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Casimir effect, Achucarro-Ortiz black hole, and the cosmological constant
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We treat the two-dimensional Achucarro-Ortiz black h@ko known as a £ 1 dilatonic black holgas a
Casimir-type system. The stress tensor of a massless scalar field satisfying Dirichlet boundary conditions on
two one-dimensional “walls”(“Dirichlet walls” ) is explicitly calculated in three different vacua. Without
employing known regularization techniques, the expression in each vacuum for the stress tensor is reached by
using Wald'’s axioms. Finally, within this asymptotically nonflat gravitational background, it is shown that the
equilibrium of the configurations, obtained by setting the Casimir force to zero, is controlled by the cosmo-
logical constant.

DOI: 10.1103/PhysRevD.68.024015 PACS nuni®er04.70.Dy, 04.62+v

[. INTRODUCTION The scenario to be considered in our semiclassical analy-
sis is as follows.(a) The gravitational background is the

In the framework of quantum field theory in curved two-dimensional Achucarro-Ortiz black hol@8,29 which
spacetime, there is no natural definition of particles. Unforis asymptotically an AdS spacetime, (b) two one-
tunately, only in exceptional cases does the particle concegtimensional “walls,” separated by a distanceare placed in
in curved spacetime correspond to the intuitive picture ofthe aforementioned gravitational background, dof the
subatomic physic§l]. Therefore, we are led to study other quantum field whose stress tensor we are going to evaluate is
observables that are not globally defined, which is obviously massless scalar one satisfying Dirichlet boundary condi-
part of the problem with the particle definition. One of the tions on the one-dimensional “wallg"Dirichlet walls™ ). It
most interesting objects, if not the very most, is the stfess is obvious that the Achucarro-Ortiz black hole will be treated
energy-momentupntensorT ,,(x). Furthermore, the interest as a Casimir-type systef80-33.
in explicitly calculating the stress tensor is augmented by the The paper is organized as follows. The next section is
presence of a gravitational background. The main reason @evoted to the presentation of Wald’s axioms. In Secs. llI
that the role of the stress tensor is now twofold. It describegind IV we describe the Achucarro-Ortiz and Adstack hole
the physical character of the quantum field at a spacetimgeometries and calculate some of their geometrical quantities
point x, and it is also the source of gravity in this gravita- which are useful in the subsequent analysis. In Sec. V the
tional background. There are a plethora of field theoreticavacuum expectation value of the stress tensor of the massless
procedureg1-5], known as regularization techniques, for scalar field in the Achucarro-Ortiz black hole geometry is
computing a finite and renormaliz@d’ﬂ»reg' such as the explicitly evaluated, respectively, in the Boulware vacuum
dimensional regularizatiof6—8|, Green’s function method (labeled byz) [34], the Hartle-Hawking vacuurtiabeled by
[9,10], heat kernel methofiL1,17], zeta function regulariza- v) [35—37, and the Unruh vacuurtiabeled byé) [38]. The
tion [13], point-splitting method14—16, and Pauli-Villars ~ energy density, pressure, energy, and corresponding force be-
regularizatior{ 17]. In this article, we are going to derive the tween the two Dirichlet walls are specified. In Sec. VI, re-
exact form of the stress tensor of a massless scalar field guiring the configurations to be in equilibrium, the distance
implementing some general properties of the renormalize@etween the Dirichlet walls is seemed to be determined by
stress tensor known as Wald's axiofd®,2(, avoiding in  the two-dimensional cosmological constant. Finally, Sec. VI
this way employing any of the above-mentioned techniquescloses with conclusions and prospects for future work.

In 1948, Casimif21] was trying at first to calculate the
van der Waals force between two polarized atoms. In the
end, he was led to the problem of two parallel conducting
plates. He evaluated the attractive force between the two In the mid-1970s there was a variety of techniques using
plates and the electromagnetic energy that was localized beemplicated mathematical devices for computing the stress
tween the two conducting plates. The Casimir effect, i.e., theensors. There was still the question of how to define a
disturbance to the electromagnetic vacuum induced by thenique renormalized stress tengdr,,) purely by imposing
presence of two parallel conducting plates, is in contact witlphysical requirements. Wald proffered five “axioms” to be
laboratory physic$22,23. Nowadays, Casimir-type systems satisfied by the stress tensdis9,20. The axioms, called
[24,23 are viewed as tractable field theoretical models infrom now on Wald’s axioms, are as follow&t) The expec-
which the general curved spacetime formalism can be apation values of the energy-momentum tensor are covariantly
plied and sensible results can be reach&s-27. conservedf2) causality holds{3) in Minkowski spacetime,

standard results should be obtainéd); standard results for
the off-diagonal elements should also be obtain&l;the
*Email address: evagenas@ecm.ub.es energy-momentum tensor is a local functional of the metric;
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i.e., it depends only on the metric and its derivatives which M= M2—AJ2

. 2_ " —

appear through the Riemann curvature tensor. It should be ri_T

remarked that recently there was a significant generalization

of the above-mentioned framework by Hollands and Waldip, r.,r_ the outer and inner horizon, respectively.

[39]. . _ _ ) The Hawking temperaturé, of the eventouten horizon
Additionally, it must be noted that in a classical theory g [42]

with a conformally invariant Lagrangian the trace vanishes.

()

However, in the corresponding quantized theory the stress J2A JMZ=AJ2
tensor may acquire a nonvanishing trace through renormal- Tw=—5, (M+M2=AJ2)12

ization (this is called conformal or trace anomalg,7]. In

two dimensions, the tracg’, can only be proportional to the A
Ricci scalarR of the theory[8,40]. This is in agreement with =_
Wald's axioms. 2m

ri—r%)

ry

®

The analytical formulas for the nonvanishing Christoffel

symbols are
J2
2Ar—— 9)
( 2r3)

I1l. ACHUCARRO-ORTIZ BLACK HOLE

The black hole solutions of Bados, Teitelboim, and
Zanelli (BTZ) in 2+1 spacetime dimensions are derived ' =
from a three-dimensional theory of graviig1] t

2

1 J
~M+Ar2+ —
4r?

2

1 2Ar—J3%/2r3
S:f dxV=g(PR+24) (1) pro_ L (2Arz g (10
2 (=M +Ar?+J3%/4r?)

. . . 2
with a negative cosmological constanh €1/1°>0). The 1 (2Ar—3%2r%)

corresponding line element is rt=—= ) (11
2 (—M+Ar2+3%4r2)
J? dr2 . o
ds?=—| =M+ Ar2+ —|dt?+ The Ricci scalar is given by
4r? (—M+Ar2+3%/4r?)
J 2 R(r) 2A+ 3% (12
r = - il
+r?{ do— ;dt) . 2 2r4
r

and therefore the nonzero trace of the stress tensor corre-
There are many ways to reduce the three-dimensional BT4ponding to the Achucarro-Ortiz black hole takes the form
black hole solutions to the two-dimensional charged and un-
charged dilatonic black hold28]. The Kaluza-Klein reduc-
tion of the metric of the (2 1)-dimensional BTZ black hole Ta(r)=—
(2) yields the two-dimensional line element

JZ
——+
127 1674

: (13

where we have used the expression for the trace of a stress

— 2 —14,2
ds’=—g(ndt*+g(r)'dr% ®) tensor in two dimensiong3,40]:
where o R(T) y
2 o= 55— (14)
g(r)=| —M+Ar*+ — (4
ar IV. AdS, SPACE
with M the Arnowitt-Deser-Misner(ADM) mass, J the The two-dimensional anti—de-Sitter geometry (ApiSan
charge of the two-dimensional charged black hole, @)U be derived either by restricting the Achucarro-Ortiz black
gauge field hole to its spinless sectdr=0 or by fixing the value of the
dilaton field that appears in the above-mentioned reduced
J theory[28]. We adopt the first option and the resulting AdS
A= o2’ ) metric takes the form
—— 2+ 14,2
and a dilaton field dS"= = Gaas(1) AL+ Guas(r) dr (19
where
d=r. (6)
Jags(r)=(—M+Ar?), (16)

For the positive mass black hole spectrum with chargie (
#0), the line elemen(3) has two horizons which has a horizon at
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M dT; C ot ot
= A (17) dr a1 = Ti=0, (29)
The temperature of the Ad®lack hole is[43] and sinceT!=—T! andT!=T—T', we get
AM r
AdS_ dT,
W= (18) — L+ [T+ TLITI=0, 29
The analytical formulas for the nonvanishing Christoffel
symbols are : t ot e
W—FZFNT,:FHTQ. (30)
FL=Ar(—M+Ar?), (19
Substituting the Christoffel symbol8)—(11) into Egs.(29),
= Ar (20 (30) and solving them, we get, respectively,
T (=M+Ar?)’ .
Ti(r 31
LA A TON (&0
L= ——-. (21)
(=M+Ar% where
The Ricci scalar is given by 5
5=ag¥(r)e"9° (A (32
R(r)=—2A, (22 and
and therefore the nonzero trace of the Achucarro-Ortiz black 1
hole takes the form (r)= [B+H,(r)], 33)
g(r)
To(r)=— i (23
al 127" where
Using the formula dg(r’)
Ho(r)=3 f ———T(r")dr’ (34)
AdS_ 1 5£grav (24) [ dr
224 / v !
g 49" grr=ghls and the parameters, 8 are constants of integration while the

o ) _ point r, is where the outer horizon is placed. It can be
the explicit expression for the stress tensor of the gravitashown thatH,(r) for the Achucarro-Ortiz black hole back-

tional field of the AdS$ space is easily calculated: ground(3), (4) becomes
f 0 J2 2

2 Hy(r)=—|2Ar——| —D, (35

AdS_ 3

= 2 : (25) 2r
2(—M+Ar?)2 whereD is constant,
1 2 )?

V. CASIMIR EFFECT AND STRESS TENSOR D= 2AT, — — (36)

967T Zri

In this section a detailed expression for the renormalized
stress tensor of the massless scalar is obtained by enforcirm)w the following limiting values ofH,(r) are obtained
Wald’s axioms and using its trace. from Eq. (35): 2

The starting point is Wald’s first axiom, i.e., that the con- ' '
servation equation must be satisfied by the renormalized ex- TR then H,(r)=0
pectation value of the stress tengdr* ) .,=T*,, * 2 '
A2

T# . =0, (26) if r):ﬁ
T

vip r—-+co then Hy r’—D.

which “splits” into two equations:
dT Therefore, using Eqg31) and (33), we have the most gen-
S e prot_ eral expression for the regularized stress tensor in our gravi-
dr +F (T T =0, @7) tational background:
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[Tan) =g HrHA(r) N TR b -
g 0 g Hn)Hy)| 0 5 B
or, substituting Eqs(32) and (35), a more explicit expression is
AR P 22 5 0
127 et 96mg(n)| M) T
= 1 3212 +g7}(n)
0 - I |
9677@1(0{2Ar 23] 9 0P
-8 _ agalz(r)e—gz(r)m
ag3/2(r)e792(r)/4 B ) (38)

where the Achucarro-Ortiz black hole backgrou(®l, (4) (38) coincide at infinity, i.e.r — +o, with the sum of the

and relationg(13), (32), (35), and (36) have been used. In above-mentioned stress tens¢9) and (40).

this expression, the only unknowns are the parameteasd Therefore we get

B; we hope to determine them by imposing the third and

fourth Wald axioms treating the Achucarro-Ortiz black hole T 2

as a Casimir systerfil]. Two one-dimensional walls at a  @=0, '8:<E+ —2> gAds(f)“‘(E—ﬁ
) . 241 ™

proper distanc¢between themL are placed at points, and (41)

r,. The massless scalar field whose energy-momentum ten-

sor we try to evaluate satisfies the Dirichlet boundary condixng the regularized stress tensor has been explicitly calcu-

tions on the walls, i.e.¢(rq) = ¢(r,)=0. lated. It can also be written as a direct sum:
We are now going to find the explicit form of the regular-

r?+D,

ized stress tensor in the different vacua. TS/”)”:Tf(gravitationa|)+ T4 poundaryy™ Thianrey: (42
A. Boulware vacuum where » denotes that the regularized stress tensor has been

calculated under the assumption that there are no particles

I+n this vacuum the_re are no particles detected f';\t i_nfinity(Vacuum stateat infinity (Boulware vacuurn The first term
(J7) and the regularized stress ten¢88) should coincide  gengtes the contribution to the vacuum polarization due to

at infinity with the sum of the standard Casimir stress t€nsof,e nontrivial topology in which the contribution of the trace
[1,2] in the Minkowski spacetime anomaly is included, the second term denotes the contribu-
tion due to the presence of the two Dirichlet walls, and the
(39) third term denotes the contribution due to the asymptotically
nonflat geometryANFG) of the Achucarro-Ortiz black hole.
The detected energy density, pressure, and energy at in-

and of the stress tensor of the gravitational field of the AdS finity (r—+) are given by

-1 0
0 1

m

24 2

B
14

space
—Tlmt= _ . _i (43)
r2 P~ 2412 2A°
- 0
2(=M+Ar?)
#(AdS) _
T r2 p:_Tﬁn)X:_L_i_L' (44)
0 - 242 2A 127w
2(—M+Ar2)2
rp=rp+L T 1
rz -1 0 E(L)Zf pdrz—ﬁ—ﬁL. (45)
r

The corresponding Casimir force between the walls is not

. . . . always attractive as expected:
since the Achucarro-Ortiz black hole is asymptotically an y P

AdS, space.
The constants of integration and B8 are evaluated by F(L)=

JE(L) T N
demanding that the regularized stress tensor given in Eq. aL 2412 2A°

(46)

024015-4



CASIMIR EFFECT, ACHUCARRO-ORTIZ BLACK HOLE. .. PHYSICAL REVIEW D 68, 024015(2003

It is clear that the Casimir force is where v denotes that the regularized stress tensor has been
(a) attractive, calculated under the assumption that massless particles
(blackbody radiationare detected at infinitytoward 7 )
\F 2 (Hartle-Hawking vacuum and the fourth term in Eq54)
L< 1_2A 7 (47 denotes the contribution to the vacuum polarization due to
the thermal bath at temperaturg, .
(b) zero, In this vacuum the asymptotically - + ) detected en-
ergy density, pressure, and energy at infinity are given by
L= \ﬁ/\l’z, (48) (ot T 1 A
12 P=T =T o2 2 2aa ™ (55
and (c) repulsive,
e ™ YA A
L> \ﬁAm_ (49) P=m T o4z 2A 247 127
12 (56)
B. Hartle-Hawking vacuum E(L):frzrl+Lpdr=—l—iL——ML.
In this vacuum the Achucarro-Ortiz black hdl®), (4) is 1 24 2A 24
in thermal equilibrium with an infinite reservoir of black- (57)

body radiation at a temperatuFewhich is equal to its Hawk-  The corresponding Casimir force between the walls is not
ing temperature. The regularized stress ten8& should always attractive as expected:
coincide with the following stress tensor:

10 , 10 JE(L) T 1 A
p T N r F(L)Z— L :—24Lz+ﬂ+EM. (58)
"24? 0 1] 2(-M+Ar»)[ 0 1
211 0 It is clear that the Casimir force is
mT (50) (a) attractive,
6 | 0 1/

/ A
i -di ' L<m\/———— (59
where the last term is the stress tensor for a two-dimensional 127+ AZM

black hole in thermal equilibrium at temperaturé18].
The constants of integration and B8 are evaluated by

; ; o= (b) zero,
demanding that the regularized stress tensor given in Eq.
(38) coincide at infinity, i.e.;r— +o0, with the sum of the A
above-mentioned stress tens@89) and (40). Therefore we L=7m\/——, (60)
get 127+ A%M
a=0 (51) and (c) repulsive,
A L> —A (61)
_ T —AdS, 2 7\/ )
B—(E 24|_2+g ) )gAdS(r) 127+ A%M
2 Thus, if the last condition is satisfied, the outer Dirichlet wall
1 A%, L . ) .
Z  _ Ir24+D (520  moves toward infinity. It can be studied as a moving mirror
2 24 creating particles whose energy rate detected at infinity is
given by the third term in Eq57):
A, T A M) «1) dE A L
S\ o T 5T 542V | Qagst! ™
127 2 244 oo _ "= TAdS|\2
24 T 247_rML 6 (TyD)~. (62
1 A2 . . . ,
+ > 2am r’+D, (53)  Thisis the rate at which energy is radiated for the case of the

massless two-dimensional figld4,45.

and the regularized energy-momentum tensor has been ex- h
plicitly calculated. It can also be written as a direct sum: C. Unruh vacuum

In this vacuum an outward flux of radiation is detected at
T =T avitational™ T boundaryit Tcanee) T Teibathy: infinity. Thus, since the Achucarro-Ortiz black hdf®), (4)

(54) radiates and its spectrum distribution is thermal at the Hawk-
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ing temperaturd , [46,47], the Unruh vacuum state is iden- r=ry+L o 1
tified with the vacuum obtained after the Achucarro-Ortiz E(L)= pdr=—sa ~oxL~ 28, ML
black hole has settled down to an “equilibrium” of tempera- f1 69)
ture Ty . The regularized stress tensd@8) should now co-
incide at infinity with the following stress tensor: The corresponding Casimir force between the walls is not
always attractive as expected:
" rs -1 O i r2 [ -1 0}
v 2 1 _ 2 1 JE(L T 1 A
242 © 2(-M+Ar9L 0 F(L)=— (9(|_):__2+ﬁ+@'vl- (70
w(TRS2[-1 -1 24
12 1 1) 3 It is clear that the Casimir force is

(a) attractive,
where the last term is the stress tensor for a radiating two-

dimensional black hole which has settled down to an “equi- 2A
librium” of temperatureT,, [18]. L<m PYRTVL (72)

The constants of integration and B8 are evaluated by
demanding that the regularized stress tensor given in Eq. (b) zero,
(38) coincide at infinity, i.e.;r— +o0, with the sum of the

above-mentioned stress tens@89) and (40). Therefore we 2A
get L=m\/————, (72
247+ AM
W(Tﬁds)2 —1/ 2 A .y 2 .
a= TgAdlsz( r)e9aas(N/4= 187 M gage(r)edaas/4, and (c) repulsive,

(64) 2A
L>m _— (73
24+ A2M

As in the case of the Hartle-Hawking vacuum, if the last
condition is satisfied the outer wall moves toward infinity. It

B=

A T T
om " EﬁL 1—2(Tﬁds 2) Jads(r)

Lz A_2 24D can be studied as a moving mirror creating particles whose
2 24 r energy rate detected at infinity is given by the second term in
Eq. (69):
A T 1 A? dE A L
N R T Z_ |2 _ _ L Ads
127 " a2 4gn M| GassDF| 5 247r)r +D, Gt = as ML= 5 (TH% (74)

(65)
This is the rate at which energy is radiated for the case of the
and the regularized stress tensor has been explicitly calcumassless two-dimensional figld4,45.
lated. It can also be written as a direct sum:

VI. EQUILIBRIUM AND COSMOLOGICAL CONSTANT

TEr=TH ationart T +TH +TH - diation)s
g vigravitational) = ©v(boundary) ™ T v(ANFG) ©  v(radiation) It is obvious that in the case that the net force which the

Dirichlet walls experience turns out to be repulsive the sys-
where ¢ denotes that the regularized stress tensor has bedfM Will be uninteresting since it will be decompactified as
calculated under the assumption that massless particles drg~*: On the other hand, if the net force exerted on the
detected at infinity due to the Hawking radiation of the Dirichlet walls turns out to be attractive then the system in-
Achucarro-Ortiz black holéUnruuh vacuuny and the fourth evitably will evolve in such a way that at some finite time the
term in Eq.(66) denotes the contribution to the vacuum po- distancel. will be of order of the Planck length, where the
larization due to Hawking radiation at temperatiig. semiclassical analysis adopted here will no longer be valid.

In this vacuum the asymptotically - +) detected en- Therefore the case of a zero net force on the Dirichlet walls

ergy density, pressure, and energy at infinity are given by Sounds the most interesting for our scenario.
The net force exerted on the Dirichlet walls can be evalu-

ated using the Casimir force in any of the three vacua. It

p= g L —— | (67) should be noted that for the cases of the Hartle-Hawking and
t 242 2A 48w Unruuh vacua the last term in Eg&8) and (70), respec-
tively, should be removed. The reason is that in both vacua
- 1 A A the forces acting on bo_th _sides of eac_:h Dirichlet wall due to
p=—TM= o M- ——, (68)  the thermal bath or radiation, respectively, are the same, and
X 2412 2A 48w 127 thus their total contribution to the net force is zero. Therefore
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the net force that the Dirichlet walls experience is given bynet force, that the distance between the one-dimensional
walls is tuned by the cosmological constant.
T 1 It would be very interesting for our scenario to be utilized
Frer= — E+ﬁ’ (79 in higher dimensions, and specifically in braneworlds. Of
course, it is well known that the trace anomaly—which plays
a key role in the technique presented here—is zero for odd-
dimensional spacetimes. Therefore, only even-dimensional
spacetimes should be considered. It should also be pointed
o out that our scenario is not directly applicable to higher
L= \/:ZAM' (76) even-dimensional spacetimes, since more conditions are re-
1 quired in order to completely fix the form of the renormal-
ized stress tensor corresponding to the quantized scalar field.
Indeed, there are a number of recent works that deal with the
Casimir effect in different models of braneworlfs1-54.
These scenarios are more complicated than the one analyzed
VIl. CONCLUSIONS here; just to mention a few complications, the branes are
In this paper we explicitly calculated in the Achucarro- located in the bulk spadé&7,58, not at points of the space-
Ortiz black hole background the regularized stress tensor of Bme in which we live, and there exists a radion field which
massless scalar field satisfying Dirichlet boundary conditiond)as to be stabilizef59].
on one-dimensional wall@irichlet walls). The regularized
stress tensor is separately treated in the Boulware, Hartle-

Hawking, and Unruh vacua. In all these vacua, expressions The author is grateful to Professor R. Wald and Associate

for the asymptotically detected energy, energy density, angrofessor N. Tetradis for useful correspondence. The author
pressure acting on the Dirichlet walls are obtained. The valis also indebted to Professor J. Garriga and Assistant Profes-
ues of the above-mentioned quantities are all negative, exor T. Christodoulakis for valuable discussions and enlight-

hibiting a violation of all energy conditior{g8]. This “prob-  ening comments on a draft of this paper. This work was

lem”is expected to take place in our scenario to some extengypported by the European Research and Training Network
since violations of some or all of the energy conditions ap“EUROGRID-Discrete Random Geometries: from Solid

pear as soon as scalar fields couple to gravi§,50. In the  sState Physics to Quantum Gravity{HPRN-CT-1999-
Hartle-Hawking and Unruuh vacua, the corresponding Cago163).

simir force is evaluated and proved, as expected, to be not

always attractive: it can be attractive, repulsive, or zero ac

cording to the distancé between the Dirichlet walls. In  i1he sapility of the configurations can be checked by using Eq.
contradistinction to what was known until no\80-33, in (45 in the Boulware vacuum. It is easily derived that the configu-

the Boulware vacuum, the Casimir force is also not alwaysations are unstable against small displacements. The same result
attractive. Additionally, we evaluated the net force exerted ortan be derived by using Eq&7) and (69) in the Hartle-Hawking

the Dirichlet walls. It was easily demonstrated by imposingand Unruuh vacua, respectively, but the last term in these equations
the condition of equilibrium on the Dirichlet walls, i.e., zero has to be dropped for the reason given in Sec. VI.

and on setting it equal to zero the distaricdoetween the
Dirichlet walls receives the value

It is clear that the distance between the Dirichlet walls is
controlled by the value of the cosmological constant.
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