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Newtonian collapse of scalar field dark matter
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In this paper, we develop a Newtonian approach to the collapse of galaxy fluctuations of scalar field dark
matter under initial conditions inferred from simple assumptions. The full relativistic system, the so-called
Einstein-Klein-Gordon system, is reduced to the Sdhrger-Newton one in the weak-field limit. The scaling
symmetries of the SN equations are exploited to track the nonlinear collapse of single scalar matter fluctua-
tions. The results can be applied to both real and complex scalar fields.
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The most recent cosmological observatiqd$ support potential can be complicated, we are interested only in those
the cold dark mattefCDM) as the standard model of cos- potentials that behave ag¢(®)=(m?/2)®? at late times
mological structure formation. So far, the CDM model [5-9]. Such a quadratic scalar potential is preferred because,
agrees reasonably well with many observations at large aniéh @ homogeneous and isotropic universe, the scalar field
galactic scaleg2], though its predictions at subgalactic oscillates coherently around the minimum of the potential
scales are still a matter of intense debige However, the and then the scalar energy density=m*®? scales much
nature of CDM remains one of the most intriguing problemsthe same as CDM. Moreover, the scalar field fluctuations in
in modern cosmology. It is amazing that CDM can be sothe linear regime also grow in the same manner as CDM
predictive and survive the confrontation with cosmologicalfluctuations. Most of the works suggest that a realistic model
data just by assuming general features of dark matter such &&f structure formation should consider a very light mass for
for instance, that it is made of weakly interacting massivethe boson particle$5-10. We will use here the valuen
particles(WIMPs). On the other hand, with CDM becoming =10 ?* eV=(2.09 yr)"!=(0.64 pc) * (we are taking units
a reliable paradigm of structure formation and its nature stilisuch thatc=%=1; also G~ *=m3, with mg the Planck
uncertain, it is possible to test models of dark matter as almas$, which is also a natural scale for time and distance
ternatives to the WIMP hypothesis whose properties couldvithin SFDM.

sort out some of the problems found at subgalactic scales As a result of the similarities of scalar field dark matter
(see for instancé4]). with the CDM model, it is reasonable to take as a guideline
One of such alternative models is the scalar field darkor the nonlinear regime of structure formation the standard
matter(SFDM) model, in which dark matter should be com- spherical collapse modgl5]. According to this, a spherical
prised of ultralight scalar field particldg—11]. On the one overdense fluctuation slowly separates out from the cosmo-
hand, the cosmological evolution of SFDM and its linearlogical expansion, reaches a maximum expansion, and then
fluctuations can match those of CDM. On the other handgollapses under the influence of its own gravity only. The
self-gravitating scalar configurations can reproduce soménportant instant here is that of maximum expansion, which
general properties of galaxy halos as observed today. Going called the time oturnaround
further, it is possible to study the nonlinear evolution of Before turnaround, we do not expect violent processes
SFDM fluctuations to form gravitationally bound objects, asoccurring to the matter fluctuation, and that is why we con-
was first shown ii9]. This is done by numerically evolving sider the spherical collapse model as a good approximation
the coupled Einstein-Klein-GorddiEKG) equations for sca- for scalar fields. However, we indeed expect the gravitational
lar field configuration$9,12—-14. collapse of the matter fluctuation to be determined by the
In this paper, our main aim is to study the collapse ofintrinsic nature of the scalar fields. Hence, the conditions at
scalar field dark matter under realistic conditions. In thisturnaround will be ouinitial conditions for the gravitational
sense, we will try to complete the picture of structure forma-collapse of scalar field dark matter.
tion with scalar field dark matter, from the growing of pri-  According to the spherical collapse model, the nonlinear
mordial fluctuations up to its nonlinear collapse. Also, ourdensity contrast at turnaround i$5"=[38pq/pq] ™™
intention is to draw a guideline as simple as possible, for=4.55. As we said before, the homogeneous scalar energy
which we will only take into account the simplest assump-density evolves as the standard cold dark matter does, and
tions; a more detailed picture will be presented elsewhere. then the local value of the scalar energy density at turn-
First of all, we consider that SFDM is comprised of a around is approximately given by
minimally coupled real scalar field endowed with a scalar
field potentialV(®), which accounts for the self-interactions ) 312, 2
of the scalar field. Even though the general form of the scalar 87GD = 13.53g com( 1+ Zurm) "Ho/ M, (1)
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where Qg cpy=0.25, Ho=70 kms *Mpc ! is the current Under appropriate boundary conditions, such solutions are in
value of the Hubble parameter, ang,,~few is the redshift turn the so-called Newtonian oscillating solit¢oscillaton

at turnaround. Thus, the local value of the scalar field af16]. Indeed, Eq.(9) only arises for real scalar fields and
turnaround is quite small, of the ordafx,®{°®~5.06  represents the particular oscillatory behavior of the metric for
x 10710, oscillaton[13,14,14.

With this in mind, we proceed now to describe the gravi- It should be stressed here that the whole dynamics of the
tational collapse of a fluctuation. As has been shown ifEKG system is contained in Eq&7) and(8), which are the
[9,12—14, the problem is well defined within general rela- So-called Schrdinger-Newton ~ (SN) equations
tivity, of which we give here a brief description. Assuming [6,8,12,16,1F, which also stands for the post-Newtonian ex-
spherical symmetry, the metric is written in the form pansion with complex scalar field$2].

Before proceeding further, we need to determine the ini-
ds?=— a?dt®+a?dr?+r?(d6?+sirfd¢?), (2)  tial scalar field profile. As we said before, prior to turn-
around, the scalar profile is not determined by its own grav-
wherea(t,r),a(t,r) are functions determined by the matter jty only. In other words, the gravitational potential at
distribution through the coupled EKG equations turnaroundU ( 7y, X) is not determined by Eq8) [10], but
B o, ¢ should still obey the Schdinger equation(7); i.e., the
Guy=87GT,,(0), DP=mD. ®) initial condition should be in accord with the scalar nature of

. : . : . the matter fluctuation
Here,G ,, is the Einstein tensor corresponding to the metric o o .
i P g Thus, the initial condition problem can be solved by find-

(2), andT,,(®) is the scalar energy-momentum tensor. The, - o .
KG equation arises from the Bianchi identities, angp N9 the initial gravitational potential(7iyp,x)—U(0X).

_ v The spherical collapse model considers a tophat energy den-
=(1N—-9)d, [Vv—9g9*’d,P]. . . ) o
In principlre, we should just numerically evolve Ed8), Egrzr;;le’ which suggests that the gravitational well poten-

but as we have to deal with weak gravity we find it more

appropriate to evolve the weak-field limit of such system of U(0X<Xg)=U g+ Uy(x/Xg)2
equations, which by the way provides important technical ' '
simplifications that give us more physical insight. In our U(0x>Xq)=—GMom/X, (10)

case, that limit arises when?—1,a2—1,/87G® <103

[12,16. As was shown in12], such a limit is found for whereU,,U, are constants that can be determined by con-
complex scalar fields through a standard post-Newtoniatinuity conditions atx=Xy,=mR,, Ry being the radius con-
treatment, and we now show how a similar procedure camaining the total initial mas#,. Since our intention is to
also be applied to real scalar fields. We begin by writing suctkeep the calculations as simple as possible, we take the sim-
a real scalar field and the metric coefficients in terms of theplest assumption which is to approximate the gravitational

Newtonian fieldsy,U,U,,A,A, as potential by a spherical square well of the fofi?]
87Gd=e"'"y(7,x)+c.C., (4) U(0x<Xp)=Up, U(0x>X,)=0, (11
@?=1+2U(rx)+e 27U,(r,x)+c.c., (5) ma]ﬁre Uo=—-GMym/X, is the depth of the gravitational
a2=1+2A(7,x)+e 27A,(7,x)+c.C., (6) Next, we look for stationary solutions of E¢7) in the

form y=e""“'¢(r), which is a common textbook problem
where we have also introduced the dimensionless quantitigs quantum mechanidsi8]. The initial scalar profile is then
r=mtx=mr. Notice that onlyU,A are real fields. Next, we given by (in dimensionless coordinates
assume that all the new fields are of ord¥re?)<1 and that :
their derivatives obey the standard post-Newtonian rdles Gi(0X<Xg) =t sin(x/o)
~edy~O(e*). Therefore, considering the leading order PR (o)

terms only, the EKG equations now read
exd — v2|Uolo?—1(x/ )]
" .

_ 1, $i(0X>Xo) = ¢y (12)
19,4p=— 5= 5(xih) + U, Y
It is worth noticing that Eq(7) can also be solved for the
gi(xu)zxwﬂ*, (8) potential (10) [18], but those solutions would not add rel-
evant information to the evolved systems. Moreover, the lat-
AU = —xy?. (9)  ter would reveal the same features as those shown in Fig. 1
below.
In addition,A(,x) =xd,U andA,~ O(e*; that is, the met- The eigenvalues o are found by imposing the continu-

ric coefficientg,, can be taken plainly as time independent. ity of the radial functiong(r) and its first derivative at the
That the complete systei?), (8), and (9) is really the discontinuity of the potential, and then are given by the so-

weak-field manifestation of Eq$3) is easily verified since lutions to the equation colf/o)=—2[Ug|c?— 1, with X,

the former admits stationary solutions fgr=e™'“"¢(x). =mRy. Hence,o can be estimated from the argument of the
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FIG. 1. Evolution of a 5-node and a 14-node initial scalar fluctuation of the {&2n see the text for details. Top: profiles of the rotation
curvesy(r)=+GM(r)/r at different times. Bottom: evolution of the ratio kinetic enefgyavitational potential energlywhich shows the
virialization of the two systemssolid line), and the total integrated mab (dotted ling; it is worth noticing the so-called gravitational
cooling after free fall for the first of the systems, which is not achieved in the second case within the time scale shown, but is expected
afterwards.

cotangent function asxf/o)=(n+1)7<\2[Uy|x,, where tions, from which one realizes that all stationary solutions
n=0,1,2 ... labels the number of nodes of the initial pro- (for a fixed number of nodes of the field)) are related to
file. ¢, is evaluated from the continuity condition of the €ach other by a scaling transformatid®,17).

radial function a=x,. Finally, the initial mass accordingto By means of Eq(14) and an appropriate, the collapse
Egs.(12) is of our fluctuation can be reduced to the study of a conve-

niently sized configuration concerning quantities with a caret
only. Once the caret configuration has been evolved, we ap-
w 1 m|2:| ply the inverse transformation to recover the physicad-
M0:47-rm2j d?r2dr= > — XO 23, (13)  care} quantities.
0 m We focus now on the numerical solution to the SN equa-
. . tions. Once the initial profiles,(0,x) is given, the Poisson
which becomes an equation that helps to determfigdor  oqyation(8) is integrated with a second order accurate up-
fixed n,Ry, My, a pr_ocedure rather convenient since the lat\yind method inwards under the boundary condition
ter are the physicaiinput) parameters of the system. U(7,%)=GM(7,%:)/%; (X; being the last point of our
We mention here an additional major simplification we spherical grid, which is valid at each time slice according to
can make use of for the SN equations, hot for the EKG  the Newton theorems regarding spherical objects. The next
ones. It is easily seen that Ed3), (8), and(9) are invariant  scalar configuration is determined by solving the Sehro
under the scaling transformation dinger equatiort7) using a second order centered differences
in space and a fully implicit Cranck-Nicholson method to
R o R evolve in time[19]. The procedure is then repeated forward
{7.%,U, Uy, b —{N 27N I N2U 20, N2}, (14)  intime.
To measure the accuracy of our solutions, we usétté
where\ is an arbitrary parameter. A similar scaling property component of the Einstein’s equations, which rephrases the
was noticed before for stationary solutions of the SN equaeonservation of probability for the Newtonian fiejd
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i be naturally expected since the Compton length of the scalar
Bi=a(py*) = 5 [ Fa(xe) = gaz(xy*)], (15 particles is, typically, much smaller than the size of the initial
configuration,\c=m~1<R,. Then, the wave function can
wheref is zero for an exact solution. The accuracy depend$e confined anavrinkled by the gravitational well potential
on the time stepAr and the grid resolutiomx, which  (which remains fixed in time; s¢é&5,20,21) before the non-
should be chosen appropriately to assure [that/|#|<1 in  linear collapse of the fluctuation.
a time step. Thus, we should comply with bath/(Ax)?2 On the other hand, the scale invariance of the SN equa-
<1 and[A7/(Ax)?]]1+U(Ax)?|<1. The former is the tions (14) suggests that all galaxies should look similar; in
condition applied to a free wave function, and the latter takegarticular, some of them could be related just through a scal-
into account the presence of a potential in EA). ing transformation. This argument can be extended to larger
In Fig. 1 we show the runs of an initial 514-) node and more massive fluctuations, and then it predicts that these
scalar fluctuation for a single scalar halo, whose initial physi-should have similar properties as galaxies.
cal parameters areM,=10"(1.7x10")My and R, The SN equations were derived under the assumption of
=70 kpc (7.3 Mpc). The corresponding scale parameter ispherical symmetry, but we really expect the EKG equations
\2=6.38 (0.6)< 10 %, and theno=14.6 (190). The grid 0 have a tractable nonspherical weak-limit too. This would
spacing is Ax=0.25 (4.0) with the boundary afx; suggest that the full SN equations without symmetries sho_uld
B ) o _, be used to explore the realization of a realistic nonspherical
=1250 (4x10%). The time step isA7=3 (0.125)X10°%,  collapse and to track the collapse of many scalar fluctuations.
and the runs were followed up to a physical time ™  Also, the arguments about the initial configurations which
=30 Gyr. In all cases|g[,<10"". _ _ lead us to Eqs(12) can be extended to the cases of nonzero
We see in Fig. 1 that the initial rotation curve profile of angular momentuntsee for instancé20,27).
both evolved configurations is almost flat, but such flatness is  apgther advantage of the SN system is that the scalar
lost at late times during the collapse. The smallest configusig|q galaxy halo can be, in an easy manner, gravitationally
ration, which is supposed to have started collapsing ear“eéoupled to baryons: the latter would only enter on the right-
within the cosmological picture, rapidly virializes and forms a4 side of the Poisson equatié®) [8]. Results on this
a giant Newtonian boson star, though not as large as a regksye and others, like more realistic initial conditions and the
istic (dwarf) galaxy. According to Eq(14), the same fate is  gy,qy of rotation curves profiles, will be reported elsewhere.
expected for the largest configuration, which roughly correfingjly, all the results shown here are also valid for complex
sponds to a cluster of galaxies fluctuation, but within a timegcq|ar fields, since the dynamics of both type of scalar fields
scale much larger than the actual age of the universe. is determined by the SN system only, though real scalar
Some final comments are in order. The first one is aboufie|ds would be preferred from the cosmological point of
the initial profile (12). It is well known that the self- ;o\ [7.9].
gravitating equilibrium_configuration of the SN equgtions Summarizing, we have shown how to track the nonlinear
(the so-called Newtonian boson stdfs7] and Newtonian collapse of a matter fluctuation made of real and complex
oscillations[16]) is reached by the system after the scalargqg)ar fields using the Schtinger-Newton system and the

field has had enough time to modify the gravitational poten+inq of properties it should have before and after separating
tial. We assume that such a condition is not achieved beforg,m the cosmological expansion.

turnaround because there are other factors involved in deter-

mining the scalar profile. Therefore, one does not expect the We want to thank Miguel Alcubierre, Ricardo Becerril,
initial profile to be a Newtonian oscillaton, but the latter will Andrew Liddle, Tonatiuh Matos, DariNUnez, and Ed Seidel
rather be thefinal configuration of the evolutions shown for important insight and Erasmo @&®z and Aurelio Es-
here. Indeed, Fig. 1 confirms the expectations and showgiritu for technical support. The runs were carried out on
how, in some cases, a scalar field fluctuation can virialize anthachines of the Laboratorio de Supearquuto Astrofsico at
form a Newtonian oscillaton. Second, we have seen that &INVESTAV. This research was partly supported by CONA-
model of structure formation within the scalar field hypoth- CyT, Mexico under grant 010385%L.A.U.-L.) and by the
esis could imply an initial configuration with nodes. This canbilateral project DFG-CONACyYT 444 MEX-13/17/0-1.
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