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Quasinormal modes for the SdS black hole: An analytical approximation scheme
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Quasinormal modes for scalar field perturbations of a Schwarzschild—de (Siti®rblack hole are inves-
tigated. An analytical approximation is proposed for the problem. The quasinormal modes are evaluated for this
approximate model in the limit when the black hole mass is much smaller than the radius of curvature of the
spacetime. The model mirrors some striking features observed in numerical studies of time behavior of scalar
perturbations of the SdS black hole. In particular, it shows the presence of two sets of modes relevant at two
different time scales, proportional to the surface gravities of the black hole and cosmological horizons, respec-
tively. These quasinormal modes are not complete—another feature observed in the numerical studies. Refine-
ments of this model to yield more accurate quantitative agreement with numerical results are discussed. Further
investigations of this model are outlined, which would provide valuable insight into time behavior of pertur-
bations in the SdS spacetime.
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I. INTRODUCTION The SdS black hole shows QNM behavior similar to the
Schwarzschild black hole at intermediate times, and soon
A characteristic feature of the response of a black hole tewhanges to a power-law decay. At late times it again shows
external perturbations is the appearance of quasinorm&®NM behavior (exponential decaywhere the QNMs are
modes(QNMs). The presence of these modes was first notediow proportional to the surface gravity of the cosmological
in a study of perturbations of the Schwarzschild black holehorizon. For the Schwarzschild black hole, analytic approxi-
by Vishveshvard1]. Since then, QNMs for asymptotically mations have been used to give a genépproximate for-
flat black holes have been computed by a variety of numerimula for the QNMs as a function of the black hole param-
cal and analytical approximation methods. A detailed revieweters and the angular mof#. It is of interest to compute, in
of this work can be found if2,3]. the same spirit, the QNMs for the SdS black hole in an
QNMs were first found in a stability analysis of black analytical approximation scheme in the physically relevant
holes. However, the observation that these damped oscillaegime. The advantage is that there exist known numerical
tions are intrinsic characteristics of the black hole exteriorstudies which reveal characteristic features in the time decay
geometry and depend only on the black hole parameters inof a field in the SAS black hole. The analytical approximation
plies that they are the imprint of a black hole in its responsecould be refined to reproduce these features, and at the same
to perturbations. Further, QNMs are even seen at intermedtime would give a general expression for the QNMs as a
ate or late times in fully nonlinear situations such as system#function of the spacetime parameters and the angular mode.
undergoing gravitational collapse. Thus they are expected tdhe approximate model, being simpler to study may also be
play a significant role in the search for gravitational wavespossible to analyze completely. It would thus give insight
and black holes. Recent evidence for a nonzero positive cogato the qualitative features of the complete time behavior of
mological constant points to the importance of studyingthe field in SAS spacetime. Further, the near-extremal limit
black holes in such a background. The simplest black hole imand its effect on the QNMs and time behavior of fields could
this class is a Schwarzschild black hole in de Sitter spacke explored in this model.
(SdS. The QNM spectra for gravitational perturbations of In the recent past, the QNMs of anti—de Sit{&dS)
this black hole have been investigated4n5] using numeri-  black holes have been studied extensively. A detailed nu-
cal and analytical approximation techniques. QNM spectranerical study of QNM decay of scalar fields in AdS black
for the SdS black hole in the near-extremal case when thhole backgrounds in various dimensions was performed in
two horizons are nearly coincidefite., the black hole mass [10]. Exact computations of QNMs for the Baafos-
and radius of curvature of the spacetime of the same prdefTeitelboim-Zanelli(BTZ) black hole in (2+1) dimensions
are derived if6]. An interesting numerical study of the evo- were demonstrated first if11] and subsequently higher or-
lution of scalar fields in the SdS spacetime has been peder modegas also numerical results for gravitational pertur-
formed in[7,8]. This numerical study reveals the differencesbations of SAdS black holgsre shown if12]. More gen-
between the response of the Schwarzschild black hole anefal numerical computations of QNMs for higher
the SdS black hole to perturbations in the physically inter-dimensional AdS black holes are found [ih3]. Decay of
esting regime where the black hole mass is much smallescalar fields coupled to curvature in topological AdS black
than the radius of curvature of the spacetifméhich is a  hole backgrounds is studied numerically[i%,15 and ana-
relevant regime because the cosmological constant is)smallytically in [16]. An interpretation of the QNMs for an AdS
black hole in the dual conformal field theo{@FT) using the
AdS/CFT correspondence is provided it¥] (see alsd18]).
*Email address: suneeta@theorie.physik.uni-muenchen.de An interesting question is whether the QNMs of the SdS
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black hole have an interpretation in a dual CFT using the ds?=—(N)?dt?+(N) 2dr?+r2(dQ)?, (1)

recently proposed dS/CFT correspondeft® (for a study

of pure de Sitter QNMs in this context, sg&0]). The study  with

of the time behavior of perturbations in an analytical model

for the SdAS spacetime could be used to study such a possible 2M  r?

interpretation. N= ( ) 2
In this paper, we propose an analytical model to study the

time behavior of perturbations in the SdS black hole. Wel'here are now two horizons aiven by the zerod@df Th

compute the QNMs of this model in the regime when the Iy 9 e2 y the zero ese

black hole mass is small compared to the radius of curvatur@'€ the two real positive roots o,

of the spacetime. The SdS spacetime is bounded by the black

hole and cosmological horizon. Our analytical approximation ro= isir{isin‘l(SM \/K)}

consists of approximating the SdS potential by a potential b JA 13 '

that reproduces its asymptotic behavior at both boundaries.

In Sec. Il, we enumerate the QNM boundary conditions for 2 1 20

the SdS black hole, and describe our approximation potential re=——sin =sin }(3MA)+ —|. 3)
along with the motivations for our choice. The chosen poten- JA 13 3

tial has a discontinuity in its second derivative at the maxi- ] 5. ) )

mum. In Sec. Ill, we describe the exact solutions to this The third root ofN“ is negative, and given byy=—(ry,

potential and list the correct matching coefficients at thetc). ' iS the black hole horizon and. the cosmological
maximum of the potential. The actual computation of thehorizon. As in the asymptotically flat case, the spacetime has
QNMs is done in the regime of interest in the next sectiona curvature singularity at=0.

Two sets of QNMs, one proportional to the black hole hori- We consider a massless scalar fidldn this background.
zon surface gravity and the other proportional to the surfac&hen, the Klein-Gordon equation for the field is

gravity of the cosmological horizon, are found—the first set

describing the time behavior of the field at certain interme- d,(N—gg*"d,)®=0. (4)
diate times, and the latter describing late-time behavior. A

qualitative picture for the time scales where each of thes&/sing an ansatz for the field

two sets of QNMs comes into play is given—and it is dis- 1

cussed why this behavior is expected only in the regime D= x(NeY (8, d), (5)
where the black hole mass is small compared to radius of r

curvature. The real part of the QNMs depends on the maxi- . . .

mum of the potential. Our approximation consists of identi-2"d by going to the ftortoise coordinate where dx
fying the value of the maximum of the model potential with =dr/N*, the Klein-Gordon equation is

that of the SdS potential. We compute the maximum value of

the SdS potential in Sec. V. This unfortunately is difficult to

do for any general angular mode. We therefore consider the
small angular mode and large angular mode cases separately
while computing the SdS maximum. In our last section, wewhere
present a detailed comparison of the results of this model

with numerical studies. There is good qualitative agreement 2M  r?
in the most striking feature of the numerical studies, the pres- VL(r):( 1- T |_z
ence of the two sets of QNMs relevant at two different time

scales, and which are proportional to the black hole and cosynenr =r, , x= —. Whenr=r., x=. We are interested

mological horizon surface gravities, respectively. We alsqp studying scalar field perturbations in the region bounded
show in th|§ sgctlon the noncompleteness of QNMslln OUly these two horizons. The potenti] (r) goes exponen-
model, which is also expected from the observation Ofija|ly to zero as a function of the coordinate as one ap-
power-law behavior at intermediate times for the SdS blackyoaches the two horizons. However, the rate of approach is
hole. We discuss how the model could be refined or modifieghot the same—it depends on the surface gravities associated
to reproduce the more quantitative features of the numericalith the horizons. The surface gravity at a horizop is

results such as the dependence of the QNMs on the angulgkfined asa,= %|df/dr|rh- Thus the surface gravities asso-

mode. We also discuss the exciting questions which can bg”lated with the black hole and cosmoloaical horizamsand
addressed for this model, and would shed light on our under- 9 s

standing of perturbations of the SdS spacetime. ag, respeciively, are

d2
- d—x’§+vL(r>x=w2x, ®

XM 2 L(L+1)
—3—|—2+r—2. (7)

Il. ANALYTICAL APPROXIMATION = (Fe~o)(fo=To) )
OF THE SdS POTENTIAL 2I2rb
The metric for the Schwarzschild—de Sitter spacetime in (re=Tp)(Fe—To)
four dimensions for cosmological constakt=3/1? is given ac= % 9
by le
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The potentiaV, (r) goes to zero ag®** asx— —x, i.e., as As can be checked, this potential reproduces the
the black hole horizon is approached. When «, i.e., as asymptotic form of the SdS potential at the two boundaries.
the cosmological horizon is approach&t(r) goes to zero Furthermore, this potential is exactly solvable. Therefore,
ase 2%, In studying the time evolution of the perturbation, what remains is a computation bf,, the value of the SdS

it is important to first compute the QNMs for the problem. potential at its maximum. Computing the maximum of the
QNMs are given in this case by solutions to Ef) with SdS potential is difficult as the potential is complicated. We
specific boundary conditionsirgoing at the black hole ho- are forced to work in the regim® <I. The Poschl-Teller
rizon, andoutgoingat the cosmological horizon. These are has been used to approximate the SdS potential redéitly
the physically motivated boundary conditions for the prob-However, in this casepne Poschl-Teller potential is used
lem as a timelike observer in this spacetime can send mesghroughout—and this is a good approximation only for the
sages, but not receive them through theture) cosmological nearly extreme SdS black hole, where the two horizons are
horizon. The boundary condition at the black hole horizon isvery close(i.e., M and| are of the same ordef6]. In the

the usual one for computing QNMs of black holes and rep-other regimeM <I, one Poschl-Teller potential provides a
resents the classical absorption by the black hole. The QNNboor approximation to the SdS potential as the asymptotic

boundary conditions for the field are thus forms of the SdS potential at both the boundaries cannot be
_ reproduced by it. This problem is solved by our choice for
xexpliwx), X— —o; the potential,V. It would be exciting if the near-extremal
) limit in our model led to the QNMs found if6]. We must
xrexp—iwx), X—+o. (10 now check what features, qualitative or quantitative, we re-

produce of numerical studies of dynamics of a scalar field in

IS now complex andv= wy+iI", wherel'>0. the SdS s : . .
. . . pacetime done|in,8] by a study of this potential.
Thus, the QNMs can be obtained by solving E8). with We now proceed to compute the QNMs of the approxi-

the above boundary conditions. However, exact solutions thate potential/ which is given byV, for r<r,, andV, for
this equation are not known. In fact, such exact solutions are_ . " \We are interested in the so}utions tomthe eqtzjation
not available even for the Schwarzschild black hole in an ~— ™"

asymptotically flat spacetime. Instead, what is done in the 2
asymptotically flat case is to either solve the equation nu- _ —X+VX=w2X- (13
merically and compute the QNMs, or to analytically approxi- dx?

mate the Schwarzschild potential by an exactly solvable po-

tential. This potential is described by parameters which caifror bothV; andV,, exact solutions can be found. We first

be used to fit the potential to the Schwarzschild potef®hl  examine the exact solutions to E43) with bothV=V, and

We follow the second approach of an analytic approximatioWV=V,. Then, the solutions have to be matched atr .

in computing the QNMs of the SdS black hole. Finally, we must pick the solutions that obey the QNM
In our search for a potential that would be a good analytidooundary conditions at both the boundaries.

approximation to the SdS potential, we set out to reproduce

the behavior of the SdS potential &s>*=%. The approxi- IIl. EXACT SOLUTIONS FOR THE POTENTIAL
mate potentiaV that we have chosen has the following fea-
tures: Let us consider the solutions to EG.3) with V=V;. The

(i) Its second derivative is discontinuousratr,, where  solutions to this(Poschl-Teller potential are known. They
rm is the value ofr for which the actual SdS potential has a can be written in terms of the hypergeometric functions after

maximum, i.e., a solution odV, /dr=0. a change of variables tg where &/(1— &)= e?®X*m),
(i) In the regionr,<r<r,, the potential is Then, two linearly independent solutions are
Vi x1=[&(1-§)]“**F(a,b,c;), (14)
L [coshag(x—xp) ]2 ) -
@l Xo=[E(1—§)] ()t e
Xm is the value of thex coordinate whem=r,. «; is given XF(a—c+1b—c+1,2—c;¢). (15)

by Eq.(9). V, is referred to as the Poschl-Teller potential in
the literature, and was first used [il] to approximate the \We have
Schwarzschild potentiaV,, is taken to be the maximum of

the SdS potential. ; ;
. - 1 1 V, i 1 1 V., i
(i) In the regionr ,<r<r,, the potential is taken to be a=—+\/>— —r;+—w, b==— /———’:+ —w,
again the Poschl-Teller potential, but with a different choice 2 4 ap Yo 2 4 ap b

of parameter. It is
i

vV c=1+—. (16)
= i . (12 @b
[coshag(X—Xm) ]2
The black hole horizon is a§=0. At the maximum of the
a. Is given by Eq.(9). potential, wherx=x,,, £=1/2.
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Solutions to Eq(13) with V=V, are similar to the previ-
ous case, but witl, replaced bya..
Define ¢; where&;/1— &;= 2%~ Xm),

X1=[€1(1— €)' eF (ay, by, 13 €1), 17
Xo=[ (1= €] gy)t
XF(al—Cl+l,bl—Cl-l—l,Z—Cl;fl). (18)
Here
1 1V, ie 1 1V, ie
a1—§+ Z—a—§+a—c, bl—z— Z—a—i-i-a—c,
iw
C]_:l+_. (19)
o

c

The next step is to match an arbitrary superposition of the
two solutions(14) and(15) with an arbitrary superposition of

Egs.(17) and (18—at x=X,,. This involves matching both
the wave functions and their first derivatives acrassx,,.
Let us use the following notationy;(Xy,) =X, x2(Xm) =Y.
Also,  dyi/dx(Xm)=X', dx2/dX(Xm) =Y. X1(Xm)
=X, x2(Xm) =Y, anddy; /dx(X,)=X', dy»/dX(Xm)=Y".

PHYSICAL REVIEW D 68, 024020(2003

i
Vray, ;{ iwIn2\ab r 2+a_b
X'=-———exp — — :
2 “ r 1+§)r 142
2 2
(24
iw
iwin2 F(l_a_>
Y=Gexp( ) oL (25)
“ 1—§)r -2
2 2
F(l iw)
iwin2 Cay
Y’=—iw\/;exr{ @ ) o
@ Jp(1_8)p1-2
2 2
ap (a—c+1)(b—c+1)
2 2—¢
1
X F a—c+2,b—c+2,3—c;§ . (26)

X, Y, X', and Y’ are given by the same expressions as
above, except that we replaeg with «.. Consequentlya,
b, andc are also replaced by their counterpaats b,, and
c;. We therefore do not display those expressions here.

Then matching the wave functions and their derivatives

acrossx=x, yields
AX+BY=AX+BY,

AX'+BY' =AX'+BY'. (20)

Here,A, B, A, andB are arbitrary coefficients of superposi-
tion of the two linearly independent solutions, which are then

x=Ax1+By, for r<r, and y=Ay;+ By, for r>r,.
A andB are related téA andB as

- XY =XY) (Y =Y'Y)

A=A——— 4B ", (21)
XY'=-X'Y) (XY'-X'Y)

- (XX =X'X) (YX=Y'X)

B=A— —  —4B— (22)
(IYX'=9'%)  (¥X'-Y'X)

We recognize that at=x,,, the value of¢ that appears in

Egs. (14) and (15) is 1/2. Using this and properties of the

hypergeometric functions, we can write

1 a b
iwin2, 127273
X:ﬁe"p(_ ab) 1 a /1 b @&
F(fz z*z)

IV. COMPUTATION OF QUASINORMAL MODES

We search for solutions to the problem satisfying quasi-
normal mode boundary conditions at the black hole and cos-
mological horizons given by Eq10). The solution obeying
the QNM boundary conditions at the black hole horizon
Xqnm fOF X>X, is given byAy;+Bx,. A andB for xgnm
are given by Eqgs(21) and(22) with B=0. Near the cosmo-
logical horizon, i.e., ax— oo, this solution is

Xanm~AP1exp(—i wX) + AQ,expli wX)

+BPexp —iwx) +BQexpliwx), (27

where
etesn
A
.
I'(2—cy)l(a;+b;—cy) D

27 T(ag—ci+ DT (by—Cy+1)°

For Eq.(27) to obey QNM boundary conditions at the cos-
mological horizon given by Eq.10), we must have
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AQ,+BQ,=0. (32)  separation of the length scalssandl, this implies thatr,,
~O(M). Thus a clear separation of the two interesting time

Substituting forA and B from Egs.(21) and (22) with B Scalesry/c andl/c is then related to a clear separation of

=0, the above equation is a.~1/ anda,~1/M. We note that when such a clear sepa-
ration of the scales does not exisss for, e.g., in the nearly
- - I'(cy) - - extreme SdS black hole studied [iB,6]) then we do not
(XY’ —X’Y)m—(XX’ —X'X) expect two different sets of QNMs.
! ! Let us return to Eq(33). Since we have not yet special-
I'i2—cy) ized to the case where the length scales are separated, we do
XF(al—clJr 1)I'(b;—cy+1) =0. (33 expect the general solutions of this equation forto be

complicated. However, if we specialize to the case where
The special frequencias that solve the above equation are M<I, and work in an approximation where we can neglect
the quasinormal mode frequencies for this problem. How-O(M/I) terms and higher, we must see solutienthat split
ever, as can be seen from the expressionXfandX’ from  into two sets as argued above. We therefore proceed to study
Egs.(23) and(24)—the zeros ofX and X’ do not occur for the various terms in Eq@33) and drop terms that can be
the same set of frequencies. The zeros of the above equatimeglected in this approximation. Fél<I, a,~1/M and
cannot therefore be computed simply. However, here we rea.~1/. Solutionsw for the case of the two length scales
flect on what we musexpect From the numerical work in  being well-separated are of the form~O(1/M) or w
[7,8], we note the presence of two different patterns of ex—~0O(1/).
ponential decay of the field with time. For intermediate = We now look for solutions of the formw~O(1/M).
times, the field decays exponentially with the exponent proThen, in Eq.(33), the first term has a factoiXyY’ — X'Y).
portional to the black hole surface gravity. This is a typicalFrom the detailed expression for this factor, it is clear that
QNM time behavior where the QNM frequency is propor-this factor is proportional to exjgl In2). Now, w=w,

tional to the black hole surface gravity. This temporal behav-, i wherel'>0. Furthermorel'~0O(1/M). Therefore, this
ior is similar to that of a field in a Schwarzschild black hole factor (XY’ —X'Y) is proportional to exp¢l/M). On the

background. This exponential decay is followed by a power- ) y
law decay of the field—but for late times, there is a switch®ther hand, the second term in H&3) has a factor XX
back to exponential decay. Now the exponent is proportionat- X' X) which is proportional to exM). SinceM <I, the
to the surface gravity of the cosmological horizon. This ex-first term can be neglected compared to the second term
ponential decay is again a QNM time behavior, but the(Here, we have also used the asymptotic expansion of the
QNMs are now proportional to the surface gravity of the hypergeometric function for a large paramete&herefore, in
cosmological horizon. This numerical result was seen for dhis approximation we must solve the equation
choice ofwell separatedength scaled andl. _ _

We expect a similar behavidr.e., two sets of QNMsfor XX'=X"X=0. (34)
our approximate potential. At very early times, there is a ) ) ) )
direct propagation of the perturbation without scattering byrHere again, we look at the detailed expressionsdfom Eq.
the potential. At later times, the perturbation gets multiply(24) andX’. Using these detailed expressions and multiply-

scattered by the potential. It therefore starts reflecting théng Eq.(34) by M, we see that the first term in E€g4) XX’

properties of the potential. The time behavior of the field; O(M/1) compared to the second tediX. Neglecting the
here is dominated by the QNMs. In our case, the SECONgt tarm we see that we must now look for zeros of the

derivativc;lm;]the r;}otentia:)l hgs a d(ijscohr]tiﬁuityratrm. Thg second term which lead to frequencies-O(1/M). These
QNMs which we have obtaine@nd which are supposed to are given by the zeros of’, which occur{as can be seen on

describe the time evolution after the very early titnatso ins ; _ - :
. ) pecting Eq(24)] when 1+a/2=—n andn=0 is an inte-
reflect this. When the perturbation gets scatteredrferr ger. Thus, the frequencies are

<r,, by the potentialwhich is nowV,), its time evolution
will be governed by QNMs related t@; which should be
proportional toa, (as is typical for QNMs of a Poschl-Teller 0=y
potentia). A rough estimate for the times when this occurs is

the light crossing time to traverse a distance of the order of 5
rm, i.e., rp/c. When the perturbation travels a distanceWe note that above, we do not consider zeroXads they
much greater than,,, it starts getting scattered by the po- lead to frequencies not @(1/M) as assumed while arriving
tential V,, and its time evolution is governed by QNMs re- at Eq. (34). We have nevertheless shown that in tle<|

lated toV,, which we expect to be proportional ta.. This  approximation, there indeed exist solutions-O(1/M) to
roughly occurs at times of the order of the light crossing timeEg. (33).

to traverse a distandei.e.,l/c. At such times and later, the We now consider the other possibility, i.es,~O(11).
decay of the perturbation is governed solely by the QNMsNow we can no longer neglect the first term of E§3)
related toV,. However, the above statements are possibleompared to the second term, as we did before. However, we
only when there is a clear separation of these two interestingnultiply the whole equation by, and observe that part of
time scales. As we see in the next section, if we have a cleahe second term can still be neglected as in the previous case

(39
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of w~O(1/M). More precisely, the second term has a factorFor M =2 and the same value df, r,,=5.33. This suggests
(XX’ = X'X) where the first term i©(M/l) compared to the thatr,=2.6". Analytically, the equation to be solved is
second, and can be dropped. We now concentrate on ttVo/dr=0, and the equation is
approximate equation

r® Mr® 3Mr 8m?

~ - I'(cy) 2—— - + =0. (41
XY =X'Y) s R 12 12
( 'T@pT (b
- I'(2—cy) Now, let us assume that the solutiog~O(M) as suggested
+X XF(al—cl+1)F(b1—Cl+1) =0. (36) by our numerical results. Then, in the equation above, the

first and second terms a@((M/1)?) or higher powers of
There are moreéD(M/I) terms left in the above equation. (M/I) compared to the last two terms. Therefore, dropping
However, we observe that the first term has a factb(d/).  these terms we see that=5M. This agrees with our nu-
Thus zeros of the above equation whese-O(1/) could  merical results. For the QNMs with=0, we can therefore
occur at poles of (a;) which are also zeros &. We check  SetVy,=Vo(5M).
for such solutions. The poles df(a;) occur whenl'(a,)
=—n" andn’=0 is an integer. The corresponding frequen- 8 1 64M2 27 2
cies are Vo<§ ) :(Z_ ) ( ) : (42

912 || 256M2 |2
N, 1 ( 1
— ——ti|n+5
2 4 2

c

) (37) ForL=1, we can again solve the equatidi/; /dr=0, as-

suming as before that the solution,~O(M) and in the
- approximationM <|. We find thatr,=3(3+\73)M, i.e.,
The zeros ofX occur fora;+1=—2n wheren=0 is an r_~2.886M. We expect ,=3M to be a good approxima-
integer. The corresponding frequencies are tion to the maximum for higher values &f

In all the above cases, we can explicitly check Mgt aﬁ
Vin E+i andV,,/a? are greater than 1/4. Thus, it is the real part of
V2 4
aC

w=a.

oy
"3

. (38

@ the QNM frequencies that depends ¥p,. Substituting for

the value ofV,, from Eq. (40) in the expressions for the
From Egs.(37) and (38), we see that the poles df(a;) QNMs (35) and(38)—we get the explicit expression for the
which are also zeros 6f occur whenn’ is an odd integer. QNM frequencies foi.>0. ForL=0, using Eq.(42) for
These frequenciem~O(1/) are then the solutions of Eq. Ym, We obtain more precise values for the QNM frequen-
(36), and in theM<| approximation, the solutions of Eq. C'€S:

(33).

VI. DISCUSSION

V. MAXIMUM OF THE SdS POTENTIAL . . .
In the previous sections, we have done an analysis of a

In the previous section, we argued for the presence of tw@erturbation in the potential and given a sketch of its be-
sets of QNMs, one proportional te, and the other ta., in havior in time. We have found the presence of two sets of
the approximatiorM <I|. We also computed these frequen- QNMs which are relevant at two different time scales
cies which are given by Eqé35) and(38). But it remains to ~ discussed in Sec. Iy
evaluateV,,, the maximum of the SdS potentid| (r). The

maximum is a solution of the equatiatV/, /dr=0, which is [ Vi, 1. 5
a sextic equation im. For high values of the angular mode W= ay " Z+'(2n+ 5) , (43
numberL, the potential is approximately L @b
2M  r2\L(L+1) YR 3
Viirn~{1-———|———. 39 = L —
L(r) ( 2| (39 w=ag \/ag 2Hil2n+3 (44)

Then the maximum occurs at,=3M. Thus, for large., we

V., is determined as discussed in the previous section. We
can takeV,,=V (3M), m P

have also given a qualitative picture for the times at which
5 2 L(L+1) each of these sets of QNMs'WouId be relevant for the tem-
_ 5 _) . (40)  poral behavior of the scalar field.
27M? 12 9M? We now address the question of how well this reflects the
time behavior of a perturbation in the SdS potential. Numeri-
Let us now look at small values df. We first consider the cal studies have been done for scalar fields in the SdS space-
case L=0. For L=0, numerically, withM=1 and A time [7,8]. We indeed reproduce the most striking feature of
=104, we can estimate the maximum, whichrig=2.67.  the studies, the presence of two sets of modes which are

1 9Mm?

ViBM)=| 3 2
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proportional to the surface gravities of the black hole andhe potentials for which the QNMs form a complete set has
cosmological horizons relevant at intermediate and latdoeen addressed. The results of the analysis are best expressed
times, respectively. in terms of the Fourier transform of the Green'’s function for
Now let us make more quantitative comparison with thethe system. This can be compactly written in terms of two
numerical results. We begin with the intermediate times atuxiliary functionsf(w,x) andg(w,x) which are solutions
which the first set of mode85) are relevant. In the numeri- to the homogenous time-independent Klein-Gordon equa-
cal work [8], a scalar field wave function with a Gaussian tion, wheref satisfies the QNM boundary condition at one
profile is chosen. Its subsequent time evolution in the Sd®oundary(in our case, the black hole horizoandg satisfies
spacetime is found by numerically integrating the Klein-the QNM boundary condition at the other boundéry our
Gordon equation. A choice aof,=1 andr.=2000(such that case, the cosmological horizoThen the Green’s function is
we are in the regimév <I) is taken. A graph of the field _
behavior in an SdS spacetime versus similar behavior in a G(X,y;0)=f(w,x)g(w,y)/W(w) for 0<x<y,
Schwarzschild spacetime is plotted fo=0 andL=1. Itis

seen that for early times, the two graphs follow each other =f(w,y)d(w,X)/W(w) for 0<y<x.
closely and display QNM oscillations—they start to differ (45)
from each other only for times much greater thgric.

Let us compare our first set of modé85) with the Here, the  Wronskian W(w)=g(w,X)f'(®,X)

Schwarzschild QNMs which seem to describe the behavior-f(w.x)g’(w,X) is independent ok. The QNMs are given

in SdS well at these times. To do so, we can use an analyticlly the zeros of the Wronskian, i.e., when the functibasd

approximation for the Schwarzschild QNMs by Ferrari andg are linearly dependent. Followir{@1], the QNMs do not

Mashhoon[9] which approximates the QNMs well when describe the intermediate or late time behavior completely

their imaginary parts are not too large. Then in this approxi-when the functiong andf are not analytic with respect t.

mation, the real 3, and imaginary ;) parts of the Rather, nonanalyticity of these functions could lead to
: -law behavior in timef andg are analytic inw if the

Schwarzschild QNMs areS.=a[ V(Ug/a?) —1] andwS, ~ POWEr h

—a(n+1). Here,a and U, are given by the height and potential for the syster¥ has “no tail” at each of the bound-

curvature of the Schwarzschild potential at its maximum an or:ek?(;(L;daos a;b?;(;;oo in the following sensecondition

nis an integer.a~'=3,3M. Comparing with the modes y ’

(35), we see that foM<I, Uy~V,,. Also a, *~4M and »

thereforea,~(1.3)a. Thus we see that the real parts of the j dxxV(x)| <o,

Schwarzschild QNMs and E@35) have approximately the 0

sameM dependence. The angular mdddependence is also

the same in both real parts. However, coming to the imagi- * X

nary parts, we see that our set of QNMs reproduces only J-o dxxe*V(x)| <= forany a>0. (46)

those Schwarzschild QNMs starting from=2 and subse-

quently reproduces only alternatemodes, the next one be- There is a corresponding condition for the boundary-at

ing n=4. This probably has to do with our matching condi- — . If this condition is violated for some > a,>0, thenf

tions atrp,. andg may not be analytic inv for Im w> . Let us apply
We proceed to compare the time behavior of the field inthese results to our problem. For our problem, the function

this model with numerical results for later times. In the neth(w,x) obeying the QNM boundary condition at the black

subsection, we address intermediate time power-law decajiole horizon isy;, and forx—o, it is given by the expres-

The following subsection compares the QNM behavior aftsjgn for xqnm iN EQ. (27). The functiong(w,x) obeying the

late times, i.e., given by Eq38) in our model with numeri-  QNM boundary condition at the cosmological horizon is
cal results—particularly with reference to angular mode de-

pendence.

g(w,x)= (Q2x1—Qix2). (47

1
(Q2P1—Q1P2)
A. Incompleteness of QNMs

An important point in the numerical resulfg,8] is the It can be easily checked that the Wronskiaiw) is
observation of a power-law behavior in time for the field at _ _
certain intermediate times, rather than QNM behavior. It is W(w)=—2iw(AQ,+BQ,). (48)
seen that the time decay of the field first displays Schwarzs-
child QNM behavior, then Schwarzschild power-law decay.QNMs are frequencies for which the Wronskian is zero, and
At later times, the power-law decay becomes fasterbe as expected, they are given by solutions to ) which we
followed eventually by exponential degay discussed extensively in the previous sections.

We examine whether there is a possibility of such inter- We are interested in the question of whethemdg are
esting behavior in our model. A detailed analysis has beeanalytic inw. The potentialV for our problem goes to zero
done in[21] on the conditiongand types of potentialfor ~ ase™ 2% asx—o and ase?** asx— — «. Therefore, con-
which both QNM and power-law behavior in time may be ditions (46) are violated fora> «;, (coming from the condi-
present at different times. Also, the more general question dion at the black hole horizgrand for a> a (coming from
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the condition at the cosmological horizonWe expect an analytical approximation where the central black hole in
nonanalyticity for two sets ofo:Im w>«a}, and Imw> «. the SdS spacetime is disregariled

Let us now examind and g to see if this is indeed the We consider the QNMs describing late time behavior in
case.f=x;. Using the properties of hypergeometric func- our model given by Eq(38). These QNMs are proportional
tions for the specific values of parameters, andc for the  to o, and have a nonzero real part which depends ofihe
problem, we can writd in terms of the associated Legendre dependence of the QNMs on the angular mads through

polynomial as the maximum of the potentiaf,,, and therefore affects only
_ their real part. This is very similar to results obtained for the
x1=[£(1— &) () (§— £ (A-a-Dapll—a-0)7 nearly extreme SdS black hole [5,6]. However, it is at

variance to the numerical results[i8] where at least for the
lowest QNM the real part is zero, and the imaginary part
. ] ) depends ori (although both the model QNMs and the nu-
Therefore,f is not analytic forc=—n, wheren=0 is an  yerical results show a dependence @y). Unfortunately,

integer. This occurs fow=iap(n+1). From Eq.(47), the  \ye 3150 have no numerical results available on higher order
poles ofg are given by the poles @@,/Q., _and therefor_e modes (for a givenL) to compare with the higher order
they occur whenc;=—n. The corresponding frequencies model QNMs

w=ia¢(n+1). Thus nonanalyticity of andg is as expected
from the violations of Eq(46). This nonanalyticity implies
from the results if21] that QNMs do not completely de-
scribe the time behavior of the scalar field at intermediat
times for the potentiaV/. Since we have chosen our potential
to match the SdS potential asymptotically, we expect th

X(1—2¢). (49)

Our approximate potentidl is the simplest model which

is solvablein the limit of separation of scales, and reveals the

resence of two sets of QNMs coming into play at interme-
iate and late times as seen in numerical studies. However, it
does need to be refined further to also reproducel tlae-
: . endence of the second set of modes. However, the refine-
same result for the Sd_S potential. The numerical re_sul_ts f_or ent has to be such that the model remains tractable at least
field in the SdS potential suggest power-law behavior in im&, w6 physical regime of interest. This is a severe restriction.
for certain intermediate tlmes. It would be.mtergstlng t0 Seerpis is because much of our success above in reproducing
if such a power-law behavior could be derived in our modely,q striking qualitative features has to do with correctly re-
and the parameters the exponent would depend on. In pagiqqcing the asymptotic behavior of the SdS potential at
ticular, it would be useful if in our model we could com- 1, horizons. The SdS potential falls off exponentially at
pletely obtain the time dependence of the field and the timegq, 1\oriz0ns, but with different arguments. This is difficult
at which th(’.} power-law pehawor sets In. T.h's V.VOUId be %o reproduce in an exactly solvable potential, and therefore
valuab!e pointer to the time decay of the field in the SdSone must piece together two potentials, as we have done at a
spacetime. point which could be the maximum of the potential. How-
ever, in this case, matching conditions may make the actual
B. Angular mode dependence of late time behavior equation for QNMs complicated. THedependence seen in
numerical studies for the second set of modes and the failure
of this model to reproduce them is related to the failure of a
Boschl-Teller potential to describe thedependence of the
vacuum de Sitter potential. One obvious modification we
could do to our model to reproduce thedependence cor-

We now compare the late time behavior in our model with
numerical results. The late time behavior in the SdS spac
time was first studied ifi7] and later in[8]. The numerical
results considefas for the early timesa scalar field wave
function with certain initial conditions whose time evolution rectly is to use the same Poschi-Teller potential figr

is determined by numerically integrating the KIem—Gordon_<rm and the vacuum de Sitter potential for,.<r<r..

equation. However, as it is required to access late times, it 15| owever. in that case. the matching conditions,abecome

no longer possible to work with the choice of black hole . . :
. very complicated. This makes the equation for QNMs com-
parameters used for early times, and the authof8jruse . g ;
plicated, and it is no longer possible to see the expected

fp=1andr=100—but now the two horizons are not so ualitative features emerge neatly in the<I| approxima-

well-separated. They then study tleadinglate time behav- q : nerg y PP

. o > . tion. Refinement of this model should therefore be concen-

ior for the angular modeks=0,1,2. ForL=0, they find that - . . .
trated on finding a tractable potential that is a good approxi-

Ejheecaf\lesl,de;e(t)t;eesnt?gllavsict);: ?Laen;rvi%ee.ntl Lcof tﬁ’ezé;hgnf;iltd Con|:nation to the vacuum de Sitter potential and could be pieced
ecays exp y 9 L poner to the Poschl-Teller potential at the maximum. It should be
sistent with the formula- a.L. However, it is not possible

for them to verify this proposed formula for the higher an- remembered here, however, tha.lt. piecing at the maximum,
gular modes (>2) as the numerical integration becomesand the resultl_ng matching conditions, may result in the ab-
noisy. Thus the late time behavi@reing exponential decay sence of certain QNMs from the spectrum.

is a typical QNM behavior where the QNM is pure imagi-

nary. However, the numerical results display only the leading
behavior, given by the lowest QNM which seems to de We have outlined above the steps to be taken for making
=iacL. It must be noted that no numerical results are availthe QNMs of this model agree well with numerical studies

able on the nature of the higher order modes for a given for late time behavior of the field. However, it must be noted

(although the problem is addressed by the authofi8bin  that no analytical approximation proposed so far for time

C. Further investigation of the model
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behavior of fields even in the Schwarzschild black hole retherefore expect that the results of taking the extremal limit
produces its entire time behavior from intermediate to latédn our model(two horizons approaching each othshould
times. The analytical model {i®] reproduces the QNMs, but be a good approximation to the perturbation behavior when
not the characteristic late time tail for a Schwarzschild perthe SdS black hole approaches the Nariai black hole. Inves-
turbation. It is to be noted that our model shows exponentiajigations of the near-extremal limit for asymptotically flat
late time decay for the field as seen for the SdS black holeg|ack holes (Reissner-Nordstrn) show peculiarities[22].
although the exponent does not match numerical studies. tyur model could be investigated for such peculiarities in the
also shows the QNMs at intermediate times. Therefore, ihear-extremal limit of the SdS black hole.
offers an interesting platform to address the following ques- |t is possible to address the above two questions as this
tions: model appears tractable. For reasons elaborated on above,
(i) Can one map the complete time behavior of a pertursych an investigation would indeed be valuable in under-
bation in this model, starting from intermediate times? Thestanding the response of the SdS black hole to perturbations.
incompleteness of the QNMs of this model suggests interestrhjs investigation, and further refinements of this model to

ing temporal behavior when the field switches from a decaynatch numerical studies, are the subjects of future work.
governed by the first QNM set to the second. It would be

most exciting if in this model, a power-law decay were found
at these intermediate times. It would then shed light on simi- ACKNOWLEDGMENTS
lar behavior in the SdS black hole.
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