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General class of brane-world black holes
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We use the general solution to the trace of the 4-dimensional Einstein equations for static, spherically
symmetric configurations as a basis for finding a general class of black(BHlemetrics, containing one
arbitrary functiong,;=A(r) which vanishes at some=r,>0, the horizon radius. Under certain reasonable
restrictions, BH metrics are found with or without matter and, depending on the boundary conditions, can be
asymptotically flat or have any other prescribed asymptotic. It is shown that our procedure generically leads to
families of globally regular BHs with a Kerr-like global structure as well as symmetric wormholes. Horizons
in space-times with zero scalar curvature are shown to be either simple or double. The same is generically true
for horizons inside a matter distribution, but in special cases there can be horizons of any order. A few simple
examples are discussed. A natural application of the above results is the brane world concept, in which the trace
of the 4D gravity equations is the only unambiguous equation for the 4D metric, and its solutions can be
continued into the 5D bulk according to the embedding theorems.
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. INTRODUCTION Gl=—A48,— k3T — keIl —E, 1

The brane world concept, which describes our four-whereG;=RZ—%5ZR is the 4D Einstein tensor\ , is the
dimensional world as a surfadgrane, supporting all or 4D cosmological constant expressed in terms of the 5D cos-
almost all matter fields and embedded in a higher-mological constant\s and the brane tensiax:
dimensional space-timéuulk), leads to a great variety of
models both in the cosmological context and in the descrip-
tion of local self-gravitating objectsee, e.g.,1] for reviews
and further referencesin particular, black holéBH) phys- 2

— _ 4 ; o
ics on the brane turns out to be considerably richer than irﬂ(4_8WGN_K5M(67) Is the 4D gravitational constanGi

general relativity, though only a few special examples of> Newton's constant of gravily T, is the stress energy ten-

brane-world BHs have been considered in detail by now°' (SET) of matter confined on the branéf, is a tensor

[2-10 (see also references thergifihus, in the spherically duadratic inT,,, obtained from matching the 5D metric

symmetric vacuum case, in addition to Schwarzschild BHECTOSS the brane:

(which lead to a black-string singularity in the bylR,6]), MY = iToT — LTTY — 1 %(T . T*F—LT2 3
there are BHs nonsingular on the braf#@ and having a 2T 21T, = 20,(Tap 2T°) @
pancake-shaped event horizon in the H@lk some of them  where T=T%; lastly, E/, is the “electric” part of the 5D
have been shown to possess unusual quantum properties pffeyl tensor projected onto the brane: in proper 5D coordi-
tentially observable on the braf#0]. nates,,= M S GIC5cpn®nP whereA,B, . .. are 5D in-

. . . 1%
Most of the results have been obtained in the simples§ices anch” is the unit normal to the brane. By construction,

framework: a single brane in%-symmetric 5-dimensional, E; is tracelessEﬁ=O [12].

asymptotically anti—de Sitter bulk, with all fields except Other characteristics (E;’L are unknown without Specify_
gravity confined on the brane. It is the so-called RS2 framei'ng the properties of the 5D metricl hence the set of equa-
work, generalizing the second model suggested by Randafions(1) is not closed. In isotropic cosmology this leads to an
and Sundrum, with a single Minkowski brane in an anti—deadditional arbitrary constant in the field equations, connected
Sitter bulk[11]. Let us also adhere to this class of models. with the density of “dark radiation’T1]. For static, spheri-
The gravitational field on the brane is then described bycally symmetric systems to be discussed in the present paper,
the modified Einstein equations derived by Shiromizu,this freedom is expressed in the existence of one arbitrary

Maeda and Sasakl2] from 5-dimensional gravity with the function of the radial coordinate. Despite this arbitrariness,

1
A5+6K§x2 ; )

A4:§K§

aid of the Gauss and Codazzi equati¢®s|: the trace of Eqs(1) may be integrated in a general form
[13,14.
Our interest here is in selecting a general class of static,
*Electronic address: kb@rgs.mccme.ru spherically symmetric BH solutions to Eq$l) without
Electronic address: Heinz.Dehnen@uni-konstanz.de specifyingE,, . In particular examples we mostly deal with
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asymptotically flat vacuum solutions, such that,=T,
=0, but the BH construction procedure is formulated in the R=—(1-B)—-B|———=+ +—|—+ =
K 2 2

general case when both matter and the cosmological constant r A 2a? 2AB T1A B
are present and the space-time asymptotic properties are not ®)
specified. b PID a4V g2 2 2 2

We will not discuss the possible bulk properties of models K=R,,7R," = 4K+ 8Ky +8K3 4Ky,
in question and only note that the existence of the corre-
sponding solutions to the higher-dimensional equations of _E

A, A? AB, 2<Ar B,)

2AA,, —A? L AB

gravity (in our case, the 5D vacuum Einstein equations with % 4 A2 AB

a cosmological tern is guaranteed by the Campbell-

Magaard type embedding theorefi$]. A recent discussion B A B 1-B

of these theorems, applied, in particular, to brane world sce-K,= o Kr K3=2—rr, Ky= 2 (6)

narios, and more references can be found in Rij.

The paper is organized as follows. In Sec. Il we present . - .
some common relations and the general solution to the trac‘ghere the subscript meansd/dr. The finiteness oK. Is a

of Egs. (1), containing an arbitrary generating functidr). natural regularity criterion for the geometries to be discussed
In Sec. IIl we analyze the properties of the metric near &"CeX IS @ sum of squares of all componeiig,™ of the
Killing horizon in a static, spherically symmetric space-time Ri€émann tensor for the metrid), thereforeX'<= is a nec-
described by the general solution. A conclusion of generafSSay and sufficient condition for the finiteness of all alge-
significance is that a space-time wiR=0 can only have braic curvature invariants. Meanwhilk, is finite if and only
horizons of orders onésimple, like Schwarzschildisand ~ If @ll K; defined in Eq(6) are finite. o _
two (double, as in the extremal Reissner-Nordstrmetrio If we treat Eqs(1) as thf(;:n conventional IZEmstﬁeln equations
ve v __ ve
and no higher. This analysis is used for formulation of twoWith an effective SEW , I8, G ==yl ", then the
BH construction algorithms. It is shown that a generic chomeﬂf'feC'fIVfFe density°", radial pressurprad and tangential pres-
of A(r) leads to a one-parameter family of solutions which,surep?" are expressed in terms #fandB as follows:
in a certain range of the parametantegration constantC,

unifies globally regular non-extremal BHs with a Kerr-like ‘ 2 eff_ B-1 B,
Gy=—rxap T

causal structure, extremal BHs and symmetric wormholes. r2 r’
Singular nonextremal BHs can be found outside this range of
C. B-1 BA
Section IV contains some simple examples, illustrating Gf_Kflpf;fd -
different features of the present formalism. Examples 1 and 3 r2 Ar
reproduce already known BH solutions from the viewpoint
of our algorithms. Example 2 is a BH solution with zero Gz=G$=K§Dfﬁ
Schwarzschild mass, illustrating violation of Thorne’s hoop )
conjecture possible in a brane world. Example 4 shows that _Bl2Ar A AB, 2 A Br .
well-behaved special solutions can be found even for such 4 A A2 AB A B 0

choices of A(r) that the trace equatiof®) has a singular
point. Example 5 illustrates the smoothness properties of The only combination of the Einstein equatiofis in a
some BH metrics at the horizon in different coordinatebrane world written unambiguously without specifyigg ,

frames. Section V is a discussion. is their trace:
We will assume that all relevant functions are analytic
unless otherwise explicitly indicated. The symbel, as R=4A,+kGTo+ rlls. 8
usual, connects quantities of the same order of magnitude in
a certain limit. Assuming that the right-hand side is a known function of the

radial coordinate, i.e., th&=R(r) is known, Eq.(8) may
be written as a Iinear first-order equation with respect to

Il. THE GENERAL SOLUTION f(r):=rB(r) [13,14):
Th(_e ger_leral static, spherically symmetric metric in 4 di- A(rA+4A)f +[r(2AA,— A +3AA]f
mensions in the curvature coordinates has the form
=2A7[2—Tr2?R(r)]. 9
2
ds?=A(r)dt?— % —r2d0? (4)  Its general solution is
r
I

_ _ 2 —3I
whered(2=d¢?+sir?0d¢? is the linear element on a unit (") (4A+rA,)2j (AA+TA)[2=17R(r)]e = dr

sphere. (10)
Let us write down the scalar curvature and the
Kretschmann scalar for the metr(d): where
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A.dr used for continuing the metric through the horizon on equal
T‘UFJM- (1) grounds withu. The continuation will be analytic if both
' A(u) andr(u) are analytic au=h.
Thus, choosing any smooth functigk(r), we obtainf(r) Assuming Eq.(14) and directly employing the relations

from Eq. (10), and, after fixing the integration constant, the (13), we find that
metric is known completely. _ (r_r \(k+25-2)/s

If the function R(r) is not specified, Eq(10) is simply ) ~B(r)~(r=rp) asu—h. (15
another form of the trace of the Einstein equations. Itis valid g the other hand substitutirg= A(u) ~ (r —r,)¥S into
for anystatic, sphericglly symmetric r.net'riq, at least in rangese solution(10) and assuming that the quantig(r)=2
of r where the quantityA(4A+rA,) is finite and nonzero —r2R(r) is finite atr=r,, (which is generically the cajeit

and wherer = | —g,, is an admissible coordinate. The latter j5 easy to obtain that near

means, in particular, that Eq10) is applicable to a worm-

hole metric only on ongbut eithej side of a wormhole f(r)~B(r)~(r—r)? ¥[(r=rp¥s+C], (16
throat (see[13] for detail9 and is evidenly invalid for flux- _ _ _

tube metrics, characterized loy,= const. whereC is an integration constant ar@@i=0 corresponds to

For a given SETT”, the dependencB(r) is not always the case vv_hen integration in E(q.O) is performed fronr,, to
known, but in the vacuum cas'lé/”L:O, so thatR(r)=4A,, r. Cqmparmg the exponents_ln Eqdb) and (16_3_), we see
the solution to the Einstein equations can always be writteﬁhaté') in caseC=0: k=2, sis not restricted{ii) in case

in the form (10) under the above evident restrictions. #0: k=1, sis not restricted. _
Thus, to obtain a solution with a horizon etr,,, we

should takeA(r) behaving as(—rp)*'s with k=1 or 2 and
se N.
A. Conditions at horizons An important point is that, under the conditidR(r)

Before singling out BH solutions on the basis of EtQ), #2Irf, a horizon can be either simpl&<1) or double k
let us first formulate the conditions under which the generat=2): horizons of higher ordersdo not appear. This is true,
ing function A(r) leads to a metric with a Killing horizon. N particular, for all static, spherically symmetric metrics
The latter is a surface where a timelike or spacelike KiIIingW'th R=0. )
vector becomes null. To describe Killing horizof® be '56" us now look at what changes when the function 2
called horizons for shortin spherically symmetric space- — ' R(r) vanishes at=ry. One can write
times, it is helpful to use the so-called quasiglobal coordinate 5 .2 e P
u specified by the conditiog;;g,,=—1. The metric(4) is Qr)=2=r"R(r)~(r=ry)",

Ill. BLACK HOLE CONSTRUCTION

then rewritten in the form p=0,1,2..., nearr=r,, (17)
2
ds?= A(u)dt>— du —r2(u)dQ?, (12) preserving the assumptiofs4). Sop=0 corresponds to the
A(u) above generic cag@(r,) #0 andp>0 means thaQ(r) has

a zero of ordep. Then the expressiofi5) for f(r) remains

where the variables are connected with those in @)as e same but Eq16) must be replaced with

follows:
f(r)~B(r)~(r—rp)?> ¥S[(r—ry)¥s*P+C]. (18

r 2
A(U)=A(r), r(u)=r, Aw)(ﬁ) =B(r). (13 consequently, in cas€+0 the metric behaves as before,
whereas folC=0 we obtain near=ry,
The reason for using this coordinate is that, in a close

neighborhood of a horizofa sphere wherg,=0), it varies A(r)~(r=rp)P™25  B(r)~(r—ry)P*?,
like manifestly well-behaved Kruskal-like coordinates used ps+2
for an analytic continuation of the metii¢7,18. Using this A(u)~(u—h)>>", (19)

coordinate, one can “cross the horizons” preserving the for-

mally static expression for the metric. Bothandr must be thalzlz)s\/’vaaz(;ﬁfnoi?\ of_ogdzﬁsrtZr. ~0. one can rewrite E
smooth functions ofi near the horizom=h, so that o A= — o hT a-
(10) in the form

A(u)~(u—h)¥, r(u)=r,+constu—h)s, (14

2Ae* r
wherek=1,2, ... is theorder of the horizorithe horizon is Hr)=rB(r)= (4A+rAr)2{ frh(4A+rAf)
simple if k=1, double ifk=2, etc) while the numbers
=1,2,... characterizes the possible behaviorrdt); ry, 2 _ar
>0 is the horizon radiugWe leave aside possible horizons X[2=r"R(r)Je" " dr+Ct. (20

of infinite radius which can in principle appear as wélr].)
Generically but not necessarily one he&s 1. Whens=1  The above analysis shows that this relation leads to a metric
(i.e.,dr/du is finite at the horizop the coordinate can be  with a horizon afr =r,, in two cases:
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(i) A~(r—rp)s, asr—ry,, se N. Then Eq.(20) leads to Let us return to the solutiofiL0), or Eq.(20). Due to its

a metric with a simple horizon in cage#0 and a metric generality, it certainly describes all BH metrics, at least

with a horizon of order 2 ps in caseC=0. piecewise. We can, however, formulate explicit requirements
(i) A~(r—rp) ¥ asr—ry,, sodd. Then Eq(20) leads to  to the generating functioA(r) under which Eq(10) leads

a metric with a horizon of order2psin caseC=0. algorithmicallyto a BH metric. Namely, let there be a range
Here, as before, the paramefecharacterizes the behav-

ior of Q(r) according to Eq(17). RIr M mae>T>Th, 1h>0, (21)

Item (i) does not include solutions wit+ 0. The point
is that in caseA~(r—rp)?, C+#0, the metric is singular at in which the r.h.s. of Eq(9) is positive:
r=ry, asis confirmed by calculating the Kretschmann scalar
(6): its constituent, blows up atr —r,,. For odd numbers o2
s>1, the correspoznding mearic witl;~(r—rh)2’s, C#0 QIr)=2-r"R(n>0. 22
has a finite Kretschmann scalar but loses analyticity at ) ] . )
=r,, and therefore cannot be analytically continued through! hen the above item§) and (ii) lead to the following BH
this sphere. Indeed, in this cage-r,~(u—h)s(pst2) ~— construction algorithms.

where the exponent is a fraction for any oddand p (BH;). Specify a functiorA(r), positive anq analytical in
=0,1,2... . The metric is thus only continuous RLrl. in such away thag(r)=4A+rA,>0 in R[r] and
(C%smooth at u=h in casep>0 and C~1"2smooth in A~(r—ry)™® selN, asr—ry. Then the functioné\(r) and
casep=0. B(r) given by Eq.(20) with C=0 determine a black hole

metric (4) with a horizon atr =r},. The horizon is simple if
o _ C>0; in caseC=0 itis of the order 2 psif Q(r) behaves
B. Definition and algorithms according to Eq(17).

We have been so far discussing local conditions at pos- (BH2). Specify a functiorA(r), positive and analytical in
sible Killing horizons. Let us now turn to space-time prop- R[r], in such a way thag(r)=4A+rA,>0 in R[r] and
erties at large and try to select BH metrics. We shall not need~ (r —r,)?® asr—ry, s being an odd positive integer.
a general rigorous definition of a BHL9] which in turn ~ Then the functionsA(r) and B(r) given by Eq.(20) with
needs such notions as strong asymptotic predictabilityc=0 determine a black hole metrid) with a horizon atr
trapped regions, etc. The following working definition will =ry, of the order 2+ ps if Q(r) behaves according to Eq.
be appropriate for our purposes. (17).

Definition. The metric(12) is said to describe a black hole Both algorithmgBH1) and(BH2) lead to double horizons
if (a) the functionsA(u) andr(u) are analytic in the range in caseC=0 if Q(r,)>0.

R[u]:h=u<up Whereu,,, may be finite or infinite;(b) To obtain asymptotically flatBHs, one should assume
r(u)>0 in R[u], andr(Umg>r(h)=ry; () A(u)>0 atu  r'na=2 and restrict the choice @i(r) to functions compat-
>h, and A(h)~(u—h)* ke N asr—r,. ible with asymptotic flatness. Properly choosing the time

Item (c) means thati>h is a static regiorfR regioy ofa  scale, we can require a Schwarzschild behavioAok=1
static, spherically symmetric space-time while the sphere —2m/r+o(1/r) asr—«, wherem is the Schwarzschild
=h, a boundary of this region, is a Killing horizon of a mass. Equatior(20) then leads to the proper behavior of
certain orderk. So, in usual terms, our working definition B(r), i.e.,B—1 asr—«, provided the curvatur® decays
describes the domain of outer communication of a BH, andjuickly enough:R(r)=o(r %) asr—oe.
u=h is its event horizon. One can notice that both algorithms use theoordinate

The definition uses tha coordinate rather than due to  whereas the BH definition usesA transition tou is accom-
its advantage in horizon description, discussed in the previplished with Eq.(13). The conditions ofBH1) and (BH2)
ous subsection. The difference is really essential: there amguarantee thaB>0 at r>r,,, therefore, choosingir/du
metrics which behave nonanalytically in terms ofat r >0 in Eq.(13), we evidently satisfy the BH definition.

=r(h)=ry but analytically in terms ofi at u=h (see vari- The condition(22) can be weakened: what actually must

antss>1 in Sec. lll and example 5 in the next secbion be required is that the integral in E¢RO) should remain
The analyticity requirement rejects possible cases of repositive inR[r].

stricted smoothnegdsee the end of Sec. llI)Alt is not only Another condition of both algorithmsg(r)=4A+rA,

a matter of simplicity: in our view, if we are dealing with a >0 in R[r], allows one to avoid a singular point of E®),
field configuration, its nonanalyticity at a certain surfacewhere the coefficient of the derivativig vanishes. This co-
must have a physical reason, e.g., a phase transition, andsifficient also vanishes at horizons, which have been already
seems too artificial, a kind of perfect fine-tuning, to assumaliscussed. The points whee+0 but g=0, if any, also
that the phase transition occurs precisely at a horizon. deserve special attention. However, the equaityO itself
We do not requirer (Umg) =2 Since we do not want to has no evident geometri@nd hence physicaimeaning; it
rule out metrics with cosmological horizons like the only represents some technical difficulty in our description
Schwarzschild—de Sitter space-time where an R region iwith the aid of Eq.(9).
situated between a BH horizon and a cosmological horizon. Points whereg=0 are avoided by most asymptotically
We, however, adopt the requiremearfu,,)>r, to exclude flat BH metrics. Indeed, in this cage=0 at the horizon and
configurations with only cosmological horizons. g=4 at infinity; the conditiong(r)>0 means that*A is a
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strictly increasing function of, which is the case, e.g., for all
functionsA(r) monotonically growing from O at the horizon
to 1 at infinity.

However, one can easily verify that such points inevitably

appear in other important situations, e.g., between a regula R
center and a cosmological horizon or between two simple
horizons.
It can be shown that if the choice of the generating func-
tion A(r) leads tog(r) with a simple zero at some=rg R

e R[r], then there is a unique nonzero value of the constant
C [namely, when integration in E¢10) starts fromr ] mak-

ing it possible to avoid a singularity of the metricratry.

So algorithm(BH1) survives, but it now gives a single solu-
tion with a horizon instead of a family parametrized Gy
(see example 4 in Sec. )VAlgorithm (BH2) requiresC

=0 and therefore does not work.

(@): C <0 (b): C=0 (©: C>0

FIG. 1. Carter-Penrose diagrams for a generic family of asymp-
C. Generic behavior of the solutions: Wormholes totically flat solutions:(a) a symmetric wormhole(b) an extremal
and regular BHs BH in case there is a singularity inside the inner R region, @hd

.regular BH. Diagramgb) and (c) can be infinitely continued up-

_Let us discuss the properties of the metric in the generiGarq and downward. The letters R and T mark stéfigand cos-
situation that leads to a BH according to algoritfit1): let mological (T) regions, respectively. Spatial infinityr €) is

A(r) be a well-behaved positive functionrat r, and have a  ghown by double lines, horizons#r,,) by single thin lines and the
simple zero atr=ry, and let alsoQ(rp)>0. Then, in & singularity in(b) by a thick line. Dashed lines show the wormhole
small neighborhood of=r,, one can write throat in diagram(a) and the bouncing time instants in diagréoh
A =Aq(r=rp)+o(r=rn), that the wormhole throat, having moved into a T region,
becomes a bouncing time instant of the scale factor a
B(r)=B1C(r —ry) +Ba(r—rp)+o((r—rp)?), Kantowski-Sachs cosmology.
(23 Assuming asymptotic flatness at largeone can use the
o - ) ) standard methodology to obtain the corresponding Carter-
with fixed positive constant8,, B, andB,. The integration  penrose diagram describing the global causal structure: it
constantC is a family parameter, an€=0 is its critical  ¢oincides with that of the Kerr or Kerr-Newman nonextremal
value at which the solution drastically changes its propertiesg [19] (but without a ring singularity and contains an
If C<0, B turns to zero atr =ry,=ry+|C|B1/B;>Ih. infinite sequence of R and T regions.
[Here,|C| should be small enough for the solution to remain By continuity, this behavior is preserved in a finite range
in a range where Eq23) is still approximately valid. One  of C values(see examples 1 and 2 in the next sectidiie
obtainsB(r)~B,(r —rp)(r —rmis), so thatB(r) has a simple  conclude that each generic choiceAgir) with a simple zero
Zero atr =rp;,, whereasA(r ) >0. Such a behavior of the at r=r, leads to a family of solutions unifying symmetric

metric functions corresponds to a symmetric wormholeyormholes C<0), extremal BHs C=0) and regular non-
throat atr=rp, [13]. The substitutionr =r i, +X% xeR,  extremal BHs C>0), see Fig. 1.

makes the metri¢4) regular atr =r,;;, (x=0), and all met-

ric coefficients are even functions af Thus our solution

does not reach the anticipated horizonar,, and describes a IV. EXAMPLES
symmetric wormhole.

In caseC=0, as already described, we obtain a double
horizon atr =r,,, and the geometry is smoothly continued to  For this Schwarzschild form oA(r), the solution(10) in
smallerr, where the further properties of the metric dependthe vacuum casB=0 can be written as
on the specific choice 0A(r).

If C>0, thenB>0 atr>r,,, turns to zero at the horizon f(r)= W
r=r, and again turns to zero in the T regionratr ,i,=rp r—3m/2
—CB,/B,<ry. This, as before, bounds the rangerdfom
below in a way similar to a wormhole throat. The coordinate\yhere r is an integration constant. The metric takes the
singularity atr =rq is again removed by the transformation ¢4,
r=rmin+X% but nowx is a temporal coordinate in a T region,
where the metrid4) describes a Kantowski-Sachs cosmol-
ogy with two scale factors(x) andA[r(x)] and theR x $? d52=<1— 2—m>d ,  1-3m/(2r) dr2— 12402
topology of spatial sections. Hences0 is the time instant r (1—=2m/r)(1—rq/r) '
at whichr(x) experiences a bounce. It can be roughly said (25

Example 1: A(r)=1—2m/r, m=const>0

: (24)
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The Schwarzschild metric is restored in the special ¢gse 2rz=h?+(h—C)?, (28)
=3m/2. The metric(25) was obtained by Casadio, Fabbri

and Mazzacurat[7] in search for new brane-world black

holes and by Germani and Maartdi#3 as a possible exter- Which is a symmetric wormhole throgt3].

nal metric of a homogeneous star on the brane. Without re- In caseC=0, r=h is a double horizon, and the Carter-
peating their more detailed descriptions, we will outline thePenrose diagram coincides with that of the extremal

main points in our notations. Reissner-Nordstrm metric[Fig. 1(b)], but a timelike singu-
BH metrics appear according to algorithi®H1), where larity due toB—o takes place at= h/+\/2.

C=0 corresponds top=2m andC>0 tory<2m. In case In case B<C<h, inside the simple horizom=h, the

ro>2m, the metric(25) describes a symmetric traversable function B(r) turns to zero ar =ry, given by Eq.(28),

wormhole[13]. which is now betweeh andh/+/2, and we obtain a Kerr-like

In caser,=2m we have a double horizon at=2m: near  regular BH structure with an infinite sequence of R and T
r=2m, the coordinate is connected with the quasiglobal regions[Fig. 1(c)]. We see that the description of Sec. Il C
coordinateu by r —2m~ (u—u,)?, u;, being the value ofiat s valid in the whole rang€ <h of the integration constant
the horizon, and4(u)~(u—uy)2. The Carter-Penrose dia- C.
gram coincides with that of the extremal Reissner-Norastro ~ The valueC=h leads to the simplest metric with=B
metric [Fig. 1(b)] with the only difference that the timelike =1—h?/r2, which may be identified as the Reissner-
curvature singularity occurs at=3m/2 instead ofr =0. Nordstran metric with zero mass and pure imaginary charge.

In casery<2m, as in the Schwarzschild metric2mis  The space-time causal structure is Schwarzschild, with a ho-
a simple horizon, and, as described in Réf, the space- rizon atr=h and a singularity at =0. Lastly, in caseC
time structure depends on the sign pfry,—3m/2. If >h the causal structure is again Schwarzschild but the sin-
<0, the structure is that of a Schwarzschild black hole, bugularity due toB—c occurs atr = h/+/2.
the spacelike curvature singularity is located at3m/2 in- This example is of certain interest in connection with
stead ofr=0. If >0, the solution describes a nonsingular Thorne’s “hoop conjecture,” claiming that a BH horizon
black hole with a wormhole throat at=r inside the hori- forms when and only when a maskgets concentrated in a
zon, or, more precisely, it is the minimum valueradt which ~ region whose circumference in every direction is smaller
the model bounces. The corresponding global stru¢ftiress  than 47GM, G being Newton’s constant of gravity20].
the same as that of a nonextremal Kerr BFg. 1(c)]. Nakamuraet al. [21] recently found an example of a cylin-

Thus the metric properties in the whole rangg>3m/2  drical (i.e., infinitely long matter distribution on the brane
of the integration constanmt, entirely conform to the descrip- able to form a horizon and thus violating the hoop conjec-
tion in Sec. Ill C for both positive and negati& ture. The present example of a zero mass BH shows that, in

The components of the effective SET) have the form  the brane-world context, a BH may existt least as a solu-
tion to the gravitational equations on the bramghout mat-
ter and without mass, solely as a tidal effect from the bulk

m(2r,—3m
Kﬁ eff— %, gravity. The effective SET is in this case certainly quite ex-
r<(2r—3m) otic from the viewpoint of the conventional energy condi-
tions:
K2pe=— M,
r2(2r—3m) » o D% h%(C—h)(3r’—h?)
Kap— ="~ A r4(2r2—h2)32
(r—m)(2ry—3m)
kapS= 2o am? (26)
r<(2r—3m) 2 _ 2. 12
szeﬁ_h (C—=h)(r“+h?)
Prad= 4 T T o
Example 2: A(r)=1—h?%r?, h=const>0 ot rd2r2-n?)r2
This form of A(r) represents a metric with zero
Schwarzschild mass. _ . , h2  (C—h)(r*+2h2r2—h?
BH solutions are easily obtained: E§O) with R=0 now KapL eff— — i T 33h (29
gives r r4(2r2—h?)

h? C—h . : o
f(r):rB(r):r<1__)(1+—>_ (27) In the"5|mplest caseC=h it has the “anti—Reissner-
2 J2r?—h? Nordstran” form, or ~4diag(—1,—1, 1, 1).

In accord with(BH1), the sphere =h is a simple horizon if
C>0 and a double horizon i€=0.

In caseC<0, B(r) has a simple zero at=r4>h given For this extremal Reissner-Nordstnoform of A(r), the
by solution (10) with R=0 and the metric can be written as

Example 3: A(r)=(1—2m/r)?, m=const>0

024025-6
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(r=rg)(r—ry) mr
fN="—"—" n=— (30
2 -1 -1
dszz(l—z—m) dtz—(l—r—o) (1—r—1) dr?
r r r
—r2dQ>2. (31)

The form of A(r) fits algorithm(BH2), and accordingly
we obtain a BH solution in the only casg=r,;=2m, i.e.,
when the integration in Eq(20) is conducted fromry,
=2m, so thatC=0. It is the extremal Reissner-Nordsimo
metric, and accordingly the effective SET ¥ ;eﬁ
«r 4diag(1,1,—1,—1).

Other values of 4 lead either to wormholeghe throat is
located atr=rq if ro>2m or atr=r,;>2m in case 2n
>ro>m), or to a naked singularity located &t 2m (when

ro<m) as is confirmed by calculating the Kretschmann

scalar—see more detail in R¢fL3].

Example 4: A(r)=1—r?a?, a=const>0

The above examples described vacuum asymptotically flat

BHs. Now, choosing the de Sitter form &f(r), we will

PHYSICAL REVIEW D58, 024025 (2003

as suggested by E(L5) for any positive integesin the case

of a simple horizon, and transform it to a coordinate which
behaves likeu nearr,=2m, namely, put -2m/r=x° [we

do not directly use the transformati@h3) sinceu(r) then
looks too cumbersonjeThe metric takes the form

22 2
ds?=xdt*— ames dx?— 4m dQ2.
x(1—x%)% (1—x5)?

(34)

Its asymptotic flathess at=1 is not so evident, but evident
is the behavior ak=0 as expected at a simple horizon. In
cases=1 it is the Schwarzschild metric. Fep>1 it is not a
vacuum solution to Eq9); the effective SET is easily found
according to Eqs(7); it decays at large asr 4, in particu-
lar, its trace isk, > times the scalar curvature

1-1/s
[2m—s(r+2m)].

R 2 2 1
= — 4+ —
r2 r3s

r

The same substitution-42m/r =x*° applied to the metric

2m 2/s 2m -2
ds?= 1—7) dtz—(l—T) dr2—r2dQ? (35

write the solution(10) for a vacuum configuration with a with m>0 andse N reveals a double horizon at=2m.

cosmological term, so th®=4A ,=12/a?, in the regionr
<a. We obtain

re K
f(r)=rB(r)= 1—; r+m , (32)

where K is an integration constant such thid&=0 corre-
sponds to integration in Eq10) from r=r =a\2/3 tor.
The valuer =r is the one wherg(r)=4A+rA, vanishes.
In full agreement with the description in Sec. Il B(r)
tends to infinity asr—rg unlessKk=0, and thus the only
well-behaved solution is de Sitter, with=B=1-—r?/a?.
This example illustrates what happens when &).has a
singular pointg=0 in the range of interest.

Example 5: A(r)=(1—2m/r)¥s, m=const>0, se N

V. CONCLUDING REMARKS

Using the trace of the 4D Einstein equations, written as a
linear first-order ordinary differential equation and inte-
grated, we have formulated some general requirements to the
(arbitrary) generating functioi\(r)=g,; which are sufficient
for obtaining static, spherically symmetric BH metrics — see
algorithms(BH1) and (BH2). The BHs may be asymptoti-
cally flat or have any other largebehavior.

We have seen that, under some natural restrictions, BH
metrics are easily constructed in vacuum or in the presence
of matter for which the dependen&¥r) may be specified.
However, not every kind of matter distribution admits a ho-
rizon inside it. No horizon can appear, e.g., in a perfect fluid
with the equation of statp=np, ne N: the conservation
law then impliesp=poA~(""172 p =const, so thap—»
asA—0. More generally, at a horizon, the effective S&T

We here try to give an example of a metric behavingshould satisfy the conditiop®™+p"=0. Indeed, one can

nonanalytically atr=ry in terms of r but analytically in
terms of the quasiglobal coordinatedefined bygyg,,=

—1, see Sec. lll A. A certain difficulty is that the solution

(10) for this choice ofA(u), even in the simplest cade

=0, is expressed with the aid of the hypergeometric func-
tion, which can hardly be a very clear illustration. We there-

fore simply take the following “artificial” example of an
asymptotically flat metri¢4):

2m 1/s
ds’= 1—7) dt?

_(1

dr’—r2dQ?,

2m\ ~ 2+1/s
) (33

write in terms of the metri¢12):

2
L (36)
r du?
[recall that.A(u)=A(r)], which leads top®™+pcf=0 at
regular points whered=0.

The same quantity is negative at wormhole thrgétss
the well-known violation of the null energy conditig22])
but is positive at bounces in T regions. Equati{86) shows
that this property is quite general: at a minimunmrpfvhere
d?r/du?>0, one hasp®™+p&f<0 if A>0 (a throaj and
p®™+peT>0 if A<0 (a bouncg
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A feature of utmost interest is the generic appearance abur view, nonsingular 4D metrics, such as the wormhole and
families of solutions which unify symmetric wormholes and regular BH metrics described here, are more likely to have
globally regular BHs with a bounce ofin the T region and regular continuations into the bulk than singular BH metrics.
a Kerr-like global structure. The two qualitatively different ~ The above embedding ambiguity exists even in the sim-
branches of any such family are separated by an extremal Bplest brane world models of RS2 typél], possessing a
solution. single extra dimensionZ, symmetry with respect to the

Certain care should be taken about possible zeros (brane and no matter in the bulk, to say nothing of more
=r) of the functiong(r)=4A+rA, which is a coefficient complex models. The latter may include scalar fields in the
of the derivativef, in Eq. (9). We have shown that even if bulk[5,23], multiple (at least twg braneq 24,25, more than
the choice ofA(r) leads tog(r)=0 at somer, a well- One extra dimensiof26], timelike extra dimensions, lacking
behaved solution can generically be obtained. 7, symmetry, a 4D curvature terf27] etc.; see further ref-

The whole consideration is quite general and may finderences in the cited papers and the revigls To improve
application in general relativitywhere our effective SET the predictive power of brane world scenarios, it seems nec-
T/ is simply the matter SET including a possible cosmo-€ssary to remove the “redundant freedom,” applying reason-
logical tern) and alternative theories of gravity that use able physical requirements such as regularity and stability to
modified Einstein equations. As usual, for a particular kindcomplete multidimensional models. _
of matter, the theory will give one more independent equa- Much work in this direction has already been done. Dif-
tion for the two metric functions to be found(r) andB(r)  ferent methods of solving the bulk gravity equations for
in our notation, and the set of equations will be determined@iven brane configurations have been develdpge, 14,28,

The most natural application of these results is, howeverand the bulk properties of some particular brane-world BHs
the brane world concept where the trace of the Einstein equilave been studief®,4—6,9. In particular, in Ref[9], using
tions is the only equation of 4D gravity which can be written @ Multipole-type expansion, it has been shown that the hori-
unambiguously using only 4D quantities. Being a singleZon of the BH metric(25) in case In>r,>3m/2, being
equation for the two unknown function(r) andB(r), it ~ continued into the bulk, closes at some value of the fifth
leads to a variety of BH as well as wormhole solutions. Thiscoordinatez, and there is no BH singularity at all; still, a
ambiguity reflects the ambiguity of a brane embedding intoSingularity at largezis not excluded. Possible quantum prop-
the bulk, which manifests itself in Eqél) in the arbitrari- erties of such brane-world BHs have also been discussed

ness ofE”. Moreover, as remarked in RdfL3], the tensor [10]. It appears to be a necessary, though difficult, task to

E” . due to its geometric origin, need not respect the usuaeiextend such studies to more general BH configurations.
IJ‘, 1

energy conditions, and the appearance of wormhole solutions ACKNOWLEDGMENTS
in its presence looks quite natural.
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(+——-); the curvature tensoR’,,,=d,I';,— ..., so
that, e.g., the Ricci scald®®>0 for de Sitter space-time, and
the stress-energy tens¢SET) such thatT; is the energy
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