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Classical solutions in a Lorentz-violating Maxwell-Chern-Simons electrodynamics
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We take as a starting point the planar model arising from the dimensional reduction of Maxwell electrody-
namics with the~Lorentz-violating! Carroll-Field-Jackiw term. We then write and study the extended Maxwell
equations and the corresponding wave equations for the potentials. The solution to these equations shows some
interesting deviations from the usual MCS electrodynamics, with background-dependent correction terms. In
the case of a timelike background, the correction terms dominate over the MCS sector in the region far from
the origin, and establish the behavior of a massless electrodynamics~in the electric sector!. In the spacelike
case, the solutions indicate the clear manifestation of spatial anisotropy, which is consistent with the existence
of a privileged direction in space.
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I. INTRODUCTION

The intensive development of Lorentz- andCPT-violating
theories in 113 dimensions@1–7# has brought about the
question of the structure of a similar model in 112 dimen-
sions and its possible implications. A dimensional reduct
~to D5112) of Lorentz-violating Maxwell electrodynam
ics, based on the presence of the Carroll-Field-Jackiw t
(emnklvmAnFkl), has been recently accomplished@8#, re-
sulting in gauge invariant planar quantum electrodynam
(QED3) composed by a Maxwell-Chern-Simons gauge fi
(Am), by a Klein-Gordon massless scalar field (w), and a
constant3-vector (vm). The MCS electrodynamics is supple
mented by a mixing, Lorentz-violating term, consisting
the gauge field and the external background,vm. In this way,
one has derived a Lorentz- andCPT-violating planar theory,
whose structure stems from a known counterpart, previou
defined in 113 dimensions, by Carroll Field and Jacki
@1,2#. As for the physical consistency of this model, some
its general features have been investigated. One has
verified that the complete model is stable and preserves
sality; unitarity is satisfied in the gauge sector without a
restrictions. In the scalar sector, instead, unitarity is guar
teed only for a purely spacelike background. Therefore,
full model supports a consistent quantization in the space
case while its gauge sector may be consistently quantized
both timelike and spacelike backgrounds.

The main motivation to study a planar model that viola
Lorentz covariance is twofold: we first intend to understa
some of its consistency properties; next, we wish to set u
theoretical framework to address some peculiar feature
two-dimensional systems in the presence of Lorentz sym
try breakdown. A common feature of condensed matter s
tems is that they do not obey Lorentz covariance, which m
establish a natural connection with this class of Loren
violating field models. These may eventually describe so
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phenomena in low-dimensional systems, like the presenc
anisotropy, common in a great deal of realistic situations

In this paper, we focus attention on the issue of the cl
sical equations of motion~the extended Maxwell equations!
and wave equations~for the potentialAm) derived from the
reduced Lagrangian. The purpose here is to investigate
effects of the Lorentz-violating background on the fie
strengths and potentials generated in our planar QED3. Ini-
tially, one verifies that these equations have a similar str
ture to the usual MCS case, supplemented by terms that
pend on the background vector. Solving these equations
obtain solutions that differ from the MCS ones also
vm-dependent correction terms both for timelike and spa
like vm. In the timelike case, qualitative physical chang
appear when one investigates the asymptotic character o
solutions. The background seems to annihilate the scree
characteristic of a massive electrodynamics, leading to a
havior typical of massless QED3 ~at least in the electric sec
tor!. Near the origin, no qualitative modification takes plac
In this case, no signal of spatial anisotropy appears. On
other hand, adopting a spacelikevm, the spatial anisotropy
becomes a manifest property of the solutions. Induced by
external background, the anisotropy arises in the form
terms~with a clear dependence on the angle relative to
fixed direction determined by the background,vW ) that correct
the MCS behavior. As for the screening property, the spa
like solutions do not exhibit any sensitive modification; a
tually, the absence of screening seems to be associated
with the timelike background.

In short, this paper is outlined as follows. In Sec. II, w
present the basic features of the reduced model, previo
developed in Ref.@8#. In Sec. III, the equations of motion
from which one derives the wave equations for potenti
and field strengths, are displayed. In Sec. IV, we solve
equations~in the static limit! for the timelike and spacelike
©2003 The American Physical Society05-1
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cases and discuss the results. In Sec. V, we conclude
presenting our final remarks.

II. THE LORENTZ-VIOLATING PLANAR MODEL

Our planar Lorentz-violating model is attained by mea
of a dimensional reduction of the Maxwell Lagrangia1

~written in 113 dimensions! supplemented by the Carrol
Field-Jackiw term@1#:

L1135$2 1
4 F m̂n̂F m̂n̂2 1

4 em̂n̂k̂l̂v m̂An̂F k̂l̂1An̂Jn̂%, ~1!

wherevm represents the external background andAn̂Jn̂ is an
additional term considering the coupling between the ga
field and an external current. This model~in its free version!
is gauge invariant but does not preserve Lorentz andCPT
symmetries relative to the particle frame@1,3,8#. We remark
that one adopts here a Carroll-Field-Jackiw term with op
site sign in relation to the one in Ref.@8#. Applying the
prescription of the dimensional reduction, described in R
@8#, on Eq.~1!, one obtains the reduced Lagrangian,

L11252
1

4
FmnFmn1

1

2
]mw ]mw2

s

2
emnkA

m ]nAk

1wemnkv
m ]nAk2

1

2a
~]mAm!21AmJm1wJ,

~2!
02500
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where the gauge-fixing term was added up after the dim
sional reduction. The scalar field,w, which appears from the
dimensional reduction ofAn̂ (A(3)5w), is a Klein-Gordon
massless field and also acts as the coupling constant
links the fixedvm to the gauge sector of the model, by mea
of the new mixing term:wemnkv

m]nAk. In spite of being
covariant in form, this term breaks the Lorentz symmetry
the particle-frame~since the 3-vectorvm is not sensitive to
particle Lorentz boost!, behaving like a set of three scalar
This reduced model does not necessarily jeopardize theCPT
conservation, which depends truly on the character of
constant vector vm: there will occur conservation if one
works with a purely spacelike external vector@vm5(0,vW )#,
or breakdown, ifvm is purely timelike or otherwise@8#. Here,
these results were established under the assumptionw is a
scalar field.2

To evaluate the propagators related to Lagrangian~2!, one
defines some new operators that form a closed algebra:

Qmn5vmTn , Lmn5vmvn ,

Smn5vm]n , Fmn5Tm]n .

Lengthy algebraic manipulations yield the propagators
listed below:
^Am~k!An~k!&5 i H 2
1

k22s2
umn2

a~k22s2!�~k!1s2~vaka!2

k2~k22s2!�~k!
vmn1

s

k2~k22s2!
Smn1

s2

~k22s2!�~k!
Lmn

2
1

~k22s2!�~k!
TmTn2

s

~k22s2!�~k!
Qmn1

s

~k22s2!�~k!
Qnm1

is2~vaka!

k2~k22s2!�~k!
Smn

1
is2~vaka!

k2~k22s2!�~k!
Snm1

is~vaka!

k2~k22s2!�~k!
Fmn2

is~vaka!

k2~k22s2!�~k!
FnmJ , ~3!

^ww&5
i

�~k!
@k22s2#, ~4!

^wAa~k!&52
i

�~k! FTa1sva2
s~vmkm!

k2
kaG , ~5!

^Aa~k!w&52
i

�~k! F2Ta1sva2
s~vmkm!

k2
kaG ,

1Here one has adopted the following metric conventions:gmn5(1,2,2,2) in D5113, andgmn5(1,2,2) in D5112. The Greek

letters~with a hat!, m̂, run from 0 to 3, while the pure Greek letters,m, run from 0 to 2.
2As discussed in Ref.@8#, if this field behaves like a pseudoscalar, theCPT conversation will be assured for a purely time-likevm.
5-2
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where Tm5Smnvm, Smn5«mkn]k, umn5gmn2vmn , vmn

5]m]n /h. The term �(k)5@k42(s22v•v)k22(v•k)2#
determines the pole structure associated with the pole
such propagators. In Ref.@8#, a consistency analysis invest
gating the stability, causality, and unitarity of such a mo
was also performed. We should comment here on our ga
fixing choice. We have taken the covariant gauge, bu
modified form of the axial gauge, now written in terms
our constant background vectorvm (vmAm50), could be
chosen. This would simplify the expressions above for
propagators. However, from now on, we shall be deal
with the classical field equations written for the fie
strengths, so that the question of the gauge fixing is not
cial to alter our extended Maxwell equations.

III. CLASSICAL WAVE EQUATIONS AND SOLUTIONS

Let us now consider the reduced model, given by L
grangian~2!, without the gauge-fixing term:

L11252
1

4
FmnFmn1

1

2
]mw ]mw2

s

2
emnkA

m ]nAk

1w«mnkv
m ]nAk1AmJm1wJ, ~6!

where one observes the Chern-Simons term~havings as to-
pological mass! and the Lorentz-violating term that couple
the constant background 3-vectorvm to the gauge vectorAm.
We stress that the vectorvm is not to be considered
Lagrange multiplier in spite of the absence of its derivativ
in the action.

Associated with this Lagrangian, there are two Eul
Lagrangian equations of motion:

]nFmn52
s

2
«mnr ]n Ar2«mnrvn]rw2Jm, ~7!

hw5emnkv
m ]nAk1J. ~8!

The modified Maxwell equations associated with this L
grangian read as below:

¹W 3EW 1] tB50, ~9!

] tEW 2¹* B52 jW1sEW * 1~vW * ] tw1v0¹W * w!, ~10!

¹W •EW 1sB5r2vW 3¹W w, ~11!

hw2vW 3EW 52v0¹W 3AW 1J, ~12!

where the first equation stems from the Bianchi identi3

(]mFm* 50), while the two inhomogeneous ones come fro
the motion equation~7!, and the last one is derived from E

3In D5112 the dual tensor, defined asFm* 5
1
2 emnaFna , is a

3-vector given byFm* 5(B,2EW * ). Here one adopts the following
convection:e0125e0125e125e1251. The symbol (* ), in a general

way, also designates the dual of a 2-vector: (Ei)* 5e i j E
j→EW *

5(Ey ,2Ex).
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~8!. Explicitly, one notes that Eq.~8! can be written as two
simpler equations whether the vectorvm is purely space-
like or timelike: hw5vW 3EW 1J for vm5(0,vW ); hw

52v0¹W 3AW 1J for vm5(v0 ,0W ). Applying the differential
operator,]m , in Eq. ~7!, there results the following equatio
for the gauge current:]mJm52«mnr ]mvn ]rw, which re-
duces to the conventional current-conservation law,]mJm

50, when vm is constant or has a null rotationa
(«mnr ]mvn50). These conditions correspond exactly to t
ones that lead to a gauge invariant theory@1#. Notice that no
space-time derivatives act onvm in the modified Maxwell
equation above, sincevm is a constant Lorentz symmetr
breaking vector.

Manipulating the Maxwell equations, one notes that t
fields B,EW satisfy inhomogeneous wave equations:

~h1s2!B5sr1¹W 3 jW2svW 3¹w

2] t~¹w!3vW * 1v0¹2w, ~13!

~h1s2!EW 52¹W r2] t jW2s jW* 2svW ~] tw!2svo¹W w

1vW * ] t
2w1v0¹W * ~] tw!1¹W ~vW 3¹W w!,

~14!

which, in the stationary regime, are reduced to

~¹22s2!B52sr2¹W 3 jW1svW 3¹w2v0¹2w, ~15!

~¹22s2!EW 5s jW* 1¹W r1svo¹W w2¹W ~vW 3¹W w!. ~16!

Similarly to the behavior of the classical MCS model, he
the potential components (A0 ,AW ) obey fourth-order wave
equations:

h~h1s2!A05hr2h~vW 3¹W w!2s¹W 3 jW

1s~] t¹W w!3vW * 2svo¹2w, ~17!

h~h1s2!AW 5s] t jW* 1s¹W * r1svW ~] t
2w!1svo¹W ~] tw!

2s@¹W ~vW 3¹W w!#*

1h~ jW2vW ] tw2v0¹W * w!, ~18!

which are endowed with an inhomogeneous sector m
more complex due to the presence of the termsvW and w in
the Lagrangian~6!. It is instructive to remark that wave
equations~13!, ~14!, ~17!, and ~18! reduce to their classica
MCS usual form@9,10# in the limit one takesvm→0, namely

~h1s2!B5sr1¹W 3 jW,

~h1s2!EW 52¹W r2] t jW2s jW* , ~19!
5-3
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h~h1s2!A05hr2s¹W 3 jW,

h~h1s2!AW 5s] t jW* 1s¹W * r1h jW.

~20!

The above wave equations present the following soluti
@9# ~for a pointlike charge distribution and null current!:

B~r !5~e/2p!K0~sr!, EW 5~e/2p!sK1~sr! r̂ , ~21!

A0~r !5~e/2p!K0~sr!, AW ~r !5~e/2p!@1/r 2sK1~sr!# r̂ * .
~22!

Up to now, Eq.~8! was not still used in the derivation o
the wave equations for the fields and potentials. It will
appropriately considered in the subsequent solutions.

IV. SOLUTIONS FOR THE SCALAR POTENTIAL AND THE
STRENGTH FIELDS IN THE STATIC LIMIT

As for the wave equation~17!, which rules the dynamics
of the scalar potential,A0, one notices that it is not entirel
written in terms ofA0, since the scalar fieldw is not a con-
stant variable and exhibits its own dynamics described
Eq. ~12!. This information must now be taken into account
provide the correct solution to this wave equation. Furth
more, there will be two different solutions depending on t
character of the fixed vectorvm, as we will see below.

A. The external vector is purely timelike: vµÄ„v0,0…

Supposing the system reaches a stationary regime,
~17! is reduced to

¹2~¹22s2!A052¹2r2s¹W 3 jW2svo¹2w1¹2~vW 3¹W w!.
~23!

In this case, thew field satisfies the equation¹2w5v0B
2J. The use of Eq.~12! changes Eq.~23! to the form

¹2~¹22s21v0
2!A052¹2r2s¹W 3 jW2v0

2r1sv0J.
~24!

Starting from a pointlike charge-density distributio
r(r )5ed(r ), taking a null current density,jW50,J50, and
proposing a Fourier-transform expression for the scalar
tential,A0(r )5@1/(2p)2#* d2kW eikW•rWÃ0(k), the following so-
lution is obtained:

A0~r !5
e

~2p!w2
@s2K0~wr !1v0

2 ln r #, ~25!

wherew25s22v0
2. Whenevers2.v0

2, this potential results
repulsive. Moreover, it is trivial to see that in the limitv0
→0, one recovers the scalar potential associated with
MCS electrodynamics, given by Eq.~22!. One can thus con
clude that the term with dependence on lnr is then a contri-
02500
s

y
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bution stemming from the background field. The elect
field, derived from Eq.~25!, is read as

EW ~r !5
e

~2p! F s2

w
K1~wr !2S v0

2

w2D 1

r G r̂ , ~26!

which compared with the MCS correspondent, that of E
~21!, possesses the additional presence of the 1/r term, which
also arises as a contribution of the background. In the li
of short distance (r !1), the scalar potential~25! and the
electric field~26! are reduced to the form

A0~r !52
e

~2p! F ln r 1
s2

w2
ln wG ,

EW ~r !5S e

2p D1

r
r̂ , ~27!

which reveals the repulsive character of expression~25! and
a radial 1/r electric field near the origin. At the same tim
one notices that, at the origin, the correction terms induce
Eqs.~25! and~26! by the background exhibit the same fun
tional behavior as the preexistent MCS terms. Howev
when one goes far away from the origin, the picture dram
cally changes: the correction terms entirely dominate o
the exponential-decaying Bessel functions, resulting in
following forms:

A0~r !5F ev0
2

~2p!w2G ln r , EW ~r !52F e

~2p!

v0
2

w2G1

r
r̂ .

So, one has a substantial modification in the asymptotic
havior of the solutions, which indicates that one of the m
roles of the background is to promote a sensitive decrea
in the screening~or decay factor! of the field solutions. In-
deed, a logarithmic scalar potential and a 1/r electric field are
usual asymptotic solutions in a massless QED3.

In the absence of currents, the magnetic field is ruled
Eq. ~15!, which reads simply as (¹22s21v0

2)B52sr. This
differential equation is fulfilled by a very simple solution:

B~r !5S es

2p DK0~wr !. ~28!

In comparing this magnetic field with that of Eq.~21!, one
does not observe any additional term. In this case, the in
ence of the background seems to be totally absorbed into
decay factor,w, here smoothly diminished by the effect o
the background. Thus, one remarks that decisive effects
cerning the vanishing of the screening~coming from the
timelike background! are confined to the electric sector o
the theory. Finally, one points out that the results here
tained do not exhibit any signal of spatial anisotropy, whi
is consistent with the adoption of a null vectorvW , since this is
the element responsible for the choice of a privileged dir
tion in space. The anisotropy, therefore, must be mani
whenvm is spacelike.
5-4
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B. The external vector is purely spacelike:vµÄ„0,v…

In this case, the equation fulfilled by the scalar fie
¹2w52vW 3EW 2J, can be read in terms of the scalar pote
tial: ¹2w5vW 3¹W A02J5(vW •¹W * )A02J. Taking into account
this relation, Eq.~17! in its stationary regime is reformulate
as

@¹2~¹22s2!2~vW •¹W * !~vW •¹W * !#A0

52¹2r2s¹W 3 jW2~vW •¹W * !J, ~29!

where the following relation was used:¹2(vW 3¹W w)
5(vW •¹W * )¹2w5(vW •¹W * )(vW •¹W * )A0, sincevW 5cte.

Starting from a pointlike charge density distributio
r(r )5ed(r ), jW5J50, and proposing again a Fourie
transform expression for the scalar potential, one obtains

A0~r !52
e

~2p!2E0

`

k dk

3E
0

2p

df
eikr cosf

@~kW21s2!1vW 2 sin2~f2b!#
, ~30!

where (f2b) is the angle defined byvW and kW , namely

vW •kW5vk cos(f2b). An exact result was not found for thi
full integral, but an approximation can be accomplished
order to solve it algebraically. Indeed, considerings2@v2 an
integration becomes feasible. Here, there is an external
tor, vW , that fixes a direction in space and the coordinate
sition, rW, where one measures the fields. One then consi
that the angle betweenvW and rW is given byvW •rW5vr cosb,
whereb5cte. Considering this information and working i
the limit in which s2@v2, the integration is carried out~at
first order onv2/s2), so that

A0~r !.
e

~2p! FK0~sr!2
~12cos2 b!

2s
v2rK 1~sr!

1
v2

2s2
~122 cos2 b!K2~sr!G . ~31!

In this expression, one notes a clear dependence of the
tential on the angleb, which is an unequivocal sign of an
isotropy determined by the ubiquity of the background v
tor on the system. Near the origin, theK2 function dominates
over the other terms, so that the short-distance potential
haves effectively as

A0~r !5
e

~2p! F ~122 cos2 b!
v2

s2

1

r 2G , ~32!

which shows that the potential is always repulsive at orig
In spite of this fact, the expression~31! may exhibit an at-
tractive well region, at largerr values, depending on th
value of thes parameter. This fact brings into light the po
sibility of the occurrence of pair condensation concern
02500
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two particles interacting by means of this gauge field. T
issue should be more properly investigated in the contex
low-energy two-particle scattering@13#, whose amplitude
can be converted into the interaction potential by a Fou
transform.

Looking at the expression~18! for the vector potential,
one observes the presence of the term¹W (vW 3¹W w), which
cannot be written as a term depending directly onAW . This
fact seems to prevent a solution forAW starting from the static
version of this differential equation, which also seems to
an impossibility for determining a solution for the magne
field. However, one must indeed be interested in the m
netic field, and a simpler solution for it can arise from E
~10!, which in the static regime is simplified to the form
¹B52sEW 2v0¹W w. For a pure spacelikevm, this last equa-
tion reduces to¹B52sEW 5s¹A0, an equation that links the
magnetic field and the scalar potential:B5sA01cte. Based
on Eq. ~31!, we achieve the following expression for th
fields:

EW ~r !5
e

~2p! H sK1~sr!1~12cos2 b!
v2

2 F r 2
2

s2r
GK0~sr!

1~12cos2 b!
v2

2sF12
4

s2r 2GK1~sr!J r̂ , ~33!

B~r !5
e

~2p! H sK0~sr!2~12cos2 b!
v2

2
rK 1~sr!

1
v2

2s
~122cos2 b!K2~sr!J . ~34!

Here, the effect of the background vector,vW , appears more
clearly on the field solutions. As compared to the MCS fie
(B andEW ), there arise supplementary terms, proportiona
cos2 b, responsible for the spatial anisotropy. Despite
complexity of the expressions for the field configuratio
above, it can be readily seen that they exhibit screening~ab-
sent in the purely timelike case!, once all the modified
K-Bessel functions decay exponentially far from the orig
One thus concludes that the vanishing of the screenin
associated only with a timelike background.

V. FINAL REMARKS

Starting from a dimensionally reduced gauge invaria
Lorentz, andCPT-violating planar model, derived from th
Carroll-Field-Jackiw term~defined in 113 dimensions!, we
have studied the extended Maxwell equations~and the cor-
responding wave equations for the field strengths and po
tials! stemming from the planar Lagrangian. While the fie
strengths satisfy second-order inhomogeneous wave e
tions, the potential components (A0 ,AW ) fulfill fourth-order
wave equations, a clear similarity to the usual behavior
herent in the pure MCS sector. As expected, this struct
resemblance is also manifest in the solutions to these e
tions. Indeed, in the case of a purely timelike backgrou
5-5
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one has attained solutions for the fieldsB and EW that differ
from the MCS counterparts just by correction terms~depen-
dent onvm). These new terms do not bring about any
markable physical change near the origin, where they pre
the same behavior as the MCS terms. Away from the orig
however, the panorama is new and intriguing: the correc
terms, independently of the value of their coefficients, co
to dominate over the MCS behavior, yielding an apprecia
modification on the asymptotic solutions. In fact, at lar
distances, the electric sector of the massive MCS electro
namics, characterized by strong screening~stemming from
the topological mass!, is smoothly replaced by a logarithmi
behavior typical of a long-range massless electrodynam
When the magnetic field is considered, no drastic modifi
tion takes place, but the decay factor suffers a softening~due
to the presence ofv0

2). In this case, no signal of anisotrop
was observed, as expected. This physical picture seems
compatible with the absence of degrees of freedom ass
ated with the polek25s2 of the propagator, which does no
exhibit any dynamical content as concluded by analyzing
residue at the corresponding pole@8#.

In the pure spacelike case, the background field app
more explicitly in the solutions in the form of spatial aniso
ropy, a consequence of the selection of a privileged spa
direction, given byvW . The solutions keep the MCS referen
term, but at the same time present a complex form, wh
,
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reflects the anisotropy induced by the background over
solutions, attained in the approximations2@v2. The reduc-
tion of the screening for large distances, observed in
timelike case, is absent here. The scalar potential obtaine
always repulsive at the origin, but it may become attract
at an intermediary well-defined region, depending on the
rameters.

The attractiveness of this potential may be better explo
in the realm of a nonrelativistic physical system. In fact, t
verification of the consistency of this model~see Ref.@8#! in
the case of a spacelike background shows that application
this study to condensed-matter systems is a reasonable
tion. In this context, there arises the interesting possibility
investigating a Mo¨ller scattering in the low-energy~nonrela-
tivistic! limit. For this task, following a usual procedure i
QED3 @11,12#, one should include the Dirac sector and co
sider suitable couplings~electron-photon and electron-scal
ones!. The electron-electron interaction would then be me
ated by the scalar and gauge fields, whose action must ap
in the form of an interaction potential~stemming from a
tree-level calculation! @13#.
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