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It is shown that the supersymmetric extension of the Stelle-West formalism permits the construction of an
action for (3+1)-dimensionaN=1 supergravity with a cosmological constant genuinely invariant under the
OSp(4/1). Since the action is invariant under the supersymmetric extension of the AdS group, the supersym-
metry algebra closes off shell without the need for auxiliary fields. The limit caseO, i.e.,
(3+1)-dimensionaN=1 supergravity, invariant under the Poincatgergroup is also discussed.
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[. INTRODUCTION (1) Its dynamics should somehow exhibit a superalgebra

in which the anticommutator of two supersymmetry genera-

In recent years it has been shown that in odd-dimensiondbrs coincides with the AdS superalgebra in eleven dimen-

supergravitie§1,2] the fundamental field is always the con- sions[9].

nectionA and, in their simplest form, these are pure Chern- (2) The low-energy regime should be described by an

Simons systems. In contrast with the standard cases, the sgleven-dimensional supergravity of a new type which should

persymmetry transformations close off-shell withoutStand on a firm geometric foundation in order to have an
auxiliary fields. off-shell local §upersymmetrﬁ110].

The Chern-Simons construction fails in even dimensions 1N€ Paper is organized as follows. In Sec. II, we shall

for the simple reason that a characteristic class constructd§I€W Some aspects of the torsion-free condition in super-

with products of curvature in odd dimensions has not beergravity with cosmological constant. The supersymmetric ex-

found. This could be a reason why the construction of a{tensmn of the Stelle-West formalism is carried out in Sec. Ill

(supejgravity in even dimensions invariant under (amti- where the principal features of the nonlinear realizations are

q g'ttg Y h ined int i bl reviewed and the nonlinear fields vierbein, spin connection,

€ Sitter-group has remained an interesting open problem. ,, . gravitino are derived. An action for supergravity genu-
It is the purpose of this paper to show that the supersym

) _ ) = inely invariant under the AdS superalgebra is constructed in
metric extension of the Stelle-West formalig8i, which is  gec v and its corresponding field equations as well as the
an application of the theory of nonlinear realizations to gravyimit m—0 are discussed. Section V concludes the work

ity, permits constructing a (81)-dimensional supergravity with a look forward to applications of the present results to
off-shell invariant under théanti-) de Sitter group. The ap-  supergravity in higher dimensions. Some technical details on
plications of the theory of nonlinear realizations to super-the calculations are presented in the Appendix.
gravity have been carried out by Chang and Manspdri
and by Gusey and Marchildofp5]. These authors considered
a nonlinear realization of th@ SR1,4) in the context of the II. N=1 SUPERGRAVITY
spontaneous breakdown of supergravity. Unlike the present _ ) _
work, they identified the corresponding coset parameters [N this section we shall review some aspects of the
In the present work, the Goldstone fields represent a point
in an internal anti—de Sitter space. In describing the geom-
etry of this internal space, we make use of some of the re-
sults of Ref[6] on the nonlinear realization of supersymme-  Supergravity is the theory of the gravitational field inter-
try in anti—de Sitter space. acting with a spin 3/2 Rarita Schwinger fidltiL—13. In the
An important stimulus for the interest in the constructionsimplest case there is just one spin 3/2 Majorana fermion,
of a supergravity invariant under the AdS superalgebra hagsually called the gravitings. The corresponding action is
come from recent developments in M thed;8]. In par-

A. The torsion-free condition in N=1 supergravity

ticular, some of the expected featur f M theory are th —
cular, some of the expec ed features o eory are the S= | £y "R+ 4Pyt y, Dy, e
following.
*Email address: pasalgad@udec.cl wheree? is the one-form vielbeing?® is the one-form spin
"Email address: sdelcamp@ucv.cl connection, an® y=d¢— % w®y,,i is the Lorentz cova-
*Email address: mcataldo@ubiobio.cl riant derivative.
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D=3+1, N=1 supergravity is based on the Poincaresupergauge translation and under supersymmetry we recall
supergroup whose generatd?s,J,,,Q“ satisfy the follow-  that, under any gauge transformation, the gauge connection

ing Lie superalgebra: A* transforms as
[P,,P,]=0, SA=—DA=d\N—[A\] (10
[Jab Pl =1(7acPb = 75cPa), with
[Jab,Jeal =1(7acdva™ Mocdad™ Mbadac™ Naadbe) N=3iK"35p=1pP,+eQ. (1)
[Jab,Qal=i(¥an) apQps. Using z;lgebra(Z)_ we obtain thae?, »2°, andy, under the
Poincaretranslations, transform as
[Pa,Qp1=0 5e?=Dp?, S0 =0, Sy=0, (12)
[Qua vaﬁ]z —2(¥") apPa- 2 under the Lorentz rotations, as

Working in first-order formalism, the gauge fields,
w3,y are treated as independent. The key observation is that
(e?,»?®,4), considered as a single entity, constitute a mul-

tiplet in the adjoint representation of the Poincawper- and under supersymmetry transformations, as
group. That is, we can write

se?=rkpe®,  0w=Dk®  Sy=—1kPyapi,
(13)

_ 5= —2ieydy, Sw?®=0, Sy=De. (14)
A=AAT, =1 w?P],,—ie?P,+ yQ, )
] ] o, Action (1) is invariant under diffeomorphism, and under
where A is the gauge field of the Poincargupergroup; |ocal Lorentz rotations, but it is not invariant under the nei-

Pa.Jan,Q" being the generators of the Poincam@nslations,  ther the Poincareranslations nor the supersymmetry.
of the Lorentz transformations, and of the supersymmetry, |n fact, under the local Poincateanslations

respectively. Hence, supergravity is the gauge theory of the
Poincaresupergroup.
The field strength associated witk* is defined as the 5Spt=2J EabcdR?®
PoincarelLie superalgebra-valued curvature two-forRf'.
Splitting the indexA, we get

1
TC— Ezﬁyczp) pY+ surf. term,

A
R2D— 2P 2eCd 4) 6S= Zf & apcdR2CTCpd+ surf. term. (15
C 1
Ta=Ta— LRy, (5) Under local supersymmetry transformations
p=Dy. (®) OSsysy= — 4[ £ysy.D T2+ surf. term. (16)

The associated Bianchi identities are given by
Thus, the invariance of the action requires the vanishing of

DR =0, (7)  the torsion
DT?+RPe,—iyy?p=0, (8) Ta=0. (17)
Dp+ 1R y,pi=0. (99  This means that the connection is no longer an independent

) ) variable. Rather, its variation is given in terms &® and
However, a|th0U9fAAE(ea,wab, i) is a Yang-Mills po- sy, and differs from the one dictated by group theory. An
tential andR”*=(R3,T2,p) the corresponding field strength, effect of the supertorsion-free condition on the local Poincare
action(1) is not of the Yang-Mills type. The main differences superalgebra is that all commutators &h ¢ close except
between an action of the Yang-Mills type and acti@hare the commutator of two local supersymmetry transformations

the following. on the gravitino. For this commutator on the vierbein one
(1) A Yang-Mills action is invariant under the whole finds
gauge group of which tha” are the Lie superalgebra-valued

potentials. [S(£1),0(g5)]€*=38,7"De1— 3217 De,=35D(827%).
(2) Action (1), instead, is not invariant under the whole (18)
gauge supergroup, but is invariant only under the Lorentz o
transformations. With p2=3e,v%,, we can write
The invariance under Lorentz gauge transformations is
manifest. To show the noninvariance of E#) both under a [5(g1),0(e5)]€2=Dp?. (19
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This means that, in the absence of the torsion-free condition, [Pa,Pp]l=—im2J,y,
the commutator of two local supersymmetry transformations
on the vierbein is a local Poincatenslation. However, the [Jap.Pcl=1(7acPo— 7bcPa),
action is invariant by construction under general coordinate
transformations, but not under the local Poindaamslation. [Jab:Jcdl =i (7acdbd— Mbedad™ Toadac— Taddbe):
The general coordinate transformation and the local Poincare
trans]gtlorl can Ee_ |dvegt|f|ed if we impose the torsion-free [Jab:Qul=1(Yab) apQs.
condition: sincep®=p”e?, we can write
i
b = _
D,.p?=(d,p") €5+ p"(9,€5)+ 3p" (Y, Y h,) +p w5 e, [Pa,Qal= = 5M(¥a)apQp
+p'T,. (20

[Qu,Qpl=—2(¥)usPa—2M(¥*®) updap.  (24)

This means that, i, =0, then the following commutator  \yorking in the first-order formalism, the gauge fielefs
is valid: w?®, 4 are treated as independent. The key observation is that
- (e®, w3 y), considered as a single entity, constitute a mul-
[5Q(81),5Q(82)]=5GC-|—(p'“)+5|_LT(pp'wib)+ oo(p”,), tiplet in the adjoint representation of the AdS supergroup;
(21)  thatis, we can write

where we can see th&in {Q,Q}=P, i.e., the local Poin- A=AAT =31 0?Pp—i€%P+ + ¢¥Q, (25
caretranslation, is replaced by general coordinate transfor- ) .

mations besides two other gauge symmetries. The structuéhere A is the gauge field of the AdS supergroup;
constants defined by this result are field dependési,  Pa.Jan.Q® being the generators of the AdS boosts, of the
which is a property of Supergra\/ity not present in the Yang-l_orentz tranSformationS, and of the supersymmetry transfor-

Mills theory. mations, respectively. Hence, supergravity with cosmological
The commutator of two local supersymmetry transforma-Constant is the gauge theory of the AdS supergroup.
tions on the gravitino is given by The field strength associated witk* is defined as the
PoincarelLie superalgebra-valued curvature two-forRf'.
[8(e1),8(22)]9= 3 (Tape2)[8(e2) ™) = 3 (0ape1) Spliting the indexA, we get
X[ 8(g2) w?]. (22 RaP=Rab4 44202 + ay?Py, (26)
The conditionTA2=0 leads tow?°=w?(e,), which Ta=Ta_ly,ay, (27)
implies that the connection is no longer an independent vari-
able, and its variatiod(&) »2® is given in terms ofs(¢)e? p=Dy— ay,ped. (28)

and 8(¢) . Introducingd(e) w??(e, ) into Eq.(22) we see

that, without the auxiliary fields, the gauge algebra does not The associated Bianchi identities are given by
close, as shows E@10) of Ref.[13]. Therefore, the condi- .

tion TA?=0 breaks not only the local Poincanevariance DR —8a?T3"+ 2ayy*p=0, (29
but also the supersymmetry transformations.

DT+ R%%e,—iyyp=0, (30)
B. The torsion-free condition in N=1 supergravity
with cosmological constant Do—i Ta 1 Rab 0 (31)
—la - =0.
The action for supergravity with cosmological constant is prlaya T g R Yand

given by[14] ) )

However, althoughA*=(e?,w?®, ) is a Yang-Mills po-
tential andR”=(R?2®, 72, p) the corresponding field strength,
action (23) is not of the Yang-Mills type. The main differ-
— ences between an action of the Yang-Mills type and action

+3aeqpedth Y ye’e’, (23)  (23) are the following.

(1) A Yang-Mills action is invariant under the whole
wheree? is the one-form vielbeinw?® is the one-form spin  gauge group of whictA® are the Lie superalgebra-valued
connection, an® y=dy— % w® y,,i is the Lorentz cova- potentials.
riant derivative. (2) Action (23), instead, is not invariant under the whole

The anti—de Sitter version =1, D=3+ 1 supergrav- gauge supergroup, but is invariant only under the Lorentz
ity is based on the graded extension of the AdS group, i.etransformations.
on the OSp(1/4) whose generatorB,,J,,,Q¢ satisfy the The invariance under the Lorentz gauge transformations
following Lie superalgebra: is manifest. To show the noninvariance of Eg3) both un-

S= f & apcdR2Pe%ed+ 4i)ys y,D e+ 2a2e 5 . £2ePe%ed
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der a supergauge translation and under supersymmetry vepace T ({G/H},) tangent to the internal AdS space

recall that, under any gauge transformation, the gauge codG/H}, at the point¢?(x), whose explicit form is given by

nectionA” transforms as Eq. (3.19 of Ref.[3]. In this section we consider the super-
symmetric extension of the Stelle-West formalism

SA=—DN=d\—[A\] (32
with A. Nonlinear realizations of supersymmetry in AdS space
_ The nonlinear realizations in de Sitter space can be stud-
A=3ik3p—ip%Pat +2Q. (33 ied by the general method developed in R&f,18. Follow-
Using algebra24) we obtain thae?, »°, andy, under AdS ;nugbg;ii;_rfferences, we consider a (sepergroupG and a

boosts, transform as Let us call{V;}"_¢ the generators of. We assume that

562=Dp?, SwP=m?(p2e®—pPed), Sy=0, (34) the remaining generato{sﬁq}fj:l can be chosen so that they
form a representation dfl. In other words, the commutator
under the Lorentz rotations, as [Vi,A,] should be a linear combination &§ alone. A group
elementg e G can be representgdniquely) in the form
oe3= ke,  Sw=Dk®, S=—3xyn1,

(35) g=efAh, (39)
and under the supersymmetry transformations, as whereh is an element oH. The ¢' parametrize the coset
spaceG/H. We do not specify here the parametrizatiorhof
One can define the effect of a group elemggnon the coset

Action (23) is invariant under diffeomorphism and under SPace by
the local Lorentz rotations, but it is not invariant under nei-

5e?=—2iey?y, Sw? =0, SY=De. (36)

| 2l ,
ther AdS boosts translations nor local supersymmetric trans- gog=go(e*1h)=e* “ih (40)
formation.
In fact, under the local Poincateanslations or
§|A|: g!IAlh
. goe* =€ , (41
5Spgs= — Zf EapcdR2PTCp+surf. term (37 ° !
where
and under the local supersymmetry transformations 1
h,=h'h™% (42
8Ssysy= —4f £v57,D T2+ surf. term. & =£'(go, &),
Thus, the invariance of the action requires the vanishing of h;=h4(gg,¢).

the torsion

A If go—1 is infinitesimal, Eq(41) implies

T2=0. (39 | | | |

e fA(gy—1)efhi—e fAigefhi=h—1. (43

This means that the connection is no longer an independent
variable. Rather, its variation is given in terms &® and  The right-hand side of Eq43) is a generator oH.
oy, and differs from the one dictated by group theory. The Let us first consider the case in whigg=hye H. Then
condition T2=0 breaks not only the local Poincaievari-  Eq. (41) gives
ance, but also the supersymmetry transformations.

e’ 'A=hget Ay 1. (44)
lll. SUPERSYMMETRIC EXTENSION , , o
OF THE STELLE-WEST FORMALISM SinceA, form a representation df,, this implies
The basic idea of the Stelle-We$8W) formalism is h;=hgy, h'=hgh. (45
founded on the mathematical definitip,15] of the vielbein
V2. This vielbein, also called solder forfi6], was consid- The transformation from¢ to ¢’ given by Eq.(44) is

ered as a smooth map from the tangent space to the spadiear. On the other hand, consider now

time manifoldM at a pointP with coordinates<*, and the |

tangent space to the AdS internal space at the point whose go=e oM, (46)
AdS coordinates aré?(x), as the pointP ranges over the

whole manifoldM. Figure 1 of Ref[3] illustrates that such a In this case, Eq(41) becomes

vielbein Vi(x) is the matrix of the map between the space | | ;

T.(M) tangent to the space-time manifold xit, and the ebofief Ai=gf Ain, (47)

024021-4
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This is a nonlinear inhomogeneous transformatiorg oifhe B. Supersymmetric Stelle-West formalism

infinitesimal form(43) becomes We now take ass the graded Lie algebré24) having as

generator®),, P,, andM,,. It has as a subalgebkt that
of the de Sitter grouf O(3,2) with generator®, andM ,,.
This, in turn, has as subalgeblrathat of the Lorentz group

O(3,1) with generator#/,,. An element ofG can be rep-
fesented uniquely in the form

e Mg p A e fhgef A=, —1. (49

The left-hand side of this equation can be evaluated, usin
the algebra of the group. Since the results must be a gener
tor of H, one must set equal to 0 the coefficient’gf In this
way one finds an equation from whi@g' can be calculated. g= eXQp = eXQa— 1 £%Py| (57)
The construction of a Lagrangian invariant under '
coordinate-dependent group transformations requires the iRghereheH andl L. On can define the effect of a group

troduction of a set of gauge fielda= a Aidx*, p  elementg, on the coset spacd/H by
—pMV dx*, p= p Adx*, v=uv de” assouated respec-

tively, with the generators/; and A,. Hence,p+a is the gog=e" Ch’ =gX Qg~i¢'aPa’ (58)
usual linear connection for the gauge gra@pand the cor-
responding covariant derivatives is given by or
D=d+f(p+a) (49) goe=e*"%h,, (59)
and its transformation law undere G is hlefigaPa: efig’aPah, (60)
1 '
g:(pta)—(p'+a')= g(p+a)gl—;(dg)gl}, Lh1=1" (61)

(500 Clearly,h;=h;(go,x) andl;=11(go.x,£).

. . . . If go—1 andh;—1 are infinitesimals, Eq$59),(60) im-
wheref is a constant which, as it turns out, gives the strengt 9o ! a459),(60)

I
of the universal coupling of the gauge fields to all other y
fields. “XQ(g—1)er%— o XQgexQ— . —1 62
We now consider the Lie algebra-valued differential form e (g 1e © € e 62
[17] e/¢Pa(h, —1)e 1¢Pa—glPage 1EPa=| —1. (63
e {Ald+f(p+a)lefN=p+u. (51)

We consider now the following cases: d=1,eL, Egs.

The transformation laws for the formg £,d¢) andv (&,d€) (59,(60) give

are easily obtained. In fact, using E§46),(47) one findg 6]

eX'Q=]exQ 5t (64)
"=hyp(hy) 73, 52
p’=h;p(hy) (52 hem =1y, 65
v'=hy(hy)~*+hyd(hy) % (53 o a
S L P (66)

Equation(52) shows that the differential formg(&,d¢)
are transformed linearly by a group element of fo{46). Both y and ¢ transform linearly. If, on the other hand, we
The transformation law is the same as by an elemend,of know only thatgo=hyeH, in particular, if
except that now this group elemdni(&,, ) is a function of .
the variableé. Therefore, any expression constructed with go=e "Pa (67
p(&,d§), which is invariant under the subgroth will be . )
automatically invariant under the entire gro@® the ele- IS @ pseudotranslation, E(G9) gives
ments ofH operating linearly org, the remaining elements

nonlinearly. eX'Q=heetn,*, (68)
We have specified the fielgsandv as well as their trans-
formation properties, and now we make use of them to define h;=ho, (69

the covariant derivative with respect to the grdap while Eq. (60) gives

D=d+v. (54)

hoe'¢*Pa=e~1¢"*Pa| (hg, &). (70)
The corresponding components of the curvature two-form
are In this casey transforms linearly, but the transformation law
(70) of ¢ under pseudotranslations is inhomogeneous and
T=Dp, (55 nonlinear. Infinitesimally
R=dv +vv. (56) e éPa( —jp2p,)e 1€ Pa— gt Page itPaz|, —1. (71)
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Finally, 1t BIW' 0= hy(3IW3,) (hy) 1+ hyd(hy) L (80)

go=e"? (72) The nonlinearity of the transformation with respect to the
elements ofG/H means that the labels associated with the
parts of the algebra d@&, which generat&/H, are no longer
available as symmetry indices. In other words, the symmetry

the same form as quo) except for the fact thah, is & has been spontaneously broken fr@rmo H. An irreducible
function of x, while hy is not. Therefore, the transformation ' L ) :
representation o6 will, in general, have several irreducible

law of £ under a supersymmetry transforma’_[ion has th_e SamSieces: with respect téd. Since, in constructing invariant
form as that under a de Sitter transformation but, with pa- | !

rameters which depend in a well-defined wav-an actions, one only needs index saturation with respect to the
. P . yQ subgroupH, as far as the invariance is concerned it is pos-
An explicit form for the transformation law @ under an

P . sible to select a subset of nonlinear fields with respe&,to
infinitesimal AdS boost can be obtained from E@l). The which form irreducible multiplets with respect to,

is a supersymmetry transformation, one must use Exfs.
and (60) as they stand. Observe, however, that &) has

result is Note that, ifG=0Sp(1,4) andH=SO(3,1), the gauge
scoshz pb§b§a fieldsV"j1 form'a square 29(4 matrix,.which is invertible and

S¢3= _pa+( o 1) ( p3— . ) , (73)  can be identified with the vierbein fields. In the same way we
sinhz have thatwa® is a connection an® can be identified with

the Rarita-Schwinger field. These fields can be obtained from
Eq. (77). The details of the calculation 6§2 W, ¥ are
given in the Appendix; the result is

wherez=m-/(£2£,) =mé.

The transformation of? under an infinitesimal Lorentz
. : b .
transformatior o= e("2<*Vab ig

a
DZP+i
b

b a b sinhz
0&8= k¢, (74) V&= [ coshz]?,e’+Q -

[—
1- ngX)

and, under local supersymmetry transformatiofg), &2

transforms as x| DxyPdx+ 2y x1 0 coshz]i - 2méy x ¥ dx
R zcoshz &8 . . .
s&=—il 1+ =m ) 2 +i< : —1) 82— — p .sinhz| i I —
¢ 6 XXV X sinhz b g 2y X1~ 5| 1= 0 7
i = i\ .
_ b, _ o _ ab J— ]
X| 1+ 6mxx)sy X 2|m(1+ 6mX)()8’y Yéb - +E(X’Yfg)()?’fg}(%dwm_|m7’cec)
"~ «| Gy Qcoshalg+ 2m(xy ) 6 S | (81
_ COS m ,
Using Eq.(62) with go—1=¢Q, one finds that XV X b XY XS
i _ 1 where
ox === gM(Sxx+xTaxI™e + gm*(xx)e,
a
i QAF=AG+(1-A) ggf , (82

hy—1= ( 1+ m}x) (e7Y°xPa+meyxJzp).  (76)

. . ab ab 2 anb bna sinhz 2/ »a b
From Eq.(25 we know that the linear connections are W*"=w?"+m?| (£°€”—("e )T_m (D¢

given by @ »?", ). Then, based on these, we can define

the corresponding nonlinear connection& (WP, ) from (coshz—1) i
Eq. (51): —{"De? —2im| 1— —myx |{ 249"
°DEY) 2 im{ 1=2=mxx |} 247" x
Liwaby,, —iVaP,+ T Q=el¢Pae X[ d+ L wtJ,,— ie?P, -
_ — ) .ab A0 ) a
4+ PQ]eQe 1P 77 +myyPdx+mlxy’dx+2¢y x ] —

The corresponding transformation laws fof,WaP W 5 cb — b 1.a, (COShZ—1)

can be obtained from Eq$52),(53). In fact, one can verify +2mxy*Pdx+2¢y"°x 1€ gCT

that, under the AdS supergroup, the nonlinear connections
transform as 1 i — i —

_ _ + Elm{ 1- 0+ g(xvfgx)vfg}(ycdww
W'Q=hy(¥Q)(hy) %, (78)

iv/ra RVE! -1 ; c sinhz
—IVPa=hy(—iVP,)(hy) ™%, (79 —imyce®)

z

(x7%x) +m(x¥*x) &°

024021-6
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o (coshz—1) where
+2m*(xy"x) & —2] (83 .
z Ta=7a_ '5\17 a2 (92)
T i — AL D o ol
quul_zmwxxwr”r )7 2™ ) }lﬁ RAP=R b4 44230 4 o T 420 93)
- %{ 1- Igm(;*yax) Yat Igm(;*yab)() ’)’ab} (Yoqw® p=DV—lay WV 49

Supergravity invariant under the Poincaré group

Taking the limitm—0 in Egs. (24),(73),(75),(76),(81),
(83),(84) we find that superalgebf24) takes the form of the
d X] e(12medyy (84) superalgebra of _Pqir!c'a(?) and that,the trans_formation laws
of £ under an infinitesimal Poincarganslation, under an
infinitesimal Lorentz transformation, and under the local su-

. - b ; : .
We have specified the fieldg®, W*®, and ¥ as well as Persymmetry transformation are given respectively, by
their transformation properties, and now we make use 0

_ i
—imye®) x+|1- 1—2m(5XX+XFAXFA)

1 .
T2 2
o2M (xx)

them to define a covariant derivatives with respect to the 88%=—p?, (95
groupG:
88%=ipe®, (96)
D=d+W. (85
8&=—ieyx; (97)

The corresponding components of a curvature two-forms are
the transformation laws of under an infinitesimal Poincare

— a
T°=DV%, (86) translation, under an infinitesimal Lorentz transformation,
a_ a and under the local supersymmetry transformation are given,
Rp=dWp+WeWs 87 respectively, by
IV. SUPERGRAVITY INVARIANT UNDER THE AdS 6x=0, (98
GROUP

- . . ox=0, (99
Within the supersymmetric extension of the Stelle-West

formalism, the action for supergravity with cosmological Sx=—¢. (100
constant can be rewritten as
In this limit G=1S0(3,1) andH=SQ(3,1) and the fields
S— J’ £ a5odR AVOVI+ 4T gy DT VA vierbein V4, the connection\?® and the Rarita-Schwinger
field ¥ are given by

+20% 4peVAVEVOVI+ Bae gy o ¥ y2 PP VOVY,
(88)

Vea=e2+ D 2+i(2y+Dyx)y?x, (102

o Wab= 3P, (102
which is invariant under Eqgs(78),(79),(80). From such

equations we can see that the vierbgfhand the gravitino @:Z_,_ D; (103
field transform homogeneously according to the representa- ’
tion of the AdS superalgebra, but with the nonlinear groupyhere now
elementh, e H.

The corresponding equations of motion are obtained by D=d+w. (104
varying the action with respect &, y,e?, 02", . The field )
equations corresponding to the variation of the action withThe corresponding components of the curvature two-form
respect ta£® andy are not independent equations. Following &r¢ Now
the same procedure of RR0], we find that equations of

— a
motion for supergravity genuinely invariant under super AdS T°=DV%, (109
are the following: Re=dwl+ 02w (106
1>aby s U _
2eapedRTVH AV y574p =0, (89) The limit m—0 of the action 88 is obviously the action
A for N=1 supergravity in (3 1)-dimensions:
T3=0, (90
~ _ aby /¢y sd I a
875 y,pVA— Aysy W T3=0, (91) S jsabcdR VOVI+4W y5y,DWVE,  (107)
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which is genuinely invariant under the Poincatgpergroup. The corresponding equations of motion reproduce the usual
In fact, it is direct to verify that actiof107) is invariant  equation forN=1 supergravity with cosmological constant.
under Egs. (95-(100 plus the transformation law of Several aspects deserve consideration and many possible
e? w2, under infinitesimal Poincareanslations, under in- developments can be worked out. An old and still unsolved
finitesimal Lorentz transformations, and under local superproblem is the construction of an eleven-dimensional super-

symmetry transformations, which are given by gravity off-shell invariant under the supersymmetric exten-
b A~ B sion of the AdS grougwork in progress The construction
b0™°=0, e"=Dp" 6y=0, of an action for supergravity in ten dimensions genuinelly
ab. ~ ab a ab 0 invariant under the AdS superalgebra, and its relation to
S0=D«™, &= kpe’, oY= =3k yapd, eleven-dimensional supergravity, could also be of interest.
_ Another interesting issue is the connection between the
50®°=0, d8e*=-2iey?y, SyY=Ds. present paper and the supergravity in{8)-dimensions ob-

tained via dimensional reduction from five-dimensional

The corresponding field equations are given by Chern-Simons supergravityork in progress

28 4pcdR¥PVE+ AT y5 DY =0, 108
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where

In Ref.[19] we have clamed that the successful formalism
used by Stelle-West and by Grignani-Nardé®il] to con-
struct an action for (3-1)-dimensional gravity invariant un-
der the Poincargroup can be generalized to supergravity in
3+1 dimensions. In fact, that is correct. Using the vierbein
of Stelle-West and Grignani-Nardelli, one gets a supergravity
action invariant under the Poincaranslation. However, the APPENDIX
action of Ref.[19] is not invariant under supersymmetry |5 this appendix, we discuss how to derive some of the

transformations, as we can see frén®). results given in the text, in particular, the expressions for

To obtain an action invariant both under the Poincareya \wab \y e use the techniques of Ref8,6], which we
translations and under supersymmetry transformations, Wg,mmarize here for convenience.

must carry out the supersymmetric extension of the Stelle- g4, any two quantitieX and, we define
West formalism. The correct vierbein, spin connection, and

gravitino field to construct a supergravity actipsee Eq. [X,Y]=XAY, (A1)
(107)] genuinely invariant under the Poincanepergroup are
given in Eqgs.(101),(102),(103). XCAY=[X,[X,Y]]. (A2)

V. COMMENTS AND POSSIBLE DEVELOPMENTS The expressiofi(X)/\Y is defined as a series of multiple

The main results of this work can be summarized as fol_commutatprs,_obtamed_by expand_mg the functi¢k) as a
lows. power series irX. It is direct to verify that

(1) In order to construct a gauge theory of the supersym- _
metric extension of the AdS group, it is necessary to carry gOOALFOAYI=[gOOTOINY. (A3)

out the supersymmetric extension of the Stelle-West-
Grignani-Nardelli formalism.

(2) The correspondence with the us&k 1 supergravity f(X)AY=2Z (A4)
with cosmological constant formulation has been established
by giving the expressions, in terms of the gauge fields, of thezn be solved fol in the form
spin connection, the vierbein, and the gravitino. These fields
are given by complicated expressions involving Y=[f(X)] *N\Z. (A5)
&, x, ¢, 02 ande?.

(3) An action for (3+1)-dimensionaN=1 supergravity In particular, we have
with cosmological constant genuinely invariant under the su-
persymmetric extension of the AdS group has been proposed. eXYe X=eXNY, (AB)

As a consequence, the equation

024021-8



N=1 SUPERGRAVITY WITH A COSMOLOGICA . .. PHYSICAL REVIEW D 68, 024021 (2003

X

1—e TOVANA ¢ — 20 N2 ¢
eXae—X: < /\5X, (A?) (XQ) /\SQ 5m (XX) SQ, (A14)
where the five matrices
where § is any variation. A=
When written in the above notation, E(f.1) become =(7a¥5,75)
o 1— it satisfy
1 1 A& _ 1 a — —
e a/\( Ip Pa) —| é’be /\(l&é Pa)_ll 1. FAFB+FBFA:277AB!
(A8)

yag=1[Ta.Tgl,
Since this is a Lorentz generator, we must evaluate the B a ab
AdS boost component of the left-hand side and set it equal to 2my P ag=27"Pa—2my*°J,p.
0; only commutators of even order contribute to it. There- If one sets equal to 0, in the left-hand side of B410),

fore, we must take the even powersid&?P, of the func- . — ,
tions occurring in Eq(A8). This leads to ) the part with the even powers gfQ, one finds

ZcoshZ_l)( . bebf"">p costr)ATa- S 0. (ats)
a- XxQ

ap _ .a _
0&Pa=p Pa+< sinhz P §2

(A9) Using Eq.(A4), we have

SxQ=[1+ 1 (xQ)?- £(xQ)*]N\eQ.  (A16)

If one now makes use of Eq6A11) to (Al14), one obtains

In a similar way, we can make use of E&2) with gg
—1=¢Q; one finds that

1 efXQ
eXQ/\(sQ)— ———A(5xQ)=h;—1. (A10)

i 1
oxQ=| &= gm(Sxx+xTaxI™)e+ §m2(xx)28}Q-

Here, there is a simplification: any power phigher than (A17)

4 vanishes identically due to the anticommuting property ofOn the other hand, using EGA16), the part with the odd
the spinor component. Therefore, we need only powers gives

XQN\eQ=—2myy e lpg, (A11) i _
hi—1=| 1+ zmyx|(ey*xPa+me y**xJap).
(xQ)2N\eQ=—3imyxeQ—3imxT axel*Q,
(A12) The nonlinear fieldd/2, W22, ¥ are evaluated from their
definitions (51),(77), following the same procedure of Ref.

(xQ)*N\eQ=4im%yxxv"Bedas, (A13)  [3].
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