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It would be extremely useful to know whether a particular low energy effective theory might have come
from a compactification of a higher dimensional space. Here, this problem is approached from the ground up
by considering theories with multiple interacting massive gravitons. It is actually very difficult to construct
discrete gravitational dimensions which have a local continuum limit. In fact, any model with only nearest
neighbor interactions is doomed. If we could find a non-linear extension for the Fierz-Pauli Lagrangian for a
graviton of massng, which does not break down until the scalg= ymyMp,, this could be used to construct
a large class of models whose continuum limit is local in the extra dimension. But this is shown to be
impossible: a theory with a single graviton must break down’\kgyt(méM s 3. Next, we look at how the
discretization prescribed by the truncation of the Kaluza-Klein tower of an honest extra dimension raises the
scale of strong coupling. It dictates an intricate set of interactions among various fields which conspire to
soften the strongest scattering amplitudes and allow for a local continuum limit, at least at the tree level. A
number of candidate symmetries associated with locality in the discretized dimension are also discussed.
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[. INTRODUCTION ergy, which are highly nonlocal in the extra dimension. The
problem is that for gravity self-consistent effective field
There are many compelling reasons to study discretéheory imposes a limit on how weak we can make the uni-
gravitational dimensions. The ultimate goal, of course, is taarity violating effects. If2], the origin of this impediment
construct a space-time lattice which reproduces general relavas traced to the crazy scalar longitudinal mode of a massive
tivity at low energies. A more practical application would be graviton which propagates only after mixing with the trans-
towards phenomenological extensions of the standard modejerse modes. It was also argued 2]} that the truncated KK
Here we use them to characterize what type of low energyheory of a single compact extra dimensional modeés
effective theories might have arisen from the compactificahave a local continuum limit. However, no explanation was
tion of a continuous extra dimensional space. Until recentlygiven about how the scalar longitudinal mode is dealt with
the best approach to this problem seemed to be to take gfym the point of view of the low energy effective theory.
extra dimensional model and work out the low energy theory |, this paper we begin to explore how to construct theory

by explicitly integrating out the extra dimensions. BecauseSpaces from the ground up. We elaborate on the results of

th? Iéalt:za-Kler:n(EK) tower (3[fhsu<t:r;] the(_)rlesthcaT be trun- 2n412] and close the book on a number of issues left unre-
cated at very high enérgy without harming the 1ow energyg o q by those investigations. First, we attempt to improve
theory, any such model can be interpreted as a discre

theory space by a simple Fourier transform. So the questi e minimal nearest neighbor discretization by adding non-

of) . . . : .
becomes: which theory spaces produce low energy effecti\/Enear, but still nearest neighbor, interactions among the site

theories with an extra dimensional interpretation? Becausgra\”tqns' If there were a gxtenspn of the Fierz-Pauli La-
we know how to study such gravitational theory spaces didrandian for a massive graviton _wh|ch controlle_d the danger-
rectly [1], we now have a very general approach to the prob®Us S(_:a_lar longitudinal mode, thl_s could _be_ replicated around
lem. the minimal model and the continuum limit would be dras-
Normally, we would expect that a discrete extra dimen-tically improved. In Sec. Il we show that no such extension

sion should look continuous for small enough lattice spacing€Xists. In fact, we completely characterize all non-linear ex-
This is true for gauge theories, where any haphazard|y Cortensions Fierz-Pauli and show COI’]C'USiVGly that a theory for
structed theory space that looks continuous at the linear levél single graviton of massm; must break down by
can be made to look continuous at the nonlinear level if the(méM p) 3. Next, we explore a truncated KK theory for the
discretization is taken sufficiently fine. That is, violations of case of a circle. We study the interacting Lagrangian of this
unitarity from the gauge boson interactions can be pushetheory in great detail and compute all of the strongest tree-
above the natural cutoff of the higher dimensional theory bylevel amplitudes. The most dangerous amplitudes involving
simply shrinking the lattice spacing. In a recent pa@rit  the troublesome scalar longitudinal mode of the lightest mas-
was shown that the same simple intuition does not apply fosive graviton are softened by the exchange of heavier gravi-
discrete dimensions involving gravity. For example, the contons and the massless graviphoton. The radion also contrib-
tinuum limit of a discretization with only nearest neighbor utes, but not to the strongest diagrams. Finally, we make
hopping terms must have interactions, apparent at low ersome comments about various broken symmetries and dis-

cuss some implications of this work. Much of the technical

details are removed to Appendixes A and B; all of the impor-

*Email address: matthew@schwinger.harvard.edu tant qualitative results are presented in the main text.
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Il. GOLDSTONE BOSONS AND THE MINIMAL In this Lagrangiang only gets a kinetic term from mixing
DISCRETIZATION with h. Naturally, because always appears with two deriva-
tives, the only way it could get a proper kinetic term is

We begin with a review of1] and[2], with a few added through mixing. Nevertheless, this feature is the source of all

niceties. The theories we will consider all contain at least ONG o bizarre features of massive aravitons discussdd 2
massive graviton, and therefore involve Lagrangians of the 9 '

. . ) and expounded here.
Fierz-Pauli[3] form: To study the interacting theory, we need to canonically

— M2 2. 2 _ WP VT o uY PO normalize the fieldsh,=Mph,,, AS=m;MpA,, and
L=MENGR(G)+ MBM(G,.,— 7,0) ("7 = 7" 7") $°=miMpip. Thus, cach interaction will ha%/e an associated
X(Gpo— Mpo) T+ (2.1 scale which we can read directly off the Lagrangian. Because
all the strong interactions, involving the Goldstone fields,

The mass term explicitly breaks general coordin@€) in-  come out of the mass term in E¢R.1), we can derive a
variance and leads to the propagation of the longitudinafeneral formula:
modes of the graviton. It is helpful to project out these
modes directly as separate fields which can be interpreted ?‘?Mz,(a%)”d:(aA )"ach, )M
the Goldstone bosons for the breaking of the GC symmetry. ¢ ® -
This is done by applying the coordinate transformaticin =(Ay)4 367 2N () 2N NA( HC)Ne( AC)MA(HC) h
—y*(x)=x“+7%(x) to the Lagrangian. The dependence of (2.5)
the new Lagrangian on the Goldstone bosefisconveys all ’
the effects of the broken symmetry. More explicitly, we ap-

ply the following replacement t@.1): where
3n,+2n,+n,—4
~_ay*ayP Ay=(md " IMpyt, =LA 1 7 06
g,uv gyvzﬁpgaﬁ(y) A ( 9 PI) n¢+nA+nh—2 ( )
=(X*+7%) (X + Wﬁ),vgaﬁ(x+77)' (2.20  This implies, for example, that the strongest vertexpis

which has the scalés=(myMp)*° The amplitude for a

It also follows that the Lagrangian which results from this simple exchange diagram involving this vertex will grow as
replacement is generally coordinate invariant. After all, the 4~ E1°/Aé0_
7* representll the symmetry violating effects. Of course,  Incidentally, it may seem strange that the Lagrangiaf)
=% must transform non-linearly, but its transformation law is should be based ofigR when general coordinate invariance
simply induced from the transformation gf and given in s explicitly broken by the mass term. But this partial GC
[2]. symmetry guarantees that all the interactions coming from

At this point, it is useful to expand the metrics around flatthe \/gR term involve only transverse polarizations. If this
spaceg,,=7,,th,, and the Goldstone bosons as*  \yere not true, and a term likb2,52h3 were present with
=n“*A, . Then, after an integration by pars, the Lagrangianypjtrary tensor structure, it would produce interactiongsof

(2.1) becomes which a simple calculation shows get strongAat. So, the
1 GC symmetry in theJ/gR term, which hasall the interac-
EZZM|%|(_h,2w,a+ 2hiv,ﬂ_2hw,uh,v+ h,Z,L) tions in unitary gauge, actually raises the scale of strong

coupling. While this is not a qualitative improvement, it does
demonstrate thak 5 is not the lowest possible scale where a
theory for single massive graviton based on Fierz-Pauli

The first part is the standard kinetic term for a massles%mf:jd tbrealé down. In fact, the twh(t),le ?((_)mt Offf m:r_odtuhu?g
graviton, and the second part contains the standard kinetig®'@SON€ DOSONS as a symmetry bréaking €efrect 1s that we

term for A, . Note that if we had chosen a tensor structure®@" start at\s; the cancellation of the\; diagrams, which

for the maés term in Eq2.1) different from Fierz-PauliA would be o_bscure in ur]itary gauge, is given fo_r _free. .
r We continue our review by looking at the minimal lattice

would have a non-standard kinetic term signalling unitary : ) o
violation at~m. explored in[2]. The theory space picture looks like:
A, is an interacting vector boson, which for lack of any
gauge symmetry, contains three propagating degrees of free-
dom. We can separate out its longitudinal mode, which cor-

responds to the scalar longitudinal modehgf, by substitut-
ing A,—A,+¢ ,. This establishes an artificial(1)
symmetry for which¢ is the Goldstone boson. We will re-
turn to this symmetry in Sec. Ill. Using a more schematic
notation, the Lagrangian becomes

+MEMS(FL +2A, h,,—2A, )+ (23

o

2.7)

) 5 The associated Lagrangian is simpl®.1) with the mass
L=MphUh+Mpmg(AOA+hO@) +---. (24 terms replaced by hopping terms:
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be less thaM 5, this theory has no hope of looking like 5D

_ 2 ' 2002 ' j+1
ﬁmin_; M2VgIR[g']+M?m*\gT(g),,— g}, ") gravity in the continuum limit.
. . Nevertheless, there is nothing wrong with takiNg- e,
><(gf"’gj“’—gf‘”gf")(gjpg—gjp;l). (2.9  keepingMp, fixed in the minimal discretization. The result-

ing continuum theory will be a consistent effective field
The hopping terms break all but one of the general coorditheory, even if it cannot be interpreted as having a smooth
nate invariances. So we restore these symmetries by replagxtra dimension. The argument[ig] for why the continuum
ing limit will be non-local can be paraphrased as follows. The
interactions in Eq(2.10 are in terms of¢;, but ¢; gets a

Hl_}ﬁﬁ i1 kinetic term from coupling toh;—h;,;=A.h;. Equiva-

PN Gap (¥))- (2.9 I_ently, O=A,p;=dj— bj11 is_the physical, propagating
field. So the dangerous interactions are reall@'j3
Next, we expand metrics around flat space andythi ~(1/A§‘)CI>3 which have a non-local continuum limit.

terms of vector and scalar Goldstona§ and ¢ (using
lower case and for the site basis Then the Lagrangian

looks like I1l. IMPROVING THE MINIMAL MODEL
Lo =M2h.00h+M2m2L(hi—h: . )2+ (h. —h. . O b The simplest impro_veme'nt on the minimal disgretizatipn
min = {hy =)™ (hy=hy )OI would be a model which still only has nearest neighbor in-
+a;0a;+ ¢jdjh;+ djajaf+ - - - (2.10  teractions, but whose unitary gauge Lagrangian is a more

) ) ) ~ complicated function ogjw—gfvl. These models are par-
To diagonalize the mass matrix, we tazk.e ﬂ)ﬁ standard linicylarly easy to study, because all of their features can be
ear combinationsh; =e*"U"NG,, a;=e?"0"MA,, and  ynderstood from simply looking at non-linear extensions of
¢;=e*"U"Nd, (uppercase and for the momentum basis  the Fierz-Pauli Lagrangian for a single massive graviton. Of
Then, summing ovey, and using the approximatiom,  course, it is unlikely that this approach will provide a signifi-
~m(n/N) the Lagrangian becomes cant improvement over the minimal discretization, because
these modifications are still strictly local, and we are trying
to cure a non-local disease. Nevertheless, this fairly clean set
of models will help us understand the locality problem
within the low energy field theory. And if they were to suc-
ceed(which they will noy we would have all the freedom to
TAUA_(+ P DD gt PR ARA oyt construct gravitational theory spaces that we have for gauge
theory spaces.

Just as with a single massive graviton, we can read of the To begin,_we should address the que;tion of what property
strength of the interactions after going to canonical normal©f the effective theory guarantees locality in the continuum

o limit. Recall that the obstacle to taking a smooth continuum
ization: G,=(1/YNM)G;, A,=(L/YNMm)A:, and ®, o © : e
=(\/N/anZ)<1>ﬁ. In terms of the physical scaleMp, limit of the minimal discretization is that all the modes are

_M\N T h . . look lik not necessarily lighter than the cutoff,ssne qua norof a
=M VN andm; =m/N the strongest interactions look like  .,hgistent effective field theory. No such restriction exists for

a weakly coupled gauge theory because the cutbff
L=+ ;qyiqﬁiqﬁ_ﬁ_ ;‘I’EA?AC_ZJF . ~47Nm, /g is alwaysabove the top of the tower\ >my
NMpm? NMpm? ~Nm;,. For gauge theory, the guarantee follows from the
(2.1  fact thatA depends o\ andm, only through the product
] Nm;~my. In contrast, for gravity the scaleA .,
We then read off that the strong coupling scale, set bylthe :(NmzltMPI)l/s does not depend oN andm, in an auspi-
vertex, Is cious combination. However, if we could find a Lagrangian
A= (NITEM ) 15 (2.12 for a single massive graviton which breaks dowmat A,
min Ry ' = JmyMp, then the discretization based on this Lagrangian

This scale seems reasonable. Formally,, goes tox as ~ Would haveA =yNm;Mp and would automatically satisfy
N—c, and so we can reproduce linearized 5D gravity at lowthe consistency constraint. This theory would have a local
energy. However, within a consistent effective field theory,continuum limit. So our task becomes simply: extend the
we can never take ,, higher than the mass of the heaviest Lagrangian for a massive graviton so that it gets strongat

modes in the theoryny~Nmy. This constraint can be writ- (OF highes. _ _ _
ten as Note, in passing, that tha, scale for a single massive

graviton is the geometric mean betwebty and my. In
Amin< A max= M sp(RMsp) 58 (2.13  particular, if we take the graviton to have a Hubble mass
mg~H, then A,~mm™1, which happens to be the current
where R=1/m; is the size of the discrete dimension and limit to which gravity has been experimentally probed. Of
M5D=(m1M§,,)1’3 is the 5D Planck scale. Sinck,,, must  course, the graviton could not have a Hubble mass because

2

n n
Lmin=NM?G G _,+NM?m? WGHG_n‘f’ NGHD(D—n
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of other constraints from non-linear effects around large 1=n . (3.7
. . ) . Nuv

massive sources, as discussed at lengfhJinBut if we look o o _ .
only at short distance constraints, raising the scale for strongrojecting out the longitudinal modes from a given unitary
coupling of a single massive graviton 1o, would be abso- gauge Lagrangian amounts to replacing
lutely necessary to avoid obvious contradiction with experi- AT
ment. hMVWA‘FA +A A (38)

Now, any Lagrangian we consider must start with a qua-,

. . . Iso, since, Lorentz invariance, we will alw takin
dratic term of the Fierz-Pauli form: S0, since, by Lore anance, we always be taking

traces of such matrices, we define fhe -] notation by
—h2 _Rh2
Lep=h),—h= 3.9 [A---Al=THA---Al=A,, --A (3.9

a,u
Since we already understand kinetic mixing, and are NoLy in the new notation. the Fierz-Pauli term becomes
presently interested in the relatively weakly coupled trans- ’
verse modes, let us introduce the Goldstone bosons as in Eqcp p=[h?]—[h]2[(A+AT+ATA)2]— (2[A]+[AAT])?
(2.2) and then seh,,,=0. We will be making this transfor-

mation often for the rest of the paper and denoteit It is =2[AAT]+2[AAT]—4[A]*+4[ A’AT] - 4[A][AAT]
equivalent to replacing +[ATAATA]-[AATT2. (3.10
M At At AP (32 The third line involved an integration by parts. We can ex-

press this in terms of the symmetric and antisymmetric parts

Thus, after an integration by parts, )
g yPp of A: ® andF. That is, we seA=®+F andA"=d—F.

Lrp—F2 = 4R, A, A+ AN A, -&3 ) Then,
' Lrp —4[F2]+4[ @3] - 4[ ][ ®Z]+[F*]-[F?)
The appearance szv in Eqg. (3.3 is suggestive. Recall LD [ D212 — A[ P2F2]+ 2l DEDE ]+ 2[ E21[ P2
that ¢, which we have”not yet introduced into E@.3), is [PT= [P [ I+2l I+ 2Pl
the longitudinal mode of the vector fiel, . It is the Gold- With this notation, it will be much easier to study exten-

stone boson for the breaking of a “fakéJ(1) symmetry  sions of Fierz-Pauli. Th&J(1) symmetry we are searching
which Eq.(3.3) has already at the quadratic level. Of course,for implies that the Goldstone Lagrangian should depend
we cannot expect the entire Lagrangian to hat&(a) sym-  only onF and not ond. First, observe that

metry, because is necessary to reproduce 5D gravity at the

linear level. But we might hope that by adding cubic and h~2® + P+ PF—Fd —F2, (3.1

higher order terms to Eq3.1), we can achieve a gauge

invariance in the Goldstone Lagrangian, that is, the Lagrang=/nce the only first order term in the expansiorho$ @, we
ian after the~ transformation. In other words, the Fierz- can always eliminate thé self-couplings from the Lagrang-

Pauli structure may be the first part of an expansion fixed by2"- For example, we cancel the third order terms by adding

U(1) gauge invariance of the vector longitudinal modes. 1 1
Moreover, we can see from E(R.6) that all the interactions L3=— =[h®]+ =[h][h?]. (3.12
we are trying to get rid of, the ones which get strong below 2 2

A, involve the field¢. So this symmetry condition is suf-
ficient for the construction of discretizations with local con-
tinuum limits.

Alas, it turns out that th& (1) is a complete red herring.
We will now see not only that th&J(1) invariance embed-
ded in the Fierz-Pauli structure is restricted to the quadrati([:0
terms, but, more strongly, that there is no way to raise the

scale of strong coupling for a single massive graviton highe[ 3] [® 1 ®],[P]3,[P*],[ D3[P ],[ P2]2[D?]

thanAs,.
’ X[PJ[@]4[F?P?][FOFO][FAI[ 2], [FA[P]%
Extending the Fierz-Pauli Lagrangian (3.13

Thus the lowest orde® self-couplings inCegp+ L3 will be

®*. These can be eliminated by adding Ap with quartic
terms, and so on. By induction, it is easy to see that all the
self-interactions of the scalar can be eliminated in this way.
The next order gauge-violating terms look liké®2. Up
fourth order, there are 12 terms we must eliminate:

At this point, it is handy to introduce some notation. The
vector of Goldstone bosong,,, will always come with a
derivative, so we can represedy, , as a matrix:

These are related by two equations that come from integra-
tion by parts

[@°]=2[@]*+[P]®

A=A, =AT=A,, (3.9
and
F=A,,—A,,=A-AT (3.5
[P)=[DP[D]+[ D[ D] +[D2][D]*+[ D]
b=¢ , =" (3.6) (3.14

024029-4



CONSTRUCTING GRAVITATIONAL DIMENSIONS PHYSICAL REVIEW D68, 024029 (2003

So there are 10 independent terms which must vanish. HowFhere are a number of subtle issues about the introduction of
ever, the most general Lagrangian up to fourth orddrlas  Goldstone bosons which are also explored. Finally, the am-

only 8 terms: plitudes for all the dangerous diagrams involving the scalar
5 5 5 . - longitudinal polarizations of the lowest KK modes are given.
La=cy[h*]+cy[h?][h]+c3[h]°+qi[h*]+qgz[h“][h7] Because of the exchange of heavier modes, and, somewhat
3 2 2 4 surprisingly, the radion and graviphoton as well, all the dan-
sl N*Ih]+aaLh=Ih ]+ as h ], (319 gerous amplitudes cancel at the tree level.
We might also consider terms with derivatives actinghpn ~_ Start with a 5D metricGyy . We will label the compact

but these cannot produce terms of the fd81L3. Therefore, fifth direction asz and the non-compact directions collec-
unless there is some special arrangement, we do not hal€ly asx. Then we gauge fix as much as possible, so the

enough freedom to fabricateld(1) symmetry. metric takes the form

Still, it may be possible that although the Lagrangian is 2r(%) 2r(x)
gauge dependent, all the physical scattering processes in- g :(gw(x,z)ﬂ;e VuOVu(x) e ZV“(X)
volving the ¢ fields vanish. This could be understood as a e” MV, (x) e?'™

non-linearly realizedJ (1) symmetry which is obscured by (4.9

our choice of the transverse and longitudinal modes pf r is the radion andv, is the graviphoton. In this gauge,

For example, thg fleld'redef|n|t|oAM.—> B#+.BBB/"B wil . neitherr nor V, depends orz and the Lagrangian becomes
produce interactions in the non-interacting Lagrangian w

(_AM,,,—AW)Z. These interactio_ns will not \_/anish by. integra_l- L= MgD@Rso(gsb) 4.2
tion by parts, but all the physical scattering amplitudes in-

volving the newB,, fields will be zero. We could certainly

try to classify all non-linear field redefinitions, and all other = MgD\/g(x,z)[ e'R,p(9)

reasons that the amplitudes may vanish while the interactions

do not. But it is more straightforward just to compute the 1

dependence of the strongest scattering amplitudes on the co- +Ze_r[ﬁzgw(9”pgw—9’”9’”) P (4.3
efficients in Eq.(3.15. This is done in Appendix A. The

conclusion is that it is simply impossible to extend the Fierz- 1

Paull'Lagrang|an so that unitarity is preserved for a single - Z(VW—VV,M)Q”VQ’”(VP,U—VU,,))+ﬁv . (4.9
massive graviton abovA .

Here Rsp(0s5p) is the five-dimensional Ricci scalar con-
IV. TRUNCATED KK THEORY structed from 5D metricR,p(g) is the 4D Ricci scalar con-
structed out ofy,,,(x,2) which we treat as a 4D metric which

We have seen that it is impossible to eliminate all theha ens to depend on a continuous paranetéy contains
dangerous amplitudes for scattering of the scalar longitudinal PP P P

modes of a massless graviton by a non-linear extension dpteractlons of the graviphoton with the other fields, some of

the Fierz-Pauli Lagrangian. Had this been possible, we couIEﬁVhICh are presented in Appendix B.

have used the extended Lagrangian as a template for the link Now, we assume the compact dimension is a circle and

structure in a discretization with only nearest neighbor inter-e)(p"’md the ~metric in KK modes: g,,(x,2)

: : vl 27ijzIR : : .
actions, and the resulting theory would have had none of the > Cpur(X)€ . We continue the convention that lower

problems of the minimal model discussed 2. This failure ~ C2S€ fields are in the site basis and uppercase fields are in the
is disappointing, but could have been anticipated from thd<K basis. Then contains the mass terms

fact that the continuum sickness of the minimal model is — M2 m2n2

L . . . . L=MgmIn“([G,G_,]-[GlI[G_,D+ - . (4
non-locality in the extra dimension, so its cure should in- AMN([GnG -nl =[GnllG-nD) “.9
volve non-locality on the lattice. The scale for the masses is set by the radius: 27/R; and

Despite the discouraging results of Sec. Ill, we know thakye have introduced the effective 4D Planck scale of the low
the scale of strong coupling for a discrete extra dimensiornergy theoryM 2=MZ,R. We see that the spectrum com-
. 4 . . .
can be raised above i,=(Nm;M p) "% As was mentioned prises a massless graviton, a doubly degenerate tower of
in [2], a truncated KK theoryloeshave a local continuum  massive gravitons, and the massless radion and graviphoton.

limit, in contrast to the minimal discretization. This simply  Now we truncate the theory td modes, and go back to
follows from the observation that a truncation performed atposition space via the discrete Fourier transfoi@,

high energy cannot effect low energy physics without under—(1/N)e2™("@Nig_ ~ Then, the mass terms become
mining the general assumptions of effective field theory.
Somehow the low KK modes are not interacting strongly at———

As or even atA;. . Yt might seem that the theory would have been simpler if we had

In this section we study the truncated KK theory in greatcompactified on an interval instead of a circle, thereby removing the
detail. We work out the Lagrangian in theory space, includ-mass degeneracy and the graviphoton. In fact, because the KK wave
ing the radion, graviphoton, and all the tensor structure. Itunctions for the interval are sines instead of exponentials, the in-
non-locality, including the power-law decay of the interac-teractions in the circle are much easier to work with. This point is
tions with distance in the discrete dimension, is apparentdiscussed further in Appendix B.
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2

n .
L= nanG,n: @ ezmn(Aa/N)gagaJrAa

2n?  2wnAa

:VCOSTQaQaMa- (4.6)

Evidently, there are links between distant sites.Ms: o

Lo iz N( 2q2— iz gag“Aa). @7 minimal discretization truncated KK theory
6 Aa FIG. 1. In the minimal deconstruction links are only between
nearest neighbors. In the site basis for the truncated KK theory,
there are links between every pair of sites, but the strength of the
Mink dies off with distance. These links which are non-local in

theory space remain in the limit of a large number of sites.

Even in this limit, the interactions which are non-local in
theory space are only power-law suppressed. This is co
trasted to the case of the minimal discretization in Fig. 1.
Now let us look at the interactions. We know that in a
continuum limit, the theory would break down at the 5D

Planck scaleM sp= A 3,=(m;M3)*%. We also know that if mentum conservation in the fifth direction translates to KK
we truncate to two modes, a massless and a massive one, thémber conservation in the 4D theory. So the only fields
theory would break downat least by A3:(me s Y2 which can contribute to tree-level scattering of the gravitons
<Aj5. This is due to scattering of the first massive mode at the first mass level are gravitons at the second mass level
with massm;. So the additional modes must somehow can<{with massm,=2m;,), the massless graviton, the gravipho-
cel the strongest diagrams involving mode 1. Moreover, wdon, and the radion. Therefore, we are interested in the tree
know which fields may contribute to this cancellation. Mo- level processes:

1 1 1 1 g, 0,2 1 v 1
= + + + : (4.9
1 11 11 11 11 1

The Goldstone boson formalism lets us analyze the dia- V. DISCUSSION AND OUTLOOK
grams in Eq.4.8) very efficiently. We can classify the am- In this paper a number of important features of theories
plitudes according to their energy dependence, i.e. whether. . . )
they get strong afe, A4, A etc. Because of the result with massive gravitons have been analyzed. A_n arbltr_ary
from Sec. lll, that a single massive graviton must breakth.eory space which has onI_y _nearest neighbor _mteractlons
down by A it is illuminating to see how the » and stron- will Iead, in t.he continuum limit, to a theory .wh|ch looks
ger diagrar;'s i the truncatgd KK theory cancsel This is demextra dimensional at the linear level, but has highly non-local

. - - : X interactions. This was understood to be a result of the
onstrated in explicit detail in Appendix B. As a brief sum- oo majously strong scattering amplitudes for the light gravi-
mary, we find that there are no vertices that contribut& 4p

) ! i ) tons in the theory. We attempted to eliminate these ampli-
the quartic vertices which contribute 1o, are canceled by tdes with a non-linear extension of the Fierz-Pauli Lagrang-
exchange of the graviphoton; and both the graviphoton anghn, put found that no such extension could push the strong
the vector polarization of mode 2 are necessary to cancel théupling scale abovd ;. We would need to push it as high
A5 diagrams involving external vectors. This is very impor-as A, to improve the continuum limit of nearest neighbor
tant, because it implies that we are very unlikely to find adiscretizations. In contrast, a theory space based on the trun-
compactification in which the second lightest massive KKcation of a KK tower coming from an honest extra dimen-
mode is parametrically heavier than the lightest one. It alsgion does have a local continuum limit. We saw that the scale
implies that the first tree level diagrams which the truncatiorfor the scattering of the light KK modes was pushed above
affects involve theA; scale appropriate external modes attheir A5 through the exchange of additional massive gravi-
mass leveN/2. That is, the truncated KK theory gets strong tons and the massless graviphoton. The truncated KK theory
atA~(N2m§M p) 2. It is worth pointing out that the calcu- breaks down at thé ; scale of the modes whose tree-level
lations in the Appendixes are a highly non-trivial check onscattering is affected by the truncation, namely those halfway
the Goldstone boson equivalence theorem for gravity and thep the tower.

entire effective field theory for massive gravitons. The truncated KK theory gives us much insight into what
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theory spaces might come from an extra dimensional comlarizations of the 4D massive gravitons to get the five propa-
pactification. We saw that exchange of gravitons on the seqyating modes of a massless graviton in 5D. So the truncated
ond mass level canceled strong four-point interactions oKK theory does not seem to have any extra exact symmetries
gravitons on the first mass level. So it is unlikely that anyat all.
compactification will have a KK tower with the second light-  In fact, there is nothing fundamentally better about the
est gravitonparametricallyheavier than the first. More gen- truncated KK theory than the minimal discretization. Both
erally, we should not expect to see a parametrically larg@rovide consistent low energy effective theories. While lo-
mass gap between any set of modes. It would be interestingglity in the fifth dimension seems nice, there is certainly no
to see what happens on AdS backgrounds, where the stroperimental evidence to support it. And from the model
coupling problem is amelioratefd] and there is evidence building point of view, it is likely that there are applications
that at least one graviton mode can be made extremely lighf gravity in theory space for which locality is just irrelevant.
[4—6]. Also, note that the radion was not necessary for canRecall that the theory space technology was originally devel-
cellation of the strongest diagrams, and in fact couples wittPped in gauge theory to reproduce the phenomenology of an
the same strength as the transverse graviton modes. Althougbtra dimension[7,8], but it was soon seen to be well-
it contributes to cancel amplitudes which blow up /&3  adapted for the construction of models with a naturally light
<Mgp=Ag,, We have some freedom to manipulate the ra-little” Higgs [9]. Similarly, gravitational theory spaces may
dion in the effective theory. For example, simply giving the produ_ce applications which have no extra dimensional inter-
radion a mass by hand will only affect diagrams at the  Pretation at all. . . o
level applied to the lowest mode. We did not explore the Nevertheless, locality goes hand in hand with improved
radion interactions in depth, and in fact it may be necessar{/V properties. We have seen this already in Sec. Il where
to perform a Wave_packet ana|ysis to understand these SuBDn-loca”ty in the minimal discretization was traced to a low
dominant amplitudes. cutoff in the effective theory. And certainly part of the moti-
Incidentally, the significance of th&, scale is not at all vation for trying to construct gravitational dimensions comes
clear. It seems to be more fundamental than shescale ~ from string thec_)ry, Whlc_h is bpth_local and UV finite. While
which, as was pointed out in Sec. II, is only significant in thethe nearest neighbor discretizations have all the exact sym-
somewhat contrived Fierz-Pauli Lagrangian. In contrast, metries of the trun(_:ated KK theorl_es, the latter seem to have
appears as the ultimate upper limit on the strong couplinglu@litatively superior UV properties. Now that we under-
scale of a theory with a single massive graviton. It is everstand the appropriate issues, we can work towards establish-
more intriguing that in a theory constructed to have thisind & more precise relation between apparent locality and a
strong coupling scale, the natural size for all the operators iRigher cutoff. This may lead to a better understanding of
unitary gauge is set byi; and dimensional analysis, a par- duantum gravity, and perhaps even a new class of UV
ticularly clean situatior{see Eq.(4.40 of [1]]. Also, A, ~ completions.
applied to the middle modes, determines the scale where the
truncated KK theory breaks down. And we saw that it is the ACKNOWLEDGMENTS

s’:cr?r:lg?(sé scalg,\ o Whl;:ilhexch;nge of tranS\{e_l;si: po|_||ar|zat|ons This work would not have been possible without the help
otthe modes, and he radion, can CONtribute. MOWEVeTy¢ ;4 Arkani-Hamed. | would also like to thank Howard

Asls not enou_gh to use for the construction of nearest r.]e'ghGeorgi for his insight, especially about the issues discussed
bor discretizations which are guaranteed to be local in tht?n Sec. Ill, Thomas Gregoire for assisting with many of the
continuum limit. Certainly, one important area for future in- L

R o . Feynman diagram calculations and Paolo Creminelli and
vestigation is the apparent coincidence of these various r'-isa Randall for helpful discussions
sults. '

Returning to the main theme of this paper, it would be
nice if the truncated KK theory had some exact symmetry
that the minimal discretization lacked. The natural candidate
is the general coordinate reparametrizatiorz.ddut because In this appendix we show that a theory with a single mas-
zis the discretized dimension, this acts on KK towers as thegjye graviton must break down by,;. We demonstrate this
Virasoro algebra, which does not have aNydimensional py considering all possible extensions to the Fierz-Pauli La-
representations. So the symmetry is broken in both theoriegrangian and calculating of all the tree level amplitudes
In contrast, the GC symmetries of the non-discretized dimenwhich must cancel. Because of subtleties with a possible
sions act falthfully on fields in the site basis. Of course, theSﬁon_“neaﬂy rea“zed_j(]_) invariance’ this brute-force ap-

GC symmetries are a fake, broken in unitary gauge, and reyroach proves to be more convincing than possible symme-
established formally with the Goldstone bosons. But we cantry based arguments.

not add Goldstone bosons to restore the Virasoro symmetry Start with the Fierz-Pauli Lagrangian:

in either model because the fields belong to a truncated infi-

nite dimensional multiplet. Th&J(1) symmetry for which 1, 5

the ¢ fields are Goldstone bosons is also irrelevant. We saw Lrp=VOR(G) + Z([h 1=[h19. (A1)

in Sec. Ill that it cannot be made exact by extending the

Fierz-Pauli Lagrangian. Moreover, we know thfe fields  The strongest diagrams generated by this Lagrangian blow
must exist in any discretization because we need all the padp atAs, but there are also diagrams which get strong at

APPENDIX A: RAISING THE SCALE FOR A SINGLE
MASSLESS GRAVITON
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and Az. More explicitly, for diagrams with four external £,=(1+6c;)[A?AT]+(—1+4c,)[A][AAT]+2¢,[A%]
lines, theA s is scalar scattering through scalar exchange,

is scalar scattering, antl; is either vector scattering through +4c[ A?][A]+2q,[A*]+(6c,+8a,)[AAT]
scalar exchange or scalar vector scattering. In general, vector

exchange contributes at the same order as the corresponding + (3cl+4q1)[AAATAT]+(E+3cl+ 29, |[AATAAT]
quartic vertex. 4
The only terms which may help cancel these tree-level 1
scattering processes are cubic and quartio: in +| = Z+202+4q2 [AAT][AAT]+(2c,+80,)[A?]
T 2 2
AL=c, %]+ Col I[N+ col ]+ [ ] + aLh2I[h?] KAATFAGLATIIATT A3
+0a[h®][h]+q,[h?][h]*+qsh]*. (A2)  The first processes we consider involve scalar exchange. Re-

placing A—® once for each of the cubic terms i#A3)

. . . . . shows that the relevant interactions are
It is not necessary to consider terms with space-time deriva-

tives acting orh, because they contribute to amplitudes with

different momentum dependence than the ones we are trying

to cancel. ['AD ¢[(1+ 6Cl_l— 8C2)Av,a,p,A,u,a,V
Now, we want to study the interactions coming from these

terms. As usual, we do this by introducing Goldstone bosons F(=148C) A0 A ] (A4)

via h~»A+AT+ATA and invoking the equivalence theorem.

We work at high energy, where any gauge dependent mad#fe have integrated by parts to remove the derivatives from

the Goldstone boson may have is irrelevant, and taken to bé. Amplitudes coming from these vertices are strong at ei-

zero. This implies thafA]=[®]=0 if these fields corre- ther As, if the externalA, are longitudinally polarizedi.e.

spond to external linef.e. on-shell, massless particletn A,— ¢ ), oratAs, if the externalA, are transverse. Either

particular, quartic terms which involvign] and cubic terms  way, the amplitude will be proportional to the scalar current

which involve[h]? do not contribute, at first order, to dia- in Eq.(A4) squared and so E¢A4) must exactly vanish. So

grams with four external longitudinal modes. $g, q4, 95  C,=3 andc;=—3.

andcy contribute only above\ ;3 and we can ignore them. Next, we will look at theA; diagrams from the process
Thus, the interactions which may contribute up to fourthAA—®®, which get a contribution from the vector ex-
order inLgp+AL are change:

— —
kY kg A,
= + + Au + AII :

The total amplitude, with the values fa andc, we just derived, is equal to

(40— 1)[16(K3e1) (Kgeo)tu+8(kye) (Kae ) 1>+ 8(Ky1&,) (Kge 1) tu+8(kae 1) (Kaeo) tu+8(Kpe 1) (Kae ) U?]
+(1+40;+802)[8(Ki82) (Koe1) (124 U?) ]+ (1+ 80, + 160,)[ — 4(8182) (13 +U%) ]
+(3+40;+240,)[ — 8(£18,) (tPu+Ut) + (3+ 160, + 320,)[ — 4(Kpe 1) (Kae2) (12 +U?) ]
+(1+ 240, +320,)[ — 4(Kze 1) (Kae ) (t2+U?) ]+ (3+ 240+ 320,) [ 4(Ki8,) (Kpe 1) tul. (A5)

We have used#t,=k; +k,—kz and the Mandelstam variables ~ APPENDIX B: CANCELLATIONS IN TRUNCATED KK
SEklk2:k3k4, tEk1k4:k2k3 and UEk1k3:k2k4. The THEORY

terms are grouped to illustrate that no choicegefand g,

will make the entire amplitude vanish. Therefore, there is no In this appendix we calculate the tree level scattering of
Lagrangian for a single massive graviton which breaks dowrthe light graviton modes in a Kaluza-Klein theory of 5D
aboveA . gravity. Along the way, some subtle issues about setting up
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the calculation and using the theory space formalism are ad- [':)M%I['K(GnG—n)

dressed. In particular, we now defend the choice of a circle,

which initially seems more complicated than the interval,

because of the extra graviphoton degree of freedom and the

degenerate spectrum. For a somewhat similar gauge theory

calculation the reader is referred [tb0,11]. +mnd(m+n+p)
For a general compactification, the KK wave functions

x!(z) depend on the the geometry and the boundary condi-

tions. This lets the Lagrangian be expressed, before the trun- +[Gn][Gme]+[Gm][GpGn]]

cation, as the infinite sum

—M3m3 mné(n+m)([G,Gml—[Gnl[Gml)

1
E[Gp][GmGn] - 2[G‘mGpGn]

1
+mné(m+n+p+q)j — Z[Gqu][GnGm]
_ 2 3
L£=2 0fGiG;+0fGiGGy+ . (BD) ~[GnGpl[GmGal +[GnGpGmGql
] _ +2[GnGquGm]] . (B3)
The o" are constants determined by overlap integrals of the

X'. For example, if we compactify on a circle of radiBs

then y.(2) = e27i(n2R) ando; = [ yix;dz=8(i +). The delta functions enforce KK number conservation, which

We now need a prescription for going from the KK basisis. equivalent to momentum conservatipn in the fifth dimen-
. . ) ion. There are other cubic and quartic terms, but they are
o the theory space basis. Thatis, we need .to chooge d.'scrq??elevant for the scattering processes we consider, and so we
wave functiong; =c;; G; . Of course, the obvious choice is @ it them for clarity.Cy is the standard kinetic Lagrangian

discrete Fourier sum, but we have to be very careful. Thg,, 4 spin two field, as shown in E@.3), and has the same
essential requirement for a nice theory space representatiQgm for each KK mode.

is that interactions which take place at fixedn the 5D At this point, we could Fourier transform E(B3) to the
theory (that is, those which do not depend @p) should  sjte basis. This is not hard, but the explicit form of the site
transform to interactions which take place on a singlejsite | agrangian is actually unnecessary for the calculations we
That way, theR,p part of £ (4.1) will have a separate gen- are interested in. We know that in unitary gauge, the La-
eral coordinate invariance for each site, and all the interacgrangian will have only one general coordinate invariance,
tions of the longitudinal modes will come from thie part.  ynder which all the; transform as tensors. Thé—1 bro-
This has the advantage that all the interactions will be Proken GC symmetries Correspond to the massive gravitons,
portional to M3d2~M3Zm? instead of M3d°~MZE?  whose longitudinal modes produce the strongest interactions
>M,%|m2. The only way this will happen is if we can choose in Eq. (B3). To study these interactions, we introduce Gold-
the discrete wave functions to have all the same overlap instone bosons on each site in theory space. That is, we replace
tegrals as the continuous wave functions: each site metric:

T i ayl
g,u.v_>g;,w: v
IxXH* ox

1 (R 1 ghp(Yj)- (B4)
0i--~k:§fo dZXi"'Xk:NEn: Cin** " Ckn- (B2)

This restoredN copies of general coordinate invariance to the

Lagrangian.
For a general KK theory this is not possible. But if we com-  This brings up another subtle issue. The transformation
pactify on a circle,y,(z)=¢e?"("?R) then Cap= g2 (@b/N) properties of they, are not uniquely determined, and differ-
satisfies(B2). Of course,any KK theory has a theory space ent choices will actually result in different interactions
representation, but in general the theory space will not simamong the Goldstone bosons. Of course the scale of the
plify the structure of the interactions. For example, it is notstrong interactions is the same for all choices, but the calcu-
possible to satisfy EqB2) on an interval, and so there will |ations of individual amplitudes may be very complicated if
be strong interactions simply from the sites’ Lagrangianswe do not introduce Goldstone bosons in a judicious way.
While amplitudes involving these interactions must cancelq, now we will make it so that thg? , are invariant under
other amplitudes at the end of the day, we get this cancellas)| N general coordinate transformations. This ensures that
tion for free if we choose to the circle where E§2) holds. ¢ interactions among the Goldstone boson will respect a
global translation invariance around the circle. The drawback
of this choice is that the diagonal general coordinate invari-
ance is now obscure and the Lagrangian seems to depend

The truncated KK theory on a circle has a degeneracy axplicitly on N sets of Goldstone bosons. Nevertheless, the

each mass level. We will need the quadratic, cubic, and quat-agrangian must be independent of some non-linear combi-
tic parts of the KK Lagrangian which come from Ed.3): nation of these Goldstone fields.

1. Circle Lagrangian

024029-9
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The y“ are then expanded in terms of Goldstone bosons ,— M2, Go{R(Go)e”f(VM,V—VV,M)Z}JF .
as usuay’=x“+ai" (and, as usual, we use lowercase for the
site basis The Goldstone bosons are introduced in the site  =M3G OG +MErOG +M3(V, ,—V, )%+ - -.
basis, but are immediately Fourier transformea! (B8)
=e?mUN)AN Since in the KK basis the masses are diago-
nal, the bilinear couplings of the Goldstone bosons will be
diagonal as well. The quadratic terms in the KK basis are So canonical normalization is

M2Z(nm)A[(Gp+ A+ AN (G_p+A_+AT )] VE=MpV, and r°=Mpr. (B9)

—[Gp+2A,][G_+2A_,]}. (B5)
Independent of the detailed tensor structure, the couplings to

. . . . . .._the massive fields have the form
As with the single massive graviton case, the longitudinal

modes of A" will pick up kinetic terms from mixing with
G". Thus, the fields have canonical normalization as for a

single graviton of masm,=nm,. 92 3 4

The interactions we are interested in control the scattering £=-- - + M—rCA,C,AﬁJr v VEASAS + STeDrdy
of Goldstone bosons. So after introducing the Goldstone P! PIMn Meimy
bosons in the site basis, we project out their interactions as in 5
Sec. Il by settinggiw= 7,y IN the matrix notatiorcf. Egs. + 3V°<Dﬁ<bﬁ+ o (B10)
(3.8) and(3.4)] this corresponds to Mpm;

S o We will study below the strongest contributions to tree-level
g~a+aT+alTal. (B6)  scattering processes with each type of external lines. We can
see from Eq(B10) that the exchange af is a weaker pro-

cess than the exchange of the Goldstone veatpr while

Because we have introduced the Goldstone bosons on ﬂfﬁe V, andA, exchanges are the same strength. So, to first

sites, and they are therefore summed over, this implies order, we can ignore but must includev,, . We will there-

fore need the interactions which are IineaMp and do not
involve r which were suppressed from expressid):

G"— AN+ AN AMTAN=M (B7)

Thus, KK number will be preserved in Goldstone scattering. P I _ _

We have glossed over another subtle point. Introducing ~V~=9 9" 97 Va| “9au,28vy,6™ Yau,29ys.v ™ 9y6.9ap,v
Goldstone bosons on the sites is very different from assign-
ing a general coordinate invariance to each KK mﬁ;"g.
That would amount to replacings"~»A"+A"T+ATAN
which leads to interactions whickiolate KK number con-

. : - . +g~rgh(V -V
servation. We are free to do this, and the physics will be 9"" 9" (V.02 Vg uGar.2)
exactly the same since both Lagrangians are the same in +9*"V(29 40,027 290p,v) - (B11)
unitary gauge, but it will be much harder to calculate. Not

only will we have introduced KK number violating interac- ) )
tions, but we will also have introduced interactions into theAll of the couplings that we will need below come from the

Rsp part of the Lagrangian which, as we noted before, carfollowing terms in the KK decomposition of E¢B11):
be canceled for free.

1
+ Eg'yé,zggv,a_ Eg'y,u,ng‘v,a—i_ gy,u,zgva,ﬁ

2. Radion and graviphoton LD —iM3mns(n+ m)Vg(2G, G, s+ Gy, sGh,
The next step is to decide which of the massless fields —2GN,Ghg ). (B12)

have strong enough couplings to contribute to scattering of
the massive KK gravitons modes. Since the radipand the

graviphoton,V,,, are massless, they get normalized with Now let us come back to one of the subtle issues men-
Mp,. IndeedV'’s kinetic term is already present fhand the tioned above. In addition to the radion and the KK gauge
radion picks up a kinetic term from mixing with the masslessboson, we must contend with the zero mode Goldstone bo-
zero-mode graviton. Heuristically, son,AfL. It does not have a kinetic term, and does not pick
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one up by mixing. But it does have interactions, with the To1_ 4117197 L3 T1To7_
Lagrangian in its current form. The only reason we have this Lol 2]-4[112]+12 1121+ 8111 2]~ 14 1)
mode at all is because when we introduced the Goldstone — x[2]+2[171][2]—161][12]—8[1][172]+ 14 2]
bosons in Eq(B6) we included one set for each of tin
sites, even though the Lagrangian has dwty 1 broken co-
ordinate invariances. The interactions ,@j‘l exist because
the preserved symmetry is not the one under which all the
fields on the sites transform nicely; it is the one where all thdt is interesting to note that we can perform a field redefini-
KK modes transform nicely. Suppose we had chosen thé&ion to remove all the cubic terms:
transformations of the Goldstone bosons so that éjé;;h
were covariant under changes of a single coordiyatand
invariant under all the others. Thew;,=g>, and g},
=y; .y’ .0, for j#s. Then there would be onl)— 1 sets
of Goldstone bosons and we would not have the pecaﬁar
field. The Lagrangian would be the same, but Vﬂﬁ’F 0.1In
terms of the KK modes of the Goldstone bosons, this implieote that this substitution preserves KK number conserva-
tion. This is an example of the type of non-linear transfor-
mation we were wary of in Sec. Ill. But it does not actually
make the calculations of this appendix any easier, so we
A)=—e?mEMNAT (B13)  leave Eq.(B14) as it is.
Next, the couplings of the graviphoton can be written as
[from Eq.(B12)]

X[1][1]+c.c. (B14)

1
2,~2,+ glgl, . (B15)

For example, if we we takes=0 then AS——A—A?
—---. Now, there will be many KK number violating verti-
ces. In particular, all the heavy KK modes would contribute
to scattering of the low modes. But when we sum over all
diagrams, KK number should not be violated. It would be
nice if we could just use the residual general coordinate in\We have already dropped everything which vanishes when
variance to seA2=0, but it not clear that this is consistent. the Goldstone bosons, which always appear on shell in
There is no simple way of introducing Goldstone bosons s¢/-€Xchange diagrams, are massless. The interactions in Eq.
thatA?L does not appear at all. As it turns out, if we calculate(816) contribute to 11 scattgrlng qt the ordkg, which is

. : the same order as the quartic vertices and as 2 exchange.
the scattering from terms generated by the substity#ir3) ) ) ) -
into the cubic and quartic vertices involving tA , every- Next, we look at the quartic vertices with 1 and 1
thing vanishes. This implies that we are probably free just to
setA%=0.

LD4IV (1, 5,01, 10, (B16)

LoD —8[1111]-4[17111]+4[11171]—4[17111]
3. Goldstone boson interactions +4[17111]-4[171711]+2[171711]+2[171711]
From now on, we use the notatior=A1

1 P . - [ R
_ wvy WhereA, is —A[1111]-4[171T11]-4[17111]-4[17111]
the first KK mode of the vector of Goldstone bosons intro-

duced. Scattering of the the two modes in the first massive +6[11][11]—[12][117]—[117][11]+4[11][11]
level involves exchange of the two modes on the second _
massive level. So we nedd=5 to see a non-trivial cancel- +4[11][11"].

lation. Therefore, we takBl=5. Note that takingN>5 will
not change the relevant vertices, as these get no contribution

from higher KK modes. So we consider the lightest five ) ) — )
There are other terms involvirid ] and[1]. These will not

rnode_s 0.1,2:1=1 and _25_2’ and _restrlct.to dlagrams contribute when the external lines are on shell, so we have
involving only external 1 and .1We will also immediately ot displayed them here.

go to g:anonical normalizatiorA}, —MpmA} and ®" To calculate the interactions, it is easiest to project out the
—Mpm;®". Now, we present the relevant interactions real and imaginary parts of the KK fields. This diagonalizes
among these fields. the kinetic terms of the physical fields. To account for the

We start with the cubic vertices. After a lengthy calcula- normalization as well, we make the substitution= (1/
tion we can isolate the following terms relevant for diagrams,/g8)(A+iB) and 2=(1/2/8)(C+iD). Then the entire nor-
with external 1 and 1 malized Lagrangian we will need is
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3 1 1 5 1

T AM TA3T_ __TATATAZ . 2712, 2 T

£2 = T5[AY] = GIATAT]— G ATATA] + [ AZ]2+ [ AZ][AAT]

3 1 1 5 1

o 49_ = Tp371_ TRTR2 . 272, 2 T
16.B 1 g[B B’l— 1g[B B B+ 55[B7]"+ o [BI[BB']
1 1 1 1

— glABAB]+ g[ATBAB]+§[BTABA]+ g[ATBTAB]
1 3 3 3 3

_ 2p271_ T _ T o TRT o TAT
7[A?B?] - S[ATABB] - g[B'BAA] - T=[ATB'BA]— 15[ B'ATAB]
1 1 1 1 3

+ g[BTAAB]—Irg[ATB BA]+ §[ATATB B]— 1—6[82][A2]+ gLABI[AB]

3 3 1
+ 3—2[A2][BBT]+ 3—2[82][AAT]— g[AB][ABT]

1

V8

+ iS[AATC]%— i[ATATC]—iS[AA][C]— iS[BBTC]—i[BTBTC]Jr [BB][C]

E G G G G

+ i[ABTD]+ i[|3ATD]+i[ATBTD]+ i[BTATD]—i[AB][D]
8 V8 V8 V8 2

1 1 1 1 1 1 1 1
—5[ATAl+ S[A%]- S[B'B]+ 5[B*]— 5[CTC]+ 5[C?*] - 5[D'D]+ 5[D?]

1
- Z(V,u.,v_ VV,//.)2+ VB(A,LL,VBB,/.L,V_ B;J.,VAﬁ,,u.,v) . (817)

4. Test the Lagrangian c 1 C.(A. A A A B B
3_ —_ — —
To test the Lagrangian, we will look at some characteristic J2 Bl BT Ba bl

processes. Recall that the strength of a vertex for involving a

graviton of massng is given byA, = (m}~"Mp)** wherex +BagBpan) (B18)
is given by Eq.(2.6). The strongest processes involve scalar
exchange. And the vector exchange diagrams have the same _ iD (AvaB o Ao sBpa—Aup B

o v,a“= u,a,v o, a, ,a a,B,m ,

strength as the diagrams coming from the quartic vertices as J2
well as the diagrams with graviphoton exchange. If we sepa-
rate out scalar exchange, which must cancel by itself, then ~AapBpan)- (B19)
the strength of a process is determined by the external lines.

Since this is the case, we do not even have to project out thﬁ : C
: . ; . It is easy to see that for scalar exchargg— andD
scalar in the external lines, we can just leave it as the longi- y Qe &L ®

tudinal polarization of the vector field. We only insist that the — ¢, the above terms vanish after integrating by parts. This

o : o means that all the scalar exchange processes, which are
polarization of the eternal vector field satisfies ,=0. ge p

stronger than the corresponding vector exchange processes,
The masses of the Goldstone bosons are gauge depende\vrgnis(if’1 P g gep

but we will only be concerned with the lowest order tree  noyt consider the process ™ — ¢B#B. This contrib-
level effects, and so we take all the Goldstone bosons to b ' I A
Gtes at the scald 4. If we make the substitutiod,— ¢’

. 2 . .
masslehs:s.hThe Eorrectlons, of orc:.eﬁék , W|I!”o_nly contlnb— andB, — ¢3L into Eqs.(B18) and(B19) we see that there is
u_te to Igher order processes which we will Ignore. In pracs,q ¢ontripytion from vecto€ andD exchange:
tice, this means dropping terms which contain

[A], [B], Ay s Buws Ay OF By, . We have already

done this for the LagrangiafB17) but more simplifications o4 4B

come about for particular process. >W< -0 . (B20)
The cubic terms’ contribution t€ andD exchange can be C,D

written as ¢t o°
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The quartic terms are
1 1 1
LD —[DADPADBDE]+ Z[d)A(I)BCI)A(IDB]Jr Z[QDA(DB][CDACDBH g[dbACDA][d)BdDB]. (B21)

This does not vanish by integration by parts. If we define the Mandelstam variables p5 , t=p?- pS andu=p?- p5 then

this contributes
A B
1 b4 1 1
A>< 5 =—252(12+u2)+12u2+§(14+u4)+554¢0. (B22)
P Pz

However, there is also a contribution from the graviphoton:

LOV (), 0% = 8% ) (B23)

This contributes through theand u channels:

A B B
p P p p
' oA ! t4(2s+2u) u(2s+2t
\4 + \4 = — + .
i N mry —2u (B24)
s ;P P2

If we apply the relatiors—t—u=0 the quartic and exchange contributions exactly cancel.

Note that theC and D fields do not contribute at eitheks (scalar scattering through scalar exchangeat A, (scalar
scattering through vector exchang&o even if we truncated the theory at the level at the first massive mode, the strong
coupling scale would already bmﬁM o) 3. However, to see the cancellation of the remaining diagrams, we need to include
the effects of the heavier fields.

It is straightforward to work through the remaining scattering processes. The computations are more involved, but at tree
level all the amplitudes involving the Lagrangié®l7) are exactly zero.
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