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Gravitational collapse of null radiation and a string fluid

K. S. Govinder* and M. Govender†

School of Mathematical and Statistical Sciences, University of Natal, Durban 4041, South Africa
~Received 6 February 2003; published 30 July 2003!

We consider the end state of collapsing null radiation with a string fluid. It is shown that, if diffusive
transport is assumed for the string, a naked singularity can form~at least locally!. The model has the advantage
of not being asymptotically flat. We also analyze the case of a radiation-string two-fluid and show that a locally
naked singularity can result in the collapse of such matter. We contrast this model with that of strange quark
matter.
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I. INTRODUCTION

The end state of a collapsing star has attracted much
tention in its own right and especially so since the statem
of the cosmic censorship conjecture~CCC! ~see @1# for a
detailed discussion of the CCC!. While the end state of a
sufficiently massive collapsing star is a singularity@2#, there
is no guarantee that such a singularity should be hidden
required by the CCC@3#. Indeed, a number of papers ha
been written describing various scenarios in which na
singularities form~see @4# for a recent review!. Such ex-
amples clearly violate the CCC. Future formulations of t
CCC will have to be carefully reconsidered in light of the
examples.

Here we present another spherically symmetric space
which admits a naked singularity. This spacetime is
asymptotically flat and describes the collapse of null rad
tion with a string fluid first introduced by Glass and Krisc
@5#. A full physical description of the model is contained
@6#. We merely quote the relevant information for our ana
sis of the singularities.

However, we do make one observation: In their analy
Glass and Krisch@5,6# state that the matter content of the
model is a radiation-string two-fluid. The matter content
taken to be a string fluid together with Vaidya null~pure!
radiation. We proceed in a similar manner for the main p
of our paper. However, in Sec. V we consider the spe
case of Ricci flat spacetimes. Here, we do not assume
the string satisfies a diffusion equation. The combination
these two characteristics~Ricci flatness and nondiffusing
strings! now allows the matter content to be treated as
different radiation-string two-fluid~or, perhaps, a three
fluid!, where, in addition to the Vaidya null~pure! radiation,
we also have incoherent radiation~as the radiation fluid
equation of statep5r/3 is now satisfied! together with the
string fluid.

This note is organized as follows. In Sec. II we introdu
the metric of Glass and Krisch@5# and present the main
equations to solve. We make a few comments on these e
tions and provide some special solutions. These solutions
used in Sec. III to study the nature of the collapse. We sh
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that one solution results in a black hole while the other co
result in a naked singularity. The strength of the naked s
gularity is examined in Sec. IV. During the analysis, w
present the general forms of the Kretschmann and Ricci
lars. We investigate the collapse of Ricci flat spacetimes
Sec. V and show that the presence of a string fluid can l
to the occurrence of locally naked singularities for radiati
fluids. We compare our results to a similar metric that h
recently appeared in the literature in Sec. VI.

II. THE NULL RADIATION-STRING FLUID MODEL

Glass and Krisch@5# start with a spherically symmetric
metric in retarded time coordinate,u, of the form

ds25Adu212dudr 2r 2~dq21sin2qdw2!, ~1!

where

A512
2m~u,r !

r
. ~2!

Note that they chose the mass function to be a function
both retarded time and distance along the outgoing null g
desics. As a result, they were able to extend the Vaidya@7#
radiating metric to include a string fluid.

Glass and Krisch @5# introduced the unit vectors

v̂m, r̂ m,q̂m and ŵm such that

gmn5 v̂mv̂n2 r̂ m r̂ n2q̂mq̂n2ŵmŵn , ~3!

where the unit vectors have their usual definition from E
~1!. The Einstein tensor then took on the form

Gmn5
2ṁ

r 2
l ml n2

2m8

r 2
~ v̂mv̂n2 r̂ m r̂ n!1

m9

r
~q̂mq̂n1ŵmŵn!,

~4!

where8 and • denote differentiation with respect tor andu
respectively andl m is a principal null geodesic vector, from
which the nature of the matter content is easily seen.

Using the Einstein field equations they identified the m
ter portion of the Einstein tensor as a string fluid:

Tmn5c l ml n1r v̂mv̂n1pr r̂ m r̂ n1p'~q̂mq̂n1ŵmŵn! ~5!
©2003 The American Physical Society34-1
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and thus obtained

4pc52
ṁ

r 2
~6!

4pr524ppr5
m8

r 2
~7!

8pp'52
m9

r
, ~8!

wherec is the energy density of the Vaidya radiation,r is
the string fluid energy density andpr andp' the string fluid
thermodynamic radial and tangential pressures respectiv

In addition to the field equations~6!–~8! they also as-
sumed that the densityr satisfied the diffusion equation

ṙ5
D
r 2

]

]r S r 2
]r

]r D , ~9!

whereD is the positive coefficient of self-diffusion. Manipu
lating Eqs.~6!–~9! they concluded that, once a solution
the linear PDE~9! was obtained, the mass function could
found by integrating Eq.~7! and

ṁ54pDr 2
]r

]r
. ~10!

They presented a few solutions of Eq.~9! and determined the
corresponding expressions form.

Equation ~10! is a result of the integrability condition
taking Eqs.~6!, ~7! and ~9! into account. However, it would
seem that an additive function ofu was omitted in Eq.~10!
which should be written as~see Appendix!

ṁ54pDr 2
]r

]r
1k~u!. ~11!

However, in our calculations, we will still use Eq.~10! and
merely add on an arbitraryk(u).

We observe that Eq.~9! can be transformed to the he
equation with a nonconstant diffusion coefficient if we s
R521/r . Thus all the known solutions to the heat equati
can be applied in this setting.

It is easy to see that, whenr5R(r )U(u) we obtain

r5eulS C1

erAl/Dr
1

C2erAl/D

2rAl

D
D , ~12!

whereC1 andC2 are constants andl is the separation con
stant. This leads to the following mass function:
02403
y.

t

m~u,r !5
24Deul2rAl/DpC1

l
2

4Deul2rAl/DprAl

DC1

l

1
2Deul1rAl/DprC2

l
2

2D 2eul1rAlDpAl

DC2

l2
.

~13!

If we require thatr5R(r )1U(u) then

r5C01lu1
C1

r
1

lr 2

6D ~14!

with corresponding mass function

m~u,r !5
2pr 5l

15D 24DpuC1

1
2pr 2@2r ~ul1C0!13C1#

3
1C2 . ~15!

If we let

M ~u!524DpC1u ~16!

be the Vaidya mass and note that the 4pC0r 3/3 term makes
a contribution similar to the cosmological constant, we c
define

S~u,r !5
2pr 5l

15D 1
2pr 2~2lru13C1!

3
1C2 ~17!

as a mass contribution from the string fluid. We note th
bothS(u) andM (u) have a term involvingC1. Thus, in this
model, it is not possible to separate the Vaidya mass from
string mass. This is a result of the relationships~7! and~10!
which are a consequence of Eq.~9!.

We note that, if we require the string to behave like
perfect fluid, then we must havepr5p'5p and sop52r
remains as the equation of state for the string fluid. Us
Eqs.~7! and ~8!, this means that

rm922m850 ~18!

whence

m5F~u!r 31G~u!. ~19!

If we further impose Eq.~9!, we have thatF(u)5F0, a
constant and the resulting part of the mass function, i.e.F0r 3

is a cosmological constant term—the metric is Vaidya–
Sitter ~see@8# for a discussion of the CCC in this context!. In
the resulting discussion, we will assume that the fluid is
isotropic.

III. NATURE OF THE COLLAPSE

The geodesic equations~taking the null conditionKaKa
into account, whereKa5dxa/dk is the tangent vector of a
4-2
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geodesic! for the metric~1! are

d2u

dk2
1

m2m8r

r 2 S du

dkD 2

50 ~20!

d2r

dk2
2

ṁ

r S du

dkD 2

50. ~21!

To investigate the structure of the collapse we need to c
sider the radial null geodesics defined by ds250 taking ḟ

5 u̇50 into account. For Eq.~1! the radial null geodesics
must satisfy the null condition

du

dr
52

2

12
2m~u,r !

r

. ~22!

However, we recall that the coordinateu is a retardedtime
coordinate. In most examples in the literature, anadvanced
time coordinate is used. In order to compare our results w
those usually found in the literature we need to setu→2u in
Eq. ~22! and obtain

du

dr
5

2

12
2m~2u,r !

r

. ~23!

For appropriate forms ofm, this equation will have a singu
larity at r→0,u→0. In order to classify the radial and non
radial outgoing nonspacelike geodesics terminating at
singularity in the past, we need to consider the limiting v
ues ofX5u/r along a singular geodesic as the singularity
approached@1#. Thus, for the geodetic tangent to exi
uniquely at this point we must have that

X05 lim
u→0r→0

u

r
5 lim

u→0r→0

du

dr
5 lim

u→0r→0

2

12
2m~2u,r !

r

.

~24!

Thus the crucial aspect of metric~1! that dictates the natur
of the collapse is, as expected, the mass functionm.

We note thatr5r0, a constant, is a solution of Eq.~9!.
The corresponding mass function ism(u,r )5m0
14pr0r 3/3. For this form ofm, we have

X05 lim
u→0r→0

2

12
2m018pr0r 3/3

r

5
2

12 lim
r→0

2m0

r

50.

~25!

Since there is no real, positiveX0, there is no nonspacelik
geodesic emanating from the singularity and so the singu
ity is not visible to any observer. However, this is not
realistic model asm is independent of time and so the mod
is static. The reason we comment on this form ofm is to
show that any constant part ofm will result in a black hole.
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As a result in our further analysis of the structure of t
collapse we will always setm050.

Let us consider solution~13!. It is clear from that solution
that, asr ,u→0, we havem→k, a constant and so, from Eq
~25! that a black hole forms.

In the case of Eq.~15! ~with C250) we observe that Eq
~24! reduces to

X05
2

128pDC1X0
~26!

from which we obtain

X05a65
16A1264C1pD

16C1pD . ~27!

If we defined58C1pD we can rewrite Eq.~27! as

X05a65
16A128d

2d
. ~28!

In order for real positive solutions in Eq.~28! to exist we
must have that

d<
1

8
. ~29!

This is exactly the same form ofX0 ~and restriction! obtained
by Dwivedi and Joshi@9# and Wagh and Maharaj@8#. That
the similarity arises should not be of any surprise. It is cle
that, if one is dealing with a mass function that is of the fo
lu1F(u,r ) whereF(u,r )/r is polynomial inr and/oru ~of
degree at least one!, then the only contribution to the cond
tion for the existence of a time-like geodesic emanating fr
the singularity is fromlu, the Vaidya mass. Indeed, this
the reason that asymptotic flatness is not essential for
existence of a locally naked singularity, a conclusion fi
obtained in@8#.

IV. STRENGTH OF THE SINGULARITY

The main importance of determining the strength of t
singularity is due to the fact that the CCC does not need
rule out the possibility of the occurrence of weak naked s
gularities@10#. This arises as one may continue the geome
of a weak naked singularity through the singularity to ma
it geodesically complete@11,12# ~see also@10#!.

In order to determine the strength of the singularity w
utilize the ideas of Nolan@10# as explained in@13#. Thus, for
a weak singularity, we require

dr

dk
;d0 ⇒r;d0k. ~30!

Using the definition

X05 lim
u→0r→0

u

r
5 lim

u→0r→0

du

dr
~31!

we have, asymptotically,
4-3
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du

dk
;d0X0 ⇒u;d0X0k. ~32!

The geodesic equation~20! then becomes

d2u

dk2
;

2X0
2pd0

15kD ~4ld0
4k4120d0

3k3dX0l120d0
2k2DC0

115d0kDC1130d2X0C1! ~33!

which is of O(k)21 and so is inconsistent with Eq.~32!.
th
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Thus the singularity is gravitationally strong in the sense
Tipler @14#.

The Kretschmann scalarK5RabcdR
abcd for Eq. ~1! is

given by

K5
4

r 6
@~m9!224m9m8r 314mm9r 218~m8!2r 2

216mm8r 112m2#. ~34!

If we utilize the mass function~15!, Eq. ~34! evaluates to
K5
64p2

225D 2r 6
~1200r 6D 2ulC01600r 6D 2u2l21900r 5D 2C0C11300r 8l2Du1300r 8lDC01150r 7lDC1

12700D 4u2C1
21720r 5lD 2uC11600r 6D 2C0

21450r 4D 2C1
2153r 10l2!
the
p-

to

ces

e
f
lly
which clearly diverges at the naked singularity. Hence
singularity is a scalar polynomial singularity.

The Ricci scalar for Eq.~1! is given by

R5
22

r 2
~m9r 12m8! ~35!

which, in the case of Eq.~15! evaluates to

R5
28p

Dr
~r 3l14Drul14DrC013DC1! ~36!

and also diverges at the naked singularity.

V. RICCI FLAT SPACETIMES

It is clear from Eq.~35! that none of the solutions pre
sented above covers the case of Ricci flat spacetimes. I
relax the requirement that the string diffuses@i.e. we do not
impose Eq.~9!# we can now consider the case ofR50.
From Eq.~35! this means that the mass function must ta
on the form

m~u,r !5M̄ ~u!1
S̄~u!

r
, ~37!

where we can again interpretM̄ (u) as the Vaidya mass an
S̄(u) as the mass contribution from the matter content. Fo
ing the spacetime to be Ricci flat requires the matter con
to obey the~incoherent! radiation fluid equation of state, i.e

p[
pr12p'

3
52

pr

3
5

r

3
~38!

from Eqs.~7! and~8!. Thus if we begin with a metric of the
form ~1! @together with an energy-momentum tensor of t
e

e

e

-
nt

form ~5!# and require it to be Ricci flat, then, as expected,
fluid must satisfy Eq.~38!. These spacetimes must be asym
totically flat via Eq.~37!.

To proceed further, we must assume some form forM̄ (u)

and S̄(u). Given the interpretation above, it makes sense

assume thatM̄ (u)52au. In order forS̄(u) to contribute to
the existence~or otherwise! of a naked singularity, it must be

of O(u)2. Thus we setS̄(u)5bu2. The null condition~23!
now becomes

du

dr
5

2

12
2au12bu2/r

r

. ~39!

This equation has a singularity atr→0,u→0. The condition
for a geodetic tangent to exist uniquely at this point redu
to

X05 lim
u→0r→0

u

r
5 lim

u→0r→0

du

dr
5 lim

u→0r→0

2

12
2au12bu2/r

r

5
2

122aX022bX0
2

. ~40!

This cubic equation inX0 has~at least! one real positive root
provided that, fora.0, b,0. This can be seen from th
numerical results@15# given in Table I. Thus, in the case o
Ricci flat spacetimes, we also have the possibility of a loca
naked singularity.
4-4
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As above, we investigate the strength of the naked sin
larity. Taking Eqs.~30! and~32! into account, Eq.~20! @with
Eq. ~37! and the assumed forms ofM̄ (u) andS̄(u)] becomes

d2u

dk2
;

2bX02a

d0k
~41!

which is inconsistent with Eq.~32! and so this singularity is
also gravitationally strong.

For Ricci flat spacetimes, the Kretschmann scalar~34! is
given by

K5
16

r 8
@14S̄~u!2112S̄~u!M̄ ~u!r 13M̄ ~u!2r 2# ~42!

which, for the assumed forms ofM̄ (u) and S̄(u), evaluates
to

K5
16u2

r 8
~14b2u2212baur13a2r 2!. ~43!

Clearly Eq. ~43! diverges at the naked singularity. As e
pected, we have a scalar polynomial singularity.

VI. DISCUSSION

We have presented a scenario for the gravitational
lapse of a string fluid together with Vaidya null radiation
which the end state becomes a naked singularity. We h
also investigated the collapse of Ricci flat spacetimes. S
collapse can also give rise to naked singularities. Both s
narios provided naked singularities which were gravitatio
ally strong and, as expected, were scalar polynomial sin
larities. These are two more in the long list of examples t
proliferate the literature and should serve to tighten fut
formulations of the CCC.

We comment briefly on our results and those of Gho
and Dadhich @13#. The metrics ~apart from a signature
change and change of sign of time coordinate! are similar. As
a result, the Einstein field equations also reduce to Eqs.~6!–
~8! ~though theirp represents isotropic pressure!. However,
in their model, Ghosh and Dadhich@13# interpret the matter

TABLE I. Positive numerical solutions to Eq.~40! for specific
forms of a51.0 andb.

b X0

21 1.35321
20.9 1.42537
20.8 1.51454
20.7 1.62861
20.6 1.78145
20.5 2.0
20.4 2.3436
20.3 2.96715
20.2 4.3797
20.1 9.1457
02403
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content as strange quark matter. Thus, whilec is still the
radiation density, theirp andr refer to strange quark matte
thermodynamic pressure and energy density respectively
a result of that interpretation, they impose an equation
state relatingp to r:

p5
1

n
~r24B!, ~44!

whereB is the bag constant~which is a generalization of the
equation of state in@16#!. This differential equation can be
treated as an ODE and the general solution was presente
@13#.

Here, following Glass and Krisch@5#, the matter content
has been interpreted as a string fluid which diffuses like po
particle diffusion where the number density,n, diffuses from
higher numbers to lower according to Eq.~9! @note, we have
used the fact thatr5Msn, Ms a constant, to obtain Eq.~9!#.
The string equation of state is always satisfied as a resu
the energy-momentum tensor~5!. As a result, the solutions
presented here~and in@5#! will not coincide with those found
in @13#.

That other interpretations of the metric~1! together with
Eq. ~5! are possible is evident from the case of Ricci fl
collapse investigated in Sec. V. Indeed, this case is of c
siderable importance as the matter content satisfiesboth the
string equation of statepr52r and the~incoherent! radia-
tion fluid equation of statep5r/3 @see Eq.~38!#. Thus the
matter content is a two-fluid, in addition to the Vaidya nu
~pure! radiation. We have shown that a naked singularity c
arise in this scenario. In@17# it was shown that a naked
singularity only forms if the ratio of pressure to density w
less than21/3. Here, we have shown that a naked singul
ity can exist outside this range, i.e. for a ratio of 1/3. W
conclude that it is the presence of the string matter that c
tributes to the occurrence of the locally naked singularity

As observed in Sec. II, an arbitrary function ofu, k(u)
say, can be added to the mass functionm. This additive func-
tion of u can be seen as a further contribution from the str
massS. However, unless it is linear inu, it would not con-
tribute to the condition~29! and even then, would only serv
to redefined.

We note that the usual manner in which the existence
naked singularity is presented is to show that the singula
forms before the event horizon forms. Interestingly, it h
been shown that, for some models, an apparent horizon
not form at all@18–20# ~see also@21#!.
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APPENDIX: INTEGRABILITY CONDITIONS
FOR m„u,r …

Here we consider the derivation of Eq.~10!. Differentiat-
ing Eqs. ~6! and ~7! with respect tor and u respectively
results in

ṁ8524p~r 2c!8 ~A1!

ṁ854pr 2ṙ. ~A2!

Thus

2~r 2c!85r 2ṙ. ~A3!

However, Eq.~9! yields
y

f

-

e,

02403
r 2ṙ5D ]

]r S r 2
]r

]r D . ~A4!

Thus, from Eqs.~A1!, ~A3! and ~A4! we have

2~r 2c!85
ṁ8

4p
5D ]

]r S r 2
]r

]r D ~A5!

whence

ṁ854pD ]

]r S r 2
]r

]r D . ~A6!

Glass and Krisch@5# presumably integrated this equation
obtain Eq.~10!. However, since this is a PDE, the integratio
should yield Eq.~11!.
lass.
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