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NÄ1 supergravity with a cosmological constant and the AdS group
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It is shown that the supersymmetric extension of the Stelle-West formalism permits the construction of an
action for (311)-dimensionalN51 supergravity with a cosmological constant genuinely invariant under the
OSp(4/1). Since the action is invariant under the supersymmetric extension of the AdS group, the supersym-
metry algebra closes off shell without the need for auxiliary fields. The limit casem→0, i.e.,
(311)-dimensionalN51 supergravity, invariant under the Poincare´ supergroup is also discussed.
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I. INTRODUCTION

In recent years it has been shown that in odd-dimensio
supergravities@1,2# the fundamental field is always the co
nectionA and, in their simplest form, these are pure Che
Simons systems. In contrast with the standard cases, th
persymmetry transformations close off-shell witho
auxiliary fields.

The Chern-Simons construction fails in even dimensio
for the simple reason that a characteristic class constru
with products of curvature in odd dimensions has not b
found. This could be a reason why the construction o
~super!gravity in even dimensions invariant under the~anti–!
de Sitter-group has remained an interesting open proble

It is the purpose of this paper to show that the supers
metric extension of the Stelle-West formalism@3#, which is
an application of the theory of nonlinear realizations to gr
ity, permits constructing a (311)-dimensional supergravity
off-shell invariant under the~anti–! de Sitter group. The ap
plications of the theory of nonlinear realizations to sup
gravity have been carried out by Chang and Mansouri@4#
and by Gu¨rsey and Marchildon@5#. These authors considere
a nonlinear realization of theOSP(1,4) in the context of the
spontaneous breakdown of supergravity. Unlike the pres
work, they identified the corresponding coset parame
with the points of space-time itself.

In the present work, the Goldstone fields represent a p
in an internal anti–de Sitter space. In describing the geo
etry of this internal space, we make use of some of the
sults of Ref.@6# on the nonlinear realization of supersymm
try in anti–de Sitter space.

An important stimulus for the interest in the constructi
of a supergravity invariant under the AdS superalgebra
come from recent developments in M theory@7,8#. In par-
ticular, some of the expected features of M theory are
following.
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~1! Its dynamics should somehow exhibit a superalge
in which the anticommutator of two supersymmetry gene
tors coincides with the AdS superalgebra in eleven dim
sions@9#.

~2! The low-energy regime should be described by
eleven-dimensional supergravity of a new type which sho
stand on a firm geometric foundation in order to have
off-shell local supersymmetry@10#.

The paper is organized as follows. In Sec. II, we sh
review some aspects of the torsion-free condition in sup
gravity with cosmological constant. The supersymmetric
tension of the Stelle-West formalism is carried out in Sec.
where the principal features of the nonlinear realizations
reviewed and the nonlinear fields vierbein, spin connecti
and gravitino are derived. An action for supergravity gen
inely invariant under the AdS superalgebra is constructed
Sec. IV, and its corresponding field equations as well as
limit m→0 are discussed. Section V concludes the wo
with a look forward to applications of the present results
supergravity in higher dimensions. Some technical details
the calculations are presented in the Appendix.

II. NÄ1 SUPERGRAVITY

In this section we shall review some aspects of
torsion-free condition in supergravity.

A. The torsion-free condition in NÄ1 supergravity

Supergravity is the theory of the gravitational field inte
acting with a spin 3/2 Rarita Schwinger field@11–13#. In the
simplest case there is just one spin 3/2 Majorana ferm
usually called the gravitinoc. The corresponding action is

S5E «abcde
aebRcd14c̄g5eagaDc, ~1!

whereea is the one-form vielbein,vab is the one-form spin
connection, andDc5dc2 1

2 vabgabc is the Lorentz cova-
riant derivative.
©2003 The American Physical Society21-1
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D5311, N51 supergravity is based on the Poinca´
supergroup whose generatorsPa ,Jab ,Qa satisfy the follow-
ing Lie superalgebra:

@Pa ,Pb#50,

@Jab ,Pc#5 i ~hacPb2hbcPa!,

@Jab ,Jcd#5 i ~hacJbd2hbcJad1hbdJac2hadJbc!,

@Jab ,Qa#5 i ~gab!abQb ,

@Pa ,Qb#50

@Qa ,Q̄b#522~ga!abPa . ~2!

Working in first-order formalism, the gauge fieldsea,
vab,c are treated as independent. The key observation is
(ea,vab,c), considered as a single entity, constitute a m
tiplet in the adjoint representation of the Poincare´ super-
group. That is, we can write

A5AATA5 1
2 ivabJab2 ieaPa1c̄Q, ~3!

where A is the gauge field of the Poincare´ supergroup;
Pa ,Jab ,Qa being the generators of the Poincare´ translations,
of the Lorentz transformations, and of the supersymme
respectively. Hence, supergravity is the gauge theory of
Poincare´ supergroup.

The field strength associated withAA is defined as the
Poincare´ Lie superalgebra-valued curvature two-formRA.
Splitting the indexA, we get

Rab5dvab2vc
avcd, ~4!

T̂a5Ta2 1
2 cgac, ~5!

r5Dc. ~6!

The associated Bianchi identities are given by

DRab50, ~7!

DTa1Rabeb2 icgar50, ~8!

Dr1 1
4 Rabgabc50. ~9!

However, althoughAA[(ea,vab,c) is a Yang-Mills po-
tential andRA[(Rab,T̂a,r) the corresponding field strength
action~1! is not of the Yang-Mills type. The main difference
between an action of the Yang-Mills type and action~1! are
the following.

~1! A Yang-Mills action is invariant under the whol
gauge group of which theAA are the Lie superalgebra-value
potentials.

~2! Action ~1!, instead, is not invariant under the who
gauge supergroup, but is invariant only under the Lore
transformations.

The invariance under Lorentz gauge transformations
manifest. To show the noninvariance of Eq.~1! both under a
02402
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supergauge translation and under supersymmetry we re
that, under any gauge transformation, the gauge connec
AA transforms as

dA52Dl5dl2@A,l# ~10!

with

l5 1
2 ikabJab2 iraPa1 «̄Q. ~11!

Using algebra~2! we obtain thatea, vab, andc, under the
Poincare´ translations, transform as

dea5Dra, dvab50, dc50, ~12!

under the Lorentz rotations, as

dea5kb
aeb, dvab5Dkab, dc52 1

2 kabgabc,
~13!

and under supersymmetry transformations, as

dea522i «̄gac, dvab50, dc5D«. ~14!

Action ~1! is invariant under diffeomorphism, and und
local Lorentz rotations, but it is not invariant under the n
ther the Poincare´ translations nor the supersymmetry.

In fact, under the local Poincare´ translations

dSpt52E «abcdR
abS Tc2

1

2
c̄gcc D rd1surf. term,

dS52E «abcdR
abT

`
crd1surf. term. ~15!

Under local supersymmetry transformations

dSsusy524E «̄g5gaDcT̂a1surf. term. ~16!

Thus, the invariance of the action requires the vanishing
the torsion

T̂a50. ~17!

This means that the connection is no longer an indepen
variable. Rather, its variation is given in terms ofdea and
dc, and differs from the one dictated by group theory. A
effect of the supertorsion-free condition on the local Poinc´
superalgebra is that all commutators onea, c close except
the commutator of two local supersymmetry transformatio
on the gravitino. For this commutator on the vierbein o
finds

@d~«1!,d~«2!#ea5 1
2 «̄2gaD«12 1

2 «̄1gaD«25 1
2 D~ «̄2ga«1!.

~18!

With ra5 1
2 «̄2ga«1, we can write

@d~«1!,d~«2!#ea5Dra. ~19!
1-2



io
n

at

ca
e

r

fo
tu

g

a

ar

n

is

i.e

that
ul-
up;

p;
he
for-
ical

,
-
ion

e
d

le
ntz

ons

N51 SUPERGRAVITY WITH A COSMOLOGICAL . . . PHYSICAL REVIEW D 68, 024021 ~2003!
This means that, in the absence of the torsion-free condit
the commutator of two local supersymmetry transformatio
on the vierbein is a local Poincare´ translation. However, the
action is invariant by construction under general coordin
transformations, but not under the local Poincare´ translation.
The general coordinate transformation and the local Poin´
translation can be identified if we impose the torsion-fr
condition: sincera5rnen

a , we can write

Dmra5~]mrn!en
a1rn~]nem

a !1 1
2 rn~cmgacn!1rnvn

abemb

1rnTmn
a . ~20!

This means that, ifTmn
a 50, then the following commutato

is valid:

@dQ~«1!,dQ~«2!#5dGCT~rm!1dLLT~rmvm
ab!1dQ~rnc̄n!,

~21!

where we can see thatP in $Q,Q%5P, i.e., the local Poin-
caré translation, is replaced by general coordinate trans
mations besides two other gauge symmetries. The struc
constants defined by this result are field dependent@13#,
which is a property of supergravity not present in the Yan
Mills theory.

The commutator of two local supersymmetry transform
tions on the gravitino is given by

@d~«1!,d~«2!#c5 1
2 ~sab«2!@d~«1!vab#2 1

2 ~sab«1!

3@d~«2!vab#. ~22!

The conditionT`a50 leads tovab5vab(e,c), which
implies that the connection is no longer an independent v
able, and its variationd(«)vab is given in terms ofd(«)ea

andd(«)c. Introducingd(«)vab(e,c) into Eq. ~22! we see
that, without the auxiliary fields, the gauge algebra does
close, as shows Eq.~10! of Ref. @13#. Therefore, the condi-
tion T`a50 breaks not only the local Poincare´ invariance
but also the supersymmetry transformations.

B. The torsion-free condition in NÄ1 supergravity
with cosmological constant

The action for supergravity with cosmological constant
given by @14#

S5E «abcdR
abeced14c̄g5gaDcea12a2«abcde

aebeced

13a«abcdc̄gabceced, ~23!

whereea is the one-form vielbein,vab is the one-form spin
connection, andDc5dc2 1

2 vabgabc is the Lorentz cova-
riant derivative.

The anti–de Sitter version ofN51, D5311 supergrav-
ity is based on the graded extension of the AdS group,
on the OSp(1/4) whose generatorsPa ,Jab ,Qa satisfy the
following Lie superalgebra:
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@Pa ,Pb#52 im2Jab ,

@Jab ,Pc#5 i ~hacPb2hbcPa!,

@Jab ,Jcd#5 i ~hacJbd2hbcJad1hbdJac2hadJbc!,

@Jab ,Qa#5 i ~gab!abQb ,

@Pa ,Qa#52
i

2
m~ga!abQb

@Qa ,Q̄b#522~ga!abPa22m~gab!abJab . ~24!

Working in the first-order formalism, the gauge fieldsea,
vab,c are treated as independent. The key observation is
(ea,vab,c), considered as a single entity, constitute a m
tiplet in the adjoint representation of the AdS supergro
that is, we can write

A5AATA5 1
2 ivabJab2 ieaPa11c̄Q, ~25!

where A is the gauge field of the AdS supergrou
Pa ,Jab ,Qa being the generators of the AdS boosts, of t
Lorentz transformations, and of the supersymmetry trans
mations, respectively. Hence, supergravity with cosmolog
constant is the gauge theory of the AdS supergroup.

The field strength associated withAA is defined as the
Poincare´ Lie superalgebra-valued curvature two-formRA.
Splitting the indexA, we get

R̄ab5Rab14a2eaeb1acgabc, ~26!

T̂a5Ta2 1
2 cgac, ~27!

r5Dc2agacea. ~28!

The associated Bianchi identities are given by

DRab28a2Taeb12ac̄gabr50, ~29!

DTa1Rabeb2 i c̄gar50, ~30!

Dr2 iagacTa2
1

4
Rabgabc50. ~31!

However, althoughAA[(ea,vab,c) is a Yang-Mills po-
tential andRA[(Rab,T̂a,r) the corresponding field strength
action ~23! is not of the Yang-Mills type. The main differ
ences between an action of the Yang-Mills type and act
~23! are the following.

~1! A Yang-Mills action is invariant under the whol
gauge group of whichAA are the Lie superalgebra-value
potentials.

~2! Action ~23!, instead, is not invariant under the who
gauge supergroup, but is invariant only under the Lore
transformations.

The invariance under the Lorentz gauge transformati
is manifest. To show the noninvariance of Eq.~23! both un-
1-3
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der a supergauge translation and under supersymmetry
recall that, under any gauge transformation, the gauge
nectionAA transforms as

dA52Dl5dl2@A,l# ~32!

with

l5 1
2 ikabJab2 iraPa11 «̄Q. ~33!

Using algebra~24! we obtain thatea, vab, andc, under AdS
boosts, transform as

dea5Dra, dvab5m2~raeb2rbea!, dc50, ~34!

under the Lorentz rotations, as

dea5kb
aeb, dvab5Dkab, dc52 1

2 kabgabc,
~35!

and under the supersymmetry transformations, as

dea522i «̄gac, dvab50, dc5D«. ~36!

Action ~23! is invariant under diffeomorphism and und
the local Lorentz rotations, but it is not invariant under n
ther AdS boosts translations nor local supersymmetric tra
formation.

In fact, under the local Poincare´ translations

dSAdS522E «abcdR̄
abT̂crd1surf. term ~37!

and under the local supersymmetry transformations

dSsusy524E «̄g5gaDcT̂a1surf. term.

Thus, the invariance of the action requires the vanishing
the torsion

T̂a50. ~38!

This means that the connection is no longer an indepen
variable. Rather, its variation is given in terms ofdea and
dc, and differs from the one dictated by group theory. T
condition T̂a50 breaks not only the local Poincare´ invari-
ance, but also the supersymmetry transformations.

III. SUPERSYMMETRIC EXTENSION
OF THE STELLE-WEST FORMALISM

The basic idea of the Stelle-West~SW! formalism is
founded on the mathematical definition@3,15# of the vielbein
Va. This vielbein, also called solder form@16#, was consid-
ered as a smooth map from the tangent space to the sp
time manifoldM at a pointP with coordinatesxm, and the
tangent space to the AdS internal space at the point wh
AdS coordinates areja(x), as the pointP ranges over the
whole manifoldM. Figure 1 of Ref.@3# illustrates that such a
vielbein Vm

a (x) is the matrix of the map between the spa
Tx(M ) tangent to the space-time manifold atxm, and the
02402
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space Tj(x)($G/H%x) tangent to the internal AdS spac
$G/H%x at the pointja(x), whose explicit form is given by
Eq. ~3.19! of Ref. @3#. In this section we consider the supe
symmetric extension of the Stelle-West formalism

A. Nonlinear realizations of supersymmetry in AdS space

The nonlinear realizations in de Sitter space can be s
ied by the general method developed in Ref.@17,18#. Follow-
ing these references, we consider a Lie~super!groupG and a
subgroupH.

Let us call$V i% i 51
n2d the generators ofH. We assume tha

the remaining generators$A l% l 51
d can be chosen so that the

form a representation ofH. In other words, the commutato
@V i ,A l # should be a linear combination ofA l alone. A group
elementgPG can be represented~uniquely! in the form

g5ej lAlh, ~39!

where h is an element ofH. The j l parametrize the cose
spaceG/H. We do not specify here the parametrization ofh.
One can define the effect of a group elementg0 on the coset
space by

g0g5g0~ej lAlh!5ej8 lAlh8 ~40!

or

g0ej lAl5ej8 lAlh1 , ~41!

where

h15h8h21, ~42!

j85j8~g0 ,j!,

h15h1~g0 ,j!.

If g021 is infinitesimal, Eq.~41! implies

e2j lAl~g021!ej lAl2e2j lAldej lAl5h121. ~43!

The right-hand side of Eq.~43! is a generator ofH.
Let us first consider the case in whichg05h0PH. Then

Eq. ~41! gives

ej8 lAl5h0ej lAlh0
21 . ~44!

SinceA l form a representation ofH, this implies

h15h0 , h85h0h. ~45!

The transformation fromj to j8 given by Eq. ~44! is
linear. On the other hand, consider now

g05ej0
l Al. ~46!

In this case, Eq.~41! becomes

ej0
l Alej lAl5ej8 lAlh. ~47!
1-4
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This is a nonlinear inhomogeneous transformation onj. The
infinitesimal form~43! becomes

e2j lAlj0
i A ie

j jA j2e2j lAldej iAi5h121. ~48!

The left-hand side of this equation can be evaluated, us
the algebra of the group. Since the results must be a gen
tor of H, one must set equal to 0 the coefficient ofA l . In this
way one finds an equation from whichdj i can be calculated

The construction of a Lagrangian invariant und
coordinate-dependent group transformations requires the
troduction of a set of gauge fieldsa5am

i A idxm, r
5rm

i V idxm, p5pm
l A ldxm, v5vm

i V idxm, associated, respec
tively, with the generatorsVi and Al . Hence,r1a is the
usual linear connection for the gauge groupG, and the cor-
responding covariant derivatives is given by

D5d1 f ~r1a! ~49!

and its transformation law undergPG is

g:~r1a!→~r81a8!5Fg~r1a!g212
1

f
~dg!g21G ,

~50!

wheref is a constant which, as it turns out, gives the stren
of the universal coupling of the gauge fields to all oth
fields.

We now consider the Lie algebra-valued differential fo
@17#

e2j lAl@d1 f ~r1a!#ej lAl5p1v. ~51!

The transformation laws for the formsp(j,dj) andv(j,dj)
are easily obtained. In fact, using Eqs.~46!,~47! one finds@6#

p85h1p~h1!21, ~52!

v85h1v~h1!211h1d~h1!21. ~53!

Equation~52! shows that the differential formsp(j,dj)
are transformed linearly by a group element of form~46!.
The transformation law is the same as by an element oH,
except that now this group elementh1(j0 ,j) is a function of
the variablej. Therefore, any expression constructed w
p(j,dj), which is invariant under the subgroupH, will be
automatically invariant under the entire groupG, the ele-
ments ofH operating linearly onj, the remaining element
nonlinearly.

We have specified the fieldsp andv as well as their trans
formation properties, and now we make use of them to de
the covariant derivative with respect to the groupG:

D5d1v. ~54!

The corresponding components of the curvature two-fo
are

T5Dp, ~55!

R5dv1vv. ~56!
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B. Supersymmetric Stelle-West formalism

We now take asG the graded Lie algebra~24! having as
generatorsQa , Pa , andMab . It has as a subalgebraH that
of the de Sitter groupSO(3,2) with generatorsPa andMab .
This, in turn, has as subalgebraL that of the Lorentz group
SO(3,1) with generatorsMab . An element ofG can be rep-
resented uniquely in the form

g5ex̄Qh5ex̄Qe2 i jaPal , ~57!

wherehPH and l PL. On can define the effect of a grou
elementg0 on the coset spaceG/H by

g0g5ex̄8Qh85ex̄8Qe2 i j8aPal 8 ~58!

or

g0ex̄Q5ex̄8Qh1 , ~59!

h1e2 i jaPa5e2 i j8aPal 1 , ~60!

l 1l 5 l 8. ~61!

Clearly,h15h1(g0 ,x) and l 15 l 1(g0 ,x,j).
If g021 andh121 are infinitesimals, Eqs.~59!,~60! im-

ply

e2x̄Q~g021!ex̄Q2e2x̄Qdex̄Q5h121, ~62!

ei jaPa~h121!e2 i jaPa2ei jaPade2 i jaPa5 l 121. ~63!

We consider now the following cases: Ifg05 l 0PL, Eqs.
~59!,~60! give

ex̄8Q5 l 0ex̄Ql 0
21 , ~64!

h15 l 15 l 0 , ~65!

e2 i j8aPa5 l 0e2 i jaPal 0
21 . ~66!

Both x and j transform linearly. If, on the other hand, w
know only thatg05h0PH, in particular, if

g05e2 iraPa ~67!

is a pseudotranslation, Eq.~59! gives

ex̄8Q5h0ex̄Qh0
21 , ~68!

h15h0 , ~69!

while Eq. ~60! gives

h0ei jaPa5e2 i j8aPal 1~h0 ,j!. ~70!

In this casex transforms linearly, but the transformation la
~70! of j under pseudotranslations is inhomogeneous
nonlinear. Infinitesimally

ei jaPa~2 iraPa!e2 i jaPa2ei jaPade2 i jaPa5 l 121. ~71!
1-5
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Finally, if

g05e«̄Q ~72!

is a supersymmetry transformation, one must use Eqs.~59!
and ~60! as they stand. Observe, however, that Eq.~60! has
the same form as Eq.~70! except for the fact thath1 is a
function ofx, while h0 is not. Therefore, the transformatio
law of j under a supersymmetry transformation has the sa
form as that under a de Sitter transformation but, with
rameters which depend in a well-defined way onx.

An explicit form for the transformation law ofja under an
infinitesimal AdS boost can be obtained from Eq.~71!. The
result is

dja52ra1S zcoshz

sinhz
21D S ra2

rbjbja

j2 D , ~73!

wherez5mA(jaja)5mj.
The transformation ofja under an infinitesimal Lorentz

transformationl 05e( i /2)kabJab is

dja5kabjb , ~74!

and, under local supersymmetry transformation~72!, ja

transforms as

dja52 i S 11
i

6
mx̄x D «̄gax1 i S z coshz

sinhz
21D S db

a2
jbja

j2 D
3S 11

i

6
mx̄x D «̄gbx22imS 11

i

6
mx̄x D «̄gabxjb .

~75!

Using Eq.~62! with g0215 «̄Q, one finds that

dx52«2
i

6
m~5x̄x1x̄GAxGA!«1

1

9
m2~ x̄x!«,

h1215S 11
i

6
mx̄x D ~ «̄gaxPa1m«̄gabxJab!. ~76!

From Eq. ~25! we know that the linear connections a
given by (ea,vab,c). Then, based on these, we can defi
the corresponding nonlinear connections (Va,Wab,C) from
Eq. ~51!:

1
2 iWabJab2 iVaPa1C̄Q5ei jaPae2x̄Q@d1 1

2 ivabJab2 ieaPa

1c̄Q#ex̄Qe2 i jbPb. ~77!

The corresponding transformation laws forVa,Wab,C
can be obtained from Eqs.~52!,~53!. In fact, one can verify
that, under the AdS supergroup, the nonlinear connect
transform as

C̄8Q5h1~C̄Q!~h1!21, ~78!

2 iV8aPa5h1~2 iVaPa!~h1!21, ~79!
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1
2 iW8abJab5h1~ 1

2 iWabJab!~h1!211h1d~h1!21. ~80!

The nonlinearity of the transformation with respect to t
elements ofG/H means that the labels associated with t
parts of the algebra ofG, which generateG/H, are no longer
available as symmetry indices. In other words, the symme
has been spontaneously broken fromG to H. An irreducible
representation ofG will, in general, have several irreducibl
pieces with respect toH. Since, in constructing invarian
actions, one only needs index saturation with respect to
subgroupH, as far as the invariance is concerned it is po
sible to select a subset of nonlinear fields with respect toG,
which form irreducible multiplets with respect toH.

Note that, if G5OSp(1,4) andH5SO(3,1), the gauge
fieldsVa form a square 434 matrix, which is invertible and
can be identified with the vierbein fields. In the same way
have thatWab is a connection andC̄ can be identified with
the Rarita-Schwinger field. These fields can be obtained fr
Eq. ~77!. The details of the calculation ofVa,Wab,C are
given in the Appendix; the result is

Va5V@coshz# b
a eb1VFsinhz

z G
b

a

Dzb1 i S 12
i

6
mx̄x D

3H @ x̄gbdx12c̄gbx#V@coshz#b
a22mjb@ x̄gbdx

12c̄gbx#
sinhz

z J 2
i

2 F12
i

12
~ x̄g fx!g f

1
i

6
~ x̄g f gx!g f gG~gcdv

cd2 imgce
c!

3F ~ x̄gbx!V@coshz#b
a12m~ x̄gabx!jb

sinhz

z G , ~81!

where

V~A!b
a5Adb

a1~12A!
jbja

j2
, ~82!

Wab5vab1m2F ~jaeb2zbea!
sinhz

z
2m2~zaDzb

2zbDza!
~coshz21!

z2 G22imS 12
i

6
mx̄x D H 2c̄gabx

1mx̄gabdx1m@ x̄gbdx12c̄gbx#ja
sinhz

z

12m2@ x̄gcbdx12c̄gcbx#jajc

~coshz21!

z2 J
1

1

2
imF12

i

12
~ x̄g fx!g f1

i

6
~ x̄g f gx!g f gG~gcdv

cd

2 imgce
c!F ~ x̄gabx!1m~ x̄gax!jb

sinhz
z

1-6
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12m2~ x̄g f bx!j f

~coshz21!

z2 G , ~83!

C̄5H F12
i

4
m~5x̄x1x̄GAxGA!2

5

24
m2~ x̄x!2G c̄

2
1

2 F12
i

6
m~ x̄gax!ga1

i

3
m~ x̄gabx!gabG~gcdv

cd

2 imgce
c!x̄1F12

i

12
m~5x̄x1x̄GAxGA!

2
1

24
m2~ x̄x!2GdxJ e(1/2)mjdgd. ~84!

We have specified the fieldsVa, Wab, andC as well as
their transformation properties, and now we make use
them to define a covariant derivatives with respect to
groupG:

D5d1W. ~85!

The corresponding components of a curvature two-forms

T a5DVa, ~86!

R b
a5dWb

a1Wc
aWb

c . ~87!

IV. SUPERGRAVITY INVARIANT UNDER THE AdS
GROUP

Within the supersymmetric extension of the Stelle-W
formalism, the action for supergravity with cosmologic
constant can be rewritten as

S5E «abcdR abVcVd14C̄g5gaDCVa

12a2«abcdV
aVbVcVd13a«abcdC̄gabCVcVd,

~88!

which is invariant under Eqs.~78!,~79!,~80!. From such
equations we can see that the vierbeinVa and the gravitino
field transform homogeneously according to the represe
tion of the AdS superalgebra, but with the nonlinear gro
elementh1PH.

The corresponding equations of motion are obtained
varying the action with respect toja,x,ea,vab,c. The field
equations corresponding to the variation of the action w
respect toja andx are not independent equations. Followin
the same procedure of Ref.@20#, we find that equations o
motion for supergravity genuinely invariant under super A
are the following:

2«abcdR̄abVc14C̄g5gdr50, ~89!

T̂ a50, ~90!

8g5garVa24g5gaCT̂ a50, ~91!
02402
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where

T̂ a5T a2
i

2
C̄gaC, ~92!

R̄ab5R ab14a2VaVb1aC̄gabC, ~93!

r5DC2 iagaCVa. ~94!

Supergravity invariant under the Poincaré group

Taking the limit m→0 in Eqs. ~24!,~73!,~75!,~76!,~81!,
~83!,~84! we find that superalgebra~24! takes the form of the
superalgebra of Poincare´ ~2! and that the transformation law
of ja under an infinitesimal Poincare´ translation, under an
infinitesimal Lorentz transformation, and under the local s
persymmetry transformation are given respectively, by

dja52ra, ~95!

dja5kb
ajb , ~96!

dja52 i «̄gax; ~97!

the transformation laws ofx under an infinitesimal Poincar´
translation, under an infinitesimal Lorentz transformatio
and under the local supersymmetry transformation are giv
respectively, by

dx50, ~98!

dx50, ~99!

dx52«. ~100!

In this limit G5ISO(3,1) andH5SO(3,1) and the fields
vierbein Va, the connectionWab and the Rarita-Schwinge
field C̄ are given by

Va5ea1Dza1 i ~2c̄1Dx̄ !gax, ~101!

Wab5vab, ~102!

C̄5c̄1Dx̄, ~103!

where now

D5d1v. ~104!

The corresponding components of the curvature two-fo
are now

T a5DVa, ~105!

Rb
a5dvb

a1vc
avb

c . ~106!

The limit m→0 of the action 88 is obviously the actio
for N51 supergravity in (311)-dimensions:

S5E «abcdR
abVcVd14C̄g5gaDCVa, ~107!
1-7
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which is genuinely invariant under the Poincare´ supergroup.
In fact, it is direct to verify that action~107! is invariant
under Eqs. ~95!–~100! plus the transformation law o
ea,vab,c under infinitesimal Poincare´ translations, under in-
finitesimal Lorentz transformations, and under local sup
symmetry transformations, which are given by

dvab50, dea5Dra, dc50,

dvab5Dkab, dea5kb
aeb, dc52 1

2 kabgabc,

dvab50, dea522i «̄gac, dc5D«.

The corresponding field equations are given by

2«abcdR
abVc14C̄g5gdDC50, ~108!

T̂ a50, ~109!

8g5gaDCVa24g5gaCT̂ a50, ~110!

where

T̂ a5T a2
i

2
C̄gaC. ~111!

In Ref. @19# we have clamed that the successful formali
used by Stelle-West and by Grignani-Nardelli@21# to con-
struct an action for (311)-dimensional gravity invariant un
der the Poincare´ group can be generalized to supergravity
311 dimensions. In fact, that is correct. Using the vierbe
of Stelle-West and Grignani-Nardelli, one gets a supergra
action invariant under the Poincare´ translation. However, the
action of Ref. @19# is not invariant under supersymmet
transformations, as we can see from~16!.

To obtain an action invariant both under the Poinc´
translations and under supersymmetry transformations,
must carry out the supersymmetric extension of the Ste
West formalism. The correct vierbein, spin connection, a
gravitino field to construct a supergravity action@see Eq.
~107!# genuinely invariant under the Poincare´ supergroup are
given in Eqs.~101!,~102!,~103!.

V. COMMENTS AND POSSIBLE DEVELOPMENTS

The main results of this work can be summarized as
lows.

~1! In order to construct a gauge theory of the supersy
metric extension of the AdS group, it is necessary to ca
out the supersymmetric extension of the Stelle-We
Grignani-Nardelli formalism.

~2! The correspondence with the usualN51 supergravity
with cosmological constant formulation has been establis
by giving the expressions, in terms of the gauge fields, of
spin connection, the vierbein, and the gravitino. These fie
are given by complicated expressions involvi
ja, x, c, vab, andea.

~3! An action for (311)-dimensionalN51 supergravity
with cosmological constant genuinely invariant under the
persymmetric extension of the AdS group has been propo
02402
r-

ty

e
e
-

d

l-

-
y
t-

d
e
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-
d.

The corresponding equations of motion reproduce the u
equation forN51 supergravity with cosmological constan

Several aspects deserve consideration and many pos
developments can be worked out. An old and still unsolv
problem is the construction of an eleven-dimensional sup
gravity off-shell invariant under the supersymmetric exte
sion of the AdS group~work in progress!. The construction
of an action for supergravity in ten dimensions genuine
invariant under the AdS superalgebra, and its relation
eleven-dimensional supergravity, could also be of interes

Another interesting issue is the connection between
present paper and the supergravity in (311)-dimensions ob-
tained via dimensional reduction from five-dimension
Chern-Simons supergravity~work in progress!.
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APPENDIX

In this appendix, we discuss how to derive some of
results given in the text, in particular, the expressions
Va,Wab,C. We use the techniques of Refs.@3,6#, which we
summarize here for convenience.

For any two quantitiesX andY, we define

@X,Y#[X`Y, ~A1!

X2`Y5@X,@X,Y##. ~A2!

The expressionf (X)`Y is defined as a series of multipl
commutators, obtained by expanding the functionf (X) as a
power series inX. It is direct to verify that

g~X!`@ f ~X!`Y#5@g~X! f ~X!#`Y. ~A3!

As a consequence, the equation

f ~X!`Y5Z ~A4!

can be solved forY in the form

Y5@ f ~X!#21`Z. ~A5!

In particular, we have

eXYe2X5eX`Y, ~A6!
1-8
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eXde2X5
12eX

X
`dX, ~A7!

whered is any variation.
When written in the above notation, Eq.~71! become

ei jaPa`~2 iraPa!2
12ei jaPa

i jbPb

`~ idjaPa!5 l 121.

~A8!

Since this is a Lorentz generator, we must evaluate
AdS boost component of the left-hand side and set it equa
0; only commutators of even order contribute to it. The
fore, we must take the even powers ofidjaPa of the func-
tions occurring in Eq.~A8!. This leads to

djaPa5raPa1S z coshz

sinhz
21D S ra2

rbjbja

j2 D Pa .

~A9!

In a similar way, we can make use of Eq.~62! with g0

215 «̄Q; one finds that

e2x̄Q`~ «̄Q!2
12e2x̄Q

x̄Q
`~dx̄Q!5h121. ~A10!

Here, there is a simplification: any power ofx higher than
4 vanishes identically due to the anticommuting property
the spinor component. Therefore, we need only

x̄Q` «̄Q522mx̄gAB«JAB , ~A11!

~ x̄Q!2` «̄Q52 5
2 imx̄x«̄Q2 1

2 imx̄GAx«̄GAQ,
~A12!

~ x̄Q!3` «̄Q54im2x̄xx̄gAB«JAB , ~A13!
hy

02402
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f

~ x̄Q!4` «̄Q525m2~ x̄x!2«̄Q, ~A14!

where the five matrices

GA[~gag5 ,g5!

satisfy

GAGB1GBGA52hAB ,

gAB5 1
4 @GA ,GB#,

2mgABJAB52gaPa22mgabJab .

If one sets equal to 0, in the left-hand side of Eq.~A10!,
the part with the even powers ofx̄Q, one finds

cosh~ x̄Q!` «̄Q2
sinh~ x̄Q!

x̄Q
`dx̄Q50. ~A15!

Using Eq.~A4!, we have

dx̄Q5@11 1
3 ~ x̄Q!22 1

45 ~ x̄Q!4#` «̄Q. ~A16!

If one now makes use of Eqs.~A11! to ~A14!, one obtains

dxQ5F«2
i

6
m~5x̄x1x̄GAxGA!«1

1

9
m2~ x̄x!2«GQ.

~A17!

On the other hand, using Eq.~A16!, the part with the odd
powers gives

h1215S 11
i

6
mx̄x D ~ «̄gaxPa1m«̄gabxJab!.

The nonlinear fieldsVa,Wab,C are evaluated from thei
definitions ~51!,~77!, following the same procedure of Re
@3#.
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