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World-sheet stability of „0,2… linear sigma models
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~Received 2 April 2003; published 3 July 2003!

We argue that two-dimensional~0,2! gauged linear sigma models are not destabilized by instanton generated
world-sheet superpotentials. We construct several examples where we show this to be true. The general proof
is based on the Konishi anomaly for~0,2! theories.
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I. INTRODUCTION

One of the basic questions we ask about quantum fi
theory is whether the classical vacua are stable. Often,
structure of the quantum moduli space is significantly diff
ent from the classical moduli space. The theories ab
which we can usually say the most are supersymmetric
these cases, we can often make exact statements, eithe
turbative or nonperturbative, because of nonrenormaliza
theorems. In cases where the vacuum structure is not re
malized at any finite order in perturbation theory, nonpert
bative effects, such as instantons, can still generate supe
tentials which modify or destabilize perturbative vacu
Numerous examples of this kind have been studied in v
ous dimensions; for example,N51 supersymmetric QCD in
four dimensions@1#.

The aim of this work is to study the stability of two
dimensional gauge theories, both massive and massless,
~0,2! world-sheet supersymmetry. On the string world she
the terminology~p, q! supersymmetry refers to theories wi
p left-moving andq right-moving supersymmetries. Confo
mal field theories with~0,2! supersymmetry are a key ingre
dient in building perturbative heterotic string compactific
tions ~for a review, see Ref.@2#!. Unlike their ~2, 2! cousins,
theories with~0,2! supersymmetry that are conformal to a
orders in perturbation theory can still be destabilized
world-sheet instantons. The usual phrasing of this problem
that world-sheet instantons generate aspace-timesuperpo-
tential @3,4#. However, the general belief is that this desta
lization is generic. Under special conditions described
Refs. @5,6# for nonlinear sigma models, there can be ex
fermion zero modes in an instanton background which
any nonperturbative superpotential.

We consider those~0,2! models which can be constructe
as IR limits of gauged linear sigma models@7#. This is a
rather nice class of models which can be conformal or n
conformal, and which can flow to theories with IR descr
tions such as sigma models or Landau-Ginzburg theor
For perturbatively conformal cases, some criteria for the
sence of a space-time superpotential have been describ
Refs.@8–10#. Our interest is in whether a world-sheet sup
potential is generated. In perturbatively conformal cases,
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two questions should be related in a way that we will d
scribe.

In the following section, we consider the stability of~0,2!
theories without tree level superpotentials. We construct s
eral examples of nonconformal~0,2! models without tree
level superpotentials for which we show that no world-sh
superpotential is generated by instantons. This result
prised us initially since we were looking for a model with a
instanton generated superpotential. In Sec. III, we give a g
eral argument based on the Konishi anomaly@11,12# that this
is true for all gauged linear sigma models without tree le
superpotentials. This argument is inspired in part by rec
progress in four-dimensional gauge theories@13,14#. We then
extend the argument to cases with a tree level superpoten
In all cases, it appears that a nonperturbative superpote
is forbidden.

Lastly, we consider the implication of our results for th
space-time superpotential. Based on the absence of a no
turbative world-sheet superpotential, we argue that ther
no corresponding space-time instability. Some related ob
vations have appeared in Ref.@23#.

II. SOME „0, 2… EXAMPLES

In this section we construct examples of~0,2! gauged lin-
ear sigma models@7# without tree level superpotentials. W
will show that no superpotential is generated by nonper
bative instanton or anti-instanton effects. It is actually su
cient to consider one instanton contributions. Higher inst
ton numbers generate more fermion zero modes wh
obstruct the generation of a superpotential.

A. A bundle over CP3

The ~0,2! superspace and superfield notations are
viewed in the Appendix. We begin by considering aU(1)
gauge theory. The~0,2! action is given by a sum of terms

S5Sg1Sch1SF1SDu1SJ , ~1!

whereSg , Sch , SF are canonical kinetic terms for the gaug
fields, bosonic chiral superfields, and fermionic chiral sup
fields, respectively. The explicit form of these actions app
in the Appendix. The Fayet-IliopoulosD term and the theta
angle appear inSDu while SJ contains any tree level supe
potential. For these models, we setSJ50.

As our first example, we construct a linear sigma mo
whose IR limit is a nonlinear sigma model onCP3. This is a
©2003 The American Physical Society03-1
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cousin of the~2,2! model studied in Ref.@15#. Apart from the
U(1) gauge superfieldsC and V, we have bosonic super
fields F i5f i1¯ , wherei 51,...,4, and a single Fermi su
perfield G. EachF i carries gauge charge 1 whileG carries
gauge charge22. Since we do not have a tree level sup
potential our action is

S5Sg1Sch1SF1SDu . ~2!

Solving for the auxiliary fields gives the following boson
potential for thef i :

U5
D2

2e2 5
e2

2 S (
i

uf i u22r D 2

. ~3!

We taker to be positive, and setr 5h2. After modding by
the U(1) gauge symmetry, we see that the target spac
CP3.

The Fermi superfield determines the gauge-bundle o
CP3 which, in this case, is the line bundleO~22!. These
particular gauge charge assignments guarantee g
anomaly cancellation, which is a basic consistency requ
ment. This can be seen either by computing the requisite
loop diagrams, or by checking that the condition for anom
cancellation@5#

ch2~TM!5ch2~V! ~4!

is satisfied. Here,TM is the tangent bundle ofCP3, V is the
O~22! line bundle, and ch2 is the second Chern characte
Using the definition

ch2~X!5
1

2
c1

2~X!2c2~X!

we see that both sides of this equation gives 2J2, whereJ is
the curvature two-form of the hyperplane bundle overCP3.

This theory is massive@as in the~2,2! CP3 model# be-
cause the sum of the gauge charges of the right moving
mions is nonzero. The theory does, at the classical le
have a chiralU(1) symmetry under which (c1

i ,l2 ,x2)
carry charges (1,21,q), whereq is any integer. This sym-
metry is anomalous at one loop for anyqÞ22. The charge
of the gauginol2 does not matter in the anomaly comput
tion because it is not charged in aU(1) theory. Since this
chiral symmetry is anomalous, we can shift the theta angl
any value, and we choose to set it to zero.

Let us now consider how instantons modify the pertur
tive theory. First we construct the one instant
Bogomol’nyi-Prasad-Sommerfield~BPS! solution. In order
to construct an instanton solution, we wick rotate to Eucl
ean space sending

y0→2 iy2, v01→2 iv12.

The Euclideanised bosonic action is

S5E d2yF 1

2e2 v12
2 1(

i
uDaf i u21

e2

2 S (
i

uf i u22h2D 2G .
~5!
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We construct the well known vortex instanton solutio
@16,17# of the Abelian Higgs model in two dimensions: tak
f i50 for i 52,3,4 and take nonzerof1 and gauge fields.
From now on we refer toF1 as F for brevity. We also set
e51. In polar coordinates, the one-instanton configuration
given by

v r50, vu5v~r !, f5 f ~r !eiu, ~6!

where for larger,

v~r !;
1

r
1const3

e2hr

Ar
, ~7!

f ~r !;h1const3e2&hr , ~8!

andv(0)5 f (0)50. The Bogomolnyi equations are

~D11 iD 2!f50 ~9!

and

D1v1250. ~10!

On evaluating Eq.~5! in this background, we easily obtai
the usual instanton actionS52ph2. Next, we are interested
in constructing the fermion zero modes in this instant
background. They are explicitly given by

m05S c̄1
0

l2
0 D 5S 2&~D̄11 iD̄ 2!f̄

D2v12
D , ~11!

x̄2
0 5f2, ~12!

and

c̄1 i
0 5f̄ ~13!

for i 52,3,4. Note that these zero modes are normaliza
because of the exponential fall off of the fields at large d
tances. Them0 fermion zero mode is actually the zero mod
generated by the broken supersymmetry generator. In o
to see this, we must examine the supersymmetry transfor
tions in the instanton background.

The supersymmetry transformations become involved
cause we must also make gauge transformations to pres
Wess-Zumino gauge. The relevant supersymmetry trans
mations are given by

dc̄152 i&~D̄01D̄1!f̄e2 ,

dl25 iD e21v01e2 . ~14!

The supersymmetry parametere2 corresponds toQ1 . Wick
rotating to Euclidean space gives the zero mode found in
~11!. Hence,Q1 is the broken supersymmetry while theQ̄1

supersymmetry is still preserved by the instanton ba
ground. Using the Bogomol’nyi equations, it is not hard
check that them0 zero mode does satisfyiD” m050, where
iD” is the Dirac-Higgs operator
3-2
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iD” 5S 2 i ~D̄12 iD̄ 2! & i f̄

2& if i ]12]2
D . ~15!

The field x̄2 is expanded in modes of the Dirac opera
(D̄11 iD̄ 2) ~note thatG has gauge charge22!. The c̄1 i ( i
52,3,4) fields are expanded in modes of the Dirac oper
(D̄12 iD̄ 2). We ask again whether there are any zero mo
for these fields. The existence of zero modes for these op
tors can be predicted using index theory and a vanish
theorem @18#. Note that in Minkowski spacec̄5c†g0

5(c̄1c̄2). However, in Euclidean spacec and c̄ are inde-
pendent fermionic fields and not the conjugates of e
other. Here,c̄5(h2h1) and so in the Euclidean formulatio
of the theory, them, c̄1 i ( i 52,3,4) zero modes are zer
modes of negative chirality while thex̄2 zero mode is a zero
mode of positive chirality.

We can now ask what gauge invariant correlators are n
vanishing in this instanton background. There are only t
possibilities

^c̄1c̄12c̄13c̄14x̄2f2&, ^l2c̄12c̄13c̄14x̄2f&
~16!

which can have a nonzero vacuum expectation value in
instanton background. However, neither of these terms co
be generated by a term in the~0,2! superpotential since ther
are far too many fermion zero modes. A superpotential te
could absorb, at most, two fermion zero modes. Theref
we see that there is no instanton generated superpote
The same argument applies to instantons embedded in
otherf i .

Next we show that there is no superpotential generated
a one anti-instanton contribution. The details are very sim
to the one instanton case so we shall be brief. The a
instanton configuration is similar to the instanton case exc

f5 f ~r !e2 iu ~17!

and for larger,

v~r !;2
1

r
1const

e2hr

Ar
. ~18!

The Bogomol’nyi equations are now

~D12 iD 2!f50 ~19!

and

D2v1250 ~20!

leading to the anti-instanton actionS52ph2. The normaliz-
able fermion zero modes are now given by

m05S c1
0

l̄2
0 D 5S 2&~D11 iD 2!f

D1v12
D , ~21!

x2
0 5f̄2, ~22!
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and

c1 i
0 5f ~23!

for i 52,3,4. Again the fermion zero mode analysis rules o
the generation of a gauge invariant superpotential. Hence
see that there is no superpotential generated by a one
instanton contribution.

B. Changing the bundle

We can also consider the case whereG carries gauge
charge 2. This leads to aO~2! line bundle overCP3. The
gauge anomaly cancellation condition is satisfied as
anomaly is proportional to the square of the charges. T
model is still massive, and we again ask whether a supe
tential is generated.

In this case, we find the samem0, c̄1 i
0 zero modes~for

i 52,3,4) in the instanton back-ground. However, there
now a zero mode for the fieldx2 which is expanded in
modes of the Dirac operator (D11 iD 2). The zero mode is
given by

x2
0 5f2.

Again this is normalizable given the exponential decay of
fields at large distances. Once again a gauge invariant su
potential cannot be generated. Similar arguments hold for
case of the anti-instanton. Hence for both line bundl
O~62!, over CP3, no world-sheet superpotential is gene
ated. These theories are nonperturbatively stable.

C. A different route to stability

In the previous examples, a superpotential was forbid
because of the large number of zero modes in
~anti-!instanton background. We now turn to an examp
where we have the right number of fermion zero modes fo
superpotential, but we will show that even in this case, th
is no superpotential generated.

We consider a theory with one bosonic superfieldF car-
rying gauge charge 1 and one Fermi superfieldG carrying
gauge charge21. There are also the required gauge sup
fields C and V. This gauge charge assignment causes
gauge anomaly to cancel. We can also set the theta ang
zero because of the nonzero chiral anomaly. We again c
struct vortex instanton solutions satisfying the Bogomol’n
equations~9! and~10!. The fermion zero modes arem0 as in
Eq. ~11! and x̄2

0 5f. In this case, we see that

^c̄1x̄2&

can get a nonzero vacuum expectation value in the insta
background. This would lead to the existence of a super
tential

S52
a

&
E d2ydū1ḠF̄uu150 , ~24!
3-3
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wherea is a constant that can be determined. Hence the~0,
2! theory would be rendered unstable by this nonperturba
effect. However, the condensate has a vacuum expecta
value proportional to

E d2x0f~D̄11 iD̄ 2!f̄, ~25!

where we have integrated over the two bosonic translatio
zero modes@19,20#. Using the identity

2if~D̄11 iD̄ 2!f̄1~]11 i ]2!~D2v12!50, ~26!

which can be proven using the Bogomolnyi equations,
see that this integral is actually zero. Yet again there is
instanton generated superpotential.

Lastly, we consider the case whereG has a gauge charg
1. In this case, we can obtainF and G from a single~2,2!
chiral superfield. The fermion zero modes arem0 as in Eq.
~11! and x2

0 5f. However, the possibilitŷ c̄1x2& cannot
be generated from a superpotential because of holomo
of the superpotential. Therefore, no superpotential is ge
ated at all. This certainly agrees with the~2,2! nonrenormal-
ization theorem. From these examples, we see no nonpe
bative superpotential generated. These results together
our other attempts at finding examples with nonvanish
superpotentials suggest that this phenomena is quite gen
In the next section, we give a general argument explain
why this happens.

III. THE „0,2… KONISHI ANOMALY

A. Deriving the anomaly

In this section, we obtain the Konishi anomaly@11,12# for
the ~0,2! linear sigma model with no tree level superpote
tial. Because of a perturbative nonrenormalization theor
the only superpotential that can possibly be generated
nonperturbative one. From the Konishi anomaly relation t
we obtain, we argue that no such nonperturbative supe
tential can be generated by instantons. This generalizes
results of the previous section.

Our derivation of the Konishi anomaly is along the lin
of Ref. @12# which is a superspace generalization of Fujik
wa’s functional integral method@21#. We start with the linear
sigma model with no tree level superpotential. We assu
that a superpotential is generated nonperturbatively. Hen

S5Sg1Sch1SF1SDu1SJ ,

whereSJ is the nonperturbative superpotential contributio
We want to prove thatSJ50 in the ~anti-!instanton back-
ground. We denote all the chiral superfields byS, i.e., S
5$F i

0,Ga
0%, and the corresponding antichiral superfields

S̄. The partition function is given by

Z5E @DF i
0DF̄ i

0DGa
0DḠa

0DCDV#eiS. ~27!

In the functional integral formalism, all the fields in the pa
integral measure
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F i
0,F̄ i

0,Ga
0,Ḡa

0,C,V

are independent, and one can study their transformat
separately.

We consider a global axialU(1) transformation given by

Sm→eiaSm .

The subscriptm signifies that only one of the fields inS
transforms nontrivially. To extract a Ward identity in supe
space, we consider the following transformation:

Sm→Sm8 5eiASm , ~28!

whereA is a chiral superfield satisfyingD̄1A50. This leads
to a change in the measure and action

Z5E @DSm¯#eiS

5E @DSm8¯#eiS8

5E @DSm¯#JeiS1 idS. ~29!

For an infinitesimal transformation

dS52
i

2 E d2yd2uF̄ i~D02D1!iAF i2
1

&
E d2ydu1

3(
a

Ga

dJa

dF i
iAF iU

ū150

~30!

if Sm is a bosonic chiral superfield and

dS52
1

2 E d2yd2uḠaiAGa2
1

&
E d2ydu1iAGaJaU

ū150
~31!

if Sm is a Fermi superfield. Also,

J5detcS dSm8

dSm
D 5detc~2 iAD̄1!5etrc~2 iAD̄1!. ~32!

The reason for the subscriptc, which means chiral, will be
clear in a moment. The trace originally involves integrati
over y andu1,ū1. Using the relation

E dū15
]

]ū1
52D̄11 iu1~]01]1!, ~33!

we have replaced the integral overū1 by an insertion of
2D̄1 in Eq. ~32!. The second term in Eq.~33! is a total
derivative which we can drop since we integrate overy. The
remaining superspace integral in the chiral trace only
volves*d2ydu1, and is therefore a chiral integral.

We regulate the trace in the following way:
3-4
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trc
reg~2 iAD̄1!5 limM→`trc~2 iAeL/M2

D̄1!, ~34!

where

L52
i

2
D̄1e2 iC~D02D1!e2CD1e2C. ~35!

Note thatL respects manifest supersymmetry and is ch
becauseD̄1L50. TheU(1) gauge transformation acts by

eC→e2 i L̄eCeiL, V→V1~]02]1!~L̄1L!. ~36!

So under a gauge transformation

L→L85e22iLLe2iL. ~37!

Hence L is gauge covariant as well. We now proceed
compute the regulated trace in Eq.~34!. We have

L52
i

2
e2CYe2CD1e2C2

i

2
e2C~D02D1!

3@2i ~D01D1!2D1D̄1#eC. ~38!

From the regulated trace in Eq.~34!, it is clear thatL always
acts onD̄1 . So we have a nonzero contribution only if w
have a factor ofD1 along withD̄1 since

^D1D̄1&521.

This is possible when one factor ofYD1 is brought down
from the exponential. To get a nonzero contribution, we h
to setC50 in the first term in the expression forL. The last
term in Eq.~38! involving D1D̄1 does not contribute. Also
the second term involving (D01D1) term contributes with
C50. So acting onD̄1 ,

L52
i

2
YD11~D02D1!~D01D1!. ~39!

The leading term in the regulated trace is given by dropp
the background gauge field terms in the second term in
~39! leading to

L52
i

2
YD11~]0

22]1
2!. ~40!

Hence, the regulated trace gives

trc
reg~2 iAD̄1!5 i E d2ydu1

YA

8p
. ~41!

Finally, we obtain the Ward identity

1

2
D̄1F̄ i~D02D1!F i52

i

&
(

a
Ga

dJa

dF i
F i u ū1501

Y

8p
~42!

for the bosonic chiral superfields and
02500
l

e

g
q.

1

2
D̄1ḠaGa5

1

&
GaJau ū1501 i

Y

8p
~43!

for the Fermi superfields. They can be combined and writ
as

D̄1J5 i
dSJ

dSm
Smu ū1501

Y

8p
. ~44!

Equation~44! and its conjugate obtained from considerin
antichiral transformations are the Konishi anomaly equati
for the ~0,2! linear sigma model.

B. Applying the Konishi equations

Now the relation~44! is a rather beautiful operator rela
tion. We can take the expectation value of Eq.~44! in a BPS
~anti-!instanton background. The left hand side is trivial
the chiral ring, and vanishes by fermion zero mode counti
We therefore obtain the general result

i K dSJ

dSm
SmU

ū150
L 52 K Y

8p L ~45!

for all m. Similarly from antichiral transformations, we ob
tain

i K dSJ

dS̄m

S̄mU
u150

L 5K Ȳ

8p
L ~46!

for all m. From the component expansion forY and Ȳ, we
see that the lowest component and the top component h
vanishing vacuum expectation value because of Lorentz
variance: they involve the one point function of a fermio
The middle component ofY is

2iu1~D2 iv01!

while that ofȲ is

22i ū1~D1 iv01!.

Wick rotating to Euclidean space, we find that

^GaJau ū150&5
u1

2&p
^D2v12& ~47!

and

^ḠaJ̄auu150&5
ū1

2&p
^D1v12& ~48!

for all a. In the ~anti-!instanton background, botĥD& and
^v12& vanish because of fermion zero modes. Actually
theories with a broken chiralU(1) symmetry, this vanishing
also follows independently from the Bogomol’nyi equation
For example, in an instanton background we see that
~48! vanishes using the Bogomol’nyi equation~10!. The
right hand side of Eq.~47! is proportional tô v12& which, in
3-5
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turn, is proportional tou @22#. However, because of the bro
ken chiralU(1) symmetry, all theta vacuua are equivale
and we can set theta to zero. The same analysis holds
the anti-instanton case leading to the final result that in
~anti-!instanton background

GaJau ū1505ḠaJ̄auu15050. ~49!

We conclude thatSJ50, and no nonperturbative superpote
tial is generated.

C. Cases with tree level superpotentials

What changes when we add a tree level superpotentia
appears that not a great deal changes in the preceeding
ment. We replaceSJ by the sum of the tree level superpote
tial SJ

0 and any nonperturbative superpotentialSJ
non. The

derivation just given goes through without further chan
and we obtain the same equations~47! and~48!. Evaluated in
an instanton background, it again appears that the total
perpotential must vanish. At first sight, this might appear
be a contradiction since, by construction,SJ

0 is nonzero.
However, the condition for an instanton to be BPS is n

modified. In the presence of a superpotential, the BPS c
dition requires@7#

Ja
050 ~50!

so the Konishi relation is satisfied. Beyond multiplicative
renormalizingSJ

0, it seems that a nonperturbative superp
tential is again ruled out.

D. The space-time superpotential

Lastly, for perturbatively conformal models, we want
address the question of whether the absence of a world-s
superpotential implies the absence of a space-time supe
tential. In models with no tree level superpotential, we c
argue this relation as follows: a space-time superpoten
implies that our perturbatively conformal theories, which w
can label by the parametert5 ir 1u/2p, do not flow to a
family of superconformal field theories with a correspondi
t modulus. Let us just consider the dependence onr. For
example, they might flow to a trivial theory withr→`.

How canr be renormalized? In the action,r appears in the
term

2r E d2yD.

We need to ask whetherD can be renormalized in an instan
ton background. NowD is bosonic, and we must absor
fermion zero modes. Where can they come from? The o
place we see is a nonperturbative superpotential. The pe
bative Lagrangian will not do because the zero modes
chiral. Since no world-sheet superpotential is generater
remains an exactly marginal parameter and no space-
superpotential is generated.

What if there is a tree level world-sheet superpotential?
this case, fermion zero modes could be absorbed from
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Yukawa terms generated from the superpotential. So ferm
zero mode counting does not rule out renormalization or.
However, using the Bogomol’nyi equations, the remaini
bosonic integral is always of the form

E d2x0ufuk~]11 i ]2!ufu2,

wherek is a non-negative integer, and we have embedded
instanton inf. However, this integral over the two transla
tional zero modes~with R2 as the Euclidean world-shee!
vanishes. Again, it appears that no space-time superpote
is generated.

ACKNOWLEDGMENTS

A.B. would like to thank J. Harvey for many useful dis
cussions and A. Penin for useful email correspondence.
would also like to thank J. Distler for extensive discussio
and D. Tong for helpful correspondence. The work of A.B.
supported in part by NSF Grant No. PHY-0204608. T
work of S.S. is supported in part by NSF CAREER Gra
No. PHY-0094328, and by the Alfred P. Sloan Foundatio

APPENDIX: THE STRUCTURE OF „0,2… SUPERSPACE

We review ~0,2! superspace following@7#. We shall be
dealing with abelian gauge theories. The superspace for~0,2!
theories has bosonic coordinatesy0, y1 and fermionic coor-
dinatesu1,ū1. The supersymmetry generators act in sup
space in the following way:

Q15
]

]u1 1 i ū1~]01]1!, ~A1!

Q̄152
]

]ū1
2 iu1~]01]1!. ~A2!

On the other hand, the superspace covariant derivatives
given by

D15
]

]u12 i ū1~]01]1!, ~A3!

D̄152
]

]ū1
1 iu1~]01]1!. ~A4!

The following multiplets and the corresponding actions a
used in various sections of the main text.

1. The gauge multiplet

The superspace gauge covariant derivativesD1 , D̄1 ,
andDa (a51,2) satisfy the algebra

D1
2 5D̄1

2 50,$D1 ,D̄1%52i ~D01D1!. ~A5!
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The first two equations imply thatD15e2CD1eC and D̄1

5eC̄D̄1e2C̄, whereC takes values in the Lie algebra of th
gauge group. In the Wess-Zumino gauge,

C5u1ū1~v01v1!~ya!.

We also have

D01D15]01]11 i ~v01v1!, ~A6!

D15
]

]u12 i ū1~D01D1!, ~A7!

D̄152
]

]ū1

1 iu1~D01D1!, ~A8!

D02D15]02]11 iV, ~A9!

whereV is given by

V5v02v122iu1l̄222i ū1l212u1ū1D. ~A10!

The gauge invariant field strength isY5@D̄1 ,D02D1#
which has a corresponding action

Sg5
1

8e2 E d2yd2uȲY

5
1

e2 E d2yS 1

2
v01

2 1 i l̄2~]01]1!l21
1

2
D2D . ~A11!

2. The chiral multiplet

There are bosonic chiral superfieldsF i
0 satisfying

D̄1F i
050. Defining F i

05e2CF i , we see thatD̄1F i50.
HereF i has the component expansion

F i5f i1&u1c1 i2 iu1ū1~D01D1!f i . ~A12!

This corresponding gauge invariant action is given by

Sch52
i

2 E d2yd2u(
i

F̄ i~D02D1!F i

5E d2y(
i

~2uDaf i u21 i c̄1 i~D02D1!c1 i

2 iQi&f̄ il2c1 i1 iQi&f i c̄1 i l̄21QiDuf i u2!,

~A13!

whereF i has aU(1) chargeQi .
’’

s.

s.

02500
3. The Fermi multiplet

There are also fermionic chiral superfieldsGa
0 with nega-

tive chirality satisfying

D̄1Ga
05&Ea

0,

whereEa
0 satisfiesD̄1Ea

050. DefiningGa
05e2CGa and Ea

0

5e2CEa , the Fermi superfield has a component expans

Ga5x2a2&u1Ga2 iu1ū1~D01D1!x2a2& ū1Ea .
~A14!

We will consider cases whereEa50. In this case, the kinetic
terms for the Fermi multiplet are given by

SF52
1

2 E d2yd2u(
a

ḠaGa

5E d2y(
a

@ i x̄2a~D01D1!x2a1uGau2#. ~A15!

4. The Du term

The terms in the action containing the Fayet-IliopoulosD
term and the theta term are given by

SDu5
t

4 E d2ydu1Yu ū1501H.c.5E d2yS 2rD 1
u

2p
v01D ,

~A16!

wheret5 ir 1u/2p.

5. The superpotential term

The ~0,2! superpotential is given by

SJ52
1

&
E d2ydu1(

a
GaJa~F i !u ū1502H.c.

52E d2y(
a

S GaJa~f i !1(
i

x2ac1 i

]Ja

]f i
D 2H.c.,

~A17!

where theJa are functions of the chiral superfieldsF i .
@1# I. Affleck, M. Dine, and N. Seiberg, Nucl. Phys.B241, 493
~1984!.

@2# J. Distler, ‘‘Notes on ~0,2! superconformal field theories,
hep-th/9502012.

@3# M. Dine, N. Seiberg, X. G. Wen, and E. Witten, Nucl. Phy
B278, 769 ~1986!.

@4# M. Dine, N. Seiberg, X. G. Wen, and E. Witten, Nucl. Phy
B289, 319 ~1987!.
@5# J. Distler, Phys. Lett. B188, 431 ~1987!.
@6# J. Distler and B. Greene, Nucl. Phys.B304, 1 ~1988!.
@7# E. Witten, Nucl. Phys.B403, 159 ~1993!.
@8# E. Silverstein and E. Witten, Nucl. Phys.B444, 161 ~1995!.
@9# J. Distler and S. Kachru, Nucl. Phys.B430, 13 ~1994!.

@10# J. Distler and S. Kachru, Phys. Lett. B336, 368 ~1994!.
3-7



-

ig

an-

A. BASU AND S. SETHI PHYSICAL REVIEW D68, 025003 ~2003!
@11# K. Konishi, Phys. Lett.135B, 439 ~1984!.
@12# K.-i. Konishi and K.-i. Shizuya, Nuovo Cimento A90, 111

~1985!.
@13# R. Dijkgraaf and C. Vafa, ‘‘A perturbative window into non

perturbative physics,’’ hep-th/0208048.
@14# F. Cachazo, M. R. Douglas, N. Seiberg, and E. Witten, J. H

Energy Phys.12, 071 ~2002!.
@15# A. A. Penin, Nucl. Phys.B532, 83 ~1998!.
@16# A. A. Abrikosov, JETP5, 1174~1957!.
02500
h

@17# H. B. Nielsen and P. Olesen, Nucl. Phys.B61, 45 ~1973!.
@18# N. K. Nielsen and B. Schroer, Nucl. Phys.B127, 493

~1977!.
@19# J.-L. Gervais and B. Sakita, Phys. Rev. D11, 2943~1975!.
@20# E. Tomboulis, Phys. Rev. D12, 1678~1975!.
@21# K. Fujikawa, Phys. Rev. Lett.42, 1195~1979!.
@22# S. R. Coleman, Ann. Phys.~N.Y.! 101, 239 ~1976!.
@23# C. Beasley and E. Witten, ‘‘Residues and World-Sheet Inst

tons,’’ hep-th/0304115.
3-8


