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Quantum field dynamics of the slow rollover in the linear delta expansion
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We show how the linear delta expansion, as applied to the slow-roll transition in quantum mechanics, can be
recast in the closed time-path formalism. This results in simpler, explicit expressions than were obtained in the
Schrödinger formulation and allows for a straightforward generalization to higher dimensions. Motivated by
the success of the method in the quantum-mechanical problem, where it has been shown to give more accurate
results for longer than existing alternatives, we apply the linear delta expansion to four-dimensional field
theory. At small times all methods agree. At later times, the first-order linear delta expansion is consistently
higher than the Hartree-Fock approximation, but does not show any sign of a turnover. A turnover emerges in

second-order of the method, but the value of^F̂2(t)& at the turnover is larger than that given by the Hartree-
Fock approximation. Based on this calculation, and our experience in the corresponding quantum-mechanical

problem, we believe that the Hartree-Fock approximation does indeed underestimate the value of^F̂2(t)& at
the turnover. In subsequent applications of the method we hope to implement the calculation in the context of
an expanding universe, following the line of earlier calculations by Boyanovskyet al., who used the Hartree-
Fock and large-N methods. It seems clear, however, that the method will become unreliable as the system
enters the reheating stage.
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I. INTRODUCTION

A period of inflation in the early Universe could have th
desirable consequence that a general initial condition
evolve towards the homogeneity, isotropy and flatness wh
we observe. Basic models require the slow evolution o
scalar field from an initial unstable vacuum state to a fi
stable state. Without knowing how to perform this inheren
nonperturbative calculation exactly, approximation attem
must first prove themselves in the simpler situation of
quantum-mechanical slow roll. Though this simpler proble
cannot be solved analytically, the degrees of freedom
sufficiently few that an exact numerical solution can
found. This allows us to test nonperturbative methods be
proceeding to a calculation for the four-dimensional sca
field.

The quantum-mechanical slow roll was first treated
Guth and Pi@1#, who considered the evolution of a Gaussi
wave-packet initially centered at the top of a potential h
V52 1

2 mvq2. Following this, the Dirac time-dependen
variational method was used for a potentialV5l(q2

2a2)2/24, first by Cooperet al. @2#, who used a Gaussia
wave function ansatz, and later by Cheetham and Cope
@3#, who included the second-order Hermite polynomial
their ansatz.

The work presented here is based on an alternative va
tional approach, the linear delta expansion~LDE!, recently
applied@4# to the quantum mechanical slow roll. The meth
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was found to reproduce the exact time dependence for lon
than any of the alternative methods.

In this paper we reformulate the LDE method in terms
a path integral rather than solving the Schro¨dinger equation
with some wave-function ansatz. Since we directly calcul
expectation values without calculating the wave function,
save on calculational effort. More importantly, it is relative
straightforward to generalize to the generating functional f
malism of quantum field theory in four space-time dime
sions. This strategy is the same as that employed by B
anovskyet al. in Ref. @5#, who were able to generalize th
Hartree method of Ref.@2#. Since the LDE method is more
successful in the quantum mechanical case, we should ex
it to be more accurate when applied to field theory.

We first consider the slow-roll phase transition in a on
dimensional field theory~quantum mechanics! with potential
V52 1

2 mvq2. This serves as a simple introduction to th
path integral formulation of this problem. We then turn to
potential of the formV5l(q22a2)2/24 where we outline
the LDE method. Finally we demonstrate the use of t
method for a four-dimensional scalar field undergoing an
stantaneous temperature quench.

In line with previous papers on the quantum-mechani
slow roll, we characterize the dynamical process by cons
ering the expectation value of the field operator squa
q̂2(t) ~now working in the Heisenberg picture! with respect
to an initial harmonic oscillator ground state. This is equiv
lent to the zero-temperature limit for an initial thermal di
tribution of states with Hamiltonian H5(p2/2m)
1 1

2 mv i
2q2. We formulate the problem in this way in order t

facilitate our transition to finite-temperature fou
dimensional field theory. We have
©2003 The American Physical Society04-1
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^0uq̂2~ t !u0&5 lim
b→`

E dq8^q8;t0uexp$2bĤ%

3q̂2~ t !uq8;t0& ~1!

5 lim
b→`

E dq8^q8;t02 ibuq̂2~ t !uq8;t0&.

~2!

Green functions with respect to an initial field state at timet0
and a final state at timet02 ib can be derived from a gen
erating functional whose time contourc passes betwee
these two points. The contour must also pass through
time t at which theq̂2(t) operator is inserted. The time con
tour typically passes fromt0 along the real time axis in the
positive direction to the pointt or beyond it. It then passe
back along the real time axis tot0 before moving in the
imaginary time direction tot02 ib ~see Fig. 1!.

The generating functional is

Z@ j #5E Dq expH i

\Ec
dt@L1\ jq#J . ~3!

The LagrangianL must satisfy

L~Re$t%5t0!52
1

2
q~m] t

21mv i
2!q ~4!

in order to meet the initial conditions. At later times the for
of the Lagrangian may change, modelling some external
fluence on the particle.

The field boundary conditions are fixed such thatq(t0)
5q(t02 ib) and we derive general time contour ordered e
pectation values as follows:

^0uTcq̂~ t1!q̂~ t2!•••u0&

5
1

Z@0# F d

id j ~ t1!

d

id j ~ t2!
•••Z@ j #G

j 50

~5!

where we takeb to infinity in the quantum-mechanical slow
roll, but in principle could choose any value represent
some fixed initial temperature. This we do when consider
the case of four-dimensional field theory. The method
known as the closed time path method for studying real t
dependent Green functions. It was first conceived
Schwinger@6# and Keldish@7# ~for a more recent account se
@5#!.

FIG. 1. Complex time path.
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In Sec. II we outline the closed time path method a
apply it to the quantum-mechanical model. We reprodu
previous results for the inverted harmonic oscillator. In S
III we develop the LDE approximation method. In Sec. I
we apply these techniques to four-dimensional scalar fi
theory in both first and second order. For completeness
include an Appendix on the derivation of the propaga
D(t,t8), although this material can also be found in stand
references~ @8,9#!.

In the remaining pages we shall use units where\5m
51.

II. INVERTED HARMONIC OSCILLATOR

In previous articles considering the quantum mechan
slow roll @1–4#, the particle begins at a timet50 when it is
described by a Gaussian wave function, centered at the to
a potential hill. To reproduce this situation here, we consi
the particle prepared att,0 in the ground state of a har
monic oscillator potential~corresponding to a Gaussian wav
function!. When t50 we suddenly change the Hamiltonia
to one with a potential hill. Subsequent real time evolution
the particle sees it ‘‘rolling off’’ the top of the hill.

First let us consider a final potential of the formV5
2 1

2 v f
2q2. In terms of the Lagrangian we have

L~ t !5
1

2
qK~ t !q

K~ t !52] t
22v2~ t !

v2~ t !5Q~2t !v i
22Q~ t !v f

2 ~6!

where we define

Q~ t !5H 1 Re$t%.0,

0 Re$t%,0.
~7!

To solve the field theory we begin by shifting the field va
ableq in Eq. ~3! in order to complete the square

q~ t !→q~ t !2E
c
dt8D~ t,t8! j ~ t8!. ~8!

The propagatorD must satisfy K(t)D(t,t8)5dc(t,t8),
where the contour delta functiondc(t,t8) is defined for a test
function f (t) by *cdt8 f (t8)dc(t,t8)5 f (t). This results in a
generating functional of the form

Z@ j #5Z@0#expH 2 i E
c
dt8dt9F1

2
j ~ t8!D~ t8,t9! j ~ t9!G J .

~9!

Performing the functional derivatives in order to obta

^q̂2(t)& we find
4-2
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^q̂2~ t !&5^0uq̂2~ t !u0&

5
1

Z@0# F2
d2

d j 2~ t !
Z@ j #G

j 50

5 iD ~ t,t !. ~10!

In the zero temperature limit, the propagator is found to h
the general solution~see the Appendix!

iD ~ t1 ,t2!5
1

2v i
@uc~ t12t2!U2~ t1!U1~ t2!

1uc~ t22t1!U1~ t1!U2~ t2!# ~11!

where

@] t
21v2~ t !#U6~ t !50 ~12!

and for Re$t%,0 the two independent solutions are

U6~ t !5exp$6 iv i t%. ~13!

The dynamical information of the theory is contained pur
in the U6-functions. The problem is essentially reduced
solving a second order differential equation. Fixing t
boundary conditions such that

U6~01 !5U6~02 ! ~14!

] tU
6~01 !5] tU

6~02 ! ~15!

we find the general solution to Eq.~12!:

U6~ t !5Q~2t !e6 iv i t1Q~ t !

3S cosh~v f t !6 i
v i

v f
sinh~v f t ! D . ~16!

Putting Eqs.~10!, ~11! and ~16! together we find

^q̂2~ t !&5Q~2t !
1

2v i
1Q~ t !

1

2v i
F11

1

2 S 11
v i

2

v f
2D

3@cosh~2v f t !21#G . ~17!

This is the standard harmonic oscillator result fort,0. For
t.0 the expectation value begins to grow as the part
rolls off the top of the hill. The growth becomes exponent
for large t:

^q̂2~ t !&→
1

8v i
S 11

v i
2

v f
2D exp~2v f t !. ~18!

This is in exact agreement with Guth and Pi@1# after care-
fully comparing parameters.

III. LINEAR DELTA EXPANSION

We next turn to the problem of a symmetry breaking p
tential described by a Lagrangian of the form
02500
e

e
l

-

L~ t !5
1

2
qK~ t !q2

l~ t !

24
q4

K~ t !52] t
22v2~ t !

v2~ t !5Q~2t !v i
22Q~ t !v f

2

l~ t !5Q~ t !l. ~19!

We could at this stage perform a perturbative expansio
powers ofl. However, we know that the particle is bound b
theq4 term to a region near toq50. If we perturb about the
Gaussian solution for̂ q̂2(t)&, the perturbative correction
must become large so as to prevent the exponential incre
and the philosophy of perturbation theory therefore bre
down.

The linear delta expansion is a practical way of improvi
those aspects of a perturbative series which lead to its di
gence@10,11#. In toy models, where exact results are achie
able, the LDE is known to produce convergent results and
do so much faster than alternatives. See, for instance,@12,13#
and references therein. The LDE has also been used suc
fully in many other situations, including studies of scal
theories@14#.

In practice we substitute the Lagrangian with a ne
d-Lagrangian which is the same as the original upon set
d equal to 1:

L→Ld5~12d!L01dL. ~20!

Here,L0 is just taken to be the quadratic part of the Lagran
ian, depending on some variational massm,

L052
1

2
q~] t

22m2!q. ~21!

The massm is treated as a constant for the purpose of p
forming any time integrals, andm2 is taken to be equal to
2v i

2 for Re$t%,0 so as not to interfere with the fixed initia
conditions. We have

L~Re$t%,0!52
1

2
q~] t

21v i
2!q ~22!

and

Ld~Re$t%.0!52
1

2
q~] t

22m2!q

1dF ~v f
22m2!

2
q22

l

24
q4G .

~23!

Any given physical quantity is calculated as a perturbat
expansion up to some given order ind. We then setd equal
to 1 and choose the value ofm according to the principle of
minimal sensitivity~PMS!. For ^q̂2(t)& this is
4-3
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d^q̂2~ t !&
dm

50. ~24!

The rationale for the PMS is that, although the exact value
the quantity in question cannot depend onm, the expansion
will have some residualm dependence when truncated
some finite order. The stationary points have a special sta
in that at such points this dependence is locally zero. At ot
points, where the dependence is nonzero, there is no re
to choose one over another. Apart from this logical justific
tion, it has been rigorously proved in some simple mod
that the sequence of approximations@21# provided by the
PMS indeed converges~exponentially rapidly! to the exact
answer @12,13#, in contrast to the perturbative expansio
wherem is fixed, which gives rise to an alternating diverge
series. Apart from these proofs of convergence, it has b
applied successfully, in a pragmatic way, to a large variety
problems in quantum mechanics and quantum field the
both in the continuum and on the lattice@15,16#.

In some problems it is unfortunately the case that ther
not a unique solution to the PMS condition, i.e. that there
several stationary points. In that event, some element of
jective judgement has to be exercised, such as the widt
the maximum or minimum and continuity with known re
sults or expected behavior.

In the present problem the PMS criterion provides a d
ferent constraint onm for each final time that we conside
Thoughm will be different for different final times, it is not
considered as a time dependent function in the evolution
to that final time. This is the simplest and most natural w
e
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n
ls
or

in

n

02500
f

s,
er
on
-
ls

,
t
en
f
y,

is
e
b-
of

-

p
y

to implement the LDE in a time-dependent problem.
The propagator is given as in Eq.~11!; however, the mode

functions are now dependent onm and satisfy

@] t
21Q~2t !v i

22Q~ t !m2#U6~ t !50, ~25!

with solution

U6~ t !5Q~2t !e6 iv i t1Q~ t !

3S cosh~mt !6 i
v i

m
sinh~mt ! D . ~26!

At first order in d, the relevant Feynman diagrams~Fig. 2!
can be written out to give

^q̂2~ t !&5 iD ~ t,t !1
dl

2 E
c
dt8Q~ t8!iD 2~ t8,t !iD ~ t8,t8!

2d~v f
22m2!E

c
dt8Q~ t8!iD 2~ t8,t !. ~27!

Evaluating the integrals we have~for t.0)

FIG. 2. Contributions tô q̂2(t)&.
^q̂2~ t !&5
1

2v i
F11

1

2 S 11
v i

2

m2D @cosh~2mt !21#G1
l

162v i
2m2 F8

v i
2

m2 S 12
v i

2

m2D @cosh~2mt !21#212S 12
v i

4

m4D mt sinh~2mt !

2S 11
v i

2

m2D 2

@cosh~4mt !21#G1
~v f

22m2!

4v im
2 Fv i

2

m2
@12cosh~2mt !#1S 11

v i
2

m2D mt sinh~2mt !G . ~28!
-
ion,

ifi-
ots,
e-
ell
This is a remarkably simple, explicit form for^q̂2(t)& com-
pared with the complicated implicit expressions given in R
@4#. However, we have verified that these expressions
indeed reduce to Eq.~28!.

To proceed, we find the optimum value of Eq.~28! ac-
cording to the PMS criterion, Eq.~24!. The result is the curve
shown in Fig. 3. We have chosenl50.01 andwi

25wf
2

525l/6 ~recall thatwf
2 appears with a different sign in th

Lagrangian!. These parameters coincide with those chose
@1–4# in order that we may easily compare our results. A
shown are the exact result, first-order perturbation the
and the Hartree approximation of Ref.@2#.

First-order perturbation theory is achieved upon sett
m25v f

2 in Eq. ~28!, while the Hartree approximation
amounts to takingm to be a time-dependent function give
f.
o

in
o
y,

g

by m2(t8)5v f
22(l/2)iD (t8,t8). This results in a cancella

tion between the coupling correction and the mass insert
and a self-consistent set of equations

^q̂2~ t !&5 iD ~ t,t !5
1

2v i
U2~ t !U1~ t !

F] t
21v2~ t !1

l

2
iD ~ t,t !GU6~ t !50. ~29!

The LDE result is seen to track the exact result for a sign
cantly longer time than the Hartree result. It then oversho
signifying that the LDE result gives a much improved d
scription of the inflationary period, but does not do so w
during reheating.
4-4
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In quantum mechanics it is possible to go to high orde
the LDE by the use of recursion relations. The results of t
exercise were given in Ref.@4#, where the calculations wer
carried out to O(d7). It turns out that the second- and third
order calculations do not exhibit clear PMS points, but the
after successive orders follow the true curve more and m
accurately up to the turnover point, but diverge beyond t
point. We can hope that in field theory in (311) dimensions,
the LDE will again give a good description of the initia
slow-roll process. In field theory, however, it is not practic
to go beyond second order.

IV. SCALAR FIELD THEORY

Having developed our method for quantum mechanics
remains to see how easily it can be implemented for the c
of field theory. We consider a single real scalar field the
with time-dependent Lagrangian of the form

L~ t !5E d3xH 1

2
F@2] t

21¹22m2~ t !#F2
l

24
F4J

~30!

m2~ t !5Q~2t !mi
22Q~ t !mf

2 . ~31!

With appropriate choice of the parameters, this mo
crudely describes a sudden temperature quench in which
field is driven through a phase transition at timet50.

Our interest is in determining the quantity

^F̂2~ t !&5
1

VE d3x^F̂2~x,t !&. ~32!

FIG. 3. Slow roll in quantum mechanics:^q̂2(t)&1/2 versust. The
first-order LDE result is compared against the exact result. A
shown are the Hartree-Fock results of Ref.@2# ~HF!, and first-order
perturbation theory (PT1).
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To perform the delta expansion we again define
d-Lagrangian by

L→Ld5~12d!L01dL ~33!

with

L05E d3xH 1

2
F~2] t

21¹21m2!FJ . ~34!

We replace the original Lagrangian by ourd-Lagrangian for
Re$t%.0. This gives

L~Re$t%.0!5E d3xH 1

2
F~2] t

21¹21m2!F

1dF ~mf
22m2!

2
F22

l

24
F4G J . ~35!

Switching to momentum space, the propagator now satis
the relation

Kp~ t !Dp~ t,t8!5dc~ t,t8!, ~36!

where

Kp~ t !52] t
22vp

2~ t ! ~37!

vp
2~ t !5Q~2t !v i ;p

2 2Q~ t !v f ;p
2 , ~38!

and now

v i ;p
2 5p21mi

2 ~39!

v f ;p
2 5m22p2. ~40!

The propagator has the solution~see the Appendix!

iD p~ t1 ,t2!5uc~ t12t2!iD p
.~ t1 ,t2!

1uc~ t22t1!iD p
,~ t1 ,t2! ~41!

where

iD p
.~ t1 ,t2!5

1

2v i ;p

1

ev i ;pb21
@Up

1~ t1!Up
2~ t2!

1ev i ;pbUp
2~ t1!Up

1~ t2!# ~42!

iD p
,~ t1 ,t2!5

1

2v i ;p

1

ev i ;pb21
@ev i ;pbUp

1~ t1!Up
2~ t2!

1Up
2~ t1!Up

1~ t2!#. ~43!

The mode functions satisfy

@] t
21vp

2~ t !#Up
6~ t !50, ~44!

with solutions

o

4-5
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Up
6~ t !5Q~2t !e6 iv i ;pt1Q~ t !

3S cosh~v f ;pt !6 i
v i ;p

v f ;p
sinh~v f ;pt ! D . ~45!

A. First order

The same diagrams which contributed to^q̂2(t)& in the
previous section contribute tôF̂2(t)& here. The essentia
difference from the quantum-mechanical case is that
propagators now depend on momentum and that any lo
will involve an integration over loop momenta. The Fey
man diagrams in Fig. 2 give

^F̂2~ t !&5E
p
iD p~ t,t !1

dl

2 E
c
dt8E

p
iD p

2~ t8,t !E
k
iD k~ t8,t8!

2d~mf
22m2!E

c
dt8Q~ t8!E

p
iD p

2~ t8,t ! ~46!

@cf. Eq. ~27!# where we have used the notation

E
p
5E d3p

~2p!3
. ~47!
at
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e
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The momentum integrals are divergent and must be regu
ized. As in Ref.@5#, we assume a scheme which leaves
contributions from stable modes (p2,k2.m2) being negligi-
bly small. The dominant growth in̂F̂2(t)& is associated
with the finite contribution of the unstable modes. In pract
this means that we may perform momentum integrals in
finite rangep2,k2,m2 to achieve finite results. We simpl
make the replacement

E
p
5

1

2p2E0

m

p2dp. ~48!

The calculations are performed in the high-temperature lim
wherebv i ;p!1, so that

cothS 1

2
v i ;pb D;

2

bv i ;p
. ~49!

In this limit the first term is found to be

1

bEp

1

v i ;p
2 F11

1

2 S 11
v i ;p

2

v f ;p
2 D @cosh~2v f ;pt !21#G , ~50!

the second is
2
l

2b2E0

t

dt8E
p

1

v i ;p
2 v f ;p

sinh@v f ;p~ t2t8!#F S 11
v i ;p

2

v f ;p
2 D cosh@v f ;p~ t1t8!#1S 12

v i ;p
2

v f ;p
2 D cosh@v f ;p~ t2t8!#G

3E
k

1

v i ;k
2 F11

1

2 S 11
v i ;k

2

v f ;k
2 D @cosh~2v f ;kt8!21#G , ~51!

and the third is

~mf
22m2!

2b E
p

1

v i ;p
2 v f ;p

2 F v i ;p
2

v f ;p
2 @12cosh~2v f ;pt !#1S 11

v i ;p
2

v f ;p
2 D v f ;pt sinh~2v f ;pt !G . ~52!
e

t, a
as
he

ad
es
rom
ted

ig.
a-
a-
In the second term, the time integral has not been perform
explicitly since the result is rather involved.

Finally we impose the PMS constraint at eacht in order to
find m and evaluatêF̂2(t)&

d^F̂2~ t !&
dm

50. ~53!

For numerical calculations the units are chosen such th\
5c5kB5mi

251. The remaining parameters are then cho
in these units to bemf

251, T51/b54A(6/l) ~the initial
temperature! and l510212. These are chosen to coincid
with those in Ref.@5#. The initial temperature has no particu
lar meaning, it is simply twice the critical temperature. T
ed

n

coupling must be small for this type of model of inflation du
to constraints from the spectrum of density fluctuations.

Examples ofl^F̂2&/2 as functions ofm2 for various times
are shown in Fig. 4. We observe a single stationary poin
maximum, which moves to the left and becomes sharpert
increases. The motivation for the PMS criterion is that t
exact answer is independent ofm. In any finite order of the
LDE this independence can only be achieved locally. A bro
maximum indicates that the LDE is robust, but it becom
increasingly unreliable as the peak becomes sharper. F
Fig. 4 we estimate that the first-order LDE cannot be trus
beyond aboutt511.

The position of the maximum versus time is shown in F
5. At small times the dominant part of the action is the qu
dratic part, and the evolution is well described by perturb
4-6
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tion theory, i.e.m2;mf
251. At later times, as the fluctua

tions of the field grow, the quartic terms become mo
important. In the context of the LDE this is taken into a
count by smaller values ofm2 in the trial LagrangianL0 of
Eq. ~34!.

The results for the evolution of the field are shown in F
6, in the restricted range oft where the different method
begin to diverge. Though we have no exact solution to co
pare with, the results display the same qualitative behavio
in the quantum mechanical case studied in the earlier
tions ~Fig. 3!.

First-order perturbation theory is achieved within t

FIG. 4. l^F̂2(t)&/2 versusm2 for t510.5,11,11.5 in first-order
LDE.

FIG. 5. The PMS maximumm2 versust in first-order LDE.
02500
e

.

-
as
c-

LDE framework by settingm25mf
2 . As in the quantum-

mechanical case, the Hartree result can be reproduce
consideringm to be a time-dependent function, this tim
given by

m2~ t8!5mf
22~l/2!E

p
iD ~ t8,t8!.

The resulting self-consistent set of equations are

^F̂2~ t !&5E
p
iD ~ t,t !

5
1

bEp

1

v i ;p
2

Up
2~ t !Up

1~ t !F ] t
21vp

2~ t !

1
l

2Ep
iD ~ t,t !GUp

6~ t !

50. ~54!

All methods give almost indistinguishable results up tot
;9. The Hartree and LDE methods remain close up to
classical spinodal region @where V9(F),0, i.e.
l^F̂2(t)&/2.1]. At later times the LDE method gives
larger value of̂ F̂2(t)& than the Hartree method. Based o
our experience of the quantum-mechanical case, we bel
that the Hartree method turns over prematurely and that
LDE is closer to the exact result for longer. However, to th
order it fails to give any indication of a turnover. As me
tioned in relation to Fig. 4, the LDE becomes unreliab
beyondt;11, as the PMS peak becomes narrower.

FIG. 6. l^F̂2(t)&/2 versust. The first-order LDE result is shown
as a solid line. Also shown are the Hartree-Fock result of Ref.@5#
~HF! and zeroth (PT0) and first-order (PT1) perturbation theory.
4-7
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B. Second order

To second order in the LDE there are altogether six additional graphs. These are exhibited in Eqs.~55!–~60!, along with
their analytic expressions, where the integrals along the time contour have not yet been performed. We have use

compact notation for theD ’s, wherebyDp
t8t stands forDp(t8,t) and so on.

~55!

~56!

~57!

~58!

~59!

~60!

In performing the time integrals int9, t8 over the contour of Fig. 1, the result is most easily expressed in terms of the rea
imaginary parts of theD ’s, or more preciselyF andr, defined by

Fª
1

2
~ iD .1 iD ,!

rª i ~ iD .2 iD ,!. ~61!

In the high-temperature limit, in which we are working, the imaginary parts are much smaller than the real parts:

Fp
t1t25

1

v i ;p
2 b

F cosh~v f ;pt1!cosh~v f ;pt2!1
v i ;p

2

v f ;p
2

sinh~v f ;pt1!sinh~v f ;pt2!G , ~62!

compared with

rp
t1t25

1

v f ;p
@sinh~v f ;pt1!cosh~v f ;pt2!2cosh~v f ;pt1!sinh~v f ;pt2!#. ~63!

The resulting expressions for diagrams~55!–~60!, having setd51, are

~64!

~65!
025004-8
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~66!

~67!

~68!

~69!
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In most of the diagrams there are two terms involving
integral overt9 up to t and another up tot8. In the original
forms of these expressions there were severe cancella
between the two integrals, which made accurate integra
extremely difficult. In the present, equivalent, form the tw
integrals give roughly comparable contributions, posing
difficulty for numerical integration.

We have evaluated all the multidimensional integrals
merically, including the time integrals, using the NA
FORTRAN routine D01FCF. The most difficult diagram t
evaluate is, of course, the ‘‘sunset’’ diagram of Eqs.~57! and
~66!. Because the integrand depends only on the magnitu
of the various momenta, there are two azimuthal integrati
which can be trivially performed, leaving a seve
dimensional integral.

The result of these calculations is that the expecta
valuel^F̂2&/2 now develops a PMSminimumas a function
of m2. Examples of this behavior are given in Fig. 7 for t
same times as were previously shown at first order. T
maximum appears to be a spurious stationary point, wit
runaway behavior forl^F̂2&/2.

The trend of the minimum as a function oft is similar to
that of the first-order maximum, decreasing slowly ast in-
creases, as shown in Fig. 8. The resulting plot ofl^F̂2(t)&/2
versust is shown in Fig. 9, where in addition to the Hartre
Fock result we also show the result of the first-order largeN
calculation~with N51). We see that the second-order res
now shows a turnover, but at a larger value of^F̂2(t)& than
that given by Hartree-Fock. This is the same feature t
occurred in the quantum-mechanical problem, and we
lieve it gives strong evidence that the Hartree-Fock met
turns over too soon in̂F̂2(t)&. In this case, where there i
no symmetry breaking, the large-N calculation differs from
the Hartree-Fock approximation only in that the coefficie
of iD (t,t) in Eq. ~54! is reduced by a factor of 3. This mean
that this term takes longer to become important and prod
02500
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ce

a turnover, so that the maximum value is considera
greater. The same feature occurs in the quantum mecha
problem, where the large-N approximation greatly overesti

mates the maximum value of^q̂2(t)&.
We have seen that inclusion of the second-order diagr

leads to a turnover which does not occur in first order.
would be tempting to ascribe this turnover to the influence
the ‘‘sunset diagram,’’ the first diagram to include the impo
tant effects of rescattering@17#. However, for the presen
calculation it is not possible to single out this particular d
gram from the others. Its distinctive role is rather to provi
for dissipation and thermalization at later times~see e.g.
@18–20#!, where unfortunately the LDE is unreliable. Th
Hartree-Fock method, which in our language correspond
a time-dependentm with a particular selection criterion, pro
vides an example where a turnover is achieved without
inclusion of this diagram.

V. DISCUSSION

The main motivation for this work was to expand upo
the available machinery for tackling out-of-equilibrium pro
lems in field theory.

The linear delta expansion, applied to the quantu
mechanical equivalent of the slow-roll transition, has be
shown to give a consistent improvement on other metho
However, the Schro¨dinger formulation of Ref.@4# cannot im-
mediately be generalized to field theory in higher dime
sions. We have shown how to recast the problem in term
the closed time-path formalism, which can be so generaliz
This is an extension which has not been achieved in o
treatments of the quantum-mechanical problem, with the
ception of the Hartree method.

As noted in@5#, the Hartree approximation cannot prob
the nonlinear regions of the potential. Moreover, the Hart
method is a one-off approximation, which is not capable
4-9
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systematic improvement. To understand the later time beh
ior and to probe the true vacuum, calculations must go
yond the Hartree approximation. The LDE, a systematic
pansion with a variational component, offers just th
possibility, although for practical reasons, it would be e
tremely difficult to go beyond second order in quantum fie
theory.

The main result of the paper is the formalism outlined
Sec. IV, and Fig. 9, which provides a demonstration of its
in the instantaneous quench approximation in fo
dimensional field theory in flat space-time. The next obvio
extension is to couple the field to the scale factor of an
panding Universe.

FIG. 7. l^F̂2(t)&/2 versusm2 for t510.5,11,11.5 in second
order LDE.

FIG. 8. The PMS minimumm2 versust in second-order LDE.
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APPENDIX

It is here demonstrated how to solve for the propaga
iD (t1 ,t2) in quantum mechanics. We shall need to impo
constraints due to the commutation relations and the Ku
Martin-Schwinger~KMS! boundary condition, but we begin
by decomposing the propagator as

iD ~ t1 ,t2!5uc~ t12t2!iD .~ t1 ,t2!

1uc~ t22t1!iD ,~ t1 ,t2! ~A1!

where uc(t2t8)5* t0 ,c
t dt9dc(t8,t9). Since K(t)D(t,t8)

5dc(t,t8), it is straightforward to demonstrate that

K~ t !D.(,)~ t,t8!50. ~A2!

We shall constructD.(,) from homogeneous solutions t
the quadratic operatorK, i.e. functions which satisfy
K(t)U6(t)50. For t,0, these have the solutionU6(t)
5exp$6ivit%. Thus, the most general form forD.(,) is

iD .(,)~ t1 ,t2!5a.(,)U1~ t1!U2~ t2!

1b.(,)U2~ t1!U1~ t2!. ~A3!

Other possible combinations ofU6 can be ruled out on
imposing time translation invariance at early times. The
rametersa.(,) and b.(,) are to be determined. To do thi
we begin by imposing the particle equal time commutat
relation

FIG. 9. l^F̂2(t)&/2 versust. The second-order LDE result i
shown as a solid line. Also shown are the results of Ref.@5# ~HF!,
and largeN.
4-10
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@ q̂,p̂#5 i . ~A4!

We make the free field identification̂ Tcq̂(t1)q̂(t2)&

5 iD (t1 ,t2) and further thatp̂5 q̇̂. This leaves

] t2
@ iD .~ t1 ,t2!2 iD ,~ t1 ,t2!# t15t2

5 i ~A5!

which constrains the free parameters as follows:

a,2a.1b.2b,5
1

v i
. ~A6!

A further symmetry requirement at equal time is that

iD .~ t,t !5 iD ,~ t,t ! ~A7!

which translates to

a.1b.5a,1b,. ~A8!

Finally we impose the KMS boundary condition

iD ,~ t0 ,t !5 iD .~ t02 ib,t ! ~A9!

or

a,5exp$v ib%a. ~A10!

b,5exp$2v ib%b.. ~A11!
02500
Equations.~A6!, ~A8!, ~A10! and ~A11! constitute 4 con-
straints on our 4 parameters. The set of equations is ea
solved yielding

a.5b,5
1

2v i

1

exp$v ib%21
~A12!

a,5b.5
1

2v i

exp$v ib%

exp$v ib%21
. ~A13!

We now have a general solution for the propagator at fin
temperature. Taking the zero temperature limit we have

iD .~ t1 ,t2!5
1

2v i
U2~ t1!U1~ t2! ~A14!

iD ,~ t1 ,t2!5
1

2v i
U1~ t1!U2~ t2!. ~A15!

The field theory case is much the same, with mode functi
satisfying

Kp~ t1!Dp~ t1 ,t2!5dc~ t1 ,t2! ~A16!

and

^Tcf̂ -p~ t1!f̂p~ t2!&5ViDp~ t1 ,t2!. ~A17!

The solution for an initial state described by a temperat
1/b is given in the main text.
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