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Quasinormal modes for the SdS black hole: An analytical approximation scheme

V. Suneeta*
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Quasinormal modes for scalar field perturbations of a Schwarzschild–de Sitter~SdS! black hole are inves-
tigated. An analytical approximation is proposed for the problem. The quasinormal modes are evaluated for this
approximate model in the limit when the black hole mass is much smaller than the radius of curvature of the
spacetime. The model mirrors some striking features observed in numerical studies of time behavior of scalar
perturbations of the SdS black hole. In particular, it shows the presence of two sets of modes relevant at two
different time scales, proportional to the surface gravities of the black hole and cosmological horizons, respec-
tively. These quasinormal modes are not complete—another feature observed in the numerical studies. Refine-
ments of this model to yield more accurate quantitative agreement with numerical results are discussed. Further
investigations of this model are outlined, which would provide valuable insight into time behavior of pertur-
bations in the SdS spacetime.
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I. INTRODUCTION

A characteristic feature of the response of a black hole
external perturbations is the appearance of quasinor
modes~QNMs!. The presence of these modes was first no
in a study of perturbations of the Schwarzschild black h
by Vishveshvara@1#. Since then, QNMs for asymptoticall
flat black holes have been computed by a variety of num
cal and analytical approximation methods. A detailed revi
of this work can be found in@2,3#.

QNMs were first found in a stability analysis of blac
holes. However, the observation that these damped osc
tions are intrinsic characteristics of the black hole exter
geometry and depend only on the black hole parameters
plies that they are the imprint of a black hole in its respon
to perturbations. Further, QNMs are even seen at interm
ate or late times in fully nonlinear situations such as syste
undergoing gravitational collapse. Thus they are expecte
play a significant role in the search for gravitational wav
and black holes. Recent evidence for a nonzero positive
mological constant points to the importance of study
black holes in such a background. The simplest black hol
this class is a Schwarzschild black hole in de Sitter sp
~SdS!. The QNM spectra for gravitational perturbations
this black hole have been investigated in@4,5# using numeri-
cal and analytical approximation techniques. QNM spec
for the SdS black hole in the near-extremal case when
two horizons are nearly coincident~i.e., the black hole mas
and radius of curvature of the spacetime of the same or!
are derived in@6#. An interesting numerical study of the evo
lution of scalar fields in the SdS spacetime has been
formed in@7,8#. This numerical study reveals the differenc
between the response of the Schwarzschild black hole
the SdS black hole to perturbations in the physically int
esting regime where the black hole mass is much sma
than the radius of curvature of the spacetime~which is a
relevant regime because the cosmological constant is sm!.

*Email address: suneeta@theorie.physik.uni-muenchen.de
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The SdS black hole shows QNM behavior similar to t
Schwarzschild black hole at intermediate times, and s
changes to a power-law decay. At late times it again sho
QNM behavior ~exponential decay! where the QNMs are
now proportional to the surface gravity of the cosmologic
horizon. For the Schwarzschild black hole, analytic appro
mations have been used to give a general~approximate! for-
mula for the QNMs as a function of the black hole para
eters and the angular mode@9#. It is of interest to compute, in
the same spirit, the QNMs for the SdS black hole in
analytical approximation scheme in the physically relev
regime. The advantage is that there exist known numer
studies which reveal characteristic features in the time de
of a field in the SdS black hole. The analytical approximati
could be refined to reproduce these features, and at the s
time would give a general expression for the QNMs as
function of the spacetime parameters and the angular m
The approximate model, being simpler to study may also
possible to analyze completely. It would thus give insig
into the qualitative features of the complete time behavior
the field in SdS spacetime. Further, the near-extremal li
and its effect on the QNMs and time behavior of fields cou
be explored in this model.

In the recent past, the QNMs of anti–de Sitter~AdS!
black holes have been studied extensively. A detailed
merical study of QNM decay of scalar fields in AdS bla
hole backgrounds in various dimensions was performed
@10#. Exact computations of QNMs for the Ban˜ados-
Teitelboim-Zanelli~BTZ! black hole in (211) dimensions
were demonstrated first in@11# and subsequently higher or
der modes~as also numerical results for gravitational pertu
bations of SAdS black holes! are shown in@12#. More gen-
eral numerical computations of QNMs for highe
dimensional AdS black holes are found in@13#. Decay of
scalar fields coupled to curvature in topological AdS bla
hole backgrounds is studied numerically in@14,15# and ana-
lytically in @16#. An interpretation of the QNMs for an AdS
black hole in the dual conformal field theory~CFT! using the
AdS/CFT correspondence is provided in@17# ~see also@18#!.
An interesting question is whether the QNMs of the S
©2003 The American Physical Society20-1
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black hole have an interpretation in a dual CFT using
recently proposed dS/CFT correspondence@19# ~for a study
of pure de Sitter QNMs in this context, see@20#!. The study
of the time behavior of perturbations in an analytical mo
for the SdS spacetime could be used to study such a pos
interpretation.

In this paper, we propose an analytical model to study
time behavior of perturbations in the SdS black hole.
compute the QNMs of this model in the regime when t
black hole mass is small compared to the radius of curva
of the spacetime. The SdS spacetime is bounded by the b
hole and cosmological horizon. Our analytical approximat
consists of approximating the SdS potential by a poten
that reproduces its asymptotic behavior at both bounda
In Sec. II, we enumerate the QNM boundary conditions
the SdS black hole, and describe our approximation poten
along with the motivations for our choice. The chosen pot
tial has a discontinuity in its second derivative at the ma
mum. In Sec. III, we describe the exact solutions to t
potential and list the correct matching coefficients at
maximum of the potential. The actual computation of t
QNMs is done in the regime of interest in the next secti
Two sets of QNMs, one proportional to the black hole ho
zon surface gravity and the other proportional to the surf
gravity of the cosmological horizon, are found—the first s
describing the time behavior of the field at certain interm
diate times, and the latter describing late-time behavior
qualitative picture for the time scales where each of th
two sets of QNMs comes into play is given—and it is d
cussed why this behavior is expected only in the regi
where the black hole mass is small compared to radius
curvature. The real part of the QNMs depends on the m
mum of the potential. Our approximation consists of iden
fying the value of the maximum of the model potential wi
that of the SdS potential. We compute the maximum value
the SdS potential in Sec. V. This unfortunately is difficult
do for any general angular mode. We therefore consider
small angular mode and large angular mode cases separ
while computing the SdS maximum. In our last section,
present a detailed comparison of the results of this mo
with numerical studies. There is good qualitative agreem
in the most striking feature of the numerical studies, the pr
ence of the two sets of QNMs relevant at two different tim
scales, and which are proportional to the black hole and c
mological horizon surface gravities, respectively. We a
show in this section the noncompleteness of QNMs in
model, which is also expected from the observation
power-law behavior at intermediate times for the SdS bl
hole. We discuss how the model could be refined or modi
to reproduce the more quantitative features of the numer
results such as the dependence of the QNMs on the ang
mode. We also discuss the exciting questions which can
addressed for this model, and would shed light on our un
standing of perturbations of the SdS spacetime.

II. ANALYTICAL APPROXIMATION
OF THE SdS POTENTIAL

The metric for the Schwarzschild–de Sitter spacetime
four dimensions for cosmological constantL53/l 2 is given
by
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ds252~N!2dt21~N!22dr21r 2~dV!2, ~1!

with

N5AS 12
2M

r
2

r 2

l 2 D . ~2!

There are now two horizons given by the zeros ofN2. These
are the two real positive roots ofN2,

r b5
2

AL
sinF1

3
sin21~3MAL!G ,

r c5
2

AL
sinF1

3
sin21~3MAL!1

2p

3 G . ~3!

The third root ofN2 is negative, and given byr 052(r b
1r c). r b is the black hole horizon andr c the cosmological
horizon. As in the asymptotically flat case, the spacetime
a curvature singularity atr 50.

We consider a massless scalar fieldF in this background.
Then, the Klein-Gordon equation for the field is

]m~A2ggmn]n!F50. ~4!

Using an ansatz for the field

F5
1

r
x~r !eivtYLM~u,f!, ~5!

and by going to the tortoise coordinatex where dx
5dr/N2, the Klein-Gordon equation is

2
d2x

dx2
1VL~r !x5v2x, ~6!

where

VL~r !5S 12
2M

r
2

r 2

l 2 D S 2M

r 3
2

2

l 2
1

L~L11!

r 2 D . ~7!

Whenr 5r b , x52`. Whenr 5r c , x5`. We are interested
in studying scalar field perturbations in the region bound
by these two horizons. The potentialVL(r ) goes exponen-
tially to zero as a function of thex coordinate as one ap
proaches the two horizons. However, the rate of approac
not the same—it depends on the surface gravities assoc
with the horizons. The surface gravity at a horizonr h is
defined asah5 1

2 ud f /drur h
. Thus the surface gravities ass

ciated with the black hole and cosmological horizons,ab and
ac , respectively, are

ab5
~r c2r b!~r b2r 0!

2l 2r b

, ~8!

ac5
~r c2r b!~r c2r 0!

2l 2r c

. ~9!
0-2
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The potentialVL(r ) goes to zero ase2abx asx→2`, i.e., as
the black hole horizon is approached. Whenx→`, i.e., as
the cosmological horizon is approached,VL(r ) goes to zero
ase22acx. In studying the time evolution of the perturbatio
it is important to first compute the QNMs for the problem
QNMs are given in this case by solutions to Eq.~6! with
specific boundary conditions—ingoing at the black hole ho-
rizon, andoutgoingat the cosmological horizon. These a
the physically motivated boundary conditions for the pro
lem as a timelike observer in this spacetime can send m
sages, but not receive them through the~future! cosmological
horizon. The boundary condition at the black hole horizon
the usual one for computing QNMs of black holes and r
resents the classical absorption by the black hole. The Q
boundary conditions for the field are thus

x}exp~ ivx!, x→2`;

x}exp~2 ivx!, x→1`. ~10!

v is now complex andv5v01 iG, whereG.0.
Thus, the QNMs can be obtained by solving Eq.~6! with

the above boundary conditions. However, exact solution
this equation are not known. In fact, such exact solutions
not available even for the Schwarzschild black hole in
asymptotically flat spacetime. Instead, what is done in
asymptotically flat case is to either solve the equation
merically and compute the QNMs, or to analytically appro
mate the Schwarzschild potential by an exactly solvable
tential. This potential is described by parameters which
be used to fit the potential to the Schwarzschild potential@9#.
We follow the second approach of an analytic approximat
in computing the QNMs of the SdS black hole.

In our search for a potential that would be a good analy
approximation to the SdS potential, we set out to reprod
the behavior of the SdS potential asx→6`. The approxi-
mate potentialV that we have chosen has the following fe
tures:

~i! Its second derivative is discontinuous atr 5r m , where
r m is the value ofr for which the actual SdS potential has
maximum, i.e., a solution ofdVL /dr50.

~ii ! In the regionr b,r<r m , the potential is

V15
Vm

@coshab~x2xm!#2
. ~11!

xm is the value of thex coordinate whenr 5r m . ab is given
by Eq. ~9!. V1 is referred to as the Poschl-Teller potential
the literature, and was first used in@9# to approximate the
Schwarzschild potential.Vm is taken to be the maximum o
the SdS potential.

~iii ! In the regionr m<r ,r c , the potential is taken to be
again the Poschl-Teller potential, but with a different cho
of parameter. It is

V25
Vm

@coshac~x2xm!#2
. ~12!

ac is given by Eq.~9!.
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As can be checked, this potential reproduces
asymptotic form of the SdS potential at the two boundari
Furthermore, this potential is exactly solvable. Therefo
what remains is a computation ofVm , the value of the SdS
potential at its maximum. Computing the maximum of t
SdS potential is difficult as the potential is complicated. W
are forced to work in the regimeM! l . The Poschl-Teller
has been used to approximate the SdS potential recently@5#.
However, in this case,one Poschl-Teller potential is use
throughout—and this is a good approximation only for t
nearly extreme SdS black hole, where the two horizons
very close~i.e., M and l are of the same order! @6#. In the
other regimeM! l , one Poschl-Teller potential provides
poor approximation to the SdS potential as the asympt
forms of the SdS potential at both the boundaries canno
reproduced by it. This problem is solved by our choice
the potential,V. It would be exciting if the near-extrema
limit in our model led to the QNMs found in@6#. We must
now check what features, qualitative or quantitative, we
produce of numerical studies of dynamics of a scalar field
the SdS spacetime done in@7,8# by a study of this potential.

We now proceed to compute the QNMs of the appro
mate potentialV which is given byV1 for r<r m andV2 for
r>r m . We are interested in the solutions to the equation

2
d2x

dx2
1Vx5v2x. ~13!

For bothV1 andV2, exact solutions can be found. We fir
examine the exact solutions to Eq.~13! with bothV5V1 and
V5V2. Then, the solutions have to be matched atr 5r m .
Finally, we must pick the solutions that obey the QN
boundary conditions at both the boundaries.

III. EXACT SOLUTIONS FOR THE POTENTIAL

Let us consider the solutions to Eq.~13! with V5V1. The
solutions to this~Poschl-Teller! potential are known. They
can be written in terms of the hypergeometric functions a
a change of variables toj where j/(12j)5e2ab(x2xm).
Then, two linearly independent solutions are

x15@j~12j!# iv/2abF~a,b,c;j!, ~14!

x25@j~12j!# iv/2ab~j!12c

3F~a2c11,b2c11,22c;j!. ~15!

We have

a5
1

2
1A1

4
2

Vm

ab
2
1

iv

ab
, b5

1

2
2A1

4
2

Vm

ab
2
1

iv

ab
,

c511
iv

ab
. ~16!

The black hole horizon is atj50. At the maximum of the
potential, whenx5xm , j51/2.
0-3
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Solutions to Eq.~13! with V5V2 are similar to the previ-
ous case, but withab replaced byac .

Definej1 wherej1/12j15e2ac(x2xm),

x̃15@j1~12j1!# iv/2acF~a1 ,b1 ,c1 ;j1!, ~17!

x̃25@j1~12j1!# iv/2ac~j1!12c1

3F~a12c111,b12c111,22c1 ;j1!. ~18!

Here

a15
1

2
1A1

4
2

Vm

ac
2
1

iv

ac
, b15

1

2
2A1

4
2

Vm

ac
2
1

iv

ac
,

c1511
iv

ac
. ~19!

The next step is to match an arbitrary superposition of
two solutions~14! and~15! with an arbitrary superposition o
Eqs.~17! and ~18!—at x5xm . This involves matching both
the wave functions and their first derivatives acrossx5xm .
Let us use the following notation:x1(xm)5X, x2(xm)5Y.
Also, dx1 /dx(xm)5X8, dx2 /dx(xm)5Y8. x̃1(xm)
5X̃, x̃2(xm)5Ỹ, anddx̃1 /dx(xm)5X̃8, dx̃2 /dx(xm)5Ỹ8.

Then matching the wave functions and their derivativ
acrossx5xm yields

AX1BY5ÃX̃1B̃Ỹ,

AX81BY85ÃX̃81B̃Ỹ8. ~20!

Here,A, B, Ã, andB̃ are arbitrary coefficients of superpos
tion of the two linearly independent solutions, which are th
x5Ax11Bx2 for r ,r m andx5Ãx̃11B̃x̃2 for r .r m .

A andB are related toÃ and B̃ as

Ã5A
~XỸ82X8Ỹ!

~X̃Ỹ82X̃8Ỹ!
1B

~YỸ82Y8Ỹ!

~X̃Ỹ82X̃8Ỹ!
, ~21!

B̃5A
~XX̃82X8X̃!

~ỸX̃82Ỹ8X̃!
1B

~YX̃82Y8X̃!

~ỸX̃82Ỹ8X̃!
. ~22!

We recognize that atx5xm , the value ofj that appears in
Eqs. ~14! and ~15! is 1/2. Using this and properties of th
hypergeometric functions, we can write

X5Ap expS 2
iv ln 2

ab
D GS 1

2
1

a

2
1

b

2D
GS 1

2
1

a

2DGS 1

2
1

b

2D , ~23!
02402
e
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X85
Apab

2
expS 2

iv ln 2

ab
Dab

c

GS 21
iv

ab
D

GS 11
a

2DGS 11
b

2D ,

~24!

Y5Ap expS iv ln 2

ab
D GS 12

iv

ab
D

GS 12
a

2DGS 12
b

2D , ~25!

Y852 ivAp expS iv ln 2

ab
D GS 12

iv

ab
D

GS 12
a

2DGS 12
b

2D
1

ab

2

~a2c11!~b2c11!

22c

3FS a2c12,b2c12,32c;
1

2D . ~26!

X̃, Ỹ, X̃8, and Ỹ8 are given by the same expressions
above, except that we replaceab with ac . Consequently,a,
b, andc are also replaced by their counterpartsa1 , b1, and
c1. We therefore do not display those expressions here.

IV. COMPUTATION OF QUASINORMAL MODES

We search for solutions to the problem satisfying qua
normal mode boundary conditions at the black hole and c
mological horizons given by Eq.~10!. The solution obeying
the QNM boundary conditions at the black hole horiz
xqnm for x.xm is given by Ãx̃11B̃x̃2 . Ã and B̃ for xqnm
are given by Eqs.~21! and~22! with B50. Near the cosmo-
logical horizon, i.e., asx→`, this solution is

xqnm;ÃP1exp~2 ivx!1ÃQ1exp~ ivx!

1B̃P2exp~2 ivx!1B̃Q2exp~ ivx!, ~27!

where

P15
G~c1!G~c12a12b1!

G~c12a1!G~c12b1!
, ~28!

Q15
G~c1!G~a11b12c1!

G~a1!G~b1!
, ~29!

P25
G~22c1!G~c12a12b1!

G~12a1!G~12b1!
, ~30!

Q25
G~22c1!G~a11b12c1!

G~a12c111!G~b12c111!
. ~31!

For Eq. ~27! to obey QNM boundary conditions at the co
mological horizon given by Eq.~10!, we must have
0-4
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ÃQ11B̃Q250. ~32!

Substituting forÃ and B̃ from Eqs. ~21! and ~22! with B
50, the above equation is

~XỸ82X8Ỹ!
G~c1!

G~a1!G~b1!
2~XX̃82X8X̃!

3
G~22c1!

G~a12c111!G~b12c111!
50. ~33!

The special frequenciesv that solve the above equation a
the quasinormal mode frequencies for this problem. Ho
ever, as can be seen from the expressions forX andX8 from
Eqs.~23! and ~24!—the zeros ofX andX8 do not occur for
the same set of frequencies. The zeros of the above equ
cannot therefore be computed simply. However, here we
flect on what we mustexpect. From the numerical work in
@7,8#, we note the presence of two different patterns of
ponential decay of the field with time. For intermedia
times, the field decays exponentially with the exponent p
portional to the black hole surface gravity. This is a typic
QNM time behavior where the QNM frequency is propo
tional to the black hole surface gravity. This temporal beh
ior is similar to that of a field in a Schwarzschild black ho
background. This exponential decay is followed by a pow
law decay of the field—but for late times, there is a swit
back to exponential decay. Now the exponent is proportio
to the surface gravity of the cosmological horizon. This e
ponential decay is again a QNM time behavior, but t
QNMs are now proportional to the surface gravity of t
cosmological horizon. This numerical result was seen fo
choice ofwell separatedlength scalesM and l.

We expect a similar behavior~i.e., two sets of QNMs! for
our approximate potentialV. At very early times, there is a
direct propagation of the perturbation without scattering
the potential. At later times, the perturbation gets multip
scattered by the potential. It therefore starts reflecting
properties of the potential. The time behavior of the fie
here is dominated by the QNMs. In our case, the sec
derivative of the potential has a discontinuity atr 5r m . The
QNMs which we have obtained~and which are supposed t
describe the time evolution after the very early times! also
reflect this. When the perturbation gets scattered forr b,r
<r m by the potential~which is nowV1), its time evolution
will be governed by QNMs related toV1 which should be
proportional toab ~as is typical for QNMs of a Poschl-Telle
potential!. A rough estimate for the times when this occurs
the light crossing time to traverse a distance of the orde
r m , i.e., r m /c. When the perturbation travels a distan
much greater thanr m , it starts getting scattered by the p
tential V2, and its time evolution is governed by QNMs r
lated toV2, which we expect to be proportional toac . This
roughly occurs at times of the order of the light crossing ti
to traverse a distancel, i.e., l /c. At such times and later, th
decay of the perturbation is governed solely by the QN
related toV2. However, the above statements are poss
only when there is a clear separation of these two interes
time scales. As we see in the next section, if we have a c
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separation of the length scalesM and l, this implies thatr m
;O(M ). Thus a clear separation of the two interesting tim
scalesr m /c and l /c is then related to a clear separation
ac;1/l andab;1/M . We note that when such a clear sep
ration of the scales does not exist~as for, e.g., in the nearly
extreme SdS black hole studied in@5,6#! then we do not
expect two different sets of QNMs.

Let us return to Eq.~33!. Since we have not yet specia
ized to the case where the length scales are separated, w
expect the general solutions of this equation forv to be
complicated. However, if we specialize to the case wh
M! l , and work in an approximation where we can negle
O(M / l ) terms and higher, we must see solutionsv that split
into two sets as argued above. We therefore proceed to s
the various terms in Eq.~33! and drop terms that can b
neglected in this approximation. ForM! l , ab;1/M and
ac;1/l . Solutionsv for the case of the two length scale
being well-separated are of the formv;O(1/M ) or v
;O(1/l ).

We now look for solutions of the formv;O(1/M ).
Then, in Eq.~33!, the first term has a factor (XỸ82X8Ỹ).
From the detailed expression for this factor, it is clear th
this factor is proportional to exp(ivl ln 2). Now, v5v0
1 iG whereG.0. Furthermore,G;O(1/M ). Therefore, this
factor (XỸ82X8Ỹ) is proportional to exp(2l/M). On the
other hand, the second term in Eq.~33! has a factor (XX̃8

2X8X̃) which is proportional to exp(l/M). SinceM! l , the
first term can be neglected compared to the second t
~Here, we have also used the asymptotic expansion of
hypergeometric function for a large parameter.! Therefore, in
this approximation we must solve the equation

XX̃82X8X̃50. ~34!

Here again, we look at the detailed expressions forX8 in Eq.
~24! and X̃8. Using these detailed expressions and multip
ing Eq.~34! by M, we see that the first term in Eq.~34! XX̃8

is O(M / l ) compared to the second termX8X̃. Neglecting the
first term, we see that we must now look for zeros of t
second term which lead to frequenciesv;O(1/M ). These
are given by the zeros ofX8, which occur@as can be seen o
inspecting Eq.~24!# when 11a/252n andn>0 is an inte-
ger. Thus, the frequenciesv are

v5abFAVm

ab
2

2
1

4
1 i S 2n1

5

2D G . ~35!

We note that above, we do not consider zeros ofX̃ as they
lead to frequencies not ofO(1/M ) as assumed while arriving
at Eq. ~34!. We have nevertheless shown that in theM! l
approximation, there indeed exist solutionsv;O(1/M ) to
Eq. ~33!.

We now consider the other possibility, i.e.,v;O(1/l ).
Now we can no longer neglect the first term of Eq.~33!
compared to the second term, as we did before. However
multiply the whole equation byM, and observe that part o
the second term can still be neglected as in the previous
0-5
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of v;O(1/M ). More precisely, the second term has a fac
(XX̃82X8X̃) where the first term isO(M / l ) compared to the
second, and can be dropped. We now concentrate on
approximate equation

~XỸ82X8Ỹ!
G~c1!

G~a1!G~b1!

1X8X̃
G~22c1!

G~a12c111!G~b12c111!
50. ~36!

There are moreO(M / l ) terms left in the above equation
However, we observe that the first term has a factor 1/G(a1).
Thus zeros of the above equation wherev;O(1/l ) could
occur at poles ofG(a1) which are also zeros ofX̃. We check
for such solutions. The poles ofG(a1) occur whenG(a1)
52n8 andn8>0 is an integer. The corresponding freque
cies are

v5acFAVm

ac
2

2
1

4
1 i S n81

1

2D G . ~37!

The zeros ofX̃ occur for a111522n where n>0 is an
integer. The corresponding frequencies are

v5acFAVm

ac
2

2
1

4
1 i S 2n1

3

2D G . ~38!

From Eqs.~37! and ~38!, we see that the poles ofG(a1)
which are also zeros ofX̃ occur whenn8 is an odd integer.
These frequenciesv;O(1/l ) are then the solutions of Eq
~36!, and in theM! l approximation, the solutions of Eq
~33!.

V. MAXIMUM OF THE SdS POTENTIAL

In the previous section, we argued for the presence of
sets of QNMs, one proportional toab and the other toac , in
the approximationM! l . We also computed these freque
cies which are given by Eqs.~35! and~38!. But it remains to
evaluateVm , the maximum of the SdS potentialVL(r ). The
maximum is a solution of the equationdVL /dr50, which is
a sextic equation inr. For high values of the angular mod
numberL, the potential is approximately

VL~r !;S 12
2M

r
2

r 2

l 2 D L~L11!

r 2
. ~39!

Then the maximum occurs atr m53M . Thus, for largeL, we
can takeVm5VL(3M ),

VL~3M !5S 1

3
2

9M2

l 2 D S 2

27M2
2

2

l 2
1

L~L11!

9M2 D . ~40!

Let us now look at small values ofL. We first consider the
case L50. For L50, numerically, with M51 and L
51024, we can estimate the maximum, which isr m52.67.
02402
r
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For M52 and the same value ofL, r m55.33. This suggests
that r m52.67M . Analytically, the equation to be solved i
dV0 /dr50, and the equation is

2
r 6

l 6
2

Mr 3

l 4
2

3Mr

l 2
1

8M2

l 2
50. ~41!

Now, let us assume that the solutionr m;O(M ) as suggested
by our numerical results. Then, in the equation above,
first and second terms areO„(M / l )2

… or higher powers of
(M / l ) compared to the last two terms. Therefore, dropp
these terms we see thatr m5 8

3 M . This agrees with our nu-
merical results. For the QNMs withL50, we can therefore

setVm5V0( 8
3 M ).

V0S 8

3
M D5S 1

4
2

64M2

9l 2 D S 27

256M2
2

2

l 2D . ~42!

For L51, we can again solve the equationdV1 /dr50, as-
suming as before that the solutionr m;O(M ) and in the
approximationM! l . We find thatr m5 1

4 (31A73)M , i.e.,
r m;2.886M . We expectr m53M to be a good approxima
tion to the maximum for higher values ofL.

In all the above cases, we can explicitly check thatVm /ab
2

and Vm /ac
2 are greater than 1/4. Thus, it is the real part

the QNM frequencies that depends onVm . Substituting for
the value ofVm from Eq. ~40! in the expressions for the
QNMs ~35! and~38!—we get the explicit expression for th
QNM frequencies forL.0. For L50, using Eq.~42! for
Vm , we obtain more precise values for the QNM freque
cies.

VI. DISCUSSION

In the previous sections, we have done an analysis o
perturbation in the potentialV and given a sketch of its be
havior in time. We have found the presence of two sets
QNMs which are relevant at two different time scales~as
discussed in Sec. IV!,

v5abFAVm

ab
2

2
1

4
1 i S 2n1

5

2D G , ~43!

v5acFAVm

ac
2

2
1

4
1 i S 2n1

3

2D G . ~44!

Vm is determined as discussed in the previous section.
have also given a qualitative picture for the times at wh
each of these sets of QNMs would be relevant for the te
poral behavior of the scalar field.

We now address the question of how well this reflects
time behavior of a perturbation in the SdS potential. Nume
cal studies have been done for scalar fields in the SdS sp
time @7,8#. We indeed reproduce the most striking feature
the studies, the presence of two sets of modes which
0-6
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proportional to the surface gravities of the black hole a
cosmological horizons relevant at intermediate and
times, respectively.

Now let us make more quantitative comparison with t
numerical results. We begin with the intermediate times
which the first set of modes~35! are relevant. In the numeri
cal work @8#, a scalar field wave function with a Gaussia
profile is chosen. Its subsequent time evolution in the S
spacetime is found by numerically integrating the Kle
Gordon equation. A choice ofr b51 andr c52000~such that
we are in the regimeM! l ) is taken. A graph of the field
behavior in an SdS spacetime versus similar behavior
Schwarzschild spacetime is plotted forL50 andL51. It is
seen that for early times, the two graphs follow each ot
closely and display QNM oscillations—they start to diff
from each other only for times much greater thanr b /c.

Let us compare our first set of modes~35! with the
Schwarzschild QNMs which seem to describe the beha
in SdS well at these times. To do so, we can use an analy
approximation for the Schwarzschild QNMs by Ferrari a
Mashhoon@9# which approximates the QNMs well whe
their imaginary parts are not too large. Then in this appro
mation, the real (vRe

S ) and imaginary (v Im
S ) parts of the

Schwarzschild QNMs arevRe
S 5a@A(U0 /a2)2 1

4 # and v Im
S

5a(n1 1
2 ). Here, a and U0 are given by the height an

curvature of the Schwarzschild potential at its maximum a
n is an integer.a2153A3M . Comparing with the modes
~35!, we see that forM! l , U0;Vm . Also ab

21;4M and
thereforeab;(1.3)a. Thus we see that the real parts of t
Schwarzschild QNMs and Eq.~35! have approximately the
sameM dependence. The angular modeL dependence is als
the same in both real parts. However, coming to the ima
nary parts, we see that our set of QNMs reproduces o
those Schwarzschild QNMs starting fromn52 and subse-
quently reproduces only alternaten modes, the next one be
ing n54. This probably has to do with our matching cond
tions atr m .

We proceed to compare the time behavior of the field
this model with numerical results for later times. In the ne
subsection, we address intermediate time power-law de
The following subsection compares the QNM behavior
late times, i.e., given by Eq.~38! in our model with numeri-
cal results—particularly with reference to angular mode
pendence.

A. Incompleteness of QNMs

An important point in the numerical results@7,8# is the
observation of a power-law behavior in time for the field
certain intermediate times, rather than QNM behavior. I
seen that the time decay of the field first displays Schwa
child QNM behavior, then Schwarzschild power-law dec
At later times, the power-law decay becomes faster~to be
followed eventually by exponential decay!.

We examine whether there is a possibility of such int
esting behavior in our model. A detailed analysis has b
done in@21# on the conditions~and types of potentials! for
which both QNM and power-law behavior in time may b
present at different times. Also, the more general questio
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the potentials for which the QNMs form a complete set h
been addressed. The results of the analysis are best expr
in terms of the Fourier transform of the Green’s function f
the system. This can be compactly written in terms of t
auxiliary functionsf (v,x) and g(v,x) which are solutions
to the homogenous time-independent Klein-Gordon eq
tion, wheref satisfies the QNM boundary condition at on
boundary~in our case, the black hole horizon! andg satisfies
the QNM boundary condition at the other boundary~in our
case, the cosmological horizon!. Then the Green’s function is

G̃~x,y;v!5 f ~v,x!g~v,y!/W~v! for 0,x,y,

5 f ~v,y!g~v,x!/W~v! for 0,y,x.
~45!

Here, the Wronskian W(v)5g(v,x) f 8(v,x)
2 f (v,x)g8(v,x) is independent ofx. The QNMs are given
by the zeros of the Wronskian, i.e., when the functionsf and
g are linearly dependent. Following@21#, the QNMs do not
describe the intermediate or late time behavior comple
when the functionsg andf are not analytic with respect tov.
Rather, nonanalyticity of these functions could lead
power-law behavior in time.f andg are analytic inv if the
potential for the systemV has ‘‘no tail’’ at each of the bound-
ariesx52` and x51` in the following sense~condition
for boundary atx5`):

E
0

`

dxxuV~x!u,`,

E
0

`

dxxeaxuV~x!u,` for any a.0. ~46!

There is a corresponding condition for the boundary atx5
2`. If this condition is violated for somea.a0.0, thenf
andg may not be analytic inv for Im v.a0. Let us apply
these results to our problem. For our problem, the funct
f (v,x) obeying the QNM boundary condition at the blac
hole horizon isx1, and forx→`, it is given by the expres-
sion for xqnm in Eq. ~27!. The functiong(v,x) obeying the
QNM boundary condition at the cosmological horizon is

g~v,x!5
1

~Q2P12Q1P2!
~Q2x̃12Q1x̃2!. ~47!

It can be easily checked that the WronskianW(v) is

W~v!522iv~ÃQ11B̃Q2!. ~48!

QNMs are frequencies for which the Wronskian is zero, a
as expected, they are given by solutions to Eq.~32! which we
discussed extensively in the previous sections.

We are interested in the question of whetherf and g are
analytic inv. The potentialV for our problem goes to zero
ase22acx asx→` and ase2abx asx→2`. Therefore, con-
ditions ~46! are violated fora.ab ~coming from the condi-
tion at the black hole horizon! and fora.ac ~coming from
0-7
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the condition at the cosmological horizon!. We expect
nonanalyticity for two sets ofv:Im v.ab and Imv.ac .

Let us now examinef and g to see if this is indeed the
case.f 5x1. Using the properties of hypergeometric fun
tions for the specific values of parametersa, b, andc for the
problem, we can writef in terms of the associated Legend
polynomial as

x15@j~12j!# iv/2abG~c!~j2j2!(12a2b)/4P(a2b21)/2
(12a2b)/2

3~122j!. ~49!

Therefore,f is not analytic forc52n, wheren>0 is an
integer. This occurs forv5 iab(n11). From Eq.~47!, the
poles ofg are given by the poles ofQ1 /Q2, and therefore
they occur whenc152n. The corresponding frequencie
v5 iac(n11). Thus nonanalyticity off andg is as expected
from the violations of Eq.~46!. This nonanalyticity implies
from the results in@21# that QNMs do not completely de
scribe the time behavior of the scalar field at intermedi
times for the potentialV. Since we have chosen our potent
to match the SdS potential asymptotically, we expect
same result for the SdS potential. The numerical results f
field in the SdS potential suggest power-law behavior in ti
for certain intermediate times. It would be interesting to s
if such a power-law behavior could be derived in our mo
and the parameters the exponent would depend on. In
ticular, it would be useful if in our model we could com
pletely obtain the time dependence of the field and the tim
at which the power-law behavior sets in. This would be
valuable pointer to the time decay of the field in the S
spacetime.

B. Angular mode dependence of late time behavior

We now compare the late time behavior in our model w
numerical results. The late time behavior in the SdS spa
time was first studied in@7# and later in@8#. The numerical
results consider~as for the early times! a scalar field wave
function with certain initial conditions whose time evolutio
is determined by numerically integrating the Klein-Gord
equation. However, as it is required to access late times,
no longer possible to work with the choice of black ho
parameters used for early times, and the authors in@8# use
r b51 and r c5100—but now the two horizons are not s
well-separated. They then study theleading late time behav-
ior for the angular modesL50,1,2. ForL50, they find that
the field settles to a constant value. ForL51,2, the field
decays exponentially with the argument of the exponent c
sistent with the formula2acL. However, it is not possible
for them to verify this proposed formula for the higher a
gular modes (L.2) as the numerical integration becom
noisy. Thus the late time behavior~being exponential decay!
is a typical QNM behavior where the QNM is pure imag
nary. However, the numerical results display only the lead
behavior, given by the lowest QNM which seems to bev
5 iacL. It must be noted that no numerical results are av
able on the nature of the higher order modes for a giveL
~although the problem is addressed by the authors of@8# in
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an analytical approximation where the central black hole
the SdS spacetime is disregarded!.

We consider the QNMs describing late time behavior
our model given by Eq.~38!. These QNMs are proportiona
to ac and have a nonzero real part which depends onL. The
dependence of the QNMs on the angular modeL is through
the maximum of the potentialVm and therefore affects only
their real part. This is very similar to results obtained for t
nearly extreme SdS black hole in@5,6#. However, it is at
variance to the numerical results in@8# where at least for the
lowest QNM the real part is zero, and the imaginary p
depends onL ~although both the model QNMs and the n
merical results show a dependence onac). Unfortunately,
we also have no numerical results available on higher or
modes~for a given L) to compare with the higher orde
model QNMs.

Our approximate potentialV is the simplest model which
is solvablein the limit of separation of scales, and reveals t
presence of two sets of QNMs coming into play at interm
diate and late times as seen in numerical studies. Howev
does need to be refined further to also reproduce theL de-
pendence of the second set of modes. However, the re
ment has to be such that the model remains tractable at
in the physical regime of interest. This is a severe restricti
This is because much of our success above in reprodu
the striking qualitative features has to do with correctly
producing the asymptotic behavior of the SdS potentia
both horizons. The SdS potential falls off exponentially
both horizons, but with different arguments. This is difficu
to reproduce in an exactly solvable potential, and theref
one must piece together two potentials, as we have done
point which could be the maximum of the potential. How
ever, in this case, matching conditions may make the ac
equation for QNMs complicated. TheL dependence seen i
numerical studies for the second set of modes and the fa
of this model to reproduce them is related to the failure o
Poschl-Teller potential to describe theL dependence of the
vacuum de Sitter potential. One obvious modification
could do to our model to reproduce theL dependence cor
rectly is to use the same Poschl-Teller potential forr b,r
,r m and the vacuum de Sitter potential forr m,r ,r c .
However, in that case, the matching conditions atr m become
very complicated. This makes the equation for QNMs co
plicated, and it is no longer possible to see the expec
qualitative features emerge neatly in theM! l approxima-
tion. Refinement of this model should therefore be conc
trated on finding a tractable potential that is a good appro
mation to the vacuum de Sitter potential and could be pie
to the Poschl-Teller potential at the maximum. It should
remembered here, however, that piecing at the maxim
and the resulting matching conditions, may result in the
sence of certain QNMs from the spectrum.

C. Further investigation of the model

We have outlined above the steps to be taken for mak
the QNMs of this model agree well with numerical studi
for late time behavior of the field. However, it must be not
that no analytical approximation proposed so far for tim
0-8
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behavior of fields even in the Schwarzschild black hole
produces its entire time behavior from intermediate to l
times. The analytical model in@9# reproduces the QNMs, bu
not the characteristic late time tail for a Schwarzschild p
turbation. It is to be noted that our model shows exponen
late time decay for the field as seen for the SdS black h
although the exponent does not match numerical studie
also shows the QNMs at intermediate times. Therefore
offers an interesting platform to address the following qu
tions:

~i! Can one map the complete time behavior of a per
bation in this model, starting from intermediate times? T
incompleteness of the QNMs of this model suggests inter
ing temporal behavior when the field switches from a de
governed by the first QNM set to the second. It would
most exciting if in this model, a power-law decay were fou
at these intermediate times. It would then shed light on si
lar behavior in the SdS black hole.

~ii ! What happens to the near-extremal limit in th
model? The discrepancies of our model QNMs with nume
cal studies are mainly in the angular mode dependence
y

o

e,
ha
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therefore expect that the results of taking the extremal li
in our model~two horizons approaching each other! should
be a good approximation to the perturbation behavior wh
the SdS black hole approaches the Nariai black hole. Inv
tigations of the near-extremal limit for asymptotically fl
black holes~Reissner-Nordstro¨m! show peculiarities@22#.
Our model could be investigated for such peculiarities in
near-extremal limit of the SdS black hole.

It is possible to address the above two questions as
model appears tractable. For reasons elaborated on ab
such an investigation would indeed be valuable in und
standing the response of the SdS black hole to perturbati
This investigation, and further refinements of this model
match numerical studies, are the subjects of future work
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