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Global structure of Choptuik’s critical solution in scalar field collapse

JoseM. Martin-Garée* and Carsten Gundlath
Faculty of Mathematical Studies, University of Southampton, Southampton SO17 1BJ, United Kingdom
(Received 31 March 2003; published 7 July 2p03

At the threshold of black hole formation in the gravitational collapse of a scalar field a naked singularity is
formed through a universal critical solution that is discretely self-similar. We study the global spacetime
structure of this solution. It is spherically symmetric, discretely self-similar, regular at the center to the past of
the singularity, and regular at the past light cone of the singularity. At the future light cone of the singularity,
which is also a Cauchy horizon, the curvature is finite and continuous but not differentiable. To the future of
the Cauchy horizon the solution is not unique, but depends on a free fuifitteonull data coming out of the
naked singularity There is a unique continuation with a regular cerfighich is self-similay. All other
self-similar continuations have a central timelike singularity with negative mass.
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[. INTRODUCTION Type |l critical collapse is interesting, among other things,
because the maximum value of the curvature in a subcritical
In general relativity, a black hole may be formed during evolution, and the maximal value of the curvature outside the
the evolution from asymptotically flat initial data where none black hole in a supercritical evolution, both diverge as
is present. Consider a one-parameter family of regular as-
ymptotically flat initial data. It is not difficult to find such (RapedR?%Y mas~ [P — Ps | =47 2
families which form a black hole for some range of the pa-
rameter(strong data but disperse for another rang@eak as the fine-tuning is improvedThis is basically the same
datg. The boundary between the two regimes is the blackesult as the black hole mass scaling, and similar results hold
hole threshold. In what is called type Il critical collapse, thefor any curvature invariant.From the dynamical systems
black hole mass can be made arbitrarily small by adjustingicture it is clear that the end point of type Il critical collapse
the parametep of the initial data to its critical valug, . in the limit of perfect tuning ofp to its critical valuep, is
Near the threshold, the final black hole ma&ghen scales as not a “zero mass black hole” but the critical solution itself.
This solution has a naked singularity. It is therefore interest-
M=C(p—p,)? 2 ing tg examing the g'lobal s_pacetime struqture of the critical
*70 solution, and in particular its Cauchy horizon. Here we do
this for the spherically symmetric massless scalar field,
where C is a constantC depends on the family, but the where the critical solution is DSS. We focus on this system
transcendental numberis universal—it depends on the type because CSS can be viewed as a limiting case of DSS, and
of matter but not on the family of initial data. because the critical solution in the most interesting system in
Type |l critical collapse was originally discovered by which type Il critical phenomena have been found, axisym-
Choptuik in the spherically symmetric massless scalar fieldnetric pure gravity, is also DS].
[1], but has since been found in many simple matter systems In Sec. Il we discuss the global structure of Choptuik's
in spherical symmetry, and also in axisymmetric gravita-critical solution kinematically. Section Ill sets out the field
tional waved 2]. A review of the field is Ref[3]. equations for the real massless scalar field in spherical sym-
Type Il critical phenomena can be described in dynamicametry, in coordinates adapted to our problem, and describes
systems terms: the phase space of the systen{atdsast the mathematical structure of the solution at the Cauchy ho-
two attracting fixed points, namely black holes and disper+sizon of the singularity. Sections 1V, V, and VI show the
sion. The boundary between the two basins of attraction, theesults of our numerical integration of the critical solution
critical surface, contains a critical point: it is an attractorand Sec. VII contains our conclusions. Some technical de-
within the boundary surface, and a repeller only in the ondails have been removed to appendixes.
remaining direction. This means that it must have precisely
one unstable linear perturbation, with the property that add- Il. KINEMATICAL DISCUSSION
ing a bit of that perturbation with one sign leads to collapse,
while adding it with the opposite sign leads to dispersion. In A spacetime is discretely self-similaDSS if there is a
type Il critical collapse the critical point is either a discretely conformal isometryd of the spacetime such that
self-similar (DSS or a continuously self-similafCS9
spacetime. D, Gap=€ **Gap. )
The value of the dimensionless “logarithmic scale peridd”
*Email address: J.M.Martin-Garcia@maths.soton.ac.uk is a geometric property of the spacetime, independent of co-
"Email address: C.Gundlach@maths.soton.ac.uk ordinates. It is often useful to work in coordinates adapted to
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the symmetry at hand. A generic self-similar and spherically

symmetric metric can be written as

ds?=e ?"(Ad7%+2Bdrdx+Cdx*+F2dQ?), (4
where dQ2=d#?+sirféde? is the metric on the unit
2-sphere, and wher&, B, C andF are functions ofr andx.
This metric is DSS if and only if they are periodic inwith
periodA. It is continuously self-similafCS9 if these func-
tions are completely independent of We assume that the
signature is ¢,+,+,+), and that the metric is nondegen-
erate. This leads to the inequaliyC—B2<0. We also as-
sumeF=0 for definiteness.

Any four-dimensional spacetime splits into a product of a

two-dimensional spacetiméhe reduced manifo)ddand a
round two-sphere of arear#?. The area radiusis a scalar

in the reduced manifold. Here the coordinates on the reduced

manifold arer and x, and the area radius is given by
=e" 'F. Geodesics in the reduced spacetime are rddaal-
stantf and ¢ geodesics in the full spacetim&he Hawking
massmis defined by +2m/r=(Vr)2. Itis a scalar on both
the full and the reduced spacetime. Fromwe define the
two dimensionless scalags=2m/r anda=(1—pu) Y2 It
is easy to show that a spherical surface whgeel is a
closed trapped surface, and one whare 1 is an apparent
horizon. In a DSS spherical spacetimeanda are periodic
in 7.
Radial null geodesics which are invariant under the sym

metry (3) are called self-similarity horizon$SSHS. They are
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FIG. 1. (Uncompactifieg conformal diagram of the critical so-
lution up to the Cauchy horizon showing DSS-adapted coordinates.
DSS lines are shown continuous. Lines of constargre shown
dashedwe have assumesf* =2 while in realitye®=31). Note that
the numerical domain is€ 7<A (shadeg, with periodic boundary
conditions. We have illustrated the three coordinate patches we use
for numerical work: in the past patch betweenandx,, 7-lines are
spacelike. In the outer patch betwegpandx; 7-lines are timelike.

In the future patch beyons; they are null. The three patches to-
gether cover the entire spacetime without overlapping, and the co-
ordinatesx and r are continuous at the interfaces.

the key to determining the causal structure. All coordinate

systems of the forni4) are related by coordinate transforma-
tions of the form

X'=e(1.x), 7=1t(7.X), ©)

where¢ and s are periodic inr with periodA. We use this

All known type Il critical solutions in spherical gravita-
tional collapse can be defined by the properties of self-
similarity (CSS or DS§ analyticity at the past light cone,
and the requirement that they have a single unstable pertur-
bation mode. A generic spherically symmetric DSS scalar
field solution is singular either at the center or the past light
cone. Imposing analyticity at both the center and the past

coordinate freedom to make all lines in the reduced manifoldight cone defines a nonlinear PDE boundary value problem

where F=0 into lines of constank. (These can be either
regular centers or central singularitie$Ve also make all
SSHs into lines of constaxtwhereA=0.

which admits at most discrete solutioffs]. Only one such
solution has been found, and it empirically turns out to have
only one unstable mode, and to agree perfectly with the criti-

In order to discuss the global structure of the Choptuikcal solution found previously in collapse simulations by
spacetime and its possible continuations we briefly reviewChoptuik[1].

the kinematical results of Rd#4]. In a spherically symmetric

The global structure of the Choptuik solution up to the

DSS spacetime, two kinds of singularities can be distinfuture light cone of the kinematical singularitwhich is a
guished. From dimensional analysis it can be seen that th€auchy horizojpis sketched in Fig. 1, together with the

Kretschmann scalar scales &¥ for constantx, and there-
fore the setr= is a centrallbecause scales ag™") cur-
vature singularity. We call this the kinematical singularity.
Geometrically, this singularity is either a point or a null line

and 7 lines of the three coordinate patches that we shall use
in the numerical calculations. This structure is the same as
for all other known type Il critical solutions in spherical
symmetry. These solutions have a regular cextex, in the

in the reduced spacetime. There are two types of selfpast. Asx increases, the lines are at first timelike, so that

similarity horizons that in Refl4] we have called fans and

A<0. They become null at the far=x, where A=0,

splashes. The kinematical singularity is null if there is atdA/dx>0 andB>0. As x increases further, they are space-

least one splash. Additional central singularities can aris
whereF=0 for all 7. (We call these dynamicalBecauser
takes all values up t® they are connected to the kinematical

dike, so thatA>0 spacelike. Somewhere in the spacelike
region B changes sign. The lines become null again at the
second farx=x;, whereA=0, JA/Ix<0 andB<0. Ap-

singularity. There are at most two of them, connected to theroaching the kinematical singularity= from the range of
kinematical singularity at its ends. Topologically, they are“angles” x,<x=x; it is a single pointx, andx; are its past

lines in the reduced manifold.

02401

and future light cones.

1-2



GLOBAL STRUCTURE OF CHOPTUIK'S CRITICA . .. PHYSICAL REVIEW D 68, 024011 (2003

z=1Ts future of the Cauchy horizon are all timeliké&€0) until a
timelike singularityF =0 is reached. In our classification this
is a dynamical singularity, while the kinematical singularity
is a single point. This conformal structure is shown in Fig. 2.
If m~r3, or equivalentlyu~F? asx—x,, the conformal
structure is the same, but with the singularity replaced by a
regular center.

Nolan [6] has drawn spacetime diagrams for spherically
symmetric CSS spacetimes in which the point singularity at
the origin of the Cauchy horizon is only the starting point of
an ingoing central null singularity. In our classification this is
an extended kinematical singularity, which requires the exis-
tence of at least one splash, that is a line whiere0 again.
Figure 3 shows the simplest generic possibility, in which the
splash is followed by a spacelike dynamical singularity,

T =z, which covers part of the naked null singularity. This space-
time structure can actually be realized in spherical CSS sca-

FIG. 2. An extension with a timelike central singularity. Instead lar field solutionq 7]. The same, and more exotic structures,
of the central singularity the solution could also have a regularcan also be realized in spherical CSS perfect fluid solutions
center. This diagram has two fansxgtandx; . [8].

We demonstrate belowumericallythat the curvature at Contrary to our expectations, we have founq that none of
the Cauchy horizox=x; is finite in Choptuik’s scalar field these_exouc p035|b|llt|es_ are reghzed as sphencal_ DSS con-

tinuations of the Choptuik solution. There is a unique DSS

critical solution. Furthermore all geodesics cross it in finite . . .
. : continuation with a regular center, and all other DSS con-
affine parameter. The spacetime can therefore be extend : L2 : . S
inuations have a timelike singularity. In hindsight, the rea-

beyond, but this continuation is not unique. Mathematically

speaking we shall see that the solution is not analytic at thgOh appears to be that the null data on the Cauchy horizon

Cauchy horizon in the limit coming from the past, and sod'® extremely weak. With stronger ddteot associated with
there is no preferred analytic continuation to the futifée the Choptuik spacetimeve find different kinds of continu-

curvature is onlyC® from the pas). The family of continu- ations.
ations in which the curvature 8° across the Cauchy hori-
zon and which are DSS is parametrized by one free periodic Ill. COORDINATES AND FIELD EQUATIONS

functionU (7). Physically speaking this function can be in- |5 spherical symmetry, there are four algebraically inde-
terpreted as data on the naked singularity which determingendent Einstein equations, which can be taken t&hg
the continuation, in addition to the null data on the CauchyGTX, G,, andG,,. The fourth of these is a combination of
horizon. . _ o derivatives of the first three and can therefore be disregarded.

We now discuss the possible continuations that are althe first three equations contain first and second derivatives
lowed kinematically. In the simplest case, théines to the  of F put only first derivatives of\, B, andC. In the follow-

T =Zs ing we assume thdkt is a given function ofx and 7. The

Einstein equations then determine three independent linear
combinations of the six first derivatives & B and C. A
nondegenerate basis of this three-dimensional spags, is
w,, andV, V#r. [With F(7,x) given, this last term contains
only first derivatives ofA, B andC.]

central
singularity

regular
center

nuall Here we investigate massless real scalar field matter. The
singularity scalar field¢ obeys the wave equation
VaVé¢=0, (6)
regular and the Einstein equations can be written as
center

Rap=8mGVagpVpb. )

The wave equation, when written as a second order partial
differential equatior(PDE), will in general contain both first
FIG. 3. A hypothetical extension with a null singularity. This derivatives of all four metric coefficients. However, by writ-
diagram has two fans af, andx; and a splash at,. Note that this ing the wave equation in a geometrically defined first-order
extension isnot realized as a DSS continuation of the Choptuik form, all metric derivatives except one can be eliminated.
solution. Define two null derivative operatofg, andV, with the usual
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convention that both point towards the future and tiat for x=x,=0. Herea=(1—2m/r) 2 is the scalar we de-
points inwards whiléV, points outwards. Normalize them by fined above. These coordinates can be derived from the
imposing thatV,r=—r and V,r=r. We define the null de- Schwarzschild-type metric

rivatives of the scalar field adJ=27GV,¢ and V
=27 GV, ¢. The massless wave equation in spherical sym-
metry can then be written as

ds?= — @2dt?+a2dr2+r2dQ? (14)

through the coordinate change=r/(—t) and 7= —In(-t),
and definingf = a/a. The remaining gauge freedom of time
relabelling is fixed by imposing that the past light cone is on
a constan=x, line. Note that we do not follow the con-
VuWV+U-PV=0, (9 vention of Ref[1] thata=1 at the center, which in Ref5]
forced us to introduce an additional free function of time in

with the scalaP=rV?r/(Vr)?=a®-1. Using the Einstein the definition ofx. The Einstein equations are
equations, the curvature can be given in term&JandV:

V,U-V+PU=0, (8)

(a2—1)f
Rw=4U2, R,=4V%, R,=4UV (10 fo= (19
(other components of the Ricci tensor vanisind 5 1-(1+U?+V?)a?
(@) x= ” : (16)
R=—5UV. (11) f+x)U%—(f—x)V?2
a’r® (a2 = | X( Mitlae-n,  ap
The most general form of the scalar field compatible with :
DSS is and the matter equations are
U - fl(1—a®)U+V]-xU , 18
(7, X)= (7, X) + KT, (12 x= X(F7%) ; (18
where;q(r+A,?<) =y(7,X) aan is a global cpnstapt. !n .the fl(1-a2)V+U]+xV,
Choptuik solutionx=0 empirically, so thatp is periodic in x= X(F—%) ' (19

7. This means thaty andV have zero average in. More-

over, U andV in the Choptuik solution obey)(7+A4/2x) At the regular centex=0 we impose elementary flatness,

= —U(7,x) and so forV. (This of course Implies Zero aver- i< the absence of a conical singularity. In order to do this,
age) As a consequence(7+A/2X)=pu(7.x) and so for o yernarr— /1 U)/(2x) andW¥ = (V—U)/(2x%) and im-
othe_r su!table metric f_|elds. We shall assume the_se extra Synﬂa'ose that both are regular even functionsat x=0. At the
metries in our numerical work, but all our analytical expres-

sions remain valid if these symmetries are dropped. past light cone we have--x=0, which by our gauge choice

We now describe three coordinate patches that cover thlrgarei,fl niot:;'{;nxp there. We also impose the physical regu-
critical solution. We demand that both the past and the future y
light cones of the singularity occur at lines of constant V,T—(l—az)V—U=0 (20)

This makes it easier to impose regularity at the center and

past light cone, and to investigate the behavior at the futurgn the past light cone. The conditions of DSS, regularity at
light cone (Cauchy horizoh It also allows us to match the the center and regularity at the past light cone select a solu-
coordinate patches without overlap. Subject to these requirgpon. The equations on the past patch are form invariant un-
ments, we have tried to make the field equations in eacQer the linear coordinate transformatigrscx, f—cf, and
patch as simple as possible. Based on the three patches, ity and vV unchanged. In the numerical results presented
straightforward to construct a single smooth coordinate syshere we have set,=1 on the past patch. Note that the
tem covering the whole spacetinigee Sec. V| but using it regularity condition(20) is coordinate independent, &k V

from the beginning would unnecessarily complicate our Nuznda andr are all scalars and= — Inr on the light cone.
merical work. We summarize a number of coordinate sys-

tems for spherically symmetric CSS and DSS spacetimes,

i i i : B. Outer patch
and their advantages and disadvantages, in the Appendix. uter patc

On the outer patch, which extends from the past to the
future light cone, we write the metric in terms afr,x),
b(7,x), and the auxiliary functiorg() as

On the past patch, which extends from the regular center
to the past light cone, we write the metric in terms of two A=a%*(1-b?%, B=abf, C=-¢, F=1, (21
free functionsf(7,x) anda(r,x) as

A. Past patch

where&>0 is a function ofr only. a>0 is the scalar defined
A=a’*(x>—f?), B=-xa?, C=a? F=x, (13) above.We fix the remaining gauge freedom by imposing that
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the past light condo=—1 occurs atx=x,, and the future Recall that we impose the gauge condition that the CH is at
light coneb=1 atx=Xx;. Putting both light cones on a line x=X;, orb(7,x;)=1. We define the shorthand=x—x;.

of constantx requiresé&(7) to be nonconstant. There is no  We now make one fundamental assumption, namely that
outer coordinate patch that does not have at least one funthe spacetime admits regular null data on the Cauchy horizon
tion similar to £(7). As 7= —Inr everywhere on the outer y=0. This assumption is clearly necessary if we want to
patch, 7 is continuous between the past and outer patches.continue the spacetime through the CH, but here we make it

The metric equations are simply because we have not been able to find a more general
ansatz. We shall see later that it is sufficiently general to be
by, —3+a’+U%1-b)+V¥1+b) ¢ matched to the critical solution that we have obtained nu-
£ 2a Cagé’ (22) merically on the past patch.
We therefore assume th¥tis continuous, or
a, Uz-v? 0
I (23 V(7,x)=Vo(7)+0(y"). (30
By substituting this into Eq(24) in the limit b=1 we find
(@ %) ,=[1+U*1-b)+VA(1+b)la >~1, (24)  thatais also continuous andy(7) obeys
and the matter equations are (ag?)' —(1+2V3)ay 2+ 1=0. (31)
U, (1-a®U+V+uU, Because we impose periodic boundary conditions ithis
£ = a(l1—b) ' (29 ODE has a unique solution. The physical significance of this
is that the null datd/, determine the geometry of the CH.
v, (1-a®)V+U+V . Similarly, from Eq.(27) in the limit D=0 we find thatU
- == = (26)  must be continuous, andy(7) is the unique periodic solu-
¢ a(1+b) tion of

Note that thea , constraint equation is again linear an 2.
The equations on the outer patch are form invariant under the

linear coordinate transformation—cx+d, é—~¢/c, anda,  Thjs condition follows from the assumption of DSS. Finally,
b, U and V unchanged. In the numerical results presenteqdrom Eqgs.(28), (22), and(23) we find thatD is once differ-

U+ (1—ad)Ug+V=0. (32

here we have set,=—1 andx;=1 on the outer patch. entiable, so thab (7,x)=yD,(7)+o(y), andD; is given by
. Singul havi h hy hori Tl
C. Singular behavior at the Cauc.y orizon - D1=%+§(—3+ag+2vg). 33
We shall see that at the Cauchy horiZ@H) the solution

is mildly singular. Naive finite differencing breaks down

. ; At this point we introduce more shorthand notation. If
there. Instead we expand the generic solution around the o ) ) i —
Cauchy horizon in terms of two free periodic functiods | (7) iS any periodic functiorwith period A), let f be its

and(, and match this expansion to the numerical evolutior@Verage value, and lé(r) =f(r)—f be its oscillatory part.

at a small finite distance to the past of the Cauchy horizonlet J'f be the definite integral7 f(+')dr" wherer, is cho-

Before describing the full expansion, we focus on the originge, 5o thay'T has vanishing average.

of the singular behavior. _ We can now integrate E@29) for the U characteristics to

Equation(25) becomes singular at the future light cone leading order and obtain

because the denominator of the right hand side vanishes

there. In contrast to the past light cone, we do not have any — ~ 0

freedom left to enforce the vanishing of the numerator as |09|V(T)|+D17+f D1+o0(y")=const. (34

well. Therefore we expect the solution to have some kind of

singularity atx;. We rewrite Eq.(25) We see that on a characteristic- — as|y|—0. Because

U(,x) is periodic in7 with periodA, an infinite number of

DU,—U .~ (1-a’)u=V, (27)  oscillations iny at constant pile up at the Cauchy horizon

y=0. We can solve Eq27) to leading order by the method

where we have defined the metric function of characteristics. The general solution is

a(l—h)

o
_ N , whereU (7) is an arbitrary periodic function with periaf
D is positive on the outer patch and vanishes on the futurg,q

light cone. The characteristicg 7) of Eq. (27) are given by

(29) U(ry)=Uo(n)+ly|U(n0(D+olyl), (35

dx(7) _1o% (36)
—g. = ~DPl7x(7)]. (29 “~ 0.
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) _ ~ imaln) o
U47056X4_fa%+6J.D1f (37) fad 0= 2 il 49
“
r=r+H(n)+Klnly|, (38)  Heree and7 are the quantities defined above in termy/gf

The expansion depends on the two free periodic functions
1o Vo(7) and U (7). By function counting we can therefore
H(7)= 5_ Dy, (39 match any DSS solution to this expansion.
! The first noninteger term appears in each variable at the
following orders:

Kz_i. (40 . A a
D, U(7,x)=Uo(7)+|y[UNU7)+yUs(1)+O(ly[* "),
g (49)
Rewriting Eqg.(31) as
V(7,%)=Vo(7)+yVy(n)+O(ly|**9), (46)
ag—(1+2v3)=2(Inay)’, (41
a(7,x)=ao(7)+yay(n)+O(ly|* "), (47)
2 2
we see thabg=1+2Vg, and so we can expressandK as b(r.X)= 1+ yby(7)+y2by( )+ O([y]29). 48)
_ 2V5 _ In the previous section we obtained the coefficients of ex-
€~ 1-2v2 K==(1+e). (42) pansions(45)—(48) up to O(|y|). Stopping there, the first
0

order we neglect i©(y). This truncation already depends

on both free functions/, and U, and shows the singular
—_ behavior. It is also a sensible truncation numerically because
light cone is therefore justified either i<0VG<1/2, so that ¢ turns out to be very small in the Choptuik solution. Going
€>0, or if U (7)=0. We shall show numerically thatis  further, for the same reason there would be no point in in-
small but positive on the CH. In this catkandV are just cluding O(y) terms without also including alD(]y|*"*¢)
CP, and the scalar field is therefo@'. In spherical symme- terms. It turns out that we need to go@g|y|'*3¢). We have
try the Riemann tensor is determined completely by the Riccused the expansion to that order to check convergence. The
tensor, which in turn is quadratic in the partial derivatives ofexpressions are given in Appendix B.
¢, see Eq(7). The curvature is therefore quadraticiinand
V and so isC°. E. Future patch

A similar analysis, withU andV interchanged, applies to . . . . -
the past light cone. In the notation we have introduced here Our analysis of the possible continuations of the critical

we can describe the past light cone by saying #¥a0 there fsolutlonflr;] Sec. ”hhaﬁ s_hown_ that_wel can cr:)\_/fer the ;kntlre
(because the null datd, on the past light cone are large, utu_re o the Cauchy norizon In a single patg It We make

> A ) _ ) an ingoing null coordinate. This means settidg-0 andB
Up=>1/2) but that the free coefficieM, vanishes identically <. |n order to put the center=0 at a known coordinate
(because we have imposed analyticity as a boundary condjpcation, we also sef = —x. We choosex<0 here so thax
tion). increases as we extend the spacetime away from the Cauchy

horizon. We parametrize this metric in terms of the scalar
D. Expansion near the Cauchy horizon and a coefficient (not the same akin the past patch

Our initial assumption thatl and V are continuous at the

We cannot apply Fuchsian techniques to our system of  A— _4a2f(f+x), B=2a2%f, C=0, F=-x.
equations because they require gimultaneousvanishing (49)
ony=0 of the coefficients o) , andU , in Eq. (27). How-
ever, the forn(35) of the leading terms i) suggests that the Regularity of the metric requires>0 andf>0. The field
full nonlinear solution can be written as a regular part, conequations are
taining only integer powers of, plus a singular part which

contains powers ofy|€. We can in fact construct a formal (a2—1)f
solution near the Cauchy horizon in the form of an fx=— (50)
asymptotic double series
* ©  Kpax(N) . 1-(1+2U?%a 2
=2 Yo+ X Dy Kt l0), (@79,= X ’ D
n=0 n=0 k=0
(43
5 2fV2—2(f+x)U? 5
(a2 ,=| - +1la"2-1, (52)

wheref stands forJ, V, a, andb, and X
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f[(l—az)U+V]—xU,T carry out algebraic operations pointwise on thg and 7
U= X(f+Xx) ’ (53 differentiation/integration on th&,, switching from one to
the other with a fast Fourier transform algorithm.
U+(1—-a?V The main drawback of the method is the aliasing problem:
X~ X ' (54) pointwise products of fieldgnonlinearitie$ generate high

frequency modes which cannot be sampled with oNly

At the Cauchy horizonx=x;<0 we impose the coordinate oints. We partially solve that problem by doubling e
condition f+x=0. The' equatlois are mvgrlant under (padding with zerosbefore going to the,,, carrying out the
—cx, f—cf. We use this to set;=—1 on this patch. AS @ hacessary algebraic operations on the douBlednd going

consequence= —Inr on the light cone, and spis continu- back to theZ, , then halving the?, and thus throwing away

ous between the outer and future patches. high frequency noise. We have tried other possibilities, such
We find an asymptotic expansion around the Cauchy ho- 9 g Y ’ P ’

. . ) A N as padding with 8l or 7N instead ofN zero Fourier compo-
rizon in terms of two free function¥, andU.. Vo is given  ants or extrapolating the Fourier coefficients using the ob-

by the null data on the Cauchy horizon, and so is the same ag,rved fact that high frequency modes have a simple expo-

on the outer patche is therefore the same on both sidel,  hential dependence on frequertsge below; but the results
obeys the same ordinary differential equati@DE) (32) s 4re not improved. Aliasing can only be reduced by going to

on the outer patch, and so is the same function. There is NBigherN. From a numerical point of view, we are only safe

need, however, to makél, the same on both sides, as we from aliasing when the amplitude of the modes we are cut-
would not gain any differentiability by doing so. Instead we ting off is below machine precision.

considerUE as free “data on the naked singularity,” and we  Because all our fields are reﬁ[: :zN—k- Furthermore,
shall find experimentally how the global structure of thethe metric fieldsa andf are everin the sensa(r+ A/2X)

spacetime is influenced by this choice. =a(7,x)] and therefore their Fourier transform only con-
tains everk modes, while the matter field$ andV are odd
IV. NUMERICAL CONSTRUCTION OF THE CHOPTUIK [in the sensaJ(7+A/2x)=—U(r,x)] and therefore their
SPACETIME UP TO THE CAUCHY HORIZON Fourier transform only contains odd modes. Taking this

. rilymmetry into account an even or odd fi@dgampled with
: . . . o points per period is encoded /4 independent nonzero
of the Choptuik spacetime, improving the precision of Ourcomplex modes. As we have 4 independent variables

Do This wos i, noaded 0 sasert witout douhat UV, the ODE system we Solve comprisésomplex or
: y 2N real variables. In our calculations we have usdd

is different from zero, even though it is extremely small. ~ . . -
Essentially, our new scheme uses shooting methods on th:e32’64’ 128, 256, and 512. Previous investigations uéed

X axis, instead of relaxation methods. This allows us to im-_ 64. See Appendix C of Ref5] for a complete discussion

prove the treatment of the regular singular points of theOf our Fourier pseudospectral method.

equations(the center and the light coneby using Taylor

expansions. We still work with pseudospectral Fourier tech- 2. Shooting to fitting points

hiques in7 because the solution is periodic. We shall see, \yg cannot cross the light cones during the integration of
however, that the particular structure of the Fourier transformpe opE in thex axis because they are regular singular
of the Choptuik spacetime poses an unexpected problefginis of the equations. Therefore we perform consecutive

when combining Taylor and Fourier expansions. In this seCgpqqting calculations on the past, outer and future patches, in
tion we explain the numerical scheme and present the resulfgis order because we need information from the first to

for the first two patches, with special emphasis on convergp ot the second and from the second to shoot the third. The

gence properties and error analysis. issue of error propagation becomes very important.
_ Again, we describe the past patch for definiteness. Given
A. Numerics the equations(15—(18) and free dataf(z,x.)=f(7),

¥ (7,x;)=W.(7) at the center, we calculate the solution at
o Xieft Slightly larger thanx, using a second-order power ex-
For definiteness, let us suppose we work on the pastansion[leaving errors of orderX.s—x.)%]. From these
patch. Following Ref[5] we discretize oud-periodic fields  gata we integrate the ODE system forwardxinsing finite
Z(7,x), whereZ stands for any of the s¢8,f,U,V}, using gifferencing, up tox,q. In the same way, given free data

1. Pseudospectral decomposition

N equidistant points in one period: U(7,x,)=U,(7) and the gauge conditiof(7,x,)=x,, we
N—1 calculate the solution at,y, slightly smaller thanx, [this

Zn(x)EZ<EA,x) _ E Z,(x)g2mikn/N (55) time with errors of orderxp—x,ighf] and integrate back-

k=0 ward in X up to the same,q. Finally we use Newton’'s

method to look for the free data which brings the mismatch
forn=0,... N—1. Inthis way we transform our&1 PDE  petween both integrated solutions a}y down to a mini-
problem for Z(7,x) into an ODE problem for the modes mum, typically of order 10%3. (This is the machine preci-
Z(x). The essential idea of pseudospectral methods is teion of 10 %6 reduced by a factor 10 due to the calculations
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due to the accumulation of roundoff error. An implicit step
typically takes 5 to 15 iterations to converge.

B. Past patch

The natural choice for the coordinate of the centexds

-0.2 R ! =0, but there is no preferred value for the past light cone
0.4 s \ / coordinate and we choosg=1. With the set of parameters
o : v X
-0.6 : S N =256,
0 0.5 1 1.5 2 2.5 3 3.5
T Xleft: 0001,
FIG. 4. Best free data on the singular poirftg;) (continuous
line), ¥(7)/300 (dotted ling andU ,(7) (dash-dot ling Xmig=0.01,
at each step and a factor 100 from the ODE integration along Xright=0.9999,
~10* points) _
P Nimax= 7% 10 . (57)

We use a grid that becomes logarithmic near the regular
singular points, with maximum stepsitg,, at some inter- ;- Newton's method converges to the free data plotted in
med@te position. That grid is constructed using the transforFig_ 4 (see also Table)) with a value
mation

A =3.44545240¢3), (58
X¢t Xp€° ) ] o _
X=—-— (56)  which improves the precision of our previous result
1+e° 3.4453(5) more than four orders of magnitude. The metric
and matter fields integrated from those free data are given in
from a grid of equidistant points inbetween the valueg.s  Fig. 5.
and zqn; corresponding teq and Xiign; respectively. Near The error bars in Eq58) and Table | are estimated from
the two end points we have—x.=(x,—X.)€” andx,—x  the convergence properties of the code, which we now ex-
=(Xp,—Xc)€ % We integrate on a fixed grid inrather than  plain in detail. In general, we have observed that we can
using a variable stepsize method in order to check for conreach higher relative precision in the metric fields than in the
vergence withh.,.. This gives us a good estimate of the matter fields, because the former are essentially integrals of
underlying discretization error. the latter. Figures 6 and 8 contain all the convergence infor-

Concerning the ODE integrator, we have tried severamation for the past patch, but in order to properly discuss
Runge-Kutta methods, both explicit and impli¢iGauss- convergence issues, we first need to talk about an important
Legendrg, with different convergence ordel8]. In general, feature of the Choptuik spacetime.
implicit methods are better suited to our problem than ex- Figure 7 shows the field (r,x) together with a log, plot
plicit methods, particularly for high, because high frequen- of the modulus of its Fourier transform in There is a clear
cies make the problem stiffer. We choose an implicit Rungedifference in behavior between the regions above and below
Kutta (IRK2) method(implicit, 2 stages, order)dwhichiisa x=~0.2. (This difference is present in all our fields, but it is
compromise between the accuracy of a high order methogarticularly important inV', as we will see.Near the center
and the clarity of convergence of a low order method. Outthe function has larger derivatives which require many
implicit schemes are implemented by iteration uhtitliffer- modes in the Fourier expansion to be resolyseke also Fig.
ences between successive iterations converge below’.10 4). Far from the center those derivatives are much smaller
We cannot get closer to actual machine precision (90 and just a few modes are enough to achieve high resolution

TABLE I. The first 8 nontrivial Fourier modes of the free dafahe error in the last digits is shown in brackgfdote that some of them
have a relative precision better than £0

k Re f,(Xc) Im f5(Xc) Re Wy, 1(Xc) Im Wy 1(Xc) Re Uy 1(Xp) IMm Uiy 1(Xp)

0 0.2071909728) 0 0.78862424B1) —11.6194821(5) 0.296263450QH 0.090509432¢)

1 0 by def. 0.0649057078) 11.5275396Q12) 4.26991316) —0.00901909339(14) —0.02200156878(7)
2 —0.02370998706(19) —0.01438139603(19)— 9.12055613(23)  7.5700665 —0.002037853110(17)  0.001590294418

3 0013475366388 - 0.00645699456(5) —1.5735907(5) —10.3634715(8) 2.55305770) 10~ 1.732383884) 10 *
4 —0.001117368391(5) 0.00883071829) 8.214264516) 3.386691%5) 1.1239071011) 10°°> - 3.6797294(3) 10°
5 —0.00432309030(6) —0.00355712461(5) —5.8935621(21) 4.3873917l) —4.9301780(6) 10°  8.248G15) 10 °

6 0.003450318581) —0.00117027642(11) —0.6075901(6) —5.9471050(31) 1.884819 10~ 7 6.147345) 10~ 7

7 —5.3677559(20) 10t 0.0023664844B) 4.360610827) 2.026409727) 7.044595) 1078 —4.73630(8) 108
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FIG. 5. Past patch fields on a singleperiod.

results. This is reflected in a very slow decay of the Fourietus to use a largdl (N=512 in Fig. 3. But then most of the
transform neax~x. and a fast decay fox above 0.2, al- modes become essentially random %3¢ 0.2 because they
though both are exponential decays. It is important to emare well below the error threshold given by roundoff error,
phasize that this exponential decay is the best numerical eviestimated in 104 in relative terms. This threshold generates
dence we have in support of the analytical character of théhe flat plateau in the right panel of Fig. 7. The main sources
Choptuik spacetime, given the absence of a mathematicalf roundoff error are threefold: ODE integration alomrg
proof of existence of aranalytical solution to which our Fourier transforms, and inversion of a very stiff matrix in
numerical spacetime should be converging. Newton’s method. Particularly important are the errors in the
We have observed as well that the phases of the higmodes ofU, abovek=15 because they propagate inwards

frequency modeg, tend to a linear dependence @rat a  and get amplified, giving errors of relative order £dn the
given pointx. Therefore thenigh frequencybehavior of our ~ matter fields, mainly inb'. . (See Fig. 7 againThis fact sets
fields Z is similar to that of the function the limit of the maximum accuracy that we can get in the
results, with just double precision numerics and using our
code. We could use quadruple precision to improve the pre-

[

. sinha o :
> e—a|k|e4wlkT/A:—4, (590  cision in U, but the calculations would become too slow.
k== cosha— cos~ Alternatively, we could force the vanishing of those modes
A that we believe must vanish, but we do not want to assume
anything at all about the result in advance.
which has periodic sharp peaks of widdn\/(4#) and We now check convergence with respect to the numerical

height 24 for smalla. In the Choptuik spacetime the decay parameters. As one would expect, the final solution is com-
exponenta ranges from 0.28 fof . at the center to 2.04 for pletely insensitive to the choice of intermediate fitting point
U, at the past light cone. We have not found an explanatiorx,4, although the convergence of Newton’s method is faster
for this behavior, but it seems to be of dynamical origin:when using smaller values because the mismatches are
Arbitrary high-frequency perturbations of the correct freelarger. We choosg,,;q=0.01.
data at the center decay towards langesind high-frequency Several tests in simpler problems show that the ODE in-
perturbations at the past light cone grow when integratedegrator inx is perfectly fourth-order convergent. The first
towards the center, probably due ta féActors in the equa- two rows of Fig. 6 also show this fact, even though roundoff
tions of motion. errors slightly blur the point. Note that the modeslgf(7),

From a numerical point of view, this means that aliasingafter the first 10, do not converge because they are already
problems will be important near the center 0. This forces  below our error thresholdon the plateau in Fig. )7 Note
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FIG. 6. Convergence figures for the past patch. The three columns correspbpd ¥6., andU,,
organized in three pairs, describing convergence with respégtto X andx;ign: respectively, when these three parameters are halved two
or three times. The first row of each pair shows consecutive differences of fields, rescaled by factors 4, 16 and 5.2, respectively, so that they
coincide when converging with orders 2, 4 and 2.4, respecti€lynvergence with respect 1y, is slower than the expected order 3, in
particular that of the very low frequency modes fof.) The second row of each pair shows a,lpgf the power spectrum of those
consecutive differencesvithout rescaling to show the different behavior of the Fourier modes. Convergence of the high frequency modes
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of ¥, is worse than that of their low frequency counterparts, as explained in the text.
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FIG. 7. ¥(7,x) and its power spectrumif2k+1(x)|. Note the difference in behavior between the regions below and abe@e2.

also that high-frequency modes #f; do not converge for modesz, by ik, which amplifies the high frequency modes.
such small values dfip,oc. They do converge for larger val- Figure 9 shows the Fourier transforms Wf,,¥,, ¥, ob-

ues.

tained for different values dfl. For low N our estimations of

Convergence with\ is exponential as expected. Figure 8 these coefficients are bad and we do not see the expected
shows the power spectra of the free dataNet 32, 64, 128, convergence order in the expansions V\MB{T and Xrighti
256, 512. It clearly shows how much the results are imfoth because we are cutting off too soon in frequency, leav-
proved by doublingN and how the plateau goes down eaching out modes which are importafisee, for instance, the
time, until N=256, when errors |an hit our error thresh- case Of\lrz with N:64), and because of a"asing errors,
old. The data foN=512 shows that we cannot improve the which gives us wrong estimations of the modes that we are
results any further because we cannot decrease the errorsijitluding (see the unphysical tails at the end of the func-
Up. fis then perfectly resolved down to machine precisiontions.. The same phenomenon happens on the past light
but high frequencies of the matter variables cannot be imcone, but its effect is not so important. That is the main
proved near the center. It is clear that usiNg- 256 or N reason why we need at leat=256 to get good results.
=512 we are not affected by aliasing errors. However, for higheN we do see clear convergence with the

Finally, convergence witlx. and X;igr; depends on the expected ordergwith the exception of the very lol modes,
value ofN: As we said, we calculate the fields atx and  whose convergence with respect gy, is slower due to

Xiight Using Taylor expansions accumulation of high-frequency errorslify). This is shown
in Fig. 6.
f(7,)=fo(7)+ F2( 1) (X—=Xc)?+ OL(x—xc)*],  (60) We conclude that the code converges in the expected

manner with respect to all numerical parameters. Therefore

U(7,X)=Up(7) + U1 (7)(X—Xp) + U (1) (X—Xp)? we can estimate the error of the base (&) with respect to

any of the parameters of the code as the difference between

_ 3
+OLX=xXp)"], (61) the base run and another run with a refined value of that

and so for the other fields. Therefore we expect fourth ordeParameter. Those are precisely the continuous lines in Fig. 6.

convergence with respect 1@ and third order with respect

to_xright. The qoefficients _of t_he Taylor expansions are o_b— 10*3 f;\/ T,
tained as nonlinear combinations of the free data and their }
derivatives. The latter are calculated multiplying the Fourier 10%2 P ~ %
-1 A\\\\\\\
10*2 10 T,
’\ c \WW/
1072 \\‘P” 107
107 Q fe \—_W/\ v \,_\/‘
0 20 40 60 80 100 120
10710 Up mode
\
10-1 MG FIG. 9. Power spectra of the functioNs,, ¥,, andV, for 8,
16, 32, 64, and 128 modes. Aliasing problems show up as unphysi-
10°18 cally growing tails for the highest frequencies in each case. Work-

20 40 z?)de 8o 100 120 ing with only 32 modes, this introduces errors\Wy which are of
the same order of the amplitude of the most important modes. We

FIG. 8. Power spectra of the free data for 8, 16, 32, 64, and 128annot avoid going to at least 64 modgsat is, N=256). ¥V, is
modes. Note the very different behaviors of the functibnandV . presented for illustration purposes only; we do not use it in the
at the center from the functiod, at the past light cone. code.
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TABLE II. The first 8 nontrivial Fourier modes of the outer patch free défhe error in the last digit is shown in bracketblote the
very different relative precisions achievedﬁrandoé. The former is insensitive to changes in the parameters of the code, but not the latter.

k Re &5 Im & Re Vai: 1(xy) IM Vs 1(X1) ReOEZKH m U 1

0 1.322045986) 0 —5.177664(12x10°4  3.157186(5x 1074 —0.03844(5) —0.250325(8)

1 —0.00492853319(12) —0.00430580184(14) —1.5(3)x 10 —2.0(7)x10° % 0.0038883) —0.0121478(20)
2 —1.1237092(5% 10" ® 2.89549492(5% 104 —1.(4)x10° 12 2.(15)x 10713 2.895(8)x10° 4  —5.853(3)x10 *
3 1.99072448(4% 10°° —6.20831744(26% 10 ¢ —1.(5)x10° %3 0.(31)x10° 14 1.748(5)x10°°  —2.5842(28)x 10 °
4 —1.078319002(12x10°°  —1.46908361(3% 107° 1.(30)x 10714 —1.(6)x10° % 8.957(26)<1077 —1.0219(20)x 1076
5  -1.032893598(26%10 7  1.436706184(10% 107 —0.(21)x10 *# 0.(4)x10 3 4.126(10)<10 8 —3.920(10)x 10 8
6 1.74888526(8% 10 8 5.7084263(10x 10 ° 1.(25)x 10714 0.(4)x10 13 1.826(4)<10°° —1.454(4)<10°°
7 2.39356(8)x 101! —2.0053466(8) 10 ° 0.(3)x10 %8 0.(3)x10 4 7.79(12)x 107 —5.21(26x 10" 1!

Truncation errors from space and time discretization couldll but the first oscillations are piled up in the region between
be reduced to machine precision. However, errors from th&=0.95 andx=1. Figure 12 show§ using a logarithmic
expansions at the singular points cannot be brought dowaxis.
with our code below a limit which we estimatassuming no We first analyze the issue of error propagation from the
systematic errgrbetween 108 and 10°° in relative terms.  past patch to the outer patch. We need to find out how small
Therefore there is no point in reducing the other sources ofariations inA andU, change the results of the outer patch
error below that limit, and the choice of parameters for ourshooting. Assuming that the former are small, we calculate
base run(57) reflects this. first derivatives of the latter. The variations of the outer patch
free data with respect th are

C. Outer patch

In the entire outer patch the fields are much smoother in e —5.4%x10°6 1oVill- —0.0020 (64)
(as they are already on the past patchxar0.2). Therefore SA T ' SA ' '
we only need a few Fourier modes to get good precision. In
fact N=64 is enough to reach the maximum accuracy given N
by propagation of the errors in the past patch. There is no 16Ul — 15¢]l- =0.028 (65)
reason to increas further. oA " oA T
With x,=—1 andx;=1 we choose these parameters for
the numerical evolution: On the other hand, Fig. 13 shows the maximum variations of

the free data with respect to changes of the Fourier modes of
U,. We see thaV; and¢ are only sensitive to the very low

X = —0.9999 frequency modes of,, but U, changes with every mode.
left™ . ’ . . .

In any case, every derivative is small enough: The largest
error bars come from the uncertainty &n and then from
those of the first two modes ld, . The rest of the modes are
practically irrelevant for error analysis. This sets the maxi-
mum accuracy that we can achieve on our final results. As-

suming quadratic error propagation it is

N=64,

Xmid: - 09,

Xright: 09999,

hma= 0.001. (62
Now the free data are the metric functiéfr) and the matter 0.03 PN
functionsV(7)=V(r,x;) andU (7) at the future light cone. \
(Note that the functio®V/; was calledV, in Sec. Il C) The 0.02 _ \
results are given in Table Il and Fig. 10, with a final value 0.0} ~ 7
€=1.47104398) X 1075, (63) T
-0.01
clearly different from zero. We firmly believe that this is 0.0
neither a numerical artifact nor a consequence of our expan- ’
sion around the future light cone. After showing convergence L A
of the code in the outer patch, we dedicate most of this
subsection to supporting this claim. FIG. 10. Free data in the outer patch:\Z0(continuous ling

The integrated functions are shown in Fig. 11. The run-0_/20 (dotted ling and&— 1.3 (dash-dotted line Note that they are
away of characteristics is not apparent in this figure, becausal quite smooth.
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FIG. 11. Outer patch fields on a singleperiod.

Smax€=5X10"1 (66)
16maVill-=2x107%, (67)
18 mad ol = 4% 1078, (68)

[ Smaséllc=2%10"8. (69)

We now analyze convergence in the outer patch. Conver-
gence withh,, in the IRK2 method shows perfect fourth
order again. Convergence withe; is approximately third
order as expected because we expand around the past light
cone with a second-order Taylor series. See Fig. 14. Finally,
we have performed calculations expanding arowpdising
only the order zero terms and including the first order terms.

Vi and § converge withxqp, to first order when the ex-

It is still very good due to the tendency of small perturba-pansion around the CH is truncated(y|), and converge

tions to decay when integrating towards largeand, as we

said, achievable already witk=64.

FIG. 12. U in the outer patch using a logarithmicaxis. The

oscillations are clear, but not their slow decay.

to second order when the expansion is truncated at
O(|y|**3¢). This is the expected behavior. However, at the
same timeJ . converges to first order in both cagsse Fig.

14). This indicates that adding the terms of or@y(y|*"¢)

(with k=0,1,2,3) to the expansion still leaves some
O(|y|***€) error. We are confident that this is not a simple
algebraic mistake in the expansion. We note that the excess

error in the periodic functiorU, is entirely an error in its
overall phase. We therefore suspect intuitively that the run-
away phaséJ~U (7—Inly|) of the solution is to blame, but
we have not been able to formulate this idea consistently.

In order to show that is really different from zero, we
have to analyze the behavior of the functMmith respect to
Xieft @Nd Xigne- The functionVy has a very rapidly decaying
Fourier spectrum, as shown in Fig. 15. Agq—X,, all its
Fourier modes converge to zero except for the first two, and
the amplitude of the second mode is more than six orders of
magnitude below that of the first orieee also Table )I
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FIG. 13. Variation of the results of the outer patch under changes of the input data from the past patch. On the left we represent
|| 5||.. / 5p, Wheresf is the change in T& (continuous lingor in one of the functions ¥ (dotted ling, £ (dashed lingor U (dot-dashed

line), under a changép, in the real part of the modk of U,. On the right we show the same for the imaginary part of the modé, of
We lack enough precision to calculate the last point of\theurves.

amount of ingoing radiation there, given by(7). The sim-
plest continuation to look for is one with a regular timelike
genter, so that the conformal diagram is the same as for
Minkowski spacetime. In this case bdthandV are small on

the entire future patch, and we can obtain an approximate
solution in perturbation theory around Minkowski space, us-
ing the magnitude’? of V; as the small parameter. To lead-
ing order in e we obtain the d’Alembert solution on flat

Figure 16 showsv?(x) for several evolutions from the
sameXer=—0.9999 to 15 different values of,y,. The
agreement is very good. This shows that our expansio
around the future light conéncluding the singular terms
given in the appendixesaptures the behavior of the solu-
tion.

We conclude that, with errors of order 19

Vi(1)=—1.212864822) spacetime:
5 27T f=1+0(e), (72
X 10 °-co N +0.547572613)|. (70

Finally, it is interesting to see that going &(|y|*"%¢) is a=1+0(e), (72)

not essential for obtaining an accurate result. Table Il com-
pares the results far using a zeroth-order expansi@that is,

we only include the terms of ordeyd and|y|€) with those
from the first order expansiofwhich also includes ordeng
and|y|**k€). It is clear that they both converge to the same
number, even though with very different rates of conver- Vzellz{e/(ﬂﬂlﬂ)
gence.

F(MG(T)} +0( 63/2>, (73)

U_ell{_':r(;.)_

+0(e¥?),
(74

F(;')'l-G(T)}

V. CONTINUATION ACROSS THE CAUCHY HORIZON: R
THE FEUTURE PATCH with 7=7—In(1+x). In order to match the null data on the

Cauchy horizork=—1, we need— e°G’(7)=V;(7). Re-

call thatV;(7) is given numerically by Eq(70). If we want
We cannot continue the solution as flat empty Minkowskito have a regular solution at the center we négd)=

spacetime after the Cauchy horizon because we have a smallG(7). The solution is then completely determined, and it

A. The continuation with a regular center

-0.9 -0.99 -0.999 -0.9999 -0.99999 -0.9 -0.99 -0.999 -0.9999 -0.99999

Tieft Tright

FIG. 14. Convergence of the free data on the outer patch. These plots display norms of differences between consecutivencesults:
(continuous ling and 2-norm(dotted ling. On the left, convergence with respectdig; shows order 3.0 fotAJE (triangles and¢ (diamond$
and order 2.4 fol; (starg. On the right, convergence with respectdigy,; shows order 2.0 fo€ andV; and order 1.0 foﬂe.
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FIG. 15. Convergence of; . Left figure: log oV sk 1| for 15 valuesxez= —0.8976,—0.9488,—0.9744,—0.9872,—0.9936,—0.9968,
—0.9984,-0.9992,-0.9996,—0.9998,-0.9999,—0.99995,—-0.999975,—-0.9999875, corresponding from top to bottom, respectively. It
seems that all but the first two modes converge to amplitudes below our error thresholdkyghapproaches-1, even though high
frequencies become unstable for the last valuesgf Right figure: modulus of the Fourier transform of consecutive differences in the left
figure. Convergence is very clear in every mdaeluding the first ong

is clear that a nonlinear solution exists of which this is the Xjeft= — 0.999,
leading order, and which can be found numerically.

Because the null datd; on the Cauchy horizon are DSS,

it appears highly unlikely that there is another continuation

with a regular timelike center that is not DSS. We have ob-
tained the(probably unique regular continuation by shoot-
ing from expansions around the Cauchy horizon and a regu-
lar center. The free data for the shooting algorittgiven by

Xmid: _02,
Xright: _0001,
Nmax=2.5% 1074, (75)

U. at the CH and, U , at the centérwere obtained from the with very good convergence, that we do not show again. The
flat spacetime approximation. In this case we use an IRKZXelds g, f, U andV are shown in Fig. 17.

integrator and

TABLE Ill. Convergence of 18e with Xiight Using only the low-

=186,

est order terms in the regular expansion plus onlyG{g€) in U

(first column and using the full next order as wé#lecond column
Convergence is much faster in the second case, as expected, but it is
clear that both converge to the same number, within our error bars
Recall that digits starting from the fifth decimal are not relevant due
to propagation of errors from the past patch. They are shown in th

second column to make convergence clear.

Xright zeroth order first order
0.8976 238.46 0.87085
0.9488 66.166 1.36313
0.9744 26.743 1.49818
0.9872 9.4840 1.48105
0.9936 1.4599 1.47058
0.9968 0.5058 1.470305
0.9984 1.4386 1.470949
0.9992 1.7639 14710727
0.9996 1.5837 1.4710534
0.9998 1.4355 1.47104333
0.9999 1.4332 147104318
0.99995 1.4687 1.471043825
0.999975 1.4799 1.471043941
0.9999875 1.4743 1.471043921
0.999999 1.4713 1.471043911

B. All other continuations

We now consider the other possible continuations, in par-
ticular those of Figs. 2 and 3. Before performing a numerical

search of the possibilities in th&, space, we study the equa-
tions of motion in the future patch. We proceed in four steps:

a. A necessary condition for another SSH &>&. In
order to obtain Fig. 3, or any even more exotic continuation,
We must have a self-similarity horizon before the central sin-
gulanty occurs ak=x,=0.

A self-similarity horizon is a DSS linx=x,(7) (peri-

odic) whereA=0. The only factor inA= —4a?f(f +x) that
can vanishiwhile the metric is regularis f+x. We have

10
V2 10

107¢

-1.5 .9 .99 .9999 .999999
T

FIG. 16. Average ofv? on 7 for different evolutions from the
same X¢¢=—0.9999 to 15 different values 0Ky, (those of
Table ). The agreement between the solutions with smglly
and those withxig,; very close tax;= 1 implies that the final almost
constant value is neither a numerical artifact nor a consequence of
our ansatz.
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FIG. 17. Future patch fields on a singleperiod for the(probably uniqug continuation with a regular timelike center. Note tladnd
f are so close to their flat spacetime values that we plot their difference from 1, rather than the fields themselves.

(a®—1)f pens. Becausg=2m/r=1—a"?, this means that we are in
(FHx) == —+1 (760 a negative mass regime and remain there until we reach the
central singularityx=0, which is therefore timelike and has
and so negative infinite mass at least for thisThe singularity can-
not be reached with a finite value okG?<1.
(f+x)vx|f+X:O:2—a2. (77) c. Is &>1 at the singularity possible at least for some

_ values of7? If we chooseU, much larger tharD(e?), the
Al the Cauchy horizonf +x=0 and (+x),=1 because 2 term will drive ato a<1 almost immediately. However,

a’~1 is small, and sof(+x)>0 andA<O0 at least to the e know that the regular solution does not have negative
immediate future of the Cauchy horizon. If there are more

self-similarity horizons to the future of the Cauchy horizon mass and therefore it seems plausible that funcibnelose
) 'to the regular case could generate a singularity with positive
we must havef +x=0 again there and thereforé « x) X 9 9 9 y P

-0 ¢ diat ¢ f mass. We shall now argue that this is not true.
in some intermediate regioa® must increase frona® a can only increase from its CH value ftJ | is very
=1 toa?>2 in order to achieve this.

> . small. In order to explore this regime we return to the ap-
b. Once &<1 for any 7, a>—0 for that . a is given by

_ ° - proximation of perturbing around Minkowski spacetime, but
the constraint52) which reduces at the Cauchy horizon to |, dropping the assumption tHaf7) = — G(r). The result
(afz)',:(1+2Vf2)a*2— 1, (79) can be summarized as
_ a(7,X)= 1+ eX?aed 7,.X) — X I[F(7)+G(7)]?
and this means that<dla<1l+ e there. Nowa obeys the
evolution equation +eO0(x 1)+ 0(%). (80)

—2x(Ina) y=a?—1-2U2, (799  The functiona, is positive and always smaller than 2, and
is independent of. All singular terms vanish foF = —G.
Recall that in the future patck<O and increases towards For every otherF, the functiona becomes smaller than 1,
the future. Thereforem=1 is a repeller in the absence of which corresponds to negative mass, as the cented is
matter, but any outgoing radiatids drivesa to smaller val-  approached. This is due to the divergent terfas-G)/x in
ues. Hence, oncabecomes smaller than 1 for some value of Egs.(73) and (74). The crucial point is thas? is integrated
7, it will afterwards decrease to 0 for thatwhatever hap- from —U? and therefore the term in the perturbation expan-
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2
1

Lot a?=ag(7)[x|**™),  a(n)=5+Uo(n)? (82

1.0001
. R e Making the ansatz that

1

0. \ U=Uq(7)+U(7)x2+ Uy (7)x2In|x|+ U ,(7)|x|?47, (83
0.9999

0.99 V=V (7)+ V,o(7)x2+ Vo (7)X2INn| x|+ V()| x]?47,
o-0.99 -0.9 -0.5 -0.1 -0.01 -0.001 -0.0001 (84)
x

we find from theU , andV , equations to the leading order,
FIG. 18. Maximum and minimum cd for different initial data g (In|x|) that
functionsLAJE from numerical evolutions of the nonlinear equations.
Note that thex axis becomes logarithmic when approaching the Vo=—Uy, (85
boundaries, while the axis is linear between the dotted lines at
a=1-10"% a=1+10"5, and logarithmic elsewhere. The initial

1
_ T 1y

U, have been obtained multiplying the regular détkck) by dif- Va=Uat3 fo Vo, (86)
ferent constants: 0;-1 and 5. The functiora decays sooner for
larger values of the initiaUE. 1 1

Uy =Vy= Efo Uo, (87)
sion that makes the mass nonzero has coefficiel(iE
+G)?, and so the mass cannot be positive. The negative 5
mass regime is reached while perturbation theory still ap- Ua=—=Ve=—5-35Uo. (89)
plies, and we have seen that afterwards the mass must de-
crease indefinitely. (The expansion also holds in the special casel.) The

With these arguments we have ruled out the possibility ohext order,0(1), gives
having positive mass at the singularity for very latgeand
for very small(in particular, close to the regular case. .

However, we could be missing some intermediate regim . . .
where perturbation theory does not apply. For these interm(ihe metric in the future patch contains a residual gauge free-

diate cases we observe that the minimunaa$ far from 1 dom worth one per_iodic function of. Near th_e singularity
(and therefore we cannot apply perturbation thgobyt its x=0, we can fix this gauge freedom by settifg(r) o an

maximum is positive and close to 1, and only becomes neg _rsltéﬁryh\geil_ug.r(]lnth%ur 2urr(leefr]lgzlo?vczlutrggs{):;arl]rt;.nge datarrgz d
tive in the vicinity of the singularity. There could be solu- veny horizon, gaug u X y

; - s ; ; by settingf =1 at the Cauchy horizonUy(7) andU,(7) are
th-OI’]S wherea is positive at the singularity for some values of then physical free data which determiag(r) and all other

coefficients of the expansiofEquation(89) can be solved
for ay only if the right-hand side has vanishing average,
which means thaf, cannot be set completely fredlyThis

In(ad)’ +1+2U3+8f,UgU,+2U,U =0.  (89)

Numerically, however, we do not find that. We have per-
formed a large number of humerical evolutions in this inter-

mediate regime starting from) .=2"U e 7+ '_“4’8)_' _for expansion is therefore generic in the sense of depending on
n=-5,...,10 andn=0,....7. Even though itis difficult 5 free functions after the gauge has been fixed.

to evolve the system near the singularity, we always observe o pepayior just described is what we observe numeri-
a final decay ofa to 0. See Fig. 18. Therefore we believe ~
that, starting from small null dat¥; at the CH it is not cally for large values of the freia data(7) a_t the Cauchy
possible to form another SSH. Therefore, either we have 80rizon. For small values oU(7) we find Uy(7)=
regular center or a timelike singularity, and this singularity =1/y/2, that isa(7)=1. Note that by our ansatz of exact
always has negative mass. In the approach to the center witASS with x=0, U must be an odd function of with zero
a’—0 we always have) +V—0 with bothU,V finite. It ~ average. We observe in fact tha{r,x) goes to a fundamen-
should be stressed that this scenario is a consequence of ti& frequency square wave of amplitude/2/ that is, in half
small amplitude of the null datd; on the Cauchy horizon in of eachr periodU— 1/y/2, andU— — 1/1/2 in the other half.

the Choptuik solution. We have performed other evolutionsThis is shown in Fig. 19.

starting from large null data on the Cauchy horizoot V; As the centex=0 is approached wittJ,= = 12, we

of the Choptuik solutionwherea? increases beyond 2. observe empirically that the derivatives become dynami-

d. How is the singularity approached®e find that in all  cally negligible. This means that different values7oéffec-
numerical continuationa—0, f—o, U andV tend to finite  tively decouple, that at each pointthe evolution equations
values andJ — —V as the singularitx=0 is approached. If become an ODE system iy while the constraint becomes
we assume thaa—0 andU—Ug(7) asx—0 then thea,  algebraic, and that the spacetime becomes locally CSS. It

andf , equations to leading order give also means that the evolution equations become *“velocity
dominated” in the sense that all derivatives transversal to the
f=fo(m)x 1, (81)  singularity (here in spherical symmetry, this is only the
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FIG. 19. Future patch fields on a singleperiod for a singular continuation of the Choptuik spacetime.

derivative become dynamically irrelevant compared to the VI. GLOBAL IMAGES OF THE CHOPTUIK SPACETIME

one derivative running into the singularithere, thex de- Figures 5, 11, 17, and 19 show in a very detailed way the

rivative). It is known that generic spacelike singularities in . . L
general relativity with massless scalar field matter are velocg'trUCture of the Choptuik spacetime. However it is difficult

ity dominated[10]. Here we find this to be the case only in to get ”0'.“” them anidea of what_ itlooks like globally. In this
final section before the conclusions we present a number of

the limit of small datal (7). additional figures that will fill this gap. We do it in two very
As this class of continuations seems to be locally CSSjifferent ways.

near the singularity, it is interesting to study the exactly CSS
solutions from the point of view of a DSS ansatz. Starting
from a generic DSS scalar field2) we introduce a new
(gauge-dependentariable As shown in Fig. 1, our threer(x) patches match con-
tinuously, but we do not expect the resulting global coordi-
(90) nate system to be differentiable at the interfaces between the
patches. The critical spacetime itself, however, is differen-
tiable (analytic at the past light cone a@t at the CH, and

A. Global coordinate systems

f
W=U+_(U+V)=\2aG(k+,,),

which coincides with—V at the future light conef/x= it must be possible to construct global coordinate systems
—1, and obeys the equation which are at leas€?.
YW =—U .. 91) gaL(I)gneg simple possibility is synchronous slicing plus area

In exactly CSS solutions of the system the metric functions 4o —dT2+2B(T,R)dTdR+ C(T,R)dR2+ R2d02.
andU,V are independent of, and hencé&V is constant with

valueW=27G«k. The CSS solution withk=0 was found (92
in closed form by Robertsl1] and is described in Appendix \we add the gauge conditigh= —R on the past light cone
C. The CSS solutions witk#0 were studied nUmerica”y of the Singu|arity_ The coordinate transformation
by Brady[12]. We find that the smalD 7)) continuations T(7,X),R(7,X) can be easily integrated and it is shown on
locally approach a Roberts solutiwith «k=0) with a value the left panel of Fig. 20 for a singl& period inr.

of the parametep of the Roberts solution that dependsgn Another simple possibility is double null coordinates:
and not, as one might have expected, one of Brady’s solu-
tions. This is discussed in Appendix C. ds’=—w(u,v)dudv +R%(u,v)dQ? (93
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FIG. 22. Left: Phase portrait of the Choptuik spacetime from the
regular past center at to the CH atx; . Thex axis has been highly
distorted in order to show all interesting details: the axis is logarith-
mic betweerx, andx, with accumulation point at. (note that the
label x, has been situated at finite distance for convenigrite
axis is logarithmic with accumulation a betweerx, andx; ; the
axis has been transformed fratrto x; —x* to show the decay of
the functionU towardsx; (this is a semianalytical extrapolation of
our numerical data Vertical generatrices are= const lines. Right:

a reduction in the/ axis in the region betweex, andx; to show
the oscillations. Compare with Fig. 12.

with gauge conditioru=v=T at the center, wher& is the
time coordinate constructed in the previous paragraph. The

FIG. 20. Spacetime diagrams for a single period of the Choptuil@oor_di”ate Chang_e( 7,X) 10(7_',X) _iS shown on the right panel
spacetime in differentiable coordinate systefagnchronous-area Of Fig. 20 for a singleA period in .

on the left and double null on the rightt is possible to construct
the whole spacetime by adding rescalbd a factore®=31.357 or

The fieldsa, U and V in double null coordinates are
shown in Fig. 21. As these fields are spacetime scalars, they

its inversg blocks to the center and outside the figures. Continuousshould be analytic in these coordinates at the past light cone,

lines represent=const lines and dashed lines representconst
lines. By our gauge choices tim@sand @ +u)/2 coincide on the

center worldline.

FIG. 21. Scalarsa, U and V as functions of the double null
variablesu andv. Grid lines are lines of constamtor 7. Time is

andC?! at the Cauchy horizon. In the plot it looks as if they

are onlyC® at the Cauchy horizon, but that is due to a lack of
resolution in the plot: the slopes on the two sides of the
Cauchy horizon are dominated Ia, . anda;,,., which

are discontinuous at the resolution of the plot, but close
enough to the Cauchy horizon, the slope becoamesvhich

is continuous.

—

LSO

e

=S a5 LT

FIG. 23. Phase portrait of the regular continuation of the Chop-
tuik spacetime from the CH a¢;=—1 to the regular center &
=0. Again, fromx=—1 to x=—0.999 we have distorted the axis
to show the infinite number of oscillations that pile up there. From

increasing from left to right, and the central world line is at the x=-0.999 tox=—0.5 we use a logarithmic axis and from this

back.

middle point tox=—0.001 we use a different logarithmic axis.
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Vv ’ ot

FIG. 24. Phase lines of the Roberts spacetime. The colors en-
code different values gb, for both branches: 1, 0.99, 0.9, 0.5, 0.1, FIG. 25. Phase portrait of two singular continuation of the
0.01, 0.001 and 0.000Bmaller values stay longer close to the axis Choptuik spacetiméupper: initiall:le of order 10°2; lower: initial
U=V=0). The future(pas) branch of the singularity is denoted De of order 10), together with a few Roberts solutions for
with thick (thin) lines starting withv=0 (U=0). Note that the  _( 1 0.01,0.001. The=0.001 solution almost coincides with the
vertical linesU=V=*1/\2 corresponding tp=1 are unstable. eyternal envelope of the upper phase-portrait and sets a maximum
Note also that the smallqris, the longer the curves stay close to for the values that are realized in this solution. The lower phase

the unstable flat liné) =V=0. portrait is shown only for-0.999< x< —0.4. For—0.4<x<0 it is
) ) essentially on the diagonal in th&J(V) plane although the ampli-
B. Dynamical phase space portraits tude of the oscillations is not the same as in the Roberts solution.
We shall now consider the spherical DSS scalar field as aMote that for smalk this phase portrait has been truncated also in
infinite-dimensional dynamical system wherés the “time” U, becauseJ becomes large. For=—1 the phase portrait is es-

coordinate. The dynamical variables in this systemyge),  Sentially on theU axis.
V(7) and f(7) [or b(7) in the outer patch The variable
a(7) is not independent, but given by a constraint. Howeverphase portrait of two of our singular evolutions, for small

many solutions of the dynamical system correspond to thend large initialU,, respectively. In both cases ab+V
same spacetime, namely all that are related by the coordinate, 0 squeezes the phase cylinder into the diagonal, following
transformationg5). The pair of periodic functiontl(7) and 3 Roberts solution in the former case, and not doing so in the
V(7) describes a closed, possibly self-intersecting curve inatter. This figure demonstrates why it is not possible to ob-
the (U,V) plane. An entire evolution ir gives a surface that taina?=2 in the continuations of the Choptuik solution. The
is topologically a cylinder, which we may call a phase por-Roberts spacetime with=1 does have?=2 on the singu-
trait of the solution. Clearly the surface itself is invariant |arity, p=0 (Minkowski) hasa?=1, and all othemp have
under the coordinate change- 7+ i(x,7). If we considerr  32_,0. The p=1 Roberts solution has the phase libe

as our “space” coordinate in the usual 431" split, then by~ —v/= +1/,/2 line. To reacta?=2 approach a solution must
looking at the phase portrait we have eliminated the “spampproach this line from the very beginning, because it is

tial” gauge freedom. The “slicing” freedomx— (X, 7)  ynstable. This require¥ of order 14/2 at least and on the
however does change the shape of the phase portrait, so 'tdf’auchy horizon we only havé of order 10°3.

not completely gauge invariant. The Choptuik spacetime up
to the CH is given in Fig. 22 and its regular continuation is
shown in Fig. 23.

Imposing CSS means that the system is independent of  In a companion papdi4] we investigate the constraints
and hence the phase portrait id,(/,x) reduces to a line that that the kinematic assumptions of spherical symmetry and
can be easily projected on th&J (V) plane. Then the whole discrete self-similarity impose on the causal structure. The
evolution of the system can be described by this curve in th&ey elements of our analysis were the self-similarity
(U,V) plane, which is now completely gauge invariant. Thishorizons—radial null geodesics that are mapped onto them-
is essentially what Brady has dohE2]. selves by the self-similarity. These come in two types: a

In order to understand the singular continuations of the‘fan” connects a point singularity to a piece of null infinity,
critical spacetime, we first look at phase portraits of the Robwhile a “splash” connects a piece of null singularity to a
erts spacetime. Figure 24 shows the phase lines of the Ropoint at null infinity. All spherically symmetric and self-
erts solution for several values @fin both branchegsee  similar spacetimes can be enumerated in terms of a sequence
also Appendix @. We see that the shape of the curves be-of fans and splashes. We found that the singularity is central
come constant for very small values mfbut just translated and consists of a middle segment which is either a point or
along the log axis. On the other hand Fig. 25 gives the null line, flanked by two segments which can be timelike,

VII. CONCLUSIONS
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spacelike, or null lines, or which can be absent. There ar&ations piling up as the Cauchy horizon is approached. The
never two or more disconnected singularities. continuation of the spacetime beyond the Cauchy horizon is
In this paper, we have focussed on scalar field matter andot unique, but we have shown that if it is DSS then the
in particular Choptuik’s critical solution in gravitational col- naked singularity is either a single point or timelike with
lapse. This solution is found as an intermediate attractor ifhfinite negative mass. The spacetime near the timelike sin-
the evolution of regular asymptotically flat scalar field initial ularity is locally CSS and velocity dominated.
data near the black hole threshéid. Independently, it can The question remains whether this structure is stable
be constructed as the solution of a nonlinear PDE boundarg9@inst perturbations which break self-similarity and/or
value problem from the assumptions of spherical symmetry>Pherical symmetry. Because the background is spherically
discrete self-similarity, and analyticity at the past center angY™Metric and periodic i, all such perturbations are of the
past light cone of the singularifig]. It can then be uniquely ' © f(x,7), wheref(x,7) IS periodic, times a suitable
continued up to the future light cori€auchy horizonof the scalar, vector or tensor spherical harmonic. We have shown

) . : . in the pas{5,13] that all but one of these modes decay, with
singularity. Referencfs] found that the scqlar f|EId qscnlates ReA<0. (The one growing mode determines the critical ex-
roughly as cos(lly]) as the Cauchy horizoy=0 is ap-

hed. It ted on th tical ds that th onent for the black hole magshe functionsf(x,r) were
proached. 1t was suggested on Iheoretical grounds that thexg . |ateq explicitly only between the regular center and past
oscillations are damped by a factig€ with >0, but the

; 0 Sl light cone, but as they are by construction analytic at the past
numerical v_alue ofe was too small to distinguish it from light cone, they can be analytically continued up to the
zero numerically. _ _ Cauchy horizon, with the same
We have repeated the numerical calculations of Ref. What needs to be done is to check that the functions
from scratch and have increased the accuracy by more thap@xﬂ.) remain bounded asapproaches the Cauchy horizon.
four orders of magnitude. We have found the positive valuaye expect that this is true. Nolan and Watgtd] have in-
for e given in Eq.(63). Therefore the scalar field is continu- vestigated a massless minimally coupled, nonspherically
ous on the Cauchy horizon, with null data given in EZ0).  symmetric scalar field propagating on a class of spherically
The structure of the fields near the Cauchy horizon is quitgymmetric CSS spacetimes, and find that its gradient remains
complicated, and has been discussed in Secs. Ill C and Ill Ginite at the Cauchy horizon. The structure of the full pertur-
All possible DSS continuations beyond the Cauchy hori-pation equations is similar.
zon are determined by thixed) null data on the Cauchy  As the functionsf(x,7) cannot be analytic at the Cauchy
horizon, and onéarbitrary) periodic functionU .(7) that can  horizon (because the background is hdhe spectrum of
be thought of as data emerging from the naked singularityneed not be the same in the continuation beyond the Cauchy
(In the absence of the naked singularity, null data on thénorizon, and is likely to depend on the choice of continua-
Cauchy horizon would alone determine the continuation.tion. We have finally given, for the first time, a number of
There is a unique DSS continuation that has a regular timeglobal images of the Choptuik spacetime, trying to minimize
like center except for a naked point singularity. For all otherthe gauge content of the pictures.

values of the arbitrary functiod .(7), the continuation has a

timelike central singularity with infinite negative mass. In ACKNOWLEDGMENTS
particular, neither Fig. 3, nor the even more exotic spacetime . . _
diagrams found in self-similar perfect fluid solutiof& can We would like to thank James Vickers for helpful discus-

arise as continuations of the Choptuik solutitalthough sions. This research was supported by EPSRC Grant No.
they can probably arise in other DSS scalar field solujions GR/N10172/01.
The global structure of the Choptuik solution is of interest
partly because of the connection between critical collapse AppeNDIX A: REVIEW OF COORDINATE SYSTEMS
and cosmic censorship. Choptuik’s work has established that FOR GIVEN E
(assuming the validity of general relativity at arbitrarily high
curvature$ a naked singularity can be formed in the spheri- In this appendix we review a variety of coordinate sys-
cal Einstein-scalar field system from generic regular and agems defined by giving as a function ofr andx. This class
ymptotically flat initial data by fine-tuning any one param- covers the coordinate systems used in RE8s7,12,15,1§
eter to the black hole threshold. Solutions with a nakedbut does not include the Lagrangian fluid coordinates used in
singularity therefore form a subset of codimension @he  Ref.[17]. We classify the gauges within this class in three
black hole threshold in the space of initial datia all solu-  stages(1) We fix F(7,x). (2) We impose an algebraic rela-
tions arising from regular data. The Choptuik spacetime is ation betweerA, B andC. (3) We parametrizéd, B andC in
attractor on the critical surface and therefore, assuming that terms of two functions, sag andf. (It will turn out to be
is actually a global attractor on the surface, we can concludaseful to always use the scakdefined above as one of the
that every naked singularity will have, at least in a neighbortwo parameters.
hood of the singularity, the structure of the Choptuik space- In a DSS spacetime, the unknowns are periodie.iwWe
time. therefore solve the Einstein equations by “evolving” xn
We can now summarize this structure as follows: The curwith periodic boundary conditions ir. When we use the
vature at the Cauchy horizon of the singularity is finite butEinstein equations to eliminate the metric derivatReU
not differentiable, with an infinite number of damped oscil- andV obey a pair of transport equations of the form
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Uy=(.. U +(...), Vy=(.. )V +(...), a in Schwarzschild coordinatesa (is the scalar we have
defined abové.The best parametrization we have found is
(AL) o ) .

) by a and f=a/a, and is given in Eq(13) above. It gives
where the dots stand for a known function@fV, aandf  OpE evolution equations fca andf, and a linear ODE con-
but not their derivatives. By a suitable parametrizatiol\of  straint equation foa~2. The transport equations for andV
B and C in terms ofa andf, the Einstein equations can gre linear inU andV becausé® reduces to a function a,
always be brought into the form of two ODEsxnwhich for 5,4 % The light cones are dt+x=0 (although of course

our purposes are evolution equations, and one ODE,in only one light cone can be covered at one time by a past
which for our purposes is a constraint patch.

fo=(..0), ax=(...), a,=(...). (A2

This Ias_t equation can be made_ linearain® (that IS, np) On an outer patch that stretches from the past to the future
by a suitable choice df at least in all three coordinate sys-

tems we use. This inhomogeneous linear equation can thelz'ﬁ]zt i(t:OiQe E)hses?blllge':) Tnliaslfebtehgmetlilrl;eeI?Iiele:\?érsorﬂg\rléhe'ltﬁ,e
be solved uniquely foa in terms ofU, V andf, using the fact P yw :

that U, V andf are periodic inr and that we requira to be simplest choice foFF compatible with all these possibilities
L : . isF=1.
periodic, too. In a CSS solution, where nothing depends on 9. Schwarzschild outer patcAssuming that ther lines

G weaagngc;nstramt becomes an algebraic equation I|nk|ngare timelike everywhere meafs<0. We haveB<0 on the

past light cone an@®>0 on the future light cone, so tha&t
has to change sign somewhere between. TBistirface” is
where ther andx lines are orthogonal. In Reff5] one of us
The regular center is both timelike and afine, but7is  used a coordinate system in the outer patch that was based on
finite there. This requireB =0 at the center, anB>0 else- Schwarzschild coordinates. As in the past patch based on
where. The simplest choice BE=x. On a past patch, it is Schwarzschild coordinates, this med —xC. However,
possible to choose the lines to be timelike, null or space- when we imposé&3= —xC together withF=1, we face an
like, or to change signature. We consider only the first twounexpected coordinate singularity xat0. In particular, if
possibilities. we again usea and f=«/a to parametrize the metric, we
e. Bondi past patchlf we choose ther lines to be null  obtain an ODE constraint and an ODE evolution equation for
everywhere, this mearS=0. We then havd8<0 between a as before on the past patch, but fave obtain an equation
the past center and the past light cone, Bil0 beyond the of the form
past light cone, so tha andB both change sign at the past
light cone.F=x andC=0 has been used by Brad$2] to f :( o)) (A7)
investigate CSS solutions with scalar field matter. He used X X '
the Bondi metric coefficients that are traditionally callgd

andgas parameters. In a DSS solution this gives a constrairin order to make the coordinates regulaxatO, we need to

forg anda The best parametrization we have found uses thé‘md that is effectn_/_ely what was done n Rgﬁ]‘ But this
mass functiora and the Bondi metric coefficierit=g/aZ: introduces an additional boundary condition just to keep the

coordinate system regular on a surface where the solution

2. Outer patches withF=1

1. Past patches withF =x

A= — 9(51 2x) = —a2f (¥ 2x) (A3) itself is perfectly regular, and that is why we do not use these
’ coordinates here.
B=Tg=¥a?f, (A4) h. Best buy outer patchA better algebraic condition to
combine withF=1 is C=—1. A workable parametrization
C=0, (A5) s in terms of the mass functioa and B itself. This gives
ODE evolution equations fa andB, and a(nonlineay ODE
F=x, (A6)  constraint fora. The light cones are @*+B=0. If we re-

placeB by b=B/a, we have the parametrization given above
where the upper sign applies whenis an outgoing null in Eg. (21), and the ODE constraint fa becomes linear in
coordinate, and the lower sign applies wheis an ingoing a2, while the wave equation becomes lineaturandV.

null coordinate, assuming that-0. This gives an ODE evo- i. A=—C: unworkable.It is compatible withF=1 to
lution equation and a linear ODE constraint 7%, and an  assume that the lines “bend round” to become spacelike at
ODE evolution equation fof. large and smalk. This means that changes sign. A natural

f. Schwarzschild past patchf. the 7 lines are spacelike choice is thatA and C change sign together, and we can
everywhere, this implie€>1. A natural algebraic condition impose this by settind=—C. We have not found a way of
to impose is to make the lines orthogonal to the lines.  parametrizing this choice in a way that brings the Einstein
This meansB(r,x) = —xC(7,x). 7 is then—In(—t) wheret  equations into the standard forfA2). Parametrizing witB
is the Schwarzschild time coordinate. A possible parametriand u gives two roots folA. Using A and i gives two roots
zation is in terms of the metric coefficients often callednd  for B.
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j- x and 7 orthogonal: unworkableWe can also force the
“bending round” by makingr andx lines orthogonal every-
where, orB=0. This implies that, while they are indepen-
dent, A and C change sign together. ParametrizingAwand
C we obtain an evolution equation and a constraintX@nd
a constraint forC. But the constraint foC is homogeneous
C ,=N(A,U,V)C, so thatC cannot be periodic. Therefore

this coordinate system is not compatible with CSS or DSS.

k. Forcing the light cones: unworkablestead of finding

PHYSICAL REVIEW D 68, 024011 (2003

The regular coefficients to higher orders continue in this
style, with U,(7) the solution of a linear inhomogeneous
ODE, whileV,,, a, andb,, are given algebraically.

The nonvanishing singular coefficients up @(y**39)
are

a working outer patch and then forcing the two light cones to

fall on the linesx=x, and x=x; by imposing A(7,Xp)
=A(7,X;)=0, we can makeA a given function ofx. The
simplest such choice i&=1—x? which vanishes ak=
+1. (The two light cones will be distinguished by the sign

of B.) A parametrization that brings the Einstein equations

into standard form is

A=1-x% B=bc, C=-c? F=1. (A8)
This gives an evolution equation and a constraintdfand a
linear constraint forc. However, the right-hand sides of all
three equations are of the forfwb. Furthermore, ab=0
the numerator ofb , depends on the matter throung12
+V2, while the numerator ob, depends on the matter

through U?—V?2. (The numerator ot . is proportional to

that ofb ,.) That means that we would have to impose two

independent regularity conditions at=0. Together these

would fix U andV completely. Therefore this coordinate sys-

tem is not sufficiently generic near the lilBe=0.

APPENDIX B: SINGULAR EXPANSION AROUND
THE CAUCHY HORIZON
From Egs.(46),(47) we see that

D=yD;(7)+y?D,(7)+O(|y|?"¢). (B1)

The regular coefficients tO(y) are as followsU (7) is the
unique periodic solution of

Uj+(1—-a3—Dy)U;+V,—2a0a,Ug=0 (B2
and
g 2 '
Vlz_z_ac)[(l_ao)V0+Uo+V0], (B3)
g 2 2
alz—E(UO—VO), (B4)
g!
blz—a———(—3+ao+2V ), (B5)
0
a; 3
b2_ Z_aobl 4a (Zaoal b U%+ b1Vg+4VOV1),
(B6)
agb,
=T (B7)

al+e(TlX):él+e(7)él+e(;)u (B8)

14247, X) =814 26(T) 14 2(7), (B9)

Vi 7,X) =V, (1)Ves (1), (B10)
3

Up o 7,X)= ;10&'16(T>0§‘16<%>, (B11)
7

Ugsod(7,X) = gloa'lzsmoa'lze(%), (B12)
6 .

Upiadmx) =2, U900 5.(7) (B13)

We only give two examples of how these coefficients are
derived. Substituting the ansatz into thg, equation and
isolating the terms 0O(y€) in the result, we obtain

(1t e)ay, (1)ay, (1) +Kay, (1)a], (7)

=—&)Uo(NULNU(7). (B14)
We solve this for allr and 7 by setting
Sy o(r) = 2D DU T)UOE(T)UE( ” (B15)

and by makinga, . .(7) the unique solution of the ODE

“ 1+e€.

ar, .t K —a,. . +U0_=0. (B16)

If we substitute the ansatz into thé, equation(27) and
isolate the terms o®(y!*€), we find

r(l)
1+e

Dyf (1+e2 UR 0P 4K U, 0

+D,[(1+€)U U +KU U]

O 0) —2ay2,0.0,

=(1-a§) 2 U
—2a0ay; @1+ Uo+ Vi Vi

+§i:0

OBTRY
1+E 1+er

(B17)
20)

BecauseKD,=1+H’', the derivativeslAJ1+E cancel out.

Taking also into account thﬁ/cHE: éHE (this is an accident
at this particular ordey the equation can be rewritten as

PO A+ 1+HN 2 O
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nite) negative mass, and fer<0 forms the past branch of

2[00+ (@ -a3—(1+e)DyU{) J0(), the Roberts singularity. The line= (1— p)v is timelike with
' negative mass fop<1, null with zero mass fop=1, and
+[(— eD,—2ay3,)U,]0 +[—KD,U, 10! spacelike with positive mass>1. Forv>0 it forms the
future segment of the singularity.
+[Vis.—2a0a1+ Uplags . =0. (B18) Some of our solutions become asymptotically CSS and

havex=0, therefore approaching the Roberts spacetime. We
The terms in square brackets all dependraend each mul- know that the solutions develop a timelike, negative mass

tiplies a different known function of. To solve this for all- ~ Singularity, which must correspond to one of the two

- ; o (i) ; £, branches of the Roberts singularity. In this appendix we
n w ign on ro h function ofr: . . .
andr, we assign one tero; . to each function ofr study the issue of which of the two branches is actually ap-

proached in our numerical evolutions and for what values
of p.
Our scalardJ andV are

Uf.=0 0 .=a;,.. (B19

€

The corresponding coefficientd{) _ are the unique solu-

tions of the ODEs
b Pv P u
U9 +@1-a2—-(1+eD)U) +sV=0, (B20) J2v—u’ V2 o—u-p%’

where the source tern®&" can be read off directly from Eq. where both denominators are positive in the region of inter-

(B18). The calculation of the other terms proceeds in a simi-est. It is clear thap is covariantly defined by andV on the

lar manner at all orders. Note that the functions of tfpe light conesu=0 orv=0, respectively. However, at the sin-

wheref stands forV, a, andb, are given algebraically anti ~ 9ularities u=(1*p)uv the scalars take values=—V=

obeys an ODE. FoU it is the other way around. +1/y2 for any 0# p#1 in the Roberts solution. If we use an
The limit Vo=0<e=0 of our expansion exists. The expansion using a generic self-similar coordinatich that

regularO(y") terms in the series vanish identically, and so“/U:_F(y) with the singularity aty=0 [that is, F(0)=1

do some of theD|y|"*k¢ terms but not all of thema, and =PI

a,. ., for example, vanish because they are proportional to

U,, buta,,,. is proportional toU?, and so encodes the \/Eu(y):il_XF,(o)Jro(yz) (5
p L

curvature toO(y).

In the limit e=0 the curvature components proportional
to U2 are no longer continuous at the CH because they are
now periodic in7=7—Inly|, but for the same reason they
remain bounded. The components proportion&) ¥bandV?
are still continuous even then becansgés O(y). ais also  Thereforep is covariantly given by the ratio of the rates at

1+p

V2V(y)=F14+ = —F'(0)+O(y?). (C6)

TI<
|_\
[+

o

still continuous, witha=1 on the Cauchy horizon. which U andV approach their values at the singularity
. du 1+
APPENDIX C: THE ROBERTS SOLUTION “md_V: - = p. C?)
In the notation of Ref[18], the Roberts solutiofl1] is x—0 P
given by

This determines botp and which branch of the singularity
ds?=—dudv +r?(u,v)dQ?, (C1  we approach locally: The upper sign applies fdu/dV]|
>1 (past branch, turned upside dowand the lower sign for
1 |dU/dV|<1 (future branch of the singularity
r2(u,)= 2L p?v?—2vu+u?], (C2 We can relate the coordinates, ) of Egs.(C1)—(C3) to
our coordinatex through

1 (1-p)v—u u\2
¢(u,v)=mlog(l+p)v_u, (C3 (1—;) =p2+(1-p?)x2 (C8)

with p a constant parametgo=0 is Minkowski spacetime This expression applies only for negativend so only cov-
with zero scalar field, and without loss of generalitz0.  ers the future branch of the singularity. We obtain the expres-
Only the regions ?>0 are physical and without loss of gen- sions for the past branch exchanging the role of the functions
erality, we consider the right side - u>0) of the space- U andV. That explains why exchanging andV in Eq.(C7)
time. amounts to a change of branch. It also shows that we have to
Forp#0, the linesu= (1% p)v are central curvature sin- change branch four times par period as we move through
gularities: the mass functiop=— p?uv/(4r?) diverges on the four quadrants determined by the lings- V=0 andU
them. The lineu=(1+p)v, v<O0 is timelike and haginfi- —-V=0.
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