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Casimir effect, Achucarro-Ortiz black hole, and the cosmological constant
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We treat the two-dimensional Achucarro-Ortiz black hole~also known as a 111 dilatonic black hole! as a
Casimir-type system. The stress tensor of a massless scalar field satisfying Dirichlet boundary conditions on
two one-dimensional ‘‘walls’’~‘‘Dirichlet walls’’ ! is explicitly calculated in three different vacua. Without
employing known regularization techniques, the expression in each vacuum for the stress tensor is reached by
using Wald’s axioms. Finally, within this asymptotically nonflat gravitational background, it is shown that the
equilibrium of the configurations, obtained by setting the Casimir force to zero, is controlled by the cosmo-
logical constant.
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I. INTRODUCTION

In the framework of quantum field theory in curve
spacetime, there is no natural definition of particles. Unf
tunately, only in exceptional cases does the particle con
in curved spacetime correspond to the intuitive picture
subatomic physics@1#. Therefore, we are led to study oth
observables that are not globally defined, which is obviou
part of the problem with the particle definition. One of th
most interesting objects, if not the very most, is the stress~or
energy-momentum! tensorTmn(x). Furthermore, the interes
in explicitly calculating the stress tensor is augmented by
presence of a gravitational background. The main reaso
that the role of the stress tensor is now twofold. It descri
the physical character of the quantum field at a spacet
point x, and it is also the source of gravity in this gravit
tional background. There are a plethora of field theoret
procedures@1–5#, known as regularization techniques, f
computing a finite and renormalized^Tmn& reg , such as the
dimensional regularization@6–8#, Green’s function method
@9,10#, heat kernel method@11,12#, zeta function regulariza
tion @13#, point-splitting method@14–16#, and Pauli-Villars
regularization@17#. In this article, we are going to derive th
exact form of the stress tensor of a massless scalar fiel
implementing some general properties of the renormali
stress tensor known as Wald’s axioms@19,20#, avoiding in
this way employing any of the above-mentioned techniqu

In 1948, Casimir@21# was trying at first to calculate th
van der Waals force between two polarized atoms. In
end, he was led to the problem of two parallel conduct
plates. He evaluated the attractive force between the
plates and the electromagnetic energy that was localized
tween the two conducting plates. The Casimir effect, i.e.,
disturbance to the electromagnetic vacuum induced by
presence of two parallel conducting plates, is in contact w
laboratory physics@22,23#. Nowadays, Casimir-type system
@24,23# are viewed as tractable field theoretical models
which the general curved spacetime formalism can be
plied and sensible results can be reached@25–27#.

*Email address: evagenas@ecm.ub.es
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The scenario to be considered in our semiclassical an
sis is as follows.~a! The gravitational background is th
two-dimensional Achucarro-Ortiz black hole@28,29# which
is asymptotically an AdS2 spacetime, ~b! two one-
dimensional ‘‘walls,’’ separated by a distanceL, are placed in
the aforementioned gravitational background, and~c! the
quantum field whose stress tensor we are going to evalua
a massless scalar one satisfying Dirichlet boundary co
tions on the one-dimensional ‘‘walls’’~‘‘Dirichlet walls’’ !. It
is obvious that the Achucarro-Ortiz black hole will be treat
as a Casimir-type system@30–33#.

The paper is organized as follows. The next section
devoted to the presentation of Wald’s axioms. In Secs.
and IV we describe the Achucarro-Ortiz and AdS2 black hole
geometries and calculate some of their geometrical quant
which are useful in the subsequent analysis. In Sec. V
vacuum expectation value of the stress tensor of the mas
scalar field in the Achucarro-Ortiz black hole geometry
explicitly evaluated, respectively, in the Boulware vacuu
~labeled byh) @34#, the Hartle-Hawking vacuum~labeled by
y) @35–37#, and the Unruh vacuum~labeled byj) @38#. The
energy density, pressure, energy, and corresponding force
tween the two Dirichlet walls are specified. In Sec. VI, r
quiring the configurations to be in equilibrium, the distan
between the Dirichlet walls is seemed to be determined
the two-dimensional cosmological constant. Finally, Sec.
closes with conclusions and prospects for future work.

II. WALD’S AXIOMATIC ANALYSIS

In the mid-1970s there was a variety of techniques us
complicated mathematical devices for computing the str
tensors. There was still the question of how to define
unique renormalized stress tensor^Tmn& purely by imposing
physical requirements. Wald proffered five ‘‘axioms’’ to b
satisfied by the stress tensors@19,20#. The axioms, called
from now on Wald’s axioms, are as follows:~1! The expec-
tation values of the energy-momentum tensor are covaria
conserved;~2! causality holds;~3! in Minkowski spacetime,
standard results should be obtained;~4! standard results for
the off-diagonal elements should also be obtained;~5! the
energy-momentum tensor is a local functional of the met
©2003 The American Physical Society15-1
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i.e., it depends only on the metric and its derivatives wh
appear through the Riemann curvature tensor. It should
remarked that recently there was a significant generaliza
of the above-mentioned framework by Hollands and W
@39#.

Additionally, it must be noted that in a classical theo
with a conformally invariant Lagrangian the trace vanish
However, in the corresponding quantized theory the str
tensor may acquire a nonvanishing trace through renorm
ization ~this is called conformal or trace anomaly! @6,7#. In
two dimensions, the traceTa

a can only be proportional to the
Ricci scalarR of the theory@8,40#. This is in agreement with
Wald’s axioms.

III. ACHUCARRO-ORTIZ BLACK HOLE

The black hole solutions of Ban˜ados, Teitelboim, and
Zanelli ~BTZ! in 211 spacetime dimensions are deriv
from a three-dimensional theory of gravity@41#

S5E dx3A2g~ (3)R12L! ~1!

with a negative cosmological constant (L51/l 2.0). The
corresponding line element is

ds252S 2M1Lr 21
J2

4r 2D dt21
dr2

~2M1Lr 21J2/4r 2!

1r 2S du2
J

2r 2
dtD 2

. ~2!

There are many ways to reduce the three-dimensional B
black hole solutions to the two-dimensional charged and
charged dilatonic black holes@28#. The Kaluza-Klein reduc-
tion of the metric of the (211)-dimensional BTZ black hole
~2! yields the two-dimensional line element

ds252g~r !dt21g~r !21dr2, ~3!

where

g~r !5S 2M1Lr 21
J2

4r 2D ~4!

with M the Arnowitt-Deser-Misner~ADM ! mass, J the
charge of the two-dimensional charged black hole, a U~1!
gauge field

At52
J

2r 2
, ~5!

and a dilaton field

F5r . ~6!

For the positive mass black hole spectrum with chargeJ
Þ0), the line element~3! has two horizons
02401
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r 6
2 5

M6AM22LJ2

2L
~7!

with r 1 ,r 2 the outer and inner horizon, respectively.
The Hawking temperatureTH of the event~outer! horizon

is @42#

TH5
A2L

2p

AM22LJ2

~M1AM22LJ2!1/2

5
L

2p S r 1
2 2r 2

2

r 1
D . ~8!

The analytical formulas for the nonvanishing Christoff
symbols are

G tt
r 5

1

2 S 2M1Lr 21
J2

4r 2D S 2Lr 2
J2

2r 3D ~9!

G rr
r 52

1

2

~2Lr 2J2/2r 3!

~2M1Lr 21J2/4r 2!
~10!

G rt
t 5

1

2

~2Lr 2J2/2r 3!

~2M1Lr 21J2/4r 2!
. ~11!

The Ricci scalar is given by

R~r !52F2L1
3J2

2r 4G , ~12!

and therefore the nonzero trace of the stress tensor co
sponding to the Achucarro-Ortiz black hole takes the form

Ta
a~r !52F L

12p
1

J2

16pr 4G , ~13!

where we have used the expression for the trace of a s
tensor in two dimensions@8,40#:

Ta
a~r !5

R~r !

24p
. ~14!

IV. AdS2 SPACE

The two-dimensional anti–de-Sitter geometry (AdS2) can
be derived either by restricting the Achucarro-Ortiz bla
hole to its spinless sectorJ50 or by fixing the value of the
dilaton field that appears in the above-mentioned redu
theory@28#. We adopt the first option and the resulting AdS2
metric takes the form

ds252gAdS~r !dt21gAdS~r !21dr2 ~15!

where

gAdS~r !5~2M1Lr 2!, ~16!

which has a horizon at
5-2
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r H5AM

L
. ~17!

The temperature of the AdS2 black hole is@43#

TH
AdS5

ALM

2p
. ~18!

The analytical formulas for the nonvanishing Christof
symbols are

G tt
r 5Lr ~2M1Lr 2!, ~19!

G rr
r 52

Lr

~2M1Lr 2!
, ~20!

G rt
t 5

Lr

~2M1Lr 2!
. ~21!

The Ricci scalar is given by

R~r !522L, ~22!

and therefore the nonzero trace of the Achucarro-Ortiz bl
hole takes the form

Ta
a~r !52

L

12p
. ~23!

Using the formula

Tmn
AdS5

1

A2g

dLgrav

dgmn U
gmn5g

AdS
mn

, ~24!

the explicit expression for the stress tensor of the grav
tional field of the AdS2 space is easily calculated:

Tmn
AdS5F r 2

2
0

0
r 2

2~2M1Lr 2!2

G . ~25!

V. CASIMIR EFFECT AND STRESS TENSOR

In this section a detailed expression for the renormali
stress tensor of the massless scalar is obtained by enfo
Wald’s axioms and using its trace.

The starting point is Wald’s first axiom, i.e., that the co
servation equation must be satisfied by the renormalized
pectation value of the stress tensor^T n

m & reg[T n
m ,

T n;m
m 50, ~26!

which ‘‘splits’’ into two equations:

dTt
r

dr
1G rr

r Tt
r2G tt

r Tr
t 50, ~27!
02401
l
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dTr
r

dr
1G tr

t Tr
r2G rt

t Tt
t50, ~28!

and sinceTr
t 52Tt

r andTt
t5Ta

a2Tr
r , we get

dTt
r

dr
1@G rr

r 1G tt
r #Tt

r50, ~29!

dTr
r

dr
12G rt

t Tr
r5G rt

t Ta
a . ~30!

Substituting the Christoffel symbols~9!–~11! into Eqs.~29!,
~30! and solving them, we get, respectively,

Tt
r~r !5

1

g~r !
d, ~31!

where

d5ag3/2~r !e2g2(r )/4, ~32!

and

Tr
r~r !5

1

g~r !
@b1H2~r !#, ~33!

where

H2~r !5
1

2Er 1

r dg~r 8!

dr8
Ta

a~r 8!dr8 ~34!

and the parametersa,b are constants of integration while th
point r 1 is where the outer horizon is placed. It can
shown thatH2(r ) for the Achucarro-Ortiz black hole back
ground~3!, ~4! becomes

H2~r !5
1

96p F2Lr 2
J2

2r 3G 2

2D, ~35!

whereD is constant,

D5
1

96p F2Lr 12
J2

2r 1
3 G 2

. ~36!

Now the following limiting values ofH2(r ) are obtained
from Eq. ~35!:

if r→r 1 then H2~r !50,

if r→1` then H2~r !5
L2

24p
r 22D.

Therefore, using Eqs.~31! and ~33!, we have the most gen
eral expression for the regularized stress tensor in our gr
tational background:
5-3
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Tn
m5FTa

a~r !2g21~r !H2~r ! 0

0 g21~r !H2~r !
G1g21~r !F2b 2d

d b G , ~37!

or, substituting Eqs.~32! and ~35!, a more explicit expression is

Tn
m5F L

12p
1

J2

16r 4
2

1

96pg~r ! F2Lr 2
J2

2r 3G 2

1g21~r !D 0

0
1

96pg~r ! F2Lr 2
J2

2r 3G 2

2g21~r !D
G1g21~r !

3F 2b 2ag3/2~r !e2g2(r )/4

ag3/2~r !e2g2(r )/4 b
G , ~38!
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where the Achucarro-Ortiz black hole background~3!, ~4!
and relations~13!, ~32!, ~35!, and ~36! have been used. In
this expression, the only unknowns are the parametersa and
b; we hope to determine them by imposing the third a
fourth Wald axioms treating the Achucarro-Ortiz black ho
as a Casimir system@1#. Two one-dimensional walls at
proper distance~between them! L are placed at pointsr 1 and
r 2. The massless scalar field whose energy-momentum
sor we try to evaluate satisfies the Dirichlet boundary con
tions on the walls, i.e.,f(r 1)5f(r 2)50.

We are now going to find the explicit form of the regula
ized stress tensor in the different vacua.

A. Boulware vacuum

In this vacuum there are no particles detected at infin
(J 1) and the regularized stress tensor~38! should coincide
at infinity with the sum of the standard Casimir stress ten
@1,2# in the Minkowski spacetime

Tn
m5

p

24L2 F21 0

0 1G ~39!

and of the stress tensor of the gravitational field of the Ad2
space

Tn
m(AdS)5F 2

r 2

2~2M1Lr 2!
0

0
r 2

2~2M1Lr 2!2

G
5

r 2

2~2M1Lr 2!
F21 0

0 1G , ~40!

since the Achucarro-Ortiz black hole is asymptotically
AdS2 space.

The constants of integrationa and b are evaluated by
demanding that the regularized stress tensor given in
02401
d

n-
i-

y

r

q.

~38! coincide at infinity, i.e.,r→1`, with the sum of the
above-mentioned stress tensors~39! and ~40!.

Therefore we get

a50, b5S L

12p
1

p

24L2D gAdS~r !1S 1

2
2

L2

24p D r 21D,

~41!

and the regularized stress tensor has been explicitly ca
lated. It can also be written as a direct sum:

Tn
(h)m5Tn(gravitational)

m 1Tn(boundary)
m 1Tn(ANFG)

m , ~42!

whereh denotes that the regularized stress tensor has b
calculated under the assumption that there are no part
~vacuum state! at infinity ~Boulware vacuum!. The first term
denotes the contribution to the vacuum polarization due
the nontrivial topology in which the contribution of the trac
anomaly is included, the second term denotes the contr
tion due to the presence of the two Dirichlet walls, and t
third term denotes the contribution due to the asymptotica
nonflat geometry~ANFG! of the Achucarro-Ortiz black hole

The detected energy density, pressure, and energy a
finity ( r→1`) are given by

r5Tt
(h)t52

p

24L2
2

1

2L
, ~43!

p52Tx
(h)x52

p

24L2
2

1

2L
2

L

12p
, ~44!

E~L !5E
r 1

r 25r 11L

rdr52
p

24L
2

1

2L
L. ~45!

The corresponding Casimir force between the walls is
always attractive as expected:

F~L !52
]E~L !

]L
52

p

24L2
1

1

2L
. ~46!
5-4
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It is clear that the Casimir force is
~a! attractive,

L,Ap

12
L1/2, ~47!

~b! zero,

L5Ap

12
L1/2, ~48!

and ~c! repulsive,

L.Ap

12
L1/2. ~49!

B. Hartle-Hawking vacuum

In this vacuum the Achucarro-Ortiz black hole~3!, ~4! is
in thermal equilibrium with an infinite reservoir of black
body radiation at a temperatureT which is equal to its Hawk-
ing temperature. The regularized stress tensor~38! should
coincide with the following stress tensor:

Tn
m5

p

24L2 F21 0

0 1G1
r 2

2~2M1Lr 2!
F21 0

0 1G
1

pT2

6 F21 0

0 1G , ~50!

where the last term is the stress tensor for a two-dimensi
black hole in thermal equilibrium at temperatureT @18#.

The constants of integrationa and b are evaluated by
demanding that the regularized stress tensor given in
~38! coincide at infinity, i.e.,r→1`, with the sum of the
above-mentioned stress tensors~39! and ~40!. Therefore we
get

a50, ~51!

b5S L

12p
1

p

24L2
1

p

6
~TH

AdS!2D gAdS~r !

1S 1

2
2

L2

24p D r 21D ~52!

5S L

12p
1

p

24L2
1

L

24p
M D gAdS~r !

1S 1

2
2

L2

24p D r 21D, ~53!

and the regularized energy-momentum tensor has been
plicitly calculated. It can also be written as a direct sum:

Tn
(y)m5Tn(gravitational)

m 1Tn(boundary)
m 1Tn(ANFG)

m 1Tn(bath)
m ,

~54!
02401
al

q.

x-

wherey denotes that the regularized stress tensor has b
calculated under the assumption that massless part
~blackbody radiation! are detected at infinity~toward J 1)
~Hartle-Hawking vacuum!, and the fourth term in Eq.~54!
denotes the contribution to the vacuum polarization due
the thermal bath at temperatureTH .

In this vacuum the asymptotically (r→1`) detected en-
ergy density, pressure, and energy at infinity are given b

r5Tt
(h)t52

p

24L2
2

1

2L
2

L

24p
M , ~55!

p52Tx
(h)x52

p

24L2
2

1

2L
2

L

24p
M2

L

12p
,

~56!

E~L !5E
r 1

r 25r 11L

rdr52
p

24L
2

1

2L
L2

L

24p
ML.

~57!

The corresponding Casimir force between the walls is
always attractive as expected:

F~L !52
]E~L !

]L
52

p

24L2
1

1

2L
1

L

24p
M . ~58!

It is clear that the Casimir force is
~a! attractive,

L,pA L

12p1L2M
, ~59!

~b! zero,

L5pA L

12p1L2M
, ~60!

and ~c! repulsive,

L.pA L

12p1L2M
. ~61!

Thus, if the last condition is satisfied, the outer Dirichlet w
moves toward infinity. It can be studied as a moving mirr
creating particles whose energy rate detected at infinity
given by the third term in Eq.~57!:

dE

dt
5

L

24p
ML5

pL

6
~TH

AdS!2. ~62!

This is the rate at which energy is radiated for the case of
massless two-dimensional field@44,45#.

C. Unruh vacuum

In this vacuum an outward flux of radiation is detected
infinity. Thus, since the Achucarro-Ortiz black hole~3!, ~4!
radiates and its spectrum distribution is thermal at the Ha
5-5
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ing temperatureTH @46,47#, the Unruh vacuum state is iden
tified with the vacuum obtained after the Achucarro-Or
black hole has settled down to an ‘‘equilibrium’’ of temper
ture TH . The regularized stress tensor~38! should now co-
incide at infinity with the following stress tensor:

Tn
m5

p

24L2 F21 0

0 1G1
r 2

2~2M1Lr 2!
F21 0

0 1G
1

p~TH
AdS!2

12 F21 21

1 1 G , ~63!

where the last term is the stress tensor for a radiating t
dimensional black hole which has settled down to an ‘‘eq
librium’’ of temperatureTH @18#.

The constants of integrationa and b are evaluated by
demanding that the regularized stress tensor given in
~38! coincide at infinity, i.e.,r→1`, with the sum of the
above-mentioned stress tensors~39! and ~40!. Therefore we
get

a5
p~TH

AdS!2

12
gAdS

21/2~r !egAdS
2 (r )/45

L

48p
MgAdS

21/2~r !egAdS
2 (r )/4,

~64!

b5S L

12p
1

p

24L2
1

p

12
~TH

AdS!2D gAdS~r !

1S 1

2
2

L2

24p D r 21D

5S L

12p
1

p

24L2
1

L

48p
M D gAdS~r !1S 1

2
2

L2

24p D r 21D,

~65!

and the regularized stress tensor has been explicitly ca
lated. It can also be written as a direct sum:

Tn
(j)m5Tn(gravitational)

m 1Tn(boundary)
m 1Tn(ANFG)

m 1Tn(radiation)
m ,

~66!

wherej denotes that the regularized stress tensor has b
calculated under the assumption that massless particles
detected at infinity due to the Hawking radiation of t
Achucarro-Ortiz black hole~Unruuh vacuum!, and the fourth
term in Eq.~66! denotes the contribution to the vacuum p
larization due to Hawking radiation at temperatureTH .

In this vacuum the asymptotically (r→1`) detected en-
ergy density, pressure, and energy at infinity are given b

r5Tt
(h)t52

p

24L2
2

1

2L
2

L

48p
M , ~67!

p52Tx
(h)x52

p

24L2
2

1

2L
2

L

48p
M2

L

12p
, ~68!
02401
o-
-

q.
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en
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E~L !5E
r 1

r 25r 11L

rdr52
p

24L
2

1

2L
L2

L

48p
ML.

~69!

The corresponding Casimir force between the walls is
always attractive as expected:

F~L !52
]E~L !

]L
52

p

24L2
1

1

2L
1

L

48p
M . ~70!

It is clear that the Casimir force is
~a! attractive,

L,pA 2L

24p1L2M
, ~71!

~b! zero,

L5pA 2L

24p1L2M
, ~72!

and ~c! repulsive,

L.pA 2L

24p1L2M
. ~73!

As in the case of the Hartle-Hawking vacuum, if the la
condition is satisfied the outer wall moves toward infinity.
can be studied as a moving mirror creating particles wh
energy rate detected at infinity is given by the second term
Eq. ~69!:

dE

dt
5

L

48p
ML5

pL

12
~TH

AdS!2. ~74!

This is the rate at which energy is radiated for the case of
massless two-dimensional field@44,45#.

VI. EQUILIBRIUM AND COSMOLOGICAL CONSTANT

It is obvious that in the case that the net force which
Dirichlet walls experience turns out to be repulsive the s
tem will be uninteresting since it will be decompactified
L→`. On the other hand, if the net force exerted on t
Dirichlet walls turns out to be attractive then the system
evitably will evolve in such a way that at some finite time t
distanceL will be of order of the Planck length, where th
semiclassical analysis adopted here will no longer be va
Therefore the case of a zero net force on the Dirichlet w
sounds the most interesting for our scenario.

The net force exerted on the Dirichlet walls can be eva
ated using the Casimir force in any of the three vacua
should be noted that for the cases of the Hartle-Hawking
Unruuh vacua the last term in Eqs.~58! and ~70!, respec-
tively, should be removed. The reason is that in both va
the forces acting on both sides of each Dirichlet wall due
the thermal bath or radiation, respectively, are the same,
thus their total contribution to the net force is zero. Therefo
5-6
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the net force that the Dirichlet walls experience is given

Fnet52
p

24L2
1

1

2L
, ~75!

and on setting it equal to zero the distanceL between the
Dirichlet walls receives the value

L5Ap

12
L1/2. ~76!

It is clear that the distanceL between the Dirichlet walls is
controlled by the value of the cosmological constant.

VII. CONCLUSIONS

In this paper we explicitly calculated in the Achucarr
Ortiz black hole background the regularized stress tensor
massless scalar field satisfying Dirichlet boundary conditi
on one-dimensional walls~Dirichlet walls!. The regularized
stress tensor is separately treated in the Boulware, Ha
Hawking, and Unruh vacua. In all these vacua, express
for the asymptotically detected energy, energy density,
pressure acting on the Dirichlet walls are obtained. The v
ues of the above-mentioned quantities are all negative,
hibiting a violation of all energy conditions@48#. This ‘‘prob-
lem’’ is expected to take place in our scenario to some ext
since violations of some or all of the energy conditions a
pear as soon as scalar fields couple to gravity@49,50#. In the
Hartle-Hawking and Unruuh vacua, the corresponding C
simir force is evaluated and proved, as expected, to be
always attractive: it can be attractive, repulsive, or zero
cording to the distanceL between the Dirichlet walls. In
contradistinction to what was known until now@30–33#, in
the Boulware vacuum, the Casimir force is also not alwa
attractive. Additionally, we evaluated the net force exerted
the Dirichlet walls. It was easily demonstrated by imposi
the condition of equilibrium on the Dirichlet walls, i.e., ze
d

d
n-

nd
,
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net force, that the distance between the one-dimensio
walls is tuned by the cosmological constant.1

It would be very interesting for our scenario to be utilize
in higher dimensions, and specifically in braneworlds.
course, it is well known that the trace anomaly—which pla
a key role in the technique presented here—is zero for o
dimensional spacetimes. Therefore, only even-dimensio
spacetimes should be considered. It should also be poi
out that our scenario is not directly applicable to high
even-dimensional spacetimes, since more conditions are
quired in order to completely fix the form of the renorma
ized stress tensor corresponding to the quantized scalar fi
Indeed, there are a number of recent works that deal with
Casimir effect in different models of braneworlds@51–56#.
These scenarios are more complicated than the one ana
here; just to mention a few complications, the branes
located in the bulk space@57,58#, not at points of the space
time in which we live, and there exists a radion field whi
has to be stabilized@59#.
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1The stability of the configurations can be checked by using
~45! in the Boulware vacuum. It is easily derived that the config
rations are unstable against small displacements. The same r
can be derived by using Eqs.~57! and ~69! in the Hartle-Hawking
and Unruuh vacua, respectively, but the last term in these equa
has to be dropped for the reason given in Sec. VI.
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