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Effective gravitational equations on a brane world with induced gravity
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We present the effective equations to describe the four-dimensional gravity of a brane world, assuming that
a five-dimensional bulk spacetime satisfies the Einstein equations and gravity is confined on theZ2 symmetric
brane. Applying this formalism, we study the induced-gravity brane model first proposed by Dvali, Gabadadze,
and Porrati. In a generalization of their model, we show that an effective cosmological constant on the brane
can be extremely reduced in contrast with the case of the Randall-Sundrum model even if a bulk cosmological
constant and a brane tension are not fine tuned.
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I. INTRODUCTION

There has been tremendous interest over the last se
years in this brane world scenario. String theory predict
boundary layer, abrane, on which edges of open string
stand@1#. The existence of such natural boundaries sugg
a new perspective in cosmology: a brane world scenario;
is, we are living in a three-dimensional~3D! hypersurface in
a higher-dimensional spacetime@2#. In contrast with the
original Kaluza-Klein picture in which we live in four
dimensional~4D! spacetime with extra compactified ‘‘inter
nal space,’’ our world view appears to be changed co
pletely. Particles in the standard model are expected to
confined to the brane, whereas the gravitons propagate in
entire bulk spacetime. This gives an interesting feature in
brane world, because TeV gravity might be realistic an
quantum gravity effect could be observed by a ne
generation particle collider@3#. Randall and Sundrum~RS!
also proposed two new mechanisms@4#: one may provide us
with a resolution of the hierarchy problem by a small ex
dimension, and the other is an alternative compactificatio
extra dimensions. In the second model, they showed tha
Newtonian gravity is recovered at low energies, beca
gravity is confined in a single positive-tension brane eve
the extra dimension is not compact.

If the brane world is real, one may find some evidence
higher dimensions in strong gravity phenomena. Here
shall study some classes of the brane models, in which g
ity is confined on the brane as the Randall-Sundrum sec
model. Assuming that a spacetime is five-dimensional~5D!,
we first derive the effective ‘‘Einstein equations’’ for the 4
brane metric obtained by projecting the 5D metric onto
brane world@5–8#. The gravitational action on the bran
which may be induced via quantum effects of matter fiel
could be arbitrary in the present approach. This appro
yields the most general form of the 4D gravitational fie
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equations for a brane world observer whatever the form
the bulk metric, in contrast with the usual Kaluza-Klein-typ
dimensional reduction which relies on taking a particu
form for the bulk metric in order to integrate over the ext
dimensions. The price to be paid for such generality is t
the brane world observer may be subject to influences fr
the bulk, which are not constrained by local quantities, i
the set of 4D equations does not in general form a clo
system. Nonetheless, when the brane is located at an orb
fixed point underZ2 symmetry the energy-momentum tens
on the brane is sufficient to determine the extrinsic curvat
of the brane, and together with the local induced metric, t
strongly constrains the brane world gravity. In particular
Friedmann equation for an isotropic and homogeneous b
universe is completely determined up to an integration c
stant. As a concrete example, we apply our formalism to
induced gravity brane model proposed by Dvali, Gabadad
and Porrati@9#, and show how we obtain the acceleratin
universe at low energy scale without a cosmological cons
~or a quintessential potential!. For this model, many author
discussed the geometrical aspects@10–14# as well as cosmol-
ogy @15–17#. Generalizing their model to the case with
bulk cosmological constant and a tension of the brane
assuming the energy scale of the tension is much larger
the 5D Planck mass, we show that the effective cosmolog
constant on the brane is extremely reduced in contrast to
RS model even if the cosmological constant and the tens
are not fine tuned.

II. THE EFFECTIVE GRAVITATIONAL EQUATIONS
IN A BRANE SCENARIO

We consider a 5D bulk spacetime with a single 4D bra
on which gravity is confined, and derive the effective 4
gravitational equations. Suppose that the 4D brane (M ,gmn)
is located at a hypersurface@B(XA)50# in the 5D bulk
©2003 The American Physical Society33-1
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spacetime (M, (5)gAB), of which coordinates are describe
by XA (A50,1,2,3,5). We assume the most generic act
for the brane world, although the simple Einstein-Hilbert a
tion is adopted in the 5D spacetime. The action discus
here is then

S5Sbulk1Sbrane, ~2.1!

where

Sbulk5E
M

d5XA2 ~5!gF 1

2k5
2

~5!R1 ~5!LmG , ~2.2!

and

Sbrane5E
M

d4xA2gF 1

k5
2 K61Lbrane~gab ,c!G . ~2.3!

k5
2 is the 5D gravitational constant,(5)R and (5)Lm are the

5D scalar curvature and the matter Lagrangian in the b
respectively.xm (m50,1,2,3) are the induced 4D coordinat
on the brane,K6 is the trace of extrinsic curvature on eith
side of the brane@18,19#, andLbrane(gab ,c) is the effective
4D Lagrangian, which is given by a generic functional of t
brane metricgab and matter fieldsc.

The 5D Einstein equations in the bulk are

~5!GAB5k5
2@ ~5!TAB1tABd~B!#, ~2.4!

where

~5!TAB[22
d~5!Lm

d~5!gAB 1 ~5!gAB
~5!Lm ~2.5!

is the energy-momentum tensor of bulk matter fields, wh
tmn is the ‘‘effective’’ energy-momentum tensor localized o
the brane which is defined by

tmn[22
dLbrane

dgmn 1gmnLbrane. ~2.6!

Thed~B! denotes the localization of brane contributions. W
would stress thattmn usually contains curvature contribu
tions from induced gravity. In that term, we can also inclu
‘‘nonlocal’’ contributions such as a trace anomaly@20,21#,
although those contributions are not directly derived fro
the effective LagrangianLbrane.

The basic equations in the brane world are obtained
projection of the variables onto the brane world, because
assume that the gravity on the brane is confined. The indu
4D metric isgAB5 (5)gAB2nAnB , wherenA is the spacelike
unit-vector field normal to the brane hypersurfaceM.

Following Ref. @5#, in which we have just to replace a
ordinary energy-momentum tensortmn with a new one
@8,11#, we obtain the gravitational equations on the bra
world as
02403
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Gmn5
2k5

2

3 F ~5!TRSgm
Rgn

S1gmnS ~5!TRSn
RnS2

1

4
~5!TD G

1k5
4pmn2Emn , ~2.7!

Dntm
n 522 ~5!TRSn

Rgm
S , ~2.8!

where

pmn52
1

4
tmatn

a1
1

12
ttmn1

1

8
gmntabtab2

1

24
gmnt2

~2.9!

and

Emn5 ~5!CMRNSn
MnNgm

Rgn
S . ~2.10!

Equations~2.7!–~2.9! give the effective gravity theory on
the brane. These are formally the same as those in Ref.@5#.
In fact, if the brane LagrangianLbrane contains only matter
fieldsc, tmn is just the energy-momentum tensor of the m
ter fields, and then the gravity is described by the 4D E
stein tensor in Eq.~2.7! @5#. Then we recover the Einstei
gravitational theory in the 4D brane world. IfLbraneincludes,
however, some additional contributions of gravity such as
induced gravity on the brane, the effective energ
momentum tensortmn gives modification of gravitational in-
teraction in the effective theory.

III. DVALI-GABADADZE-PORRATI-TYPE MODELS

We study the case with an induced gravity on the bra
due to quantum corrections. If we take into account quant
effects of matter fields confined on the brane, the grav
tional action on the brane will be modified. Here we sh
discuss a brane world model proposed by Dvali, Gabada
and Porrati@9#. The interaction between bulk gravity and th
matter on the brane induces gravity on the brane through
quantum effect. Their model based on this brane-indu
gravity could be interesting because, phenomenologica
4D Newtonian gravity on a brane world is recovered at h
energy scale, whereas 5D gravity emerges at low ene
scale.

We then consider the brane Lagrangian

Lbrane5
m2

2
R2l1Lm , ~3.1!

wherem is a mass scale which may correspond to the
Planck mass. We also assume that the 5D bulk space incl
only a cosmological constant(5)L. It is just a generalized
version of the Dvali-Gabadadze-Porrati model, which is o
tained by settingl50 as well as(5)L50 ~see also the dis-
cussion by Tanaka@22#!.

A. Effective gravitational equations

In order to find the basic equations on the brane, we
calculate the ‘‘energy-momentum’’ tensor of the branetmn

by the definition~2.6! from the Lagrangian~3.1!
3-2
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tn
m52ldn

m1Tn
m2m2Gn

m . ~3.2!

Inserting this equation into Eq.~2.7!, we find the effective
equations for 4D metricgmn as

S 11
l

6
k5

4m2DGmn1k5
4m2Kmnrs~Tab!Grs1Lgmn

5
l

6
k5

4Tmn1k5
4@pmn

~T!1m4pmn
~G!#2Emn , ~3.3!

where

Kmnrs5
1

4
~gmnTrs2gmrTns2gnsTmr!

1
1

12
@Tmngrs1T~gmrgns2gmngrs!#, ~3.4!

L5
1

2 F ~5!L1
1

6
k5

4l2G , ~3.5!

pmn
~T!52

1

4
TmaTn

a1
1

12
TTmn1

1

8
gmnTabTab

2
1

24
gmnT2, ~3.6!

pmn
~G!52

1

4
GmaGn

a1
1

12
GGmn1

1

8
gmnGabGab

2
1

24
gmnG2. ~3.7!

The Codazzi equation is nowDntmn50, which implies the
energy momentum conservation, i.e.,

DnTmn50, ~3.8!

because of the Bianchi identity.
First we discuss the vacuum case,Tmn50. AssumingL

50 andEmn50, we find

S 11
l

6
k5

4m2DGmn5k5
4m4pmn

~G! . ~3.9!

If the spacetime is maximally symmetric, settingRmn

5 1
4 Rgmn (RÞ0), we obtain

R5
8r0

m2 , ~3.10!

where

r05ml
416

m5
6

m2 , ~3.11!

with two mass scales;ml5l1/4 andm55k5
22/3. Introducing

the scale lengthLDS5A12/R, we find
02403
HDS[LDS
215

1

m
A2r0

3
. ~3.12!

This HDS gives the Hubble parameter of late time infl
tion without a cosmological constant, which was shown
Dvali et al. in the case ofml50 and (5)L50, i.e., HDS

52m5
3/m2 or equivalentlyLeff512m5

6/m4 @9#.

B. Friedmann-Robertson-Walker universe

Now we discuss the Friedmann-Robertson-Walker u
verse with a perfect fluid. Since the spacetime is isotro
and homogeneous, we can showDnpmn50 following @5#,
which implies

DnEmn50. ~3.13!

The basic equations~2.7! are

G0
052

1

2
~5!L1k5

4p0
02E0

0, ~3.14!

Gj
i 52

1

2
~5!Ld j

i 1k5
4p j

i 2Ej
i , ~3.15!

where

G0
0523S H21

k

a2D ,

Gj
i 52S 2Ḣ13H21

k

a2D d j
i , ~3.16!

and

p0
052

1

12
~t0

0!2,

p j
i 5

1

12
t0

0~t0
022t1

1!d j
i , ~3.17!

with

t0
052~l1r!2m2G0

0, ~3.18!

t j
i 5~P2l!d j

i 2m2Gj
i . ~3.19!

Equations~3.14! and ~3.15! are written as

3X5
1

2
~5!L1E0

01
k5

4

12
~l1r23m2X!2, ~3.20!

F11
k5

4

6
m2~l1r23m2X!GY

52
2

3
E0

02
k5

4

12
~r1P!~l1r23m2X!, ~3.21!

where
3-3
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X5H21
k

a2 ,

Y5Ḣ2
k

a2 . ~3.22!

From Eq.~3.13!, we find the equation forE0
0 as

Ė0
014HE0

050. ~3.23!

This equation, which is the same as the dark radiation in
case of the RS model@5#, is easily integrated as

E0
05

E0

a4 , ~3.24!

whereE0 is just an integration constant.
We now have to solve one equation~3.20!, which is a

quadratic equation with respect toX and then rewritten as

H21
k

a2 5
1

3m2 $r1r0@11eA~r,a!#%, ~3.25!

wheree denotes either11 or 21. A is defined by

A[FA0
21

2h

r0
S r2m2

E0

a4 D G1/2

, ~3.26!

where

A05A122h
m2L

r0
, ~3.27!

h5
6m5

6

r0m2 ~0,h<1!. ~3.28!

This is just the Friedmann equation of our model. SinceA
does not vanish in a generic situation, the sign ofe is deter-
mined by the initial condition of the universe. The choice
the sign ofe also has a geometrical meaning as shown
Deffayet, who analized the present model by embeddin
brane in the 5D bulk spacetime@15#.

C. Effective Friedmann equations

To understand the behaviors of the Dvaliet al.’s cosmo-
logical model, we rewrite the basic equation~3.25! in the
form of the conventional Friedmann equation as

H21
k

a2 5
1

3
Leff

~e!1
8pGeff

~e!

3
~r1rDR

~e! !, ~3.29!

where
02403
e

f
y
a

Leff
~e!5

r0

m2 ~11eA0!,

8pGeff
~e!5

1

m2 @11eF~r,a!#,

8pGeff
~e!rDR

~e!52eF~r,a!
E0

a4 , ~3.30!

with

F~r,a!5
2h

A01A~r,a!
. ~3.31!

Using the above expression, we may discuss the evolu
of the universe.Leff

(e) acts as a cosmological constant in ea
branch. The effective gravitational ‘‘constant’’Geff

(e) and the
energy density of ‘‘dark energy’’rDR

(e) change in the history of
the universe. To show them explicitly, we first give th
asymptotic behaviors ofA(r,a) andF(r,a), which are eas-
ily obtained as

A~r,a!→A2h

r0
S r2m2

E0

a4 D→`,

F~r,a!→ 2h

A~r,a!
→0,

as r→` and a→0, ~3.32!

and

A~r,a!→A0 , F~r,a!→ h

A0
,

as r→0 and a→`. ~3.33!

We then obtain the evolution ofGeff
(e) as follows: Asr

decreases from̀ to zero ~and a increases from 0 tò !,
8pGeff

(e) changes as

8pGeff
~e! :

1

m2 → 1

m2 S 11
eh

A0
D . ~3.34!

The ‘‘effective’’ gravitational constant changes in time.
particular, in the negative branch (e521), if h.hcr ,
where

hcr[2m2
L

r0
1A11S m2

L

r0
D 2

, ~3.35!

Geff
(2) vanishes at some density and becomes negative be

that density. In this case,h<1 implies hcr,1, which re-
quiresL.0.

The expansion of the universe first slows down after t
critical point, and then approaches some constant given
Leff

(2)(.0). This cosmological model could be interesting b
cause the expansion gets slow in some period of the univ
3-4
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and then it might help structure formation process. Note t
although the effective gravitational constant in the Frie
mann equation becomes negative now, it does not nai
mean the Newtonian gravitational constant is negative.
need further analysis to check it.

As for rDR
(e) , we naively obtain that

8pGeff
~e!rDR

~e! : 0→C~e!
E0

a4 , ~3.36!

whereC(e)52eh/A0 . We need, however, further analysis
the high-density limit~and in the limit ofa50) ~see Sec.
III D !.

Equation~3.21! is also rewritten as

Ḣ2
k

a2 52
1

2m2 ~P1r!F11
eh

A~r,a!G1
2eh

3A~r,a!

E0

a4 .

~3.37!

Assuming the equation of state of the matter fluid is given
the adiabatic indexg as

P5~g21!r, ~3.38!

and writing Eq.~3.37! in the conventional form as

Ḣ2
k

a2 524pGeff
~e!~geff

~e!r1gDRrDR
~e! !, ~3.39!

where

geff
~e!5gF12

eh~r2m2E0 /a4!F~r,a!

r0A~r,a!@A~r,a!1A012eh#G ,
gDR5

2

3 F11
A0

A~r,a!G , ~3.40!

we can define the effective adiabatic index of matter fl
(geff

(e)) and that of dark radiation (gDR). Note that the right-
hand side of the conventional Friedmann equation with
above equation of state~3.38! is given by24pGgr.

We easily find the behavior of the effective adiabatic
dexesgeff

(e) whenr ~or 1/a) changes from̀ to 0 as follows:
For the positive branch (e511),

geff
~1 ! :g↘gmin~h!↗g, ~3.41!

@see Fig. 1~a!#. This behavior is interesting because the ‘‘e
fective’’ negative pressure (geff

(1),1) can be obtained during
the evolution of the universe from standard matter fluid su
as dust (g51).

As for the negative branch (e521), it is a little compli-
cated@see Fig. 1~b!#. If h,hcr , asr ~or 1/a) decreases from
` to 0,

geff
~2 ! :g↗gmax~h!↘g, ~3.42!

while, for h5hcr ~which requiresL>0),

g ↗ 2g. ~3.43!
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If h.hcr ~which requiresL.0),

geff
~2 ! :g↗1`,2`↗g. ~3.44!

Here gmin and gmax depend onh, but 2g>gmax.g.gmin
>g/2>0. gmin5g/2 is found whenA050, whilegmax52g is
obtained in the limit ofh5hcr .

In Eq. ~3.44!, althoughgeff
(2) diverges at some density, Eq

~3.39! is not singular becauseGeff
(2) vanishes at the same den

sity. Whengeff
(2) vanishes, which always occurs below th

density, H reaches a minimum value~if there is no dark
radiation andk50), and then it increases to some consta
as we discussed above.

As for dark radiation, the adiabatic indexgDR does not
depend on the branch and changes from 2/3 to 4/3 wher
changes as̀ →0. This means that in the early stage of t
universe, the dark radiation does not behave as ‘‘radiati
but as a ‘‘curvature’’ term~see below!.

FIG. 1. The schematic behavior ofgeff
(6) . On the top~a! we show

one typical example for the positive branch (e511), while, on the
bottom ~b!, we depict the figures for the negative bran
(e521) in the following three typical cases:~1! h,hcr , ~2! h
5hcr , and ~3! h.hcr . For an expanding universe, the univer
evolves from the right-hand side to the left-hand side in the figu
3-5
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Next we discuss the dynamics of the universe in e
limit separately.

D. High density limit

In the high density limit, we assume thata→0 as well as
r@r0 . In this limit, we find

8pGeff
~e!r'

1

m2 S 11e
2h

A D r,

8pGeff
~e!rDR

~e!'2e
2h

A
E0

a4 , ~3.45!

and then we obtain from Eq.~3.29!

H21
k

a2 '
1

3m2 Fr1er0A2h

r0
S r2m2

E0

a4 D G . ~3.46!

From the energy-momentum conservation of a perfect flu
we haver}a23g. We then classify the behavior of the ear
universe into three cases.

~1! g>4/3. This universe is the same as that in the c
ventional Einstein gravity, i.e.,a}t2/3g.

~2! 2/3,g,4/3. Since the dark radiation term inside
the square root in Eq.~3.46! becomes dominant in the limi
of a→0, E0<0 is required. However, the linear density ter
dominates the dark radiation. As a result, we again find
same expansion law as that in the conventional Eins
gravity (a}t2/3g). If E0.0, we may find a singularity at a
finite scale factor.

~3! 0<g<2/3. In this case,E0,0 is required, otherwise
the universe evolves into a singularity with a finite value
scale factor. IfE0,0 the dark radiation term gives the large
contribution on the right-hand side of Eq.~3.46!, which is
similar to the curvature term. Then we find that Eq.~3.46! is
reduced to

H21
k̃

a2 '
r

3m2 , ~3.47!

where

k̃5k2e
2m5

3

)m2
AuE0u. ~3.48!

This gives the conventional inflationary solution. Forg50,
settingH̃05Ar/(3m2), we find the exponential expansion

a55
Ak̃

H̃0

cosh@H̃0t# ~ for k̃.0!

a0 exp@H̃0t# ~ for k̃50!

Auk̃u

H̃0

sinh@H̃0t# ~ for k̃,0!.

~3.49!
02403
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We then obtain a nonsingular universe even fork521 in the
case of the e521 branch, if uE0u is large enough
@ uE0u.3m4/(4m5

6)#. We find a tendency of singularity
avoidance with a negative dark radiation term, which w
also obtained in the RS model@8#.

E. Low energy limit

Next we consider the low density limit, i.e.,r!r0 and
a→`. In this limit, Eq. ~3.29! is approximated as

H21
k

a2 '
1

3 FLeff
~e!18pGN

~e!r1C~e!
E0

a4 G , ~3.50!

where

8pGN
~e!5

1

m2 F11e
h

A0
G , ~3.51!

C~e!52e
h

A0
. ~3.52!

We discuss two branches separately.
~1! The positive branch (e51). Since Leff

(1)5r0(1
1A0)/m2(.0), we find an inflationary expansion in the la
stage of the universe. The Hubble expansion parameterH0 is
given by H05ALeff

(1)/3. Since the inside of the square ro
must be positive, it requires thatL,r0

2/(12m5
6). The case of

L50 corresponds to the original model of Dvaliet al.
The present gravitational constant in the Friedmann eq

tion, which is given by 8pGN
(1) , becomes larger than that i

the early stage (1/m2).
~2! The negative branch (e521). In this case, ifL50,

we have a zero cosmological constant (Leff
(2)50) on the

brane. The basic equation is now

H21
k

a2 '
8pGN

~2 !

3
r1

hE0

3a4 , ~3.53!

which is the conventional Friedmann equation with dark
diation. The gravitational constant becomes smaller than
in the early stage.

If 0 ,L<r0
2/(12m5

6), however, we expect a positive co
mological constant on the brane, which could be very sm
Suppose thatl@m5

6/m2(h!1). We then approximate the
cosmological constant in the Friedmann equation as

Leff
~2 !'hL'

6m5
6

lm2 L!L. ~3.54!

This means that the 4D cosmological constant is suppre
in the Friedmann equation from its proper value~L!. Hence,
we might have the possibility to explain the tiny value of t
present cosmological constant, of which the observatio
limit is Leff

(2)/mPL
2 &102120, where mPL(;1018 GeV) is the

four-dimensional Planck mass. In the RS model,L is fine
tuned to zero, but in more realistic brane models such as
Hořava-Witten model, the 4D cosmological constant may
tomatically vanish if a supersymmetry~SUSY! is preserved.
3-6
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EFFECTIVE GRAVITATIONAL EQUATIONS ON A . . . PHYSICAL REVIEW D68, 024033 ~2003!
In the present universe, however, SUSY must be broken,
then we expect that the nonzero value ofL is estimated by
the SUSY breaking scale, which might be 1 TeV. This giv
L/mPL

2 ;(1 TeV/mPD)4;10260.
Then the above constraint is now

S ml

m D 4

*6S m5

m D 6

31060. ~3.55!

In the present approximation, since 8pGN
(2)'1/m2, m

'mPL . Then Eq.~3.55! yields

ml

mPL
*10153S m5

mPL
D 3/2

. ~3.56!

If the equality in Eq.~3.56! is satisfied, then we may explai
the present value of a cosmological constant. Assuming
two mass scales (ml andm5) are larger than the TeV scale a
well as smaller than the Planck scalemPL , we find

1 TeV&m5&108 GeV,

1010 GeV&ml&mPL . ~3.57!

One may speculate how to explain those values as
lows: We have assumed that the Einstein-Hilbert action
the brane appears via quantum effects of matter fields. T
the coupling constantm2 may be proportional to the numbe
of particles. If we considerN54, the U(N) super-Yang-
Mills theory, for example, the number of particles are p
portional to N2. One may setm25aml

2N2, where a is a
numerical constant ofO(1). l may be related to a superpo
tential, of which scale we shall leave to be free. Then,
find ml /mPL;a21/2N21 and m5 /mPL;10210a21/3N22/3.
Hence, if N;105 @21#, we obtain m5;50a21/3 TeV and
ml;1013a21/2 GeV.
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IV. CONCLUSION AND REMARKS

In this paper we present the effective equations to
scribe the 4D gravity of a brane world, assuming that a
bulk spacetime satisfies the Einstein equations and gravi
confined on theZ2 symmetric brane. The brane action ca
include a gravitational contribution which may arise v
quantum effects of matter fields confined on the brane. A
plying this formalism, we study the induced gravity bra
model by Dvali, Gabadadze, and Porrati. We show how
effective cosmological constant appears in this model us
our approach. Generalizing their model to the case wit
bulk cosmological constant and a tension of the brane
assuming the energy scale of the tension is much larger
the 5D Planck mass, we also show that the effective cos
logical constant on the brane is extremely suppressed in
trast to the RS model even if the cosmological constant
the tension are not fine tuned. This might explain the pres
acceleration of the universe. Our results may be modifie
we include a dilaton coupling, which also exist in
superstring/M-theory. This is under investigation.

As for the quantum effects of brane matter fields, w
know that a trace anomaly appears naturally in the 4D br
world @20,21#, which is closely related to AdS/CFT corre
spondence. Those terms were first discussed by Starobi
in his inflationary scenario@23#. We discuss such models in
brane-world scenario in a separate paper@24#.
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