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Global structure of Choptuik’s critical solution in scalar field collapse

JoséM. Martı́n-Garcı´a* and Carsten Gundlach†

Faculty of Mathematical Studies, University of Southampton, Southampton SO17 1BJ, United Kingdom
~Received 31 March 2003; published 7 July 2003!

At the threshold of black hole formation in the gravitational collapse of a scalar field a naked singularity is
formed through a universal critical solution that is discretely self-similar. We study the global spacetime
structure of this solution. It is spherically symmetric, discretely self-similar, regular at the center to the past of
the singularity, and regular at the past light cone of the singularity. At the future light cone of the singularity,
which is also a Cauchy horizon, the curvature is finite and continuous but not differentiable. To the future of
the Cauchy horizon the solution is not unique, but depends on a free function~the null data coming out of the
naked singularity!. There is a unique continuation with a regular center~which is self-similar!. All other
self-similar continuations have a central timelike singularity with negative mass.
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I. INTRODUCTION

In general relativity, a black hole may be formed duri
the evolution from asymptotically flat initial data where no
is present. Consider a one-parameter family of regular
ymptotically flat initial data. It is not difficult to find such
families which form a black hole for some range of the p
rameter~strong data! but disperse for another range~weak
data!. The boundary between the two regimes is the bla
hole threshold. In what is called type II critical collapse, t
black hole mass can be made arbitrarily small by adjus
the parameterp of the initial data to its critical valuep* .
Near the threshold, the final black hole massM then scales as

M.C~p2p* !g, ~1!

where C is a constant.C depends on the family, but th
transcendental numberg is universal—it depends on the typ
of matter but not on the family of initial data.

Type II critical collapse was originally discovered b
Choptuik in the spherically symmetric massless scalar fi
@1#, but has since been found in many simple matter syst
in spherical symmetry, and also in axisymmetric gravi
tional waves@2#. A review of the field is Ref.@3#.

Type II critical phenomena can be described in dynam
systems terms: the phase space of the system has~at least!
two attracting fixed points, namely black holes and disp
sion. The boundary between the two basins of attraction,
critical surface, contains a critical point: it is an attract
within the boundary surface, and a repeller only in the o
remaining direction. This means that it must have precis
one unstable linear perturbation, with the property that a
ing a bit of that perturbation with one sign leads to collap
while adding it with the opposite sign leads to dispersion.
type II critical collapse the critical point is either a discrete
self-similar ~DSS! or a continuously self-similar~CSS!
spacetime.

*Email address: J.M.Martin-Garcia@maths.soton.ac.uk
†Email address: C.Gundlach@maths.soton.ac.uk
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Type II critical collapse is interesting, among other thing
because the maximum value of the curvature in a subcrit
evolution, and the maximal value of the curvature outside
black hole in a supercritical evolution, both diverge as

~RabcdR
abcd!max;up2p* u24g ~2!

as the fine-tuning is improved.~This is basically the same
result as the black hole mass scaling, and similar results h
for any curvature invariant.! From the dynamical system
picture it is clear that the end point of type II critical collap
in the limit of perfect tuning ofp to its critical valuep* is
not a ‘‘zero mass black hole’’ but the critical solution itse
This solution has a naked singularity. It is therefore intere
ing to examine the global spacetime structure of the criti
solution, and in particular its Cauchy horizon. Here we
this for the spherically symmetric massless scalar fie
where the critical solution is DSS. We focus on this syst
because CSS can be viewed as a limiting case of DSS,
because the critical solution in the most interesting system
which type II critical phenomena have been found, axisy
metric pure gravity, is also DSS@2#.

In Sec. II we discuss the global structure of Choptuik
critical solution kinematically. Section III sets out the fie
equations for the real massless scalar field in spherical s
metry, in coordinates adapted to our problem, and descr
the mathematical structure of the solution at the Cauchy
rizon of the singularity. Sections IV, V, and VI show th
results of our numerical integration of the critical solutio
and Sec. VII contains our conclusions. Some technical
tails have been removed to appendixes.

II. KINEMATICAL DISCUSSION

A spacetime is discretely self-similar~DSS! if there is a
conformal isometryF of the spacetime such that

F* gab5e22Dgab . ~3!

The value of the dimensionless ‘‘logarithmic scale period’’D
is a geometric property of the spacetime, independent of
ordinates. It is often useful to work in coordinates adapted
©2003 The American Physical Society11-1
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the symmetry at hand. A generic self-similar and spherica
symmetric metric can be written as

ds25e22t~Adt212Bdtdx1Cdx21F2dV2!, ~4!

where dV25du21sin2udw2 is the metric on the unit
2-sphere, and whereA, B, C andF are functions oft andx.
This metric is DSS if and only if they are periodic int with
periodD. It is continuously self-similar~CSS! if these func-
tions are completely independent oft. We assume that the
signature is (2,1,1,1), and that the metric is nondegen
erate. This leads to the inequalityAC2B2,0. We also as-
sumeF>0 for definiteness.

Any four-dimensional spacetime splits into a product o
two-dimensional spacetime~the reduced manifold! and a
round two-sphere of area 4pr 2. The area radiusr is a scalar
in the reduced manifold. Here the coordinates on the redu
manifold aret and x, and the area radius is given byr
5e2tF. Geodesics in the reduced spacetime are radial~con-
stantu andw geodesics in the full spacetime!. The Hawking
massm is defined by 122m/r 5(¹r )2. It is a scalar on both
the full and the reduced spacetime. Fromm we define the
two dimensionless scalarsm52m/r and a5(12m)21/2. It
is easy to show that a spherical surface wherem>1 is a
closed trapped surface, and one wherem51 is an apparen
horizon. In a DSS spherical spacetime,m anda are periodic
in t.

Radial null geodesics which are invariant under the sy
metry~3! are called self-similarity horizons~SSHs!. They are
the key to determining the causal structure. All coordin
systems of the form~4! are related by coordinate transform
tions of the form

x85w~t,x!, t85t1c~t,x!, ~5!

wherew andc are periodic int with periodD. We use this
coordinate freedom to make all lines in the reduced manif
where F50 into lines of constantx. ~These can be eithe
regular centers or central singularities.! We also make all
SSHs into lines of constantx whereA50.

In order to discuss the global structure of the Chopt
spacetime and its possible continuations we briefly rev
the kinematical results of Ref.@4#. In a spherically symmetric
DSS spacetime, two kinds of singularities can be dis
guished. From dimensional analysis it can be seen that
Kretschmann scalar scales ase4t for constantx, and there-
fore the sett5` is a central~becauser scales ase2t) cur-
vature singularity. We call this the kinematical singulari
Geometrically, this singularity is either a point or a null lin
in the reduced spacetime. There are two types of s
similarity horizons that in Ref.@4# we have called fans an
splashes. The kinematical singularity is null if there is
least one splash. Additional central singularities can a
whereF50 for all t. ~We call these dynamical.! Becauset
takes all values up tò they are connected to the kinematic
singularity. There are at most two of them, connected to
kinematical singularity at its ends. Topologically, they a
lines in the reduced manifold.
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All known type II critical solutions in spherical gravita
tional collapse can be defined by the properties of s
similarity ~CSS or DSS!, analyticity at the past light cone
and the requirement that they have a single unstable pe
bation mode. A generic spherically symmetric DSS sca
field solution is singular either at the center or the past li
cone. Imposing analyticity at both the center and the p
light cone defines a nonlinear PDE boundary value prob
which admits at most discrete solutions@5#. Only one such
solution has been found, and it empirically turns out to ha
only one unstable mode, and to agree perfectly with the c
cal solution found previously in collapse simulations
Choptuik @1#.

The global structure of the Choptuik solution up to t
future light cone of the kinematical singularity~which is a
Cauchy horizon! is sketched in Fig. 1, together with thex
andt lines of the three coordinate patches that we shall
in the numerical calculations. This structure is the same
for all other known type II critical solutions in spherica
symmetry. These solutions have a regular centerx5xc in the
past. Asx increases, thex lines are at first timelike, so tha
A,0. They become null at the fanx5xp where A50,
]A/]x.0 andB.0. As x increases further, they are spac
like, so thatA.0 spacelike. Somewhere in the spaceli
regionB changes sign. Thex lines become null again at th
second fanx5xf , whereA50, ]A/]x,0 andB,0. Ap-
proaching the kinematical singularityt5` from the range of
‘‘angles’’ xc<x<xf it is a single point.xp andxf are its past
and future light cones.

FIG. 1. ~Uncompactified! conformal diagram of the critical so
lution up to the Cauchy horizon showing DSS-adapted coordina
DSS lines are shown continuous. Lines of constantt are shown
dashed~we have assumedeD52 while in realityeD.31). Note that
the numerical domain is 0<t,D ~shaded!, with periodic boundary
conditions. We have illustrated the three coordinate patches we
for numerical work: in the past patch betweenxc andxp t-lines are
spacelike. In the outer patch betweenxp andxf t-lines are timelike.
In the future patch beyondxf they are null. The three patches to
gether cover the entire spacetime without overlapping, and the
ordinatesx andt are continuous at the interfaces.
1-2
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We demonstrate belownumerically that the curvature a
the Cauchy horizonx5xf is finite in Choptuik’s scalar field
critical solution. Furthermore all geodesics cross it in fin
affine parameter. The spacetime can therefore be exte
beyond, but this continuation is not unique. Mathematica
speaking we shall see that the solution is not analytic at
Cauchy horizon in the limit coming from the past, and
there is no preferred analytic continuation to the future.~The
curvature is onlyC0 from the past.! The family of continu-
ations in which the curvature isC0 across the Cauchy hori
zon and which are DSS is parametrized by one free perio
function Ûe(t). Physically speaking this function can be i
terpreted as data on the naked singularity which determ
the continuation, in addition to the null data on the Cauc
horizon.

We now discuss the possible continuations that are
lowed kinematically. In the simplest case, thex lines to the

FIG. 2. An extension with a timelike central singularity. Inste
of the central singularity the solution could also have a regu
center. This diagram has two fans atxp andxf .

FIG. 3. A hypothetical extension with a null singularity. Th
diagram has two fans atxp andxf and a splash atxh . Note that this
extension isnot realized as a DSS continuation of the Choptu
solution.
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future of the Cauchy horizon are all timelike (A,0) until a
timelike singularityF50 is reached. In our classification th
is a dynamical singularity, while the kinematical singulari
is a single point. This conformal structure is shown in Fig.
If m;r 3, or equivalentlym;F2 as x→xr , the conformal
structure is the same, but with the singularity replaced b
regular center.

Nolan @6# has drawn spacetime diagrams for spherica
symmetric CSS spacetimes in which the point singularity
the origin of the Cauchy horizon is only the starting point
an ingoing central null singularity. In our classification this
an extended kinematical singularity, which requires the ex
tence of at least one splash, that is a line whereA50 again.
Figure 3 shows the simplest generic possibility, in which t
splash is followed by a spacelike dynamical singulari
which covers part of the naked null singularity. This spac
time structure can actually be realized in spherical CSS s
lar field solutions@7#. The same, and more exotic structure
can also be realized in spherical CSS perfect fluid soluti
@8#.

Contrary to our expectations, we have found that none
these exotic possibilities are realized as spherical DSS c
tinuations of the Choptuik solution. There is a unique D
continuation with a regular center, and all other DSS co
tinuations have a timelike singularity. In hindsight, the re
son appears to be that the null data on the Cauchy hor
are extremely weak. With stronger data~not associated with
the Choptuik spacetime! we find different kinds of continu-
ations.

III. COORDINATES AND FIELD EQUATIONS

In spherical symmetry, there are four algebraically ind
pendent Einstein equations, which can be taken to beGtt ,
Gtx , Gxx andGuu . The fourth of these is a combination o
derivatives of the first three and can therefore be disregar
The first three equations contain first and second derivat
of F, but only first derivatives ofA, B, andC. In the follow-
ing we assume thatF is a given function ofx and t. The
Einstein equations then determine three independent lin
combinations of the six first derivatives ofA, B and C. A
nondegenerate basis of this three-dimensional space ism ,x ,
m ,t and¹m¹mr . @With F(t,x) given, this last term contains
only first derivatives ofA, B andC.#

Here we investigate massless real scalar field matter.
scalar fieldf obeys the wave equation

¹a¹af50, ~6!

and the Einstein equations can be written as

Rab58pG¹af¹bf. ~7!

The wave equation, when written as a second order pa
differential equation~PDE!, will in general contain both first
derivatives of all four metric coefficients. However, by wri
ing the wave equation in a geometrically defined first-ord
form, all metric derivatives except one can be eliminat
Define two null derivative operators¹u and¹v with the usual

r

1-3



y

m

ith

-

y
s

t
u

an
tu

ir
ac
,
y

nu
ys
e

x.

nt
o

the

e
on
-

in

s,
his,

u-

at
olu-
un-

ted
e

the

hat
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convention that both point towards the future and that¹u
points inwards while¹v points outwards. Normalize them b
imposing that¹ur 52r and ¹vr 5r . We define the null de-
rivatives of the scalar field asU5A2pG¹uf and V
5A2pG¹vf. The massless wave equation in spherical sy
metry can then be written as

¹vU2V1PU50, ~8!

¹uV1U2PV50, ~9!

with the scalarP[r¹2r /(¹r )25a221. Using the Einstein
equations, the curvature can be given in terms ofU andV:

Ruu54U2, Rvv54V2, Ruv54UV ~10!

~other components of the Ricci tensor vanish! and

R5
24

a2r 2
UV. ~11!

The most general form of the scalar field compatible w
DSS is

f~t,x!5c~t,x!1kt, ~12!

wherec(t1D,x)5c(t,x) andk is a global constant. In the
Choptuik solution,k50 empirically, so thatf is periodic in
t. This means thatU andV have zero average int. More-
over, U and V in the Choptuik solution obeyU(t1D/2,x)
52U(t,x) and so forV. ~This of course implies zero aver
age.! As a consequencem(t1D/2,x)5m(t,x) and so for
other suitable metric fields. We shall assume these extra s
metries in our numerical work, but all our analytical expre
sions remain valid if these symmetries are dropped.

We now describe three coordinate patches that cover
critical solution. We demand that both the past and the fut
light cones of the singularity occur at lines of constantx.
This makes it easier to impose regularity at the center
past light cone, and to investigate the behavior at the fu
light cone~Cauchy horizon!. It also allows us to match the
coordinate patches without overlap. Subject to these requ
ments, we have tried to make the field equations in e
patch as simple as possible. Based on the three patches
straightforward to construct a single smooth coordinate s
tem covering the whole spacetime~see Sec. VI!, but using it
from the beginning would unnecessarily complicate our
merical work. We summarize a number of coordinate s
tems for spherically symmetric CSS and DSS spacetim
and their advantages and disadvantages, in the Appendi

A. Past patch

On the past patch, which extends from the regular ce
to the past light cone, we write the metric in terms of tw
free functionsf (t,x) anda(t,x) as

A5a2~x22 f 2!, B52xa2, C5a2, F5x, ~13!
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for x>xc[0. Herea5(122m/r )21/2 is the scalar we de-
fined above. These coordinates can be derived from
Schwarzschild-type metric

ds252a2dt21a2dr21r 2dV2 ~14!

through the coordinate changex5r /(2t) and t52 ln(2t),
and definingf 5a/a. The remaining gauge freedom of tim
relabelling is fixed by imposing that the past light cone is
a constantx5xp line. Note that we do not follow the con
vention of Ref.@1# thata51 at the center, which in Ref.@5#
forced us to introduce an additional free function of time
the definition ofx. The Einstein equations are

f ,x5
~a221! f

x
, ~15!

~a22! ,x5
12~11U21V2!a22

x
, ~16!

~a22! ,t5F ~ f 1x!U22~ f 2x!V2

x
11Ga2221, ~17!

and the matter equations are

U ,x5
f @~12a2!U1V#2xU,t

x~ f 1x!
, ~18!

V,x5
f @~12a2!V1U#1xV,t

x~ f 2x!
. ~19!

At the regular centerx50 we impose elementary flatnes
that is the absence of a conical singularity. In order to do t
we defineP5(V1U)/(2x) andC5(V2U)/(2x2) and im-
pose that both are regular even functions ofx at x50. At the
past light cone we havef 2x50, which by our gauge choice
means thatf 5xp there. We also impose the physical reg
larity condition

V,t2~12a2!V2U50 ~20!

on the past light cone. The conditions of DSS, regularity
the center and regularity at the past light cone select a s
tion. The equations on the past patch are form invariant
der the linear coordinate transformationx→cx, f→c f , and
a, U and V unchanged. In the numerical results presen
here we have setxp51 on the past patch. Note that th
regularity condition~20! is coordinate independent, asU, V
anda and r are all scalars andt52 lnr on the light cone.

B. Outer patch

On the outer patch, which extends from the past to
future light cone, we write the metric in terms ofa(t,x),
b(t,x), and the auxiliary functionj(t) as

A5a2~12b2!, B5abj, C52j2, F51, ~21!

wherej.0 is a function oft only. a.0 is the scalar defined
above. We fix the remaining gauge freedom by imposing t
1-4
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the past light coneb521 occurs atx5xp , and the future
light coneb51 at x5xf . Putting both light cones on a lin
of constantx requiresj(t) to be nonconstant. There is n
outer coordinate patch that does not have at least one f
tion similar to j(t). As t52 ln r everywhere on the oute
patch,t is continuous between the past and outer patche

The metric equations are

b,x

j
52

231a21U2~12b!1V2~11b!

2a
2

j8

aj
, ~22!

a,x

j
52

U22V2

2
, ~23!

~a22! ,t5@11U2~12b!1V2~11b!#a2221, ~24!

and the matter equations are

U ,x

j
5

~12a2!U1V1U ,t

a~12b!
, ~25!

V,x

j
52

~12a2!V1U1V,t

a~11b!
. ~26!

Note that thea,t constraint equation is again linear ina22.
The equations on the outer patch are form invariant under
linear coordinate transformationx→cx1d, j→j/c, anda,
b, U and V unchanged. In the numerical results presen
here we have setxp521 andxf51 on the outer patch.

C. Singular behavior at the Cauchy horizon

We shall see that at the Cauchy horizon~CH! the solution
is mildly singular. Naive finite differencing breaks dow
there. Instead we expand the generic solution around
Cauchy horizon in terms of two free periodic functionsV0

andÛe , and match this expansion to the numerical evolut
at a small finite distance to the past of the Cauchy horiz
Before describing the full expansion, we focus on the ori
of the singular behavior.

Equation~25! becomes singular at the future light con
because the denominator of the right hand side vanis
there. In contrast to the past light cone, we do not have
freedom left to enforce the vanishing of the numerator
well. Therefore we expect the solution to have some kind
singularity atxf . We rewrite Eq.~25!

DU ,x2U ,t2~12a2!U5V, ~27!

where we have defined the metric function

D[
a~12b!

j
. ~28!

D is positive on the outer patch and vanishes on the fu
light cone. The characteristicsx(t) of Eq. ~27! are given by

dx~t!

dt
52D@t,x~t!#. ~29!
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Recall that we impose the gauge condition that the CH is
x5xf , or b(t,xf)51. We define the shorthandy5x2xf .

We now make one fundamental assumption, namely
the spacetime admits regular null data on the Cauchy hor
y50. This assumption is clearly necessary if we want
continue the spacetime through the CH, but here we mak
simply because we have not been able to find a more gen
ansatz. We shall see later that it is sufficiently general to
matched to the critical solution that we have obtained
merically on the past patch.

We therefore assume thatV is continuous, or

V~t,x!5V0~t!1o~y0!. ~30!

By substituting this into Eq.~24! in the limit b51 we find
that a is also continuous anda0(t) obeys

~a0
22!82~112V0

2!a0
221150. ~31!

Because we impose periodic boundary conditions int this
ODE has a unique solution. The physical significance of t
is that the null dataV0 determine the geometry of the CH
Similarly, from Eq. ~27! in the limit D50 we find thatU
must be continuous, andU0(t) is the unique periodic solu
tion of

U081~12a0
2!U01V050. ~32!

This condition follows from the assumption of DSS. Final
from Eqs.~28!, ~22!, and~23! we find thatD is once differ-
entiable, so thatD(t,x)5yD1(t)1o(y), andD1 is given by

D15
j8

j
1

1

2
~231a0

212V0
2!. ~33!

At this point we introduce more shorthand notation.
f (t) is any periodic function~with period D), let f̄ be its
average value, and letf̃ (t)5 f (t)2 f̄ be its oscillatory part.
Let * f̃ be the definite integral*t0

t f̃ (t8)dt8 wheret0 is cho-

sen so that* f̃ has vanishing average.
We can now integrate Eq.~29! for theU characteristics to

leading order and obtain

loguy~t!u1D̄1t1E D̃11o~y0!5const. ~34!

We see that on a characteristict→2` as uyu→0. Because
U(t,x) is periodic int with periodD, an infinite number of
oscillations iny at constantt pile up at the Cauchy horizon
y50. We can solve Eq.~27! to leading order by the metho
of characteristics. The general solution is

U~t,y!5U0~t!1uyueǓe~t!Ûe~ t̂ !1o~ uyue!, ~35!

whereÛe( t̂) is an arbitrary periodic function with periodD
and

e[
12a0

2̄

D̄1

, ~36!
1-5
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Ǔe~t![expS E a0
2̃1eE D̃1D , ~37!

t̂[t1H~t!1K lnuyu, ~38!

H~t![
1

D̄1
E D̃1 , ~39!

K[
1

D̄1

. ~40!

Rewriting Eq.~31! as

a0
22~112V0

2!52~ ln a0!8, ~41!

we see thata0
2̄5112V0

2̄, and so we can expresse andK as

e5
2V0

2̄

122V0
2̄

, K52~11e!. ~42!

Our initial assumption thatU and V are continuous at the

light cone is therefore justified either if 0,V0
2̄,1/2, so that

e.0, or if Ûe(t)50. We shall show numerically thate is
small but positive on the CH. In this caseU andV are just
C0, and the scalar field is thereforeC1. In spherical symme-
try the Riemann tensor is determined completely by the R
tensor, which in turn is quadratic in the partial derivatives
f, see Eq.~7!. The curvature is therefore quadratic inU and
V and so isC0.

A similar analysis, withU andV interchanged, applies to
the past light cone. In the notation we have introduced h
we can describe the past light cone by saying thate,0 there
~because the null dataU0 on the past light cone are large

U0
2̄.1/2) but that the free coefficientV̂e vanishes identically

~because we have imposed analyticity as a boundary co
tion!.

D. Expansion near the Cauchy horizon

We cannot apply Fuchsian techniques to our system
equations because they require thesimultaneousvanishing
on y50 of the coefficients ofU ,x andU ,t in Eq. ~27!. How-
ever, the form~35! of the leading terms inU suggests that the
full nonlinear solution can be written as a regular part, co
taining only integer powers ofy, plus a singular part which
contains powers ofuyue. We can in fact construct a forma
solution near the Cauchy horizon in the form of
asymptotic double series

f ~t,x!5 (
n50

`

ynf n~t!1 (
n50

`

(
k50

kmax(n)

uyun1ke f n1ke~t,x!,

~43!

wheref stands forU, V, a, andb, and
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f n1ke~t,x!5 (
i 51

i max(n,k)

f̌ n1ke
( i ) ~t! f̂ n1ke

( i ) ~ t̂ !. ~44!

Heree andt̂ are the quantities defined above in terms ofV0.
The expansion depends on the two free periodic functi
V0(t) and Ûe( t̂). By function counting we can therefor
match any DSS solution to this expansion.

The first noninteger term appears in each variable at
following orders:

U~t,x!5U0~t!1uyueǓe~t!Ûe~ t̂ !1yU1~t!1O~ uyu11e!,

~45!

V~t,x!5V0~t!1yV1~t!1O~ uyu11e!, ~46!

a~t,x!5a0~t!1ya1~t!1O~ uyu11e!, ~47!

b~t,x!511yb1~t!1y2b2~t!1O~ uyu21e!. ~48!

In the previous section we obtained the coefficients of
pansions~45!–~48! up to O(uyue). Stopping there, the firs
order we neglect isO(y). This truncation already depend
on both free functionsV0 and Ûe and shows the singula
behavior. It is also a sensible truncation numerically beca
e turns out to be very small in the Choptuik solution. Goin
further, for the same reason there would be no point in
cluding O(y) terms without also including allO(uyu11ke)
terms. It turns out that we need to go toO(uyu113e). We have
used the expansion to that order to check convergence.
expressions are given in Appendix B.

E. Future patch

Our analysis of the possible continuations of the critic
solution in Sec. II has shown that we can cover the en
future of the Cauchy horizon in a single patch if we maket
an ingoing null coordinate. This means settingC50 andB
,0. In order to put the centerr 50 at a known coordinate
location, we also setF52x. We choosex,0 here so thatx
increases as we extend the spacetime away from the Ca
horizon. We parametrize this metric in terms of the scalaa
and a coefficientf ~not the same asf in the past patch!:

A524a2f ~ f 1x!, B52a2f , C50, F52x.
~49!

Regularity of the metric requiresa.0 and f .0. The field
equations are

f ,x5
~a221! f

x
, ~50!

~a22! ,x5
12~112U2!a22

x
, ~51!

~a22! ,t5F2
2 f V222~ f 1x!U2

x
11Ga2221, ~52!
1-6
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U ,x5
f @~12a2!U1V#2xU,t

x~ f 1x!
, ~53!

V,x5
U1~12a2!V

x
. ~54!

At the Cauchy horizonx5xf,0 we impose the coordinat
condition f 1x50. The equations are invariant underx
→cx, f→c f . We use this to setxf521 on this patch. As a
consequencet52 ln r on the light cone, and sot is continu-
ous between the outer and future patches.

We find an asymptotic expansion around the Cauchy
rizon in terms of two free functionsV0 andÛe . V0 is given
by the null data on the Cauchy horizon, and so is the sam
on the outer patch.e is therefore the same on both sides.U0
obeys the same ordinary differential equation~ODE! ~32! as
on the outer patch, and so is the same function. There i
need, however, to makeÛe the same on both sides, as w
would not gain any differentiability by doing so. Instead w
considerÛe as free ‘‘data on the naked singularity,’’ and w
shall find experimentally how the global structure of t
spacetime is influenced by this choice.

IV. NUMERICAL CONSTRUCTION OF THE CHOPTUIK
SPACETIME UP TO THE CAUCHY HORIZON

We have carried out a brand new numerical computa
of the Choptuik spacetime, improving the precision of o
previous calculations@5# by roughly four orders of magni
tude. This was mainly needed to assert without doubt the
is different from zero, even though it is extremely small.

Essentially, our new scheme uses shooting methods on
x axis, instead of relaxation methods. This allows us to
prove the treatment of the regular singular points of
equations~the center and the light cones! by using Taylor
expansions. We still work with pseudospectral Fourier te
niques int because the solution is periodic. We shall s
however, that the particular structure of the Fourier transfo
of the Choptuik spacetime poses an unexpected prob
when combining Taylor and Fourier expansions. In this s
tion we explain the numerical scheme and present the re
for the first two patches, with special emphasis on conv
gence properties and error analysis.

A. Numerics

1. Pseudospectral decomposition

For definiteness, let us suppose we work on the p
patch. Following Ref.@5# we discretize ourD-periodic fields
Z(t,x), whereZ stands for any of the set$a, f ,U,V%, using
N equidistant points in one period:

Zn~x![ZS n

N
D,xD5 (

k50

N21

Ẑk~x!e2p ikn/N ~55!

for n50, . . . ,N21. In this way we transform our 111 PDE
problem for Z(t,x) into an ODE problem for the mode
Ẑk(x). The essential idea of pseudospectral methods i
02401
-

as

no

n
r

he
-
e

-
,

m
-
lts
r-

st

to

carry out algebraic operations pointwise on theZn and t

differentiation/integration on theẐk , switching from one to
the other with a fast Fourier transform algorithm.

The main drawback of the method is the aliasing proble
pointwise products of fields~nonlinearities! generate high
frequency modes which cannot be sampled with onlyN

points. We partially solve that problem by doubling theẐk

~padding with zeros! before going to theZn , carrying out the
necessary algebraic operations on the doubledZn and going
back to theẐk , then halving theẐk and thus throwing away
high frequency noise. We have tried other possibilities, s
as padding with 3N or 7N instead ofN zero Fourier compo-
nents, or extrapolating the Fourier coefficients using the
served fact that high frequency modes have a simple ex
nential dependence on frequency~see below!, but the results
are not improved. Aliasing can only be reduced by going
higherN. From a numerical point of view, we are only sa
from aliasing when the amplitude of the modes we are c
ting off is below machine precision.

Because all our fields are realẐk* 5ẐN2k . Furthermore,
the metric fieldsa and f are even@in the sensea(t1D/2,x)
5a(t,x)] and therefore their Fourier transform only co
tains evenk modes, while the matter fieldsU andV are odd
@in the senseU(t1D/2,x)52U(t,x)] and therefore their
Fourier transform only contains oddk modes. Taking this
symmetry into account an even or odd fieldZ sampled with
N points per period is encoded byN/4 independent nonzero
complex modes. As we have 4 independent variab
a, f ,U,V, the ODE system we solve comprisesN complex or
2N real variables. In our calculations we have usedN
532,64, 128, 256, and 512. Previous investigations useN
564. See Appendix C of Ref.@5# for a complete discussion
of our Fourier pseudospectral method.

2. Shooting to fitting points

We cannot cross the light cones during the integration
the ODE in thex axis because they are regular singu
points of the equations. Therefore we perform consecu
shooting calculations on the past, outer and future patche
this order because we need information from the first
shoot the second and from the second to shoot the third.
issue of error propagation becomes very important.

Again, we describe the past patch for definiteness. Gi
the equations~15!–~18! and free data f (t,xc)[ f c(t),
C(t,xc)[Cc(t) at the center, we calculate the solution
xleft slightly larger thanxc using a second-order power ex
pansion @leaving errors of order (xleft2xc)

4]. From these
data we integrate the ODE system forward inx using finite
differencing, up toxmid . In the same way, given free dat
U(t,xp)[Up(t) and the gauge conditionf (t,xp)5xp , we
calculate the solution atxright slightly smaller thanxp @this
time with errors of order (xp2xright)

3] and integrate back-
ward in x up to the samexmid . Finally we use Newton’s
method to look for the free data which brings the misma
between both integrated solutions atxmid down to a mini-
mum, typically of order 10213. ~This is the machine preci
sion of 10216 reduced by a factor 10 due to the calculatio
1-7



on

ul

fo

on
e

ra

ex
-
ge

ho
u

p

ne
s

in

ult
tric
n in

ex-
an

the
s of
for-
ss
tant

low
is

ller
tion

J. M. MARTÍN-GARCÍA AND C. GUNDLACH PHYSICAL REVIEW D 68, 024011 ~2003!
at each step and a factor 100 from the ODE integration al
'104 points.!

We use a grid that becomes logarithmic near the reg
singular points, with maximum stepsizehmax at some inter-
mediate position. That grid is constructed using the trans
mation

x5
xc1xpez

11ez
~56!

from a grid of equidistant points inz between the valueszleft
and zright corresponding toxleft and xright respectively. Near
the two end points we havex2xc.(xp2xc)e

z and xp2x
.(xp2xc)e

2z. We integrate on a fixed grid inx rather than
using a variable stepsize method in order to check for c
vergence withhmax. This gives us a good estimate of th
underlying discretization error.

Concerning the ODE integrator, we have tried seve
Runge-Kutta methods, both explicit and implicit~Gauss-
Legendre!, with different convergence orders@9#. In general,
implicit methods are better suited to our problem than
plicit methods, particularly for highN, because high frequen
cies make the problem stiffer. We choose an implicit Run
Kutta ~IRK2! method~implicit, 2 stages, order 4!, which is a
compromise between the accuracy of a high order met
and the clarity of convergence of a low order method. O
implicit schemes are implemented by iteration untill 2 differ-
ences between successive iterations converge below 10215.
We cannot get closer to actual machine precision (10216)

FIG. 4. Best free data on the singular points:f c(t) ~continuous
line!, Cc(t)/300 ~dotted line! andUp(t) ~dash-dot line!.
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due to the accumulation of roundoff error. An implicit ste
typically takes 5 to 15 iterations to converge.

B. Past patch

The natural choice for the coordinate of the center isxc
50, but there is no preferred value for the past light co
coordinate and we choosexp51. With the set of parameter

N5256,

xleft50.001,

xmid50.01,

xright50.9999,

hmax5731024, ~57!

our Newton’s method converges to the free data plotted
Fig. 4 ~see also Table I!, with a value

D53.445452402~3!, ~58!

which improves the precision of our previous res
3.4453(5) more than four orders of magnitude. The me
and matter fields integrated from those free data are give
Fig. 5.

The error bars in Eq.~58! and Table I are estimated from
the convergence properties of the code, which we now
plain in detail. In general, we have observed that we c
reach higher relative precision in the metric fields than in
matter fields, because the former are essentially integral
the latter. Figures 6 and 8 contain all the convergence in
mation for the past patch, but in order to properly discu
convergence issues, we first need to talk about an impor
feature of the Choptuik spacetime.

Figure 7 shows the fieldC(t,x) together with a log10 plot
of the modulus of its Fourier transform int. There is a clear
difference in behavior between the regions above and be
x'0.2. ~This difference is present in all our fields, but it
particularly important inC, as we will see.! Near the center
the function has larget derivatives which require many
modes in the Fourier expansion to be resolved~see also Fig.
4!. Far from the center those derivatives are much sma
and just a few modes are enough to achieve high resolu
TABLE I. The first 8 nontrivial Fourier modes of the free data.~The error in the last digits is shown in brackets.! Note that some of them
have a relative precision better than 1028.

k Re f̂ 2k(xc) Im f̂ 2k(xc) Re Ĉ2k11(xc) Im Ĉ2k11(xc) Re Û2k11(xp) Im Û2k11(xp)

0 0.2071909728~5! 0 0.788624247~31! 211.6194821(5) 0.2962634507~4! 0.0905094329~7!

1 0 by def. 0.0649057078~3! 11.52753960~12! 4.2699131~6! 20.00901909339(14) 20.02200156878(7)
2 20.02370998706(19) 20.01438139603(19)29.12055613(23) 7.5700655~6! 20.002037853110(17) 0.00159029448~4!

3 0.01347536638~18! 20.00645699456(5) 21.5735907(5) 210.3634715(8) 2.55305777~10! 1024 1.73238389~4! 1024

4 20.001117368391(5) 0.00883071824~10! 8.2142645~16! 3.3866919~5! 1.12390710~11! 1025 23.6797294(3) 1025

5 20.00432309030(6) 20.00355712461(5) 25.8935621(21) 4.3873917~11! 24.9301780(6) 1026 8.2486~15! 1029

6 0.00345031858~11! 20.00117027642(11) 20.6075901(6) 25.9471050(31) 1.884812~9! 1027 6.14734~5! 1027

7 25.3677559(20) 1024 0.00236648443~8! 4.3606105~27! 2.0264097~27! 7.04459~5! 1028 24.73630(8) 1028
1-8
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FIG. 5. Past patch fields on a singleD period.
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results. This is reflected in a very slow decay of the Fou
transform nearx;xc and a fast decay forx above 0.2, al-
though both are exponential decays. It is important to e
phasize that this exponential decay is the best numerical
dence we have in support of the analytical character of
Choptuik spacetime, given the absence of a mathema
proof of existence of ananalytical solution to which our
numerical spacetime should be converging.

We have observed as well that the phases of the h
frequency modesẐk tend to a linear dependence onk at a
given pointx. Therefore thehigh frequencybehavior of our
fields Z is similar to that of the function

(
k52`

`

e2aukue4p ikt/D5
sinha

cosha2cos
4pt

D

, ~59!

which has periodic sharp peaks of widthaD/(4p) and
height 2/a for small a. In the Choptuik spacetime the deca
exponenta ranges from 0.28 forf c at the center to 2.04 fo
Up at the past light cone. We have not found an explana
for this behavior, but it seems to be of dynamical orig
Arbitrary high-frequency perturbations of the correct fr
data at the center decay towards largerx, and high-frequency
perturbations at the past light cone grow when integra
towards the center, probably due to 1/r factors in the equa-
tions of motion.

From a numerical point of view, this means that aliasi
problems will be important near the centerx50. This forces
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us to use a largeN (N5512 in Fig. 7!. But then most of the
modes become essentially random forx*0.2 because they
are well below the error threshold given by roundoff err
estimated in 10214 in relative terms. This threshold generat
the flat plateau in the right panel of Fig. 7. The main sour
of roundoff error are threefold: ODE integration alongx,
Fourier transforms, and inversion of a very stiff matrix
Newton’s method. Particularly important are the errors in
modes ofUp abovek515 because they propagate inwar
and get amplified, giving errors of relative order 1029 in the
matter fields, mainly inCc . ~See Fig. 7 again.! This fact sets
the limit of the maximum accuracy that we can get in t
results, with just double precision numerics and using
code. We could use quadruple precision to improve the p
cision in Up but the calculations would become too slo
Alternatively, we could force the vanishing of those mod
that we believe must vanish, but we do not want to assu
anything at all about the result in advance.

We now check convergence with respect to the numer
parameters. As one would expect, the final solution is co
pletely insensitive to the choice of intermediate fitting po
xmid , although the convergence of Newton’s method is fas
when using smaller values because the mismatches
larger. We choosexmid50.01.

Several tests in simpler problems show that the ODE
tegrator inx is perfectly fourth-order convergent. The fir
two rows of Fig. 6 also show this fact, even though round
errors slightly blur the point. Note that the modes ofUp(t),
after the first 10, do not converge because they are alre
below our error threshold~on the plateau in Fig. 7!. Note
1-9
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FIG. 6. Convergence figures for the past patch. The three columns correspond tof c , Cc , and Up , respectively. The six rows are
organized in three pairs, describing convergence with respect tohmax, xleft andxright respectively, when these three parameters are halved
or three times. The first row of each pair shows consecutive differences of fields, rescaled by factors 4, 16 and 5.2, respectively, so
coincide when converging with orders 2, 4 and 2.4, respectively.~Convergence with respect toxright is slower than the expected order 3,
particular that of the very low frequency modes off c .) The second row of each pair shows a log10 of the power spectrum of thos
consecutive differences~without rescaling!, to show the different behavior of the Fourier modes. Convergence of the high frequency m
of Cc is worse than that of their low frequency counterparts, as explained in the text.
024011-10
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FIG. 7. C(t,x) and its power spectrumuĈ2k11(x)u. Note the difference in behavior between the regions below and abovex;0.2.
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also that high-frequency modes ofCc do not converge for
such small values ofhmax. They do converge for larger val
ues.

Convergence withN is exponential as expected. Figure
shows the power spectra of the free data forN532, 64, 128,
256, 512. It clearly shows how much the results are
proved by doublingN and how the plateau goes down ea
time, until N5256, when errors inUp hit our error thresh-
old. The data forN5512 shows that we cannot improve th
results any further because we cannot decrease the erro
Up . f c is then perfectly resolved down to machine precisio
but high frequencies of the matter variables cannot be
proved near the center. It is clear that usingN5256 or N
5512 we are not affected by aliasing errors.

Finally, convergence withxleft and xright depends on the
value of N: As we said, we calculate the fields atxleft and
xright using Taylor expansions

f ~t,x!5 f c~t!1 f 2~t!~x2xc!
21O@~x2xc!

4#, ~60!

U~t,x!5Up~t!1U1~t!~x2xp!1U2~t!~x2xp!2

1O@~x2xp!3#, ~61!

and so for the other fields. Therefore we expect fourth or
convergence with respect toxleft and third order with respec
to xright . The coefficients of the Taylor expansions are o
tained as nonlinear combinations of the free data and thet
derivatives. The latter are calculated multiplying the Four

FIG. 8. Power spectra of the free data for 8, 16, 32, 64, and
modes. Note the very different behaviors of the functionsf c andCc

at the center from the functionUp at the past light cone.
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modesẐk by ik, which amplifies the high frequency mode
Figure 9 shows the Fourier transforms ofCc ,C2 ,C4 ob-
tained for different values ofN. For lowN our estimations of
these coefficients are bad and we do not see the expe
convergence order in the expansions withxleft and xright ,
both because we are cutting off too soon in frequency, le
ing out modes which are important~see, for instance, the
case ofC2 with N564), and because of aliasing error
which gives us wrong estimations of the modes that we
including ~see the unphysical tails at the end of the fun
tions!. The same phenomenon happens on the past l
cone, but its effect is not so important. That is the ma
reason why we need at leastN5256 to get good results
However, for higherN we do see clear convergence with th
expected orders~with the exception of the very lowk modes,
whose convergence with respect toxright is slower due to
accumulation of high-frequency errors inUp). This is shown
in Fig. 6.

We conclude that the code converges in the expec
manner with respect to all numerical parameters. There
we can estimate the error of the base run~57! with respect to
any of the parameters of the code as the difference betw
the base run and another run with a refined value of t
parameter. Those are precisely the continuous lines in Fig

8

FIG. 9. Power spectra of the functionsCc , C2, andC4 for 8,
16, 32, 64, and 128 modes. Aliasing problems show up as unph
cally growing tails for the highest frequencies in each case. Wo
ing with only 32 modes, this introduces errors inC2 which are of
the same order of the amplitude of the most important modes.
cannot avoid going to at least 64 modes~that is,N5256). C4 is
presented for illustration purposes only; we do not use it in
code.
1-11
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TABLE II. The first 8 nontrivial Fourier modes of the outer patch free data.~The error in the last digit is shown in brackets.! Note the

very different relative precisions achieved inj andÛe . The former is insensitive to changes in the parameters of the code, but not the

k Re ĵ2k Im ĵ2k Re V̂2k11(xf) Im V̂2k11(xf) Re U9 e2k11
Im U9 e2k11

0 1.322045988~6! 0 25.177664(12)31024 3.157186(5)31024 20.03844(5) 20.250325(8)
1 20.00492853319(12) 20.00430580184(14) 21.5(3)310210 22.0(7)310210 0.003883~8! 20.0121478(20)
2 21.1237092(5)31025 2.89549492(5)31024 21.(4)310212 2.(15)310213 2.895(8)31024 25.853(3)31024

3 1.99072448(4)31025 26.20831744(26)31026 21.(5)310213 0.(31)310214 1.748(5)31025 22.5842(28)31025

4 21.078319002(12)31026 21.46908361(3)31026 1.(30)310214 21.(6)310213 8.957(26)31027 21.0219(20)31026

5 21.032893598(26)31027 1.436706184(10)31027 20.(21)310214 0.(4)310213 4.126(10)31028 23.920(10)31028

6 1.74888526(8)31028 5.7084263(10)31029 1.(25)310214 0.(4)310213 1.826(4)31029 21.454(4)31029

7 2.39356(8)310211 22.0053466(8)31029 0.(3)310213 0.(3)310214 7.79(12)310211 25.21(26)310211
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Truncation errors from space and time discretization co
be reduced to machine precision. However, errors from
expansions at the singular points cannot be brought d
with our code below a limit which we estimate~assuming no
systematic error! between 1028 and 1029 in relative terms.
Therefore there is no point in reducing the other sources
error below that limit, and the choice of parameters for o
base run~57! reflects this.

C. Outer patch

In the entire outer patch the fields are much smoothert
~as they are already on the past patch forx*0.2). Therefore
we only need a few Fourier modes to get good precision
fact N564 is enough to reach the maximum accuracy giv
by propagation of the errors in the past patch. There is
reason to increaseN further.

With xp521 andxf51 we choose these parameters
the numerical evolution:

N564,

xleft520.9999,

xmid520.9,

xright50.9999,

hmax50.001. ~62!

Now the free data are the metric functionj(t) and the matter
functionsVf(t)[V(t,xf) andÛe(t) at the future light cone.
~Note that the functionVf was calledV0 in Sec. III C.! The
results are given in Table II and Fig. 10, with a final valu

e51.4710439~8!31026, ~63!

clearly different from zero. We firmly believe that this
neither a numerical artifact nor a consequence of our exp
sion around the future light cone. After showing convergen
of the code in the outer patch, we dedicate most of t
subsection to supporting this claim.

The integrated functions are shown in Fig. 11. The ru
away of characteristics is not apparent in this figure, beca
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all but the first oscillations are piled up in the region betwe
x50.95 andx51. Figure 12 showsU using a logarithmicx
axis.

We first analyze the issue of error propagation from
past patch to the outer patch. We need to find out how sm
variations inD andUp change the results of the outer pat
shooting. Assuming that the former are small, we calcul
first derivatives of the latter. The variations of the outer pa
free data with respect toD are

de

dD
55.431026,

idVf i`

dD
50.0020, ~64!

idÛei`

dD
50.15,

idji`

dD
50.028. ~65!

On the other hand, Fig. 13 shows the maximum variations
the free data with respect to changes of the Fourier mode
Up . We see thatVf andj are only sensitive to the very low
frequency modes ofUp , but Ûe changes with every mode
In any case, every derivative is small enough: The larg
error bars come from the uncertainty inD, and then from
those of the first two modes inUp . The rest of the modes ar
practically irrelevant for error analysis. This sets the ma
mum accuracy that we can achieve on our final results.
suming quadratic error propagation it is

FIG. 10. Free data in the outer patch: 20Vf ~continuous line!,

Ûe/20 ~dotted line! andj21.3 ~dash-dotted line!. Note that they are
all quite smooth.
1-12
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FIG. 11. Outer patch fields on a singleD period.
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dmaxe55310213, ~66!

idmaxVf i`5231029, ~67!

idmaxÛei`5431028, ~68!

idmaxji`5231028. ~69!

It is still very good due to the tendency of small perturb
tions to decay when integrating towards largerx, and, as we
said, achievable already withN564.

FIG. 12. U in the outer patch using a logarithmicx axis. The
oscillations are clear, but not their slow decay.
02401
-

We now analyze convergence in the outer patch. Con
gence withhmax in the IRK2 method shows perfect fourt
order again. Convergence withxleft is approximately third
order as expected because we expand around the past
cone with a second-order Taylor series. See Fig. 14. Fina
we have performed calculations expanding aroundxf using
only the order zero terms and including the first order term

Vf and j converge withxright to first order when the ex-
pansion around the CH is truncated atO(uyue), and converge
to second order when the expansion is truncated
O(uyu113e). This is the expected behavior. However, at t
same timeÛe converges to first order in both cases~see Fig.
14!. This indicates that adding the terms of orderO(uyu11ke)
~with k50,1,2,3) to the expansion still leaves som
O(uyu11ke) error. We are confident that this is not a simp
algebraic mistake in the expansion. We note that the exc
error in the periodic functionÛe is entirely an error in its
overall phase. We therefore suspect intuitively that the r
away phaseU;Ûe(t2 lnuyu) of the solution is to blame, bu
we have not been able to formulate this idea consistently

In order to show thate is really different from zero, we
have to analyze the behavior of the functionV with respect to
xleft andxright . The functionVf has a very rapidly decaying
Fourier spectrum, as shown in Fig. 15. Asxleft→xp , all its
Fourier modes converge to zero except for the first two, a
the amplitude of the second mode is more than six order
magnitude below that of the first one~see also Table II!.
1-13
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FIG. 13. Variation of the results of the outer patch under changes of the input data from the past patch. On the left we r

uud f uu` /dpk whered f is the change in 105e ~continuous line! or in one of the functions 102Vf ~dotted line!, j ~dashed line! or Ûe ~dot-dashed
line!, under a changedpk in the real part of the modek of Up . On the right we show the same for the imaginary part of the modes ofUp .
We lack enough precision to calculate the last point of theVf curves.
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Figure 16 showsV2̄(x) for several evolutions from the
samexleft520.9999 to 15 different values ofxright . The
agreement is very good. This shows that our expans
around the future light cone~including the singular terms
given in the appendixes! captures the behavior of the solu
tion.

We conclude that, with errors of order 1029,

Vf~t!521.2128648~22!

31023
•cosS 2pt

D
10.5475726~13! D . ~70!

Finally, it is interesting to see that going toO(uyu113e) is
not essential for obtaining an accurate result. Table III co
pares the results fore using a zeroth-order expansion~that is,
we only include the terms of ordersy0 and uyue) with those
from the first order expansion~which also includes ordersy
and uyu11ke). It is clear that they both converge to the sam
number, even though with very different rates of conv
gence.

V. CONTINUATION ACROSS THE CAUCHY HORIZON:
THE FUTURE PATCH

A. The continuation with a regular center

We cannot continue the solution as flat empty Minkow
spacetime after the Cauchy horizon because we have a s
02401
n
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-

i
all

amount of ingoing radiation there, given byVf(t). The sim-
plest continuation to look for is one with a regular timelik
center, so that the conformal diagram is the same as
Minkowski spacetime. In this case bothU andV are small on
the entire future patch, and we can obtain an approxim
solution in perturbation theory around Minkowski space, u
ing the magnitudee1/2 of Vf as the small parameter. To lead
ing order in e we obtain the d’Alembert solution on fla
spacetime:

f 511O~e!, ~71!

a511O~e!, ~72!

U5e1/2F2F8~ t̂ !2
F~ t̂ !1G~t!

x
G1O~e3/2!, ~73!

V5e1/2F2G8~t!1~11x!
F~ t̂ !1G~t!

x
G1O~e3/2!,

~74!

with t̂[t2 ln(11x). In order to match the null data on th
Cauchy horizonx521, we need2e1/2G8(t)5Vf(t). Re-
call thatVf(t) is given numerically by Eq.~70!. If we want
to have a regular solution at the center we needF(t)5
2G(t). The solution is then completely determined, and
ts:
FIG. 14. Convergence of the free data on the outer patch. These plots display norms of differences between consecutive resul`-norm

~continuous line! and 2-norm~dotted line!. On the left, convergence with respect toxleft shows order 3.0 forÛe ~triangles! andj ~diamonds!

and order 2.4 forVf ~stars!. On the right, convergence with respect toxright shows order 2.0 forj andVf and order 1.0 forÛe .
1-14
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FIG. 15. Convergence ofVf . Left figure: log10uV̂f 2k21u for 15 valuesxleft520.8976,20.9488,20.9744,20.9872,20.9936,20.9968,
20.9984,20.9992,20.9996,20.9998,20.9999,20.99995,20.999975,20.9999875, corresponding from top to bottom, respectively
seems that all but the first two modes converge to amplitudes below our error threshold whenxleft approaches21, even though high
frequencies become unstable for the last values ofxleft . Right figure: modulus of the Fourier transform of consecutive differences in the
figure. Convergence is very clear in every mode~including the first one!.
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is clear that a nonlinear solution exists of which this is t
leading order, and which can be found numerically.

Because the null dataVf on the Cauchy horizon are DSS
it appears highly unlikely that there is another continuat
with a regular timelike center that is not DSS. We have o
tained the~probably! unique regular continuation by shoo
ing from expansions around the Cauchy horizon and a re
lar center. The free data for the shooting algorithm~given by
Ûe at the CH andf, U ,x at the center! were obtained from the
flat spacetime approximation. In this case we use an IR
integrator and

N516,

TABLE III. Convergence of 106e with xright using only the low-
est order terms in the regular expansion plus only theO(ye) in U
~first column! and using the full next order as well~second column!.
Convergence is much faster in the second case, as expected, b
clear that both converge to the same number, within our error b
Recall that digits starting from the fifth decimal are not relevant d
to propagation of errors from the past patch. They are shown in
second column to make convergence clear.
e of

02401
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1

xleft520.999,

xmid520.2,

xright520.001,

hmax52.531024, ~75!

with very good convergence, that we do not show again. T
fields a, f, U andV are shown in Fig. 17.

B. All other continuations

We now consider the other possible continuations, in p
ticular those of Figs. 2 and 3. Before performing a numeri
search of the possibilities in theÛe space, we study the equa
tions of motion in the future patch. We proceed in four ste

a. A necessary condition for another SSH is a2.2. In
order to obtain Fig. 3, or any even more exotic continuati
we must have a self-similarity horizon before the central s
gularity occurs atx5xs50.

A self-similarity horizon is a DSS linex5xh(t) ~peri-
odic! whereA50. The only factor inA524a2f ( f 1x) that
can vanish~while the metric is regular! is f 1x. We have

FIG. 16. Average ofV2 on t for different evolutions from the
same xleft520.9999 to 15 different values ofxright ~those of
Table III!. The agreement between the solutions with smallxright

and those withxright very close toxf51 implies that the final almost
constant value is neither a numerical artifact nor a consequenc
our ansatz.

it is
rs.
e
e
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FIG. 17. Future patch fields on a singleD period for the~probably unique! continuation with a regular timelike center. Note thata and
f are so close to their flat spacetime values that we plot their difference from 1, rather than the fields themselves.
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~ f 1x! ,x5
~a221! f

x
11 ~76!

and so

~ f 1x! ,xu f 1x50522a2. ~77!

At the Cauchy horizonf 1x50 and (f 1x) ,x.1 because
a221 is small, and so (f 1x).0 andA,0 at least to the
immediate future of the Cauchy horizon. If there are mo
self-similarity horizons to the future of the Cauchy horizo
we must havef 1x50 again there, and therefore (f 1x) ,x
,0 in some intermediate region.a2 must increase froma2

.1 to a2.2 in order to achieve this.
b. Once a2,1 for any t, a2→0 for that t. a is given by

the constraint~52! which reduces at the Cauchy horizon t

~a22! ,t5~112Vf
2!a2221, ~78!

and this means that 1,a,11e there. Nowa obeys the
evolution equation

22x~ ln a! ,x5a22122U2. ~79!

Recall that in the future patchx,0 and increases toward
the future. Thereforea51 is a repeller in the absence o
matter, but any outgoing radiationU drivesa to smaller val-
ues. Hence, oncea becomes smaller than 1 for some value
t, it will afterwards decrease to 0 for thatt whatever hap-
02401
e
,

f

pens. Becausem52m/r 512a22, this means that we are in
a negative mass regime and remain there until we reach
central singularityx50, which is therefore timelike and ha
negative infinite mass at least for thist. The singularity can-
not be reached with a finite value of 0,a2,1.

c. Is a2.1 at the singularity possible at least for som

values oft? If we chooseÛe much larger thanO(e1/2), the
U2 term will drive a to a,1 almost immediately. However
we know that the regular solution does not have nega
mass and therefore it seems plausible that functionsÛe close
to the regular case could generate a singularity with posi
mass. We shall now argue that this is not true.

a can only increase from its CH value ifuÛeu is very
small. In order to explore this regime we return to the a
proximation of perturbing around Minkowski spacetime, b
now dropping the assumption thatF(t)52G(t). The result
can be summarized as

a~t,x!511ex2areg~t,x!2ex22@F~t!1G~t!#2

1eO~x21!1O~e3/2!. ~80!

The functionareg is positive and always smaller than 2, an
is independent ofF. All singular terms vanish forF52G.
For every otherF, the functiona becomes smaller than 1
which corresponds to negative mass, as the centerx50 is
approached. This is due to the divergent terms (F1G)/x in
Eqs.~73! and ~74!. The crucial point is thata2 is integrated
from 2U2 and therefore the term in the perturbation expa
1-16



tiv
ap
t

o

im
m

g
-

of

er
er

r
e

e
ity
w

f

n

r,

ree-

e
ady

e,

g on

eri-

t

-

-

s
. It

city
the

s
he
at
l
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sion that makes the mass nonzero has coefficient2(F
1G)2, and so the mass cannot be positive. The nega
mass regime is reached while perturbation theory still
plies, and we have seen that afterwards the mass mus
crease indefinitely.

With these arguments we have ruled out the possibility
having positive mass at the singularity for very largeÛe and
for very small~in particular, close to the regular case! Ûe .
However, we could be missing some intermediate reg
where perturbation theory does not apply. For these inter
diate cases we observe that the minimum ofa is far from 1
~and therefore we cannot apply perturbation theory!, but its
maximum is positive and close to 1, and only becomes ne
tive in the vicinity of the singularity. There could be solu
tions wherea is positive at the singularity for some values
t.

Numerically, however, we do not find that. We have p
formed a large number of numerical evolutions in this int
mediate regime starting fromÛe52nÛereg(t1mD/8), for
n525, . . . ,10 andm50, . . . ,7. Even though it is difficult
to evolve the system near the singularity, we always obse
a final decay ofa to 0. See Fig. 18. Therefore we believ
that, starting from small null dataVf at the CH it is not
possible to form another SSH. Therefore, either we hav
regular center or a timelike singularity, and this singular
always has negative mass. In the approach to the center
a2→0 we always haveU1V→0 with both U,V finite. It
should be stressed that this scenario is a consequence o
small amplitude of the null dataVf on the Cauchy horizon in
the Choptuik solution. We have performed other evolutio
starting from large null data on the Cauchy horizon~not Vf
of the Choptuik solution! wherea2 increases beyond 2.

d. How is the singularity approached?We find that in all
numerical continuationsa→0, f→`, U andV tend to finite
values andU→2V as the singularityx50 is approached. If
we assume thata→0 andU→U0(t) as x→0 then thea,x
and f ,x equations to leading order give

f . f 0~t!x21, ~81!

FIG. 18. Maximum and minimum ofa for different initial data

functionsÛe from numerical evolutions of the nonlinear equation
Note that thex axis becomes logarithmic when approaching t
boundaries, while thea axis is linear between the dotted lines
a5121026, a5111026, and logarithmic elsewhere. The initia

Ûe have been obtained multiplying the regular data~black! by dif-
ferent constants: 0,21 and 5. The functiona decays sooner for

larger values of the initialÛe.
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a2.a0
2~t!uxu2a(t), a~t![

1

2
1U0~t!2. ~82!

Making the ansatz that

U.U0~t!1U2~t!x21U2l~t!x2lnuxu1Ua~t!uxu2a(t), ~83!

V.V0~t!1V2~t!x21V2l~t!x2lnuxu1Va~t!uxu2a(t),
~84!

we find from theU ,x andV,x equations to the leading orde
O(lnuxu) that

V052U0 , ~85!

V25U21
1

2
f 0

21U08 , ~86!

U2l5V2l52
1

2
f 0

21U08 , ~87!

Ua52Va52
1

2a
a0

2U0 . ~88!

~The expansion also holds in the special casea51.! The
next order,O(1), gives

ln~a0
2!81112U0

218 f 0U0U212U0U0850. ~89!

The metric in the future patch contains a residual gauge f
dom worth one periodic function oft. Near the singularity
x50, we can fix this gauge freedom by settingf 0(t) to an
arbitrary value.~In our numerical evolutions starting at th
Cauchy horizon, the gauge has of course been fixed alre
by settingf 51 at the Cauchy horizon.! U0(t) andU2(t) are
then physical free data which determinea0(t) and all other
coefficients of the expansion.@Equation~89! can be solved
for a0 only if the right-hand side has vanishing averag
which means thatf 0 cannot be set completely freely.# This
expansion is therefore generic in the sense of dependin
two free functions after the gauge has been fixed.

The behavior just described is what we observe num
cally for large values of the free dataÛe(t) at the Cauchy
horizon. For small values ofÛe(t) we find U0(t).
61/A2, that isa(t).1. Note that by our ansatz of exac
DSS withk50, U must be an odd function oft with zero
average. We observe in fact thatU(t,x) goes to a fundamen
tal frequency square wave of amplitude 1/A2, that is, in half
of eacht periodU→1/A2, andU→21/A2 in the other half.
This is shown in Fig. 19.

As the centerx50 is approached withU0561/A2, we
observe empirically that thet derivatives become dynami
cally negligible. This means that different values oft effec-
tively decouple, that at each pointt the evolution equations
become an ODE system inx, while the constraint become
algebraic, and that the spacetime becomes locally CSS
also means that the evolution equations become ‘‘velo
dominated’’ in the sense that all derivatives transversal to
singularity ~here in spherical symmetry, this is only thet

.
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FIG. 19. Future patch fields on a singleD period for a singular continuation of the Choptuik spacetime.
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derivative! become dynamically irrelevant compared to t
one derivative running into the singularity~here, thex de-
rivative!. It is known that generic spacelike singularities
general relativity with massless scalar field matter are ve
ity dominated@10#. Here we find this to be the case only
the limit of small dataÛe(t).

As this class of continuations seems to be locally C
near the singularity, it is interesting to study the exactly C
solutions from the point of view of a DSS ansatz. Starti
from a generic DSS scalar field~12! we introduce a new
~gauge-dependent! variable

W[U1
f

x
~U1V!5A2pG~k1c ,t!, ~90!

which coincides with2V at the future light conef /x5
21, and obeys the equation

xW,x52U ,t . ~91!

In exactly CSS solutions of the system the metric functio
andU,V are independent oft, and henceW is constant with
valueW5A2pGk. The CSS solution withk50 was found
in closed form by Roberts@11# and is described in Appendi
C. The CSS solutions withkÞ0 were studied numerically
by Brady @12#. We find that the smallÛe(t) continuations
locally approach a Roberts solution~with k50) with a value
of the parameterp of the Roberts solution that depends ont,
and not, as one might have expected, one of Brady’s s
tions. This is discussed in Appendix C.
02401
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VI. GLOBAL IMAGES OF THE CHOPTUIK SPACETIME

Figures 5, 11, 17, and 19 show in a very detailed way
structure of the Choptuik spacetime. However it is difficu
to get from them an idea of what it looks like globally. In th
final section before the conclusions we present a numbe
additional figures that will fill this gap. We do it in two ver
different ways.

A. Global coordinate systems

As shown in Fig. 1, our three (t,x) patches match con
tinuously, but we do not expect the resulting global coor
nate system to be differentiable at the interfaces between
patches. The critical spacetime itself, however, is differe
tiable ~analytic at the past light cone andC1 at the CH!, and
it must be possible to construct global coordinate syste
which are at leastC2.

One simple possibility is synchronous slicing plus ar
gauge:

ds252dT212B~T,R!dTdR1C~T,R!dR21R2dV2.

~92!

We add the gauge conditionT52R on the past light cone
of the singularity. The coordinate transformatio
T(t,x),R(t,x) can be easily integrated and it is shown
the left panel of Fig. 20 for a singleD period int.

Another simple possibility is double null coordinates:

ds252v~u,v !dudv1R2~u,v !dV2 ~93!
1-18
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FIG. 20. Spacetime diagrams for a single period of the Chop
spacetime in differentiable coordinate systems~synchronous-area
on the left and double null on the right!. It is possible to construc
the whole spacetime by adding rescaled~by a factoreD531.357 or
its inverse! blocks to the center and outside the figures. Continu
lines representt5const lines and dashed lines representx5const
lines. By our gauge choices timesT and (v1u)/2 coincide on the
center worldline.

FIG. 21. Scalarsa, U and V as functions of the double nul
variablesu andv. Grid lines are lines of constantx or t. Time is
increasing from left to right, and the central world line is at t
back.
02401
with gauge conditionu5v5T at the center, whereT is the
time coordinate constructed in the previous paragraph.
coordinate changeu(t,x),v(t,x) is shown on the right pane
of Fig. 20 for a singleD period int.

The fields a, U and V in double null coordinates are
shown in Fig. 21. As these fields are spacetime scalars,
should be analytic in these coordinates at the past light co
andC1 at the Cauchy horizon. In the plot it looks as if the
are onlyC0 at the Cauchy horizon, but that is due to a lack
resolution in the plot: the slopes on the two sides of
Cauchy horizon are dominated bya11e and a112e , which
are discontinuous at the resolution of the plot, but clo
enough to the Cauchy horizon, the slope becomesa1, which
is continuous.

ik

s

FIG. 22. Left: Phase portrait of the Choptuik spacetime from
regular past center atxc to the CH atxf . Thex axis has been highly
distorted in order to show all interesting details: the axis is logar
mic betweenxc andxp with accumulation point atxc ~note that the
label xc has been situated at finite distance for convenience!; the

axis is logarithmic with accumulation atxf betweenxp and x̄f ; the
axis has been transformed fromx to xf2x1/e to show the decay of
the functionU towardsxf ~this is a semianalytical extrapolation o
our numerical data!. Vertical generatrices aret5const lines. Right:

a reduction in theV axis in the region betweenxp and x̄f to show
the oscillations. Compare with Fig. 12.

FIG. 23. Phase portrait of the regular continuation of the Ch
tuik spacetime from the CH atxf521 to the regular center atxr

50. Again, fromx521 to x520.999 we have distorted the axi
to show the infinite number of oscillations that pile up there. Fro
x520.999 tox520.5 we use a logarithmic axis and from th
middle point tox520.001 we use a different logarithmic axis.
1-19
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B. Dynamical phase space portraits

We shall now consider the spherical DSS scalar field as
infinite-dimensional dynamical system wherex is the ‘‘time’’
coordinate. The dynamical variables in this system areU(t),
V(t) and f (t) @or b(t) in the outer patch#. The variable
a(t) is not independent, but given by a constraint. Howev
many solutions of the dynamical system correspond to
same spacetime, namely all that are related by the coordi
transformations~5!. The pair of periodic functionsU(t) and
V(t) describes a closed, possibly self-intersecting curve
the (U,V) plane. An entire evolution inx gives a surface tha
is topologically a cylinder, which we may call a phase p
trait of the solution. Clearly the surface itself is invaria
under the coordinate changet→t1c(x,t). If we considert
as our ‘‘space’’ coordinate in the usual ‘‘311’’ split, then by
looking at the phase portrait we have eliminated the ‘‘s
tial’’ gauge freedom. The ‘‘slicing’’ freedomx→w(x,t)
however does change the shape of the phase portrait, so
not completely gauge invariant. The Choptuik spacetime
to the CH is given in Fig. 22 and its regular continuation
shown in Fig. 23.

Imposing CSS means that the system is independentt
and hence the phase portrait in (U,V,x) reduces to a line tha
can be easily projected on the (U,V) plane. Then the whole
evolution of the system can be described by this curve in
(U,V) plane, which is now completely gauge invariant. Th
is essentially what Brady has done@12#.

In order to understand the singular continuations of
critical spacetime, we first look at phase portraits of the R
erts spacetime. Figure 24 shows the phase lines of the R
erts solution for several values ofp in both branches~see
also Appendix C!. We see that the shape of the curves b
come constant for very small values ofp, but just translated
along the logx axis. On the other hand Fig. 25 gives th

FIG. 24. Phase lines of the Roberts spacetime. The colors
code different values ofp, for both branches: 1, 0.99, 0.9, 0.5, 0.
0.01, 0.001 and 0.0001~smaller values stay longer close to the ax
U5V50). The future~past! branch of the singularity is denote
with thick ~thin! lines starting withV50 (U50). Note that the
vertical linesU5V561/A2 corresponding top51 are unstable.
Note also that the smallerp is, the longer the curves stay close
the unstable flat lineU5V50.
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phase portrait of two of our singular evolutions, for sm
and large initialÛe , respectively. In both cases asU1V
→0 squeezes the phase cylinder into the diagonal, follow
a Roberts solution in the former case, and not doing so in
latter. This figure demonstrates why it is not possible to o
tain a252 in the continuations of the Choptuik solution. Th
Roberts spacetime withp51 does havea252 on the singu-
larity, p50 ~Minkowski! has a251, and all otherp have
a2→0. The p51 Roberts solution has the phase lineU
5V561/A2 line. To reacha252 approach a solution mus
approach this line from the very beginning, because it
unstable. This requiresV of order 1/A2 at least and on the
Cauchy horizon we only haveV of order 1023.

VII. CONCLUSIONS

In a companion paper@4# we investigate the constraint
that the kinematic assumptions of spherical symmetry
discrete self-similarity impose on the causal structure. T
key elements of our analysis were the self-similar
horizons—radial null geodesics that are mapped onto th
selves by the self-similarity. These come in two types
‘‘fan’’ connects a point singularity to a piece of null infinity
while a ‘‘splash’’ connects a piece of null singularity to
point at null infinity. All spherically symmetric and self
similar spacetimes can be enumerated in terms of a sequ
of fans and splashes. We found that the singularity is cen
and consists of a middle segment which is either a poin
null line, flanked by two segments which can be timelik

n-
FIG. 25. Phase portrait of two singular continuation of t

Choptuik spacetime~upper: initialÛe of order 1023; lower: initial

Ûe of order 10), together with a few Roberts solutions forp
50.1,0.01,0.001. Thep50.001 solution almost coincides with th
external envelope of the upper phase-portrait and sets a maxim
for the values that are realized in this solution. The lower ph
portrait is shown only for20.999,x<20.4. For20.4,x,0 it is
essentially on the diagonal in the (U,V) plane although the ampli-
tude of the oscillations is not the same as in the Roberts solut
Note that for smallx this phase portrait has been truncated also
U, becauseU becomes large. Forx.21 the phase portrait is es
sentially on theU axis.
1-20
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spacelike, or null lines, or which can be absent. There
never two or more disconnected singularities.

In this paper, we have focussed on scalar field matter
in particular Choptuik’s critical solution in gravitational co
lapse. This solution is found as an intermediate attracto
the evolution of regular asymptotically flat scalar field initi
data near the black hole threshold@1#. Independently, it can
be constructed as the solution of a nonlinear PDE bound
value problem from the assumptions of spherical symme
discrete self-similarity, and analyticity at the past center a
past light cone of the singularity@5#. It can then be uniquely
continued up to the future light cone~Cauchy horizon! of the
singularity. Reference@5# found that the scalar field oscillate
roughly as cos(lnuyu) as the Cauchy horizony50 is ap-
proached. It was suggested on theoretical grounds that t
oscillations are damped by a factoruyue with e.0, but the
numerical value ofe was too small to distinguish it from
zero numerically.

We have repeated the numerical calculations of Ref.@5#
from scratch and have increased the accuracy by more
four orders of magnitude. We have found the positive va
for e given in Eq.~63!. Therefore the scalar field is continu
ous on the Cauchy horizon, with null data given in Eq.~70!.
The structure of the fields near the Cauchy horizon is q
complicated, and has been discussed in Secs. III C and I

All possible DSS continuations beyond the Cauchy ho
zon are determined by the~fixed! null data on the Cauchy
horizon, and one~arbitrary! periodic functionÛe( t̂) that can
be thought of as data emerging from the naked singula
~In the absence of the naked singularity, null data on
Cauchy horizon would alone determine the continuatio!
There is a unique DSS continuation that has a regular ti
like center except for a naked point singularity. For all oth
values of the arbitrary functionÛe( t̂), the continuation has a
timelike central singularity with infinite negative mass.
particular, neither Fig. 3, nor the even more exotic spacet
diagrams found in self-similar perfect fluid solutions@8# can
arise as continuations of the Choptuik solution~although
they can probably arise in other DSS scalar field solution!.

The global structure of the Choptuik solution is of intere
partly because of the connection between critical colla
and cosmic censorship. Choptuik’s work has established
~assuming the validity of general relativity at arbitrarily hig
curvatures! a naked singularity can be formed in the sphe
cal Einstein-scalar field system from generic regular and
ymptotically flat initial data by fine-tuning any one param
eter to the black hole threshold. Solutions with a nak
singularity therefore form a subset of codimension one~the
black hole threshold in the space of initial data! in all solu-
tions arising from regular data. The Choptuik spacetime is
attractor on the critical surface and therefore, assuming th
is actually a global attractor on the surface, we can concl
that every naked singularity will have, at least in a neighb
hood of the singularity, the structure of the Choptuik spa
time.

We can now summarize this structure as follows: The c
vature at the Cauchy horizon of the singularity is finite b
not differentiable, with an infinite number of damped osc
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lations piling up as the Cauchy horizon is approached. T
continuation of the spacetime beyond the Cauchy horizo
not unique, but we have shown that if it is DSS then t
naked singularity is either a single point or timelike wi
infinite negative mass. The spacetime near the timelike
gularity is locally CSS and velocity dominated.

The question remains whether this structure is sta
against perturbations which break self-similarity and
spherical symmetry. Because the background is spheric
symmetric and periodic int, all such perturbations are of th
form elt f (x,t), where f (x,t) is periodic, times a suitable
scalar, vector or tensor spherical harmonic. We have sh
in the past@5,13# that all but one of these modes decay, w
Rel,0. ~The one growing mode determines the critical e
ponent for the black hole mass.! The functionsf (x,t) were
calculated explicitly only between the regular center and p
light cone, but as they are by construction analytic at the p
light cone, they can be analytically continued up to t
Cauchy horizon, with the samel.

What needs to be done is to check that the functio
f (x,t) remain bounded asx approaches the Cauchy horizo
We expect that this is true. Nolan and Waters@14# have in-
vestigated a massless minimally coupled, nonspheric
symmetric scalar field propagating on a class of spheric
symmetric CSS spacetimes, and find that its gradient rem
finite at the Cauchy horizon. The structure of the full pert
bation equations is similar.

As the functionsf (x,t) cannot be analytic at the Cauch
horizon ~because the background is not!, the spectrum ofl
need not be the same in the continuation beyond the Cau
horizon, and is likely to depend on the choice of continu
tion. We have finally given, for the first time, a number
global images of the Choptuik spacetime, trying to minimi
the gauge content of the pictures.
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APPENDIX A: REVIEW OF COORDINATE SYSTEMS
FOR GIVEN F

In this appendix we review a variety of coordinate sy
tems defined by givingF as a function oft andx. This class
covers the coordinate systems used in Refs.@5,7,12,15,16#,
but does not include the Lagrangian fluid coordinates use
Ref. @17#. We classify the gauges within this class in thr
stages.~1! We fix F(t,x). ~2! We impose an algebraic rela
tion betweenA, B andC. ~3! We parametrizeA, B andC in
terms of two functions, saya and f. ~It will turn out to be
useful to always use the scalara defined above as one of th
two parameters.!

In a DSS spacetime, the unknowns are periodic int. We
therefore solve the Einstein equations by ‘‘evolving’’ inx,
with periodic boundary conditions int. When we use the
Einstein equations to eliminate the metric derivativeP, U
andV obey a pair of transport equations of the form
1-21
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U ,x5~ . . . ! U ,t1~ . . . !, V,x5~ . . . !V,t1~ . . . !,

~A1!

where the dots stand for a known function ofU, V, a and f
but not their derivatives. By a suitable parametrization ofA,
B and C in terms of a and f, the Einstein equations ca
always be brought into the form of two ODEs inx, which for
our purposes are evolution equations, and one ODE int,
which for our purposes is a constraint

f ,x5~ . . . !, a,x5~ . . . !, a,t5~ . . . !. ~A2!

This last equation can be made linear ina22 ~that is, inm)
by a suitable choice off, at least in all three coordinate sy
tems we use. This inhomogeneous linear equation can
be solved uniquely fora in terms ofU, V andf, using the fact
that U, V and f are periodic int and that we requirea to be
periodic, too. In a CSS solution, where nothing depends
t, the a,t constraint becomes an algebraic equation link
U, V, a and f.

1. Past patches withFÄx

The regular center is both timelike and anx line, butt is
finite there. This requiresF50 at the center, andF.0 else-
where. The simplest choice isF5x. On a past patch, it is
possible to choose thet lines to be timelike, null or space
like, or to change signature. We consider only the first t
possibilities.

e. Bondi past patch. If we choose thet lines to be null
everywhere, this meansC50. We then haveB,0 between
the past center and the past light cone, andB.0 beyond the
past light cone, so thatA andB both change sign at the pa
light cone.F5x andC50 has been used by Brady@12# to
investigate CSS solutions with scalar field matter. He u
the Bondi metric coefficients that are traditionally calledg

andḡ as parameters. In a DSS solution this gives a constr
for a combination ofg andḡ, as well as evolution equation
for g andḡ. The best parametrization we have found uses
mass functiona and the Bondi metric coefficientf 5g/a2:

A52g~ ḡ72x!52a2f ~ f 72x!, ~A3!

B57g57a2f , ~A4!

C50, ~A5!

F5x, ~A6!

where the upper sign applies whent is an outgoing null
coordinate, and the lower sign applies whent is an ingoing
null coordinate, assuming thatf .0. This gives an ODE evo
lution equation and a linear ODE constraint fora22, and an
ODE evolution equation forf.

f. Schwarzschild past patch.If the t lines are spacelike
everywhere, this impliesC.1. A natural algebraic condition
to impose is to make thet lines orthogonal to ther lines.
This meansB(t,x)52xC(t,x). t is then2 ln(2t) wheret
is the Schwarzschild time coordinate. A possible parame
zation is in terms of the metric coefficients often calleda and
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a in Schwarzschild coordinates. (a is the scalar we have
defined above.! The best parametrization we have found
by a and f 5a/a, and is given in Eq.~13! above. It gives
ODE evolution equations fora andf, and a linear ODE con-
straint equation fora22. The transport equations forU andV
are linear inU andV becauseP reduces to a function ofa, t
and x. The light cones are atf 6x50 ~although of course
only one light cone can be covered at one time by a p
patch!.

2. Outer patches withFÄ1

On an outer patch that stretches from the past to the fu
light cone thet lines must be timelike at least somewher
and it is possible to make them timelike everywhere. T
simplest choice forF compatible with all these possibilitie
is F51.

g. Schwarzschild outer patch.Assuming that thet lines
are timelike everywhere meansC,0. We haveB,0 on the
past light cone andB.0 on the future light cone, so thatB
has to change sign somewhere between. This ‘‘B surface’’ is
where thet andx lines are orthogonal. In Ref.@5# one of us
used a coordinate system in the outer patch that was base
Schwarzschild coordinates. As in the past patch based
Schwarzschild coordinates, this meantB52xC. However,
when we imposeB52xC together withF51, we face an
unexpected coordinate singularity atx50. In particular, if
we again usea and f 5a/a to parametrize the metric, we
obtain an ODE constraint and an ODE evolution equation
a as before on the past patch, but forf we obtain an equation
of the form

f ,x5
~ . . . ! f ,t1~ . . . !

x
. ~A7!

In order to make the coordinates regular atx50, we need to
impose the vanishing of the numerator of this equation the
and that is effectively what was done in Ref.@5#. But this
introduces an additional boundary condition just to keep
coordinate system regular on a surface where the solu
itself is perfectly regular, and that is why we do not use the
coordinates here.

h. Best buy outer patch.A better algebraic condition to
combine withF51 is C521. A workable parametrization
is in terms of the mass functiona and B itself. This gives
ODE evolution equations fora andB, and a~nonlinear! ODE
constraint fora. The light cones are ata6B50. If we re-
placeB by b5B/a, we have the parametrization given abo
in Eq. ~21!, and the ODE constraint fora becomes linear in
a22, while the wave equation becomes linear inU andV.

i. A52C: unworkable.It is compatible withF51 to
assume that thet lines ‘‘bend round’’ to become spacelike a
large and smallx. This means thatC changes sign. A natura
choice is thatA and C change sign together, and we ca
impose this by settingA52C. We have not found a way o
parametrizing this choice in a way that brings the Einst
equations into the standard form~A2!. Parametrizing withB
andm gives two roots forA. UsingA andm gives two roots
for B.
1-22
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j. x andt orthogonal: unworkable.We can also force the
‘‘bending round’’ by makingt andx lines orthogonal every-
where, orB50. This implies that, while they are indepe
dent,A andC change sign together. Parametrizing byA and
C we obtain an evolution equation and a constraint forA and
a constraint forC. But the constraint forC is homogeneous
C,t5N(A,U,V)C, so thatC cannot be periodic. Therefor
this coordinate system is not compatible with CSS or DS

k. Forcing the light cones: unworkable.Instead of finding
a working outer patch and then forcing the two light cones
fall on the lines x5xp and x5xf by imposing A(t,xp)
5A(t,xf)50, we can makeA a given function ofx. The
simplest such choice isA512x2, which vanishes atx5
61. ~The two light cones will be distinguished by the sig
of B.) A parametrization that brings the Einstein equatio
into standard form is

A512x2, B5bc, C52c2, F51. ~A8!

This gives an evolution equation and a constraint forb and a
linear constraint forc. However, the right-hand sides of a
three equations are of the formN/b. Furthermore, atb50
the numerator ofb,t depends on the matter throughU2

1V2, while the numerator ofb,x depends on the matte
through U22V2. ~The numerator ofc,t is proportional to
that of b,t .) That means that we would have to impose tw
independent regularity conditions atb50. Together these
would fix U andV completely. Therefore this coordinate sy
tem is not sufficiently generic near the lineB50.

APPENDIX B: SINGULAR EXPANSION AROUND
THE CAUCHY HORIZON

From Eqs.~46!,~47! we see that

D5yD1~t!1y2D2~t!1O~ uyu21e!. ~B1!

The regular coefficients toO(y) are as follows:U1(t) is the
unique periodic solution of

U181~12a0
22D1!U11V122a0a1U050 ~B2!

and

V152
j

2a0
@~12a0

2!V01U01V08#, ~B3!

a152
j

2
~U0

22V0
2!, ~B4!

b152
j8

a0
2

j

2a0
~231a0

212V0
2!, ~B5!

b252
a1

2a0
b12

j

4a0
~2a0a12b1U0

21b1V0
214V0V1!,

~B6!

D152
a0b1

j
. ~B7!
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The regular coefficients to higher orders continue in t
style, with Un(t) the solution of a linear inhomogeneou
ODE, whileVn , an andbn are given algebraically.

The nonvanishing singular coefficients up toO(y113e)
are

a11e~t,x!5ǎ11e~t!â11e~ t̂ !, ~B8!

a112e~t,x!5ǎ112e~t!â112e~ t̂ !, ~B9!

V11e~t,x!5V̌11e~t!V̂11e~ t̂ !, ~B10!

U11e~t,x!5(
i 51

3

Ǔ11e
( i ) ~t!Û11e

( i ) ~ t̂ !, ~B11!

U112e~t,x!5(
i 51

7

Ǔ112e
( i ) ~t!Û112e

( i ) ~ t̂ !, ~B12!

U113e~t,x!5(
i 51

6

Ǔ113e
( i ) ~t!Û113e

( i ) ~ t̂ !. ~B13!

We only give two examples of how these coefficients a
derived. Substituting the ansatz into thea,x equation and
isolating the terms ofO(ye) in the result, we obtain

~11e!ǎ11e~t!â11e~ t̂ !1Kǎ11e~t!â11e8 ~ t̂ !

52j~t!U0~t!Ǔe~t!Ûe~ t̂ !. ~B14!

We solve this for allt and t̂ by setting

ǎ11e~t!5
j~t!U0~t!Ǔe~t!

K
~B15!

and by makingâ11e( t̂) the unique solution of the ODE

â11e8 1
11e

K
â11e1Ûe50. ~B16!

If we substitute the ansatz into theU ,x equation~27! and
isolate the terms ofO(y11e), we find

D1S ~11e!(
i

Ǔ11e
( i ) Û11e

( i ) 1K(
i

U11eÛ11e8( i ) D
1D2@~11e!ǓeÛe1KUeÛe8#

5~12a0
2!(

i
U11e

( i ) Û11e
( i ) 22a0a1ǓeÛe

22a0ǎ11eâ11eU01V̌11eV̂11e

1(
i

Ǔ11e8( i ) Û11e
( i ) 1~11H8!(

i
Ǔ11e

( i ) Û11e8( i ) .

~B17!

BecauseKD1511H8, the derivativesÛ11e8( i ) cancel out.

Taking also into account thatV̂11e5â11e ~this is an accident
at this particular order!, the equation can be rewritten a
1-23
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(
i

@Ǔ11e8( i ) 1„12a0
22~11e!D1…Ǔ11e

( i ) #Û11e
( i )

1@~2eD222a0a2!Ǔe#Ûe1@2KD2Ǔe#Ûe8

1@V̌11e22a0ǎ11eU0#â11e50. ~B18!

The terms in square brackets all depend ont and each mul-
tiplies a different known function oft̂. To solve this for allt
and t̂, we assign one termÛ11e

( i ) to each function oft̂:

Û11e
(1) 5Ûe , Û11e

(2) 5Ûe8 , Û11e
(3) 5â11e . ~B19!

The corresponding coefficientsǓ11e
( i ) are the unique solu

tions of the ODEs

Ǔ11e8( i ) 1„12a0
22~11e…D1!Ǔ11e

( i ) 1S( i )50, ~B20!

where the source termsS( i ) can be read off directly from Eq
~B18!. The calculation of the other terms proceeds in a si
lar manner at all orders. Note that the functions of typef̌ ,
wheref stands forV, a, andb, are given algebraically andf̂
obeys an ODE. ForU it is the other way around.

The limit V050⇔e50 of our expansion exists. Th
regularO(yn) terms in the series vanish identically, and
do some of theOuyun1ke terms but not all of them.a1 and
a11e , for example, vanish because they are proportiona
U0, but a112e is proportional toUe

2 , and so encodes th
curvature toO(y).

In the limit e50 the curvature components proportion
to U2 are no longer continuous at the CH because they
now periodic in t̂5t2 lnuyu, but for the same reason the
remain bounded. The components proportional toUV andV2

are still continuous even then becauseV is O(y). a is also
still continuous, witha51 on the Cauchy horizon.

APPENDIX C: THE ROBERTS SOLUTION

In the notation of Ref.@18#, the Roberts solution@11# is
given by

ds252dudv1r 2~u,v !dV2, ~C1!

r 2~u,v !5
1

4
@~12p2!v222vu1u2#, ~C2!

f~u,v !5
1

A16pG
log

~12p!v2u

~11p!v2u
, ~C3!

with p a constant parameter.p50 is Minkowski spacetime
with zero scalar field, and without loss of generalityp>0.
Only the regionsr 2.0 are physical and without loss of gen
erality, we consider the right side (v2u.0) of the space-
time.

For pÞ0, the linesu5(16p)v are central curvature sin
gularities: the mass functionm52p2uv/(4r 2) diverges on
them. The lineu5(11p)v, v,0 is timelike and has~infi-
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nite! negative mass, and forv,0 forms the past branch o
the Roberts singularity. The lineu5(12p)v is timelike with
negative mass forp,1, null with zero mass forp51, and
spacelike with positive massp.1. For v.0 it forms the
future segment of the singularity.

Some of our solutions become asymptotically CSS a
havek.0, therefore approaching the Roberts spacetime.
know that the solutions develop a timelike, negative m
singularity, which must correspond to one of the tw
branches of the Roberts singularity. In this appendix
study the issue of which of the two branches is actually
proached in our numerical evolutions and for what valu
of p.

Our scalarsU andV are

U52
p

A2

v
v2u

, V5
p

A2

u

v2u2p2v
, ~C4!

where both denominators are positive in the region of int
est. It is clear thatp is covariantly defined byU andV on the
light conesu50 or v50, respectively. However, at the sin
gularities u5(16p)v the scalars take valuesU52V5
61/A2 for any 0ÞpÞ1 in the Roberts solution. If we use a
expansion using a generic self-similar coordinatey such that
u/v5F(y) with the singularity aty50 @that is, F(0)51
6p]:

A2U~y!5612
y

p
F8~0!1O~y2!, ~C5!

A2V~y!5711
y

p

17p

16p
F8~0!1O~y2!. ~C6!

Thereforep is covariantly given by the ratio of the rates
which U andV approach their values at the singularity

lim
x→0

dU

dV
52

16p

17p
. ~C7!

This determines bothp and which branch of the singularit
we approach locally: The upper sign applies forudU/dVu
.1 ~past branch, turned upside down! and the lower sign for
udU/dVu,1 ~future branch of the singularity!.

We can relate the coordinates (u,v) of Eqs.~C1!–~C3! to
our coordinatex through

S 12
u

v D 2

5p21~12p2!x2. ~C8!

This expression applies only for negativex and so only cov-
ers the future branch of the singularity. We obtain the expr
sions for the past branch exchanging the role of the functi
U andV. That explains why exchangingU andV in Eq. ~C7!
amounts to a change of branch. It also shows that we hav
change branch four times perD period as we move through
the four quadrants determined by the linesU1V50 andU
2V50.
1-24
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