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Effective gravitational equations on a brane world with induced gravity
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We present the effective equations to describe the four-dimensional gravity of a brane world, assuming that
a five-dimensional bulk spacetime satisfies the Einstein equations and gravity is confinedZgrsynemetric
brane. Applying this formalism, we study the induced-gravity brane model first proposed by Dvali, Gabadadze,
and Porrati. In a generalization of their model, we show that an effective cosmological constant on the brane
can be extremely reduced in contrast with the case of the Randall-Sundrum model even if a bulk cosmological
constant and a brane tension are not fine tuned.
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[. INTRODUCTION equations for a brane world observer whatever the form of

the bulk metric, in contrast with the usual Kaluza-Klein-type

There has been tremendous interest over the last sever@dimensional reduction which relies on taking a particular
years in this brane world scenario. String theory predicts dorm for the bulk metric in order to integrate over the extra
boundary layer, abrane on which edges of open strings dimensions. The price to be paid for such generality is that
stand[1]. The existence of such natural boundaries suggestéi¢ brane world observer may be subject to influences from
a new perspective in cosmology: a brane world scenario; thdf'® bulk, which are not constrained by local quantities, i.e.,

is, we are living in a three-dimensioné@D) hypersurface in the set of 4D equations does not in general form a cloged
a higher-dimensional spacetinf@]. In contrast with the system. Nonetheless, when the brane is located at an orbifold

original Kaluza-Klein picture in which we live in four- fixed point undeZ, symmetry the energy-momentum tensor
dimensional(4D) spacetime with extra compactified “inter- ON the brane is sufficient to determine the extrinsic curvature
nal space,” our world view appears to be changed comOf the brane, and together with the local induced metric, this
pletely. Particles in the standard model are expected to berongly constrains the brane world gravity. In particular, a
confined to the brane, whereas the gravitons propagate in tfgiedmann equation for an isotropic and homogeneous brane
entire bulk spacetime. This gives an interesting feature in th¥niverse is completely determined up to an integration con-
brane world, because TeV gravity might be realistic and #t@nt. As a concrete example, we apply our formalism to the
quantum gravity effect could be observed by a next-induced gravity brane model proposed b'y Dvali, Gabadqdze,
generation particle collidef3]. Randall and SundruniRs) ~ @nd Porrati[9], and show how we obtain the accelerating
also proposed two new mechanisfdg one may provide us  Universe at low energy scale without a cosmological constant
with a resolution of the hierarchy problem by a small extra(0r @ quintessential potentjaFor this model, many authors
dimension, and the other is an alternative compactification ofiscussed the geometrical aspgdid—14 as well as cosmol-
extra dimensions. In the second model, they showed that 489Y [15-17. Generalizing their model to the case with a
Newtonian gravity is recovered at low energies, becaus®Ulk cosmological constant and a tension of the brane and

gravity is confined in a single positive-tension brane even i28SSUming the energy scale of the tension is much larger than
the extra dimension is not compact. the 5D Planck mass, we show that the effective cosmological

If the brane world is real, one may find some evidence ofconstant on the brane is extremely reduced in contrast to the
higher dimensions in strong gravity phenomena. Here wd&S model even if the cosmological constant and the tension
shall study some classes of the brane models, in which gra@ not fine tuned.
ity is confined on the brane as the Randall-Sundrum second
modgl. Asspmmg that a spacetime is flve—(j|men5|cﬁ5m), Il. THE EFFECTIVE GRAVITATIONAL EQUATIONS
we first derive the effective “Einstein equations” for the 4D IN A BRANE SCENARIO
brane metric obtained by projecting the 5D metric onto the
brane world[5-8|. The gravitational action on the brane, = We consider a 5D bulk spacetime with a single 4D brane,
which may be induced via quantum effects of matter fieldson which gravity is confined, and derive the effective 4D
could be arbitrary in the present approach. This approacgravitational equations. Suppose that the 4D bravieg(,,)
yields the most general form of the 4D gravitational fieldis located at a hypersurfadeg3(X*)=0] in the 5D bulk
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spacetime M, ®)g,g), of which coordinates are described 2K§ 1
by X (A=0,1,2,35). We assume the most generic action Cnv= 3~ OTregpg5+ gpn| ©'Tren nS— Z@T
for the brane world, although the simple Einstein-Hilbert ac-

tion is adopted in the 5D spacetime. The action discussed +K§77M—EW, 2.7
here is then
D,7,=-2®TranRgs, 2.8
S=Spuit Sprane: (2.1
where
where ) 1 . 1 +1 y )
1 Tyuv= ZT,u.aTV 1_27-7,41.1/ gg,u.VTaBT ﬂg,u.l/T
Shuk= f d5><¢—<5>g[—2<5)R+<5>Lm}, (2.2 2.9
and
and (5) MNoRAS
E..="Curnd) ' N"0,0;. (2.10

. (23 Equations(2.7)—(2.9) give the effective gravity theory on

the brane. These are formally the same as those in[BEf.

In fact, if the brane Lagrangiahy,,,. contains only matter
«% is the 5D gravitational constant?)R and ®)L, are the  fields ¢, 7,,, is just the energy-momentum tensor of the mat-
5D scalar curvature and the matter Lagrangian in the bulkter fields, and then the gravity is described by the 4D Ein-
respectivelyx” (u=0,1,2,3) are the induced 4D coordinates stein tensor in Eq(2.7) [5]. Then we recover the Einstein
on the braneK™ is the trace of extrinsic curvature on either gravitational theory in the 4D brane world.lf, ,cincludes,
side of the bran§18,19, andL.nd{d.p.%) is the effective  however, some additional contributions of gravity such as an
4D Lagrangian, which is given by a generic functional of theinduced gravity on the brane, the effective energy-

1 +
Sorane= fM d*x N Q[F K=+ Lbranégaﬁ )
5

brane metricg,; and matter fields). momentum tensor ,, gives modification of gravitational in-
The 5D Einstein equations in the bulk are teraction in the effective theory.
OVGpp= kO Tag+ Tasd(B)], (2.4 Ill. DVALI-GABADADZE-PORRATI-TYPE MODELS

We study the case with an induced gravity on the brane

where due to quantum corrections. If we take into account quantum
S5 effects of matter fields confined on the brane, the gravita-
(S)TABE_Z—m+(5)gAB 5L (2.5 t|_onal action on the brane will be modified. nge we shall

s®)ghe " discuss a brane world model proposed by Dvali, Gabadadze,

and Porrat{9]. The interaction between bulk gravity and the
is the energy-momentum tensor of bulk matter fields, whilematter on the brane induces gravity on the brane through its
7., is the “effective” energy-momentum tensor localized on quantum effect. Their model based on this brane-induced
the brane which is defined by gravity could be interesting because, phenomenologically,
4D Newtonian gravity on a brane world is recovered at high
SL brane energy scale, whereas 5D gravity emerges at low energy
Tuv= -2 59,4”) +g,uvl-brane- (26) scale.
We then consider the brane Lagrangian

The &) denotes the localization of brane contributions. We u?
would stress thatr,, usually contains curvature contribu- Lprane= 5 R=A+Lp, (3.9

. . . . 2
tions from induced gravity. In that term, we can also include

“nonlocal” contributions such as a trace anomadB0,21,  \here 4 is a mass scale which may correspond to the 4D
although those contributions are not directly derived frompjanck mass. We also assume that the 5D bulk space includes
the effective Lagrangiahprane- only a cosmological constarf®)A. It is just a generalized

The basic equations in the brane world are obtained by,esion of the Dvali-Gabadadze-Porrati model, which is ob-
projection of the variables onto the brane world, because Weined by setting. =0 as well as®A =0 (see also the dis-

assume that the gravity on the brane is confined. The induceq,ssion by Tanakg22]).
4D metric isgag= ®)gag—NaNg, Wheren, is the spacelike
unit-vector field normal to the brane hypersurfade

Following Ref.[5], in which we have just to replace an A. Effective gravitational equations

ordinary energy-momentum tensar,, with a new one In order to find the basic equations on the brane, we just
[8,11], we obtain the gravitational equations on the branecalculate the “energy-momentum” tensor of the br
world as by the definition(2.6) from the Lagrangian3.1)
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(3.2 . 1 [2p
Hps= LD:SL:; 3

Inserting this equation into E@2.7), we find the effective
equations for 4D metrig,,, as

=N+ Th—uGY.
(3.12

This Hpg gives the Hubble parameter of late time infla-
tion without a cosmological constant, which was shown by
Dvali et al. in the case ofm,=0 and ®A=0, i.e., Hps
=2md/ u? or equivalentlyA q=12mg/ u* [9].

A 4 2 4 2 po
1+€K51u G,LLV+ Kgu IC,LLVpa'(Ta,B)G +Ag/.w

KaT ot K[ WLTV) + M47T£LG,,)] —EL, (3.3 B. Friedmann-Robertson-Walker universe

6
Now we discuss the Friedmann-Robertson-Walker uni-

where verse with a perfect fluid. Since the spacetime is isotropic

1
’C,uvp(r: Z (g,uvaU'_ g,upTvo'_ gvo'T,up)

1
+ 1_2[T,u.vgpa'+ T(gp.pg vo g,u.vgpo')]! (34)

1 1
AZE[(S)A‘FEK;‘}\Z , (3.5
1 1
(M_ _ = a, = - a
Ton=" 2 Tua Tt 5T vt g9usTapT™
- =—q,,T? (3.6)
249k’ '
1 1 1
(G _ _ = ay - a
Thn =~ 7GuaCl+ 156684 T 5941CusC P

! G? 3
- ﬂ_g,u.v . ( n
The Codazzi equation is no®"7,,=0, which implies the
energy momentum conservation, i.e.,
D'T,,=0, (3.8
because of the Bianchi identity.

First we discuss the vacuum cadg,,=0. AssumingA
=0 andE,,=0, we find

A
4 2 _ 4 4_(G
1+ G K5k G, = Ksp 775“,).

(3.9

If the spacetime is maximally symmetric, settirg,,
=3Rg,, (R#0), we obtain

8po
R= , 3.1
yha (3.10
where
2
posz\'-i-GF, (3.11)

with two mass scalesn, =\ ** andmg= « 2. Introducing
the scale length.ps= V12/R, we find

and homogeneous, we can sh@i=,,=0 following [5],
which implies

D"E,,=0. (3.13
The basic equation®.7) are
0_ 1 BN + 20— EO
GO__E + k5my— Eq, (3.19
i_ 1 (5) A si 4 i i
where
0_ _ 2,
Go=—3|H?+ |,
Gj=—|2H+3H2+ ;) 5, (3.16
and
1
9= - 75(10)%,
7T}: 1—27'8(78—27%)5} , (3.17
with
r9=—(\+p)— uGg, (3.19
7=(P—\)&— u?G|. (3.19
Equations(3.14 and(3.15 are written as
4
1 0, X5 242
3X=5 FA+EGT S (A +p=3u?X)?, (3.20
K4
1+ gﬂz(mp—s,,LZX) Y
2 K 2
=~ 3B (P PI(A+p=3uX), (321

where
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k o_ Po
X=H*+ 5, Afeﬁ)Z;z(“EAo)’
.k o 1
Y=H—?. (3.22 SWGeﬁZ?[l—Fe]—'(p,a)],
From Eq.(3.13, we find the equation foEQ as o e &
° 87G plsk=—eF(p.2) 7. (3.30
ES+4HES=0. (323 with
This equation, which is the same as the dark radiation in the 27
case of the RS mod¢b], is easily integrated as Flp,a)= AT Apa) (3.3D
b Using the above expression, we may discuss the evolution
E8=a—3, (3.24  of the universeA ) acts as a cosmological constant in each

where&, is just an integration constant.
We now have to solve one equatid®.20, which is a
quadratic equation with respect ¥oand then rewritten as

branch. The effective gravitational “constan@(j and the
energy density of “dark energyp{sk change in the history of
the universe. To show them explicitly, we first give the
asymptotic behaviors ofl(p,a) and F(p,a), which are eas-
ily obtained as

k 1 27 o
H2+;=§z{p+po[1+GA(p,a)]}, (3.29 A(p,a)ﬂ\/E(P—Mzg —®,
where e denotes either-1 or —1. A is defined by 27
T Ao O
5 277 50 1/2
A=| A5+ . p—,u,zg , (3.26 as p— and a—0, (3.32
0
and
where
Y
A(Pua)_)AO- f(Pva)_)Io,
A= \J1-292 5, (3.27
Po as p—0 and a—». (3.33
6 We then obtain the evolution d&{9 as follows: Asp
d .
n= > (0<p=1). (3.29 decr(?ee)lses frome to zero (and a increases from 0 taee),
PoM 87 Ggy changes as

This is just the Friedmann equation of our model. Sinte €7
does not vanish in a generic situation, the sigre &f deter- I)
mined by the initial condition of the universe. The choice of 0
the sign ofe also has a geometrical meaning as shown byrhe “effective” gravitational constant changes in time. In

Deffayet, who analized the present model by embedding darticular, in the negative branche€ —1), if 5> 7.,
brane in the 5D bulk spacetinjé5]. where
A)Z
2__
" po/ '

G{; vanishes at some density and becomes negative below
that density. In this casey<1 implies 7,<1, which re-
quiresA>0.

The expansion of the universe first slows down after this
critical point, and then approaches some constant given by
A (>0). This cosmological model could be interesting be-
cause the expansion gets slow in some period of the universe

T T + . 4)
eff 2 2

C. Effective Friedmann equations

) A
Ner=—p"—+ 1+ (3.35
Po

To understand the behaviors of the Dvalial's cosmo-
logical model, we rewrite the basic equati¢®25 in the
form of the conventional Friedmann equation as

8wGLY

k ff
) T(PJFP(DE%),

a

H2+ — = §Agf>+ (3.29
where
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and then it might help structure formation process. Note that 2
although the effective gravitational constant in the Fried- 18
mann equation becomes negative now, it does not naively ":rtt 16
mean the Newtonian gravitational constant is negative. We 7
need further analysis to check it. L4
As for p&, we naively obtain that 12
1
(&) (e . (o f0 0.8 X
87Gippr: 0—C = (3.36 - v
0.6 e/
whereCl9= — eyl A,. We need, however, further analysis in 0.4
the high-density limit(and in the limit ofa=0) (see Sec. 0.2
D). 0
Equation(3.21) is also rewritten as 10° 107 10t 1 o 10?2 100 10t
() p—p2Eo/at
e X L pap)1e 1|, 27 %o i
2 22" dGa) T3k &
(3.37
2
Assuming the equation of state of the matter fluid is given by 1.81
the adiabatic index as k,ft L6
P=(y—1)p, (3.38 14 .
1.2 1
and writing Eq.(3.37) in the conventional form as . !
|
K ()¢ (©) (o) 084 :
H- ;:_47TGeﬁ(7eﬁP+7’DRPDR , (3.39 061 !
04 A\
where 3) .
0.24 [
2 4 1
—p&la ,a 0 .
o= 7{1_ enlp—néla)Fp,a) , 10° 107 10T 1 0 107 10° 10*
poA(p,a)[ A(p,a)+ Ag+2€7n] (b) p—u&/a
Po
2 Ag . e
YorR= 3 1+ Ap.a) (3.40 FIG. 1. The schematic behavior gf; . On the top(a) we show

one typical example for the positive branah=+ 1), while, on the

we can define the effective adiabatic index of matter quidbOt_tom (t?)' we dep'.Ct the f'gur.es for the negative branch
(e=—1) in the following three typical cases$l) n<#., (2) 7

(¢) iati i
(77s7) and that of dark radiationypg). Note that the right- _ e, and (3) 7> 7. For an expanding universe, the universe

hand side of the conventional Friedmann equation with theyglves from the right-hand side to the left-hand side in the figures.
above equation of stai®.38 is given by —47Gyp.

We easily find the behavior of the effective adiabatic in-if ,~ ,  (which requiresA >0),
dexeSyf;% whenp (or 1/a) changes frome to O as follows:

For the positive branche= +1), Y1y, oo, — o My, (3.44

(+).
Yett ¥\ Yminl 7)./, (3.4 Here ymin and ymay depend onz,, but 2y= yna>¥> Yin
=v/2=0. ymin="v/2 is found when4,= 0, while y =27y is
obtained in the limit ofy= 7.
In Eq. (3.44), althoughy{, diverges at some density, Eq.

[see Fig. 1a)]. This behavior is interesting because the “ef-
fective” negative pressurey‘e;kl) can be obtained during

the evolution of the universe from standard matter fluid suc . . ) .
as dust =1). h(3.39) is not singular becaugeyy’ vanishes at the same den-

As for the negative branchee — 1), it is a litle compli- S~ When ¥\ vanishes, which always occurs below that

catedsee Fig. 1)]. If 7< 7., asp (or 1/a) decreases from der!sit_y, H reaches a minimur.n.valuéf there is no dark
%10 0, radiation anck=0), and then it increases to some constant

as we discussed above.
()1 7 N7, (3.42 As for dark radiation, the adiabatic indeppr does not
Yer 17/ Ymal M\ Y depend on the branch and changes from 2/3 to 4/3 when
while, for 7= 7., (Which requiresA =0), changes as»— 0. This means that in the early stage of the
universe, the dark radiation does not behave as “radiation”
v S 2. (3.43 but as a “curvature” tern(see below.
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Next we discuss the dynamics of the universe in eachWe then obtain a nonsingular universe evenkfer—1 in the
limit separately. case of thee=—1 branch, if || is large enough
[|5’0|>3,u4/(4mg)]. We find a tendency of singularity
D. High density limit avoidance with a negative dark radiation term, which was

In the high density limit, we assume that-0 as well as also obtained in the RS mode].

p>po. In this limit, we find .
E. Low energy limit

1 2 i T
8776,(;2,0%—2 1+€_77 o) Next we_cops_lder the Iow.densny I!mlt, i.ep<pgy and
" A a—o. In this limit, Eq.(3.29 is approximated as
k 1 &
27 & € € e S0
8mGL pl)~ — 7’7a_2 (3.45 H2+ 5~ 3| A +87G\p+C" >¥}, (3.50
and then we obtain from Eq3.29 where
k 2 & 8mG\ = ! 1+et (3.51)
Y 0 N T2 Rk .
24 S~ 5| ptepo\ —| p—ni=2||. @ I Ao
H '+ 32| PTEPoN | P A (3.49
Y
From the energy-momentum conservation of a perfect fluid, cle=— €1 (3.52
we havepxa~3”. We then classify the behavior of the early 0
universe into three cases. _ We discuss two branches separately.
(1) y=4/3. This universe is thzelgysame as that in the con- (1) The positive branch ¢=1). Since AS=py(1
ventional Einstein gravity, i.eqot=*”. +Ao)/ ?(>0), we find an inflationary expansion in the late

(2) 2/3<y<4/3. Since the dark radiation term inside of stage of the universe. The Hubble expansion paranh&jés
the square root in E¢(3.46 becomes dominant in the limit given by Ho=VAGY/3. Since the inside of the square root

of a—0, &=0 is required. However, the linear density term TR ; <2 6
dominates the dark radiation. As a result, we again find th(%n is(; bceorprgzggﬁ(’jlst trsczr';l:ere;ritg;ﬁtal [r;()é(cile:?g?)b\-::l? a(I:ase of

The present gravitational constant in the Friedmann equa-

same expansion law as that in the conventional Einstein
ravity (@=t?%). If £&>0, we may find a singularity at a . e )

gravity (a=t™=). If & y gularity tion, which is given by &G\, becomes larger than that in

the early stage (1/?).

finite scale factor.
< y=2/3. In thi <0 i i herwi
(3) 0=y=2/3. In this casefo=0 is required, otherwise (2) The negative branche& —1). In this case, ifA=0,
have a zero cosmological constant{{=0) on the

the universe evolves into a singularity with a finite value of

scale factor. 1£,<0 the dark radiation term gives the largest we ) IR
contribution on the right-hand side of E¢B.46, which is  Prane. The basic equation is now
similar to the curvature term. Then we find that E846) is K SWG&_) €4

reduced to H2+ 2= 3 Ptz (3.53
H2+ 52” Lz (3.47)  Which is the conventional Friedmann equation with dark ra-
a® 3u diation. The gravitational constant becomes smaller than that
in the early stage.
where If 0 <A<p3/(12m), however, we expect a positive cos-
5 mological constant on the brane, which could be very small.
Kek— e 2m;g \/m (3.48 Suppose thak>mg/,u2(77< 1). We then approximate the
V3 u? ol ' cosmological constant in the Friedmann equation as
6
This gi!es the conventional inflationary solution. Fp#0, Ag)% nA~ 6_mgA<A. (3.59
settingHo= \p/(3x?), we find the exponential expansion A
o This means that the 4D cosmological constant is suppressed
~ - in the Friedmann equation from its proper valle. Hence,
——cosliHot]  (for k>0) we might have the possibility to explain the tiny value of the
0 present cosmological constant, of which the observational
a={ ajexfHst] (for k=0) 3.49  limit is AS)/mE <1072 where mp (~10' GeV) is the
four-dimensional Planck mass. In the RS modeljs fine
VK ~ tuned to zero, but in more realistic brane models such as the
——sinf{Het] (for k<0). Horava-Witten model, the 4D cosmological constant may au-
. Ho tomatically vanish if a supersymmet(@USY) is preserved.
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In the present universe, however, SUSY must be broken, and

then we expect that the nonzero value/ofs estimated by

the SUSY breaking scale, which might be 1 TeV. This give

A/m3 ~ (1 TeVimpp)*~10,
Then the above constraint is now

%
o
In the present approximation, sincem8&{ ’~1/u? u

~mp_. Then Eq.(3.55 yields
M )3/2

Mp_

4

=6

6
m
| %108,

(3.55

my
—=10"x
Mp_

(3.56

PHYSICAL REVIEW D68, 024033 (2003

IV. CONCLUSION AND REMARKS
In this paper we present the effective equations to de-

Sscribe the 4D gravity of a brane world, assuming that a 5D

bulk spacetime satisfies the Einstein equations and gravity is
confined on theZz, symmetric brane. The brane action can
include a gravitational contribution which may arise via
quantum effects of matter fields confined on the brane. Ap-
plying this formalism, we study the induced gravity brane
model by Dvali, Gabadadze, and Porrati. We show how the
effective cosmological constant appears in this model using
our approach. Generalizing their model to the case with a
bulk cosmological constant and a tension of the brane and
assuming the energy scale of the tension is much larger than
the 5D Planck mass, we also show that the effective cosmo-
logical constant on the brane is extremely suppressed in con-

If the equality in Eq.(3.56) is satisfied, then we may explain trast to t_he RS mod_el even if the_cos_mological_constant and
the present value of a cosmological constant. Assuming thdhe tension are not fine tuned. This might explain the present
two mass scalesf, andms) are larger than the TeV scale as acceleration of the universe. Our results may be modified if

well as smaller than the Planck scafg, , we find we include a dilaton coupling, which also exist in a
superstring/M-theory. This is under investigation.

As for the quantum effects of brane matter fields, we
know that a trace anomaly appears naturally in the 4D brane
(3.57  world [20,21], which is closely related to AAS/CFT corre-
spondence. Those terms were first discussed by Starobinsky
One may speculate how to explain those values as folin his inflationary scenarif23]. We discuss such models in a
lows: We have assumed that the Einstein-Hilbert action orbrane-world scenario in a separate pa2.
the brane appears via quantum effects of matter fields. Then
the coupling constant? may be proportional to the number
of particles. If we consideV=4, the U(N) super-Yang- We would like to thank Koh-suke Aoyanagi and Naoya
Mills theory, for example, the number of particles are pro-Okuyama for useful discussions. We also acknowledge C.
portional toN?. One may sefu’=amiN?, wherea is a  Deffayet, S. Nojiri, and V. Sahni for their information about
numerical constant dD(1). A may be related to a superpo- previous similar works. This work was partially supported by
tential, of which scale we shall leave to be free. Then, wethe Grant-in-Aid for Scientific Research Fund of the Minis-

1 TeV=ms<10® GeV,

10 GeV=m,<=mp, .
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