52xlxnTn
m

2x2Tl
m , and the special supersymmetry currentsS Aa

m

5xnsaȧ
n S̄A

mȧ andS̄Aȧ
m

5xn s̄ȧa
n SA

ma , in addition to the stress

energy tensorTmn and supercurrentsSAa
m ,S̄Aȧ

m . The index
A51, . . . ,4 is theextended supersymmetry label. There a
also 15 bosonicR-symmetry currents, whose charges gen
ate a non-anomalous globalSU(4)R symmetry.

The currentsj D
m , Kl

m , S Aa
m , and S̄Aȧ

m are all constructed
from the energy-momentum tensor and ordinary super
rents. Therefore, the time evolution of the charge densitie
these currents is completely determined by the time ev
tion of the energy-momentum tensor and the supercurren
other words,j D

0 , Kl
0 , S Aa

0 , and S̄Aȧ
0 are not new hydrody-

namic degrees of freedom, independent fromT0n, SAa
0 , and

S̄Aȧ
0 . No Abelian magnetic fields appear as hydrodynam

degrees of freedom, since the gauge group of the theo
SU(Nc), not U(Nc). Moreover, holographic arguments im
ply that the theory at non-zero temperature has a mass
@5#, in accord with the assumption of finite correlation leng
made in Sec. II.

The discussion of supercharge fluctuations in the previ
section generalizes easily to the case ofN54 supersymme-
try. In particular, the constitutive relation for the stress ten
has the same form~73!, except for the addition of a funda
mentalSU(4)R index on the superchargesrAa and an adjoint
index on theR-charge densitiesnRa ~i.e.,a51, . . . ,15). The
theory is scale invariant, and therefore«̄53P̄, and the bulk
viscosity vanishes, as does the coefficientJR . Hence, fluc-
tuations in theR-charge densities do not contribute to co
stitutive relation for stress to second order, which theref
must have the same form~23! as in a non-supersymmetri
scale-invariant theory. Consequently, the long-time tail
the stress tensor correlator~at k50) is given by the previous
result ~42!, and the equivalent small frequency form of th
spectral density is given by Eq.~46!.

The constitutive relation for supercurrent~76! stays un-
changed to second order~except for the addition of the inde
A, and the specialization toDs5Ds and P̄/ «̄51/3). No
long-time tail is present in the supercurrent correlator, for
reasons discussed in the previous section. Hence, the c
sponding spectral density is analytic at zero frequency.

The constitutive relations for theR-symmetry currents be
come

jR a52DR“nR a1
nR ap

w̄
2

1

3«̄
r̄Aȧ~ ta!ABs̄ȧbrBb , ~84!

where ta are the generators ofSU(4), normalized so that

37See, for example, Ref.@26#, for an introduction to theN54
algebra.
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tr(tatb)5 1
2 dab . The resulting long-time tails in the

R-symmetry current correlators~at k50) are

E d3x^ 1
2 $ j R a

k ~ t,x!, j R b
l ~0,0!%&

;
xRT

16«̄

dkl dab

@~DR1gh! putu#3/2
1

1

216

dkl dab

@2Ds putu#3/2
. ~85!

The equivalent small-frequency expansion of the spec
density is given by

1

vE dt d3xeivt^@ j R a
k ~ t,x!, j R b

l ~0,0!#&

5dab dkl~c(0)1c(1)Auvu!1O~ uvu3/2!, ~86!

where

c(0)5
2DR xR

T
, ~87a!

c(1)52
xR

2p«̄
@2~DR1gh!#23/22

1

216pT
Ds

23/2. ~87b!

In writing expressions~84! and ~85! we have used the fac
that in a thermal state without chemical potentials for t
SU(4)R charges, the matrix of diffusion constants, as well
the R charge susceptibility, must be invariants of the grou
(DR)ab5DR dab ,(xR)ab5xR dab .

The amplitudes of the long-time tails for the stress ten
correlator~42!, and theR-current correlator~85!, depend on
the values of the equilibrium energy density«̄, theR-charge
susceptibilityxR, the shear viscosityh, andR-charge diffu-
sion constantDR. These parameters must be treated as in
from short-distance physics. In a weakly coupled theo
these quantities can be computed in perturbation theory,
no field-theoretic calculation is available when the coupli
constant is large. However, the AdS/CFT corresponde
predicts specific values for these parameters inN54 super-
symmetric Yang-Mills theory in the limit of largeNc and
large ’t Hooft coupling. The equilibrium energy density
evaluated from the thermodynamics of the dual anti–de
ter black hole, and is predicted to be

«̄5
3p2

8
Nc

2T4. ~88!

The shear viscosity is evaluated as the zero-frequency l
of the absorption cross-section of gravitons by the bla
three-brane~with gravitons polarized parallel to the bran!
@12#, and is predicted to be

h5
p

8
Nc

2T3. ~89!

Hence, in this limit the ratiogh[h/w̄ is predicted to equa
1/(4pT). The diffusion constant and susceptibility fo
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SU(4)R charges are extracted from the pole structure of
thermal correlation function ofSU(4)R charge densities
@28#, and are predicted to be

DR5
1

2pT
, ~90!

and

xR5
1

8
Nc

2T3. ~91!

The supercharge diffusion constantDs has, to our knowl-
edge, not yet been evaluated, but should be computabl
the methods of Ref.@28#.

Although these strong coupling~and largeNc) limits of
transport coefficients, susceptibility, and energy density c
not be compared with direct field-theoretic calculations, th
may be used as input into the effective hydrodynamic the
~whose validity is independent of coupling andNc). Insert-
ing the AdS/CFT predictions~88!,~89! into the result~46!
yields the completely explicit form

1

vE dx0 d3x eivx0
^@Ti j ~x!,Tkl~0!#&

5S 1

2
d ikd j l 1

1

2
d i l d jk2

1

3
d i j dklDT3

3Fp

2
Nc

22
56163/2

60
Apuvu

T
1O~ uvu3/2!G ~92!

for the spectral density of the stress-stress correlator in
strong coupling, largeNc limit. This correlator is a non-
trivial probe of the real-time dynamics of strongly coupl
supersymmetric Yang-Mills plasma. Because the AdS/C
prediction of the supercharge diffusion constantDs is cur-
rently lacking, we cannot give an equally explicit result f
the R-symmetry current spectral density~86!.

The result~92! displays the expected 1/Nc
2 relative sup-

pression of the non-analytic part, and also shows that
ratio of the leading analytic to the leading non-analytic pie
does not depend on the coupling constantgY M of the gauge
theory in the strong coupling limit. In the language of t
AdS/CFT correspondence,a8/RAdS

2 51/AgY M
2 Nc, and 4pgs

5gY M
2 . The ten-dimensional gravitational constantk scales

as gsa8 2;RAdS
4 /Nc . Thus, it is string/supergravity loops

proportional tok2, which are responsible for 1/Nc
2 correc-

tions in field theory correlators. The corresponding one-lo
amplitudes are not straightforward to evaluate, given t
even the scalar propagator on the plane-symmetric A
02500
e

by

n-
y
y

e

T

e
e

p
t
S

black hole background is not known analytically.38 However,
it would be quite interesting to reproduce hydrodynamic
sults like Eq.~92! directly from supergravity loop correc
tions. Just verifying the form of the small-frequency no
analyticity from the gravity amplitudes, without computin
the precise coefficient, would be a worthwhile goal.

Finally, given that in various AdS/CFT-like scenario
finite-temperature field theories are believed to be exa
equivalent to string theories on backgrounds with therm
horizons, it is natural to expect that there must exist a co
spondence between appropriate effective theories as w
Namely, string theories on thermal backgrounds should h
low-energy descriptions which are dual to effective long d
tance descriptions of finite-temperature field theories, s
cifically hydrodynamics and kinetic theory~in weakly
coupled regimes!. As we have seen, constructing a strin
theory dual of hydrodynamics will necessarily require inco
porating string loop effects in order to reproduce aspects
long distance dynamics, such as long-time tails, which
sensitive to the non-linearities of hydrodynamics.
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APPENDIX: LONG-TIME TAIL IN STRESS-STRESS
CORRELATOR

In a theory, which is not necessarily scale invariant,
serting the stress tensor constitutive relation~21! into the
zero-wave-number connected stress-stress correlator giv

V 21^ 1
2 $Ti j ~ t !,Tkl~0!%&conn

5d i j dkl vs
2 w̄T1

1

w̄2
Hmn

i j Hpq
kl Bpmpn,pppq~ t !

1
j

2w̄
d i j Hpq

kl B««,pppq~ t !1
j

2w̄
Hmn

i j dkl Bpmpn,««~ t !

1
j2

4
d i j dkl B««,««~ t !1

Jab Jcd

4
d i j dkl Brarb ,rcrd

~ t !,

~A1!

whereHmn
i j [ 1

2 dm
i dn

j 1 1
2 dn

i dm
j 2vs

2d i j dmn , and

38For progress in this direction, see Ref.@29#.
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Bp ip j ,pkp l~ t ![E d3x^ 1
2 $p i~ t,x!p j~ t,x!, pk~0,0!p l~0,0!%&conn, ~A2!

Bp ip j ,««~ t ![E d3x ^ 1
2 $p i~ t,x!p j~ t,x!, «~0,0!2%&conn, ~A3!

B««,p ip j~ t ![E d3x ^ 1
2 $«~ t,x!2, p i~0,0!p j~0,0!%&conn, ~A4!

B««,««~ t ![E d3x ^ 1
2 $«~ t,x!2, «~0,0!2%&conn, ~A5!

Brarb ,rcrd
~ t ![E d3x ^ 1

2 $ra~ t,x! rb~ t,x!, rc~0,0! rd~0,0!%&conn. ~A6!

Evaluating these correlators in the hydrodynamic regime, as described in Sec. II E, yields

Bp ip j ,pkp l~ t !5E d3k

~2p!3
@Ap ipk~ t,k! Ap jp l~ t,2k!1Ap ip l~ t,k! Ap jpk~ t,2k!#

;
w̄2 T2

15 Fd i j dkl1d ikd j l 1d i l d jk

~4pgsutu!3/2
1

2 d i j dkl17 ~d ikd j l 1d i l d jk!

~8pghutu!3/2 G , ~A7!

Bp ip j ,««~ t !5B««,p ip j~ t !5E d3k

~2p!3
2 Ap i«~ t,k! Ap j«~ t,2k!;

w̄2 T2

3 vs
2

d i j

~4pgsutu!3/2
, ~A8!

B««,««~ t !5E d3k

~2p!3
2 A««~ t,k! A««~ t,2k!;

w̄2 T2

vs
4

1

~4pgsutu!3/2
, ~A9!

Brarb ,rcrd
~ t !5E d3k

~2p!3
@Ararc

~ t,k! Arbrd
~ t,2k!1Arard

~ t,k! Arbrc
~ t,2k!#

;xaa8
1/2 xbb8

1/2 xcc8
1/2xdd8

1/2 da8c8 db8d81da8d8 db8c8

@4p~Da81Db8!utu#
3/2

. ~A10!

In writing the result~A10!, we have chosen to use a basis for conserved charges in which the symmetric matrixx21/2Dx1/2 is
diagonal and has eigenvalues$Da%.

Setting everything together yields

V 21^ 1
2 $Ti j ~ t !,Tkl~0!%&5d i j dkl T w̄ vs

21
1

2
d i j dkl (

a,b

@~x1/2J x1/2!ab#
2

@4p~Da1Db!utu#3/2
1

2T2

15 S 1

2
d ikd j l 1

1

2
d i l d jk2

1

3
d i j dklD

3F 1

~4pgsutu!3/2
1

7

~8pghutu!3/2G1
T2

9
d i j dkl

F S 123vs
21

3

2
vs

22jw̄D 2

~4pgsutu!3/2
1

4~123vs
2!2

~8pghutu!3/2
G , ~A11!

up to terms vanishing faster thanutu23/2 as utu→`.
. B
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