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World-sheet stability of (0,2) linear sigma models
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We argue that two-dimensiond,2) gauged linear sigma models are not destabilized by instanton generated
world-sheet superpotentials. We construct several examples where we show this to be true. The general proof
is based on the Konishi anomaly f@@,2) theories.

DOI: 10.1103/PhysRevD.68.025003 PACS nuniderll.27+d

I. INTRODUCTION two questions should be related in a way that we will de-
scribe.

One of the basic questions we ask about quantum field In the following section, we consider the stability (@2)
theory is whether the classical vacua are stable. Often, théeories without tree level superpotentials. We construct sev-
structure of the quantum moduli space is significantly differ-eral examples of nonconforma0,2) models without tree
ent from the classical moduli space. The theories abougVvel superpotentials for which we show that no world-sheet
which we can usually say the most are supersymmetric. [§UPerpotential is generated by instantons. This result sur-
these cases, we can often make exact statements, either pefised us initially since we were looking for a model with an

turbative or nonperturbative, because of nonrenormalizatiof'Stanton generated superpotential. In Sec. Iil, we give a gen-

theorems. In cases where the vacuum structure is not rencff@ argument based on the Konishi anonjaly, 17 that this

malized at any finite order in perturbation theory, nonpertur-IS true for all gauged linear sigma models without tree level

bative effects, such as instantons, can still generate Superp%gperpotgnnals. Th|s argument is msplre_d in part by recent
tentials which modify or destabilize perturbative vacua progress in four-dimensional gauge theofis, 14. We then ;
extend the argument to cases with a tree level superpotential.

Nume_rous c_examples of this kind have been stu_dled N Vall, all cases, it appears that a nonperturbative superpotential

ous dimensions; for examplil=1 supersymmetric QCD in is forbidden.

four dimensiong 1]. _ 3 Lastly, we consider the implication of our results for the
~The aim of this work is to study the stability of two- space-time superpotential. Based on the absence of a nonper-

dimensional gauge theories, both massive and massless, wiiyhative world-sheet superpotential, we argue that there is

(0,2 world-sheet supersymmetry. On the string world sheetng corresponding space-time instability. Some related obser-

the terminology(p, g supersymmetry refers to theories with vations have appeared in RE23].

p left-moving andq right-moving supersymmetries. Confor-

mal figld thgqries witH0,2) supersymmetry are a key ingre- Il. SOME (0, 2) EXAMPLES
dient in building perturbative heterotic string compactifica- _ _ _
tions (for a review, see Ref2]). Unlike their (2, 2) cousins, In this section we construct examples(6f2) gauged lin-

theories with(0,2) supersymmetry that are conformal to all €&r sigma modelf7] without tree level superpotentials. We
orders in perturbation theory can still be destabilized byWill show that no superpotential is generated by nonpertur-
world-sheet instantons. The usual phrasing of this problem i82tive instanton or anti-instanton effects. It is actually suffi-
that world-sheet instantons generatemace-timesuperpo- cient to consider one instanton cont_rlbutlons. Higher mstqn-
tential [3,4]. However, the general belief is that this destabi-ON numbers generate more fermion zero modes which
lization is generic. Under special conditions described inPPStruct the generation of a superpotential.

Refs.[5,6] for nonlinear sigma models, there can be extra

fermion zero modes in an instanton background which Kkill A. A bundle over CP?

any nonperturbative superpotential. The (0,2 superspace and superfield notations are re-
We consider thos€0,2) models which can be constructed \jewed in the Appendix. We begin by consideringJ1)

as IR limits of gauged linear sigma modé¢lg]. This is a gauge theory. ThéD,2) action is given by a sum of terms
rather nice class of models which can be conformal or non-

conformal, and which can flow to theories with IR descrip- S=S4+Scht Se+SpstSs, 1)
tions such as sigma models or Landau-Ginzburg theories.
For perturbatively conformal cases, some criteria for the abwhereS,, S;,, S¢ are canonical kinetic terms for the gauge
sence of a space-time superpotential have been describedfialds, bosonic chiral superfields, and fermionic chiral super-
Refs.[8—1(]. Our interest is in whether a world-sheet super-fields, respectively. The explicit form of these actions appear
potential is generated. In perturbatively conformal cases, thin the Appendix. The Fayet-lliopouldd term and the theta
angle appear 5y, while S; contains any tree level super-
potential. For these models, we &t=0.
*Email address: basu@theory.uchicago.edu As our first example, we construct a linear sigma model
TEmail address: sethi@theory.uchicago.edu whose IR limit is a nonlinear sigma model @¥3. This is a

0556-2821/2003/62)/0250038)/$20.00 68 025003-1 ©2003 The American Physical Society



A. BASU AND S. SETHI PHYSICAL REVIEW D68, 025003 (2003

cousin of the2,2) model studied in Ref.15]. Apart from the ~ We construct the well known vortex instanton solution
U(1) gauge superfield¥ andV, we have bosonic super- [16,17] of the Abelian Higgs model in two dimensions: take
fields ®;=¢;+---, wherei=1,...,4, and a single Fermi su- ¢;=0 for i=2,3,4 and take nonzerg, and gauge fields.
perfieldI". Each®, carries gauge charge 1 whileécarries From now on we refer tab; as® for brevity. We also set
gauge charge-2. Since we do not have a tree level super-e=1. In polar coordinates, the one-instanton configuration is
potential our action is given by

S=Sy+ Sent Sr+ Spy- 2) v,=0, vy=v(r), ¢=F(r)e’, (6)

Solving for the auxiliary fields gives the following bosonic where for larger,
potential for theg; :

1 T
v(r)~r+const><—, (7

Jr

f(r)~n+constke V27", (8)

D2 eZ

2
U=@=§(Ei |¢>i|2—r> : (3

We taker to be positive, and set= 72. After modding by
t(;ggU(l) gauge symmetry, we see that the target space igndy (0)=f(0)=0. The Bogomolnyi equations are

The Fermi superfield determines the gauge-bundle over (D;+iD,) =0 9
CP2 which, in this case, is the line bund®(—2). These
particular gauge charge assignments guarantee gau@@d
anomaly cancellation, which is a basic consistency require-
ment. This can be seen either by computing the requisite one
loop diagrams, or by checking that the condition for anomalyO
cancellation 5]

D+U:|_2: 0. (10)

n evaluating Eq(5) in this background, we easily obtain
the usual instanton actid®=277°. Next, we are interested
cho(TM) = cho(V 4 in constructing the fermion zero modes in this instanton
mR(TM)=chy(V) @ background. They are explicitly given by

is satisfied. HereTM is the tangent bundle &%, V is the — _
O(—2) line bundle, and chis the second Chern character. o_| ¥ :( —‘/Q(D1+|Dz)$) (11)
Using the definition K=o D—vy, ’

1 —0 _ ;2
Chz(X)=§ci(X)—c2(X) Xo= ¢, (12)

and

we see that both sides of this equation givé$, avhereJ is o
the curvature two-form of the hyperplane bundle o@at®. E‘ii= ¢ (13

This theory is massivgas in the(2,2) CPP® model be-
cause the sum of the gauge charges of the right moving fefor i=2,3,4. Note that these zero modes are normalizable
mions is nonzero. The theory does, at the classical leveRecause of the exponential fall off of the fields at large dis-
have a chiralU(1) symmetry under which', \_,x_)  tances. The.° fermion zero mode is actually the zero mode
carry charges (% 1,g), whereq is any integer. This sym- 9enerated by the broken supersymmetry generator. In order
metry is anomalous at one loop for agy- —2. The charge 0 see this, we must examine the supersymmetry transforma-
of the gaugino\ _ does not matter in the anomaly computa- ions in the instanton background.

tion because it is not charged inW(1) theory. Since this The supersymmetry transformations becorr_\e involved be-
chiral symmetry is anomalous, we can shift the theta angle t§2US€ We must also make gauge transformations to preserve
any value, and we choose to set it to zero. Wess-Zumino gauge. The relevant supersymmetry transfor-

Let us now consider how instantons modify the perturba/mations are given by
tive theory. First we construct the one instanton

Bogomol'nyi-Prasad-Sommerfiel(BPS solution. In order Oy =—iv2(Do+Dy) e,
to construct an instanton solution, we wick rotate to Euclid- )
ean space sending ON_=iDe_+vpe_. (14
Yoo —iy2, vo— —ivip. The supersymmetry parameter corresponds tQ, . Wick
rotating to Euclidean space gives the zero mode found in Eq.
The Euclideanised bosonic action is (11). Hence, Q. is the broken supersymmetry while tke,

) supersymmetry is still preserved by the instanton back-

> |2— 2] |. ground. Using the Bogomol'nyi equations, it is not hard to
o check that theu® zero mode does satisiyp u°=0, where

(5) D is the Dirac-Higgs operator

1, ) e?
ﬁvlﬁzi: |D, il Y

S= f d’y
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~i(D1~iDy) V2ig and
o= " ‘j? 2 . (Z . (15)
oI W= (23
The field y_ is expanded in modes of the Dirac operator
(D,+iD,) (note thatl" has gauge charge2). The ., (i for i=2,3,4. Again the fermion zero mode analysis rules out
=2,3,4) fields are expanded in modes of the Dirac operatoﬁhe generation of a gauge invariant superpotential. Hence we

- = . see that there is no superpotential generated by a one anti-
(D1—iD,). We ask again whether there are any zero mode perp g y

fhstanton contribution.
for these fields. The existence of zero modes for these opera-

tors can be predicted using index theory and a vanishing
theorem [18]. Note that in Minkowski spacey= yf/°

= (4. ¢_). However, in Euclidean spaagand ¢ are inde- We can also consider the case whdrecarries gauge
pendent fermionic fields and not the conjugates of eactgharge 2. This leads to @(2) line bundle overCP°. The
other. Hereﬁz(n,m) and so in the Euclidean formulation 92uge anomaly cancellation condition is satisfied as the

f the th h 034 q anomaly is proportional to the square of the charges. The
of the theory, thew, 4 (i=2,3,4) zero modes are zero ., g js still massive, and we again ask whether a superpo-
modes of negative chirality while the_ zero mode is a zero

mode of positive chirality. tential is generated. -
. - .
We can now ask what gauge invariant correlators are non- In this case, we find the same”, y3; zero modes(for

vanishing in this instanton background. There are only twd =2:3:4) in the instanton b.ack-grour}d. !—|owever, the'fe Is
possibilities now a zero mode for the fielgg_ which is expanded in

modes of the Dirac operatoDg+iD,). The zero mode is

(Withioiabiax— 02, (N tiohiaiax-— o) 18 given by

B. Changing the bundle

XO — ¢2
which can have a nonzero vacuum expectation value in the
instanton background. However, neither of these terms coulégain this is normalizable given the exponential decay of the
be generated by a term in tf@,2) superpotential since there fields at large distances. Once again a gauge invariant super-
are far too many fermion zero modes. A superpotential ternpotential cannot be generated. Similar arguments hold for the
could absorb, at most, two fermion zero modes. Thereforegase of the anti-instanton. Hence for both line bundles,
we see that there is no instanton generated superpotentig(+2), over CI’®, no world-sheet superpotential is gener-
The same argument applies to instantons embedded in tlaed. These theories are nonperturbatively stable.
other ¢; .

Next we show that there is no superpotential generated by
a one anti-instanton contribution. The details are very similar
to the one instanton case so we shall be brief. The anti- [N the previous examples, a superpotential was forbidden

instanton configuration is similar to the instanton case excegtécause of the large number of zero modes in an
(anti-instanton background. We now turn to an example

p="f(r)e '’ (17)  where we have the right number of fermion zero modes for a
superpotential, but we will show that even in this case, there
and for larger, is no superpotential generated.
L o We consider a theory with one bosonic superfi@ldar-
e rying gauge charge 1 and one Fermi superfigldarrying
v(r)~- F+COHST' (18) gauge charge-1. There are also the required gauge super-
fields ¥ and V. This gauge charge assignment causes the
The Bogomol'nyi equations are now gauge anomaly to cancel. We can also set the theta angle to
zero because of the nonzero chiral anomaly. We again con-
(D1—iD,)¢=0 (190 struct vortex instanton solutions satisfying the Bogomol'nyi
equationg9) and(10). The fermion zero modes age® as in

C. A different route to stability

and Eq. (11) andx? = ¢. In this case, we see that

D—v3,=0 20 - —

2 20 W X)
leading to the anti-instanton acti®@ 27 »?. The normaliz-
able fermion zero modes are now given by can get a nonzero vacuum expectation value in the instanton
background. This would lead to the existence of a superpo-
o [¥3) [—V2(D,+iDy) ¢ 1 tential
mo= Q o D+U12 !
0_72 s=— 2 f d?ydo T @] g+ — (24)
X-= ¢, (22) Va2 =0
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wherea is a constant that can be determined. Hence(@he PO POTOTO v
2) theory would be rendered unstable by this nonperturbative e a

effect. However, the condensate has a vacuum expectatiqfte independent, and one can study their transformations

value proportional to separately.
We consider a global axial (1) transformation given by
dPxop(D1+iD ) ¢, 25 .
| dxo0(D,+12) 29 5 o
where we have integrated over the two bosonic translationathe subscriptm signifies that only one of the fields iB
zero mode$19,20. Using the identity transforms nontrivially. To extract a Ward identity in super-

S _ space, we consider the following transformation:

2ip(D1+iD5)p+(d1+id2)(D—v419)=0, (26) _

. . . . 2m_’zr,n:elAEma (28)
which can be proven using the Bogomolnyi equations, we

see that this integral is actually zero. Yet again there is NQ nhereA is a chiral superfield satisfyin6+A=0. This leads
instanton generated superpotential. to a change in the measure and action
Lastly, we consider the case whdrehas a gauge charge

1. In this case, we can obtafh andI" from a single(2,2)
chiral superfield. The fermion zero modes ar as in Eq. Z—J
(1) and x° = ¢. However, the possibility i, x_) cannot

be generated from a superpotential because of holomorphy zf [DE/.“]eiS’

of the superpotential. Therefore, no superpotential is gener- m

ated at all. This certainly agrees with tf&2) nonrenormal-

ization theorem. From these examples, we see no nonpertur- :J [DS,,;--]Je!S*1%S, (29)
bative superpotential generated. These results together with

our other attempts at finding examples with nonvanishinq:Or an infinitesimal transformation

superpotentials suggest that this phenomena is quite generic.

In the next section, we give a general argument explaining

[DS,;--]e'S

. i — 1
why this happens. 5S= — EJ PRy 6D,(Dy—Dy)iAD, — Ef dRydo*
lll. THE (0,2 KONISHI ANOMALY 572
A. Deriving the anomaly X é FaEiAq)i -~ (30
9+=0

In this section, we obtain the Konishi anomaiyi, 12| for
the (0,2 linear sigma model with no tree level superpoten-if %, is a bosonic chiral superfield and
tial. Because of a perturbative nonrenormalization theorem,
the only superpotential that can possibly be generatedisa__ 1 5 o= 1 o a
nonperturbative one. From the Konishi anomaly relation that 0S=- EJ dyd Ol IAT— Ef d°ydeTiATJ
we obtain, we argue that no such nonperturbative superpo-
tential can be generated by instantons. This generalizes the
results of the previous section.

Our derivation of the Konishi anomaly is along the lines
of Ref.[12] which is a superspace generalization of Fujika-
wa’s functional integral methof®1]. We start with the linear J= det:(gm
sigma model with no tree level superpotential. We assume m
that a superpotential is generated nonperturbatively. Hencejl-he reason for the subscript which means chiral, will be

S=Sy+ Sent Se+ Spet Sy, clear in a moment. The trace originally involves integration

overy and 6" 0. Using the relation
whereS; is the nonperturbative superpotential contribution.

9+t=0

(31)

if 3, is a Fermi superfield. Also,

!

) =det(—iAD, )=e"(~1AD.) (3D

We want to prove thaB;=0 in the (anti-instanton back- — 4 —
ground. We denote all the chiral superfields Byi.e., 3 f do" =—=—D.,+i6"(d+ 1), (33
={®2 %, and the corresponding antichiral superfields by a0

> The partition function is given by we have replaced the integral over by an insertion of

3 O =D ~Or D s —D, in EQ. (32). The second term in Eq33) is a total
Z= f [D®DP;DI';DI';D¥YDV]e™. (27)  derivative which we can drop since we integrate oyefhe
remaining superspace integral in the chiral trace only in-
In the functional integral formalism, all the fields in the path volves fd?yd#™, and is therefore a chiral integral.
integral measure We regulate the trace in the following way:

025003-4



WORLD-SHEET STABILITY OF(0,2) LINEAR SIGMA . .. PHYSICAL REVIEW D 68, 025003 (2003

weH—IAD. ) =limy .t ~iAe D), (34 Eﬁfara:ira\]alzuoﬂ X 43)
where 2 V2 B
i for the Fermi superfields. They can be combined and written
L=— ED+e—"1’(7)o—Dl)e—‘l’mez‘l’. (35 as
— . 8S;
Note thatL respects manifest supersymmetry and is chiral D J=i gmim|;+:o+ Pt (44)

becauséd ,L=0. TheU(1) gauge transformation acts by
_ . Equation(44) and its conjugate obtained from considering
—e Me¥er VoV+(dy—ad)(A+A). (36  antichiral transformations are the Konishi anomaly equations
for the (0,2) linear sigma model.

e\I/

So under a gauge transformation

Ll =g 2iA g2IA (37) B. Applying the Konishi equations

_ _ Now the relation(44) is a rather beautiful operator rela-
Hencel is gauge covariant as well. We now proceed totion. We can take the expectation value of E4f) in a BPS

compute the regulated trace in E§4). We have (anti-instanton background. The left hand side is trivial in
) , the chiral ring, and vanishes by fermion zero mode counting.
L—_ %e‘“’Ye‘“’sz“’— L e Y(Dy—Dy) We therefore obtain the general result
| 6S; Y
X[2i(Dy+D;)—D,D. ]ev. (39) '<gm2m ;+_O> = —<§> (49

From the regulated trace in E(4), itis clear that. always (5, o m. Similarly from antichiral transformations, we ob-
acts onD, . So we have a nonzero contribution only if we tain
have a factor oD, along withD, since o
_ | Sy — Y
(D,D,)=-1. I<—Em >=<§> (46)
+—

This is possible when one factor &fD , is brought down "o
from the exponential. To get a nonzero contribution, we havéor all m. From the component expansion fsrand Y, we
to set¥ =0 in the first term in the expression for The last  see that the lowest component and the top component have

85 m
term in Eq.(38) involving D, D, does not contribute. Also var!ishing vacuum expectation vaI_ue beca_use of Lorentz in-
the second term involvingZl,+D;) term contributes with variance: they involve the one point function of a fermion.

¥ =0. So acting oD , , The middle component oY is

i 2i0"(D—ivgy)

L=—=YD,+(Dy—Dy)(Dy+D,). 39 _

2 YD+ (PomP)(Do* D) 39 while that of ¥ is
The leading term in the regulated trace is given by dropping —2i67(D+ivoy).
the background gauge field terms in the second term in Eq.
(39) leading to Wick rotating to Euclidean space, we find that

i 2 2 ’

L=—§YD++(&0—(91)- (40 (TaJa|§+:o>=2f27T<D—vlz> (47)

Hence, the regulated trace gives and
'Y —iAD )zif dzyd0+E (41 JE - [ D+ (48)
c + S’ (T'ad% g+ =0)= 2‘/277< v12)
Finally, we obtain the Ward identity for all a. In the (anti-Jinstanton background, bottD) and
(v1p vanish because of fermion zero modes. Actually for

1— — [ 8 Y theories with a broken chirdl (1) symmetry, this vanishing
2 D ®i(Do= Dy Py = = 5; Faaqu)i' ot=0t g also follows independently from the Bogomol'nyi equations.
(42) For example, in an instanton background we see that Eq.
(48) vanishes using the Bogomol'nyi equatidti0). The
for the bosonic chiral superfields and right hand side of Eq(47) is proportional to(v,) which, in
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turn, is proportional ta? [22]. However, because of the bro- Yukawa terms generated from the superpotential. So fermion
ken chiralU(1) symmetry, all theta vacuua are equivalentzero mode counting does not rule out renormalizatiom. of
and we can set theta to zero. The same analysis holds fétowever, using the Bogomol'nyi equations, the remaining
the anti-instanton case leading to the final result that in afosonic integral is always of the form

(anti-)instanton background

I 2 k H 2
395 0=Ca3% p+ —o=0. (49) f d“Xo| §|“(91+i1d2)| B|7,
We conclude tha,;=0, and no nonperturbative superpoten-wherek is a non-negative integer, and we have embedded the
tial is generated. instanton in¢. However, this integral over the two transla-
tional zero modegwith R? as the Euclidean world-shéet
C. Cases with tree level superpotentials vanishes. Again, it appears that no space-time superpotential

What changes when we add a tree level superpotential? i generated.

appears that not a great deal changes in the preceeding argu-
ment. We replac&; by the sum of the tree level superpoten- ACKNOWLEDGMENTS
tial Sf]) and any nonperturbative superpotent®". The

derivation just given goes through without further change .,ssjons and A. Penin for useful email correspondence. We
and we obtain the same equatidAg) and(48). Evaluated in ;019 also like to thank J. Distler for extensive discussions

an instanton background, it again appears that the total Sujq b Tong for helpful correspondence. The work of A.B. is
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modified. In the presence of a superpotential, the BPS con-
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APPENDIX: THE STRUCTURE OF (0,2) SUPERSPACE

0_
Ja=0 (50 We review (0,2) superspace following7]. We shall be

dealing with abelian gauge theories. The superspac@®far
theories has bosonic coordinatg y! and fermionic coor-

dinates6™,6". The supersymmetry generators act in super-
space in the following way:

so the Konishi relation is satisfied. Beyond multiplicatively
renormalizingS), it seems that a nonperturbative superpo-
tential is again ruled out.

D. The space-time superpotential

— it
Lastly, for perturbatively conformal models, we want to Q+= 90" 107 (9o +da), (A1)
address the question of whether the absence of a world-sheet
superpotential implies the absence of a space-time superpo- p
tential. In mode]s with no tree level supe_rpotentlal, we can Q.=———i0"(dg+y). (A2)
argue this relation as follows: a space-time superpotential Y

implies that our perturbatively conformal theories, which we

can label by the parameterir + 6/2ar, do not flow 10 @  On the other hand, the superspace covariant derivatives are
family of superconformal field theories with a correspondmggi\,en by

t modulus. Let us just consider the dependencer.oRor

example, they might flow to a trivial theory with— .

1% —
How canr be renormalized? In the actionappears in the D,= Ev i 10" (dp+dq), (A3)
term
d2 D - d .
T yb. D+:_T+|0+((9O+(91)- (A4)
30"

We need to ask wheth& can be renormalized in an instan- _ _ ' _

ton background. NowD is bosonic, and we must absorb The following multiplets and the corresponding actions are
fermion zero modes. Where can they come from? The onlysed in various sections of the main text.

place we see is a nonperturbative superpotential. The pertur-

ba.tive ngrangian will not do because th'e zero modes are 1. The gauge multiplet

chiral. Since no world-sheet superpotential is generated, _ o —
remains an exactly marginal parameter and no space-time The superspace gauge covariant derivatifes, D, ,

superpotential is generated. andD, (a«=1,2) satisfy the algebra
What if there is a tree level world-sheet superpotential? In y — )
this case, fermion zero modes could be absorbed from the DL =D:=0{D,; ,D,}=2i(Dy+Dy). (A5)
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The first two equations imply tha®, =e~*D,e" and D,
=e"D.e ¥, whereV takes values in the Lie algebra of the
gauge group. In the Wess-Zumino gauge,

V=0"0%(vot+vy)(y?).
We also have

Do+ Dy=do+ d1+i(votvy), (AB)

-
D,= W—l 0+(D0+ Dl)v (A?)

_ J
D,=—-—+i60"(Dy+Dy), (A8)

a6,
DO_Dl:aO_al+iV! (Ag)
whereV is given by

V=0o—0;—2i0"N_—2i0"\_+2676"D. (A10)

The gauge invariant field strength |‘r§=[5+ v Do—D4]
which has a corresponding action

Sy= ! f Ryd?oYY
9" 8e?

ED2 .

5 (A11)

101, —

2. The chiral multiplet

There are bosonic chiral superfield@? satisfying
D, ®%=0. Defining ®?=e " "®;, we see thatD,d;=0.
Here ®; has the component expansion

Di=¢+v20F i —i6070"(Dog+Dy) . (A12)

This corresponding gauge invariant action is given by

[ —
Scn=—73 f yd62 ©i(Do=Dy) P,

=f o|2y2i (—|Dadhil?+igri(Do— D)y

—iQV2oN_ ¢ TiQV2hi ik +QiD|i|?),
(A13)

where®; has aU(1) chargeQ; .

PHYSICAL REVIEW D 68, 025003 (2003

3. The Fermi multiplet

There are also fermionic chiral superfie[ﬂg with nega-
tive chirality satisfying

n 10 0
D.I'%=v2ES,

whereE? satisfiesD , E=0. DefiningI'?=e "', and E
=e VE,, the Fermi superfield has a component expansion

Ta=x_a—V207Ga—i67 60 (Dy+Dy)x_a— V20 E,.

(A14)

We will consider cases wheie,= 0. In this case, the kinetic
terms for the Fermi multiplet are given by

1 —
spz—zf dzydzeg T,
~ [ 3 1 a(Do+ Doy w+[G7). (A15)

4. The D@ term

The terms in the action containing the Fayet-lliopoulbs
term and the theta term are given by

0
27 Vo)

(A16)

t
SDf):Zf d2yd0+Y|;+:0+H.c.=f dzy(—rD+

wheret=ir + /2.

5. The superpotential term

The (0,2 superpotential is given by
1 2 + a —
Sy=— » d?yde g [',J%(®)[5+—o—H.cC.

~foz]

0J2
GaJa<¢i>+Z X-athsigg|—He,

(A17)

where theJ? are functions of the chiral superfields .
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