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Newtonian collapse of scalar field dark matter
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In this paper, we develop a Newtonian approach to the collapse of galaxy fluctuations of scalar field dark
matter under initial conditions inferred from simple assumptions. The full relativistic system, the so-called
Einstein-Klein-Gordon system, is reduced to the Schro¨dinger-Newton one in the weak-field limit. The scaling
symmetries of the SN equations are exploited to track the nonlinear collapse of single scalar matter fluctua-
tions. The results can be applied to both real and complex scalar fields.
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The most recent cosmological observations@1# support
the cold dark matter~CDM! as the standard model of co
mological structure formation. So far, the CDM mod
agrees reasonably well with many observations at large
galactic scales@2#, though its predictions at subgalact
scales are still a matter of intense debate@3#. However, the
nature of CDM remains one of the most intriguing proble
in modern cosmology. It is amazing that CDM can be
predictive and survive the confrontation with cosmologic
data just by assuming general features of dark matter suc
for instance, that it is made of weakly interacting mass
particles~WIMPs!. On the other hand, with CDM becomin
a reliable paradigm of structure formation and its nature s
uncertain, it is possible to test models of dark matter as
ternatives to the WIMP hypothesis whose properties co
sort out some of the problems found at subgalactic sc
~see for instance@4#!.

One of such alternative models is the scalar field d
matter~SFDM! model, in which dark matter should be com
prised of ultralight scalar field particles@4–11#. On the one
hand, the cosmological evolution of SFDM and its line
fluctuations can match those of CDM. On the other ha
self-gravitating scalar configurations can reproduce so
general properties of galaxy halos as observed today. G
further, it is possible to study the nonlinear evolution
SFDM fluctuations to form gravitationally bound objects,
was first shown in@9#. This is done by numerically evolving
the coupled Einstein-Klein-Gordon~EKG! equations for sca-
lar field configurations@9,12–14#.

In this paper, our main aim is to study the collapse
scalar field dark matter under realistic conditions. In t
sense, we will try to complete the picture of structure form
tion with scalar field dark matter, from the growing of pr
mordial fluctuations up to its nonlinear collapse. Also, o
intention is to draw a guideline as simple as possible,
which we will only take into account the simplest assum
tions; a more detailed picture will be presented elsewher

First of all, we consider that SFDM is comprised of
minimally coupled real scalar fieldF endowed with a scala
field potentialV(F), which accounts for the self-interaction
of the scalar field. Even though the general form of the sc
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potential can be complicated, we are interested only in th
potentials that behave asV(F)5(m2/2)F2 at late times
@5–9#. Such a quadratic scalar potential is preferred beca
in a homogeneous and isotropic universe, the scalar fi
oscillates coherently around the minimum of the poten
and then the scalar energy densityrF.m2F2 scales much
the same as CDM. Moreover, the scalar field fluctuations
the linear regime also grow in the same manner as C
fluctuations. Most of the works suggest that a realistic mo
of structure formation should consider a very light mass
the boson particles@5–10#. We will use here the valuem
510223 eV5(2.09 yr)215(0.64 pc)21 ~we are taking units
such thatc5\51; also G215mPl

2 with mPl the Planck
mass!, which is also a natural scale for time and distan
within SFDM.

As a result of the similarities of scalar field dark matt
with the CDM model, it is reasonable to take as a guidel
for the nonlinear regime of structure formation the stand
spherical collapse model@15#. According to this, a spherica
overdense fluctuation slowly separates out from the cos
logical expansion, reaches a maximum expansion, and
collapses under the influence of its own gravity only. T
important instant here is that of maximum expansion, wh
is called the time ofturnaround.

Before turnaround, we do not expect violent proces
occurring to the matter fluctuation, and that is why we co
sider the spherical collapse model as a good approxima
for scalar fields. However, we indeed expect the gravitatio
collapse of the matter fluctuation to be determined by
intrinsic nature of the scalar fields. Hence, the conditions
turnaround will be ourinitial conditions for the gravitationa
collapse of scalar field dark matter.

According to the spherical collapse model, the nonline
density contrast at turnaround isdF

turn[@drF /rF# (turn)

54.55. As we said before, the homogeneous scalar en
density evolves as the standard cold dark matter does,
then the local value of the scalar energy density at tu
around is approximately given by

8pGF turn
2 .13.55V0,CDM~11zturn!

3H0
2/m2, ~1!
©2003 The American Physical Society23-1
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whereV0,CDM.0.25, H0570 km s21 Mpc21 is the current
value of the Hubble parameter, andzturn;few is the redshift
at turnaround. Thus, the local value of the scalar field
turnaround is quite small, of the orderAk0F turn

(local);5.06
310210.

With this in mind, we proceed now to describe the gra
tational collapse of a fluctuation. As has been shown
@9,12–14#, the problem is well defined within general rel
tivity, of which we give here a brief description. Assumin
spherical symmetry, the metric is written in the form

ds252a2dt21a2dr21r 2~du21sin2udw2!, ~2!

wherea(t,r ),a(t,r ) are functions determined by the matt
distribution through the coupled EKG equations

Gmn58pGTmn~F!, hF5m2F. ~3!

Here,Gmn is the Einstein tensor corresponding to the me
~2!, andTmn(F) is the scalar energy-momentum tensor. T
KG equation arises from the Bianchi identities, andhF
5(1/A2g)]m@A2ggmn]nF#.

In principle, we should just numerically evolve Eqs.~3!,
but as we have to deal with weak gravity we find it mo
appropriate to evolve the weak-field limit of such system
equations, which by the way provides important techni
simplifications that give us more physical insight. In o
case, that limit arises whena221,a221,A8pGF,1023

@12,16#. As was shown in@12#, such a limit is found for
complex scalar fields through a standard post-Newton
treatment, and we now show how a similar procedure
also be applied to real scalar fields. We begin by writing su
a real scalar field and the metric coefficients in terms of
Newtonian fieldsc,U,U2 ,A,A2 as

A8pGF5e2 i tc~t,x!1c.c., ~4!

a25112U~t,x!1e22i tU2~t,x!1c.c., ~5!

a25112A~t,x!1e22i tA2~t,x!1c.c., ~6!

where we have also introduced the dimensionless quant
t5mt,x5mr. Notice that onlyU,A are real fields. Next, we
assume that all the new fields are of orderO(e2)!1 and that
their derivatives obey the standard post-Newtonian rules]t
;e]x;O(e4). Therefore, considering the leading ord
terms only, the EKG equations now read

i ]tc52
1

2x
]x

2~xc!1Uc, ~7!

]x
2~xU!5xcc* , ~8!

]xU252xc2. ~9!

In addition,A(t,x)5x]xU andA2;O(e4); that is, the met-
ric coefficientgrr can be taken plainly as time independe

That the complete system~7!, ~8!, and ~9! is really the
weak-field manifestation of Eqs.~3! is easily verified since
the former admits stationary solutions forc5e2 ivtf(x).
02402
t

-
n

c
e

f
l

n
n
h
e

es

.

Under appropriate boundary conditions, such solutions ar
turn the so-called Newtonian oscillating soliton~oscillaton!
@16#. Indeed, Eq.~9! only arises for real scalar fields an
represents the particular oscillatory behavior of the metric
oscillaton@13,14,16#.

It should be stressed here that the whole dynamics of
EKG system is contained in Eqs.~7! and ~8!, which are the
so-called Schro¨dinger-Newton ~SN! equations
@6,8,12,16,17#, which also stands for the post-Newtonian e
pansion with complex scalar fields@12#.

Before proceeding further, we need to determine the
tial scalar field profile. As we said before, prior to tur
around, the scalar profile is not determined by its own gr
ity only. In other words, the gravitational potential
turnaroundU(t turn,x) is not determined by Eq.~8! @10#, but
c should still obey the Schro¨dinger equation~7!; i.e., the
initial condition should be in accord with the scalar nature
the matter fluctuation.

Thus, the initial condition problem can be solved by fin
ing the initial gravitational potentialU(t turn,x)→U(0,x).
The spherical collapse model considers a tophat energy
sity profile, which suggests that the gravitational well pote
tial reads

U~0,x,X0!5U01U2~x/X0!2,

U~0,x.X0!52GM0m/X, ~10!

whereU0 ,U2 are constants that can be determined by c
tinuity conditions atx5X05mR0 , R0 being the radius con-
taining the total initial massM0. Since our intention is to
keep the calculations as simple as possible, we take the
plest assumption which is to approximate the gravitatio
potential by a spherical square well of the form@12#

U~0,x,X0!5U0 , U~0,x.X0!50, ~11!

where U052GM0m/X0 is the depth of the gravitationa
well.

Next, we look for stationary solutions of Eq.~7! in the
form c5e2 ivtf(r ), which is a common textbook problem
in quantum mechanics@18#. The initial scalar profile is then
given by ~in dimensionless coordinates!

c i~0,x,x0!5c0

sin~x/s!

~x/s!
,

c i~0,x.x0!5c1

exp@2A2uU0us221~x/s!#

x
. ~12!

It is worth noticing that Eq.~7! can also be solved for the
potential ~10! @18#, but those solutions would not add re
evant information to the evolved systems. Moreover, the
ter would reveal the same features as those shown in Fi
below.

The eigenvalues ofs are found by imposing the continu
ity of the radial functionf(r ) and its first derivative at the
discontinuity of the potential, and then are given by the
lutions to the equation cot(x0 /s)52A2uU0us221, with x0
5mR0. Hence,s can be estimated from the argument of t
3-2
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FIG. 1. Evolution of a 5-node and a 14-node initial scalar fluctuation of the form~12!; see the text for details. Top: profiles of the rotatio
curvesv(r )5AGM (r )/r at different times. Bottom: evolution of the ratio kinetic energy/ugravitational potential energyu, which shows the
virialization of the two systems~solid line!, and the total integrated massM ~dotted line!; it is worth noticing the so-called gravitationa
cooling after free fall for the first of the systems, which is not achieved in the second case within the time scale shown, but is
afterwards.
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cotangent function as (x0 /s).(n11)p,A2uU0ux0, where
n50,1,2, . . . labels the number of nodes of the initial pr
file. c1 is evaluated from the continuity condition of th
radial function atx5x0. Finally, the initial mass according t
Eqs.~12! is

M054pm2E
0

`

F2r 2dr.
1

2

mPl
2

m
x0s2c0

2 , ~13!

which becomes an equation that helps to determinec0 for
fixed n,R0 ,M0, a procedure rather convenient since the l
ter are the physical~input! parameters of the system.

We mention here an additional major simplification w
can make use of for the SN equations, butnot for the EKG
ones. It is easily seen that Eqs.~7!, ~8!, and~9! are invariant
under the scaling transformation

$t,x,U,U2 ,c%→$l22t̂,l21x̂,l2Û,l2Û2 ,l2ĉ%, ~14!

wherel is an arbitrary parameter. A similar scaling prope
was noticed before for stationary solutions of the SN eq
02402
-

-

tions, from which one realizes that all stationary solutio
~for a fixed number of nodes of the fieldc) are related to
each other by a scaling transformation@16,17#.

By means of Eq.~14! and an appropriatel, the collapse
of our fluctuation can be reduced to the study of a con
niently sized configuration concerning quantities with a ca
only. Once the caret configuration has been evolved, we
ply the inverse transformation to recover the physical~no-
caret! quantities.

We focus now on the numerical solution to the SN equ
tions. Once the initial profilec i(0,x) is given, the Poisson
equation~8! is integrated with a second order accurate u
wind method inwards under the boundary conditi
U(t,xf)5GM(t,xf)/xf (xf being the last point of our
spherical grid!, which is valid at each time slice according
the Newton theorems regarding spherical objects. The n
scalar configuration is determined by solving the Sch¨-
dinger equation~7! using a second order centered differenc
in space and a fully implicit Cranck-Nicholson method
evolve in time@19#. The procedure is then repeated forwa
in time.

To measure the accuracy of our solutions, we use the$t,r %
component of the Einstein’s equations, which rephrases
conservation of probability for the Newtonian fieldc,
3-3
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bª] t~cc* !2
i

2x
@c* ]x

2~xc!2c]x
2~xc* !#, ~15!

whereb is zero for an exact solution. The accuracy depe
on the time stepDt and the grid resolutionDx, which
should be chosen appropriately to assure thatuDcu/ucu!1 in
a time step. Thus, we should comply with bothDt/(Dx)2

<1 and @Dt/(Dx)2#u11U(Dx)2u,1. The former is the
condition applied to a free wave function, and the latter ta
into account the presence of a potential in Eq.~7!.

In Fig. 1 we show the runs of an initial 5-~14-! node
scalar fluctuation for a single scalar halo, whose initial phy
cal parameters areM051011 (1.731014)M ( and R0
570 kpc (7.3 Mpc). The corresponding scale paramete
l256.38 (0.6)31026, and thenŝ514.6 (190). The grid
spacing is D x̂50.25 (4.0) with the boundary atx̂f

51250 (43104). The time step isDt̂53 (0.125)31022,
and the runs were followed up to a physical time ofT0
530 Gyr. In all cases,ibi2,1027.

We see in Fig. 1 that the initial rotation curve profile
both evolved configurations is almost flat, but such flatnes
lost at late times during the collapse. The smallest confi
ration, which is supposed to have started collapsing ea
within the cosmological picture, rapidly virializes and form
a giant Newtonian boson star, though not as large as a
istic ~dwarf! galaxy. According to Eq.~14!, the same fate is
expected for the largest configuration, which roughly cor
sponds to a cluster of galaxies fluctuation, but within a ti
scale much larger than the actual age of the universe.

Some final comments are in order. The first one is ab
the initial profile ~12!. It is well known that the self-
gravitating equilibrium configuration of the SN equatio
~the so-called Newtonian boson stars@17# and Newtonian
oscillations@16#! is reached by the system after the sca
field has had enough time to modify the gravitational pot
tial. We assume that such a condition is not achieved be
turnaround because there are other factors involved in de
mining the scalar profile. Therefore, one does not expect
initial profile to be a Newtonian oscillaton, but the latter w
rather be thefinal configuration of the evolutions show
here. Indeed, Fig. 1 confirms the expectations and sh
how, in some cases, a scalar field fluctuation can virialize
form a Newtonian oscillaton. Second, we have seen th
model of structure formation within the scalar field hypot
esis could imply an initial configuration with nodes. This c
ra

A

,
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be naturally expected since the Compton length of the sc
particles is, typically, much smaller than the size of the init
configuration,lC5m21!R0. Then, the wave function can
be confined andwrinkled by the gravitational well potentia
~which remains fixed in time; see@15,20,21#! before the non-
linear collapse of the fluctuation.

On the other hand, the scale invariance of the SN eq
tions ~14! suggests that all galaxies should look similar;
particular, some of them could be related just through a s
ing transformation. This argument can be extended to la
and more massive fluctuations, and then it predicts that th
should have similar properties as galaxies.

The SN equations were derived under the assumption
spherical symmetry, but we really expect the EKG equatio
to have a tractable nonspherical weak-limit too. This wou
suggest that the full SN equations without symmetries sho
be used to explore the realization of a realistic nonspher
collapse and to track the collapse of many scalar fluctuatio
Also, the arguments about the initial configurations whi
lead us to Eqs.~12! can be extended to the cases of nonz
angular momentum~see for instance@20,22#!.

Another advantage of the SN system is that the sc
field galaxy halo can be, in an easy manner, gravitation
coupled to baryons; the latter would only enter on the rig
hand side of the Poisson equation~8! @8#. Results on this
issue and others, like more realistic initial conditions and
study of rotation curves profiles, will be reported elsewhe
Finally, all the results shown here are also valid for comp
scalar fields, since the dynamics of both type of scalar fie
is determined by the SN system only, though real sca
fields would be preferred from the cosmological point
view @7,8#.

Summarizing, we have shown how to track the nonline
collapse of a matter fluctuation made of real and comp
scalar fields using the Schro¨dinger-Newton system and th
kind of properties it should have before and after separa
from the cosmological expansion.
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L.A. Ureña-López, Class. Quantum Grav.17, L75 ~2000!;
Phys. Rev. D63, 063506 ~2001!; Phys. Lett. B 538, 246
~2002!; J.E. Lidsey, T. Matos, and L.A. Uren˜a-López, Phys.
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