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General class of brane-world black holes
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We use the general solution to the trace of the 4-dimensional Einstein equations for static, spherically
symmetric configurations as a basis for finding a general class of black hole~BH! metrics, containing one
arbitrary functiongtt5A(r ) which vanishes at somer 5r h.0, the horizon radius. Under certain reasonable
restrictions, BH metrics are found with or without matter and, depending on the boundary conditions, can be
asymptotically flat or have any other prescribed asymptotic. It is shown that our procedure generically leads to
families of globally regular BHs with a Kerr-like global structure as well as symmetric wormholes. Horizons
in space-times with zero scalar curvature are shown to be either simple or double. The same is generically true
for horizons inside a matter distribution, but in special cases there can be horizons of any order. A few simple
examples are discussed. A natural application of the above results is the brane world concept, in which the trace
of the 4D gravity equations is the only unambiguous equation for the 4D metric, and its solutions can be
continued into the 5D bulk according to the embedding theorems.
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I. INTRODUCTION

The brane world concept, which describes our fo
dimensional world as a surface~brane!, supporting all or
almost all matter fields and embedded in a high
dimensional space-time~bulk!, leads to a great variety o
models both in the cosmological context and in the desc
tion of local self-gravitating objects~see, e.g.,@1# for reviews
and further references!. In particular, black hole~BH! phys-
ics on the brane turns out to be considerably richer than
general relativity, though only a few special examples
brane-world BHs have been considered in detail by n
@2–10# ~see also references therein!. Thus, in the spherically
symmetric vacuum case, in addition to Schwarzschild B
~which lead to a black-string singularity in the bulk@2,6#!,
there are BHs nonsingular on the brane@7# and having a
pancake-shaped event horizon in the bulk@9#; some of them
have been shown to possess unusual quantum propertie
tentially observable on the brane@10#.

Most of the results have been obtained in the simp
framework: a single brane in aZ2-symmetric 5-dimensional
asymptotically anti–de Sitter bulk, with all fields exce
gravity confined on the brane. It is the so-called RS2 fram
work, generalizing the second model suggested by Ran
and Sundrum, with a single Minkowski brane in an anti–
Sitter bulk @11#. Let us also adhere to this class of model

The gravitational field on the brane is then described
the modified Einstein equations derived by Shiromiz
Maeda and Sasaki@12# from 5-dimensional gravity with the
aid of the Gauss and Codazzi equations@29#:
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Gm
n 52L4dm

n 2k4
2Tm

n 2k5
4Pm

n 2Em
n , ~1!

whereGm
n 5Rm

n 2 1
2 dm

n R is the 4D Einstein tensor,L4 is the
4D cosmological constant expressed in terms of the 5D c
mological constantL5 and the brane tensionl:

L45
1

2
k5

2S L51
1

6
k5

2l2D ; ~2!

k4
258pGN5k5

4l/(6p) is the 4D gravitational constant (GN

is Newton’s constant of gravity!; Tm
n is the stress energy ten

sor ~SET! of matter confined on the brane;Pm
n is a tensor

quadratic in Tm
n , obtained from matching the 5D metri

across the brane:

Pm
n 5 1

2 Tm
aTa

n 2 1
2 TTm

n 2 1
2 dm

n ~TabTab2 1
2 T2! ~3!

where T5Ta
a ; lastly, Em

n is the ‘‘electric’’ part of the 5D
Weyl tensor projected onto the brane: in proper 5D coor
nates,Emn5dm

Adn
C (5)CABCDnBnD whereA,B, . . . are 5D in-

dices andnA is the unit normal to the brane. By constructio
Em

n is traceless,Em
m50 @12#.

Other characteristics ofEm
n are unknown without specify-

ing the properties of the 5D metric, hence the set of eq
tions~1! is not closed. In isotropic cosmology this leads to
additional arbitrary constant in the field equations, connec
with the density of ‘‘dark radiation’’@1#. For static, spheri-
cally symmetric systems to be discussed in the present pa
this freedom is expressed in the existence of one arbit
function of the radial coordinate. Despite this arbitrarine
the trace of Eqs.~1! may be integrated in a general form
@13,14#.

Our interest here is in selecting a general class of sta
spherically symmetric BH solutions to Eqs.~1! without
specifyingEm

n . In particular examples we mostly deal wit
©2003 The American Physical Society25-1
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asymptotically flat vacuum solutions, such thatL45Tm
n

50, but the BH construction procedure is formulated in t
general case when both matter and the cosmological con
are present and the space-time asymptotic properties ar
specified.

We will not discuss the possible bulk properties of mod
in question and only note that the existence of the co
sponding solutions to the higher-dimensional equations
gravity ~in our case, the 5D vacuum Einstein equations w
a cosmological term! is guaranteed by the Campbe
Magaard type embedding theorems@15#. A recent discussion
of these theorems, applied, in particular, to brane world s
narios, and more references can be found in Ref.@16#.

The paper is organized as follows. In Sec. II we pres
some common relations and the general solution to the t
of Eqs.~1!, containing an arbitrary generating functionA(r ).

In Sec. III we analyze the properties of the metric nea
Killing horizon in a static, spherically symmetric space-tim
described by the general solution. A conclusion of gene
significance is that a space-time withR[0 can only have
horizons of orders one~simple, like Schwarzschild’s! and
two ~double, as in the extremal Reissner-Nordstro¨m metric!
and no higher. This analysis is used for formulation of tw
BH construction algorithms. It is shown that a generic cho
of A(r ) leads to a one-parameter family of solutions whic
in a certain range of the parameter~integration constant! C,
unifies globally regular non-extremal BHs with a Kerr-lik
causal structure, extremal BHs and symmetric wormho
Singular nonextremal BHs can be found outside this rang
C.

Section IV contains some simple examples, illustrat
different features of the present formalism. Examples 1 an
reproduce already known BH solutions from the viewpo
of our algorithms. Example 2 is a BH solution with ze
Schwarzschild mass, illustrating violation of Thorne’s ho
conjecture possible in a brane world. Example 4 shows
well-behaved special solutions can be found even for s
choices ofA(r ) that the trace equation~9! has a singular
point. Example 5 illustrates the smoothness properties
some BH metrics at the horizon in different coordina
frames. Section V is a discussion.

We will assume that all relevant functions are analy
unless otherwise explicitly indicated. The symbol;, as
usual, connects quantities of the same order of magnitud
a certain limit.

II. THE GENERAL SOLUTION

The general static, spherically symmetric metric in 4
mensions in the curvature coordinates has the form

ds25A~r !dt22
dr2

B~r !
2r 2dV2 ~4!

wheredV25du21sin2u df2 is the linear element on a un
sphere.

Let us write down the scalar curvature and t
Kretschmann scalar for the metric~4!:
02402
e
ant
not

s
-
f

h

e-

t
ce

a

al

e
,

s.
of

g
3
t

at
h

of

in

-

R5
2

r 2
~12B!2BFArr

A
2

Ar
2

2A2
1

ArBr

2AB
1

2

r S Ar

A
1

Br

B D G ;

~5!

K5Rmn
rsRrs

mn54K1
218K2

218K3
214K4

2 ,

K15
B

4 S 2AArr 2Ar
2

A2
1

ArBr

AB D ,

K25
B

2r

Ar

A
, K35

Br

2r
, K45

12B

r 2
, ~6!

where the subscriptr meansd/dr. The finiteness ofK is a
natural regularity criterion for the geometries to be discus
sinceK is a sum of squares of all componentsRmn

«s of the
Riemann tensor for the metric~4!, thereforeK,` is a nec-
essary and sufficient condition for the finiteness of all alg
braic curvature invariants. Meanwhile,K is finite if and only
if all Ki defined in Eq.~6! are finite.

If we treat Eqs.~1! as the conventional Einstein equatio
with an effective SETTm

n eff, i.e., Gm
n 52k4

2Tm
n eff, then the

effective densityreff, radial pressureprad
eff and tangential pres

surep'
eff are expressed in terms ofA andB as follows:

Gt
t52k4

2reff5
B21

r 2
1

Br

r
,

Gr
r5k4

2prad
eff 5

B21

r 2
1

BAr

Ar
,

Gu
u5Gf

f5k4
2p'

eff

5
B

4 F2Arr

A
2

Ar
2

A2
2

ArBr

AB
1

2

r S Ar

A
1

Br

B D G . ~7!

The only combination of the Einstein equations~1! in a
brane world written unambiguously without specifyingEm

n ,
is their trace:

R54L41k4
2Ta

a1k5
4Pa

a . ~8!

Assuming that the right-hand side is a known function of t
radial coordinate, i.e., thatR5R(r ) is known, Eq.~8! may
be written as a linear first-order equation with respect
f (r )ªrB(r ) @13,14#:

A~rAr14A! f r1@r ~2AArr 2Ar
2!13AAr # f

52A2@22r 2R~r !#. ~9!

Its general solution is

f ~r !5
2Ae3G

~4A1rAr !
2E ~4A1rAr !@22r 2R~r !#e23G dr

~10!

where
5-2
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GENERAL CLASS OF BRANE-WORLD BLACK HOLES PHYSICAL REVIEW D68, 024025 ~2003!
G~r !5E Ardr

4A1rAr
. ~11!

Thus, choosing any smooth functionA(r ), we obtain f (r )
from Eq. ~10!, and, after fixing the integration constant, th
metric is known completely.

If the function R(r ) is not specified, Eq.~10! is simply
another form of the trace of the Einstein equations. It is va
for anystatic, spherically symmetric metric, at least in rang
of r where the quantityA(4A1rAr) is finite and nonzero
and wherer 5A2guu is an admissible coordinate. The latt
means, in particular, that Eq.~10! is applicable to a worm-
hole metric only on one~but either! side of a wormhole
throat ~see@13# for details! and is evidenly invalid for flux-
tube metrics, characterized byguu5const.

For a given SETTm
n , the dependenceR(r ) is not always

known, but in the vacuum caseTm
n 50, so thatR(r )54L4,

the solution to the Einstein equations can always be wri
in the form ~10! under the above evident restrictions.

III. BLACK HOLE CONSTRUCTION

A. Conditions at horizons

Before singling out BH solutions on the basis of Eq.~10!,
let us first formulate the conditions under which the gene
ing function A(r ) leads to a metric with a Killing horizon
The latter is a surface where a timelike or spacelike Killi
vector becomes null. To describe Killing horizons~to be
called horizons for short! in spherically symmetric space
times, it is helpful to use the so-called quasiglobal coordin
u specified by the conditiongttguu521. The metric~4! is
then rewritten in the form

ds25A~u!dt22
du2

A~u!
2r 2~u!dV2, ~12!

where the variables are connected with those in Eq.~4! as
follows:

A~u!5A~r !, r ~u!5r , A~u!S dr

duD 2

5B~r !. ~13!

The reason for using this coordinate is that, in a clo
neighborhood of a horizon~a sphere wheregtt50), it varies
like manifestly well-behaved Kruskal-like coordinates us
for an analytic continuation of the metric@17,18#. Using this
coordinate, one can ‘‘cross the horizons’’ preserving the f
mally static expression for the metric. BothA andr must be
smooth functions ofu near the horizonu5h, so that

A~u!;~u2h!k, r ~u!'r h1const~u2h!s, ~14!

wherek51,2, . . . is theorder of the horizon~the horizon is
simple if k51, double if k52, etc.! while the numbers
51,2, . . . characterizes the possible behavior ofr (u); r h
.0 is the horizon radius.~We leave aside possible horizon
of infinite radius which can in principle appear as well@17#.!
Generically but not necessarily one hass51. Whens51
~i.e., dr/du is finite at the horizon!, the coordinater can be
02402
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used for continuing the metric through the horizon on eq
grounds withu. The continuation will be analytic if both
A(u) and r (u) are analytic atu5h.

Assuming Eq.~14! and directly employing the relation
~13!, we find that

f ~r !;B~r !;~r 2r h!(k12s22)/s asu→h. ~15!

On the other hand, substitutingA5A(u);(r 2r h)k/s into
the solution~10! and assuming that the quantityQ(r )52
2r 2R(r ) is finite atr 5r h ~which is generically the case!, it
is easy to obtain that nearr h

f ~r !;B~r !;~r 2r h!22k/s@~r 2r h!k/s1C#, ~16!

whereC is an integration constant andC50 corresponds to
the case when integration in Eq.~10! is performed fromr h to
r. Comparing the exponents in Eqs.~15! and ~16!, we see
that ~i! in caseC50: k52, s is not restricted;~ii ! in case
CÞ0: k51, s is not restricted.

Thus, to obtain a solution with a horizon atr 5r h , we
should takeA(r ) behaving as (r 2r h)k/s with k51 or 2 and
sPN.

An important point is that, under the conditionR(r h)
Þ2/r h

2 , a horizon can be either simple (k51) or double (k
52); horizons of higher ordersk do not appear. This is true
in particular, for all static, spherically symmetric metric
with R50.

Let us now look at what changes when the function
2r 2R(r ) vanishes atr 5r h . One can write

Q~r !ª22r 2R~r !;~r 2r h!p,

p50,1,2, . . . , near r 5r h , ~17!

preserving the assumptions~14!. Sop50 corresponds to the
above generic caseQ(r h)Þ0 andp.0 means thatQ(r ) has
a zero of orderp. Then the expression~15! for f (r ) remains
the same but Eq.~16! must be replaced with

f ~r !;B~r !;~r 2r h!22k/s@~r 2r h!k/s1p1C#. ~18!

Consequently, in caseCÞ0 the metric behaves as befor
whereas forC50 we obtain nearr 5r h

A~r !;~r 2r h!p12/s, B~r !;~r 2r h!p12,

A~u!;~u2h!ps12, ~19!

that is, a horizon of orderps12.
Now, assumingA50 at r 5r h.0, one can rewrite Eq

~10! in the form

f ~r ![rB~r !5
2Ae3G

~4A1rAr !
2 H Er h

r

~4A1rAr !

3@22r 2R~r !#e23G dr1CJ . ~20!

The above analysis shows that this relation leads to a me
with a horizon atr 5r h in two cases:
5-3
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BRONNIKOV, MELNIKOV, AND DEHNEN PHYSICAL REVIEW D 68, 024025 ~2003!
~i! A;(r 2r h)1/s, asr→r h , sPN. Then Eq.~20! leads to
a metric with a simple horizon in caseCÞ0 and a metric
with a horizon of order 21ps in caseC50.

~ii ! A;(r 2r h)2/s asr→r h , s odd. Then Eq.~20! leads to
a metric with a horizon of order 21ps in caseC50.

Here, as before, the parameterp characterizes the behav
ior of Q(r ) according to Eq.~17!.

Item ~ii ! does not include solutions withCÞ0. The point
is that in caseA;(r 2r h)2, CÞ0, the metric is singular a
r 5r h , as is confirmed by calculating the Kretschmann sca
~6!: its constituentK2 blows up atr→r h . For odd numbers
s.1, the corresponding metric withA;(r 2r h)2/s, CÞ0
has a finite Kretschmann scalar but loses analyticity ar
5r h and therefore cannot be analytically continued throu
this sphere. Indeed, in this caser 2r h;(u2h)s/(ps12),
where the exponent is a fraction for any odds and p
50,1,2, . . . . The metric is thus only continuous
(C0-smooth! at u5h in casep.0 andC(s21)/2-smooth in
casep50.

B. Definition and algorithms

We have been so far discussing local conditions at p
sible Killing horizons. Let us now turn to space-time pro
erties at large and try to select BH metrics. We shall not n
a general rigorous definition of a BH@19# which in turn
needs such notions as strong asymptotic predictabi
trapped regions, etc. The following working definition w
be appropriate for our purposes.

Definition.The metric~12! is said to describe a black hol
if ~a! the functionsA(u) and r (u) are analytic in the range
R@u#:h<u,umax whereumax may be finite or infinite;~b!
r (u).0 in R@u#, and r (umax).r(h)5rh ; ~c! A(u).0 at u
.h, andA(h);(u2h)k,kPN as r→r h .

Item ~c! means thatu.h is a static region~R region! of a
static, spherically symmetric space-time while the spheru
5h, a boundary of this region, is a Killing horizon of
certain orderk. So, in usual terms, our working definitio
describes the domain of outer communication of a BH, a
u5h is its event horizon.

The definition uses theu coordinate rather thanr, due to
its advantage in horizon description, discussed in the pr
ous subsection. The difference is really essential: there
metrics which behave nonanalytically in terms ofr at r
5r (h)5r h but analytically in terms ofu at u5h ~see vari-
antss.1 in Sec. III and example 5 in the next section!.

The analyticity requirement rejects possible cases of
stricted smoothness~see the end of Sec. III A!. It is not only
a matter of simplicity: in our view, if we are dealing with
field configuration, its nonanalyticity at a certain surfa
must have a physical reason, e.g., a phase transition, a
seems too artificial, a kind of perfect fine-tuning, to assu
that the phase transition occurs precisely at a horizon.

We do not requirer (umax)5` since we do not want to
rule out metrics with cosmological horizons like th
Schwarzschild–de Sitter space-time where an R regio
situated between a BH horizon and a cosmological horiz
We, however, adopt the requirementr (umax).rh to exclude
configurations with only cosmological horizons.
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Let us return to the solution~10!, or Eq. ~20!. Due to its
generality, it certainly describes all BH metrics, at lea
piecewise. We can, however, formulate explicit requireme
to the generating functionA(r ) under which Eq.~10! leads
algorithmically to a BH metric. Namely, let there be a rang

R@r #:r max.r .r h , r h.0, ~21!

in which the r.h.s. of Eq.~9! is positive:

Q~r !522r 2R~r !.0. ~22!

Then the above items~i! and ~ii ! lead to the following BH
construction algorithms.

~BH1!. Specify a functionA(r ), positive and analytical in
R@r #, in such a way thatg(r )54A1rAr.0 in R@r # and
A;(r 2r h)1/s, sPN, asr→r h . Then the functionsA(r ) and
B(r ) given by Eq.~20! with C>0 determine a black hole
metric ~4! with a horizon atr 5r h . The horizon is simple if
C.0; in caseC50 it is of the order 21ps if Q(r ) behaves
according to Eq.~17!.

~BH2!. Specify a functionA(r ), positive and analytical in
R@r #, in such a way thatg(r )54A1rAr.0 in R@r # and
A;(r 2r h)2/s as r→r h , s being an odd positive integer
Then the functionsA(r ) and B(r ) given by Eq.~20! with
C50 determine a black hole metric~4! with a horizon atr
5r h of the order 21ps if Q(r ) behaves according to Eq
~17!.

Both algorithms~BH1! and~BH2! lead to double horizons
in caseC50 if Q(r h).0.

To obtain asymptotically flatBHs, one should assum
r max5` and restrict the choice ofA(r ) to functions compat-
ible with asymptotic flatness. Properly choosing the tim
scale, we can require a Schwarzschild behavior ofA:A51
22m/r 1o(1/r ) as r→`, where m is the Schwarzschild
mass. Equation~20! then leads to the proper behavior
B(r ), i.e., B→1 asr→`, provided the curvatureR decays
quickly enough:R(r )5o(r 23) as r→`.

One can notice that both algorithms use ther coordinate
whereas the BH definition usesu. A transition tou is accom-
plished with Eq.~13!. The conditions of~BH1! and ~BH2!
guarantee thatB.0 at r .r h , therefore, choosingdr/du
.0 in Eq. ~13!, we evidently satisfy the BH definition.

The condition~22! can be weakened: what actually mu
be required is that the integral in Eq.~20! should remain
positive inR@r #.

Another condition of both algorithms,g(r )54A1rAr
.0 in R@r #, allows one to avoid a singular point of Eq.~9!,
where the coefficient of the derivativef r vanishes. This co-
efficient also vanishes at horizons, which have been alre
discussed. The points whereAÞ0 but g50, if any, also
deserve special attention. However, the equalityg50 itself
has no evident geometric~and hence physical! meaning; it
only represents some technical difficulty in our descripti
with the aid of Eq.~9!.

Points whereg50 are avoided by most asymptotical
flat BH metrics. Indeed, in this caseg>0 at the horizon and
g54 at infinity; the conditiong(r ).0 means thatr 4A is a
5-4
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GENERAL CLASS OF BRANE-WORLD BLACK HOLES PHYSICAL REVIEW D68, 024025 ~2003!
strictly increasing function ofr, which is the case, e.g., for a
functionsA(r ) monotonically growing from 0 at the horizo
to 1 at infinity.

However, one can easily verify that such points inevita
appear in other important situations, e.g., between a reg
center and a cosmological horizon or between two sim
horizons.

It can be shown that if the choice of the generating fu
tion A(r ) leads tog(r ) with a simple zero at somer 5r s
PR@r #, then there is a unique nonzero value of the cons
C @namely, when integration in Eq.~10! starts fromr s] mak-
ing it possible to avoid a singularity of the metric atr 5r s .
So algorithm~BH1! survives, but it now gives a single solu
tion with a horizon instead of a family parametrized byC
~see example 4 in Sec. IV!. Algorithm ~BH2! requiresC
50 and therefore does not work.

C. Generic behavior of the solutions: Wormholes
and regular BHs

Let us discuss the properties of the metric in the gen
situation that leads to a BH according to algorithm~BH1!: let
A(r ) be a well-behaved positive function atr .r h and have a
simple zero atr 5r h , and let alsoQ(r h).0. Then, in a
small neighborhood ofr 5r h , one can write

A~r !5A1~r 2r h!1o~r 2r h!,

B~r !5B1C~r 2r h!1B2~r 2r h!21o„~r 2r h!2
…,

~23!

with fixed positive constantsA1 , B1 andB2. The integration
constantC is a family parameter, andC50 is its critical
value at which the solution drastically changes its propert

If C,0, B turns to zero atr 5r min5rh1uCuB1 /B2.rh .
@Here,uCu should be small enough for the solution to rema
in a range where Eq.~23! is still approximately valid.# One
obtainsB(r )'B2(r 2r h)(r 2r min), so thatB(r ) has a simple
zero atr 5r min , whereasA(r min).0. Such a behavior of the
metric functions corresponds to a symmetric wormh
throat at r 5r min @13#. The substitutionr 5r min1x2, xPR,
makes the metric~4! regular atr 5r min (x50), and all met-
ric coefficients are even functions ofx. Thus our solution
does not reach the anticipated horizonr 5r h and describes a
symmetric wormhole.

In caseC50, as already described, we obtain a dou
horizon atr 5r h , and the geometry is smoothly continued
smallerr, where the further properties of the metric depe
on the specific choice ofA(r ).

If C.0, thenB.0 at r .r h , turns to zero at the horizon
r 5r h and again turns to zero in the T region atr 5r min5rh
2C B1 /B2,rh . This, as before, bounds the range ofr from
below in a way similar to a wormhole throat. The coordina
singularity atr 5r 0 is again removed by the transformatio
r 5r min1x2, but nowx is a temporal coordinate in a T region
where the metric~4! describes a Kantowski-Sachs cosm
ogy with two scale factorsr (x) andA@r (x)# and theR3S2

topology of spatial sections. Hence,x50 is the time instant
at which r (x) experiences a bounce. It can be roughly s
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that the wormhole throat, having moved into a T regio
becomes a bouncing time instant of the scale factorr in a
Kantowski-Sachs cosmology.

Assuming asymptotic flatness at larger, one can use the
standard methodology to obtain the corresponding Car
Penrose diagram describing the global causal structure
coincides with that of the Kerr or Kerr-Newman nonextrem
BH @19# ~but without a ring singularity! and contains an
infinite sequence of R and T regions.

By continuity, this behavior is preserved in a finite ran
of C values~see examples 1 and 2 in the next section!. We
conclude that each generic choice ofA(r ) with a simple zero
at r 5r h leads to a family of solutions unifying symmetri
wormholes (C,0), extremal BHs (C50) and regular non-
extremal BHs (C.0), see Fig. 1.

IV. EXAMPLES

Example 1: A„r …Ä1À2mÕr , mÄconstÌ0

For this Schwarzschild form ofA(r ), the solution~10! in
the vacuum caseR[0 can be written as

f ~r !5
~r 22m!~r 2r 0!

r 23m/2
, ~24!

where r 0 is an integration constant. The metric takes t
form

ds25S 12
2m

r Ddt22
123m/~2r !

~122m/r !~12r 0 /r !
dr22r 2dV2.

~25!

FIG. 1. Carter-Penrose diagrams for a generic family of asym
totically flat solutions:~a! a symmetric wormhole,~b! an extremal
BH in case there is a singularity inside the inner R region, and~c! a
regular BH. Diagrams~b! and ~c! can be infinitely continued up-
ward and downward. The letters R and T mark static~R! and cos-
mological ~T! regions, respectively. Spatial infinity (r 5`) is
shown by double lines, horizons (r 5r h) by single thin lines and the
singularity in ~b! by a thick line. Dashed lines show the wormho
throat in diagram~a! and the bouncing time instants in diagram~c!.
5-5
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The Schwarzschild metric is restored in the special caser 0
53m/2. The metric~25! was obtained by Casadio, Fabb
and Mazzacurati@7# in search for new brane-world blac
holes and by Germani and Maartens@8# as a possible exter
nal metric of a homogeneous star on the brane. Without
peating their more detailed descriptions, we will outline t
main points in our notations.

BH metrics appear according to algorithm~BH1!, where
C50 corresponds tor 052m andC.0 to r 0,2m. In case
r 0.2m, the metric~25! describes a symmetric traversab
wormhole@13#.

In caser 052m we have a double horizon atr 52m: near
r 52m, the coordinater is connected with the quasigloba
coordinateu by r 22m;(u2uh)2, uh being the value ofu at
the horizon, andA(u);(u2uh)2. The Carter-Penrose dia
gram coincides with that of the extremal Reissner-Nordstr¨m
metric @Fig. 1~b!# with the only difference that the timelike
curvature singularity occurs atr 53m/2 instead ofr 50.

In caser 0,2m, as in the Schwarzschild metric,r 52m is
a simple horizon, and, as described in Ref.@7#, the space-
time structure depends on the sign ofh5r 023m/2. If h
,0, the structure is that of a Schwarzschild black hole,
the spacelike curvature singularity is located atr 53m/2 in-
stead ofr 50. If h.0, the solution describes a nonsingul
black hole with a wormhole throat atr 5r 0 inside the hori-
zon, or, more precisely, it is the minimum value ofr at which
the model bounces. The corresponding global structure@7# is
the same as that of a nonextremal Kerr BH@Fig. 1~c!#.

Thus the metric properties in the whole ranger 0.3m/2
of the integration constantr 0 entirely conform to the descrip
tion in Sec. III C for both positive and negativeC.

The components of the effective SET~7! have the form

k4
2reff5

m~2r 023m!

r 2~2r 23m!2
,

k4
2prad

eff 52
2r 023m

r 2~2r 23m!
,

k4
2p'

eff5
~r 2m!~2r 023m!

r 2~2r 23m!2
. ~26!

Example 2: A„r …Ä1Àh2Õr 2, hÄconstÌ0

This form of A(r ) represents a metric with zer
Schwarzschild mass.

BH solutions are easily obtained: Eq.~20! with R[0 now
gives

f ~r !5rB~r !5r S 12
h2

r 2 D S 11
C2h

A2r 22h2D . ~27!

In accord with~BH1!, the spherer 5h is a simple horizon if
C.0 and a double horizon ifC50.

In caseC,0, B(r ) has a simple zero atr 5r th.h given
by
02402
e-

t

2r th
2 5h21~h2C!2, ~28!

which is a symmetric wormhole throat@13#.
In caseC50, r 5h is a double horizon, and the Carte

Penrose diagram coincides with that of the extrem
Reissner-Nordstro¨m metric @Fig. 1~b!#, but a timelike singu-
larity due toB→` takes place atr 5h/A2.

In case 0,C,h, inside the simple horizonr 5h, the
function B(r ) turns to zero atr 5r th given by Eq. ~28!,
which is now betweenh andh/A2, and we obtain a Kerr-like
regular BH structure with an infinite sequence of R and
regions@Fig. 1~c!#. We see that the description of Sec. III
is valid in the whole rangeC,h of the integration constan
C.

The valueC5h leads to the simplest metric withA5B
512h2/r 2, which may be identified as the Reissne
Nordström metric with zero mass and pure imaginary char
The space-time causal structure is Schwarzschild, with a
rizon at r 5h and a singularity atr 50. Lastly, in caseC
.h the causal structure is again Schwarzschild but the
gularity due toB→` occurs atr 5h/A2.

This example is of certain interest in connection w
Thorne’s ‘‘hoop conjecture,’’ claiming that a BH horizo
forms when and only when a massM gets concentrated in a
region whose circumference in every direction is sma
than 4pGM, G being Newton’s constant of gravity@20#.
Nakamuraet al. @21# recently found an example of a cylin
drical ~i.e., infinitely long! matter distribution on the bran
able to form a horizon and thus violating the hoop conje
ture. The present example of a zero mass BH shows tha
the brane-world context, a BH may exist~at least as a solu
tion to the gravitational equations on the brane! without mat-
ter and without mass, solely as a tidal effect from the b
gravity. The effective SET is in this case certainly quite e
otic from the viewpoint of the conventional energy cond
tions:

k4
2reff52

h2

r 4
2

h2~C2h!~3r 22h2!

r 4~2r 22h2!3/2
,

k4
2prad

eff 5
h2

r 4
1

~C2h!~r 21h2!

r 4~2r 22h2!1/2
,

k4
2p'eff52

h2

r 4
2

~C2h!~r 412h2r 22h4!

r 4~2r 22h2!3/2
. ~29!

In the simplest caseC5h it has the ‘‘anti–Reissner-
Nordström’’ form, }r 24diag(21,21, 1, 1).

Example 3: A„r …Ä„1À2mÕr …2, mÄconstÌ0

For this extremal Reissner-Nordstro¨m form of A(r ), the
solution ~10! with R[0 and the metric can be written as
5-6
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f ~r !5
~r 2r 0!~r 2r 1!

r
, r 1ª

mr0

r 02m
, ~30!

ds25S 12
2m

r D 2

dt22S 12
r 0

r D 21S 12
r 1

r D 21

dr2

2r 2dV2. ~31!

The form of A(r ) fits algorithm~BH2!, and accordingly
we obtain a BH solution in the only caser 05r 152m, i.e.,
when the integration in Eq.~20! is conducted fromr h
52m, so thatC50. It is the extremal Reissner-Nordstro¨m
metric, and accordingly the effective SET isTm

n eff

}r 24diag(1, 1,21,21).
Other values ofr 0 lead either to wormholes~the throat is

located atr 5r 0 if r 0.2m or at r 5r 1.2m in case 2m
.r 0.m), or to a naked singularity located atr 52m ~when
r 0,m) as is confirmed by calculating the Kretschma
scalar—see more detail in Ref.@13#.

Example 4: A„r …Ä1Àr 2Õa2, aÄconstÌ0

The above examples described vacuum asymptotically
BHs. Now, choosing the de Sitter form ofA(r ), we will
write the solution~10! for a vacuum configuration with a
cosmological term, so thatR54L4512/a2, in the regionr
,a. We obtain

f ~r !5rB~r !5S 12
r 2

a2D F r 1
K

~2a223r 2!3/2G , ~32!

where K is an integration constant such thatK50 corre-
sponds to integration in Eq.~10! from r 5r s5aA2/3 to r.
The valuer 5r s is the one whereg(r )54A1rAr vanishes.
In full agreement with the description in Sec. III B,B(r )
tends to infinity asr→r s unlessK50, and thus the only
well-behaved solution is de Sitter, withA5B512r 2/a2.
This example illustrates what happens when Eq.~9! has a
singular pointg50 in the range of interest.

Example 5: A„r …Ä„1À2mÕr …1Õs, mÄconstÌ0, s«N

We here try to give an example of a metric behavi
nonanalytically atr 5r h in terms of r but analytically in
terms of the quasiglobal coordinateu defined bygttguu5
21, see Sec. III A. A certain difficulty is that the solutio
~10! for this choice ofA(u), even in the simplest caseR
50, is expressed with the aid of the hypergeometric fu
tion, which can hardly be a very clear illustration. We the
fore simply take the following ‘‘artificial’’ example of an
asymptotically flat metric~4!:

ds25S 12
2m

r D 1/s

dt2

2S 12
2m

r D 2211/s

dr22r 2dV2, ~33!
02402
at

-
-

as suggested by Eq.~15! for any positive integers in the case
of a simple horizon, and transform it to a coordinate whi
behaves likeu nearr h52m, namely, put 122m/r 5xs @we
do not directly use the transformation~13! sinceu(r ) then
looks too cumbersome#. The metric takes the form

ds25xdt22
4m2s2

x~12xs!4
dx22

4m2

~12xs!2
dV2. ~34!

Its asymptotic flatness atx51 is not so evident, but eviden
is the behavior atx50 as expected at a simple horizon.
cases51 it is the Schwarzschild metric. Fors.1 it is not a
vacuum solution to Eq.~9!; the effective SET is easily found
according to Eqs.~7!; it decays at larger asr 24, in particu-
lar, its trace isk4

22 times the scalar curvature

R5
2

r 2
1

2

r 3s
S 12

2m

r D 121/s

@2m2s~r 12m!#.

The same substitution 122m/r 5xs applied to the metric

ds25S 12
2m

r D 2/s

dt22S 12
2m

r D 22

dr22r 2dV2 ~35!

with m.0 andsPN reveals a double horizon atr 52m.

V. CONCLUDING REMARKS

Using the trace of the 4D Einstein equations, written a
linear first-order ordinary differential equation and int
grated, we have formulated some general requirements to
~arbitrary! generating functionA(r )[gtt which are sufficient
for obtaining static, spherically symmetric BH metrics — s
algorithms~BH1! and ~BH2!. The BHs may be asymptoti
cally flat or have any other larger behavior.

We have seen that, under some natural restrictions,
metrics are easily constructed in vacuum or in the prese
of matter for which the dependenceR(r ) may be specified.
However, not every kind of matter distribution admits a h
rizon inside it. No horizon can appear, e.g., in a perfect fl
with the equation of stater5np, nPN: the conservation
law then impliesr5r0A2(n11)/2, r05const, so thatr→`
asA→0. More generally, at a horizon, the effective SET~7!
should satisfy the conditionreff1prad

eff 50. Indeed, one can
write in terms of the metric~12!:

Gt
t2Gu

u52
A
r

d2r

du2
52k4

2~reff1prad
eff ! ~36!

@recall that A(u)5A(r )], which leads toreff1prad
eff 50 at

regular points whereA50.
The same quantity is negative at wormhole throats~it is

the well-known violation of the null energy condition@22#!
but is positive at bounces in T regions. Equation~36! shows
that this property is quite general: at a minimum ofr, where
d2r /du2.0, one hasreff1prad

eff ,0 if A.0 ~a throat! and
reff1prad

eff .0 if A,0 ~a bounce!.
5-7
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A feature of utmost interest is the generic appearance
families of solutions which unify symmetric wormholes an
globally regular BHs with a bounce ofr in the T region and
a Kerr-like global structure. The two qualitatively differe
branches of any such family are separated by an extrema
solution.

Certain care should be taken about possible zerosr
5r s) of the functiong(r )54A1rAr which is a coefficient
of the derivativef r in Eq. ~9!. We have shown that even
the choice ofA(r ) leads tog(r )50 at somer, a well-
behaved solution can generically be obtained.

The whole consideration is quite general and may fi
application in general relativity~where our effective SET
Tm

n eff is simply the matter SET including a possible cosm
logical term! and alternative theories of gravity that u
modified Einstein equations. As usual, for a particular k
of matter, the theory will give one more independent eq
tion for the two metric functions to be found,A(r ) andB(r )
in our notation, and the set of equations will be determin

The most natural application of these results is, howe
the brane world concept where the trace of the Einstein eq
tions is the only equation of 4D gravity which can be writt
unambiguously using only 4D quantities. Being a sing
equation for the two unknown functionsA(r ) and B(r ), it
leads to a variety of BH as well as wormhole solutions. T
ambiguity reflects the ambiguity of a brane embedding i
the bulk, which manifests itself in Eqs.~1! in the arbitrari-
ness ofEm

n . Moreover, as remarked in Ref.@13#, the tensor
Em

n , due to its geometric origin, need not respect the us
energy conditions, and the appearance of wormhole solut
in its presence looks quite natural.

On the other hand, in the brane world context, neither
the particular 4D solutions can be considered as complet
viable before their profile in the bulk is derived and the
regularity is ensured. Some known BH solutions@2–4# face
the problem of nonlocalized BH singularities. However,
D
,’’
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,

n

s
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our view, nonsingular 4D metrics, such as the wormhole a
regular BH metrics described here, are more likely to ha
regular continuations into the bulk than singular BH metri

The above embedding ambiguity exists even in the s
plest brane world models of RS2 type@11#, possessing a
single extra dimension,Z2 symmetry with respect to the
brane and no matter in the bulk, to say nothing of mo
complex models. The latter may include scalar fields in
bulk @5,23#, multiple ~at least two! branes@24,25#, more than
one extra dimension@26#, timelike extra dimensions, lacking
Z2 symmetry, a 4D curvature term@27# etc.; see further ref-
erences in the cited papers and the reviews@1#. To improve
the predictive power of brane world scenarios, it seems n
essary to remove the ‘‘redundant freedom,’’ applying reas
able physical requirements such as regularity and stabilit
complete multidimensional models.

Much work in this direction has already been done. D
ferent methods of solving the bulk gravity equations f
given brane configurations have been developed@4,9,14,28#,
and the bulk properties of some particular brane-world B
have been studied@2,4–6,9#. In particular, in Ref.@9#, using
a multipole-type expansion, it has been shown that the h
zon of the BH metric~25! in case 2m.r 0.3m/2, being
continued into the bulk, closes at some value of the fi
coordinatez, and there is no BH singularity at all; still,
singularity at largez is not excluded. Possible quantum pro
erties of such brane-world BHs have also been discus
@10#. It appears to be a necessary, though difficult, task
extend such studies to more general BH configurations.
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