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Gravitational collapse of null radiation and a string fluid
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We consider the end state of collapsing null radiation with a string fluid. It is shown that, if diffusive
transport is assumed for the string, a naked singularity can fatmeast locally. The model has the advantage
of not being asymptotically flat. We also analyze the case of a radiation-string two-fluid and show that a locally
naked singularity can result in the collapse of such matter. We contrast this model with that of strange quark
matter.
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[. INTRODUCTION that one solution results in a black hole while the other could
result in a naked singularity. The strength of the naked sin-

The end state of a collapsing star has attracted much agularity is examined in Sec. IV. During the analysis, we
tention in its own right and especially so since the statemerpresent the general forms of the Kretschmann and Ricci sca-
of the cosmic censorship conjectuf€CO) (see[1] for a  lars. We investigate the collapse of Ricci flat spacetimes in
detailed discussion of the CGCWhile the end state of a Sec. V and show that the presence of a string fluid can lead
sufficiently massive collapsing star is a singulafi®}, there  to the occurrence of locally naked singularities for radiation
is no guarantee that such a singularity should be hidden as filids. We compare our results to a similar metric that has
required by the CC(3]. Indeed, a number of papers have recently appeared in the literature in Sec. VI.
been written describing various scenarios in which naked
singularities form(see[4] for a recent review Such ex- Il. THE NULL RADIATION-STRING FLUID MODEL
amples clearly violate the CCC. Future formulations of the
CCC will have to be carefully reconsidered in light of these
examples.

Here we present another spherically symmetric spacetime 2 2 2/ 102 1 o 2
which admi'?s a naked singlflarity. T)r/ﬂsyspacetimep is not ds®=Adu®+2dudr —r*(d9*+sir dde?), @
asymptotically flat and describes the collapse of null radia;here
tion with a string fluid first introduced by Glass and Krisch
[5]. A full physical description of the model is contained in 2m(u,r)
[6]. We merely quote the relevant information for our analy- A=1l——7.
sis of the singularities.

However, we do make one observation: In their analysigyote that they chose the mass function to be a function of
Glass and Kriscti5,6] state that the matter content of their qth retarded time and distance along the outgoing null geo-
model is a radlatllon-strl'ng two-fluid. The matter content iSgesics. As a result, they were able to extend the Vadya
taken to be a string fluid together with Vaidya ngfiure radiating metric to include a string fluid.

radiation. We proceed in a similar manner for the main part  gjass and Krisch [5] introduced the unit vectors
of our paper. However, in Sec. V we consider the speciat , Fu 3% and @ such that

case of Ricci flat spacetimes. Here, we do not assume th&t
the string satisfies a diffusion equation. The combination of N

these two characteristicRicci flatness and nondiffusing Qur=0V =Tl = Ot = 0ue,, )
stringg now allows the matter content to be treated as
different radiation-string two-fluid(or, perhaps, a three-
fluid), where, in addition to the Vaidya nulpure radiation,
we also have incoherent radiatiqas the radiation fluid

Glass and KriscH5] start with a spherically symmetric
metric in retarded time coordinata, of the form

@

r

Qvhere the unit vectors have their usual definition from Eq.
(1). The Einstein tensor then took on the form

H . " . 2m 2m’ "
equation of statg@=p/3 is now satisfiedtogether with the g =1l - ( {)V_F ;V)+ Sayg:t 3V+ZP QADV),
string fluid. Bro2 K P2 M Iz r \Va m
This note is organized as follows. In Sec. Il we introduce (4)

the metric of Glass and Kriscfb] and present the main , . . o .
equations to solve. We make a few comments on these equihere’ and - denote differentiation with respect toandu
tions and provide some special solutions. These solutions aféspectively and,, is a principal null geodesic vector, from

used in Sec. Ill to study the nature of the collapse. We showvhich the nature of the matter content is easily seen.
Using the Einstein field equations they identified the mat-

ter portion of the Einstein tensor as a string fluid:
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and thus obtained

m
dmp=- 3 (6)
dmp=—4mp=— (7)
8mp, =~ —, ®

where ¢ is the energy density of the Vaidya radiatignjs
the string fluid energy density amg} andp, the string fluid
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J A
—4Deu}\7wm7TC1 4'Deu}\7”m1ﬂ’ ,Z—)Cl

I

m(u,r)= X

=

thermodynamic radial and tangential pressures respectively.

In addition to the field equation&)—(8) they also as-
sumed that the density satisfied the diffusion equation

9)

whereD is the positive coefficient of self-diffusion. Manipu-
lating Eqgs.(6)—(9) they concluded that, once a solution to
the linear PDE?9) was obtained, the mass function could be
found by integrating Eq(7) and

a0

m=4aDr o

(10

They presented a few solutions of £6) and determined the
corresponding expressions for.

Equation (10) is a result of the integrability conditions
taking Eqgs.(6), (7) and(9) into account. However, it would
seem that an additive function afwas omitted in Eq(10)
which should be written atsee Appendix

. d
m=4wDr2(9—f+k(u). (11)

However, in our calculations, we will still use E(LO) and
merely add on an arbitrary(u).

We observe that Eq9) can be transformed to the heat
equation with a nonconstant diffusion coefficient if we set
R=—1/r. Thus all the known solutions to the heat equation
can be applied in this setting.

It is easy to see that, when=R(r)U(u) we obtain

C, C@VP
U 1 2

p=e —_— + ’
er\e)\/Dr A
2r\/ =
D

whereC,; andC, are constants and is the separation con-
stant. This leads to the following mass function:

(12

. 2De”“”"_’_pqrrC2 2D2eM TPy =C2
A A2
(13
If we require thatp=R(r)+U(u) then
C, Ar?
p=CotNut—+ &5 (14)
with corresponding mass function
roa
m(u,r)= 15—2)—47)qu1
. 27Tr2[2r(u)\3+ Co)+3C4] S—
If we let
M(u)=—4DmCyu (16)

be the Vaidya mass and note that the@,r3/3 term makes
a contribution similar to the cosmological constant, we can
define

2715\ 2mr?(2aru+3C,)
15D 3

S(u,r)= +C, (17

as a mass contribution from the string fluid. We note that
both S(u) andM (u) have a term involvingz,. Thus, in this
model, it is not possible to separate the Vaidya mass from the
string mass. This is a result of the relationshipsand (10)
which are a consequence of HE).

We note that, if we require the string to behave like a
perfect fluid, then we must hayg=p, =p and sop=—p
remains as the equation of state for the string fluid. Using
Egs.(7) and(8), this means that

rm”—2m’'=0 (18

whence

m=F(u)r3+G(u). (19

If we further impose Eq(9), we have that~(u)=Fg, a
constant and the resulting part of the mass functionFige®

is a cosmological constant term—the metric is Vaidya—de
Sitter (se€[ 8] for a discussion of the CCC in this contgxin

the resulting discussion, we will assume that the fluid is an-
isotropic.

IIl. NATURE OF THE COLLAPSE

The geodesic equatior(taking the null conditionk®K ,
into account, wher&k®=dx? dk is the tangent vector of a
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geodesit for the metric(1) are As a result in our further analysis of the structure of the
collapse we will always sany,=0.
d®u m—-m’r [du)? Let us consider solutiofiL3). It is clear from that solution
@JF r2 dk =0 (20 that, asr,u—0, we havem—k, a constant and so, from Eq.

(25) that a black hole forms.
In the case of Eq(15) (with C,=0) we observe that Eq.

2 - 2
gr _mdu =0. (21) (24 reduces to
dk?2 r\dk
2
To investigate the structure of the collapse we need to con- Xo= 1-87DC, X, (26)
sider the radial null geodesics defined bs?d0 taking ¢ ) )
=#=0 into account. For Eq(l) the radial null geodesics from which we obtain
must satisfy the null condition 1+ J1-64C, 7D
du 2 Xo= 2= 160, 7D 20
& 2mun (22
r 1— m(u.r) If we defined=8C,;#D we can rewrite Eq(27) as
r
1+{J1-86
However, we recall that the coordinateis a retardedtime o=z =55 (29)

coordinate. In most examples in the literature,amvanced

time coordinate is used. In order to compare our results withn order for real positive solutions in E428) to exist we
those usually found in the literature we need towset—u in must have that

Eg. (22) and obtain

®| =

du 2 S (29

Ezl_ 2m(—u,r) 23

r This is exactly the same form &, (and restrictiopobtained

by Dwivedi and Joshj9] and Wagh and MahargB]. That
For appropriate forms af, this equation will have a singu- the similarity arises should not be of any surprise. It is clear
larity atr—0,u—0. In order to classify the radial and non- that, if one is dealing with a mass function that is of the form
radial outgoing nonspacelike geodesics terminating at thigu+F(u,r) whereF(u,r)/r is polynomial inr and/oru (of
singularity in the past, we need to consider the limiting val-degree at least onethen the only contribution to the condi-
ues ofX=u/r along a singular geodesic as the singularity istion for the existence of a time-like geodesic emanating from
approached[1]. Thus, for the geodetic tangent to exist the singularity is from\u, the Vaidya mass. Indeed, this is
uniquely at this point we must have that the reason that asymptotic flathess is not essential for the

existence of a locally naked singularity, a conclusion first

. . Cu _ obtained in[8].
Xo= Ilim —= lim EZ lim W
—0r—0 —0r—0 —0r—0 ]
! e B B r IV. STRENGTH OF THE SINGULARITY
(24) The main importance of determining the strength of the

singularity is due to the fact that the CCC does not need to
rule out the possibility of the occurrence of weak naked sin-
gularities[10]. This arises as one may continue the geometry
of a weak naked singularity through the singularity to make
it geodesically completfll,12 (see alsd10]).

In order to determine the strength of the singularity we
utilize the ideas of Nolanl0] as explained if13]. Thus, for

Thus the crucial aspect of metrit) that dictates the nature
of the collapse is, as expected, the mass funation

We note thatp=p,, a constant, is a solution of E).
The corresponding mass function ism(u,r)=mg
+47por/3. For this form ofm, we have

2 2 . . .
= i = = a weak singularity, we require
XO lim 2m0+ 87Tp0r3/3 . Zmo 0.
u—»Or—»Ol_ % 1_ “rnT dr
—0 —_ -~
r (25 ak dg =r~dgk. (30)

Since there is no real, positivé,, there is no nonspacelike Using the definition

geodesic emanating from the singularity and so the singular-

ity is not visible to any observer. However, this is not a Xo=lim E: lim d_u (32)
realistic model agn is independent of time and so the model uoor—of  uor_odr

is static. The reason we comment on this formnofis to

show that any constant part of will result in a black hole. we have, asymptotically,
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du Thus the singularity is gravitationally strong in the sense of
&Ndoxo =U~doXok. (32 Tipler [14].
The Kretschmann scalaft = R,;,.;R*"°Y for Eq. (1) is
The geodesic equatiaf20) then becomes given by
d2u  2X3wd, .y 4
R 4 31,3 21,2 — "2 __ /) 12 IN\2,2
g 1D (4Ndok™+20dgk*d X\ +20dgk“DCq K r6[(m ) =4m'm'r>+4mni’r<+8(m’)“r
+15dokDC; +30d%X,,C;) (33 —16mm'r +12m?]. (34)
which is of O(k) ! and so is inconsistent with Eq32). If we utilize the mass functioil5), Eq. (34) evaluates to
|
2
K= m(lZOOGDZU)\C(ﬁ— 600r 6D 2u\ 2+ 900r 5D 2C,C, + 300\ 2Du+ 300 8\ DCy+ 150r 'NDC,
r

+2700D*u?C3+ 720\ D2uC, + 600 D 2C3+ 450 “D2C3 + 53r 10\ 2)

which clearly diverges at the naked singularity. Hence theform (5)] and require it to be Ricci flat, then, as expected, the

singularity is a scalar polynomial singularity. fluid must satisfy Eq(38). These spacetimes must be asymp-
The Ricci scalar for Eq(l) is given by totically flat via Eq.(37).
To proceed further, we must assume some form\iaéu)
R= —_Z(m”r +2m’) (35) andS(u). Given the interpretation above, it makes sense to
r? assume thaM (u) = — au. In order forS(u) to contribute to

the existencéor otherwisg¢ of a naked singularity, it must be

of O(u)2. Thus we seS(u)=Bu?. The null condition(23)
now becomes

which, in the case of Eq15) evaluates to
-8
R=7(r3A+4Dru)\+4DrCO+3Dcl) (36)

and also diverges at the naked singularity. d_U _ 2 (39
dr L 2au+2Bu?r

V. RICCI FLAT SPACETIMES r

It is clear from Eq.(35) that none of the solutions pre-

sented above covers the case of Ricci flat spacetimes. If W'?h' tion h inqularity &t 0 0. Th diti
relax the requirement that the string diffuges. we do not IS equation nas a singufarity u—0. The condition

impose Eq.(9)] we can now consider the case BE0. for a geodetic tangent to exist uniquely at this point reduces
From Eq.(35) this means that the mass function must takel©

on the form
_ S(u) X i u i du i 2
=M(u)+ —= = lim —= lim ——= Ilim
m(u,r)=M(u) — (37 O ool uoorodr u—0r—0y 2au+2Bu?lr
r
where we can again interprdt(u) as the Vaidya mass and
S(u) as the mass contribution from the matter content. Forc-  _ 2 (40)
ing the spacetime to be Ricci flat requires the matter content 1-2aXy—2BX3
to obey the(incoherenk radiation fluid equation of state, i.e.
_ Prt+2p, _ Pr _P (38) This cubic equation Xy has(at least one real positive root
3 3 3 provided that, fora>0, 8<0. This can be seen from the

numerical result$15] given in Table I. Thus, in the case of
from Eqgs.(7) and(8). Thus if we begin with a metric of the Ricci flat spacetimes, we also have the possibility of a locally
form (1) [together with an energy-momentum tensor of thenaked singularity.
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TABLE |. Positive numerical solutions to E¢40) for specific  content as strange quark matter. Thus, whilés still the

forms of =1.0 andg. radiation density, theip andp refer to strange quark matter

thermodynamic pressure and energy density respectively. As

B Xo a result of that interpretation, they impose an equation of

-1 1.35321 state relatingp to p:

-0.9 1.42537

-0.8 1.51454 1

-0.7 1.62861

~0.6 1.78145 P=r(p—4B), (44)

-0.5 2.0

-0.4 2.3436

-0.3 2.96715 whereB is the bag constartvhich is a generalization of the

-0.2 4.3797 equation of state i16]). This differential equation can be

-0.1 9.1457 treated as an ODE and the general solution was presented in
[13].

Here, following Glass and Kriscfb], the matter content

As above, we investigate the strength of the naked singusag peen interpreted as a string fluid which diffuses like point
larity. Taking Eqs(30) and(32) into account, Eq(20) [with  y5icle diffusion where the number densitydiffuses from
Eq. (37) and the assumed forms bf(u) andS(u)] becomes  higher numbers to lower according to E§) [note, we have
’ used the fact thgi=Mgn, M4 a constant, to obtain E¢9)].
d_UN 2'3)(_0_“ (41) The string equation of state is always satisfied as a result of
dk? dok the energy-momentum tens@). As a result, the solutions
o _ ) o ~ presented her@and in[5]) will not coincide with those found
which is inconsistent with E(32) and so this singularity is [13].

also gravitationally strong. , That other interpretations of the metit) together with
_ For Ricci flat spacetimes, the Kretschmann scé8dj i £q (5) are possible is evident from the case of Ricci flat
given by collapse investigated in Sec. V. Indeed, this case is of con-
siderable importance as the matter content satisfigis the
16 [ — — . ) . .
K= —[14S(u)2+ 125(u)M (u)r +3M(u)r?] (42)  string equation of statp,= —p and the(incoherent radia-
ré tion fluid equation of stat@=p/3 [see Eq.(38)]. Thus the
_ _ matter content is a two-fluid, in addition to the Vaidya null
which, for the assumed forms &f (u) andS(u), evaluates  (pure radiation. We have shown that a naked singularity can
to arise in this scenario. If17] it was shown that a naked
singularity only forms if the ratio of pressure to density was
less than—1/3. Here, we have shown that a naked singular-
ity can exist outside this range, i.e. for a ratio of 1/3. We
conclude that it is the presence of the string matter that con-
Clearly Eqg.(43) diverges at the naked singularity. As ex- tributes to the occurrence of the locally naked singularity.

2
K=

- (14B2u—12Baur +3a?r?). (43
r

pected, we have a scalar polynomial singularity. As observed in Sec. Il, an arbitrary function of k(u)
say, can be added to the mass functiorThis additive func-
VI. DISCUSSION tion of u can be seen as a further contribution from the string

massS. However, unless it is linear in, it would not con-
We have presented a scenario for the gravitational coltribute to the conditiori29) and even then, would only serve
lapse of a string fluid together with Vaidya null radiation in tg redefines.
which the end state becomes a naked singularity. We have \we note that the usual manner in which the existence of a
also investigated the collapse of Ricci flat spacetimes. SucRhaked singularity is presented is to show that the singularity
collapse can also give rise to naked singularities. Both sceforms before the event horizon forms. Interestingly, it has
narios prOVidEd naked Singularities which were graVitation-been shown that, for some mode]S, an apparent horizon will

ally strong and, as expected, were scalar polynomial singuhot form at all[18—20 (see alsd21]).
larities. These are two more in the long list of examples that

proliferate the literature and should serve to tighten future
formulations of the .CCC. ACKNOWLEDGMENTS
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024034-5



K. S. GOVINDER AND M. GOVENDER PHYSICAL REVIEW D68, 024034 (2003

APPENDIX: INTEGRABILITY CONDITIONS

. d
FOR m(u,r) r2p=DE

Thus, from Egs(Al), (A3) and (A4) we have

ap
( r? a_r) . (A4)

Here we consider the derivation of Eq.0). Differentiat-
ing Egs. (6) and (7) with respect tor and u respectively

results in ) m’ g ,op
: —(r%Y) =g =Dor| 1o (A5)
m' = —4m(r2y)’ (A1) T r
) _ whence
m' =4mxr2p. (A2)
W =amD | 22 (A6)
Thus m =am ar or |’
—(r3y)' =r?p. (A3)  Glass and Kriscli5] presumably integrated this equation to
obtain Eq.(10). However, since this is a PDE, the integration
However, Eq.(9) yields should yield Eq(11).
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