PHYSICAL REVIEW D 68, 024008 (2003

On slow light as a black hole analogue
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Although slow light(electromagnetically induced transparenaypould seem an ideal medium in which to
institute a “dumb hole”(black hole analogyeit suffers from a number of problems. We show that the high
phase velocity in the slow light regime ensures that the system cannot be used as an analogue displaying
Hawking radiation. Even though an appropriately designed slow-light setup may simulate classical features of
black holes—such as horizon, mode mixing, “Bogoliubov” coefficients, etc.—it does not reproduce the related
quantum effects.
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[. INTRODUCTION higher energy state is assumed to have decay channels other
than electromagnetic radiation to the) and|b) states.

The astonishing ability to slow light to speeds of a few The electromagnetic field, which we will assume has a
meters per second has been a striking development in quafixed polarization, will be represented by the vector potential
tum optics, see e.dl]. The idea to use matter systems asA whereE=¢;A (temporal gauge
analogue$2] to the(yet unobservedHawking effect[3] for
black hole$ has raised the possibility of experimentally test- A. Effective Lagrangian
ing certain assumptions which enter into those calculations, The effective L ian for thi ¢ b itt
see e.g[5]. The dependence of those analogs on the detec- € efiective Lagrangian for this system can be written as
tion of sound waves however causes problems, as the detegfzcz 1 throughout
tion technology for light is much more developed than for
sound, and finding an optical analog to black hdlés9] L=f dxCA+ D (LY+LIY), (1)
could make the experimental detection of the analog for !

Hawking radiation easier, cf10].

Recently Leonhard{6,8] has suggested that slow light
systems could be used to create such an analog, but th
approach has been criticized by one of 116]. In this paper, 1 1
we look in more detail at the use of slow light in such an L’AZE[EZ—BZ]Z E[(atA)z_(axA)z]a (]
analog, and try to understand in what sense slow light could
be used to create an analog for black holes, and why, despitgd the Lagrangian of the atomic states
that analog, it will not create the thermal radiation character-
istic of the Hawking process. LY =i (%00aj+ W 0cthoj + i0uibe)) + 0t Yaj

+ opi o HIT g e s 3

. ) as well as the interaction term in the dipole approximation
In order to generate slow light, one first chooses an atom P PP

with a convenient set of atomic transitions, ¢1,11]. In LAY= E(X;) (€aththaj+ €0tithop) + H.C., (4

particular, a system is chosen with two long lived meta-

stable or stable states, and with one state which is coupled tRherex; is the location of thg-th atom. Here they ; are

these two states via dipole electromagnetic transitionshe amplitudes for thgth particle being in the corresponding

(A-systen). Let us call the two lower meta-stable stata$ state|atomj)= l/’aj|a>+ ¢/bj|b>+ ¢cj|C> and e,, €, are the

and|b). The third higher energy state fis). The two states associated dipole transition amplitudes.

|a) and|b) are assumed to have energyw,, —wy,, and In contrast to the usual setup, i.e., a strong control beam

|c) has energy zero and decay constBnt0. (That is, this  and a weakperpendicular probe beam, let us assume that
there is a strong background counter-propagating electro-
magnetic field

with the usual term governing the dynamics of the electro-
gwtagnetic field

Il. DESCRIPTION OF THE SET-UP

*Email address: unruh@physics.ubc.ca
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11t should be mentioned here that the analogy between the propa- Ao(t,x) =1 Ee 70+ ebwbe o070 ) + H.c.,
gation of light in gravitational fields on the one hand and within (5)
dielectric and permeable medianoving or at reston the other
hand in general has been noticed much earlier, see,[d]gi,e.,  i.€., at the resonant frequencies of the two transitions. The
even before the Hawking effect has been found. mixing angleé controls the relative strength of the left- and
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right-moving beam and() denotes the averaged Rabi and the atomic states
frequency’ For a single beamg=0 or 6= 7/2) Q reduces .
to the exact Rabi frequency of that beam. The fact that the L} =i(W5;0:Waj+ W50y,
phase velocity is unityi.e., the light speedprefigures the .
fact that the effective dielectric constant of the atoms is unity FWGIW o+ DWW o)) —1Q(WEW 5 c080
at thes:a tranS|t|on"frequenC|es when the atoms are in the so +\I’§j\ijsin0—H.c.), (10)
called “dark state,” cf.[1,11].
In the following we shall assume that we can and areys \well as the interaction

making the rotating wave approximation. One solution, the
only (up to an overall phagenondecaying solution, for the Lf“’z—iwaeasin 0D o(X)) Vg
atoms is

_ +i wbebcose<bb(xj)\lf§j+ H.c. (11

y3,=+e'“al"sing,
lﬂgj: —ei“’b(HXi)COSG, 1. EQUATIONS OF MOTION
The equations of motion for the particle amplitudes can

¢gl:o_ (6) be derived from the effective Lagrangian
Since the Rabi oscillations between the stdtes and |c) IWaj=—Q cosd¥;,
interfere destructively with those between the sta®sand )
|c) (leading to a vanishing occupation [af)), this solution HWpj=—Qsino¥,

is called a dark staténo spontaneous emissijon )
at\PC]' = Q(COSH\I’aj +sin equj) - F\I’CJ

B. Linearization + Wa€,5IN 0D o(X;) — wpepCOSODY(X;),  (12)
Let us redefine our electromagnetic field such that . ) i
and the equation of motion for the fields, and®,, are

QO cosé e i0a(t=x)

€aWa

A(t,x)=

+d,(t,%)

2(d+ 0 Pa=— €8N0, W ;8(x—X;),
]

+

siné .
QJ+<Db(t,x))e"“’b(t+x)+H.c., 7

b™b 2(0— d)Bp=+€,C080>, W;d(x—x)). (13
where we are going to assume that bdify and ®, are .
slowly varying functions of time and spacee., beat fluc-
tuationg.

Furthermore, let us define

Assuming that the particles are sufficiently closely spaced so
that there are many particles in a space of the order of a
wavelength of the field, the sum ovjecan be replaced by the

Yaj= (W 4+ sin f)eivalt=x), density of the particles

¢b' = (\I}bA_ Cosa)eiwb(t+xj) 2(&t+ ax)q)a: - p(X) EaSin G‘PC(X);
J J !

2(di— dy) Pp=+ p(X) €,c080V ;(X). (19

ei=Te), (8) v ° ‘

where the new variabled are also assumed to be slowly A. Effective dispersion relation
varying. Assuming harmonic space-time dependeac&’!™** of

Substituting into the Lagrangian, retaining only the sec-y| of the variables, we can solve the equations of motion for
ond order terntsin the W, @, ®,, using the rotating wave the atomic amplitudeél2)

approximation, and neglecting time derivatives ®f and
d, with respect tow, and w, we get the effectivéapproxi- Vij(0)=[€a05SIN 0D o(,X)) — €pwpCOSHP(,X;) ]
mated Lagrangian for the beat fluctuations _

iw

LA=2i 0,0% (9+ 3 Dot 2i 0, @ (31— 3Dy, (9) X 0P tiTa (19

and inserting this result into Eq14) we finally obtain the
°Note that() is often defined differently, i.e., with an additional dispersion relation
factor of two.
3The zeroth-order contributions decouple and the first-order terms [0+ X(w)—k][o+Y(w)+k]=X(w)Y(w), (16
vanish after an integration by parts, since the background fields
solve the equations of motion. where
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pwaegsinze pwbe,icos?é’
2072 207?

N, (23

where the dimensionless quantitydescribes the slow-down
(17)  of the waves and can be very larye>1. In terms of the
fields

B. Adiabatic regime D =P, =Dy, (24)

For smallw and«, the dispersion relation derived above e can indeed combine the two first-order equalities above
turns out to be linear, i.ewo . Let us specify the required jnto one second-order equation

conditions. As already mentioned above, Ed) is valid for

wavelengths which are much larger than the interatomic dis- 2 9 1 9
tanceAx (typically a few hundreds of nanometgimnly ? o TR % o, =0. (25
1
K<Y (18)  Obviously, small background fields, i.e., small Rabi frequen-

cies(), may generate a drastic slow-dow1.
In addition, the manipulations of the previous sectiotat- Note, however, that the above wave equation differs from
ing wave approximationare based on the assumption thatthe equation Qf motion describing a slow-light pulse in the
the fields®,, and @, are slowly varying, i.e.w<w,,wp u_suaI setup—i.e., a strong control beam and a wpakpen-
However, since the Rabi frequendy is supposed to be diculan probe beam, cf.1,11]
much smaller than the atomic transition energigswy, and
the decay rate is assumed to be sniadt (), the knee fre-

?uencyﬂ of theﬁabove dispersion relation yields the relevant o the slow-down in EA25) 0 grous= U phasé 11+28
requency cuto of the design proposed in the present article is not as extreme
as that of th_e usual setupyop=1/(1+X) #vnase~ 1, but

still substantial.

([14+N]d,*+ 3 ®=0. (26)

QZ
w<min|ﬂ,wa,wb,?]=f2. (19

In this limit, i.e., in the adiabatic regime, E@¢L2) can be V. EFFECTIVE GEOMETRY

solved via So far we considered a static medium at rest with a pos-
sibly position-dependenk=X(x). Now we allow for a
space-time varying variablg =X (t,x), where the medium
is still at rest. A change df can be generated by varying
i.e., by adiabatically adding or removing atoms. The other
parameters in Eq(23) remain constant—a time-dependent
Q, for example, would generate additional source terms and
P ,= w,e,sin0D,, thereby invalidate the background solution.

Furthermore, we shall assung = w, as well ase;= €,
(which is a reasonable approximatjaand henced= /4 for
the sake of simplicity and absorb these quantities by rescal-
ing the fields® .. .

W,€,SIN0 . wpH€L,COSH .
= ""52 b, o Py, . (20)

C

Rescaling the fields via

&)b: wbebcosﬂ(bb ) (21)

Egs.(13) and(14) become

2R A. Effective action
- pwaesSIte ~
(9r+ ) Pa=— 202 (0:Pa=aPp), Introducing the abbreviatiodr=(¥,,¥,,¥.) " the lin-
earized Lagrangian governing the dynamics of thdields
2002 in Egs.(10) and(11) can be cast into the following form:
~ PWLELCOS O ~
(9= ) Pp=+ T(ﬁ@a— adyp). (22

A“’zf dXx(wh W+ MW+ [P N]D

In order to cast these two first-order differential equations

T, *
into the usual second-order form, let us choéssuch that +HINT-W]OT), (27)

with M denoting a(self-adjoin} 33 matrix andN a three-
40therwise one would obtain a velocity-like term even for a me-compom:"nt Ve,Ctor a? determined b.y EQH?) gnd (11). In
dium at rest, cf. Sec. V below. However, this term alone cannot€'ms of the differential operator defined \De=i4;+M and

generate an effective horizon. its formal inverseD ! we may complete the square
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wherei ¢ denotes the space-time dependent transition ampli-
tude. (This particular parametrization will be more conve-
nient later on.
with If the amplitude(population of the stategd) and|e) is
~ - large ¢4 > i, , @and the transition weak<1, we may ne-
W=w+D LNO_. (29 glect the back-reactiony, ,— /4 ) as well as the associ-
ated (quantum fluctuations and describe the process by a
classical external source fqr, |, .
Furthermore, assuming,= wy and w,= w, as well as

A‘l’:fd2x(ﬁr*.f)-ﬁr—qﬂN*.b—l-Nqn,), (28)

Assuming that the quantum state of tHe-fields is ad-
equately described by the path-integral with the ustedu-
lar) measure®W¥ we are now able to integrate odte.,
eliminate those degrees of freedom explicitly arriving at an Yg=+ € “at=sin g+ O(£?),
effective action for theb-fields alone

1 o= —e T ¥cosh+ O(L?), (36)
exp{i.Aeff}=—J DWexpli(A®+AY). (30
Zy the background solution in E@6) acquires an overall pref-

As demonstrated in Eq(28), the above path-integral is actor

Gaussian®W=DW) and the associated Jacobi determinant $O=+(t,x)e'“a"Vsing,
is independent ofb. Hence we obtain

A Po=—(t,x)e' ("X cosg,

AeﬁzA‘I’—f d’XxP*NT.D"1.ND _ . (31
$2=0. (37

As usual, the inverse differential operatbr ! causes the ,

effective action to be nonlocéin time)—but in the adiabatic  1his scale factog(t,x) enters the subsequent formulas and

limit ©<Q, No<w,p, k<1AX, andXk<w,, the low- effectively changes the density of the contributing atoms

A — 2 . . a .
energy effective action is locaR®d* ®_. An easy way to per={"p- I particular, the wave equatidd2) gets modified

reproduce this result is to remember the original equation of'@

motion G _+0,D, +2RLa({D_)=0, (38)
B — — -1
D-W+N®_=0~W=-D""No_, (32 which is exactly the same equation as derived from the ef-

. . . . 2 .
and its solution in the adiabatic limit as given by Eg0). fective action in Eq(33) with K— {°X.

Together with Eq(9) we finally arrive at
B. Effective spinor-representation

Lo==(P* D, +[1+2R]D*D_+P* D' +DP* D) According to Eq.(33) the total effective action for the
2T - T beat fluctuationsb .. of the electromagnetic field can be writ-
+H.c. 33 ‘tenas

Strictly speaking, one obtains an effective action for each = IEJ d2X[(1428)(P* 9, D _ — [, D* [P _) + (D* 9, D,
atom
dd_(t,x)) —[0@T]P )+ (PLADP_—[oPL]D_)
+

Aleﬁocif dth>*i(t,xJ)—dt H.c., (39 (@ 0B, —[0.D* 1D )], (39

where the total effective action incorporates the sum over aljntroducing the effective two-component spingr(not to be
atoms. With the assumption that the atoms are sufficientlyonfused with the atomic amplitudes, ;, )

closely spaced, cf. Eq18), and moving in a direction per-

pendicular to the beanfe.g., in they-direction only, we JIF2RD
recover Eq.(33). Y= ) , (40)
An alternative method for effectively changing the density D,
p is to cause transitions between the stagdsand|b) and . . .
further stategd) and|e), which do not couple to the elec- this action can be rewritten as
tromagnetic fieldd . under consideration. The dynamics of ) )
these additional states is governed by the Lagrangian A= '_f d*x T 2R (oo 1)
. . 2) J1+2x o
ﬁaddzi‘/’:; ‘/’d‘H'p; Yt ‘waz ¢d+we‘/’: e PV
X .
+ (1LY a1 LW Yot H.C), (35) + (W oo o) — T ocdbliog), (4D
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with oy, a'ﬁ,, o, being the Pauli(spin) matrices obeying the effective massn in Eq. (45) would be constanfwhich,

0')2(2 ol= a;=1. however, is not necessary for the introduction of an effective
But this exactly corresponds to the expression fofla geometry and the analogy to thél+1)-dimensional mas-
+1)-dimensional Dirac fieldy sive Dirac field complete
i — _ (i "V, —m) h=0. (52
A= J’ dxy/— g{z(q/ry“vﬂlji— [Vudbl v ) — m'/"/’} )
(42 C. Effective energy
if we define the Diracy-matrices via The energy-momentum tensor of a Dirac field reads
0_ 11w [ —
Y= 1+2N0'y, T;LV: E(ﬂlf’}’(ﬂvy)'l’_[v(#‘p]%)w)
yr=—ioy, (43) _
i — _
and, accordingly, the Dirac adjoint/p, gry* e R) = 5 (Y=o Y17 ¥), (53
Ez :/f’cry, (44)  where the second equality sign holds in general only in
_ _ (1+1) dimensiong(in analogy to the simplifications above
as well as introduce the effective mass For an arbitrarily space-time dependéhthowever, there is
11 " no energy or momentum conservation law associated to this
m=— = ‘9__ (45) tensor. But assuming time-translation symmetry as described
2 1+2X dx by the Killing vectoré= g/ gt we may construct a conserved
. L energy via
The effective metric is given byy*,y"}=2g*"
dt? ) E:f dEMTM”gff dxy/—gT9, (54)
S 9 (46)

) which, for the Dirac field in Eq(53) and the(statio metric
and displays the expected slow-down. in Eq. (46), reads

For deriving the identity of Eq$39) and(42) we need the
properties of the spin connectidh, (Fock-lvaneneko coef- i fo
ficient) which enters into the spin derivativeremember E=f dx5 (F—¢'y). (55
3,(Pph) = (V) Yt 4V, 4]

On the classical level, this quantity {gven in flat space-

V=30, 4+1 b, V=0, ,4—yl",, (47 time) not positive definitglas is well-known. For quantum
. L . fields the situation can be different. Imposing fermiofiie.,
and is defined byV,(y"¢) = (V, ) v g+ by'V, ] ant) commutation relations the energy operator is—after
renormalization of the zero-point energy and definition of the
Ay +T7, P =1y"T ], (48)  vacuum state as the filled Dirac sea—indeed non-negative

. Y . . (again in flat space-time However, the fields i
W.'th F.PM being the C.hnstoffel symbol. .In ou(1+1?- . =(J1+2X®_,®,)" do not obey fermionic but bosonic
dimensional representation, the L.h.s. is a linear Combmat'ogtatistics(as on’e would expect, cf. Sec. VI belpand, there-

?.f a¥anhd Uzt’ Cg' Eq. (43),;. andl, tther?;ore, . I?pln cc;)r:ngc— fore, the effective energy possesses negative parts.
lon 1, has 1o be proportional toy .. AS a resuft we obtain s fact is not surprising in the context of the electro-

the relation magnetic field, since one has the huge background field with
T,,7,}=0 (49) which these perturbations can exchange energy. However,

pr v ' since in the laboratory frame, the background metric is sta-

and thus confirm the identity of Eq&39) and (42) tionary, the energy is a conserved quantity, and the potential

instability of the negative energy will not be triggered.
2i £m=0: [V,ul/’] ’yMl/’_ ¢7MV#¢

=13 v d— v ol “
Lo, 91y" b=y o, = T, v} Since the(classical equation of motion52) can be de-
=[9. Wlvrd— bvio . 50 scribed by means of an effective metric in EG¥6) and(60)
LOudbly =y, 4 0 below, we can introduce a conserved inner product for two

Finally, if we were to chooséover some finite region, since solutions of the wave equatiog; and #,. As usual, the

D. Inner product

N>0) inner product of the Dirac field can be derived by means of
the Noether theorem associated to the global
14 2RX(t,x)="f(t)e 4™ (51)  U(1)-symmetryy—e'?y and reads
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_ 1 v
(¢1|¢2):f d g0y i, ghi = (1+2N) ’ 02—1/(1+2x))' (59
:J' dxy— gyt The inverse metric simply reads
. (1/(1+2x)—02 v )
o= . (60)
= f dxyd . (56) a v -1

Obviously, a horizon ggg=0) occurs forv?=1/(1+2R),
In contrast to the energy in E@55), this quantity is non-  which could be a relatively low velocity and perhaps experi-
negative on the classical leveds well as for quantum fields mentally accessible.
with bosonic statistigs If we were to impose fermionic com-
mutation relations, the above pseudo-norm would equal the A. Negative effective energy

difference of the number of particles and antiparticles and . .
o - . > 7 For stationary(in the laboratory frame parametersy
hence not be positive definite. But for bosonic statistics it is_ y( y e p

non-negative =N(x) andv =const one may construct a conserved energy
Note that, for a scalar field, the situation is completely(Noether theoremof the beat fluctuationgy via Eq. (54).

different since in that case, the inner product is not positiveﬁinCe for a moving medium, the effective metric in &60)
o ' ff-diagonal elements, the resulting expression is mor
definite: F*|F*) = — (F|F). as off-diagonal elements, the resulting expression is more

complicated than in Eq55). For the sake of convenience,
we adopt the geometric-optics approximatianx=>N\'/X

V. BLACK HOLE ANALOGUE and obtain
After introducing the notion of the effective geometry we 1+ 1+ 28)(w+
can now design an analogue of a black or white hole. To this E%f dx,pT wt(dtow > o tvx) ¥, (61

end we move the medium with a constant velocitin order
to be able to correcttune the background beam according and, after diagonalization and normalizatiog{ ) =1, the

to the resulting Doppler shift. Again the background solu-gq|ytions for the effective energy assume the following form:
tion, i.e., Q) and 4, should be homogeneous if we want to

avoid additional source terms for the linearized fieldis the 1

reference frame of the moving atoms, an inhomogeneous Eeff”E[“’J“(li”Vl”LZN)(“’J“”K)]' (62)
background becomes time-dependent and thereby also

causes a deviation from the dark state. Using the approximated, x>NX'/X~0) equations of mo-

The only parameter left for influencing the effective ge-tion, we obtain
ometry is the density. In order to arrive at a stationary
effective metric, the density profile in the laboratory frame
should be time-independept= p(x). In the rest frame of the which is the frequency as measured in the rest frame of the
fluid, this requirement implies a space-time dependence diuid.
p=p(x—uvt). At a first glance, such a scenario seems to be We observe that even the braneh>0 of the dispersion
inconsistent with a constant velocity, but one could ar- relation which would correspond to a positive energy in
range a flow profile such as=ve,—vyp’e,/p which, fora flat space-timg(with v=0) can have a negative effective
light beam aty=0, reproduces these properties. As alreadyenergy beyond the horizom>1//1+2X since w>0 does
mentioned at the end of Sec. IV A, an alternative possibilitynot imply w+wvx>0 anymore. This purely classical
is to cause transitionl),|e)—|a),|b). phenomenon—i.e., that the ener@ensity measured at in-
Since we are still working with nonrelativistic velocities finity can become negative beyond the ergo-sphere
v<1, the rest frame of the medium and the laboratory argy,,=0—occurs for real black holes as well and can be con-

Eci~o+uk, (63

related by a Galilei transformation sidered as the underlying reason for the mechanism of super-
radiance, etc.
a d J d d Of course, the total energy of the system as derived by the
Ao Vo ax ax (57 total action in Eq.(1) is always positive. The modes with a

negative effective energgpseudo- or quasienergy, ¢fL3])
Having derived a covariant, i.e., coordinate-independent0ssess a total energy which is smaller than that of the back-
representation of the effective action in Ed2), this trans-  ground. In this regard &classical mixing of positive and
formation is completely equivalent to a correspondingnegative(effective energy modes is possible.
change of the effective geometry , .

B. “Bogoliubov” coefficients
e A A e R R (58 If the effective metric possesses a horizon, one would

expect the usual mixing of positive and negative energy so-
The effective metric is then given by the well-known lutions as governed by the “Bogoliubov” coefficients: and
PainleveGullstrand-Lemare form[12] Be defined via
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2= agll + Bey”, (64) m 1 1 RN 70
e
where 2" denotes the outgoing “would-be” Hawking par- VI+2N 2 J(1+28)3 X

ticle and E its (positive energy according to Eq(54);
whereasy/] and#/" are incomingtrans-Planckian, cf17])
modes whose enerdie., frequencyin the fluid’s rest frame
is positive @) or negative ("), respectively. As we shall
see in the next section, the commutation relations are such
that Eq. (64) describes a mixing of annihilation operators

As a result, the relevant mode-mixing effects—i.e., the “Bo-
goliubov” B-coefficients—are not strongly suppressed by the
effective mass.

VI. COMMUTATION RELATIONS

only and hence does not imply any particle creati¢tence Having derived an effective metric which may exhibit a
the quotation marks in “Bogoliubov” coefficients and the horizon, one is immediately led to the question of whether
notion of a “would-be” Hawking particle. the system under consideration could be used to simulate the
These wave-packets are normalized via Hawking effect. As it will turn out, the answer is “no”—
N1 i it i yout sout since the Hawking effect is a quantum effect, it is not suffi-
(W) = (210 = (g Ty = 1, (69 Gient to consider the wave equation, one also has to check

the commutation relations which generate the zero-point
fluctuations(the source of the Hawking radiatipaccording
(WQWE)ZO- (66) 1O the Heisenberg ungertainty principle. For convenignce we
shall transform back into the rest frame of the medium and
Owing to the positivity of the inner product in Sec. IV D the assume a constakt for the calculations in this section.
completeness relation has a plus sign instead of a minus as
for the scalar field, i.e., A. Commutators

and orthogonal

|ag|?+]| Bel?=1. 6 Obviously the effective action derived above is intrinsi-
cally different from the one of a charged scalar field, for
Consequently we obtain the Fermi-Dirac factor for the scatexample. To make the difference more explicit let us con-
tering (“Bogoliubov”) coefficients (instead of the Bose- sider the effective(adiabatic limi} commutation relations
Einstein distribution for scalar fields following from Eq. (33).
For any given timg,, the equal-time commutation rela-

68) tions of the fieldsb . vanish. Since the equations of motion

| Bel =€ ag|~| Be|*= PN . . .
do not mix® . with &, this remains true for all times

eZ’UE/KS+ 1 ’

However, it should be emphasized here that this mode mix-  [d . (t,x),d. (t',x")]=[DL(t,x),dL(t',x")]=0.

ing is a priori a purely classical phenomenon and indepen- (7
dent of the quantum featurdsommutation relations—the _ _ _

fields ¢ do not obey Fermi-Dirac statistics, see the next sec;p‘cgord'ng to Eq.(33)*the canonical conjugated momenta are
tion. Only if the quantum commutation relations assigned 4 ®+ andi[1+2X]®Z, respectively, and hence we obtain
physically reasonable particle interpretation to the modes . s ;

Ye—as it is the case for a truly fermionic Dirac quantum [P (t,x), P (t,x")]=0(x=X"), (72)

field, for example, but not for the fieldd . (see below—

. : L d
could one infer théquantum Hawking radiation. an
The surface gravity of the effective horizon wt=1/(1 R R S(x—x")
+2X)=c?,, depends on the rate of change of the velocity [D_(t,x),DT (t,x)]=———5 (73)

S X 1+2N
of light in the laboratory frame across the horizon

The remainingequal-time commutators vanish

p _“9(|U|_Cslow)
sT |7 oo ~ ~ N ~
X horizon [DL(t0,D_(tx)]=[D.(tx), DL (t,x")]=0, (74
_ ‘903% and the commutation relations for the time-derivatives of the
IX | orizon fields can be inferred from the equations of motidn,
+®’ =0 and (1+28)d_+ P’ =0.
- 1 ﬁ (69) Remembering the definition of the effective two-
V(L42R)3[IX] | ivon component spinor in Eq40) the above relations can be cast

into the compact form
By comparison with Eq(45), we observe thak, is of the
same order of magnitude as the rest energy induced by the [ g(t,x), da(t’,x')]=[ FL(t,x), P(t',x')]=0, (75)
effective masgremember the homogeneous Dirac equation
(iy°9,—m) p=0] as well as
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[Q}A(t,x),z}fg(t,x’)]= Sapd(X—x"). (76) stat.istic_:s theore_m. Indeed, one key ingredient_ needed _for the
derivation of this theorem, the spectral conditigvhich is
Since the beat fluctuation of the electromagnetic fieldone of the Wightman axiomsis not satisfied in our case,
(coupled to the mediuindoes not obey the Pauli exclusion since the effective energy can become negative owing to the
principle, one cannot fill the Dirac sea consisting of all nega-huge total energy of the background field, see also Sec. IV C.
tive (effective energy(in flat space-timgstates and thereby
define a new vacuum state—as it is possible for fermionic C. Particle creation

quantum fields. In order to answer the question of whether there is any

particle creation at all in the described slow-light system, one
has to clarify the notion ofquasjparticles to be create@r
Let us compare the above commutation relations withnot) and to specify the correspondirign/out) vacuum state.
those of g (1+1) dimensional Schralinger field For example, an appropriate initial stdte), which is a
R R R R coherent state in terms of the fundamental creation and an-
[4(t,x),d(t" x)]=[4"(t,x), 4" (1", x)]=0, (77) nihilation operators of the electromagnetic field, could be
chosen such that it is annihilatebly all fieldsd . ,

B. Comparison with other fields

as well as
. . Vx : D, (t,x)|iny=d _(t;,x)|in)=0.

[0, ()] = 8-, 79 Xl =R 0 =0 (69
on the one hand and with the commutators of(&+1)- This is possib[e becaugén the rotating wave approxima-
dimensiona charged scalar fielgh tion) the fields® . are composed only of positive frequency

. A . . parts of the electromagnetic fiel cf. Eq.(7), i.e., they are
[d(t,x),(t" x)]=["(t,x),d (t" ,x")]=0, annihilators displaced by-numbers describing the back-
ground field(coherent transformation
[&(t,%),dT(t,x)]=[d(t,),d(t,x')]=0, In this case the initialvacuum state is annihilated by the

(79 fieldsd. at all times

as well as N “
W Vix © d.(tx)]iny=d_(t,x)]iny=0, (84
[$(tX),0:"(t,x")]=i8(x=x"), (80) , | o
as the time-evolution does not mix. with . , and there
on the other hand. In the latter cagharged scalar fielg), is no particle creation.

the equation of motion can mix positive and negative fre- For another initialvacuum state(e.g., a squeezed state
quencies and thereby lead to particle production—whereas iaind a different particle concept,

the former situation(Schralinger field ¢), the number of
particles is conserved. This d?fferer)ce becomes_ more evident f[d. ,d1]lin")=0, (85)
when one decomposes the fields into resdlf-adjoin} and -
imaginary (anti-self-adjoint parts. Forys, the independent

. ; X however, some eff rticle creation might oc-
canonical conjugated variables &g/ andJy—whereas for owever, some effects dfuasjparticle creatio gnt oc

. ; cur. These phenomena could be tested by sendingritui-
¢, they arelR¢ andM¢ (as well asi¢ andJ¢). mode squeezed state and comparing the number of photons
Obviously, the commutation relations of the fielfis are per mode in the in- and out-states.
clearly inconsistent with those of a charged scalar figld ~ Another possible source féquasjparticle creation is the
and show more similarity to thébosonig Schradinger field.  finjte life-time of the atomic statéc) as represented by the
Therefore, the system under consideration cannot serve ass#ective decay ratd. Realistically, this decay corresponds
true analog for the quantum effects in the presence of a blacly some spontaneous emission process generated by the
hole horizon—such as Hawking radiation—although it re-quantum fluctuations of the electromagnetic field, for ex-
produces all classical phenomena. ample. Consistent with the fluctuation-dissipation theorem
Since the fieldsb .. describe fluctuations of the electro- this coupling also introduce@uantum noise, which is not
magnetic field, it is also clear that they do not obey theincluded in our treatment and could possibly lead to particle
fermionic (antjcommutation rules creation. However, this is clearly a pure trans-Planckian ef-
fect and cannot be interpreted as Hawking radiation.

{a(t, %), Pa(t,x" )} = {1, %), P(1,x")}=0, (8D

as well as >Note that this state is therefore annihilated by tme@rmal-
. . ordered effective energy in Eq(55), which is, however, not posi-
{Pa(1,X), (1, X))} = Spgd(x—X"). (82)  tive definite (no ground state Consequently, it cannot be the
equivalent of the Israel-Hartle-Hawkind 4] state, in which the
An effective Dirac field satisfying bosonic commutation re- Hawking radiation is somewhat hidden by the fact that there is no
lations might seem rather strange in view of the spin-net energy flux.
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FIG. 1. One branch of the dispersion relation of thefield in FIG. 2. The real part of the dispersion relation in Fig. leags

Eq. (86). Frequencyw and wave-numbek are plotted in units of « with the same values. One can easily recognize that the first
the Rabi frequency) for X=10 andI'/Q)=1/10. These value®f deviation from the linear dispersion relation ab<<() is
order ong are but illustrative and chosen in order to resolve the“subluminal’—although it becomes finally “superluminal” fot
characteristic features in one figure—realistically the orders of mag>{(). The solutions with an anomaloysegative or even infinije
nitude are different. The imaginary part describes the absorptiogroup velocity lie completely in the absorptive region, cf. Fig. 1.
and does not change significantly in the liif 0. For very large

as well as for very smalb the medium becomes transparent. The
steep slope within the transparency windas< () corresponds to
the reduced propagation velocity—whereas the effect of the me-
dium for largew is negligible. As one can observe, the anomalouswhere ¢ denotes the so-called healing length and provides a
frequency solutionsy»>() are separated from the normal ones  wave-number cutoff, cf. Fig. 3.

w2=C§0unC{(2(1+ £k?), (87)

< by a large region of absorption. The sonic black hole analogs generate a deviation from
the linear dispersion relation via the spatial dependerge (
VIl. DISPERSION RELATION and, consequently, for each value of the wave-number

. . there exist two possible solutions for the frequen for
Although slow light cannot be used to simulate the Hawk- P quencye

. ’ ) . X medium at rest In contrast, for the black hole analogs
ing effect it can reproduce various classical effects assomate@a

horizons® h de mixi dth ated B sed on slow light the deviation is maiflgaused by the
tp orizons, such as mode mixing an the associate 0go(nonloca} temporal dependencéThis remains true for all
liubov coefficients, see Sec. V B. In view of the red- or blue—di

) k - ) _ .~ dielectric/optical black hole analogs, ¢i7,9].) As a result,
shift near the horizon deviations from the linear d|sper5|0nOne has two values of for each value ofu. but can have
relation have to be taken into account, £17]. With the ’

S . . s ) more than two solutions fo® for some values ok. Even
choice in Eq.(23) the dispersion relation in Sec. Il A sim-

lifies b Kl w) =Y q btain f di though these anomalous solutions ferare separated from
piTes because (@) =Y(w), and we obtain for a medium the normal ones by a relatively large region of absorption, it
at rest, cf. Figs. 1 and 2

would be interesting to see under which circumstances this
peculiar behavior may give raise to additional effe(sisch

02 as mode mixing, etg.
K=*w \/1+ 2N —mM——, (86) Another major difference between the dispersion relations
0?—w’—ilTw (86) and (87) is that the sonic dispersion relatid87) is
We observe two major differences between the dispersiofisuperluminal’/supersonic for large wave-numbersq,,
relation above and that for the sonic black hole analogs, for dw/dx> Cgoyng for ék«1 whereas the slow-light disper-
example in Bose-Einstein condensatese[18] and Sec. sion relation (86) is “subluminal” v g,=dw/dx
IX A) with <1/J1+2X within the transparency window, sajw|

S0ther systems which are potentially capable of simulating those ‘Of course, the finite interatomic distance results in a deviation
classical effects with present-day technology are discussed in Refflom the linear dispersion relation too, but the cutoff given by the
[15] and[16]. Rabi frequency is usually reached earlier.
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FIG. 4. One branch of the dispersion relation of a slow-light
pulse (in the usual setup k?>=w?[1+p(w+ wy)—p(®—wy)]
where p () =2X(Q% wg) w/ (w?— Q%+iTw), see e.g.[1,10, in
units of the Rabi frequency) for wy/Q=20, I'/Q=1/2, andN

FIG. 3. One branch of the dispersion relation(eérg sound
waves in Bose-Einstein condensates at rest, cf(&®), in arbitrary
units. If the condensate is moving the variokssolutions for a
given frequencyw in the laboratory frame can be found by the

points of intersection with straight lines as determined by (8. = - Again, these unrealistic values have been chosen in order to
For a subsonic velocity <Cg,,ng there is only one solution, de- illustrate the characteristic features. For more realistic values the

noted by s, which has a small wave-number and a positive P8aks would be more pronounced, the transparency windaws
pseudo-norm, i.e., a POSitiveig:s restirame (ASSUMING @ jap frame iafo|<Q narrower, gnd the slope inside thgm steeper, etc., but the
>0). For supersonic velocities, on the other hand, i.e., beyond thEain structure remains. Féi = wo|>( the influence of the me-
horizon, there are three possible solutions—one with a small wavedium is negligible. Within  the transparency Wmdov{/s,; wo
number and a negative pseudo-nasy as well as two others with ~<{ the steep slope indicates a reduced group velocity and the
large wave-numbers and positiet) and negative(-) pseudo- ~ Solutions with an anomalous group velociy + wo|=O(Q) lie
norm, respectively. The mixing between these modes at the horizolfSide the absorptive regions.

generates the Hawking radiatigst). radiation cannot be much larger than the surface gravity
) (e.g., the gradient of the fluid's velocjtywhich makes an

<Q/2, but|w|#Q. For very large frequenciee>() one  experimental verification in this way very unlikely.

recovers the speed of light in vacuum= k—although this

limit is totally outside the region of applicability of our ap- B. Doppler shift

proximations. In a stationary medium, the frequency as measured in the

laboratory frame is conserved—nbut the frequency in the at-
VIll. PROBLEMS OF SLOW LIGHT om’s rest frame changes as soon as the velocity of the me-
dium (Doppler shifj or the wave-numbe(tredshify varies
(which necessarily happens near the horjzddence the
beam will leave the narrow frequency window—which is
c)igenerated by thémoving) atoms—in general.

The direct(naive way to use the most common setigee
Figs. 4 and 5for slow-light experiments—i.e., a strong con-
trol beam and a wealperpendicularprobe beam—in order
to build a black hole analog goes along with a number
(somewhat relatedlifficulties listed below. Whereas the first
three obstacles can be avoided by the arrangement proposed _
in this article, the fourth one persists—indicating that this Since the group and the phase velocity of the probe beam

system is a classical, but not a quantum analogue of a black® extremely different gro,;<vpnas¢= 1, it is not possible to
hole. describe its dynamics by an effective local wave equation

resembling a scalar field in a curved space-time.

C. Group and phase velocity

A. Frequency window D. Positive/negative frequency-mixing

Light pulses(of the probe beainare only slowed down In order to obtain particle creation, one has to have a
drastically—or may propagate at all—in an extremely nar-mixing of positive and negative frequencies, or, more accu-
row frequency window in the optical or near-optical regime.rately, positive and negative pseudo-naiams induced by the
But the frequency of the particles constituting the Hawkinginner product, cf. Sec. V Bsolutions. In a stationary flowing
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T T T T sentative examples, for which the commutation relations can
be derived easily.

A. Bose-Einstein condensates

The dynamics of Bose-Einstein condensates are to a very
good approximation described by the Gross-Pitaevskii equa-
tion

V2
S 20,712
i 2m+V(r)+r; | )% |, (89
whereys denotes the mean-field amplitudethe mass of the
bosonsV an externaltrapping potential, andy is the scat-
tering parameter governing the two-body repulsion of the
constituents. Inserting the eikonal ansétfadelung repre-

sentatiom,
y=1Jee'", (90)
1 L L | L L I L 1 L 1
-40 -20 0 20 40 and introducing thémean-field velocity v = VS/m, one ob-
e tains the equation of continuit&+V(gv) and the equiva-

FIG. 5. The real part of the dispersion relation in Fig. 4ass  ent of the Bernoulli or the Hamilton-Jacobi equation

k with the same values. The additional line demonstrates the slope
. . . . (VS)Z 1 V2 [
corresponding to a motion of the medium with the reduced group _ @

2m  2m o

velocity as in Fig. 3. Obviously, there can be no mixing of positive

and negative pseudo-norms via the usual mechanism sketched be-

low Fig. 3 in this case. Even though the peaks can be much highewithin the Thomas-Fermi approximation, one neglects the
for small I" and thereby could possibly intersect with the straightquantum potential, i.e., the term on the I.h.s., and hence re-
line, the resulting solutions would lie completely in the region of covers the usual equations of fluid dynamics, see ElSh
strong absor_pti_omf. Fig. 4 and therefore do certainly not model The linearization around a givefstationary background
Hawking radiation. profile 0 andSy— v, yields the well-known wave equation

S+V+pl0+

(91)

2

medium(as used for the black hole analpgthis can occur n
(at+V~v0)((9t+vo-V)5S=EVQOVJSS. (92

by tilting the dispersion relation due to the Doppler effect
caused by the velocity of the medium
The commutation relations @S, which we are interested in,
@lab-frame™ @fluid’s rest-framé" U mediunt< - (88)  can be derived from the commutator of the fundamental
fields
As soon as the velocity on the medium excepokx|, i.e., A R
the phase velocity, a mixing of positive and negative fre- [g(t,r), ' (t,r")]=8%(r—r"). (93
quencies(in the fluid’s rest framg becomes possible, cf. R _ A
[10]. However, since the phase velocity of the slow-lightInserting the linearization ofi= \/EeprS) around a classi-
pulse is basically the same as in vacuum, this mechanisiga| background viep = 0o+ d¢ and S=S,+ 5S we obtain
doe; not wor!< in this situation and, consequently, there is NPhote thato = o1 and 5= &
particle creation.

[So(t,r),85(t,r")]=i8%(r—r"). (94)

IX. COMPARISON WITH OTHER SYSTEMS

o o The relation betweesio and S follows from Eq.(91) in the
One of the main points of the present article is the obserthomas-Fermi approximation

vation that an appropriate wave equation and the resulting

effective geometry of a black hole analogrist enough for ) 1 )

predicting Hawking radiation. Although all the classical ef- 650=— —Z(at+v0.V)5s. (95)
fects can be reproduced in such a situation, the adequate n

simulation of thequantumeffects requires the correct com- -

mutation relations as well. Hencedp is indeed thegnegative canonical conjugated mo-

In view of this observation one might wonder whether mentum toéé—provided that one inserts the constant factor
this is actually the case for the currently discussedy., 7> correctly into the(effective action—and the commuta-
sonic/acoustic and dielectric/optigdilack hole analogs. In tion relations are equivalerfithin the used approximation
the following we shall deal with this question for two repre- to those of a quantum field in a curved space-time.
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B. Nondispersive dielectric media equation of motion—the commutation relations have to
As another example we study nondispersive and lineafatch as well. This is indeed the case for the sonic black
dielectric media, see e.§7]. For a medium at rest the fun- hole analogs in Bose-Einstein condensates and nondispersive

damental Lagrangian describing the electromagnetic fielddi€lectric black hole analogs—but for sound waves in more
the dynamics of the mediumZ(P]), as well as their mutual complicated systems, for example, it is not immediately ob-

interaction - P) is given b vious. . . . . . .
EP)isg y Nevertheless, in the scenario described in this article, the

1, field ® governing the beat fluctuations of an electromagnetic
L=5(E°=BY)+E-P+L[P]. (96)  background field obey the same equation of motion as in the

presence of a horizon and hence can be used to model sev-
Accordingly, using the temporal gauge and introducing theeral classical effects associated vy|th black holgs—for ex-
vector potential viaE=d,A andB=—V X A, the canonical ample the mode mixing at the horizon as described by the

momentum is just the electric displacement “Bogoliubov” coefficients, see Sec. V B. One way of mea-
suring the “Bogoliubov” coefficients could be to send in a
II=D=E+P. (97  “classical” pulse above the background—i.e., a particular

coherent state in terms of the fundamental electromagnetic
Performing basically the same steps as in Sec. IV A we mafield—and compare it with the outcoming pulse. As another
integrate out the degrees of freedom associated to the memore fancy possibility one might think of a multimode
dium P and thereby arrive at an effectiview-energy action  squeezed state—which in some sense simulates the vacuum
for the (macroscopit electromagnetic field alone, cf7].  fluctuations which are transformed into quasiparticles by the
But, in contrast to the highly resonant behavioiPah slow-  mode mixing.
light systems, nondispersive media respond adiabatically However, one should bear in mind that, as the wave-
with a constant susceptibility=e—1, i.e.,P=xE and thus  packets propagate away from the horizon and get strongly
II=D=¢E, to the external fieldat sufficiently low frequen-  blueshifted, they eventually reach the regime where the con-
cies, cf. [7]. cept of the effective geometry breaks down and effects like
If the (nondispersivemedium is moving with the velocity  dispersion, nonlocalityin time) of the effective action, and,
B the electric and magnetic fields get mixed and one obtainfinally, absorption become relevant. For a reasonably clean
interpretation, therefore, one should investigate the scattering

— D= 2 .
M=D=sE+(e—1)BXB+O(p). (98 of the wave-packets not too far away from the horizon.
Again, the commutation relations fit to an effective-metric
description—which is not completely surprising because the A. Miles instability
effective action has the same form as in curved space-times,

Another interesting classical effect is related to the nega-
tive parts of the energy in Eq62). Since a conserved posi-
tive definite energy functional of the linearized perturbations

X. DISCUSSION would demonstrate linear stability, the negative contribution

Let us summarize: The naive application of slow light in EQ. (62) can be interpreted as an indicator for a potential

(i.e., the most common setuim order to create a black hole instability (e.g., super-radiange-provided a suitable cou-

analog goes along with several problems, cf. Sec. VIII. WithPling between positive and negativeffective) energy

the scenario proposed in this article, the problems associatdB0des. _

with the classical wave equation can be solved and it is—at AS an example, let us assume that the “superluminally”

least in principle—possible to creatg@assical black hole ~ flowing v>1/y1+2X slow-light medium interacts with the

analog for thed field. At low wave-number, the correspond- €nvironment in the laboratory frame via a friction term such
ing dispersion relation represents a quadratic relation beasI'a® (with possible spatial derivativesFor smallw and
tweenk and w, and can thus be written in terms of an ef- « the resulting dissipation alters the dispersion relation via

cf. [7].

fective metric. If the fluid is in motion, this low wave- 2
number equation can be changed into a black hole type wave (0+vK)2= —iwl(x) (99)
equation. 1+2R8 '

However, this classical black hole analog does repro-
duce the expected quantum effects—such as Hawking _ . . _
radiation? In order to simulate the Hawking effect, it is not With the potentially x-dependentadditional spatial deriva-

sufficient to design a system with an equivalent effectivetives friction term I'(«) describing the interaction of the
& -field with the environment at rest.

For smallT" the imaginary part of the solutions for the

8This conclusion applies in the same way to the scenario proposei€duencye (assuming a real wave-numbek R) reads
in Ref. [8], where the Schwarzschild metric is simulated by a me-
dium at rest with the horizon corresponding to a singularity in the I'(x)
effective refractive index. Such static analogs of the Schwarzschild ~ _ K
J ———(1*vy1+2N). 100
geometry(see alsd19]) have further problems. (w) (1*v ) (100

2
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Consequently, beyond the horizen>1/\/1+2X one of the

PHYSICAL REVIEW D 68, 024008 (2003

sample(than the mere comparison of the in- and out-spates

allowed frequency solutions acquires a positive imaginarycould be to freeze the dark state by completely switching off

part and thus the dissipatidinteraction with the environ-

the background field and take a “snap-shot” of the state of

mend generates an instability. Note that the relative velocitythe atoms by illuminating them with strong laser beams with

v>1/\/1+2X between the slow-light medium and the envi-
ronment(at resj is crucial since a friction term likd™ (4,
+vd)P—i(w+vk)l would of course not lead to any
instability.

frequencies corresponding to certain atomic transitions and
measuring the absorption.

Furthermore it would be interesting to investigate the in-
fluence of the anomalous frequency solutions of the disper-

This instability is somewhat analogous to the Miles insta-sion relation generated by the nonlocal temporal dependence
bility [20] generating surface waves in water by wind blow- (cf. Sec. VI, for example, on additional mode-mixing. This
ing over it. In Ref.[16], this phenomenon is called thermo- question is relevant for more genefabndispersivedielec-
dynamic instability since it occurs when the free energytric black hole analogs and might also lead to some insight
of the medium acquires negative parts in the frame of thdnto the trans-Planckian problem.
environment.
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