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Higher dimensional black holes and supersymmetry
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~Received 4 March 2003; published 25 July 2003!

It has recently been shown that the uniqueness theorem for stationary black holes cannot be extended to five
dimensions. However, uniqueness is an important assumption of the string theory black hole entropy calcula-
tions. This paper justifies this assumption by proving a uniqueness theorem for supersymmetric black holes in
five dimensions. Some remarks concerning general properties of nonsupersymmetric higher dimensional black
holes are made. It is conjectured that there exist new families of stationary higher dimensional black hole
solutions with fewer symmetries than any known solution.
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I. INTRODUCTION

One of the most impressive successes of string theory
microscopic derivation of the entropy of certain supersy
metric black holes@1#. The idea is that a weakly couple
system of strings and branes wrapped around some com
dimensions turns into a black hole in the noncompact dim
sions as the string coupling is increased. For fix
asymptotic charges~mass, angular momenta and gau
charges!, the degeneracy of microstates can be calculate
the weakly coupled description. Provided sufficient sup
symmetry is preserved, this is found to correctly reprodu
the Bekenstein-Hawking entropy of the black hole~at least
for black holes much larger than the string length!.

These calculations were first performed for static sup
symmetric black holes in five dimensions@1#. They were
subsequently extended to static supersymmetric holes in
dimensions@2,3#, to rotating supersymmetric holes in fiv
dimensions@4# and to nearly supersymmetric generalizatio
of all of these@5–7#.

A key assumption made in this work is that the releva
black hole solutions are uniquely specified by th
asymptotic charges. If this turned out to be untrue, i.e.
there existed distinct supersymmetric black hole soluti
with the same asymptotic charges, then there would b
problem with the conventional interpretation of the entro
calculations. The problem would be in identifying which se
of microstates should correspond to each black hole,
would be necessary in order to compute their respective
tropies. The black holes would be distinguished macrosc
cally by their differing gravitational fields. However, there
no gravitational field present in the weakly coupled desc
tion used for the entropy calculations. Hence, at weak c
pling, there would be no way of telling which microstat
corresponded to which black hole. The distinction betwe
different sets of microstates would only become apparen
the microscopic description became strongly coupled.

Given the importance of this assumption, one might a
how it was originally motivated. It seems that the only e
dence in its favor is the existence of the black hole uniq
ness theorems in four dimensions. These establish that
tionary four dimensional black holes are indeed uniqu
specified by their asymptotic charges, at least in Einste
Maxwell theory. The uniqueness theorems assume a no
0556-2821/2003/68~2!/024024~14!/$20.00 68 0240
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generate event horizon and therefore do not apply to su
symmetric black holes. Nevertheless, it would be ve
surprising if supersymmetric black holes turned out to
nonunique in four dimensions.1

In five dimensions, the only evidence for the uniquene
assumption seems to have been that higher dimensi
black holes appeared to have very similar properties to f
dimensional ones. However, this is not really evidence at
because all known higher dimensional black hole solutio
were derived usingAnsätzebased on simple generalization
of four dimensional black hole solutions, or were related
dualities to solutions based on suchAnsätze. Therefore it is
not very surprising that the known higher dimensional bla
holes had similar properties to four dimensional ones.

The situation has changed with the recent discovery o
class of five dimensional vacuum black holes that are co
pletely unlike anything encountered in four dimensions
‘‘black rings’’ @9#. These are stationary black holes wi
event horizons of topologyS13S2. They can be regarded a
rotating loops of black string, with the centrifugal force ba
ancing the tendency of the ring to collapse under gravity. T
existence of black rings implies that the uniqueness theo
for stationary black holes does not extend to five dimensio
This is because black rings can carry the same asymp
charges as the vacuum black holes of spherical topology
covered by Myers and Perry@10#.2

In the first part of this paper, it will be suggested that the
should be many more exotic black hole solutions in high
dimensions. Examining the steps that go into proving
uniqueness theorems in four dimensions suggests that agen-
eral stationary asymptotically flat black hole in higher d
mensions should admit only two commuting Killing vect
fields. However, allknown higher dimensional black hole
solutions have more symmetry. So there may exist la
families of higher dimensional black hole solutions in ad
tion to the known ones. This would imply that black ho
uniqueness would always be badly violated in high

1This paper will only discuss spacetimes containing a single bl
hole. Otherwise multi-black hole solutions@8# would be an example
of nonuniqueness.

2Statichigher dimensional black hole solutions were first obtain
in @11#.
©2003 The American Physical Society24-1
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dimensions,3 and emphasizes the importance of justifying t
uniqueness assumption for supersymmetric black holes.

A uniqueness theoremhasbeen proved for nondegenera
higher dimensionalstatic black holes in Einstein-Maxwel
@13# and Einstein-Maxwell-dilaton theory@14#, and for Ein-
stein gravity coupled to as-model@15#. The uniqueness as
sumption for static supersymmetric black holes in higher
mensions therefore seems plausible.

For rotating holes, it is not at all clear whether this a
sumption is correct. Rotating supersymmetric black ho
seem to exist only in five dimensions—the first example w
found by Breckenridge, Myers, Peet and Vafa~BMPV! @4#. It
seems rather likely that charged black ring solutions sho
also exist, and if these had a regular supersymmetric l
then uniqueness of supersymmetric rotating black ho
might be violated. Also, if there do exist higher dimension
black holes with fewer symmetries than any known solut
then why not supersymmetric black holes with fewer sy
metries than BMPV? It is clearly desirable to know wheth
this happens and, if not, whether a uniqueness theorem
supersymmetric black holes can be proved.

The main goal of this paper is to provide the first exam
of such a uniqueness theorem, and thereby justify
uniqueness assumption made in the black hole entropy
culations. This is therefore a check on the consistency of
entropy calculations that can be performed at the leve
classical supergravity.

The supergravity theory that will be considered is mi
mal N51, D55 supergravity@16# because it is the simples
theory in which black hole uniqueness is known to be v
lated ~the theory admits black ring solutions!. Furthermore,
the BMPV supersymmetric rotating black hole solution c
be embedded in this theory@17#. In fact, this theory is suffi-
ciently simple that it is possible to findall supersymmetric
solutions@18#. Previously, the only theories for which th
had been done were minimalN52, D54 supergravity@19#
and some simpleD54 generalizations@20#.

The general supersymmetric solution obtained in@18# is
sufficiently complicated that it is far from obvious whic
solutions correspond to black holes. In fact, the solut
given in @18# is only valid away from any horizons that ma
be present in the spacetime. In this paper, it will be sho
how a local analysis of the constraints imposed by supers
metry in the neighborhood of the horizon can be combin
with global information about the black hole exterior pr
vided by the general solution of@18# to prove that the BMPV
solution is the only supersymmetric black hole solution
minimal N51, D55 supergravity.

It is reassuring that a uniqueness theorem can be pro
for supersymmetric black holes. However, this theorem a
serves to emphasize how special such black holes are, in
sense that they fail to exhibit features that are expecte
generalblack holes, e.g., nonuniqueness in five dimensio

3It is tempting to conjecture that adding the requirement ofstabil-
ity would guarantee uniqueness@12#, but there is no evidence fo
this since stability of higher dimensional black holes has never b
studied.
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So the results of this paper highlight how far string theory
from providing a complete understanding of black holes.

This paper is organized as follows. Section II discus
general properties of higher dimensional black holes. Sec
III contains the uniqueness theorem. There is one Appen
dealing with a special case that arises in the analysis.

II. HIGHER DIMENSIONAL BLACK HOLES

A. Black holes with fewer symmetries

All known stationaryD-dimensional black hole solution
have at least@(D11)/2# commuting isometries. The purpos
of this section is to point out that this seems to be ‘‘t
many,’’ i.e., in general one would expect fewer symmetri
Before explaining this, it is helpful to recall what happens f
the analagous case of black string solutions.

Consider the uniform black string solution of the five d
mensional vacuum Einstein equations. The metric is
product of the four dimensional Schwarzschild solution w
a flat direction, so there are three commuting Killing vec
fields, corresponding to time translations, rotations and s
tial translations. If the string is compactified on a circle
asymptotic radiusL then one can define a dimensionless p
rameter

h5
GM

L2
, ~2.1!

whereM is the mass of the string. There is a particular va
h5hc for which the uniform string solution admits a stat
zero-mode that breaks the translational symmetry@21#. This
led to the conjecture@21,22# that exact static black string
solutions without translational symmetry should also ex
There is good perturbative@23# and numerical@24,25# evi-
dence that this is indeed the case, but the solutions are
known analytically.4 These solutions have onlytwo commut-
ing Killing vector fields, which is one fewer than for th
solutions that are known analytically.

To understand why there might also exist stationary bla
holeswith fewer symmetries than any known solution, it
worth reviewing the steps that go into proving the uniqu
ness theorem for four dimensional black holes, and ask
which steps can be generalized to higher dimensions.
simplicity, only vacuum black holes will be considered, a
though similar remarks should apply to nondegener
charged black holes. It is probably also worth emphasiz
that only asymptotically flat black holes will be considered
this paper.

The first step is the proof that the event horizon of
stationary black hole must haveS2 topology @28,29#. This
relies on the Gauss-Bonnet theorem applied to the~two di-
mensional! horizon and therefore does not generalize
higher dimensions. An alternative proof in four dimensions
based on the notion of ‘‘topological censorship’’@30#. Con-
sider a spacelike sliceS that intersects the future event ho

n
4See@26,27# for attempts to construct such solutions analytical
4-2
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HIGHER DIMENSIONAL BLACK HOLES AND SUPERSYMMETRY PHYSICAL REVIEW D68, 024024 ~2003!
rizon and letH denote the intersection. Topological cens
ship requires thatS be simply connected. Note thatS has
two boundaries, namelyH and the sphere at spatial infinity
Hence topological censorship requires thatH be cobordant to
a sphere via a simply connected cobordism. For a station
black hole, this can be shown to imply thatH is a sphere
@31#.

Topological censorship is also valid forD.4 but it is
much less restrictive. First, ifD.4 and there exists a cobo
dism from H to the sphere then there also exists a sim
connected cobordism.5 Secondly, a cobordism fromH to the
sphere exists if, and only if,H has vanishing Pontrjagin an
Stiefel-Whitney numbers. ForD55, H is an oriented
3-manifold and hence automatically has vanishing Pontrja
and Stiefel-Whitney numbers so topological censorship d
not restrict the topology of the event horizon forD55 black
holes @33#. For D56, H is a 4-manifold and topologica
censorship excludes, for example,H5CP2 because it has
nonvanishing Pontrjagin and Stiefel-Whitney numbers.

In summary, there are very few useful restrictions on
topology of the event horizon of a general stationary bla
hole in higher dimensions. However, black rings are the o
known example of stationary black holes with nonspheri
horizons.

The next step in the four dimensional uniqueness proo
that a stationary black hole must either be static or have
ergoregion@29#. This theorem is straightforward to extend
higher dimensions. In the static case, it can then be sh
that the only solution is the Schwarzschild solution@34,35#,
and this theorem has recently been extended to highe
mensions@13#. A simple corollary is that a static higher d
mensional black hole must have a spherical horizon.

The possibility of an ergoregion disjoint from the eve
horizon was excluded in@36# for four dimensional black
holes. This proof relies on a technical theorem concern
maximal hypersurfaces@37#; it will be assumed here that i
can be generalized to higher dimensions. This implies
the stationary Killing vector field of a stationary, nonstat
higher dimensional black hole is spacelike on the event
rizon.

In four dimensions, it can be argued@28,29# that the tan-
gent vector to the null geodesic generators of the event
rizon can be extended to give a Killing vector fieldj of the
full spacetime, which commutes with the stationary Killin
vector field. The latter cannot be equal toj since it is space-
like on the horizon. One can therefore write~after appropri-
ately scalingj)

j5
]

]t
1V

]

]f
, ~2.2!

with ]/]f spacelike and Killing. It seems likely that thi
theorem could be extended to higher dimensions althou

5See@32# for a recent review of this, and other results from c
bordism theory, with references to the original literature.
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since the topology of the horizon is not known, the geome
cal interpretation off is not clear. Roughly speaking, thi
Killing vector should correspond to a symmetry in the dire
tion of rotation.

In four dimensions, the existence of two commuting Ki
ing vector fields implies that the metric has to take a fai
simple form, and it can then be argued that any such solu
to the Einstein equations is uniquely determined by its m
and angular momentum@38,39# and must belong to the Ker
family of solutions. In higher dimensions, two Killing vecto
fields is not enough symmetry to write the metric in a use
form, and the existence of black rings shows that uniquen
should not be expected even when more symmetry
present.

These general arguments suggest that all stationary hi
dimensional black holes must have two commuting symm
tries. However, no known higher dimensional black hole
lution hasonly two commuting symmetries. This sugges
that higher dimensional black holes may be similar to bla
strings in the sense that there may exist undiscovered sta
ary solutions with fewer symmetries than the presen
known solutions. More precisely:

Conjecture. There exist stationary, asymptotically fl
black hole solutions of the D.4 dimensional vacuum Ein
stein equations that admit exactly two commuting Killi
vector fields.

These solutions would have to be nonstatic~because of
the uniqueness theorem for static black holes@13#!. If such
solutions do exist then it seems unlikely that the Schwa
schild solution would be recovered as a limit. This wou
imply that such solutions must have an angular momen
that is bounded below~in terms of their mass!, just as occurs
for black rings.

If the above conjecture is correct then higher dimensio
black holes would exhibit similar behavior to black string
There would be known solutions with lots of symmetry a
new solutions with less symmetry. It is tempting to push t
analogy further. Consider the case of five dimensions wit
single nonvanishing angular momentum. Define a dim
sionless parameterh by

h[
27pJ2

32GM3
, ~2.3!

where J and M are the angular momentum and mass o
black hole. The known solutions are the Myers-Perry so
tions @10# ~which exist for h,1) and black rings@9# (h
.h* '0.84). These solutions have three commuting Killi
vector fields]/]t, ]/]f and]/]c wheref is the direction
of rotation. The above conjecture suggests looking for n
solutions without symmetry in thec direction. The analogy
with black strings suggests that there might be some crit
value h5hc for which the Myers-Perry solution~or black
ring! admits a stationary zero-mode that breaks the sym
try in the c direction. Finding such a mode would therefo
4-3
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HARVEY S. REALL PHYSICAL REVIEW D 68, 024024 ~2003!
be evidence in favor of the above conjecture.6 However, the
absence of such a mode would not rule out the existenc
new solutions. For example, the topology of the new so
tions might differ from that of the Myers-Perry solutions a
black rings, in which case they would not be seen in per
bation theory about the known solutions.

B. Magnetic rings

The existence of black rings implies that stationary bla
holes in five dimensions are not uniquely specified by th
asymptotic charges. If the above conjecture is correct t
there exist further black hole solutions, and therefore bl
hole uniqueness is more severely violated. It is clearly de
able to knowhow manystationary higher dimensional blac
hole solutions have a given set of asymptotic charges.
there finitely many or infinitely many? The purpose of t
present subsection is to suggest that there may be acontinu-
ous infinity of solutions with a given set of asymptoti
charges.

The black ring solutions obtained in@9# are solutions of
the vacuum Einstein equations in five dimensions. It is in
esting to ask whether electromagnetic generalizations e
Consider Einstein-Maxwell theory in five dimensions, pos
bly with a Chern-Simons term. This theory admits two typ
of static black string solution: electric and magnetic. T
electric solution becomes nakedly singular in the extrem
limit. The extremal solution is best viewed as a smea
distribution of black holes. The magnetic solution has a re
lar extremal limit: this is the supersymmetric black string
minimal N51, D55 supergravity.

Black rings can be regarded as rotating loops of bla
string. Consider a rotating loop of magnetic black string.
such a solution exists then it would have vanishing elec
charge.7 The magnetic charge of a localized configurati
must vanish in four spatial dimensions@41#. Therefore the
only asymptotic charges that would be carried by suc
solution are its mass and angular momentum. However,
solution would presumably be characterized by a third
rameter a measuring the strength of the magnetic fie
Therefore, if magnetic black rings exist, then they would
an example of a continuous family~labeled bya) of solu-
tions with the same asymptotic charges.

III. A UNIQUENESS THEOREM

A. Introduction

The above considerations highlight how little is know
about general properties of higher dimensional station
black holes, and suggest that such black holes are hi
nonunique, if nonstatic. This casts doubt on the uniquen

6Examining perturbations of Myers-Perry solutions would also
of interest in view of the conjecture@9# that a five dimensiona
Myers-Perry black hole with a single nonvanishing angular mom
tum is classically unstable forh close to 1.

7Hence it could not saturate the Bogomol’nyi bound appropri
to an asymptotically flat spacetime@40# and therefore would not be
supersymmetric.
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assumption that underlies the entropy calculations for su
symmetric rotating black holes@4#. A uniqueness theorem i
required in order to justify this assumption. In this sectio
the following theorem will be proved.

Theorem.The only supersymmetric, asymptotically fla
black hole solutions of the minimalN51, D55 supergrav-
ity theory are the BMPV solutions, which are uniquely spe
fied by their mass and angular momentum.

Proving a uniqueness theorem for supersymmetric bl
holes is much easier than, say, attempting to generalize
known black hole uniqueness theorems to include degene
horizons. This is because the existence of a globally defi
supercovariantly constant spinor highly constrains the fo
of the spacetime. In fact, for minimalN52, D54 super-
gravity, it fully determines the local form of the metric@19#.
For minimal N51, D55 supergravity, a simple algorithm
can be given for the construction of all supersymmetric
lutions @18#. This will be reviewed in Sec. III B.

The method of@18# yields the general supersymmetr
solution in a coordinate system that does not cover any e
horizons in the spacetime. Therefore, the first step in
uniqueness proof is to introduce a coordinate system vali
the neighborhood of a Killing horizon~Sec. III C!, and to
repeat some of the analysis of@18# in these coordinates~Sec.
III D !. It turns out that this fully determines the local form o
the near-horizon geometry~Secs. III E and III F!. The final
step~Sec. III G! is to show that knowing the local form o
the near-horizon geometry, together with asymptotic flatne
is sufficient to select a unique solution from the general
lution of @18#, which must therefore be the known BMP
solution.

B. Minimal five dimensional supergravity

Minimal N51, D55 supergravity was constructed i
@16#. The bosonic sector has action8

S5
1

4pGE S 1

4
R*1 2

1

2
F`* F2

2

3A3
F` F`AD .

~3.1!

All purely bosonic supersymmetric solutions of this theo
were obtained in@18# as follows. Starting from a commuting
super-covariantly constant~Dirac! spinor e, one can con-
struct a real scalar fieldf, a real vector fieldV and three real
two-form fieldsX( i ):9

f ; i ēe, Va;ēgae,

~X(1)1 iX (2)!ab;eTCgabe, Xab
(3);ēgabe. ~3.2!

e

-

e

8Conventions: the metric has positive signature, curvature is
fined so that de Sitter space has positive Ricci scalar. Curved i
ces are denoted bym,n . . . and tangent space indices bya,b, . . . .

9The precise definition of these objects is given in@18# in terms of
symplectic-Majorana spinors. Converting to Dirac spinors may
troduce numerical factors, which have not been calculated here
4-4
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Fierz identities imply various algebraic identities betwe
these quantities, for example

f 252V2, ~3.3!

i VX( i )50, ~3.4!

i V* X( i )52 f X( i ), ~3.5!

Xga
( i ) Xb

( j )g5d i j ~ f 2hab1VaVb!2 f e i jkXab
(k) , ~3.6!

where e123511 and, for ap-form A and a vectorY, i YA
denotes the (p21)-form obtained by contractingY with the
first index ofA. Equation~3.3! implies that the vector fieldV
is timelike, null or zero. SinceV0;e†e, the latter possibility
occurs if, and only if, e vanishes. Sincee is super-
covariantly constant, the above quantities must also sa
certain differential constraints@18#:

d f52
2

A3
i VF, ~3.7!

D (aVb)50, ~3.8!

dV52
4

A3
f F2

2

A3
* ~F`V!, ~3.9!

and

DaXbg
( i ) 5

1

A3
@2Fa

d~* X( i )!dbg22F [b
d~* X( i )!g]ad

1ha[b Fde~* X( i )!g]de#, ~3.10!

which implies

dX( i )50. ~3.11!

These equations imply thatV is a Killing vector field that
preserves the field strength~i.e.LVF50 whereL denotes the
Lie derivative!, i.e., V generates a symmetry of the full so
lution.

If p is a point at whichV vanishes then consider a timelik
geodesic throughp. Let U denote the tangent vector to th
geodesic.V is a Killing vector field soV•U is conserved
along the geodesic, and must therefore vanish because it
ishes atp. ThereforeU andV are orthogonal along the geo
desic. However,U is timelike andV is nonspacelike so this
implies thatV must vanish everywhere along the geodes
and therefore so muste. This applies to all timelike geode
sics throughp. Hencee vanishes in open regions to the fu
ture and past ofp. By analyticity,e must then vanish every
where, which contradicts the assumption that the space
admits a super-covariantly constant spinor. Hence there
not exist any point in the spacetime at whichV or e vanishes.

Either f vanishes throughout the spacetime or there
some pointp at which f Þ0. These will be referred to as th
‘‘null case’’ and ‘‘timelike case’’ respectively. In the nul
case,V is a globally defined null Killing vector fieldV. In
02402
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fact the general solution in this case is a plane-fronted w
@18#. Special cases of this general solution include the m
netic black string solution@42# and its near horizon geom
etry, AdS33S2. The existence of a globally defined null Kill
ing vector field implies that these solutions cannot descr
black holes.

In the timelike case, by continuity, there is some topolo
cally trivial neighborhoodU of p in which f Þ0. ThereforeV
is a timelike Killing vector field inU. It will be assumed that
f .0 without loss of generality@18#. Coordinates can be in
troduced so that the metric inU can be written@18#

ds252 f 2~dt1v!1 f 21ds4
2 , ~3.12!

whereV5]/]t andds4
2 is the metric on a four dimensiona

Riemannian ‘‘base space’’ orthogonal to the orbits ofV. Note
that all metric components must be independent oft. v is a
1-form that is defined by the equations

i Vv50, dv52d~ f 22V!. ~3.13!

This determinesv up to a gradient, which reflects the free
dom to choose thet50 hypersurface. Supersymmetry r
quires that the base space be hyper-Ka¨hler, with X( i ) the
three complex structures and a volume formh4 chosen so
that these are anti-self-dual. This volume form is related
the volume formh on the five dimensional spacetime by

h45 f i Vh. ~3.14!

dv can be regarded as a 2-form on the base space and
therefore be decomposed into self-dual and anti-self-d
parts with respect to the base space:

f dv5G11G2. ~3.15!

It is then possible to solve for the field strength@18#:

F52
A3

2
d@ f 21V#2

1

A3
G1. ~3.16!

The Bianchi identity forF yields

dG150, ~3.17!

and the equation of motion forF gives

D f 215
4

9
~G1!2, ~3.18!

where D is the Laplacian associated with the base sp
metric and

~G1!2[
1

2
~G1!mn~G1!mn, ~3.19!

wherem,n are indices on the base space, raised with the b
space metric. The above equations guarantee that Eqs.~3.12!
and~3.16! yield a supersymmetric solution of the supergra
ity theory @18#.
4-5
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HARVEY S. REALL PHYSICAL REVIEW D 68, 024024 ~2003!
Any supersymmetric black hole solution must belong
the timelike class. Therefore the full black hole spacetime
determined by analytic continuation of a solution of t
above form. The only known supersymmetric black hole
lution of this theory is the BMPV black hole@4,17#, which
has base spaceR4, with metric

ds4
25dr21

r2

4
@~sR

1 !21~sR
2 !21~sR

3 !2#, ~3.20!

wheresR
i are left invariant 1-forms onSU(2)—see@18# for

details. The solution has

v5
j

2r2
sR

3 , ~3.21!

which impliesG150. The solution forf is

f 21511
m

r2
. ~3.22!

The global properties of this solution were investigated
detail in @17,43#. The solution describes a black hole pr
vided j 2,m3. If this bound is violated then it instead de
scribes a regular spacetime with naked closed causal cu
@43# and the microscopic description becomes nonunit
@44#. There exists evidence@43,45# that it is physically im-
possible to add angular momentum to the black hole
violate the above bound.

C. Introduction of coordinates

The coordinate system introduced above is only valid
cally, and does not cover regions in whichf vanishes, for
example the event horizon of a black hole. In this section
new set of coordinates will be introduced that covers suc
horizon. However, before doing this, it is necessary to ar
that, for a supersymmetric black hole solution, the Killin
vector field V has the usual properties associated with
stationary Killing vector field of an equilibrium black hol
spacetime.

First, consider the possibility thatV becomes null at some
point p outside the black hole. Equation~3.7! implies V•] f
50, sof is constant along the orbits ofV. Sincef vanishes at
p, it must vanish along the orbit throughp. HenceV is null
on this orbit. However, one would not expect a spaceti
describing the rest frame of asingle black hole to admit a
Killing vector field with a null orbitoutsidethe black hole.
This is because such an orbit would correspond to an
server moving at the speed of light for whom the gravi
tional field would appear unchanging. This is only possi
on the event horizon. Therefore,V cannot become null out
side the black hole so it will be assumed thatf .0 every-
where outside the black hole.

Now consider the behavior ofV at infinity. If V were to
vanish at some pointp on I 1 then consider an affinely pa
rametrized outgoing null geodesic with an end point atp. Let
k denote the tangent vector to this geodesic.V•k is constant
along the geodesic and vanishes at infinity. HenceV•k van-
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ishes everywhere on the geodesic. ThereforeV must be pro-
portional tok, and therefore null, along this geodesic. But t
argument above excludes the possibility ofV being null out-
side the black hole. HenceV cannot vanish onI 1. Similarly,
V cannot vanish onI 2.

If V were to become null at some pointp on I 1 then it is
easy to see thatV must be everywhere tangent to the nu
geodesic generator ofI 1 throughp. Once again, such a nu
symmetry would not be expected of a spacetime describin
black hole at rest soV cannot be null anywhere onI 1.
Similarly, V cannot be null anywhere onI 2.

These considerations establish thatV must be timelike
everywhere outside the black hole and also onI 6. If f were
to diverge anywhere onI 6 thenV would be behaving as a
boost symmetry, which is not expected for a black hole in
rest frame. Hencef must be nonzero and bounded onI 6.

It will be assumed that the future event horizonH 1 has a
single connected component. SinceV is an isometry, it must
leave this horizon invariant and must therefore be null
H 1.

Let S be a Cauchy surface for the exterior region of t
black hole such thatS has a boundaryH on the future event
horizon. A null Gaussian coordinate system can be set u
a neighborhood ofH as follows~see@46# for more details!.
Introduce local coordinatesxA (A51,2,3) onH. Let p be a
point onH with coordinatesxA. Consider the future directed
null geodesic generator ofH 1 that passes throughp, with
tangent vectorV. The coordinates of a point affine paramet
distanceu from p along this generator will be defined to b
(u,xA). This defines coordinates on a neighborhoodU of H
in H 1 with V5]/]u. Now let n be the unique past directe
null vector field defined onU by V•n51 andn•X50 for all
X tangent to surfaces of constantu. Finally, consider the null
geodesic from a pointpPU with tangentn. Let the coordi-
nates of a point affine parameter distancer along this geode-
sic be (u,r ,xA) where (u,xA) are the coordinates ofp.

It is easy to check thatLVn50 onH 1. Moreover,V is a
Killing vector field and hence geodesics are mapped to g
desics under the flow ofV. Putting these facts together, und
the flow ofV through a parameter distanced, the point with
coordinates (u,r ,xA) is mapped to the point with coordinate
(u1d,r ,xA). Hence

V5]/]u ~3.23!

everywhere, not just on the horizon.
Sincef vanishes atr 50, differentiability implies

f 5rD~r ,xA!, ~3.24!

for some functionD independent ofu ~as V•] f 50). The
exterior of the black hole isr .0 soD must be positive for
r .0. ]/]xA is tangent to surfaces of constantu in H 1 and
hence orthogonal toV at r 50. ThereforeguA5rhA(r ,xB)
for some functionshA independent ofu ~asV is Killing !. The
full metric must take the form@46#

ds252r 2D2du212dudr

12rhAdudxA1gABdxAdxB, ~3.25!
4-6
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wheregAB is a function ofr andxA. It was argued above tha
black holes must belong to the timelike family of solution
for which D.0 for r .0. However, the above line eleme
is clearly also valid in the neighborhood of a Killing horizo
of V in the null family, for which D[0. Also note that the
form of this metric guarantees the existence of a regular n
horizon geometry, defined by the limitr 5e r̃ , u5ũ/e and
e→0.

D. Supersymmetry near the horizon

The next step in the proof is to examine the constra
imposed by supersymmetry in the above coordinate syst

Using the above form for the metric, Eqs.~3.4! and~3.5!
imply that the two forms can be written

X( i )5dr`Z( i )1r ~h`Z( i )2D* 3Z( i )!, ~3.26!

whereZ( i )[ZA
( i )dxA, h[hAdxA and * 3 denotes the Hodge

dual with respect togAB . X( i ) is globally defined soZ( i ) are
well-defined in a neighborhood ofH. The algebraic relations
satisfied byX( i ) imply

^Z( i ),Z( j )&5d i j , Z( i )`Z( j )5e i jk* 3Z(k), ~3.27!

where^,& denotes the inner product defined bygAB . Closure
of X( i ) @Eq. ~3.11!# yields

d̂Z( i )52
1

2
] r~rD!e i jkZ( i )`Z( j )1] r~rh !`Z( i )

2rDe i jk] rZ
( j )`Z(k)1rh`] rZ

( i ), ~3.28!

and

* 3d̂h2d̂D2Dh1r ] rDh22rD] rh2r * 3~h`] rh!

2rD2e i jkZ( i )^Z( j ),] rZ
(k)&

50, ~3.29!
t

02402
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where, for ap-form Y with only A,B,C indices,

~ d̂Y!ABC . . .[~p11!] [AYBC . . . ] . ~3.30!

For r .0, v can be defined as in Eq.~3.13!, giving

v52
dr

r 2D2
2

1

rD2
h, ~3.31!

where an arbitrary gradient can be absorbed by shifting
u50 surface. The definition ofG1 can be rewritten as

G15
1

2
~ f dv1 i V* dv!. ~3.32!

ComputingG1 then gives

G15dr`G1r ~h`G1D* 3G!, ~3.33!

where

G52
3

2rD2
d̂D1

3

2D2
] rDh2

3

2D
] rh

2
1

2
e i jkZ( i )^Z( j ),] rZ

(k)&. ~3.34!

Equation~3.29! was used to eliminated̂h from this expres-
sion. Note the similarity between Eqs.~3.26! and~3.33!: this
structure is a consequence of~anti!-self-duality on the base
space. Equation~3.16! now gives
F5
A3

2 F2] r~rD!du`dr2rdu`d̂D1
1

3
e i jkdr`Z( i )^Z( j ),] rZ

(k)&2* 3h2r * 3] rh

1
r

3
e i jk~22D* 3Z( i )1h`Z( i )!^Z( j ),] rZ

(k)&G . ~3.35!
Note that this is well-defined atr 50, and has a well-defined
near-horizon limit, even thoughG1 need not be regular a
r 50.

The ABC component of the Bianchi identity forF @or
equivalently, Eq.~3.17!# now yields

d̂* 3h5O~r !. ~3.36!

Now Eqs.~3.29! and ~3.36! give
d̂D`* 3d̂D5d̂FDd̂h2
1

2
D2* 3hG1O~r !. ~3.37!

Integrating this equation over the compact 3-manifoldH
~which is atr 50) then implies

d̂D50 on H, ~3.38!

henceD is constant on the event horizon. Equations~3.29!
and ~3.36! now yield
4-7
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d̂h5D* 3h, d̂* 3h50 on H. ~3.39!

The ArB component of Eq.~3.10! gives

¹AZB
( i )52

1

2
D~* 3Z( i )!AB1gAB^h,Z( i )&2ZA

( i )hB1O~r !,

~3.40!

where¹ is the connection associated withgAB . Taking an-
other derivative and antisymmetrizing then yields an expr
sion for the Riemann tensor ofH. From this, the Ricci tenso
of H is @using Eq.~3.39!#

RAB5S D2

2
1h2DgAB2¹(AhB)2hAhB , ~3.41!

whereh25hAhA, raising indices withgAB on H. Equations
~3.39! imply

¹2hA5RABhB2D2hA on H. ~3.42!

Now consider

I 5E
H

¹(AhB)¹
(AhB). ~3.43!

Integrating by parts and using Eq.~3.42! and¹AhA50 @from
Eq. ~3.39!# gives

I 5E
H

~D2h222RABhAhB!. ~3.44!

Finally, substituting in Eq.~3.41! and integrating by parts
yields I 50. Hence

¹(AhB)50 on H. ~3.45!

Therefore, if nonzero, thenh is a Killing vector field onH.
Substituting into Eq.~3.41! gives the Ricci tensor ofH

RAB5S D2

2
1h2DgAB2hAhB . ~3.46!

This completely determines the curvature ofH becauseH is
a 3-manifold. Combining Eqs.~3.39! and ~3.45! gives

¹AhB5
1

2
DhABChC, ~3.47!

wherehABC is the volume form ofH. Note that this implies
thath2 is constant onH. Furthermore, combining Eqs.~3.40!
and ~3.47! gives

@h,Z( i )#50 on H. ~3.48!

E. A special case

This subsection will consider the case in whichD van-
ishes onH. If this happens then, onH,

d̂Z( i )5h`Z( i ), ~3.49!
02402
s-

which implies that the 1-formsZ( i ) are hypersurface or
thogonal, i.e., there exist functionszi andK ( i ) defined onH
so thatZ( i )5K ( i )dzi ~no summation oni ). Equation~3.49!
then requires that the functionsK ( i ) be proportional. The
constants of proportionality can be absorbed intozi , so K ( i )

5K for i 51,2,3, i.e.,

d̂Z( i )5Kdzi . ~3.50!

Equation~3.49! also implies

h5d̂ logK. ~3.51!

The functionszi can be used as local coordinates onH, i.e.,
$xA%5$zi%. Orthonormality ofZ( i ) implies that the metric on
H is conformally flat:

gABdxAdxB5K2dzidzi . ~3.52!

Equation~3.47! says thath is covariantly constant. In thes
coordinates, this gives

K21] i] jK23K22] iK] jK1K22]kK]kKd i j 50.
~3.53!

This equation was encountered in@18#. By shifting the origin
and rescaling the coordinateszi , the solutions can be written

K51, or K5
L

R
, ~3.54!

whereR5Azizi . In the first case, this implies that the metr
nearH can be written

ds252drdu1@d i j 1O~r !#dzidzj

1O~r 4!du21O~r 2!dudzi . ~3.55!

The near horizon limit of this solution is locally isometric t
flat space with vanishing gauge field. Globally it must diff
by some discrete identifications becauseH is assumed com-
pact. The metric onH is flat soH must be some quotient o
R3 with its flat metric@47#, i.e.,R3 identified with respect to
some subgroup of its isometry group. However, these id
tifications have to preserve the 1-formsZ( i ), which implies
that they must be translations. SoH is a compact manifold
obtained by identifyingR3 with respect to certain transla
tions, i.e.,H must be a 3-torusT3.

In the second case, it is convenient to use spherical p
coordinates$xA%5(R,u,f). The solution can be written

ds252drdu22
r

R
dudR1L2S dR2

R2
1du21sin2udf2D

1O~r 4!du21O~r 2!dudxA1O~r !dxAdxB. ~3.56!

The near horizon limit of such a solution is locally isometr
to the ~maximally supersymmetric! AdS33S2 solution ~to
see this, letr 5vR/L for some new coordinatev). Globally,
it must differ becauseH is compact. The metric onH can be
written
4-8



of
o

-

ns
.
m

io
ex
e-

ym
he

e

-

as

f

nient

di-

to

nt
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ds3
25L2~dZ21du21sin2udf2!, ~3.57!

where Z5 logR ~note thatR must be bounded away from
zero because the 1-formsZ( i ) are well-defined onH). SoH
is locally isometric to the standard metric onR3S2, which
presumably implies thatH can be obtained as a quotient
R3S2. However, the only elements of the isometry group
R3S2 which preserve the 1-formsZ( i ) are translationsZ
→Z1const. HenceH must be globally isometric to the stan
dard metric onS13S2 with Z;Z1 l for somel.

It seems highly unlikely that either of these solutio
could arise as the near horizon geometry of a black hole
fact, the AdS33S2 solution arises as the near-horizon geo
etry of a momentum-carrying blackstring wrapped around a
compact Kaluza-Klein direction.10 A proof that AdS33S2

cannot arise as the near horizon limit of a black hole solut
is given in the Appendix. The flat case can probably be
cluded using a modification of this argument. It will ther
fore be assumed henceforth thatD.0 on H.

F. Near horizon geometry

Having eliminated the case in whichD50 on H, it will
now be shown that the near horizon geometry of a supers
metric black hole must be locally isometric to that of t
BMPV black hole. First define a set of 1-forms onH by11

sL
i 5

D21h2

D
Z( i )1

1

D
d~hAZA

( i )!. ~3.58!

Using Eqs.~3.40! and ~3.47!, it can be shown that thes
1-forms obey

dsL
i 52

1

2
e i jksL

j `sL
k , ~3.59!

and

@h,sL
i #50. ~3.60!

The vector fields dual to these 1-forms are

jL
i 5

D

D21h2
Z( i )2

1

D21h2 * 3~h`Z( i )!. ~3.61!

Equations~3.40! and~3.47! imply that these are Killing vec-
tor fields:

¹(A~jL
i !B)50, ~3.62!

and satisfy the commutation relations ofSU(2):

@jL
i ,jL

j #5e i jkjL
k . ~3.63!

Furthermore, these Killing vector fields commute withh:

10If the string does not carry momentum then it cannot be ide
fied to yield a regular compact event horizon@42#.

11All equations in this subsection are evaluated onH, so hats will
not be included on exterior derivatives.
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@h,jL
i #50. ~3.64!

These considerations show that, ifhÞ0 thenH admits four
globally defined Killing vector fields satisfying the commu
tation relations ofSU(2)3U(1).

If hÞ0 then local coordinates can now be introduced
follows. Let ĥ5h/Ah2, and

x̂i5ĥAZA
( i ) so x̂i x̂i51. ~3.65!

Equations~3.47! and ~3.40! imply

~dx̂idx̂i !AB5~D21h2!~gAB2ĥAĥB!. ~3.66!

Note thatL hx̂i50 so x̂i is constant along integral curves o
h. In some open set it is therefore possible to usex̂i and the
parameter along these curves as coordinates. It is conve
to define

m5
4

D21h2
, j 56

8Ah2

~D21h2!2
, ~3.67!

where the sign ofj will be left arbitrary. Note thatj 2,m3. To
bring the metric to standard form, introduce polar coor
nates

x̂152cosf sinu,

x̂25sinf sinu,

x̂35cosu, ~3.68!

and letc be the parameter along the integral curves ofh,
normalized so that

h524 j m25/2S 12
j 2

m3D 21/2
]

]c
. ~3.69!

The metric must take the form

ds3
25gABdxAdxB

5
m

4 F S 12
j 2

m3D ~dc1A!21du21sin2udf2G ,

~3.70!

for some locally defined 1-formA on H. Equation~3.47!
determinesA up to a gradient, which is just the freedom
choose thec50 surface. A convenient choice is

A5cosudf, ~3.71!

which also fixes the orientation ofH so thatdu`dc`df is
positively oriented. The metric onH now takes the form

ds3
25

m

4 F S 12
j 2

m3D ~dc1cosudf!21du21sin2udf2G ,

~3.72!

i-
4-9
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which is the standard form of the metric on a squashedS3.
However, this is a local result—globally,H could differ from
a squashedS3 by discrete identifications.

Writing h as a 1-form gives

h52 j m23/2S 12
j 2

m3D 1/2

~dc1cosudf!. ~3.73!

The caseh50 ~i.e. j 50) is much simpler. Equation
~3.46! establishes thatH is a three dimensional compact Ein
stein space of positive curvature and hence locally isome
to S3 with its round metric. Therefore the above local coo
dinates can also be introduced in this case, and the metr
as above withj 50.

It is worth summarizing what has been shown. Local c
ordinates have been introduced in a neighborhood of the
rizon (r 50) and explicit expressions for the local behav
of D, hA and gAB at r 50 have been obtained. Using th
expressions for the metric and field strength@Eqs.~3.25! and
~3.35!#, it is now clear that the above analysis has fully d
termined the local form of the near-horizon solution. Sin
this local form is unique, it must agree with that of th
BMPV solution. So the above analysis proves that the n
horizon geometry of any supersymmetric black hole solut
must be locally isometric to that of the BMPV solution.

It has been proved thatH is locally isometric to a
squashedS3 when j Þ0 and a roundS3 when j 50. In the
latter case,H must be globally isometric to a discrete qu
tient of a roundS3 ~sinceH is a positive Einstein 3-manifold!
and in the former case,H is presumably globally isometric to
a discrete quotient of a squashedS3. The question of which
quotients are consistent with supersymmetry can be ded
from the existence of the vector fieldsjL

i and h. Whatever
quotient is taken must preserve these vector fields.

If j 50 then jL
i generate theSU(2)L subgroup of the

SU(2)L3SU(2)R isometry group ofS3. The allowed quo-
tients must therefore be subgroups ofSU(2)R . So H is of
the formS3/G, whereG is a discrete subgroup ofSU(2)R .

If j Þ0 thenjL
i generate theSU(2) factor, andh theU(1)

factor of theSU(2)3U(1) isometry group of a squashe
S3. The allowed quotients must be subgroups ofU(1), and
therefore cyclic groups. HenceH must be a quotient of a
squashedS3 by a cyclic group, i.e.,H is a squashed len
space.

G. Global constraints

The final step is to prove that the black hole must actua
be globally isometric to the BMPV solution. This is whe
detailed knowledge of the general supersymmetric solu
@18# of minimal N51, D55 supergravity is required.

The first step is to write the near-horizon solution in t
form of Eq.~3.12!. Doing so, the metric on the base space

ds4
25rDS gAB1

1

D2
hAhBD dxAdxB1

dr2

rD
1

2

D
drhAdxA.

~3.74!
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A priori, there is no reason why this metric should be regu
at r 50 because the form~3.12! is only valid for r .0. It has
just been demonstrated that coordinatesxA5(c,u,f) can be
introduced so that the metric onH is locally isometric to that
of a squashedS3. In these coordinates,

ds4
25

rm1/2

2 S 12
j 2

m3D 1/2H Fdc1cosudf2 j r 21m23/2

3S 12
j 2

m3D 21/2

drG 2

1du21sin2udf2J 1
dr2

2r
m1/2

3S 12
j 2

m3D 1/2

1O~r 0!dr21O~r !drdxA

1O~r 2!dxAdxB. ~3.75!

Now let

R521/2r 1/2m1/4S 12
j 2

m3D 1/4

, ~3.76!

and

c85c22 j m23/2S 12
j 2

m3D 21/2

logR, ~3.77!

so

ds4
25dR21

R2

4
@~dc81cosudf!21du21sin2udf2#

1O~R2!dR21O~R3!dRdx8A1O~R4!dx8Adx8B,

~3.78!

wherex8A5(c8,u,f). It should be emphasized that this
only valid locally—no assumptions have been made ab
the ranges of the coordinates (c,u,f). However, it can be
seen that the base space metric is locally flat nearR50.
NearR50, the surfaces of constantR are positive Einstein
spaces and must therefore be globally isometric toS3 with its
round metric, identified under some subgroupG of its
SU(2)3SU(2) isometry group. Generally, this implies th
there will be a conical singularity atR50. The metric has to
be hyper-Ka¨hler for R.0, so the holonomy has to be a su
group ofSU(2). Therefore the singularity atR50 has to be
an A2D2E orbifold singularity~see@48# for a review!.12

Now, f approaches a constant at infinity~since V is the
stationary Killing vector field!, and in Eq.~3.12!, v must
vanish fast enough at infinity for the ADM angular mome
tum to be well-defined. Asymptotic flatness then implies th
the base space has to be asymptotically Euclidean. NeR
50, the metric is well-approximated by flat space with
A2D2E singularity at the origin, and it is known@48# that

12This result also follows from the properties ofH deduced in the
previous subsection.
4-10
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such singularities can be resolved by ‘‘blowing up’’ the si
gularity. This produces a complete asymptotically Euclide
hyper-Kähler space. However, the only such space isR4 with
its standard metric@49#. In other words, there could not hav
been a singularity atR50 after all.13

It follows that the metric~3.78! describes a portion o
global flat space, i.e., the coordinates (u,f,c) must have
their standard ranges 0<u<p, f;f12p and c8;c8
14p ~which impliesc;c14p). HenceH hasS3 topology.
The base space is globally flat, with metric

ds25dr21
r2

4
@~sR

1 !21~sR
2 !21~sR

3 !2#, ~3.79!

where

R5r1O~r3!, ~3.80!

and

sR
152sinc8du1cosc8sinudf

sR
25cosc8du1sinc8sinudf ~3.81!

sR
35dc81cosudf.

Having established that the base space is flat, the next st
to show that the solution must haveG150. Consider Eq.
~3.33!. D is constant and nonzero atr 50, which implies that
G1 is well-defined in a neighborhood ofH. ~In fact, G1

vanishes when restricted toH.! It is easy to see from the
behavior ofG1 nearr 50 thatG1 is regular at the origin of
the base space. HenceG1 is globally defined onR4. G1

must vanish at infinity inR4 ~becausev has to decay fas
enough for the solution to be asymptotically flat!. Further-
moreG1 is closed and must therefore belong toHcpt

2 (R4,R),
the second compactly supported cohomology group onR4.
However, this group is trivial, so there exists a 1-formG
globally defined onR4 such thatG15dG with G vanishing
at infinity. Now consider

05E
S`

3
G`G15E

R4
G1`G15E

R4
d4x~G1!2,

~3.82!

where the first integral is taken over the three sphere at
finity, and the final equality follows from the self-duality o
G1. HenceG1 must vanish everywhere on the base sp
and therefore everywhere in the spacetime.

The vanishing ofG1 implies @Eq. ~3.18!# that f 21 is har-
monic on the base space. Near the origin,

f 215
1

rD
5

m

r2
1g, ~3.83!

13If one relaxes the condition of asymptotic flatness then anA
2D2E singularitycan occur atR50. Such behavior can by ob
tained by taking appropriate quotients of the BMPV solution.
02402
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where g is O(r0) near r50. As mentioned above, for a
single black hole, it can be assumed thatf is positive every-
where outside the black hole, and hencef 21 must be finite
for r.0. Furthermore,f must approach a constant at infinit
This implies thatg is regular and bounded onR4. But g must
be harmonic~as f 21 is! and hence constant. By rescaling th
coordinates,g can be set to 1, so

f 21511
m

r2
. ~3.84!

The final step is to prove thatv is uniquely determined.
Topologically, it is clear thatv can be globally defined on
R42$0% by Eq. ~3.13!. Now

2 f 22V5du2
dr

r 2D2
2

h

rD2
5dt1

j

4r
m21/2S 12

j 2

m3D 21/2

sR
3

1O~r 21!dr1O~r 0!dxA, ~3.85!

where

t5u1
m

4r
~3.86!

is a time coordinate defined forr .0. Hence, up to a gradien
~which can be absorbed intot), v is given by

v5
j

4r
m21/2S 12

j 2

m3D 21/2

sR
31O~r 21!dr1O~r 0!dxA,

5
j

2r2
sR

31O~r21!dr1O~r0!dxA. ~3.87!

For r.0, v has to satisfy the following criteria. First, th
vanishing ofG1 implies thatdv has to be anti-self-dual with
respect to the metric on the base space. Secondly, asymp
flatness requiresv5O(r23) asr→`. Finally, asr→0, v
must be given by Eq.~3.87!. To prove uniqueness ofv,
assume that there were two solutionsv1 and v2 satisfying
these criteria. Letṽ5v12v2. Hence ṽ is O(r23) as r
→`, and, nearr50,

ṽ5O~r21!dr1O~r0!dxA. ~3.88!

Thereforeṽ can be written, onR42$0%, as

ṽ5
a

r
dr1n, ~3.89!

wheren[nAdxA is a (r-dependent! 1-form defined onS3.
The quantitiesa andn are well-behaved asr→0. Anti-self-
duality of dṽ reduces to

d̂a5* 3d̂n1r]rn, ~3.90!

whered̂ and *3 are now defined on the round unitS3. This
equation implies thata becomes a harmonic function onS3
4-11
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as r→0. However, the only harmonic functions onS3 are
constant, soa must become constant asr→0, i.e., d̂a→0
asr→0. Therefored̂n→0 asr→0. However this implies

05 lim
e→0

E
r5e

ṽ`dṽ5E
R42$0%

dṽ`dṽ

52E
R42$0%

d4x~dṽ !2, ~3.91!

where the surface term at infinity vanishes because of
boundary conditions onṽ, and the final equality is a conse
quence of anti-self-duality. It follows then, thatṽ is closed
and henceṽ5dl for some functionl defined forr.0.
Therefore,v1 andv2 differ at most by a gradient. Hence th
general solution forv must agree with the BMPV solution
up to a gradient:

v5
j

2r2
sR

31dl. ~3.92!

Finally, this gradient can be absorbed into the time coo
natet, and then

V52 f 2S dt1
j

2r2
sR

3 D ~3.93!

for r .0. Since the base space is flat, andf is given by Eq.
~3.84!, the solution is identical to the BMPV solution forr
.0. Therefore the BMPV solution is the unique supersy
metric black hole solution of minimalN51, D55 super-
gravity.

H. Discussion

The above results constitute the first example of a uniq
ness theorem for supersymmetric black holes. The proof
volved two steps. The first~local! step was to examine th
constraints imposed by supersymmetry in a neighborhoo
the event horizon. It was shown that the near-horizon ge
etry is completely determined. The second~global! step was
to use the fact that, away from the Killing horizon, a gene
form for all supersymmetric solutions exists@18#.
Asymptotic flatness and the boundary conditions obtai
from the near-horizon geometry select a unique solut
from this class.

The first step in the proof actually determines the ne
horizon geometry ofany ~i.e. not necessarily asymptoticall
flat! supersymmetric solution that admits a compact Killi
horizon preserved byV. The near-horizon geometry of such
solution has to be locally isometric to flat space, to Ad3
3S2, or the near-horizon geometry of the BMPV solutio
~of which AdS23S3 is a special case!. Furthermore, in each
case, the allowed possibilities for the spatial geometry of
event horizon~i.e. of H) have been determined. In the fl
case,H must beT3 with its flat metric and in the AdS3
3S2 case,H must beS13S2 with the usual metric. In the
case of a BMPV near-horizon geometry there are more p
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sibilities. If j Þ0 thenH must be a squashed lens space.
j 50 then the near-horizon BMPV geometry reduces
AdS23S3, and in this caseH must be a quotient of a roun
S3 by a discrete subgroup ofSU(2).

Even if a spacetime has a noncompact Killing horizon
is often possible to make identifications to render the horiz
compact. For example, AdS33S2 arises as the near-horizo
geometry of a magnetic black string wrapped around a co
pact Kaluza-Klein direction, with momentum around this d
rection. A supersymmetric spacetime admitting a Killing h
rizon for which the analysis of this paper doesnot determine
the near-horizon geometry would have to satisfy one of t
criteria. Either the horizon would not be preserved byV, or
the horizon would be noncompact and could not be rende
compact by identifications without breaking supersymme
The former case is not of much physical interest since on
usually interested in event horizons, whichmustbe preserved
by all Killing vector fields.

It would be interesting to see whether the above meth
could be extended to prove a uniqueness theorem for o
supergravity theories. For example, proving uniqueness
supersymmetric black holes in minimalN52, D54 super-
gravity amounts to proving the long-standing conjecture@8#
that the only black holes in the Israel-Wilson-Perj´es ~IWP!
class of solutions are the Mujumdar-Papapetrou multi-bl
hole solutions. This is because all supersymmetric soluti
of this theory are known@19#, and fall into a timelike and a
null class, as for the minimalN51, D55 theory. The IWP
solutions constitute the timelike class. It seems very lik
that this conjecture could be proved easily using the meth
of this paper, i.e., first constructing bosonic objects from
super-covariantly constant spinor, using these to determ
the form of the near horizon geometry~presumably either flat
space or AdS23S2), and then showing that this informatio
together with asymptotic flatness determines a unique m
ber of the IWP family.

Of more physical interest would be the extension of t
above results to more complicated supergravity theories,
example the maximally supersymmetric theories inD54,5.
It seems rather unlikely that the general supersymmetric
lution of these theories could be obtained using the meth
of @18,19#, so a complete uniqueness proof is probably n
possible using the methods of this paper. However, it mi
be possible to determine all possible near-horizon geome
of solutions with compact Killing horizons@one would start
with the metric~3.25! and assume thatD, hA and gAB are
independent ofr, since this is what happens in the nea
horizon limit#. This information might lead to an understan
ing ~in classical supergravity! of why supersymmetric rotat
ing black hole solutions only seem to exist inD55. Finally,
it might be possible to use the methods of the present pa
to classify possible near-horizon geometries of supersymm
ric solutions ofD510,11 supergravity theories.
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APPENDIX

The purpose of this appendix is to exclude the possibi
of supersymmetric black holes with near-horizon geome
AdS33S2. It is best read after Sec. III G because it relies
results developed there.

SinceD vanishes atr 50, but is not identically zero~this
would correspond to the null class! then by analyticity it
must be possible to write

D5r pD̃, ~A1!

wherep is a positive integer,D̃ is not identically zero onH,
andD̃.0 for r .0. The Maxwell equation~3.18! then gives

¹2D̃2~2p21!hA¹AD̃52p~p21!D̃h21O~r !. ~A2!

Integrating this equation overH ~using¹AhA50) implies

p~p21!D̃h250 on H. ~A3!

Sinceh2Þ0 on H for the solution~3.56!, it follows that this
solution must havep51. Substituting this back into Eq
~A2!, multiplying by D̃ and integrating overH gives

D̃5D̃0 on H, ~A4!
02402
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whereD̃0 is a positive constant. Next, from Sec. III E,h can
be written as

h52
dR

R
1rh11r 2h2 , ~A5!

where h1 is independent ofr and h2 is smooth atr 50.
Equation~3.29! implies

d̂~Rh1!50. ~A6!

Hence there is some functionl defined locally onH such
that

h15
L

R
dl. ~A7!

The base space metric can be calculated from Eq.~3.74!:

ds4
25D̃21S r

RD 2FdS Ll2
R

r D1Rrh2G2

1r 2D̃gABdxAdxB.

~A8!

Define a new coordinater by

r 5
r

X
, ~A9!

where

X511
Llr

R
. ~A10!

The base space metric is then
ds4
25X22H D̃21Fdr

r
2

dR

R
1

r2h2

X G2

1L2r2D̃FdR2

R2
1dV21O~r!dxAdxBG J , ~A11!

where the metric onH deduced in Sec. III E has been used andxA5(R,u,f). Completing the square ondR/R gives

ds4
25X22H D̃21YFdR

R
2Y21S dr

r
1

r2h2

X D G2

1D̃Y21L2r2Fdr

r
1

r2h2

X G2

1L2r2D̃dV21O~r3!dxAdxBJ , ~A12!

where

Y[11L2r2D̃2. ~A13!

Hence

ds4
25@11O~r!#H D̃0

21FdR

R
2

dr

r
1O~r!dr1O~r2!dxAG2

1L2D̃0~dr21r2dV2!1O~r!dr21O~r3!drdxA

1O~r3!dxAdxBJ . ~A14!

Now define

x45D̃0
21/2log

R

r
, r̃5LD̃0

1/2r. ~A15!
4-13
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Then

ds4
25dr̃21 r̃2dV21~dx4!21O~ r̃ !dr̃21O~ r̃ !dr̃dx41O~ r̃3!dr̃dx8A1O~ r̃ !~dx4!21O~ r̃2!dx4dx8A1O~ r̃3!dx8Adx8B,

~A16!

wherex8A5(x4,u,f). The identifications inherited fromH imply thatu andf parametrize a two-sphere andx4 is periodically
identified. The base space is therefore regular atr̃50. As in Sec. III G, asymptotic flatness requires the base space t
asymptotically Euclidean and hence it must be globalR4 with its usual metric. However, the above metric~with periodicx4)
cannot arise from globalR4. Hence AdS33S2 cannot arise as the near-horizon geometry of a black hole.

Of course AdS33S2 does arise as the near horizon geometry of a black string. Such strings exist in both the null cla
the timelike class. To get such a string from the timelike class, one can take the base space to beR4 parametrized as in Eq
~A16! ~neglecting the corrections! and then follow the method of Sec. 3.7 of@18# ~with H51, x i5v i50, and point sources
for the harmonic functions!.
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