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Constructing gravitational dimensions

Matthew D. Schwartz*
Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

~Received 9 April 2003; published 30 July 2003!

It would be extremely useful to know whether a particular low energy effective theory might have come
from a compactification of a higher dimensional space. Here, this problem is approached from the ground up
by considering theories with multiple interacting massive gravitons. It is actually very difficult to construct
discrete gravitational dimensions which have a local continuum limit. In fact, any model with only nearest
neighbor interactions is doomed. If we could find a non-linear extension for the Fierz-Pauli Lagrangian for a
graviton of massmg , which does not break down until the scaleL25AmgMPl, this could be used to construct
a large class of models whose continuum limit is local in the extra dimension. But this is shown to be
impossible: a theory with a single graviton must break down byL35(mg

2MPl)
1/3. Next, we look at how the

discretization prescribed by the truncation of the Kaluza-Klein tower of an honest extra dimension raises the
scale of strong coupling. It dictates an intricate set of interactions among various fields which conspire to
soften the strongest scattering amplitudes and allow for a local continuum limit, at least at the tree level. A
number of candidate symmetries associated with locality in the discretized dimension are also discussed.

DOI: 10.1103/PhysRevD.68.024029 PACS number~s!: 04.50.1h
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I. INTRODUCTION

There are many compelling reasons to study disc
gravitational dimensions. The ultimate goal, of course, is
construct a space-time lattice which reproduces general
tivity at low energies. A more practical application would b
towards phenomenological extensions of the standard mo
Here we use them to characterize what type of low ene
effective theories might have arisen from the compactifi
tion of a continuous extra dimensional space. Until recen
the best approach to this problem seemed to be to tak
extra dimensional model and work out the low energy the
by explicitly integrating out the extra dimensions. Becau
the Kaluza-Klein~KK ! tower of such theories can be trun
cated at very high energy without harming the low ene
theory, any such model can be interpreted as a disc
theory space by a simple Fourier transform. So the ques
becomes: which theory spaces produce low energy effec
theories with an extra dimensional interpretation? Beca
we know how to study such gravitational theory spaces
rectly @1#, we now have a very general approach to the pr
lem.

Normally, we would expect that a discrete extra dime
sion should look continuous for small enough lattice spaci
This is true for gauge theories, where any haphazardly c
structed theory space that looks continuous at the linear l
can be made to look continuous at the nonlinear level if
discretization is taken sufficiently fine. That is, violations
unitarity from the gauge boson interactions can be pus
above the natural cutoff of the higher dimensional theory
simply shrinking the lattice spacing. In a recent paper@2#, it
was shown that the same simple intuition does not apply
discrete dimensions involving gravity. For example, the c
tinuum limit of a discretization with only nearest neighb
hopping terms must have interactions, apparent at low

*Email address: matthew@schwinger.harvard.edu
0556-2821/2003/68~2!/024029~13!/$20.00 68 0240
te
o
la-

el.
y
-

y,
an
y
e

y
te
n

ve
e

i-
-

-
.

n-
el
e

d
y

r
-

n-

ergy, which are highly nonlocal in the extra dimension. T
problem is that for gravity self-consistent effective fie
theory imposes a limit on how weak we can make the u
tarity violating effects. In@2#, the origin of this impediment
was traced to the crazy scalar longitudinal mode of a mas
graviton which propagates only after mixing with the tran
verse modes. It was also argued in@2# that the truncated KK
theory of a single compact extra dimensional modeldoes
have a local continuum limit. However, no explanation w
given about how the scalar longitudinal mode is dealt w
from the point of view of the low energy effective theory.

In this paper we begin to explore how to construct theo
spaces from the ground up. We elaborate on the results o@1#
and @2# and close the book on a number of issues left un
solved by those investigations. First, we attempt to impro
the minimal nearest neighbor discretization by adding n
linear, but still nearest neighbor, interactions among the
gravitons. If there were a extension of the Fierz-Pauli L
grangian for a massive graviton which controlled the dang
ous scalar longitudinal mode, this could be replicated aro
the minimal model and the continuum limit would be dra
tically improved. In Sec. III we show that no such extensi
exists. In fact, we completely characterize all non-linear
tensions Fierz-Pauli and show conclusively that a theory
a single graviton of massmg must break down by
(mg

2MPl)
1/3. Next, we explore a truncated KK theory for th

case of a circle. We study the interacting Lagrangian of t
theory in great detail and compute all of the strongest tr
level amplitudes. The most dangerous amplitudes involv
the troublesome scalar longitudinal mode of the lightest m
sive graviton are softened by the exchange of heavier gr
tons and the massless graviphoton. The radion also con
utes, but not to the strongest diagrams. Finally, we m
some comments about various broken symmetries and
cuss some implications of this work. Much of the technic
details are removed to Appendixes A and B; all of the imp
tant qualitative results are presented in the main text.
©2003 The American Physical Society29-1
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II. GOLDSTONE BOSONS AND THE MINIMAL
DISCRETIZATION

We begin with a review of@1# and @2#, with a few added
niceties. The theories we will consider all contain at least o
massive graviton, and therefore involve Lagrangians of
Fierz-Pauli@3# form:

L5MPl
2 AgR~g!1MPl

2 mg
2~gmn2hmn!~hmrhns2hmnhrs!

3~grs2hrs!1•••. ~2.1!

The mass term explicitly breaks general coordinate~GC! in-
variance and leads to the propagation of the longitud
modes of the graviton. It is helpful to project out the
modes directly as separate fields which can be interprete
the Goldstone bosons for the breaking of the GC symme
This is done by applying the coordinate transformationxa

→ya(x)5xa1pa(x) to the Lagrangian. The dependence
the new Lagrangian on the Goldstone bosonspa conveys all
the effects of the broken symmetry. More explicitly, we a
ply the following replacement to~2.1!:

gmn→g̃mn[
]ya

]xm

]yb

]xn
gab~y!

5~xa1pa! ,m~xa1pb! ,ngab~x1p!. ~2.2!

It also follows that the Lagrangian which results from th
replacement is generally coordinate invariant. After all,
pa representall the symmetry violating effects. Of cours
pa must transform non-linearly, but its transformation law
simply induced from the transformation ofya and given in
@2#.

At this point, it is useful to expand the metrics around fl
space gmn5hmn1hmn and the Goldstone bosons aspa

5hamAm . Then, after an integration by pars, the Lagrang
~2.1! becomes

L5
1

4
MPl

2 ~2hmn,a
2 12hmn,m

2 22hmn,mh,n1h,m
2 !

1MPl
2 mg

2~Fmn
2 12Am,nhmn22Am,mh!1•••. ~2.3!

The first part is the standard kinetic term for a massl
graviton, and the second part contains the standard kin
term for Am . Note that if we had chosen a tensor structu
for the mass term in Eq.~2.1! different from Fierz-Pauli,Am
would have a non-standard kinetic term signalling unita
violation at;mg .

Am is an interacting vector boson, which for lack of an
gauge symmetry, contains three propagating degrees of
dom. We can separate out its longitudinal mode, which c
responds to the scalar longitudinal mode ofhmn by substitut-
ing Am→Am1f ,m . This establishes an artificialU(1)
symmetry for whichf is the Goldstone boson. We will re
turn to this symmetry in Sec. III. Using a more schema
notation, the Lagrangian becomes

L5MPl
2 hhh1MPl

2 mg
2~AhA1hhf!1•••. ~2.4!
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In this Lagrangian,f only gets a kinetic term from mixing
with h. Naturally, becausef always appears with two deriva
tives, the only way it could get a proper kinetic term
through mixing. Nevertheless, this feature is the source o
the bizarre features of massive gravitons discussed in@1,2#
and expounded here.

To study the interacting theory, we need to canonica
normalize the fields:hmn

c 5MPlhmn , Am
c 5mgMPlAm , and

fc5mg
2MPlf. Thus, each interaction will have an associat

scale which we can read directly off the Lagrangian. Beca
all the strong interactions, involving the Goldstone field
come out of the mass term in Eq.~2.1!, we can derive a
general formula:

mg
2MPl

2 ~]2f!nf~]Am!nA~hmn!nh

5~Ll!423nf22nA2nh~]!2nf1nA~fc!nf~Ac!nA~hc!nh

~2.5!

where

Ll5~mg
l21MPl!

1/l, l5
3nf12nA1nh24

nf1nA1nh22
. ~2.6!

This implies, for example, that the strongest vertex isf3

which has the scaleL55(mg
4MPl)

1/5. The amplitude for a
simple exchange diagram involving this vertex will grow
A;E10/L5

10.
Incidentally, it may seem strange that the Lagrangian~2.1!

should be based onAgR when general coordinate invarianc
is explicitly broken by the mass term. But this partial G
symmetry guarantees that all the interactions coming fr
the AgR term involve only transverse polarizations. If th
were not true, and a term likeMPl

2 ]2h3 were present with
arbitrary tensor structure, it would produce interactions off
which a simple calculation shows get strong atL7. So, the
GC symmetry in theAgR term, which hasall the interac-
tions in unitary gauge, actually raises the scale of stro
coupling. While this is not a qualitative improvement, it do
demonstrate thatL5 is not the lowest possible scale where
theory for single massive graviton based on Fierz-Pa
could break down. In fact, the whole point of introducin
Goldstone bosons as a symmetry breaking effect is that
can start atL5; the cancellation of theL7 diagrams, which
would be obscure in unitary gauge, is given for free.

We continue our review by looking at the minimal lattic
explored in@2#. The theory space picture looks like:

~2.7!

The associated Lagrangian is simply~2.1! with the mass
terms replaced by hopping terms:
9-2
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Lmin5(
j

M2AgjR@gj #1M2m2Agj~gmn
j 2gmn

j 11!

3~gj
mrgj

ns2gj
mngj

rs!~grs
j 2grs

j 11!. ~2.8!

The hopping terms break all but one of the general coo
nate invariances. So we restore these symmetries by re
ing

gmn
j 11→

]yj
a

]xm

]yj
b

]xn
gab

j 11~yj !. ~2.9!

Next, we expand metrics around flat space and theyj in
terms of vector and scalar Goldstonesam

j and f j ~using
lower case andj for the site basis!. Then the Lagrangian
looks like

Lmin5M2hjhhj1M2m2$~hj2hj 11!21~hj2hj 11!hf j

1ajhaj1f jf jf j1f jajaj%1•••. ~2.10!

To diagonalize the mass matrix, we take the standard
ear combinations:hj5e2p i ( jn/N)Gn , aj5e2p i ( jn/N)An , and
f j5e2p i ( jn/N)Fn ~uppercase andn for the momentum basis!.
Then, summing overj, and using the approximationmn
;m (n/N) the Lagrangian becomes

Lmin5NM2GnhG2n1NM2m2H n2

N2
GnG2n1

n

N
GnhF2n

1AnhA2n1FnFmF2n2m1FnAmA2n2m1•••J .

Just as with a single massive graviton, we can read of
strength of the interactions after going to canonical norm
ization: Gn5(1/ANM)Gn

c , An5(1/ANMm)An
c , and Fn

5(AN/nMm2)Fn
c . In terms of the physical scalesMPl

5MAN andm15m/N the strongest interactions look like

L5•••1
1

NMPlm1
4
F1

cF1
cF22

c 1
1

NMPlm1
2
F1

cA1
cA22

c 1•••.

~2.11!

We then read off that the strong coupling scale, set by theF3

vertex, is

Lmin5~Nm1
4MPl!

1/5. ~2.12!

This scale seems reasonable. Formally,Lmin goes tò as
N→`, and so we can reproduce linearized 5D gravity at l
energy. However, within a consistent effective field theo
we can never takeLmin higher than the mass of the heavie
modes in the theorymN;Nm1. This constraint can be writ
ten as

Lmin,Lmax5M5D~RM5D!25/8 ~2.13!

where R51/m1 is the size of the discrete dimension a
M5D5(m1MPl

2 )1/3 is the 5D Planck scale. SinceLmax must
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i-
ac-

-

e
l-

,
t

be less thanM5D this theory has no hope of looking like 5D
gravity in the continuum limit.

Nevertheless, there is nothing wrong with takingN→`,
keepingMPl fixed in the minimal discretization. The resul
ing continuum theory will be a consistent effective fie
theory, even if it cannot be interpreted as having a smo
extra dimension. The argument in@2# for why the continuum
limit will be non-local can be paraphrased as follows. T
interactions in Eq.~2.10! are in terms off j , but f j gets a
kinetic term from coupling tohj2hj 115Dzhj . Equiva-
lently, F5Dzf j5f j2f j 11 is the physical, propagating
field. So the dangerous interactions are reallyf j

3

;(1/Dz
3)F3 which have a non-local continuum limit.

III. IMPROVING THE MINIMAL MODEL

The simplest improvement on the minimal discretizati
would be a model which still only has nearest neighbor
teractions, but whose unitary gauge Lagrangian is a m
complicated function ofgmn

j 2gmn
j 11 . These models are par

ticularly easy to study, because all of their features can
understood from simply looking at non-linear extensions
the Fierz-Pauli Lagrangian for a single massive graviton.
course, it is unlikely that this approach will provide a signi
cant improvement over the minimal discretization, beca
these modifications are still strictly local, and we are tryi
to cure a non-local disease. Nevertheless, this fairly clean
of models will help us understand the locality proble
within the low energy field theory. And if they were to su
ceed~which they will not! we would have all the freedom to
construct gravitational theory spaces that we have for ga
theory spaces.

To begin, we should address the question of what prop
of the effective theory guarantees locality in the continuu
limit. Recall that the obstacle to taking a smooth continuu
limit of the minimal discretization is that all the modes a
not necessarily lighter than the cutoff, asine qua nonof a
consistent effective field theory. No such restriction exists
a weakly coupled gauge theory because the cutoffL
;4pNm1 /g is alwaysabove the top of the tower:L.mN
;Nm1. For gauge theory, the guarantee follows from t
fact thatL depends onN and m1 only through the product
Nm1;mN . In contrast, for gravity the scaleLmin

5(Nm1
4MPl)

1/5 does not depend onN and m1 in an auspi-
cious combination. However, if we could find a Lagrangi
for a single massive graviton which breaks down atL5L2

5AmgMPl then the discretization based on this Lagrang
would haveL5ANm1MPl and would automatically satisfy
the consistency constraint. This theory would have a lo
continuum limit. So our task becomes simply: extend t
Lagrangian for a massive graviton so that it gets strong atL2
~or higher!.

Note, in passing, that theL2 scale for a single massiv
graviton is the geometric mean betweenMPl and mg . In
particular, if we take the graviton to have a Hubble ma
mg;H, thenL2;mm21, which happens to be the curren
limit to which gravity has been experimentally probed. O
course, the graviton could not have a Hubble mass beca
9-3
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of other constraints from non-linear effects around la
massive sources, as discussed at length in@1#. But if we look
only at short distance constraints, raising the scale for str
coupling of a single massive graviton toL2 would be abso-
lutely necessary to avoid obvious contradiction with expe
ment.

Now, any Lagrangian we consider must start with a q
dratic term of the Fierz-Pauli form:

LF P5hmn
2 2h2. ~3.1!

Since we already understand kinetic mixing, and are
presently interested in the relatively weakly coupled tra
verse modes, let us introduce the Goldstone bosons as in
~2.2! and then sethmn50. We will be making this transfor-
mation often for the rest of the paper and denote it . It is
equivalent to replacing

hmn Am,n1An,m1Aa,mAa,n . ~3.2!

Thus, after an integration by parts,

LF P 2Fmn
2 24Am,mAm,nAm,n14AmnAnaAma1•••.

~3.3!

The appearance ofFmn
2 in Eq. ~3.3! is suggestive. Recal

that f, which we have not yet introduced into Eq.~3.3!, is
the longitudinal mode of the vector fieldAm . It is the Gold-
stone boson for the breaking of a ‘‘fake’’U(1) symmetry
which Eq.~3.3! has already at the quadratic level. Of cour
we cannot expect the entire Lagrangian to have aU(1) sym-
metry, becausef is necessary to reproduce 5D gravity at t
linear level. But we might hope that by adding cubic a
higher order terms to Eq.~3.1!, we can achieve a gaug
invariance in the Goldstone Lagrangian, that is, the Lagra
ian after the transformation. In other words, the Fier
Pauli structure may be the first part of an expansion fixed
U(1) gauge invariance of the vector longitudinal mod
Moreover, we can see from Eq.~2.6! that all the interactions
we are trying to get rid of, the ones which get strong bel
L2, involve the fieldf. So this symmetry condition is suf
ficient for the construction of discretizations with local co
tinuum limits.

Alas, it turns out that theU(1) is a complete red herring
We will now see not only that theU(1) invariance embed
ded in the Fierz-Pauli structure is restricted to the quadr
terms, but, more strongly, that there is no way to raise
scale of strong coupling for a single massive graviton hig
thanL3.

Extending the Fierz-Pauli Lagrangian

At this point, it is handy to introduce some notation. T
vector of Goldstone bosons,Am , will always come with a
derivative, so we can representAm,n as a matrix:

A[Am,n⇒AT5An,m ~3.4!

F[Am,n2An,m5A2AT ~3.5!

F[f ,m,n5FT ~3.6!
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1[hmn. ~3.7!

Projecting out the longitudinal modes from a given unita
gauge Lagrangian amounts to replacing

hmn A1AT1ATA. ~3.8!

Also, since, by Lorentz invariance, we will always be takin
traces of such matrices, we define the@•••# notation by

@A•••A#[Tr@A•••A#5Am,n•••Aa,m . ~3.9!

So, in the new notation, the Fierz-Pauli term becomes

LF P5@h2#2@h#2 @~A1AT1ATA!2#2~2@A#1@AAT# !2

52@AAT#12@AAT#24@A#214@A2AT#24@A#@AAT#

1@ATAATA#2@AAT#2. ~3.10!

The third line involved an integration by parts. We can e
press this in terms of the symmetric and antisymmetric p
of A: F and F. That is, we setA5F1F and AT5F2F.
Then,

LF P 24@F2#14@F3#24@F#@F2#1@F4#2@F2#2

1@F4#2@F2#224@F2F2#12@FFFF#12@F2#@F2#.

With this notation, it will be much easier to study exte
sions of Fierz-Pauli. TheU(1) symmetry we are searchin
for implies that the Goldstone Lagrangian should depe
only on F and not onF. First, observe that

h 2F1F21FF2FF2F2. ~3.11!

Since the only first order term in the expansion ofh is F, we
can always eliminate theF self-couplings from the Lagrang
ian. For example, we cancel the third order terms by add

L352
1

2
@h3#1

1

2
@h#@h2#. ~3.12!

Thus the lowest orderF self-couplings inLFP1L3 will be
F4. These can be eliminated by adding anL4 with quartic
terms, and so on. By induction, it is easy to see that all
self-interactions of the scalar can be eliminated in this w

The next order gauge-violating terms look likeF2F2. Up
to fourth order, there are 12 terms we must eliminate:

@F3#,@F#2@F#,@F#3,@F4#,@F3#@F#,@F2#2,@F2#

3@F#2,@F#4,@F2F2#,@FFFF#,@F2#@F2#,@F2#@F#2.

~3.13!

These are related by two equations that come from inte
tion by parts

@F3#52@F#21@F#3

and

@F4#5@F#3@F#1@F2#@F2#1@F2#@F#21@F#4.
~3.14!
9-4
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So there are 10 independent terms which must vanish. H
ever, the most general Lagrangian up to fourth order inh has
only 8 terms:

LD5c1@h3#1c2@h2#@h#1c3@h#31q1@h4#1q2@h2#@h2#

1q3@h3#@h#1q4@h2#@h#21q5@h#4. ~3.15!

We might also consider terms with derivatives acting onh,
but these cannot produce terms of the form~3.13!. Therefore,
unless there is some special arrangement, we do not
enough freedom to fabricate aU(1) symmetry.

Still, it may be possible that although the Lagrangian
gauge dependent, all the physical scattering processe
volving the f fields vanish. This could be understood as
non-linearly realizedU(1) symmetry which is obscured b
our choice of the transverse and longitudinal modes ofAm .
For example, the field redefinitionAm→Bm1BbBm,b will
produce interactions in the non-interacting Lagrang
(Am,n2An,m)2. These interactions will not vanish by integr
tion by parts, but all the physical scattering amplitudes
volving the newBm fields will be zero. We could certainly
try to classify all non-linear field redefinitions, and all oth
reasons that the amplitudes may vanish while the interact
do not. But it is more straightforward just to compute t
dependence of the strongest scattering amplitudes on the
efficients in Eq.~3.15!. This is done in Appendix A. The
conclusion is that it is simply impossible to extend the Fie
Pauli Lagrangian so that unitarity is preserved for a sin
massive graviton aboveL3.

IV. TRUNCATED KK THEORY

We have seen that it is impossible to eliminate all t
dangerous amplitudes for scattering of the scalar longitud
modes of a massless graviton by a non-linear extensio
the Fierz-Pauli Lagrangian. Had this been possible, we co
have used the extended Lagrangian as a template for the
structure in a discretization with only nearest neighbor int
actions, and the resulting theory would have had none of
problems of the minimal model discussed in@2#. This failure
is disappointing, but could have been anticipated from
fact that the continuum sickness of the minimal model
non-locality in the extra dimension, so its cure should
volve non-locality on the lattice.

Despite the discouraging results of Sec. III, we know t
the scale of strong coupling for a discrete extra dimens
can be raised aboveLmin5(Nm1

4MPl)
1/5. As was mentioned

in @2#, a truncated KK theorydoeshave a local continuum
limit, in contrast to the minimal discretization. This simp
follows from the observation that a truncation performed
high energy cannot effect low energy physics without und
mining the general assumptions of effective field theo
Somehow the low KK modes are not interacting strongly
L5 or even atL3.

In this section we study the truncated KK theory in gre
detail. We work out the Lagrangian in theory space, inclu
ing the radion, graviphoton, and all the tensor structure.
non-locality, including the power-law decay of the intera
tions with distance in the discrete dimension, is appar
02402
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There are a number of subtle issues about the introductio
Goldstone bosons which are also explored. Finally, the a
plitudes for all the dangerous diagrams involving the sca
longitudinal polarizations of the lowest KK modes are give
Because of the exchange of heavier modes, and, some
surprisingly, the radion and graviphoton as well, all the da
gerous amplitudes cancel at the tree level.

Start with a 5D metricGMN . We will label the compact
fifth direction asz and the non-compact directions colle
tively as x. Then we gauge fix as much as possible, so
metric takes the form

g5D5S gmn~x,z!1e2r (x)Vm~x!Vn~x! e2r (x)Vm~x!

e2r (x)Vn~x! e2r (x) D .

~4.1!

r is the radion andVm is the graviphoton. In this gauge
neitherr nor Vm depends onz and the Lagrangian become

L5M5D
3 Ag5DR5D~g5D! ~4.2!

5M5D
3 Ag~x,z!H erR4D~g!

1
1

4
e2r@]zgmn~gmrgns2gmngrs!]zgrs# ~4.3!

2
1

4
~Vm,n2Vn,m!gmngrs~Vr,s2Vs,r!1LVJ . ~4.4!

Here R5D(g5D) is the five-dimensional Ricci scalar con
structed from 5D metric.R4D(g) is the 4D Ricci scalar con-
structed out ofgmn(x,z) which we treat as a 4D metric whic
happens to depend on a continuous parameterz. LV contains
interactions of the graviphoton with the other fields, some
which are presented in Appendix B.

Now, we assume the compact dimension is a circle a
expand the metric in KK modes: gmn(x,z)
5(Gmn

j (x)e2p i jz/R. We continue the convention that lowe
case fields are in the site basis and uppercase fields are i
KK basis. ThenL contains the mass terms

L5MPl
2 m1

2n2~@GnG2n#2@Gn#@G2n# !1•••. ~4.5!

The scale for the masses is set by the radius:m152p/R; and
we have introduced the effective 4D Planck scale of the l
energy theory:MPl

2 5M5D
3 R. We see that the spectrum com

prises a massless graviton, a doubly degenerate towe
massive gravitons, and the massless radion and gravipho1

Now we truncate the theory toN modes, and go back to
position space via the discrete Fourier transformGn
5(1/N)e2p i (na/N)ga . Then, the mass terms become

1It might seem that the theory would have been simpler if we h
compactified on an interval instead of a circle, thereby removing
mass degeneracy and the graviphoton. In fact, because the KK w
functions for the interval are sines instead of exponentials, the
teractions in the circle are much easier to work with. This poin
discussed further in Appendix B.
9-5
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L25n2GnG2n5
n2

N2
e2p in(Da/N)gaga1Da

5
2n2

N2
cos

2pnDa

N
gaga1Da . ~4.6!

Evidently, there are links between distant sites. AsN→`

L 2→
1

6p2
NS 2ga

22
1

Da2
gaga1DaD . ~4.7!

Even in this limit, the interactions which are non-local
theory space are only power-law suppressed. This is c
trasted to the case of the minimal discretization in Fig. 1

Now let us look at the interactions. We know that in
continuum limit, the theory would break down at the 5
Planck scaleM5D5L3/25(m1MPl

2 )1/3. We also know that if
we truncate to two modes, a massless and a massive on
theory would break downat least by L35(m1

2MPl)
1/3

!L3/2. This is due to scattering of the first massive mo
with massm1. So the additional modes must somehow ca
cel the strongest diagrams involving mode 1. Moreover,
know which fields may contribute to this cancellation. M
dia
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mentum conservation in the fifth direction translates to K
number conservation in the 4D theory. So the only fie
which can contribute to tree-level scattering of the gravito
at the first mass level are gravitons at the second mass
~with massm252m1), the massless graviton, the graviph
ton, and the radion. Therefore, we are interested in the
level processes:

FIG. 1. In the minimal deconstruction links are only betwe
nearest neighbors. In the site basis for the truncated KK the
there are links between every pair of sites, but the strength of
link dies off with distance. These links which are non-local
theory space remain in the limit of a large number of sites.
. ~4.8!
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The Goldstone boson formalism lets us analyze the
grams in Eq.~4.8! very efficiently. We can classify the am
plitudes according to their energy dependence, i.e. whe
they get strong atL5 , L4 , L3, etc. Because of the resu
from Sec. III, that a single massive graviton must bre
down byL3, it is illuminating to see how theL3 and stron-
ger diagrams in the truncated KK theory cancel. This is de
onstrated in explicit detail in Appendix B. As a brief sum
mary, we find that there are no vertices that contribute toL5;
the quartic vertices which contribute toL4 are canceled by
exchange of the graviphoton; and both the graviphoton
the vector polarization of mode 2 are necessary to cance
L3 diagrams involving external vectors. This is very impo
tant, because it implies that we are very unlikely to find
compactification in which the second lightest massive K
mode is parametrically heavier than the lightest one. It a
implies that the first tree level diagrams which the truncat
affects involve theL3 scale appropriate external modes
mass levelN/2. That is, the truncated KK theory gets stro
at L;(N2m1

2MPl)
1/3. It is worth pointing out that the calcu

lations in the Appendixes are a highly non-trivial check
the Goldstone boson equivalence theorem for gravity and
entire effective field theory for massive gravitons.
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V. DISCUSSION AND OUTLOOK

In this paper a number of important features of theor
with massive gravitons have been analyzed. An arbitr
theory space which has only nearest neighbor interact
will lead, in the continuum limit, to a theory which look
extra dimensional at the linear level, but has highly non-lo
interactions. This was understood to be a result of
anomalously strong scattering amplitudes for the light gra
tons in the theory. We attempted to eliminate these am
tudes with a non-linear extension of the Fierz-Pauli Lagra
ian, but found that no such extension could push the str
coupling scale aboveL3. We would need to push it as hig
as L2 to improve the continuum limit of nearest neighb
discretizations. In contrast, a theory space based on the
cation of a KK tower coming from an honest extra dime
sion does have a local continuum limit. We saw that the sc
for the scattering of the light KK modes was pushed abo
their L3 through the exchange of additional massive gra
tons and the massless graviphoton. The truncated KK the
breaks down at theL3 scale of the modes whose tree-lev
scattering is affected by the truncation, namely those halfw
up the tower.

The truncated KK theory gives us much insight into wh
9-6
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theory spaces might come from an extra dimensional c
pactification. We saw that exchange of gravitons on the s
ond mass level canceled strong four-point interactions
gravitons on the first mass level. So it is unlikely that a
compactification will have a KK tower with the second ligh
est gravitonparametricallyheavier than the first. More gen
erally, we should not expect to see a parametrically la
mass gap between any set of modes. It would be interes
to see what happens on AdS backgrounds, where the st
coupling problem is ameliorated@1# and there is evidence
that at least one graviton mode can be made extremely
@4–6#. Also, note that the radion was not necessary for c
cellation of the strongest diagrams, and in fact couples w
the same strength as the transverse graviton modes. Alth
it contributes to cancel amplitudes which blow up atL3
,M5D5L3/2, we have some freedom to manipulate the
dion in the effective theory. For example, simply giving t
radion a mass by hand will only affect diagrams at theL2
level applied to the lowest mode. We did not explore t
radion interactions in depth, and in fact it may be necess
to perform a wave-packet analysis to understand these
dominant amplitudes.

Incidentally, the significance of theL3 scale is not at all
clear. It seems to be more fundamental than theL5 scale
which, as was pointed out in Sec. II, is only significant in t
somewhat contrived Fierz-Pauli Lagrangian. In contrast,L3
appears as the ultimate upper limit on the strong coup
scale of a theory with a single massive graviton. It is ev
more intriguing that in a theory constructed to have t
strong coupling scale, the natural size for all the operator
unitary gauge is set byL3 and dimensional analysis, a pa
ticularly clean situation@see Eq.~4.40! of @1##. Also, L3,
applied to the middle modes, determines the scale where
truncated KK theory breaks down. And we saw that it is t
strongest scale to which exchange of transverse polariza
of the KK modes, and the radion, can contribute. Howev
L3 is not enough to use for the construction of nearest ne
bor discretizations which are guaranteed to be local in
continuum limit. Certainly, one important area for future i
vestigation is the apparent coincidence of these various
sults.

Returning to the main theme of this paper, it would
nice if the truncated KK theory had some exact symme
that the minimal discretization lacked. The natural candid
is the general coordinate reparametrization ofz. But because
z is the discretized dimension, this acts on KK towers as
Virasoro algebra, which does not have anyN-dimensional
representations. So the symmetry is broken in both theo
In contrast, the GC symmetries of the non-discretized dim
sions act faithfully on fields in the site basis. Of course, th
GC symmetries are a fake, broken in unitary gauge, and
established formally with the Goldstone bosons. But we c
not add Goldstone bosons to restore the Virasoro symm
in either model because the fields belong to a truncated
nite dimensional multiplet. TheU(1) symmetry for which
the f fields are Goldstone bosons is also irrelevant. We s
in Sec. III that it cannot be made exact by extending
Fierz-Pauli Lagrangian. Moreover, we know thef fields
must exist in any discretization because we need all the
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larizations of the 4D massive gravitons to get the five pro
gating modes of a massless graviton in 5D. So the trunca
KK theory does not seem to have any extra exact symme
at all.

In fact, there is nothing fundamentally better about t
truncated KK theory than the minimal discretization. Bo
provide consistent low energy effective theories. While
cality in the fifth dimension seems nice, there is certainly
experimental evidence to support it. And from the mod
building point of view, it is likely that there are application
of gravity in theory space for which locality is just irrelevan
Recall that the theory space technology was originally dev
oped in gauge theory to reproduce the phenomenology o
extra dimension@7,8#, but it was soon seen to be wel
adapted for the construction of models with a naturally lig
‘‘little’’ Higgs @9#. Similarly, gravitational theory spaces ma
produce applications which have no extra dimensional in
pretation at all.

Nevertheless, locality goes hand in hand with improv
UV properties. We have seen this already in Sec. II wh
non-locality in the minimal discretization was traced to a lo
cutoff in the effective theory. And certainly part of the mot
vation for trying to construct gravitational dimensions com
from string theory, which is both local and UV finite. Whil
the nearest neighbor discretizations have all the exact s
metries of the truncated KK theories, the latter seem to h
qualitatively superior UV properties. Now that we unde
stand the appropriate issues, we can work towards estab
ing a more precise relation between apparent locality an
higher cutoff. This may lead to a better understanding
quantum gravity, and perhaps even a new class of
completions.
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APPENDIX A: RAISING THE SCALE FOR A SINGLE
MASSLESS GRAVITON

In this appendix we show that a theory with a single m
sive graviton must break down byL3. We demonstrate this
by considering all possible extensions to the Fierz-Pauli
grangian and calculating of all the tree level amplitud
which must cancel. Because of subtleties with a poss
non-linearly realizedU(1) invariance, this brute-force ap
proach proves to be more convincing than possible sym
try based arguments.

Start with the Fierz-Pauli Lagrangian:

LF P5AgR~g!1
1

4
~@h2#2@h#2!. ~A1!

The strongest diagrams generated by this Lagrangian b
up atL5, but there are also diagrams which get strong atL4
9-7
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and L3. More explicitly, for diagrams with four externa
lines, theL5 is scalar scattering through scalar exchange,L4
is scalar scattering, andL3 is either vector scattering throug
scalar exchange or scalar vector scattering. In general, ve
exchange contributes at the same order as the correspon
quartic vertex.

The only terms which may help cancel these tree-le
scattering processes are cubic and quartic inh:

DL5c1@h3#1c2@h2#@h#1c3@h#31q1@h4#1q2@h2#@h2#

1q3@h3#@h#1q4@h2#@h#21q5@h#4. ~A2!

It is not necessary to consider terms with space-time der
tives acting onh, because they contribute to amplitudes w
different momentum dependence than the ones we are tr
to cancel.

Now, we want to study the interactions coming from the
terms. As usual, we do this by introducing Goldstone bos
via h A1AT1ATA and invoking the equivalence theorem
We work at high energy, where any gauge dependent m
the Goldstone boson may have is irrelevant, and taken t
zero. This implies that@A#5@F#50 if these fields corre-
spond to external lines~i.e. on-shell, massless particles!. In
particular, quartic terms which involve@h# and cubic terms
which involve @h#2 do not contribute, at first order, to dia
grams with four external longitudinal modes. So,q3 , q4 , q5
andc3 contribute only aboveL3 and we can ignore them.

Thus, the interactions which may contribute up to fou
order inLF P1DL are
s

n
w
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LA5~116c1!@A2AT#1~2114c2!@A#@AAT#12c1@A3#

14c2@A2#@A#12q1@A4#1~6c118q1!@A3AT#

1~3c114q1!@AAATAT#1S 1

4
13c112q1D @AATAAT#

1S 2
1

4
12c214q2D @AAT#@AAT#1~2c218q2!@A2#

3@AAT#14q2@A2#@A2#. ~A3!

The first processes we consider involve scalar exchange.
placing A→F once for each of the cubic terms in~A3!
shows that the relevant interactions are

LA.f@~116c118c2!An,a,mAm,a,n

1~2118c2!Aa,n,mAa,m,n#. ~A4!

We have integrated by parts to remove the derivatives fr
f. Amplitudes coming from these vertices are strong at
ther L5, if the externalAm are longitudinally polarized~i.e.
Am→f ,m), or atL3, if the externalAm are transverse. Eithe
way, the amplitude will be proportional to the scalar curre
in Eq. ~A4! squared and so Eq.~A4! must exactly vanish. So
c25 1

8 andc152 1
3 .

Next, we will look at theL3 diagrams from the proces
AA→FF, which get a contribution from the vector ex
change:
.

The total amplitude, with the values forc1 andc2 we just derived, is equal to

~4q121!@16~k3«1!~k3«2!tu18~k1«2!~k3«1!t218~k1«2!~k3«1!tu18~k2«1!~k3«2!tu18~k2«1!~k3«2!u2#

1~114q118q2!@8~k1«2!~k2«1!~ t21u2!#1~118q1116q2!@24~«1«2!~ t31u3!#

1~314q1124q2!@28~«1«2!~ t2u1u2t !1~3116q1132q2!@24~k2«1!~k3«2!~ t21u2!#

1~1124q1132q2!@24~k3«1!~k3«2!~ t21u2!#1~3124q1132q2!@4~k1«2!~k2«1!tu#. ~A5!
of
D
up
We have usedk45k11k22k3 and the Mandelstam variable
s[k1k25k3k4 , t[k1k45k2k3 and u[k1k35k2k4. The
terms are grouped to illustrate that no choice ofq1 and q2
will make the entire amplitude vanish. Therefore, there is
Lagrangian for a single massive graviton which breaks do
aboveL3.
o
n

APPENDIX B: CANCELLATIONS IN TRUNCATED KK
THEORY

In this appendix we calculate the tree level scattering
the light graviton modes in a Kaluza-Klein theory of 5
gravity. Along the way, some subtle issues about setting
9-8
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CONSTRUCTING GRAVITATIONAL DIMENSIONS PHYSICAL REVIEW D68, 024029 ~2003!
the calculation and using the theory space formalism are
dressed. In particular, we now defend the choice of a cir
which initially seems more complicated than the interv
because of the extra graviphoton degree of freedom and
degenerate spectrum. For a somewhat similar gauge th
calculation the reader is referred to@10,11#.

For a general compactification, the KK wave functio
x j (z) depend on the the geometry and the boundary co
tions. This lets the Lagrangian be expressed, before the t
cation, as the infinite sum

L5( oi j
2 GiGj1oi jk

3 GiGjGk1•••. ~B1!

The on are constants determined by overlap integrals of
x j . For example, if we compactify on a circle of radiusR,
thenxn(z)5e2p i (nz/R) andoi j 5*x ix jdz5d( i 1 j ).

We now need a prescription for going from the KK bas
to the theory space basis. That is, we need to choose dis
wave functionsgi5ci j Gj . Of course, the obvious choice is
discrete Fourier sum, but we have to be very careful. T
essential requirement for a nice theory space represent
is that interactions which take place at fixedz in the 5D
theory ~that is, those which do not depend on]z) should
transform to interactions which take place on a single sitj.
That way, theR4D part of L ~4.1! will have a separate gen
eral coordinate invariance for each site, and all the inter
tions of the longitudinal modes will come from the]z part.
This has the advantage that all the interactions will be p
portional to MPl

2 ]z
2;MPl

2 m2 instead of MPl
2 ]2;MPl

2 E2

@MPl
2 m2. The only way this will happen is if we can choos

the discrete wave functions to have all the same overlap
tegrals as the continuous wave functions:

oi •••k5
1

RE0

R

dzx i•••xk5
1

N (
n

cin•••ckn . ~B2!

For a general KK theory this is not possible. But if we com
pactify on a circle,xn(z)5e2p i (nz/R), then cab5e2p i (ab/N)

satisfies~B2!. Of course,any KK theory has a theory spac
representation, but in general the theory space will not s
plify the structure of the interactions. For example, it is n
possible to satisfy Eq.~B2! on an interval, and so there wi
be strong interactions simply from the sites’ Lagrangia
While amplitudes involving these interactions must can
other amplitudes at the end of the day, we get this cance
tion for free if we choose to the circle where Eq.~B2! holds.

1. Circle Lagrangian

The truncated KK theory on a circle has a degenerac
each mass level. We will need the quadratic, cubic, and q
tic parts of the KK Lagrangian which come from Eq.~4.3!:
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L.MPl
2 LK~GnG2n!

2MPl
2 m1

2Fmnd~n1m!~@GnGm#2@Gn#@Gm# !

1mnd~m1n1p!H 1

2
@Gp#@GmGn#22@GmGpGn#

1@Gn#@GpGm#1@Gm#@GpGn#J
1mnd~m1n1p1q!H 2

1

4
@GpGq#@GnGm#

2@GnGp#@GmGq#1@GnGpGmGq#

12@GnGpGqGm#J G . ~B3!

The delta functions enforce KK number conservation, wh
is equivalent to momentum conservation in the fifth dime
sion. There are other cubic and quartic terms, but they
irrelevant for the scattering processes we consider, and s
omit them for clarity.LK is the standard kinetic Lagrangia
for a spin two field, as shown in Eq.~2.3!, and has the same
form for each KK mode.

At this point, we could Fourier transform Eq.~B3! to the
site basis. This is not hard, but the explicit form of the s
Lagrangian is actually unnecessary for the calculations
are interested in. We know that in unitary gauge, the L
grangian will have only one general coordinate invarian
under which all thegj transform as tensors. TheN21 bro-
ken GC symmetries correspond to the massive gravito
whose longitudinal modes produce the strongest interact
in Eq. ~B3!. To study these interactions, we introduce Go
stone bosons on each site in theory space. That is, we rep
each site metric:

gmn
j →g̃mn

j 5
]yj

a

]xm

]yj
b

]xn
gab

j ~yj !. ~B4!

This restoresN copies of general coordinate invariance to t
Lagrangian.

This brings up another subtle issue. The transformat
properties of theya are not uniquely determined, and diffe
ent choices will actually result in different interaction
among the Goldstone bosons. Of course the scale of
strong interactions is the same for all choices, but the ca
lations of individual amplitudes may be very complicated
we do not introduce Goldstone bosons in a judicious w
For now, we will make it so that theg̃mn

a are invariant under
all N general coordinate transformations. This ensures
the interactions among the Goldstone boson will respec
global translation invariance around the circle. The drawb
of this choice is that the diagonal general coordinate inv
ance is now obscure and the Lagrangian seems to de
explicitly on N sets of Goldstone bosons. Nevertheless,
Lagrangian must be independent of some non-linear com
nation of these Goldstone fields.
9-9
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MATTHEW D. SCHWARTZ PHYSICAL REVIEW D68, 024029 ~2003!
The ya are then expanded in terms of Goldstone bos
as usualyj

a5xa1aj
a ~and, as usual, we use lowercase for t

site basis!. The Goldstone bosons are introduced in the s
basis, but are immediately Fourier transformed:aj

5e2p i ( jn/N)An. Since in the KK basis the masses are diag
nal, the bilinear couplings of the Goldstone bosons will
diagonal as well. The quadratic terms in the KK basis ar

MPl
2 ~nm1!2$@~Gn1An1An

T!~G2n1A2n1A2n
T !#

2@Gn12An#@G2n12A2n#%. ~B5!

As with the single massive graviton case, the longitudi
modes ofAn will pick up kinetic terms from mixing with
Gn. Thus, the fields have canonical normalization as fo
single graviton of massmn5nm1.

The interactions we are interested in control the scatte
of Goldstone bosons. So after introducing the Goldsto
bosons in the site basis, we project out their interactions a
Sec. III by settinggmn

j 5hmn . In the matrix notation@cf. Eqs.
~3.8! and ~3.4!# this corresponds to

gj aj1ajT1ajTaj . ~B6!

Because we have introduced the Goldstone bosons on
sites, and they are therefore summed over, this implies

Gn→An1AnT1AmTAn2m. ~B7!

Thus, KK number will be preserved in Goldstone scatteri
We have glossed over another subtle point. Introduc

Goldstone bosons on the sites is very different from ass
ing a general coordinate invariance to each KK modeGmn

n .

That would amount to replacingGn An1AnT1AnTAn

which leads to interactions whichviolate KK number con-
servation. We are free to do this, and the physics will
exactly the same since both Lagrangians are the sam
unitary gauge, but it will be much harder to calculate. N
only will we have introduced KK number violating interac
tions, but we will also have introduced interactions into t
R4D part of the Lagrangian which, as we noted before, c
be canceled for free.

2. Radion and graviphoton

The next step is to decide which of the massless fie
have strong enough couplings to contribute to scattering
the massive KK gravitons modes. Since the radion,r, and the
graviphoton,Vm , are massless, they get normalized w
MPl . Indeed,V’s kinetic term is already present inL and the
radion picks up a kinetic term from mixing with the massle
zero-mode graviton. Heuristically,
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L5MPl
2 AG0$R~G0!er1~Vm,n2Vn,m!2%1•••

5MPl
2 G0hG01MPl

2 r hG01MPl
2 ~Vm,n2Vn,m!21•••.

~B8!

So canonical normalization is

Vm
c 5MPlVm and r c5MPlr . ~B9!

Independent of the detailed tensor structure, the coupling
the massive fields have the form

L5•••1
]2

MPl
r cAn

cAn
c1

]3

MPlmn
VcAn

cAn
c1

]4

MPlmn
2

r cFn
cFn

c

1
]5

MPlmn
3

VcFn
cFn

c1•••. ~B10!

We will study below the strongest contributions to tree-lev
scattering processes with each type of external lines. We
see from Eq.~B10! that the exchange ofr is a weaker pro-
cess than the exchange of the Goldstone vectorAm , while
the Vm andAm exchanges are the same strength. So, to
order, we can ignorer but must includeVm . We will there-
fore need the interactions which are linear inVm and do not
involve r which were suppressed from expression~4.4!:

LV5gabgmnggdVbS 2gam,zgng,d2gam,zggd,n2ggd,zgam,n

1
1

2
ggd,zgmn,a2

3

2
ggm,zgdn,a1ggm,zgna,dD

1gmngab~Vb,agmn,z2Vb,mgan,z!

1gmnVb~2gmn,a,z22gam,n,z!1•••. ~B11!

All of the couplings that we will need below come from th
following terms in the KK decomposition of Eq.~B11!:

L.2 iM Pl
2 m1nd~n1m!Vb~2Gmn

m Gmn,b
n 1Gmn,b

m Gmn
n

22Gmn
m Gmb,n

n !. ~B12!

Now let us come back to one of the subtle issues m
tioned above. In addition to the radion and the KK gau
boson, we must contend with the zero mode Goldstone
son,Am

0 . It does not have a kinetic term, and does not p
9-10
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one up by mixing. But it does have interactions, with t
Lagrangian in its current form. The only reason we have t
mode at all is because when we introduced the Goldst
bosons in Eq.~B6! we included one set for each of theN
sites, even though the Lagrangian has onlyN21 broken co-
ordinate invariances. The interactions ofAm

0 exist because
the preserved symmetry is not the one under which all
fields on the sites transform nicely; it is the one where all
KK modes transform nicely. Suppose we had chosen

transformations of the Goldstone bosons so that eachg̃mn
j

were covariant under changes of a single coordinateys and

invariant under all the others. Then,g̃mn
s 5gmn

s and g̃mn
j

5yj ,m
a yj ,n

b gab
j for j Þs. Then there would be onlyN21 sets

of Goldstone bosons and we would not have the peculiarAm
0

field. The Lagrangian would be the same, but witham
s 50. In

terms of the KK modes of the Goldstone bosons, this imp

Am
0 52e2p i (sn/N)Am

n . ~B13!

For example, if we we takes50 then Am
0 →2Am

1 2Am
2

2•••. Now, there will be many KK number violating verti
ces. In particular, all the heavy KK modes would contribu
to scattering of the low modes. But when we sum over
diagrams, KK number should not be violated. It would
nice if we could just use the residual general coordinate
variance to setAm

0 50, but it not clear that this is consisten
There is no simple way of introducing Goldstone bosons
thatAm

0 does not appear at all. As it turns out, if we calcula
the scattering from terms generated by the substitution~B13!
into the cubic and quartic vertices involving theAm

0 , every-
thing vanishes. This implies that we are probably free jus
setAm

0 50.

3. Goldstone boson interactions

From now on, we use the notation 1[Am,n
1 , whereAm

1 is
the first KK mode of the vector of Goldstone bosons int
duced. Scattering of the the two modes in the first mass
level involves exchange of the two modes on the sec
massive level. So we needN>5 to see a non-trivial cancel
lation. Therefore, we takeN55. Note that takingN.5 will
not change the relevant vertices, as these get no contribu
from higher KK modes. So we consider the lightest fi
modes 0,1,2,21[1̄ and 22[2̄, and restrict to diagrams
involving only external 1 and 1.̄ We will also immediately
go to canonical normalizationAm

n →MPlmnAm
n and Fn

→MPlmn
2Fn. Now, we present the relevant interactio

among these fields.
We start with the cubic vertices. After a lengthy calcu

tion we can isolate the following terms relevant for diagra
with external 1 and 1̄:
02402
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LC.8@11T2̄#24@1T12̄#112@112̄#18@1T1T2̄#214@11#

3@ 2̄#12@1T1#@ 2̄#216@1#@12̄#28@1#@1T2̄#112@ 2̄#

3@1#@1#1c.c. ~B14!

It is interesting to note that we can perform a field redefi
tion to remove all the cubic terms:

2m→2m1
1

8
1b1m,b . ~B15!

Note that this substitution preserves KK number conser
tion. This is an example of the type of non-linear transf
mation we were wary of in Sec. III. But it does not actua
make the calculations of this appendix any easier, so
leave Eq.~B14! as it is.

Next, the couplings of the graviphoton can be written
@from Eq. ~B12!#

L.4iVb~1m,n1̄b,m,n21̄m,n1b,m,n!. ~B16!

We have already dropped everything which vanishes w
the Goldstone bosons, which always appear on shel
V-exchange diagrams, are massless. The interactions in
~B16! contribute to 11 scattering at the orderL3, which is
the same order as the quartic vertices and as 2 exchang

Next, we look at the quartic vertices with 1 and 1:̄

LQ.28@ 1̄1̄11#24@1T1̄1̄1#14@ 1̄1̄1T1#24@ 1̄T111̄#

14@ 1̄T1̄11#24@ 1̄T1̄T11#12@ 1̄T1T11̄#12@1T1̄T1̄1#

24@ 1̄11̄1#24@ 1̄T1T1̄1#24@ 1̄T11̄1#24@1T1̄11̄#

16@11#@ 1̄1̄#2@11#@ 1̄1̄T#2@11T#@ 1̄1̄#14@11̄#@11̄#

14@11̄#@11̄T#.

There are other terms involving@1# and@ 1̄#. These will not
contribute when the external lines are on shell, so we h
not displayed them here.

To calculate the interactions, it is easiest to project out
real and imaginary parts of the KK fields. This diagonaliz
the kinetic terms of the physical fields. To account for t
normalization as well, we make the substitution 15(1/
A8)(A1 iB) and 25(1/2A8)(C1 iD ). Then the entire nor-
malized Lagrangian we will need is
9-11
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L.2
3

16
@A4#2

1

8
@ATA3#2

1

16
@ATATA2#1

5

32
@A2#21

1

32
@A2#@AAT#

2
3

16
@B4#2

1

8
@BTB3#2

1

16
@BTBTB2#1

5

32
@B2#21

1

32
@B2#@BBT#

2
1

8
@ABAB#1

1

8
@ATBAB#1

1

8
@BTABA#1

1

8
@ATBTAB#

2
1

4
@A2B2#2

3

8
@ATABB#2

3

8
@BTBAA#2

3

16
@ATBTBA#2

3

16
@BTATAB#

1
1

8
@BTAAB#1

1

8
@ATBBA#1

1

8
@ATATBB#2

1

16
@B2#@A2#1

3

8
@AB#@AB#

1
3

32
@A2#@BBT#1

3

32
@B2#@AAT#2

1

8
@AB#@ABT#

1
1

A8
@AATC#1

1

A8
@ATATC#2

1

A8
@AA#@C#2

1

A8
@BBTC#2

1

A8
@BTBTC#1

1

A8
@BB#@C#

1
1

A8
@ABTD#1

1

A8
@BATD#1

1

A8
@ATBTD#1

1

A8
@BTATD#2

1

A2
@AB#@D#

2
1

2
@ATA#1

1

2
@A2#2

1

2
@BTB#1

1

2
@B2#2

1

2
@CTC#1

1

2
@C2#2

1

2
@DTD#1

1

2
@D2#

2
1

4
~Vm,n2Vn,m!21Vb~Am,nBb,m,n2Bm,nAb,m,n!. ~B17!
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4. Test the Lagrangian

To test the Lagrangian, we will look at some characteris
processes. Recall that the strength of a vertex for involvin
graviton of massmg is given byLl5(mg

l21MPl)
1/l wherel

is given by Eq.~2.6!. The strongest processes involve sca
exchange. And the vector exchange diagrams have the s
strength as the diagrams coming from the quartic vertice
well as the diagrams with graviphoton exchange. If we se
rate out scalar exchange, which must cancel by itself, t
the strength of a process is determined by the external li
Since this is the case, we do not even have to project ou
scalar in the external lines, we can just leave it as the lon
tudinal polarization of the vector field. We only insist that t
polarization of the eternal vector field satisfies«m,m50.

The masses of the Goldstone bosons are gauge depen
but we will only be concerned with the lowest order tr
level effects, and so we take all the Goldstone bosons to
massless. The corrections, of orderm2/k2, will only contrib-
ute to higher order processes which we will ignore. In pr
tice, this means dropping terms which conta
@A#, @B#, Am,m , Bm,m , Am,n,n or Bm,n,n . We have already
done this for the Lagrangian~B17! but more simplifications
come about for particular process.

The cubic terms’ contribution toC andD exchange can be
written as
02402
c
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me
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L.2
1

A2
Cm~Aa,bAm,a,b2Aa,bAb,a,m2Ba,bBm,a,b

1Ba,bBb,a,m! ~B18!

2
1

A2
Dm~An,aBm,a,n1Am,a,bBb,a2Aa,b,mBb,a

2Aa,bBb,a,m!. ~B19!

It is easy to see that for scalar exchangeCm→f ,m
C and Dm

→f ,m
D the above terms vanish after integrating by parts. T

means that all the scalar exchange processes, which
stronger than the corresponding vector exchange proce
vanish.

Next, consider the processfAfA→fBfB. This contrib-
utes at the scaleL4. If we make the substitutionAm→f ,m

A

andBm→f ,m
B into Eqs.~B18! and~B19! we see that there is

no contribution from vectorC andD exchange:

. ~B20!
9-12
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The quartic terms are

L.2@FAFAFBFB#1
1

4
@FAFBFAFB#1

1

4
@FAFB#@FAFB#1

1

8
@FAFA#@FBFB#. ~B21!

This does not vanish by integration by parts. If we define the Mandelstam variabless5p1
A
•p2

A , t5p1
A
•p1

B andu5p1
A
•p2

B then
this contributes

~B22!

However, there is also a contribution from the graviphoton:

L.Vb~f ,m,n
A f ,b,m,n

B 2f ,m,n
B f ,b,m,n

A !. ~B23!

This contributes through thet andu channels:

~B24!

If we apply the relations2t2u50 the quartic and exchange contributions exactly cancel.
Note that theC and D fields do not contribute at eitherL5 ~scalar scattering through scalar exchange! or at L4 ~scalar

scattering through vector exchange!. So even if we truncated the theory at the level at the first massive mode, the s
coupling scale would already be (m1

2MPl)
1/3. However, to see the cancellation of the remaining diagrams, we need to in

the effects of the heavier fields.
It is straightforward to work through the remaining scattering processes. The computations are more involved, bu

level all the amplitudes involving the Lagrangian~B17! are exactly zero.
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