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Quantum field dynamics of the slow rollover in the linear delta expansion
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We show how the linear delta expansion, as applied to the slow-roll transition in quantum mechanics, can be
recast in the closed time-path formalism. This results in simpler, explicit expressions than were obtained in the
Schralinger formulation and allows for a straightforward generalization to higher dimensions. Motivated by
the success of the method in the quantum-mechanical problem, where it has been shown to give more accurate
results for longer than existing alternatives, we apply the linear delta expansion to four-dimensional field
theory. At small times all methods agree. At later times, the first-order linear delta expansion is consistently
higher than the Hartree-Fock approximation, but does not show any sign of a turnover. A turnover emerges in
second-order of the method, but the value(ﬁ:f?(t)) at the turnover is larger than that given by the Hartree-
Fock approximation. Based on this calculation, and our experience in the corresponding quantum-mechanical
problem, we believe that the Hartree-Fock approximation does indeed underestimate the ‘(éiﬁ(at)n}f at
the turnover. In subsequent applications of the method we hope to implement the calculation in the context of
an expanding universe, following the line of earlier calculations by Boyanogsky, who used the Hartree-

Fock and largeN methods. It seems clear, however, that the method will become unreliable as the system
enters the reheating stage.
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[. INTRODUCTION was found to reproduce the exact time dependence for longer
than any of the alternative methods.

A period of inflation in the early Universe could have the In this paper we reformulate the LDE method in terms of
desirable consequence that a general initial condition will path integral rather than solving the Salinger equation
evolve towards the homogeneity, isotropy and flathess whickvith some wave-function ansatz. Since we directly calculate
we observe. Basic models require the slow evolution of aéxpectation values without calculating the wave function, we
scalar field from an initial unstable vacuum state to a finalsave on calculational effort. More importantly, it is relatively
stable state. Without knowing how to perform this inherentlystraightforward to generalize to the generating functional for-
nonperturbative calculation exactly, approximation attemptsnalism of quantum field theory in four space-time dimen-
must first prove themselves in the simpler situation of thesions. This strategy is the same as that employed by Boy-
guantum-mechanical slow roll. Though this simpler problemanovskyet al. in Ref. [5], who were able to generalize the
cannot be solved analytically, the degrees of freedom arélartree method of Ref2]. Since the LDE method is more
sufficiently few that an exact numerical solution can besuccessful in the quantum mechanical case, we should expect
found. This allows us to test nonperturbative methods beforé to be more accurate when applied to field theory.
proceeding to a calculation for the four-dimensional scalar We first consider the slow-roll phase transition in a one-
field. dimensional field theoryquantum mechanigsvith potential

The quantum-mechanical slow roll was first treated byV=—imwq?. This serves as a simple introduction to the
Guth and P[1], who considered the evolution of a Gaussianpath integral formulation of this problem. We then turn to a
wave-packet initially centered at the top of a potential hill potential of the formV=\(g®—a?)%/24 where we outline
V=—1imwqg? Following this, the Dirac time-dependent the LDE method. Finally we demonstrate the use of this
variational method was used for a potentil=x(q>  method for a four-dimensional scalar field undergoing an in-

—a?)?/24, first by Coopeet al. [2], who used a Gaussian Stantaneous temperature quench. _
wave function ansatz, and later by Cheetham and Copeland !N line with previous papers on the quantum-mechanical
[3], who included the second-order Hermite polynomial inSlow roll, we characterize the dynamical process by consid-
their ansatz. ering the expectation value of the field operator squared
The work presented here is based on an alternative varia(t) (now working in the Heisenberg pictyrevith respect
tional approach, the linear delta expansi®uDE), recently  to an initial harmonic oscillator ground state. This is equiva-
applied[4] to the quantum mechanical slow roll. The methodlent to the zero-temperature limit for an initial thermal dis-
tribution of states with Hamiltonian H=(p?%/2m)
+ %mwizqz. We formulate the problem in this way in order to
*Electronic address: d.j.bedingham@sussex.ac.uk facilitate our transition to finite-temperature four-
Electronic address: H.F.Jones@imperial.ac.uk dimensional field theory. We have
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to In Sec. Il we outline the closed time path method and
¢ apply it to the quantum-mechanical model. We reproduce

previous results for the inverted harmonic oscillator. In Sec.
Il we develop the LDE approximation method. In Sec. IV
we apply these techniques to four-dimensional scalar field
theory in both first and second order. For completeness we
include an Appendix on the derivation of the propagator

t,—ipB D(t,t"), although this material can also be found in standard
referenceg [8,9]).

FIG. 1. Complex time path. In the remaining pages we shall use units whirem
=1.
(0[g*(1)|0)=lim | da’(q";to|exp{— BH}
B> II. INVERTED HARMONIC OSCILLATOR
X G%(1)|q’;to) (1) In previous articles considering the quantum mechanical

slow roll [1—-4], the particle begins at a timte=0 when it is
— lim f dq’(q';t —i,8|(i2(t)|q"t ) describe_d by_ a Gaussian wave funption_, centered at the t(_)p of
P 10 -0/ a potential hill. To reproduce this situation here, we consider
) the particle prepared @& 0 in the ground state of a har-
monic oscillator potentialcorresponding to a Gaussian wave
Green functions with respect to an initial field state at tigpe  function). Whent=0 we suddenly change the Hamiltonian
and a final state at timg,—i8 can be derived from a gen- to one with a potential hill. Subsequent real time evolution of
erating functional whose time contowr passes between the particle sees it “rolling off” the top of the hill.
these two points. The contour must also pass through the First let us consider a final potential of the forvh=

time t at which theq?(t) operator is inserted. The time con- — 3 w{g?. In terms of the Lagrangian we have
tour typically passes frony along the real time axis in the

positive direction to the point or beyond it. It then passes 1

back along the real time axis t before moving in the L(I)ZEQK(I)Q
imaginary time direction ta,—ipB (see Fig. 1

The generating functional is
JenerEng K(1)=— 2~ (1)

. i -
z[,]_f quxp{ﬁfcdt[LJrﬁJQ]]- ©) 0?(1)=0(—t)w?— 0 (t)w? (6

The LagrangiarL must satisfy where we define

L(Re{t}=to)=—%q(m&f+ Mw?)q 4) 1 Ret}>0,

0 Ret}<0. @

o-|
in order to meet the initial conditions. At later times the form

of the Lagrangian may change, modelling some external inTy solve the field theory we begin by shifting the field vari-

fluence on the particle. _ ableq in Eq. (3) in order to complete the square
The field boundary conditions are fixed such tigét,)

=q(to—1iB) and we derive general time contour ordered ex-
pectation values as follows: g(t)—q(t)— f dt'D(t,t")j(t"). 8
Cc

(0[Tcq(ty)a(ty) - - -[0)
The propagatorD must satisfy K(t)D(t,t")=&.(t,t"),
_ 1 d - Z00] (5) where the contour delta functiafy(t,t") is defined for a test
Z[0][id]j(ty) i6j(ty) =0 function f(t) by [.dt’f(t")8(t,t")=1f(t). This results in a
generating functional of the form

where we takes to infinity in the quantum-mechanical slow

roll, but in principle could choose any value representing

some fixed initial temperature. This we do when considering Z[j]=Z[0]exp[ —i f dt’dt”
the case of four-dimensional field theory. The method is ¢
known as the closed time path method for studying real time ©
dependent Green functions. It was first conceived by

Schwingel[6] and KeldisH 7] (for a more recent account see PAerforming the functional derivatives in order to obtain
[5]). (g%(t)) we find

1' ! ! LAY "
S QLIGROIIONS
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(a%(t))=(0lg?(1)|0) _1 MY,
! > Z[j] iD(t,t). (10
=0 - —— =iD(t,1).
Z[0]|  &j3(t) : o K(t)=—d— w(t)
In the zero temperature limit, the propagator is found to have wz(t):(i)(—t)wiz—@(t)w?

the general solutiofsee the Appendix
MO =0O(t)\. (19

1
iD(ty,tp)= —[6c(t;—t)U™ (1)U (t
(t1.t2) Zwi[ (i 12U (L) U (L) We could at this stage perform a perturbative expansion in

powers ofA. However, we know that the particle is bound by

_ + -
Ot~ ) U (1)U (1) (11) theg* term to a region near tq=0. If we perturb about the
where Gaussian solution fo(az(t)), the perturbative correction
2 . must become large so as to prevent the exponential increase,
[df+oo(1)JU~(1)=0 (12 and the philosophy of perturbation theory therefore breaks
: . down.
and for Ret}<0 the two independent solutions are The linear delta expansion is a practical way of improving

(13) those aspects of a perturbative series which lead to its diver-
genceg10,11. In toy models, where exact results are achiev-
The dynamical information of the theory is contained purely@Pl€, the LDE is known to produce convergent results and to

in the U=-functions. The problem is essentially reduced tod0 SO much faster than alternatives. See, for instqi@e13
solving a second order differential equation. Fixing the@nd references therein. The LDE has also been used success-

U= (t)=exp{*iwt}.

boundary conditions such that fully i_n many other situations, including studies of scalar
theories[14].
U=(0+)=U*(0—) (14 In practice we substitute the Lagrangian with a new
o-Lagrangian which is the same as the original upon setting
U= (0+)=9,U=(0—) (159 Sequalto1:
we find the general solution to E¢L2): L—Ls=(1-68)Lo+dL. (20
Us(H)=0(—t)e " “'+0(t) Here, £, is just taken to be the quadratic part of the Lagrang-

ian, depending on some variational mass
X

coswt) =i ﬂsinh(wft)) . (16
ws

1
| _ Lo=—5a(¢— ). (21)
Putting Eqs.(10), (11) and (16) together we find

o
1+ —

2
g

The massu is treated as a constant for the purpose of per-
forming any time integrals, ang? is taken to be equal to
— »? for Re[t}<0 so as not to interfere with the fixed initial
conditions. We have

11
"2

<a2<t>>=@<—t>i+@<t>i
2wi Zwi

X[cosH2w;t)—1]]. a7

1
L(Re[t}<0)=—5q(d; + wf)q (22
This is the standard harmonic oscillator result fer0. For
t>0 the expectation value begins to grow as the particlgyq
rolls off the top of the hill. The growth becomes exponential
for larget:

1 2 2
2 Lo(Relt}>0)=~ 50(? - 1?)q

w.
1+ — | exp2awst). (18)
Wy

S2(t 1

(")~ g W
+9) f—'quz— —q*|.

This is in exact agreement with Guth and[R] after care- 2 24

fully comparing parameters. (23

Any given physical quantity is calculated as a perturbative
expansion up to some given orderdn We then set equal

We next turn to the problem of a symmetry breaking po-t0 1 and choose the value pfaccording to the principle of
tential described by a Lagrangian of the form minimal sensitivity(PMS). For (g2(t)) this is

Ill. LINEAR DELTA EXPANSION
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2
Kav) _ (24

du ' ¢ t
The rationale for the PMS is that, although the exact value of Q
3 t t

the quantity in question cannot depend pnthe expansion

will have some residualr dependence when truncated to
some finite order. The stationary points have a special status,
in that at such points this dependence is locally zero. At other . .
points, where the dependence is nonzero, there is no reash mplement the L_DE_|n a t|m_e-dependent problem.

to choose one over another. Apart from this logical justifica-. 1€ Propagator is given as in EG.1); however, the mode
tion, it has been rigorously proved in some simple modeldunctions are now dependent gnand satisfy

that the sequence of approximatiofsl] provided by the

FIG. 2. Contributions tqq?(t)).

2 2 21015 (4) —
PMS indeed converge@&xponentially rapidly to the exact [+ O(~Hof~B(HpTJU(H=0, (25)
answer[12,13, in contrast to the perturbative expansion, \ith solution

wherep is fixed, which gives rise to an alternating divergent

series. Apart from these proofs of convergence, it has been Ui(t):@)(_t)etiwat+@(t)
applied successfully, in a pragmatic way, to a large variety of
problems in quantum mechanics and quantum field theory,
both in the continuum and on the lattif&5,16.

In some problems it is unfortunately the case that there is
not a unique solution to the PMS condition, i.e. that there arét first order in 8, the relevant Feynman diagrar(fsig. 2)
several stationary points. In that event, some element of sulgan be written out to give
jective judgement has to be exercised, such as the width of S
the maximum or minimum and continuity with known re- S22/ o TOHNID2(1 ViD (1t
sults or expected behavior. (a*()=iD(t.H)+ 2 Ldt O)IDA, D)

In the present problem the PMS criterion provides a dif-
ferent constraint o for each final time that we consider. _ 2_ 2 / T
Thoughu will be different for different final times, it is not Slwi—p )Ldt O)IDAY. @
considered as a time dependent function in the evolution up
to that final time. This is the simplest and most natural wayEvaluating the integrals we hay#or t>0)

X

cosh ut) + %sinr(,ut) . (26)

A2t—1 1+1 1+w‘2 2ut)—1]|+ ‘21—(”‘2 2t—1—121—wi4 t sinh(2ut
<Q()>—2—wi > ;[COSNM) ] m E E[COSK,U«) ] EMSIHWM)
I
w?|’ (0f—p?) | of|
-1+ [cosi4ut)—1] +TM2 E[l—COSHZ,u,t)]-i- 1+; ptsinh(2ut) |. (29
M i

This is a remarkably simple, explicit form f@g(t)) com- by #*(t')=wf{—(\/2)iD(t’,t’). This results in a cancella-
pared with the complicated implicit expressions given in Reftion between the coupling correction and the mass insertion,
[4]. However, we have verified that these expressions d@nd a self-consistent set of equations

indeed reduce to Eq28).

To proceed, we find the optimum value of E@8) ac-
cording to the PMS criterion, E§24). The result is the curve
shown in Fig. 3. We have chosen=0.01 andw?=w?
=25\/6 (recall thatwf2 appears with a different sign in the
Lagrangian. These parameters coincide with those chosen in
[1-4] in order that we may easily compare our results. Also

shown are the exact result, first-order perturbation theoryrpe LDE result is seen to track the exact result for a signifi-
and the Hartree approximation of R€2]. cantly longer time than the Hartree result. It then overshoots,

First-order perturbation theory is achieved upon settingsignifying that the LDE result gives a much improved de-
w?=w? in Eq. (28), while the Hartree approximation scription of the inflationary period, but does not do so well

amounts to takingx to be a time-dependent function given during reheating.

a(t)) =i :i - +
(G(0) =D ()= 5-U (HU* (1)

A
at2+w2(t)+§|D(t,t) U*(t)=0. (29

025004-4



QUANTUM FIELD DYNAMICS OF THE SLOW ROLLOVER . .. PHYSICAL REVIEW D 68, 025004 (2003

6—————[—r—r—— T —— T To perform the delta expansion we again define a
e 1 o-Lagrangian by
[ (a®)v ] Lol y=(1—8)Lo+ oL 33
5 |
r 7 with
: : 3 1 2 2 2
ol ] Lo= | d°x E@(—atJrV +u)d . (34
[ i We replace the original Lagrangian by ogilLagrangian for
L _ Reft}>0. This gives
3+ i
I ] s |1 2, w2, 2
- . L(Re[t}>0)= | d°x §<I>(—at+V +u)d
2 - 2 2
I | (mi—p% , N,
. i + 4] 5 P ﬂd) . (35
) N T T T Switching to momentum space, the propagator now satisfies
0 10 20 30 the relation
FIG. 3. Slow roll in quantum mechanic&?(t))Y? versus. The Ko(t)Dy(t,t") = 8(t,t"), (36)

first-order LDE result is compared against the exact result. Also
shown are the Hartree-Fock results of Réf. (HF), and first-order  where
perturbation theory (Py).
o , . . Kp(t)=— 3¢ — wp(t) (37)
In quantum mechanics it is possible to go to high order in
the LDE by the use of recursion relations. The results of this 02 (1)=0(-t)w? —O(t)w?,, (38)
exercise were given in Ref4], where the calculations were P P P
carried out to O§"). It turns out that the second- and third- and now
order calculations do not exhibit clear PMS points, but there-

after successive orders follow the true curve more and more wﬁp: p?+m? (39
accurately up to the turnover point, but diverge beyond that
point. We can hope that in field theory in{3L) dimensions, w%p:MZ_ p2. (40)

the LDE will again give a good description of the initial
slow-roll process. In field theory, however, it is not practical The propagator has the soluti¢see the Appendix
to go beyond second order.
iDp(ty,to)=0c(t;—t5)iD; (t1,t5)
IV. SCALAR FIELD THEORY

+0c(t—t1)iD (1, tp) (41)
Having developed our method for quantum mechanics, it
remains to see how easily it can be implemented for the cas&here
of field theory. We consider a single real scalar field theory
with time-dependent Lagrangian of the form . N _
iDy(ty,t)=5— ————[U, (1)U, (t2)
1 N Zw,;p e“’l,pﬂ—l
| Bl Tar_ 2 v2 2 _ N ps
L(t) j d X[ 2@[ o +V m (t)]q) 24(1) +e“’i:P'BU;(t1)U;(t2)] (42)
(30)
m?(t) =0 (—t)m?— O (t)m7. (3D iD;(tl,tzFﬁm[e‘”“pﬁU;(tﬂUg(tz)
i;p €71pF—
With appropriate choice of the parameters, this model +UZ (U (1)]. (43)
crudely describes a sudden temperature quench in which the P P
field is driven through a phase transition at titve0. The mode functions satisfy
Our interest is in determining the quantity
. [97+ wp(]U5 (=0, (44)
7,2 _ - 3v/dh2
(® (t)>_vf EX(PAXD). (82 with solutions
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Us(t):@(—t)eii‘”i;pt-f— o(t) The momentum integrals are divergent and must be regular-

ized. As in Ref.[5], we assume a scheme which leaves the

contributions from stable modep?,k?> u?) being negligi-

bly small. The dominant growth igd2(t)) is associated

with the finite contribution of the unstable modes. In practice
A. First order this means that we may perform momentum integrals in the

. finite rangep?,k?<u? to achieve finite results. We simply
The same diagrams which contributed(@?(t)) in the  make the replacement

previous section contribute t6D2(t)) here. The essential

w;-
X coshwf;pt)iifsinr(wﬁpt) . (45)
fip

difference from the quantum-mechanical case is that the 1 (e 4
propagators now depend on momentum and that any loops p_ 52, Pap (48)
will involve an integration over loop momenta. The Feyn-
man diagrams in Fig. 2 give The calculations are performed in the high-temperature limit,
N where fw;.,<1, so that
<ci>2(t)):fiDp(t,t)+—f dt’fiDﬁ(t’,t)fka(t’,t’) 1 2
P 2Jc Jp K cotr( w;ipB|~ (49)
,8(1)| p
_ 2_ .2 ’ ’ N2 47
o(mi = p )fcdt ot )fp'Dp(t ) (46) In this limit the first term is found to be
[cf. Eq. (27)] where we have used the notation 1 1 1 wz
1+ = 1+— [cosi2w;.pt) —1]|, (50)
:8 p w 2 O)f p
4
f f (2m)3 “7 the second is
N . wz C02
zf f SinH wy.,(t—t")] 1+— cosh wg.(t+1") ]+ 1—— cosh w¢.p(t—t")]
P 0o fp O
2
1 1 (O
Xf = 1+ = 1+—2Y [COSKZa)f;kt’)—l] ) (51
K ojk 2 Wk
and the third is
(mg_ﬂz) 1 w2 wiz'p .
TR [1 cosi2wy,pt) ]+ | 1+ —= | wg,pt SINN( 2wy, ot) |- (52
e “’f;p | |

In the second term, the time integral has not been performecdoupling must be small for this type of model of inflation due

explicitly since the result is rather involved. to constraints from the spectrum of density fluctuations.
Finally we impose the PMS constraint at edadh order to Examples of\ ($?)/2 as functions ofs? for various times
find x and evaluatéﬁbz(t» are shown in Fig. 4. We observe a single stationary point, a
maximum, which moves to the left and becomes sharpér as
d(é)z(t)) increases. The motivation for the PMS criterion is that the
- 10, (53 exact answer is independent @f In any finite order of the
du LDE this independence can only be achieved locally. A broad

maximum indicates that the LDE is robust, but it becomes
For nume”cal Calculatlons the Un|ts are Chosen Suchﬁhat |ncreas|ng|y unre“ab'e as the peak becomes Sharper From
=c=kg=m;=1. The remammg parameters are then choserFig. 4 we estimate that the first-order LDE cannot be trusted
in these unlts to be;rnf 1, T=1/B=4y(6/\) (the initial beyond about=11.
temperature and A\=10 '2 These are chosen to coincide  The position of the maximum versus time is shown in Fig.
with those in Ref[5]. The initial temperature has no particu- 5. At small times the dominant part of the action is the qua-
lar meaning, it is simply twice the critical temperature. Thedratic part, and the evolution is well described by perturba-
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e T 6

A(2),/2 L AeR)/2 |

T T T

T

w
T

PR TN AN T SN WA SO HE S S Y TR AU W S

LA R B I B B R |

0 o SRR -
0.5 0.6 0.7 0.8 0.9 2 1 . ] _
K FIG. 6. \(dP?(t))/2 versug. The first-order LDE result is shown

as a solid line. Also shown are the Hartree-Fock result of Rf.

32 2 — H ]
LDEIG. 4. MD())/2 versusu® for t=10.5,11,11.5 in first-order ) and zeroth (Pg) and first-order (PJ) perturbation theory.

tion theory, i.e.u>~m?=1. At later times, as the fluctua- LDE fra_mework by settingu®=mg . As in the quantum-
tions of the field grow, the quartic terms become rnoremechanlcal case, the Hartree result can be reproduced by

important. In the context of the LDE this is taken into ac- c_onS|der|ng,u to be a time-dependent function, this time

count by smaller values gi? in the trial Lagrangiari, of given by
Eq. (34).

The results for the evolution of the field are shown in Fig.
6, in the restricted range dfwhere the different methods
begin to diverge. Though we have no exact solution to com-
pare with, the results display the same qualitative behavior as ) i i
in the quantum mechanical case studied in the earlier sed-"€ resulting self-consistent set of equations are
tions (Fig. 3).

First-order perturbation theory is achieved within the

,u,z(t')=m?—()\/2)JiD(t',t').
p

d2(t))= | iD(t,
(1) fpl (t0)

1
I ] 11 1
- 2 2
i ] =Ejpw7up(t)u;(t) g+ wp(t)
7 p
0.9 | _
I ] + \ J iD Uy
L : E pl (t,t) p (t)
0.8 - 7 =0. (54
L | All methods give almost indistinguishable results uptto
0.7 - — ~9. The Hartree and LDE methods remain close up to the
i ] classical spinodal region [where V"(d)<0, i.e.
] MD2(t))/2>1]. At later times the LDE method gives a
0.6 - ] larger value of ®?(t)) than the Hartree method. Based on
- - our experience of the quantum-mechanical case, we believe
[ ] that the Hartree method turns over prematurely and that the
¢ ] LDE is closer to the exact result for longer. However, to this
0.5 ———— 1'0 —_— 1I1 — order it fails to give any indication of a turnover. As men-
tioned in relation to Fig. 4, the LDE becomes unreliable
FIG. 5. The PMS maximum? versust in first-order LDE. beyondt~11, as the PMS peak becomes narrower.
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B. Second order

To second order in the LDE there are altogether six additional graphs. These are exhibited (BEE€60), along with
their analytic expressions, where the integrals along the time contour have not yet been performed. We have used a more

compact notation for th®’s, wherebyDgt stands forD(t’,t) and so on.
52 2 H H
[ g Lo o 5
- 527\2 ’ " 1 't "o
C(\j) - J'dt’J'dt”J'iD; iDIiD! f iD{" f iD" (56
4 ¢ ¢ p ky ! ko 2

_52 2 " " s
fdz fdz”f D”D’ ’fk kzD”zD” D;_{(l_ (57

52 - "t
8 m M )J'dt J’dt//J' Df T)ZJ' Df r )2 (58)
% = &\ (m2—u?) f dr’ f dr” f iD!"iD!" iDL f iDy" (59
¢ ¢ P k
O =-&mi-u?»? f dr’ f dr” f iD!'iD}"iDy" . (60)
¢ ¢ P

In performing the time integrals itf, t' over the contour of Fig. 1, the result is most easily expressed in terms of the real and
imaginary parts of thé®'’s, or more preciself andp, defined by

Ny

. 1. >, <
F.:E(lD +iD~™)
p:=i(iD”—iD ). (61)

In the high-temperature limit, in which we are working, the imaginary parts are much smaller than the real parts:

2

1 o,
F;ﬂz: ——| cosl{wy;pt1)cosH oy pta) + —— smr(wf pl1)SinN( . to) |, (62)
@isp "’f;p
compared with
tyty 1 )
Py =m[smr(wf;ptl)cosr(wf;ptz)—cosr(wf;ptl)smr(wf;ptz)]_ (63)

The resulting expressions for diagraf®)—(60), having seté=1, are

! t ’ Ml ! "o
—\2 ’ ” t'r 't 't
§ - jodt jo d ijp j Fk k1 jk k2 (64)

[ f f f Rl f F f P
e o

S
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_KZ t [, ’ " 1L o 1L 1L [y [y
— 14 " 'ttt 't 't 't _ ot 't e
@ Y [zfod’ fo dt Lpp Fy jkl,kz(IZFkl Fio Ppk, ™ P, Pl Ppki)
t t ’ " 1 o 1 1 1L o
e[ [l oo [ R ar R P -
p 15K

! t ’ ’ ot
:_2)\ m2_ 2 fdt’j dt//ij t ot YJF[ ottt
8 (mp—p?) | at” | "ar" | Py | FCT ol (67)
)\(mZ_MZ) 4 ! ’ " rn ot "o
Q= L e | gy [
0 0 P k

t t
_ZJ dtrj dtuj t't r”rFr’r”jFr’r’
0 JoT S e e T (68)

4 t’ ’ " 1 ! , ! 1 ’ " o
D ===z [l [T [ [ [ | ooy ] (69)
P 0 0 P

In most of the diagrams there are two terms involving ana turnover, so that the maximum value is considerably
integral overt” up tot and another up to'. In the original  greater. The same feature occurs in the quantum mechanical
forms of these expressions there were severe cancellatiopsoblem, where the large- approximation greatly overesti-
between the two integrals, which made accurate integratiomates the maximum value 062(1)).

extremely difficult. In the present, equivalent, form the two  we have seen that inclusion of the second-order diagrams
integrals give roughly comparable contributions, posing nQeads to a turnover which does not occur in first order. It
difficulty for numerical integration. would be tempting to ascribe this turnover to the influence of

We have evaluated all the multidimensional integrals NUthe “sunset diagram,” the first diagram to include the impor-
merically, including the time integrals, using the NAG tant effects of rescatterinfll7]. However, for the present
FORTRAN routine DO1FCF. The most difficult diagram to cajculation it is not possible to single out this particular dia-
evaluate is, of course, the “sunset” diagram of EGs) and  gram from the others. Its distinctive role is rather to provide
(66). Because the integrand depends only on the magnitudggr dissipation and thermalization at later timésee e.qg.
of the various momenta, there are two azimuthal integrations18—2@), where unfortunately the LDE is unreliable. The
which can be trivially performed, leaving a seven- Hartree-Fock method, which in our language corresponds to
dimensional integral. _ _ _ atime-dependent with a particular selection criterion, pro-

The result of these calculations is that the expectatioRjiges an example where a turnover is achieved without the
value \($?)/2 now develops a PM&inimumas a function inclusion of this diagram.
of u?. Examples of this behavior are given in Fig. 7 for the
same times as were previously shown at first order. The
maximum appears to be a spurious stationary point, with a V. DISCUSSION
runaway behavior fok(®?)/2.

The trend of the minimum as a function bfs similar to
that of the first-order maximum, decreasing slowlytds-
creases, as shown in Fig. 8. The resulting plok 6b2(t))/2
versust is shown in Fig. 9, where in addition to the Hartree-

The main motivation for this work was to expand upon
the available machinery for tackling out-of-equilibrium prob-
lems in field theory.

The linear delta expansion, applied to the quantum-

. mechanical equivalent of the slow-roll transition, has been
Fock result we also show the result of the first-order laxge- shown to give a consistent improvement on other methods.

calculation(with N=1). We see that the secorjd-order reSUItHowever, the Schiinger formulation of Ref{4] cannot im-
now shows a turnover, but at a larger valug(®(t)) than  mediately be generalized to field theory in higher dimen-
that given by Hartree-Fock. This is the same feature thagjons. We have shown how to recast the problem in terms of
occurred in the quantum-mechanical problem, and we beme closed time-path formalism, which can be so generalized.
lieve it gives strong evidence that the Hartree-Fock methodrhis is an extension which has not been achieved in other
turns over too soon iKd3(t)). In this case, where there is treatments of the quantum-mechanical problem, with the ex-
no symmetry breaking, the lardé-calculation differs from  ception of the Hartree method.

the Hartree-Fock approximation only in that the coefficient As noted in[5], the Hartree approximation cannot probe
of iD (t,t) in Eq. (54) is reduced by a factor of 3. This means the nonlinear regions of the potential. Moreover, the Hartree
that this term takes longer to become important and producmethod is a one-off approximation, which is not capable of
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A (®2)/2 Large N

FIG. 9. \(®2(t))/2 versust. The second-order LDE result is

FIG. 7. A(fi)z(t))/Z versusu? for t=10.5,11,11.5 in second- shown as a solid line. Also shown are the results of R&f(HF),
order LDE. and largeN.
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tremely difficult to go beyond second order in quantum field
theory. APPENDIX

The main result of the paper is the formalism outlined in |t s here demonstrated how to solve for the propagator
Sec. \V2 apd Fig. 9, which provides a demqnstr(_amon_of its US€p (t,,t,) in quantum mechanics. We shall need to impose
in the instantaneous quench approximation in four-constraints due to the commutation relations and the Kubo-

dimensional field theory in flat space-time. The next ObViOUS\Aartin_Schwinger(KMS) boundary condition, but we begin
extension is to couple the field to the scale factor of an expy decomposing the propagator as
panding Universe.

iD(ty,ty)=0c(t;—1)iD 7 (ty,1y)
+ 6(t,—11)iD ~(tg,tp) (A1)

L ] where fc(t—t')=J{ .dt"8,(t't"). Since K(1)D(tt)

1 =6.(t,t"), it is straightforward to demonstrate that
0.9 -

i ] K(t)D~()(t,t")=0. (A2)

LA B e

0B ] We shall construcD” (<) from homogeneous solutions to
r i the quadratic operatolK, i.e. functions which satisfy

K(t)U*(t)=0. For t<0, these have the solutiod *(t)

or b ] =exp{*iwt}. Thus, the most general form f@~ (<) is

j iD~ )ty t)=a (U™ (1)U (1)

06 - ] +b” (U (1)U (ty). (A3)

4 Other possible combinations &~ can be ruled out on
O R S S imposing time translation invariance at early times. The pa-
o 10 11 12 rametersa” (<) andb” (<) are to be determined. To do this

we begin by imposing the particle equal time commutation
FIG. 8. The PMS minimum.? versust in second-order LDE.  relation

025004-10
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[a.p]=i. (A4)

We make the free field identification(T.q(t,)q(t,))
=iD(t,,t,) and further thap=q. This leaves

i [ID7(ty,t) —ID™(ty,tp) ]y =, =i (A5)
which constrains the free parameters as follows:
1
a~—a +b"—b~=—. (AB)

Wi

A further symmetry requirement at equal time is that

iD”(t,t)=iD=(t,1) (A7)
which translates to
a~+b =a~+b~. (A8)
Finally we impose the KMS boundary condition
iD<(tg,1)=iD "~ (to—iB,1) (A9)
or
a~=expwBla” (A10)
b==exp{—w;B}b”. (A11)

PHYSICAL REVIEW D 68, 025004 (2003

Equations.(A6), (A8), (A10) and (A1l) constitute 4 con-
straints on our 4 parameters. The set of equations is easily
solved yielding

- o1 1
T wedep-1 M
a<=p>= L e} (A13)

20 explw -1

We now have a general solution for the propagator at finite
temperature. Taking the zero temperature limit we have

1
iD>(t1at2):EU7(t1)U+(t2) (A14)
, 1
|D<(t1at2):ZU+(t1)U7(t2)- (A15)

The field theory case is much the same, with mode functions
satisfying
Kp(t)D(ty,t) = 6c(ta,tp) (A16)

and

(Ted (1) dp(ta)) = ViD(ty,t,). (A17)

The solution for an initial state described by a temperature
1/B8 is given in the main text.
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