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Classical solutions in a Lorentz-violating Maxwell-Chern-Simons electrodynamics
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We take as a starting point the planar model arising from the dimensional reduction of Maxwell electrody-
namics with thgLorentz-violating Carroll-Field-Jackiw term. We then write and study the extended Maxwell
equations and the corresponding wave equations for the potentials. The solution to these equations shows some
interesting deviations from the usual MCS electrodynamics, with background-dependent correction terms. In
the case of a timelike background, the correction terms dominate over the MCS sector in the region far from
the origin, and establish the behavior of a massless electrodynémitiee electric sectgr In the spacelike
case, the solutions indicate the clear manifestation of spatial anisotropy, which is consistent with the existence
of a privileged direction in space.
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[. INTRODUCTION phenomena in low-dimensional systems, like the presence of
anisotropy, common in a great deal of realistic situations.
The intensive development of Lorentz- aG@T-violating In this paper, we focus attention on the issue of the clas-

theories in &3 dimensions[1-7] has brought about the sical equations of motiofthe extended Maxwell equations
question of the structure of a similar model if-2 dimen-  and wave equation§or the potentialA*) derived from the
sions and its possible implications. A dimensional reductionreduced Lagrangian. The purpose here is to investigate the
(to D=1+2) of Lorentz-violating Maxwell electrodynam- effects of the Lorentz-violating background on the field
iCS, based on the presence of the Carroll-Field-Jackiw terrgtrengths and potentials generated in our p|anar QE@_
(e""*v,AF,,), has been recently accomplishfl, re-  tially, one verifies that these equations have a similar struc-
sulting in gauge invariant planar quantum electrodynamic§ye to the usual MCS case, supplemented by terms that de-
(QEDs) composed by a Maxwell-Chern-Simons gauge fieldyeng on the background vector. Solving these equations, we
(Au), by a Klein-Gordon massless scalar field)( and a  gptain solutions that differ from the MCS ones also by
constants-vector @M)' The MCS_equtrodynamms |s_sqpple- v#-dependent correction terms both for timelike and space-
mented by a mixing, Lorentz-violating term, consisting of j o » " |y the timelike case, qualitative physical changes

ghneegﬁ;'sggglrie\ﬁ;gdsg;ﬁé[ ?;nﬁ?}?g?\zg?ggrﬁlﬁd’lrn;ﬁfhvg?rﬂ appear when one investigates the asymptotic character of the
whose structure stems from a known cou%tzrpart previ)c/)'uslsomtions' The background seems to annihilate the screening
’ Xharacteristic of a massive electrodynamics, leading to a be-

defined in &3 dimensions, by Carroll Field and Jackiw . . . ;
[1,2]. As for the physical consistency of this model, some of'2vior typical of massless QEDiat least in the electric sec-

its general features have been investigated. One has th&ff)- Near the origin, no qualitative modification takes place.
verified that the complete model is stable and preserves calf this case, no signal of spatial anisotropy appears. On the
sality; unitarity is satisfied in the gauge sector without anyother hand, adopting a spaceliké, the spatial anisotropy
restrictions. In the scalar sector, instead, unitarity is guaranPecomes a manifest property of the solutions. Induced by the
teed only for a purely spacelike background. Therefore, th@xternal background, the anisotropy arises in the form of
full model supports a consistent quantization in the spacelikéerms (with a clear dependence on the angle relative to the
case while its gauge sector may be consistently quantized fdixed direction determined by the background that correct
both timelike and spacelike backgrounds. the MCS behavior. As for the screening property, the space-
The main motivation to study a planar model that violateslike solutions do not exhibit any sensitive modification; ac-
Lorentz covariance is twofold: we first intend to understandtually, the absence of screening seems to be associated only
some of its consistency properties; next, we wish to set up aith the timelike background.
theoretical framework to address some peculiar features of In short, this paper is outlined as follows. In Sec. Il, we
two-dimensional systems in the presence of Lorentz symmepresent the basic features of the reduced model, previously
try breakdown. A common feature of condensed matter sysdeveloped in Ref[8]. In Sec. lll, the equations of motion,
tems is that they do not obey Lorentz covariance, which mayrom which one derives the wave equations for potentials
establish a natural connection with this class of Lorentz-and field strengths, are displayed. In Sec. IV, we solve the
violating field models. These may eventually describe somequations(in the static limi} for the timelike and spacelike
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cases and discuss the results. In Sec. V, we conclude hyhere the gauge-fixing term was added up after the dimen-

presenting our final remarks. sional reduction. The scalar field, which appears from the
dimensional reduction of; (A®)=¢), is a Klein-Gordon
II. THE LORENTZ-VIOLATING PLANAR MODEL massless field and also acts as the coupling constant that

o ) ) links the fixedv# to the gauge sector of the model, by means
Our planar Lorentz-violating model is attained by meansys the new mixing term:ee, ,0”3"AX. In spite of being
PE,, .

of a dlnjensmna! redu_ctlon of the Maxwell Lagrandian covariant in form, this term breaks the Lorentz symmetry in
(written in 1+3 dimensions supplemented by the Carroll- {he particle-framesince the 3-vectop” is not sensitive to
Field-Jackiw tern{1]: particle Lorentz boost behaving like a set of three scalars.
This reduced model does not necessarily jeopardiz€#e
conservation, which depends truly on the character of the
constantvector v#: there will occur conservation if one
gvorks with a purely spacelike external vec[oxf‘:(o,zj)],

or breakdown, ib# is purely timelike or otherwisg8]. Here,
these results were established under the assumptiana

Lroa={~ FFuF = F e o ARG HAY ()

wherev* represents the external background &nd” is an
additional term considering the coupling between the gaug
field and an external current. This mod#l its free version
is gauge invariant but does not preserve Lorentz @rd

. . . scalar field?
symmetries relative to the particle frae3,8. We remark
that one adopts here a Carroll-Field-Jackiw term with oppo- To evaluate the propagators related to Lagran@arone

site sign in relation to the one in Ref8]. Applying the defines some new operators that form a closed algebra:

prescription of the dimensional reduction, described in Ref.
[8], on Eqg.(1), one obtains the reduced Lagrangian,

1 L1 S ok
£1+2:_ZF’MVFM +§&#(p 0#@_§€#VKAM(9 A

1
+ e, ot 9 A~ 2—((9MAM)2+AM‘]M+<PJ’
@ Lengthy algebraic manipulations yield the propagators as
(2) listed below:

(AR AY(K) =i 1 g a(k?—s?)X (k) +s%(v k%)? » s , g2 N
=|{ — —
k?—s? k?(k?—s?) (k) @ k?(k®—s?) (k?>—s?)X (k)
s s i5%(v k)
_ MTV_ Q;LV_jr_ V,u_{_ - ® T Nmv
(k?—s?)X (k) (k?—s?)X (k) (k>—s?)K (k) k?(k?—s?) (k)
N isz(vak") ” is(v k%) B is(v o KY) ” 3
k?(k?—s?)R(k) k?(k2—s?)R(k) k?(k2—s?)R (k)
< >: I [k2_82] (4)
e _ﬂ(k) )
a I a a S(U”‘kﬂ) a
(oA (k)>=—m T+ sp*— ——k*|, )
a _ I a a S(U”kﬂ) a
<A (k)(p>——m —T%+sv —Tk 1,
'Here one has adopted the following metric conventigng=(+,—,—,—) inD=1+3, andg,,=(+,—,—) in D=1+2. The Greek

letters(with a hay, ,& run from O to 3, while the pure Greek lettegs, run from O to 2.
2As discussed in Ref8], if this field behaves like a pseudoscalar, ©RT conversation will be assured for a purely time-liké.
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where T,=S,,v*, S,, =€, 0,,=0,,—0,,, o, (8. Explicitly, one notes that E¢8) can be written as two
=4,d,/0. The term X(k)=[k*—(s’~v-v)k?~(v-k)?]  simpler equations whether the vectot is purely space-
determines the pole structure associated with the poles ke or timelike: Oe=vXE+J for v#*=(0p); e
such propagators. In R€f8], a consistency analysis investi- _ oV XA+ for vh= (v 6). Applying the differential
gating the stability, causality, and unitarity of such a mOdelopera%or,ﬁ#, in Eq.(7), the?é results the following equation
was also performed. We should comment here on our gauges . i« gauge currents, J*=— 4" 3.0, ¢, which re-

fIXIng_ch0|ce. we have_ taken the covariant gauge, but Yuces to the conventional current-conservation lapg#
modified form of the axial gauge, now written in terms of —0. when v is constant or has a null rotational

M = '

B o esbony i 00} These condiions corespond exacl o e
) P P . ones that lead to a gauge invariant thefdry Notice that no

propagators. However, from now on, we shall be dealin

: ) ; . . : gspace—tlme derivatives act art* in the modified Maxwell
with the classical field equations written for the field . . .
) L equation above, since” is a constant Lorentz symmetry
strengths, so that the question of the gauge fixing is not cr

cial to alter our extended Maxwell equations LBreaking vector.
q ' Manipulating the Maxwell equations, one notes that the

lll. CLASSICAL WAVE EQUATIONS AND SOLUTIONS fields B,E satisfy inhomogeneous wave equations:
Let_ us now consider the redu_ced model, given by La- (D+52)B=5p+ﬁxf— SOX Vg
grangian(2), without the gauge-fixing term:
1 1 s — (Vo) Xv* +voV 2, (13)
Lis2== ZFu "+ Sd,0 0 0= 5 €A 9 Ak ) )
(O+s)E=—Vp—a,] —Sj* —sv(dp) —Sv,Ve
+ @, 0t AR A LI+ 9, (6) A A o
_ . +U* FetvoV* (09) +V(0X Vo),
where one observes the Chern-Simons témavings as to-
pological massand the Lorentz-violating term that couples (14)
the constant background 3-vectgf to the gauge vectoh”.
We stress that the vectar” is not to be considered a which, in the stationary regime, are reduced to
Lagrange multiplier in spite of the absence of its derivatives

in the action. 2_ 2 S T 2
) . . . Ve=s9)B=—sp—VX|j+suXVe—v,V°ep, 15
Associated with this Lagrangian, there are two Euler- ( %) sp J7sv vV @ (19
Lagrangian equations of motion: o R o
(V2=s?)E=s|*+Vp+sv,Vo—V(vXVe). (16
s
&VF'“V=—§8“”‘° d,A,—e""v,d,0—J", (7)
Similarly to the behavior of the classical MCS model, here
D(PzewkvﬁavAkjLJ. ®) the pptenjual componentsAf,A) obey fourth-order wave
equations:
The modified Maxwell equations associated with this La-
grangian read as below: (0 +8%)Ag=0p—O(0XVe)—sV X
VXE+aB=0, 9) +5(3,V @) Xv* —sv,V2g, (17
HE—V*B=—]+SE* +(v* o +voV* ), (10 L . N
t : (V" drptooV™e) OO+ 2 A= o, * +SV* p+ 50(320) +50¥ (9,0)
ﬁ-é-ﬁ-SB:p—l;XﬁgD, (11 —S[ﬁ(l;xv)(p)]*
Oe—vXE=—voVXA+J, (12) +0(f—0 dio—voV* @), (18)

where the first equation stems from the Bianchi ideﬁtity ) ) )
(9,F** =0), while the two inhomogeneous ones come fromwhich are endowed with an inhomogeneous sector much
I,L 7

the motion equatioii7), and the last one is derived from Eq. more complex due to the presence of the tetmand ¢ in
the Lagrangian(6). It is instructive to remark that wave
equations(13), (14), (17), and(18) reduce to their classical

3n D=1+2 the dual tensor, defined &* =1ereF,  isa MCS usual forn{9,10] in the limit one takes*“—0, namely

3-vector given byF#* =(B,—E*). Here one adopts the following

convection:eg;,= €°¥?= e,,= €'?>=1. The symbol t), in a general (O+s?)B=sp+Vxj,
way, also designates the dual of a 2-vectde')t = €;E/—E* R . L
=(E,,~E). (O+s)E=~Vp—a,j—sj*, (19
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D(D+SZ)AO=Dp—s§Xf bution stemming from the background field. The electric
' field, derived from EQq(25), is read as
O(O+s?)A=sd,j* +sV* p+0].
- e |s? v(z) 1
20 - | = S el
(20 B =20 - Ka(wr) il (26)
The above wave equations present the following solutions _
[9] (for a pointlike charge distribution and null currgnt which compared with the MCS correspondent, that of Eq.
(21), possesses the additional presence of theégtim, which
B(r)=(el2m)Ko(sr) E:(e/ZTr)sKl(sr)F (21) also arises as a contribution of the background. In the limit

of short distancer(<1), the scalar potential25) and the

R A electric field(26) are reduced to the form
Ao(r)=(el2m)Ko(sr), A(r)=(el2m)[Lr—sK(sr)]r*. 8

(22 e 2
Ao(r)=—2— Inr+—2Inw ,
Up to now, Eq.(8) was not still used in the derivation of (2m) w
the wave equations for the fields and potentials. It will be
appropriately considered in the subsequent solutions. > e |1,
Pprop y f E(r)=(ﬁ ral 27

IV. SOLUTIONS FOR THE SCALAR POTENTIAL AND THE _ _
STRENGTH FIELDS IN THE STATIC LIMIT which reveals the repulsive character of express&i and
a radial 1f electric field near the origin. At the same time,

As for the wave equatiofil7), which rules the dynamics one notices that, at the origin, the correction terms induced in
of the scalar potentiak\,, one notices that it is not entirely Eqs.(25) and(26) by the background exhibit the same func-
written in terms ofA,, since the scalar fielg is not a con-  tional behavior as the preexistent MCS terms. However,
stant variable and exhibits its own dynamics described byvhen one goes far away from the origin, the picture dramati-
Eq. (12). This information must now be taken into account to cally changes: the correction terms entirely dominate over
provide the correct solution to this wave equation. Furtherthe exponential-decaying Bessel functions, resulting in the
more, there will be two different solutions depending on thefollowing forms:
character of the fixed vecter, as we will see below.

evé - v% 1.
A. The external vector is purely timelike: v*=(v,,0) Ao(r)= (2m)W? Inr, E(r)=- (2_77) v? T r
Supposing the system reaches a stationary regime, Eq.
(17) is reduced to So, one has a substantial modification in the asymptotic be-
. havior of the solutions, which indicates that one of the main
V3(V2=5)Ag=—V2p—sV X | —sv,V2p+ V(v X V). roles of the background is to promote a sensitive decreasing

(23 in the screenindor decay factor of the field solutions. In-
_ . o I deed, a logarithmic scalar potential and eédlectric field are
In this case, thep field satisfies the equatioR“¢=voB  usual asymptotic solutions in a massless QED

—J. The use of Eq(12) changes Eq(23) to the form In the absence of currents, the magnetic field is ruled by
o Eq. (15), which reads simply asW?—s?+v2)B=—sp. This
V2(V2=82+03)Ag=—V2p—sV X[ —vip+svod. differential equation is fulfilled by a very simple solution:
(24)
es
Starting from a pointlike charge-density distribution, B(r)= 2 Ko(wr). (28)

p(r)=ed(r), taking a null current density,=04J=0, and
proposing a Fourier-transform expression for the scalar po comparing this magnetic field with that of E(®1), one
tential, Ao(r) =[ 1/(2m)2]f d2Kk ek TAy(k), the following so- does not observe any additional term. In this case, the influ-
lution is obtained: ence of the background seems to be totally absorbed into the
decay factorw, here smoothly diminished by the effect of
the background. Thus, one remarks that decisive effects con-
[s2Ko(wr)+v2Inr], (25)  ceming the vanishing of the screenirigoming from the
(27)wW? timelike backgroungare confined to the electric sector of
the theory. Finally, one points out that the results here ob-
wherewzzsz—ug. Whenever52>v(2,, this potential results tained do not exhibit any signal of spatial anisotropy, which
repulsive. Moreover, it is trivial to see that in the limig is consistent with the adoption of a null vectgrsince this is
—0, one recovers the scalar potential associated with ththe element responsible for the choice of a privileged direc-
MCS electrodynamics, given by E2). One can thus con- tion in space. The anisotropy, therefore, must be manifest
clude that the term with dependence om Is then a contri- whenv# is spacelike.

e

Ao(r)=
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B. The external vector is purely spacelikew"=(0v) two particles interacting by means of this gauge field. This
In this case, the equation fulfiled by the scalar field,SSUe should be more properly |_nvest|gated in the context of
V20— — X E—J. can be read in terms of the scalar Oten_Iow-energy two-particle scatterinfl3], whose amplitude
) ¢ ) VAET Y L o P can be converted into the interaction potential by a Fourier
tial: Voio=vXVAy;—J=(v-V*)Ay—J. Taking into account transform.
this relation, Eq(17) in its stationary regime is reformulated | ooking at the expressiofl8) for the vector potential,

as one observes the presence of the té¥ify X V), which
[VZ(VZ—SZ)—(J-ﬁ*)(J~ﬁ*)]AO cannot be written as a term depgnding directlyﬁanThis
L fact seems to prevent a solution faarstarting from the static
=—V?p—sVXj—(v-V*)J, (290  version of this differential equation, which also seems to be

o an impossibility for determining a solution for the magnetic
where the following relation was usedV2(vXxVe) field. However, one must indeed be interested in the mag-
=(J~ﬁ*)V2¢:(J~ﬁ*)(JV*)Am sincev = cte. netic field, and a simpler solution for it can arise from Eq.

Starting from a pointlike charge density distribution, (10), which in the static regime is simplified to the form
p(r)=ed(r), f:J:O, and proposing again a Fourier- VB:—SE—UO€¢. For a pure spacelike”, this last equa-
transform expression for the scalar potential, one obtains tion reduces t&/ B= —sE= sVA,, an equation that links the

magnetic field and the scalar potentiBk=sA,+cte. Based

e o0 - . .
Aq(r)= — f K dk ?nldEg. (31), we achieve the following expression for the
(2m)%Jo lelds:
[ et E(r)= — [ Ka(sr)+ (1—cog B)'2 | r— | K(sn)
X d = = . (30 r=-—5—1SKysr —co —|r——|Ko(sr
0 ¢[(k2+52)+v25in2(¢—,8)] 30 (2m) 2| &
where (- B) is the angle defined by and k, namely T (1-cog ,B)U—2 1- 2 lkysnls 33
v-k=vk cos(@—pB). An exact result was not found for this 2s s2r2 ’

full integral, but an approximation can be accomplished in
order to solve it algebraically. Indeed, considersigrv? an e
integration becomes feasible. Here, there is an external vec-B(N= (277)
tor, v, that fixes a direction in space and the coordinate po- )
sition, r, where one measures the fields. One then considers + U_(1_2Co§ B)Kz(sr)}. (34)
that the angle betweem andr is given byv-r=uvr cosp, 2s

where 8= cte. Considering this information and working in
the limit in which s?>v?, the integration is carried outt
first order onv?/s?), so that

U2
sKO(sr)—(l—co§ﬁ)7rK1(sr)

Here, the effect of the background vector, appears more
clearly on the field solutions. As compared to the MCS fields

(B and E), there arise supplementary terms, proportional to

e (1-cog B) cog B3, responsible for the spatial anisotropy. Despite the
Ao(r)z@ Ko(Sf)—Tverl(Sf) complexity of the expressions for the field configurations
above, it can be readily seen that they exhibit screefabg
2 sent in the purely timelike cageonce all the modified
1 . . ..
+—(1-2cod ,B)Kz(sr)l- (32) K-Bessel functions decay exponentially far from the origin.
2s? One thus concludes that the vanishing of the screening is

. . associated only with a timelike background.
In this expression, one notes a clear dependence of the po-

tential on the anglg8, which is an unequivocal sign of an-

isotropy determined by the ubiquity of the background vec- V. FINAL REMARKS

tor on the system. Near the origin, te function dominates Starting from a dimensionally reduced gauge invariant,
over the other terms, so that the short-distance potential bé&-orentz, andCPT-violating planar model, derived from the
haves effectively as Carroll-Field-Jackiw term(defined in 13 dimensions we

have studied the extended Maxwell equatidasd the cor-

responding wave equations for the field strengths and poten-
' (32 tials) stemming from the planar Lagrangian. While the field

strengths satisfy second-order inhomogeneous wave equa-

which shows that the potential is always repulsive at origintions, the potential componentﬂ&,,&) fulfill fourth-order

In spite of this fact, the expressidB1) may exhibit an at- wave equations, a clear similarity to the usual behavior in-

tractive well region, at larger values, depending on the herent in the pure MCS sector. As expected, this structural
value of thes parameter. This fact brings into light the pos- resemblance is also manifest in the solutions to these equa-
sibility of the occurrence of pair condensation concerningtions. Indeed, in the case of a purely timelike background,

_e
(2m)

21

v
Ao(T) (1-2 co§ﬂ)§ 5

r

025005-5



BELICH et al. PHYSICAL REVIEW D 68, 025005 (2003

one has attained solutions for the fieBsand E that differ ~ reflects the anisotropy induced by the background over the
from the MCS counterparts just by correction ter(fdepen_ solutions, attained in the approximatie?’|>>v2. The reduc-
dent onv®). These new terms do not bring about any re-tion of the screening for large distances, observed in the
markable physical change near the origin, where they preseﬁ'fnelike case, is absent here. The scalar potential obtained is
the same behavior as the MCS terms. Away from the originalways repulsive at the origin, but it may become attractive
however, the panorama is new and intriguing: the correctiort an intermediary well-defined region, depending on the pa-
terms, independently of the value of their coefficients, comdameters.

to dominate over the MCS behavior, yielding an appreciable The attractiveness of this potential may be better explored
modification on the asymptotic solutions. In fact, at largein the realm of a nonrelativistic physical system. In fact, the
distances, the electric sector of the massive MCS electrodycerification of the consistency of this modskee Ref[8]) in
namics, characterized by strong screenisgemming from the case of a spacelike background shows that applications of
the topological magsis smoothly replaced by a logarithmic this study to condensed-matter systems is a reasonable op-
behavior typ|ca| Of a |ong_range mass'ess e|ectrodynamic§i_0n. In thIS COI’ItQXt, thel’e arises the interesting pOSSIbI|Ity Of
When the magnetic field is considered, no drastic modificainvestigating a Mder scattering in the low-energinonrela-

tion takes p|ace' but the decay factor suffers a Softe(fdug thlSth) limit. For this taSk., fOIIOWing a !Jsual prOCEdUre in

to the presence af?). In this case, no signal of anisotropy QEDs [11,12, one should include the Dirac sector and con-
was observed, as expected. This physical picture seems to Biler suitable couplinggelectron-photon and electron-scalar
compatible with the absence of degrees of freedom assocRnes. The electron-electron mFeractlon would Fhen be medi-
ated with the polek2=52 of the propagator, which does not gted by the scalar a_nd gauge fields, vv_hose aCt.IOI"I must appear
exhibit any dynamical content as concluded by analyzing thd the form of an interaction potentidstemming from a
residue at the corresponding pd&. tree-level calculation[13].

In the pure spacelike case, the background field appears
more explicitly in the solutions in the form of spatial anisot-
ropy, a consequence of the selection of a privileged spatial \.Mm.F,, Jr. is grateful to the Centro Brasileiro de Pesqui-
direction, given by. The solutions keep the MCS reference sas Fsicas—CBPF for the kind hospitality. J.A.H.-N. ac-
term, but at the same time present a complex form, whictknowledges the CNPq for financial support.
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