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It has recently been shown that the uniqueness theorem for stationary black holes cannot be extended to five
dimensions. However, uniqueness is an important assumption of the string theory black hole entropy calcula-
tions. This paper justifies this assumption by proving a uniqueness theorem for supersymmetric black holes in
five dimensions. Some remarks concerning general properties of nonsupersymmetric higher dimensional black
holes are made. It is conjectured that there exist new families of stationary higher dimensional black hole
solutions with fewer symmetries than any known solution.
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I. INTRODUCTION generate event horizon and therefore do not apply to super-
symmetric black holes. Nevertheless, it would be very
One of the most impressive successes of string theory is surprising if supersymmetric black holes turned out to be
microscopic derivation of the entropy of certain supersym-nonunique in four dimensiorts.
metric black holed1]. The idea is that a weakly coupled In five dimensions, the only evidence for the uniqueness
system of strings and branes wrapped around some compaggsumption seems to have been that higher dimensional
dimensions turns into a black hole in the noncompact dimenblack holes appeared to have very similar properties to four
sions as the string coupling is increased. For fixeddimensional ones. However, this is not really evidence at all
asymptotic chargegmass, angular momenta and gaugebecause all known higher dimensional black hole solutions
chargey the degeneracy of microstates can be calculated inere derived using\nsdze based on simple generalizations
the weakly coupled description. Provided sufficient superof four dimensional black hole solutions, or were related by
symmetry is preserved, this is found to correctly reproducelualities to solutions based on suBhsdze Therefore it is
the Bekenstein-Hawking entropy of the black héé least not very surprising that the known higher dimensional black
for black holes much larger than the string length holes had similar properties to four dimensional ones.
These calculations were first performed for static super- The situation has changed with the recent discovery of a
symmetric black holes in five dimensiofi&]. They were class of five dimensional vacuum black holes that are com-
subsequently extended to static supersymmetric holes in fogletely unlike anything encountered in four dimensions—
dimensions[2,3], to rotating supersymmetric holes in five “black rings” [9]. These are stationary black holes with
dimensiong4] and to nearly supersymmetric generalizationsevent horizons of topolog®' x S?. They can be regarded as
of all of these[5-7]. rotating loops of black string, with the centrifugal force bal-
A key assumption made in this work is that the relevantancing the tendency of the ring to collapse under gravity. The
black hole solutions are uniquely specified by theirexistence of black rings implies that the uniqueness theorem
asymptotic charges. If this turned out to be untrue, i.e., iffor stationary black holes does not extend to five dimensions.
there existed distinct supersymmetric black hole solutionghis is because black rings can carry the same asymptotic
with the same asymptotic charges, then there would be gharges as the vacuum black holes of spherical topology dis-
problem with the conventional interpretation of the entropycovered by Myers and PerfiL0].2
calculations. The problem would be in identifying which sets  In the first part of this paper, it will be suggested that there
of microstates should correspond to each black hole, ashould be many more exotic black hole solutions in higher
would be necessary in order to compute their respective ertimensions. Examining the steps that go into proving the
tropies. The black holes would be distinguished macroscopiuniqueness theorems in four dimensions suggests thaha
cally by their differing gravitational fields. However, there is eral stationary asymptotically flat black hole in higher di-
no gravitational field present in the weakly coupled descripmensions should admit only two commuting Killing vector
tion used for the entropy calculations. Hence, at weak coufields. However, allknown higher dimensional black hole
pling, there would be no way of telling which microstates solutions have more symmetry. So there may exist large
corresponded to which black hole. The distinction betweerfamilies of higher dimensional black hole solutions in addi-
different sets of microstates would only become apparent agon to the known ones. This would imply that black hole
the microscopic description became strongly coupled. uniqueness would always be badly violated in higher
Given the importance of this assumption, one might ask
how it was originally motivated. It seems that the only evi-
dence in its favor is the existence of the black hole unique- This paper will only discuss spacetimes containing a single black
ness theorems in four dimensions. These establish that staole. Otherwise multi-black hole solutiof] would be an example
tionary four dimensional black holes are indeed uniquelyof nonuniqueness.
specified by their asymptotic charges, at least in Einstein- ?Statichigher dimensional black hole solutions were first obtained
Maxwell theory. The uniqueness theorems assume a nonder[11].
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dimensions,and emphasizes the importance of justifying theSo the results of this paper highlight how far string theory is
uniqueness assumption for supersymmetric black holes. from providing a complete understanding of black holes.

A uniqueness theoreimasbeen proved for nondegenerate  This paper is organized as follows. Section Il discusses
higher dimensionabtatic black holes in Einstein-Maxwell general properties of higher dimensional black holes. Section
[13] and Einstein-Maxwell-dilaton theofyi4], and for Ein- Il contains the unigueness theorem. There is one Appendix
stein gravity coupled to a-model[15]. The uniqueness as- dealing with a special case that arises in the analysis.
sumption for static supersymmetric black holes in higher di-

mensions therefore seems plausible. 1. HHGHER DIMENSIONAL BLACK HOLES
For rotating holes, it is not at all clear whether this as- ) _
sumption is correct. Rotating supersymmetric black holes A. Black holes with fewer symmetries

seem to exist only in five dimensions—the first example was All known stationaryD-dimensional black hole solutions
found by Breckenridge, Myers, Peet and VEBMPV) [4]. It have at least(D + 1)/2] commuting isometries. The purpose
seems rather likely that charged black ring solutions shoul@f this section is to point out that this seems to be “too
also exist, and if these had a regular supersymmetric limignany,” i.e., in general one would expect fewer symmetries.
then uniqueness of supersymmetric rotating black holegefore explaining this, it is helpful to recall what happens for
might be violated. Also, if there do exist higher dimensionalthe analagous case of black string solutions.
black holes with fewer symmetries than any known solution  Consider the uniform black string solution of the five di-
then why not supersymmetric black holes with fewer sym-mensional vacuum Einstein equations. The metric is the
metries than BMPV? It is clearly desirable to know whetherproduct of the four dimensional Schwarzschild solution with
this happens and, if not, whether a uniqueness theorem fef flat direction, so there are three commuting Killing vector
supersymmetric black holes can be proved. fields, corresponding to time translations, rotations and spa-
The main goal of this paper is to provide the first exampletial translations. If the string is compactified on a circle of

of such a uniqueness theorem, and thereby justify theisymptotic radiug then one can define a dimensionless pa-
uniqueness assumption made in the black hole entropy catameter

culations. This is therefore a check on the consistency of the
entropy calculations that can be performed at the level of GM
classical supergravity. n= F
The supergravity theory that will be considered is mini-
malN=1, D=5 supergravityf 16] because it is the simplest
theory in which black hole uniqueness is known to be vio-whereM is the mass of the string. There is a particular value
lated (the theory admits black ring solutiond=urthermore, 7= 7. for which the uniform string solution admits a static
the BMPV supersymmetric rotating black hole solution canzero-mode that breaks the translational symmg2aj. This
be embedded in this theofg7]. In fact, this theory is suffi- led to the conjectur¢21,2 that exact static black string
ciently simple that it is possible to findll supersymmetric solutions without translational symmetry should also exist.
solutions[18]. Previously, the only theories for which this There is good perturbativi23] and numerica(24,25 evi-
had been done were minimbll=2, D=4 supergravitf19]  dence that this is indeed the case, but the solutions are not
and some simpl® =4 generalization§20)]. known analytically* These solutions have ontwo commut-
The general supersymmetric solution obtained 18] is ing Killing vector fields, which is one fewer than for the
sufficiently complicated that it is far from obvious which solutions that are known analytically.
solutions correspond to black holes. In fact, the solution To understand why there might also exist stationary black
given in[18] is only valid away from any horizons that may holeswith fewer symmetries than any known solution, it is
be present in the spacetime. In this paper, it will be showrworth reviewing the steps that go into proving the unique-
how a local ana|ysis of the constraints imposed by supersynmiess theorem for four dimensional black holes, and asking
metry in the neighborhood of the horizon can be combinedvhich steps can be generalized to higher dimensions. For
with global information about the black hole exterior pro- simplicity, only vacuum black holes will be considered, al-
vided by the general solution pf8] to prove that the BMPV though similar remarks should apply to nondegenerate
solution is the only supersymmetric black hole solution ofcharged black holes. It is probably also worth emphasizing
minimal N=1, D=5 supergravity. that only asymptotically flat black holes will be considered in
It is reassuring that a uniqueness theorem can be provehis paper.
for supersymmetric black holes. However, this theorem also The first step is the proof that the event horizon of a
serves to emphasize how special such black holes are, in tiféationary black hole must hav& topology [28,29. This
sense that they fail to exhibit features that are expected dElies on the Gauss-Bonnet theorem applied to(the di-
generalblack holes, e.g., nonuniqueness in five dimensionsmensional horizon and therefore does not generalize to
higher dimensions. An alternative proof in four dimensions is
based on the notion of “topological censorshi80]. Con-
3t is tempting to conjecture that adding the requiremergttabil- ~ Sider a spacelike slicE that intersects the future event ho-
ity would guarantee uniquenefgE2], but there is no evidence for
this since stability of higher dimensional black holes has never been
studied. 4See[26,27) for attempts to construct such solutions analytically.

: (2.1)

024024-2



HIGHER DIMENSIONAL BLACK HOLES AND SUPERSYMMETRY PHYSICAL REVIEW D68, 024024 (2003

rizon and letH denote the intersection. Topological censor-since the topology of the horizon is not known, the geometri-
ship requires tha®, be simply connected. Note that has cal interpretation of¢ is not clear. Roughly speaking, this
two boundaries, namelid and the sphere at spatial infinity. Killing vector should correspond to a symmetry in the direc-
Hence topological censorship requires tHahe cobordant to  tion of rotation.
a sphere via a simply connected cobordism. For a stationary |n four dimensions, the existence of two commuting Kill-
black hole, this can be shown to imply thidtis a sphere ing vector fields implies that the metric has to take a fairly
[31]. _ o _ ~ simple form, and it can then be argued that any such solution
Topological censorship is also valid f@>4 but it iS o the Einstein equations is uniquely determined by its mass
much less restrictive. First, >4 and there eX|s_ts a cobor- and angular momentufi38,39 and must belong to the Kerr
dism from H to the sphere then there also exists a simplyg, iy of solutions. In higher dimensions, two Killing vector
connected cobordisthSecondly, a cobordism from to the fig|ds is not enough symmetry to write the metric in a useful

sphere exists if, and only ifi has vanishing Pontrjagin and ¢, and the existence of black rings shows that uniqueness

St|efeI7Wh|tney numbers. FO!DZS' H is an orlenteq .should not be expected even when more symmetry is
3-manifold and hence automatically has vanishing Pontrjagi resent

and Stiefel-Whitney numbers so topological censorship doe These general arguments suggest that all stationary higher

not restrict the topology of the event horizon =5 black . : .

— . . ; dimensional black holes must have two commuting symme-
holes [33]. For D=6, H is a 4-manifold and topological tries. However, no known higher dimensional black hole so-
censorship excludes, for exampld=CP? because it has S ' 9 . .

lution hasonly two commuting symmetries. This suggests

nonvanishing Pontrjagin and Stiefel-Whithey numbers. . . . -
In summary, there are very few useful restrictions on thdhat higher dimensional black holes may be similar to black

topology of the event horizon of a general stationary blackStrings in _the sense that there may exist undiscovered station-
hole in higher dimensions. However, black rings are the only2'y Solutions with fewer symmetries than the presently
known example of stationary black holes with nonsphericaknown solutions. More precisely:
horizons. Conjecture. There exist stationary, asymptotically flat
The next step in the four dimensional uniqueness proof i®lack hole solutions of the B4 dimensional vacuum Ein-
that a stationary black hole must either be static or have afitein equations that admit exactly two commuting Killing
ergoregior29]. This theorem is straightforward to extend to vector fields.
higher dimensions. In the static case, it can then be shown These solutions would have to be nonstabecause of
that the only solution is the Schwarzschild solut{@4,35,  the uniqueness theorem for static black hdi&3]). If such
and this theorem has recently been extended to higher dsolutions do exist then it seems unlikely that the Schwarz-
mensiong 13]. A simple corollary is that a static higher di- schild solution would be recovered as a limit. This would
mensional black hole must have a spherical horizon. imply that such solutions must have an angular momentum
The possibility of an ergoregion disjoint from the event that is bounded beloin terms of their massjust as occurs
horizon was excluded i136] for four dimensional black for plack rings.
holes. This proof relies on a technical theorem concemning |f the above conjecture is correct then higher dimensional
maximal hypersurfacef37]; it will be assumed here that it pjack holes would exhibit similar behavior to black strings.
can be generalized to higher dimensions. This implies thafhere would be known solutions with lots of symmetry and
the stationary Killing vector field of a stationary, nonstatic, new solutions with less symmetry. It is tempting to push this
higher dimensional black hole is spacelike on the event hognalogy further. Consider the case of five dimensions with a

rizon. . _ _ single nonvanishing angular momentum. Define a dimen-
In four dimensions, it can be arguéa8,29 that the tan-  sjonless parametey by

gent vector to the null geodesic generators of the event ho-
rizon can be extended to give a Killing vector figjdof the

full spacetime, which commutes with the stationary Killing 27732
vector field. The latter cannot be equal&since it is space- n= , (2.3
like on the horizon. One can therefore wrigter appropri- 32G M3

ately scaling¢)

whereJ and M are the angular momentum and mass of a
_d d black hole. The known solutions are the Myers-Perry solu-
§_E+Q£’ (2.2 tions [10] (which exist for »<<1) and black ringd9] (7
> 7, ~0.84). These solutions have three commuting Killing
vector fieldsd/ ot, d/d¢p anddldsr where ¢ is the direction
with 9/d¢ spacelike and Killing. It seems likely that this of rotation. The above conjecture suggests looking for new
theorem could be extended to higher dimensions althouglsolutions without symmetry in the direction. The analogy
with black strings suggests that there might be some critical
value = 7. for which the Myers-Perry solutiofor black
5See[32] for a recent review of this, and other results from co- ring) admits a stationary zero-mode that breaks the symme-
bordism theory, with references to the original literature. try in the ¢ direction. Finding such a mode would therefore
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be evidence in favor of the above conjectbitdowever, the assumption that underlies the entropy calculations for super-
absence of such a mode would not rule out the existence aymmetric rotating black holdgl]. A uniqueness theorem is
new solutions. For example, the topology of the new solu+equired in order to justify this assumption. In this section,
tions might differ from that of the Myers-Perry solutions and the following theorem will be proved.

black rings, in which case they would not be seen in pertur- Theorem.The only supersymmetric, asymptotically flat,

bation theory about the known solutions. black hole solutions of the minim&=1, D=5 supergrav-
ity theory are the BMPV solutions, which are uniquely speci-
B. Magnetic rings fied by their mass and angular momentum.

The existence of black rings implies that stationary blac

holes in five dimensions are not uniquely specified by thei oles is much easier than, say, attempting to generalize the

asymptotic charges. If the above conjecture is correct theﬁnown black hole uniqueness theorems to include degenerate

there exist further black hole solutions, and therefore blaclégrléfcn;\};gztis Sgﬁitjasrft tsheineoxrlsr:?nhcie 2L§S?r|git:§l¥hge;g;fnd
hole uniqueness is more severely violated. It is clearly desir(—)f Ft)he S acet'mye In fact fgr m'n'n?awy—z D=4 super-
able to knowhow manystationary higher dimensional black € Sp ime. Th fact, n —<, D=4 sup

hole solutions have a given set of asymptotic charges. Ar ravny, '.t fully determines the local form Of. the metrﬁﬂ:&?].
there finitely many or infinitely many? The purpose of the or m'”'ma' N=1, D=5 supergrawty, a simple algont_hm
present subsection is to suggest that there may dzmnu- can be given for the construction of all supersymmetric so-

Coe . ; : . lutions[18]. This will be reviewed in Sec. Il B.
g;’;rgg"ty of solutions with a given set of asymptotic The method of[18] yields the general supersymmetric

The black ring solutions obtained [9] are solutions of solution in a coordinate system that does not cover any event
the vacuum Einstein equations in five dimensions. It is inter-horlzons in the spacetime. Therefore, the first step in the

esting to ask whether electromagnetic generalizations exisy " dueNesS proof is to introduce a coordinate system valid in

Consider Einstein-Maxwell theory in five dimensions, possi—t e n?ighborh??ﬁ of aIKi!IingjshpritzhonSec. IIIdQ, tan§d to
bly with a Chern-Simons term. This theory admits two typeerpea some of the analysis[df] in these coordinatetSec.

of static black string solution: electric and magnetic. TheIII D). It t“”‘? out that this fully determines the local fqrm of
electric solution becomes nakedly singular in the extrema}he near-honzoq geometifsecs. Il E _and Il §. The final
limit. The extremal solution is best viewed as a smeare tep (Sec. I”. G is to show that "”OW"?Q the local _form of
distribution of black holes. The magnetic solution has a regu:he near-horizon geometry, together with asymptotic flatness,

P ; ; is sufficient to select a unique solution from the general so-

lri:n?;qt;?mil 1I|m5t .:thSSlIJSpg:Zrzl\Jlip;;rsymmetnc black string OfIutior? of [18], which must therefore be the known BMPV

Black rings can be regarded as rotating loops of bIacI?OIunon'
string. Consider a rotating loop of magnetic black string. If
such a solution exists then it would have vanishing electric
charge7. The magnetic charge of a localized configuration Minimal N=1, D=5 supergravity was constructed in
must vanish in four spatial dimensiofiél]. Therefore the [16]. The bosonic sector has actfon
only asymptotic charges that would be carried by such a
solution are its mass and angular momentum. However, the 1
solution would presumably be characterized by a third pa- S= mf
rameter « measuring the strength of the magnetic field.
Therefore, if magnetic black rings exist, then they would be
an example of a continuous familjabeled bya) of solu-
tions with the same asymptotic charges.

‘:h Proving a unigueness theorem for supersymmetric black

B. Minimal five dimensional supergravity

L1 - ZEAE— 2_FAFAA
4 2 33 '
3.1)

All purely bosonic supersymmetric solutions of this theory
were obtained i18] as follows. Starting from a commuting
super-covariantly constar{Dirac) spinor €, one can con-
struct a real scalar fielf] a real vector field/ and three real
A. Introduction two-form fieldsX(®:°

IIl. A UNIQUENESS THEOREM

The above considerations highlight how little is known o o
about general properties of higher dimensional stationary f~iee, V¥~eyZe,
black holes, and suggest that such black holes are highly

nonunique, if nonstatic. This casts doubt on the uniqueness (1)1 iy (2) - 3). —
(X +iXY) (g~ €' Cyape,  Xiop~€vape. (3.2

SExamining perturbations of Myers-Perry solutions would also be
of interest in view of the conjecturg9] that a five dimensional 8Conventions: the metric has positive signature, curvature is de-
Myers-Perry black hole with a single nonvanishing angular momenfined so that de Sitter space has positive Ricci scalar. Curved indi-
tum is classically unstable foy close to 1. ces are denoted hy, v . . . and tangent space indices®yg, . . . .
"Hence it could not saturate the Bogomol'nyi bound appropriate °The precise definition of these objects is givefif] in terms of
to an asymptotically flat spacetinid0] and therefore would not be symplectic-Majorana spinors. Converting to Dirac spinors may in-
supersymmetric. troduce numerical factors, which have not been calculated here.
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Fierz identities imply various algebraic identities betweenfact the general solution in this case is a plane-fronted wave

these quantities, for example [18]. Special cases of this general solution include the mag-
5 5 netic black string solutiorf42] and its near horizon geom-
fo=—-V*, (3.3 etry, AdS;x 2. The existence of a globally defined null Kill-
o ing vector field implies that these solutions cannot describe
iyX®=0, (34  plack holes.
V() 35 In the timelike case, by continuity, there is some topologi

cally trivial neighborhood/ of p in which f#0. Thereforev
is a timelike Killing vector field irt/. It will be assumed that
f>0 without loss of generality18]. Coordinates can be in-
troduced so that the metric i can be writter{ 18]

XUOXDY=55(12 7,5+ VoV ) — T X, (3.6)

where €;,5= +1 and, for ap-form A and a vectory, iyA
denotes thefd— 1)-form obtained by contractiny with the d=— f2(dt+w)+f1ds (3.12
first index of A. Equation(3.3) implies that the vector fieltf 4

is timelike, null or zero. Sinc¥o~€'e, the latter possibility \yherev=g/dt anddsZ is the metric on a four dimensional
occurs if, and only if, e vanishes. Sincee is super-  Rijemannian “base space” orthogonal to the orbitd/oNote
covariantly constant, the above quantities must also satisfy,5t 511 metric components must be independertt of is a
certain differential constrain{s8]: 1-form that is defined by the equations

dfe— 20 F, 37 ivo=0, dw=—d(f 2V). (3.13

v This determinesy up to a gradient, which reflects the free-
D(aV=0, (3.9 dom to choose theé=0 hypersurfaceﬂ. Super_symmetry re-
quires that the base space be hypéhligg with X() the
three complex structures and a volume fomp chosen so

4 2 X ) ;
dV=— —fF— —=*(F/AV), (3.9 that these are anti-self-dual. This volume form is related to
\/§ \/§ the volume formz on the five dimensional spacetime by
0 1 502 (i) 54 (i) dw can be regarded as a 2-form on the base space and can
Daxﬁy:ﬁ[z':a (X 5y 2F 6" (* X 15 therefore be decomposed into self-dual and anti-self-dual

parts with respect to the base space:
+7’a[BF56(*X(I))y]6E]1 (31©

which implies

fdo=G"+G™. (3.19

It is then possible to solve for the field strengtt8]:

V3

These equations imply that is a Killing vector field that F=——d[f V]- EG+- (3.19
preserves the field strengtie. £,F =0 whereL denotes the
:‘iff derivative, i.e., V generates a symmetry of the full So- 1o Bianchi identity forF yields
ution.

If pis a point at whichV/ vanishes then consider a timelike dG* =0, (3.17
geodesic througlp. Let U denote the tangent vector to this
geodesic.V is a Killing vector field soV-U is conserved and the equation of motion fd¥ gives
along the geodesic, and must therefore vanish because it van-
ishes atp. ThereforeU andV are orthogonal along the geo-
desic. HoweverlJ is timelike andV is nonspacelike so this
implies thatV must vanish everywhere along the geodesic,
and therefore so mugt This applies to all timelike geode- where A is the Laplacian associated with the base space
sics throughp. Hencee vanishes in open regions to the fu- metric and
ture and past op. By analyticity, e must then vanish every-
where, which contradicts the assumption that the spacetime
admits a super-covariantly constant spinor. Hence there can-
not exist any point in the spacetime at whi¢lor € vanishes.

Either f vanishes throughout the spacetime or there isvherem,n are indices on the base space, raised with the base
some pointp at whichf+0. These will be referred to as the space metric. The above equations guarantee that 842
“null case” and “timelike case” respectively. In the null and(3.16 yield a supersymmetric solution of the supergrav-
case,V is a globally defined null Killing vector field/. In ity theory[18].

dx=0. (3.11)

4
Af’l=§(G*)2, (3.18

1
(G+)ZE§(G+)mn(G+)m”, (3.19
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Any supersymmetric black hole solution must belong toishes everywhere on the geodesic. Therefraust be pro-
the timelike class. Therefore the full black hole spacetime igortional tok, and therefore null, along this geodesic. But the
determined by analytic continuation of a solution of theargument above excludes the possibilithobeing null out-
above form. The only known supersymmetric black hole soside the black hole. Hendécannot vanish o . Similarly,
lution of this theory is the BMPV black holg4,17], which  V cannot vanish o .
has base spade?, with metric If V were to become null at some poimbnZ * then it is

5 easy to see thav mus+t be everywhere tangent to the null
a2, P a0 2,2 3,2 geodesic generator @ throughp. Once again, such a null
ds;=dp”+ 4 [(oR)™(0R)"F (o), (3.20 symmetry would not be expected of a spacetime describing a
, black hole at rest s&/ cannot be null anywhere of *.
whereor, are left invariant 1-forms o8 U(2)—see[18] for  Similarly, V cannot be null anywhere ofi~.
details. The solution has These considerations establish thatmust be timelike
everywhere outside the black hole and alsdZon If f were
to diverge anywhere ofi* thenV would be behaving as a

_ ) 3
©= 2_p2‘TR’ (3.2 boost symmetry, which is not expected for a black hole in its
rest frame. Hencé must be nonzero and bounded B#.
which impliesG* =0. The solution forf is It will be assumed that the future event horizan™ has a
single connected component. Sirdés an isometry, it must
n leave this horizon invariant and must therefore be null on
f‘1=1+—2. (322 H+.
p

Let 3 be a Cauchy surface for the exterior region of the
black hole such that has a boundarid on the future event
horizon. A null Gaussian coordinate system can be set up in
a neighborhood oH as follows(see[46] for more details

The global properties of this solution were investigated in
detail in[17,43. The solution describes a black hole pro-
vided j2<u3. If this bound is violated then it instead de- :
scribes a regular spacetime with naked closed causal curvddiroduce local coorqmatesi(A=1,_2,3) onH. Letp be a
[43] and the microscopic description becomes nonunitar)Po'm onH vv_lth coordlnates<+. Consider the future dlre_cted
[44]. There exists evidendat3,45 that it is physically im- null geodesic generator 6f * that passes througp, with

possible to add angular momentum to the black hole andgngent vectoW. The coordinates of a po_int affine_parameter
violate the above bound. distanceu from p along this generator will be defined to be

(u,x%). This defines coordinates on a neighborhabdf H
in H* with V=4/du. Now letn be the unique past directed
null vector field defined oty by V-n=1 andn-X=0 for all

The coordinate system introduced above is only valid lo-X tangent to surfaces of constantFinally, consider the null
cally, and does not cover regions in whi€tvanishes, for geodesic from a poinp € 2/ with tangentn. Let the coordi-
example the event horizon of a black hole. In this section, aates of a point affine parameter distan@ong this geode-
new set of coordinates will be introduced that covers such aic be @,r,x*) where (1,x*) are the coordinates qf.
horizon. However, before doing this, it is necessary to argue It is easy to check thafy,n=0 on *. Moreover,V is a
that, for a supersymmetric black hole solution, the Killing Killing vector field and hence geodesics are mapped to geo-
vector fieldV has the usual properties associated with thedesics under the flow d&f. Putting these facts together, under
stationary Killing vector field of an equilibrium black hole the flow of V through a parameter distanég the point with
spacetime. coordinates ,r,x") is mapped to the point with coordinates

First, consider the possibility thatbecomes null at some (u+ 6,r,x*). Hence
point p outside the black hole. EquatidB.7) implies V- of
=0, sof is constant along the orbits d Sincef vanishes at V=dldu (3.23
p, it must vanish along the orbit through HenceV is null . )
on this orbit. However, one would not expect a spacetim&Verywhere, not just on the horizon.
describing the rest frame of single black hole to admit a Sincef vanishes at =0, differentiability implies
Killing vector field with a null orbitoutsidethe black hole. B A
This is because such an orbit would correspond to an ob- fF=rA(r.x%, (3.29
server moving at the speed of light for whom the gravita-f

tional field would appear unchanging. This is only possible . >0 ' functionA ‘independent ofu (as V-9f=0). The
. app gng. yp exterior of the black hole is>0 soA must be positive for
on the event horizon. Thereforg, cannot become null out-

A T
side the black hole so it will be assumed tHat0 every- r>0. 9/0x™ is tangent to s_urfaces of constalltn H ""Qd

; hence orthogonal t& at r=0. Thereforeg,a=rha(r,x")
where outside the black hole.

Now consider the behavior &f at infinity. If V were to ;Slrl S;gg:ﬁg“gﬁg??:;(’;'?ﬁ:?g&gfg]t ofi (asVis Killing). The
vanish at some poirpp on Z* then consider an affinely pa-

C. Introduction of coordinates

rametrized outgoing null geodesic with an end poinp.dtet d<2= — r2A2du2+ 2dudr
k denote the tangent vector to this geode¥ick is constant
along the geodesic and vanishes at infinity. Hevick van- +2rhadudxX*+ yagdx dxB, (3.29
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wherey,g is a function ofr andx”. It was argued above that where, for ap-form Y with only A,B,C indices,

black holes must belong to the timelike family of solutions,

for which A>0 for r>0. However, the above line element

is clearly also valid in the neighborhood of a Killing horizon

of V in the null family, for which A=0. Also note that the

form of this metric guarantees the existence of a regular ne&orr>0, w can be defined as in E3.13, giving

horizon geometry, defined by the limit=er, u=u/e and

0 ar_1, (3.30
w=— — ——1, .

D. Supersymmetry near the horizon A% rA?

(dY)agc.. =(p+1)daYse. . - (3.30

The next step in the proof is to examine the constraints

imposed by supersymmetry in the above coordinate systemyvhere an arbitrary gradient can be absorbed by shifting the
Using the above form for the metric, Eq8.4) and (3.5 u=0 surface. The definition d&* can be rewritten as

imply that the two forms can be written

X(')=dr/\Z(')+r(h/\Z(')—A*gz(')), (32@ G+:§(fdw+iv*dw). (333

wherezW=70dxA, h=h,dx* and*; denotes the Hodge
dual with respect toyag. X is globally defined s@" are
well-defined in a neighborhood ¢f. The algebraic relations
satisfied byX( imply

ComputingG ™ then gives

F=drAG+r(hA\G+ .
(z0),zWy= 51, ZOAZW= e * 70, (3.27) G =drAG+r(h/AG+Ax3G), (3.33
where(,) denotes the inner product defined yg . Closure ~ where
of X1 [Eq. (3.11)] yields
- 1 . . , 3 . 3
dzM=— E&r(rA)eiij(')/\Z(J)-F&r(rh)/\Z(') G=— 2rA2dA+ E'Mh_ 53 h
—rA€d,ZONZM +rh N, Zz0, 3.2 1 -
ijk%r r ( 8 o Efijkz(l)<z(l)!arz(k)>' (334)
and
*3dh—dA—Ah+rd Ah—2rAdh—r*5(h/\d;h) Equation(3.29 was used to eliminatdh from this expres-

sion. Note the similarity between Eg8.26 and(3.33: this
structure is a consequence (@int)-self-duality on the base
=0, (3.29 space. Equatiof3.16) now gives

—r A2, 200(z0),5,209)

3 1 o
F=\/7— —ar(rA)du/\dr—rdu/\dAJr§eijkdr/\Z(')<Z(J),¢9,Z(k))—*3h—r*3¢9,h

r ’ . ’
+ 3 €k~ 20570+ hAz“))(z(J),arz(k))}. (3.35

Note that this is well-defined at=0, and has a well-defined . N N 1,
near-horizon limit, even thougB* need not be regular at dA/A*3dA=d| Adh— AT +0(r).  (3.37
r=0.

The ABC component of the Bianchi identity fdf [or  Integrating this equation over the compact 3-maniféid
equivalently, Eq(3.17)] now yields (which is atr=0) then implies

henceA is constant on the event horizon. EquatigB29
Now Egs.(3.29 and (3.36) give and(3.36 now yield

024024-7
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dh=Ax3h, d*sh=0 on H.

(3.39
The ArB component of Eq(3.10 gives

) 1 ) ) .
VAZS):_EA(*3Z(I))AB+ yae(,.Z0)—Z{hg+ O(1),
(3.40

whereV is the connection associated wijhg. Taking an-

PHYSICAL REVIEW D 68, 024024 (2003

which implies that the 1-form&(") are hypersurface or-
thogonal, i.e., there exist functiozs andK " defined onH
so thatz)=K®"dZ (no summation or). Equation(3.49
then requires that the function§() be proportional. The
constants of proportionality can be absorbed irltoso K
=K fori=1,2,3, i.e,,

dzMW=KdZ. (3.50

other derivative and antisymmetrizing then yields an expresEquation(3.49 also implies

sion for the Riemann tensor &f. From this, the Ricci tensor

of H is [using Eq.(3.39]

2

A
RAB:(7+h2 Yas— V(ahg)—hahg, (3.4))

whereh?=h,h”, raising indices withy® on H. Equations
(3.39 imply

VZhA:RABhB_AZhA on H. (342

Now consider

|= f Viahg)V#hB). (3.43
H

Integrating by parts and using EQ.42 andV,h”=0 [from
Eq. (3.39] gives

| = f (A?h?—2RAgh”hB). (3.44
H

Finally, substituting in Eq(3.41) and integrating by parts
yields1=0. Hence

V(AhB)=O on H. (345)
Therefore, if nonzero, theh is a Killing vector field onH.
Substituting into Eq(3.41) gives the Ricci tensor doff

2

A
RAB: 7+h2 ’}/AB_hAhB. (346)

This completely determines the curvaturetbbecauseH is
a 3-manifold. Combining Eq<3.39 and(3.45 gives

Vh=£A h¢ (3.47
AllB=5 7aBcl! .

where 7agc is the volume form oH. Note that this implies
thath? is constant orH. Furthermore, combining Eqé3.40
and(3.47 gives

[h,Z]=0 on H. (3.48

E. A special case
This subsection will consider the case in whighvan-
ishes onH. If this happens then, oH,

dzO=hAz®, (3.49

h=dlogK. (3.52)
The functionsz' can be used as local coordinatestni.e.,
{x"1={Z'}. Orthonormality ofZ() implies that the metric on
H is conformally flat:

yapdxAdxB=K?dZdZ. (3.52
Equation(3.47) says thath is covariantly constant. In these
coordinates, this gives

Kilo"iajK_3K7207iK(9jK+K7207kK07kK5ij =0.
(3.53

This equation was encountered i8]. By shifting the origin
and rescaling the coordinatg's the solutions can be written

L
K=1, or K=§, (3.59

whereR=/z'Z". In the first case, this implies that the metric
nearH can be written

ds?=2drdu+[&;+O(r)]dZdZ

+O(rHdu?+ O(r?)dudz. (3.55
The near horizon limit of this solution is locally isometric to
flat space with vanishing gauge field. Globally it must differ
by some discrete identifications becalités assumed com-
pact. The metric o is flat soH must be some quotient of
R® with its flat metric[47], i.e., R® identified with respect to
some subgroup of its isometry group. However, these iden-
tifications have to preserve the 1-forid§), which implies
that they must be translations. $bis a compact manifold
obtained by identifyingR® with respect to certain transla-
tions, i.e.,H must be a 3-toru3?.

In the second case, it is convenient to use spherical polar
coordinatedx"} = (R, 6, ¢). The solution can be written

r dR?
d32=2drdu—2§dudR+L2 ?+d92+sin20d¢2

+O(rYdu?+ O(r2)dudX*+ O(r)dx*dxB.  (3.56
The near horizon limit of such a solution is locally isometric
to the (maximally supersymmetricAdS;x S? solution (to
see this, let =vR/L for some new coordinate). Globally,

it must differ becausél is compact. The metric oH can be
written

024024-8
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ds3=L2(dZ?+d6?+sirfod¢?), (3.57) [h,&1=0. (3.64

where Z=logR (note thatR must be bounded away from These considerations show thathi# 0 thenH admits four
zero because the 1-fornz") are well-defined oH). SoH  globally defined Killing vector fields satisfying the commu-
is locally isometric to the standard metric & S?, which  tation relations ofSU(2)x U(1).
presumably implies thatl can be obtained as a quotient of  If h#0 then local coordinates can now be introduced as
Rx S2. However, the only elements of the isometry group offollows. Let A= h/\/hZ, and
RXx S? which preserve the 1-formg&(") are translationsZ
—Z+const. Hencéd must be globally isometric to the stan- x'=h*z0) so xx=1. (3.65
dard metric onS'x S? with Z~Z+1 for somel.

It seems highly unlikely that either of these solutions Equations(3.47) and(3.40 imply
could arise as the near horizon geometry of a black hole. In o o
fact, the Adg§x S solution arises as the near-horizon geom- (dX'dX') ag=(A%+h?)(yap—hahg). (3.66
etry of a momentum-carrying blackring wrapped around a o N
compact Kaluza-Klein directiot. A proof that AdSx S? Note that£ x'=0 sox' is constant along integral curves of
cannot arise as the near horizon limit of a black hole solutiorh. In some open set it is therefore possible to xisand the
is given in the Appendix. The flat case can probably be exparameter along these curves as coordinates. It is convenient
cluded using a modification of this argument. It will there- to define
fore be assumed henceforth thet-0 onH.

4 , 8/h?

- jmE——, 3.6
AR’ 1T T (A%enep (369

F. Near horizon geometry K

Having eliminated the case in whichk=0 onH, it will o . 2 3
now be shown that the near horizon geometry of a supersy _here Lhe S'gn.ojfw'" be Igﬂ 2rk:f)|trary._ Notg tha <|'“ - To di
metric black hole must be locally isometric to that of the ring the metric to standard form, introduce polar coordi-
BMPV black hole. First define a set of 1-forms bhby'! nates

A2+ h?2 x1=—cos¢ siné,

. L1 .
o =—7—Z0+ $d(h*Z{)). (3.58

x?=sin¢ sin,
Using Egs.(3.40 and (3.47), it can be shown that these

1-forms obey x3=cos#, (3.69
P . K and lety be the parameter along the integral curveshof
do=— EfiikUIL/\UL : (3.59 normalized so that
and _ 2\ 12
_ h=—4ju"5? 1-— FrR (3.69
[h,o.]1=0. (3.60 M

The vector fields dual to these 1-forms are The metric must take the form

dsi= yapdxAdx®

. A . )
L= zM— *o(hAZD),  (3.61)
& A2+ h? A%+h? o ) M I 20 4020 i 2
=711 = (dyp+ A)2+de>+sirfod¢? |,
Equations3.40 and(3.47 imply that these are Killing vec- M
tor fields: (3.70
Vial€)g)=0, (3.62  for some locally defined 1-forrd on H. Equation(3.47)
] . ) determines4 up to a gradient, which is just the freedom to
and satisfy the commutation relations (2): choose they=0 surface. A convenient choice is
(& &)= el - (3.63 A=cosgdd, (3.7
Furthermore, these Killing vector fields commute wiith which also fixes the orientation ¢f so thatd/\dy/\d¢ is

positively oriented. The metric oH now takes the form

19f the string does not carry momentum then it cannot be identi- n j2

fied to yield a regular compact event horizigt2]. d =7 1- —3 (dy+cosfd)?+d 6%+ sirfod ¢? |,
B equations in this subsection are evaluated-brso hats will M

not be included on exterior derivatives. (3.72
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which is the standard form of the metric on a squasg&d A priori, there is no reason why this metric should be regular

However, this is a

local result—globalli could differ from  atr =0 because the forrt8.12) is only valid forr>0. It has

a squashe®® by discrete identifications. just been demonstrated that coordinatés: (4, 6, ¢) can be
Writing h as a 1-form gives introduced so that the metric dthis locally isometric to that

The caseh=0

(3.46 establishes thdi is a three dimensional compact Ein-

of a squashe®®. In these coordinates,

o\ 12
1
M

—-1/2
dr

o\ 12
1—#) (d+cosodg).  (3.73 dsﬁzr'u

12

dy+cosfdp—jr 137

2 2

j2 dr
+d6%+sirfodp? | + —— ut?

-
M

(i.e. j=0) is much simpler. Equation %
2r

stein space of positive curvature and hence locally isometric

to S® with its round metric. Therefore the above local coor-
dinates can also be introduced in this case, and the metric is X

as above with =0

1/2
+0(r%dr?+O(r)drdx*

P2

=

It is worth summarizing what has been shown. Local co- +O(r?)dxAdx®. (3.79

ordinates have been introduced in a neighborhood of the ho-

rizon (r=0) and explicit expressions for the local behavior Now let

of A, hy and yag at r=0 have been obtained. Using the

expressions for the metric and field strenfffys.(3.25 and

(3.39)], it is now clear that the above analysis has fully de-

termined the local form of the near-horizon solution. Since

this local form is unique, it must agree with that of the gnq

BMPV solution. So the above analysis proves that the near

horizon geometry of any supersymmetric black hole solution

must be locally isometric to that of the BMPV solution. y'=y—2ju %
It has been proved thaH is locally isometric to a

squashed® whenj#0 and a rounds® whenj=0. In the

latter caseH must be globally isometric to a discrete quo-

tient of a roundS® (sinceH is a positive Einstein 3-manifold 2

1/4

, (3.76

P2

1
M

R= 21/2r 1/2/.L 1/4

2 -1/2
1- —3) logR, (3.77
)72

R
and in the former case is presumably globally isometricto  ds;=dR?+ T[(dw’ +cosfd )%+ d 6>+ sirf0d ¢?]
a discrete quotient of a squash®tl The question of which

quotients are consistent with supersymmetry can be deduced +O(R?)AR%+ O(R?)dRdAX A+ O(RY) dx' Adx’B,
from the existence of the vector fields and h. Whatever
quotient is taken must preserve these vector fields. 3.78

If j=0 then §:__ generate theSU(2), subgroup of the \yherex’A= (4’ 9,¢). It should be emphasized that this is
S_U(Z),_><SU(2)R isometry group ofs®. The allowedl quo-  only valid locally—no assumptions have been made about
tients must therefore be subgroupsQif(2)g. SoH is of  he ranges of the coordinates,@, ¢). However, it can be

the formS®/T", wherel is a discrete subgroup &U(2)g.

seen that the base space metric is locally flat re&0.

If j#0 then& generate th&U(2) factor, anchtheU(1)  NearR=0, the surfaces of constaRtare positive Einstein
factor of theSU(2)xU(1) isometry group of a squashed spaces and must therefore be globally isometr8twith its
S®. The allowed quotients must be subgroupdUgfl), and  round metric, identified under some subgroiip of its
therefore cyclic groups. Hendd must be a quotient of a sy(2)x SU(2) isometry group. Generally, this implies that
squashedS® by a cyclic group, i.e.H is a squashed lens there will be a conical singularity &=0. The metric has to

space.

be hyper-Kaler for R>0, so the holonomy has to be a sub-
group of SU(2). Therefore the singularity &= 0 has to be
G. Global constraints an A—D —E orbifold singularity(see[48] for a review.'?
Now, f approaches a constant at infinitsinceV is the

The final step is to prove that the black hole must aCtua”ystationary Killing vector fielg} and in Eq.(3.12, o must
be g_lobally isometric to the BMPV solution. This _is Wher_e vanish fast enough at infinity for the ADM angular momen-
detailed knowledge of the general supersymmetric solutiom 1o pe well-defined. Asymptotic flatness then implies that
[18] of minimalN=1, D=5 supergravity is required. the base space has to be asymptotically Euclidean. Rear

The first step is to write the near-horizon solution in the _ 5 the metric is well-approximated by flat space with an
form of Eq.(3.12. Doing so, the metric on the base space isy _p_ g singularity at the origin, and it is knowj#g] that

1 drc 2
dszzl: rA( '}/AB+ PhAhB> dXAdXB+ —+ KdrhAdXA

2

rA 12This result also follows from the properties ifdeduced in the

(3.74  previous subsection.

024024-10
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such singularities can be resolved by “blowing up” the sin-where g is O(p° nearp=0. As mentioned above, for a
gularity. This produces a complete asymptotically Euclidearsingle black hole, it can be assumed that positive every-

hyper-Kéler space. However, the only such spacRisvith ~ where outside the black hole, and herfcé must be finite
for p>0. Furthermoref must approach a constant at infinity.
This implies thag is regular and bounded d®f*. But g must
be harmonidasf ! is) and hence constant. By rescaling the
coordinatesg can be setto 1, so

its standard metrif49]. In other words, there could not have

been a singularity aR=0 after all*®

It follows that the metric(3.78 describes a portion of
global flat space, i.e., the coordinateg, ¢,#) must have
their standard ranges<Qd<m, ¢p~¢+27 and '~ ¢’
+ 47 (which impliesy~ ¢+ 4 7). HenceH hasS® topology.
The base space is globally flat, with metric

2
4 =dp?+ Tl (R + (0B + (027, (379

where
R=p+0(p%), (3.80
and
ok=—siny’'d#+cosy’'sindd¢
o&=cosy’'do+siny’sinod e (3.81)

o2=dy’ +cosfde.

Having established that the base space is flat, the next step

to show that the solution must haw&" =0. Consider Eq.
(3.33. A is constant and nonzerolat 0, which implies that
G* is well-defined in a neighborhood . (In fact, G*
vanishes when restricted td.) It is easy to see from the
behavior ofG*™ nearr =0 thatG™ is regular at the origin of
the base space. Hen&" is globally defined orR*. G*
must vanish at infinity inR* (becausew has to decay fast
enough for the solution to be asymptotically flaFurther-
moreG™ is closed and must therefore belong—tépt(R“,R),
the second compactly supported cohomology groupgRbn
However, this group is trivial, so there exists a 1-fofm
globally defined orR* such thatG* =dI" with I" vanishing
at infinity. Now consider

ozfsr/\e+=f G*/\G+=f d*x(G™)?,
s R* R4
(3.82

. M
1
f7 =1+ 5

p

(3.89

The final step is to prove thab is uniquely determined.
Topologically, it is clear thatw can be globally defined on
R*—{0} by Eq.(3.13. Now

H . —1/2
dr h i J2 1
—fV=du— —— — —=dt+ —p Y 1| 43
r’A2  rA? 4r PE R
+O(r Hdr+0(r0dxA, (3.89
where
—ut+ 2
t—u+4r (3.89

is.a time coordinate defined for~0. Hence, up to a gradient
which can be absorbed int), o is given by

. o\ —12
R 1—’—3) Ta+O(r Hdr+O(r%dx*,
)7

4r’u

=ﬁag+0(p*1)dp+0(p°)dxf*. (3.87)
p

For p>0, o has to satisfy the following criteria. First, the
vanishing ofG™ implies thatdw has to be anti-self-dual with
respect to the metric on the base space. Secondly, asymptotic
flatness requirem=O(p3) asp—ox. Finally, asp—0, w

must be given by Eq(3.87). To prove uniqueness ab,
assume that there were two solutiolg and w, satisfying
these criteria. Leiw=w;— w,. Hencew is O(p %) asp

—o0, and, neap=0,

- . . w=0(p~Hdp+O(p°)dx. (3.89
where the first integral is taken over the three sphere at in-
finity, and the final equality follows from the self-duality of Thereforew can be written, oR*—{0}, as
G*. HenceG" must vanish everywhere on the base space
and therefore everywhere in the spacetime. ~ «
The vanishing ofc* implies[Eq. (3.18] thatf ! is har- w= ;dPJF v, (3.89

monic on the base space. Near the origin,
where v=p,dx" is a (p-dependent1-form defined orS®.
4. 1 nu The quantitiesr andv are well-behaved gs— 0. Anti-self-
for=—=—+0 (3.83 . ~
p duality of dw reduces to
aa=*3av+ pd,v, (3.90

13f one relaxes the condition of asymptotic flatness thenAan

—D —E singularity can occur atR=0. Such behavior can by ob-
tained by taking appropriate quotients of the BMPV solution.

whered and *; are now defined on the round urgt. This
equation implies thatr becomes a harmonic function &3

024024-11
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as p—0. However, the only harmonic functions &1 are

constant, sax must become constant as-0, i.e.,da—0
asp—0. Thereforedv—0 asp—0. However this implies

0=IimJ Z,/\dz)=f do/\dw
e0Jp=e R*—{0}

=—f . dx(dw)?, (3.91
R*—{0}

PHYSICAL REVIEW D 68, 024024 (2003

sibilities. If j #0 thenH must be a squashed lens space. If
j=0 then the near-horizon BMPV geometry reduces to
AdS,x S%, and in this casél must be a quotient of a round
S® by a discrete subgroup &U(2).

Even if a spacetime has a noncompact Killing horizon, it
is often possible to make identifications to render the horizon
compact. For example, AdS S? arises as the near-horizon
geometry of a magnetic black string wrapped around a com-
pact Kaluza-Klein direction, with momentum around this di-
rection. A supersymmetric spacetime admitting a Killing ho-

where the surface term at infinity vanishes because of théizon for which the analysis of this paper dosst determine
boundary conditions o, and the final equality is a conse- the near-horizon geometry would have to satisfy one of two

quence of anti-self-duality. It follows then, that is closed
and hencew=d\ for some function\ defined forp>0.

Thereforew, andw, differ at most by a gradient. Hence the
general solution fow must agree with the BMPV solution

up to a gradient:

i
w=——0op+d\.
2p? R

(3.92

criteria. Either the horizon would not be preserved\yor

the horizon would be noncompact and could not be rendered
compact by identifications without breaking supersymmetry.

The former case is not of much physical interest since one is
usually interested in event horizons, whitlustbe preserved

by all Killing vector fields.

It would be interesting to see whether the above method
could be extended to prove a uniqueness theorem for other
supergravity theories. For example, proving unigueness of
supersymmetric black holes in minimbdl=2, D=4 super-

Fina”y, this gradient can be absorbed into the time Coordi'gravity amounts to proving the |0ng_standing Qonject[taf:b

natet, and then

j
V= —f2< dt+ z—ngg)

(3.93

for r>0. Since the base space is flat, dnd given by Eq.
(3.84), the solution is identical to the BMPV solution for

that the only black holes in the Israel-Wilson-Rsr{IWP)
class of solutions are the Mujumdar-Papapetrou multi-black
hole solutions. This is because all supersymmetric solutions
of this theory are knownl19], and fall into a timelike and a
null class, as for the minimall=1, D=5 theory. The IWP
solutions constitute the timelike class. It seems very likely
that this conjecture could be proved easily using the methods

>0. Therefore the BMPV solution is the unique supersym-of this paper, i.e., first constructing bosonic objects from the

metric black hole solution of minimaN=1, D=5 super-
gravity.

H. Discussion

super-covariantly constant spinor, using these to determine
the form of the near horizon geometfigresumably either flat
space or AdSx S?), and then showing that this information
together with asymptotic flathess determines a unique mem-
ber of the IWP family.

The above results constitute the first example of a unique-  of more physical interest would be the extension of the

ness theorem for supersymmetric black holes. The proof ingpoyve results to more complicated supergravity theories, for
volved two steps. The firfocal) step was to examine the example the maximally supersymmetric theoriedDir 4,5.
constraints imposed by supersymmetry in a neighborhood qf seems rather unlikely that the general supersymmetric so-

the event horizon. It was shown that the near-horizon geomytjon of these theories could be obtained using the methods
etry is completely determined. The secdlgtbba) step was  f [18,19, so a complete uniqueness proof is probably not

to use the fact that, away from _the K|II|ng honzon_, a ge”era|possible using the methods of this paper. However, it might

form for all supersymmetric solutions exist$18].  pe possible to determine all possible near-horizon geometries
Asymptotic flatness and the boundary conditions obtaineg so|utions with compact Killing horizonfone would start

from the near-horizon geometry select a unique solutiofyith the metric(3.29 and assume thak, h, and yag are
from this class. , independent of, since this is what happens in the near-
The first step in the proof actually determines the neéaryyizon limit]. This information might lead to an understand-
horizon geometry ofiny (i.e. not necessarily asymptotically ing (in classical supergravilyof why supersymmetric rotat-
flat)_ supersymmetric solution that a_dmits a compact KiIIinging black hole solutions only seem to existin=5. Finally,
horizon preserved by. The near-horizon geometry of such a j; might be possible to use the methods of the present paper

50“;“0” has to be locally isometric to flat space, to AdS (4 c|assify possible near-horizon geometries of supersymmet-
X &%, or the near-horizon geometry of the BMPV solution i~ sojutions ofD =10.11 supergravity theories.

(of which AdS,x S* is a special cageFurthermore, in each
case, the allowed possibilities for the spatial geometry of the
event horizon(i.e. of H) have been determined. In the flat

case,H must beT? with its flat metric and in the Ad$ | would like to thank Fay Dowker, Steven Gubser, Gary
X &% case,H must beS'x S? with the usual metric. In the Horowitz, Chris Hull, Juan Maldacena, Robert Wald, Daniel
case of a BMPV near-horizon geometry there are more postaldram, Toby Wiseman, and Edward Witten for discus-
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ments on the manuscript. | am grateful to Amanda Peet for

pointing out a typo in the first version of this paper. This ~dR 2
work was supported by PPARC. h=—-4g +rhi+rhy, (A5)
APPENDIX where h; is independent of and h, is smooth atr=0.

Equation(3.29 implies
The purpose of this appendix is to exclude the possibility R
of supersymmetric black holes with near-horizon geometry d(Rhy)=0. (AB)
AdS;x S2. It is best read after Sec. Ill G because it relies on

results developed there. Hence there is some function defined locally onH such

SinceA vanishes at =0, but is not identically zer¢this that
would correspond to the null clgsshen by analyticity it L
must be possible to write hy==d\. (A7)

A=rPA, (A) " The base space metric can be calculated from(Eq4):

wherep is a positive integerA is not identically zero o, 2

~ r\? R ~
~ A1 o 2 A B
andA>0 forr>0. The Maxwell equatior3.18 then gives ds;=A4 (R) [d<|‘)\ p| TRz |+ A yaedxdxC,
(A8)
VZA—(2p—1)hAVAA = —p(p—1)Ah%+ O(r). (A2
(2P~ D"V P(P—1) (0. (A2) Define a new coordinate by
Integrating this equation ovét (using Vah*=0) implies o
~ r=g, (A9)
p(p—1)Ah?=0 on H. (A3) X
Sinceh?+0 onH for the solution(3.56), it follows that this ~ Where
solution must havgy=1. Substituting this back into Eg. LAp
(A2), multiplying by A and integrating oveH gives X=1+—7- (A10)
A=A, on H, (A4)  The base space metric is then
|
-~ [dp dR p?h,]? - | dR?
—yY—2 -1 _ - 2 2 - 2 A B
dsi=X |A [p =+ | tLA 2 +dQ2+O(p)dxPdxB| ¢, (A11)

where the metric ot deduced in Sec. lll E has been used afte- (R, 6, ). Completing the square ahR/R gives

. dR d 2h,\ 12 - d 2h,]? ~
dsﬁzxz(AlY ?—Yl(?p—k %” FRY1L2p2 7”+u +L2p2Ad92+O(p3)dxAde], (A12)
where
Y=1+L%p%A%, (A13)
Hence
~_4dR dp 2\ VA ? 2% 2. 24002 2 3 A
ds;=[1+0(p)1{ A, 3—7+O(p)dp+o(p )dX?| +LAg(dp=+p“dQ) +O(p)dp“+ O(p”)dpdX
+0O(p®)dxAd xB] . (A14)
Now define
4 _ X —1/2 R -~ A 1/2
X*=Aq Iog;, p=LAGp. (A15)
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Then

PHYSICAL REVIEW D 68, 024024 (2003

dsi=dp?+p2dQ2+ (dx" %+ O(p)dp?+ O(p)dpdx*+ O(p3)dpdx' A+ O(p) (dxH 2+ O(p?)dx*dx' A+ O(p®)dx'Adx'E,

(A16)

wherex'A=(x*, 6, ¢). The identifications inherited fromd imply that # and ¢ parametrize a two-sphere arflis periodically

identified. The base space is therefore regulgs-aD. As in Sec. Ill G, asymptotic flatness requires the base space to be
asymptotically Euclidean and hence it must be gld®aWith its usual metric. However, the above metfidth periodicx?)
cannot arise from globaR*. Hence Adgx S? cannot arise as the near-horizon geometry of a black hole.

Of course Ad$x S? does arise as the near horizon geometry of a black string. Such strings exist in both the null class and
the timelike class. To get such a string from the timelike class, one can take the base spaB8 fmtmmetrized as in Eq.
(A16) (neglecting the correctiopsind then follow the method of Sec. 3.7[d8] (with H=1, x;=w;=0, and point sources
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