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On slow light as a black hole analogue
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Although slow light~electromagnetically induced transparency! would seem an ideal medium in which to
institute a ‘‘dumb hole’’~black hole analogue!, it suffers from a number of problems. We show that the high
phase velocity in the slow light regime ensures that the system cannot be used as an analogue displaying
Hawking radiation. Even though an appropriately designed slow-light setup may simulate classical features of
black holes—such as horizon, mode mixing, ‘‘Bogoliubov’’ coefficients, etc.—it does not reproduce the related
quantum effects.
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I. INTRODUCTION

The astonishing ability to slow light to speeds of a fe
meters per second has been a striking development in q
tum optics, see e.g.@1#. The idea to use matter systems
analogues@2# to the~yet unobserved! Hawking effect@3# for
black holes1 has raised the possibility of experimentally te
ing certain assumptions which enter into those calculatio
see e.g.@5#. The dependence of those analogs on the de
tion of sound waves however causes problems, as the d
tion technology for light is much more developed than
sound, and finding an optical analog to black holes@6–9#
could make the experimental detection of the analog
Hawking radiation easier, cf.@10#.

Recently Leonhardt@6,8# has suggested that slow ligh
systems could be used to create such an analog, but
approach has been criticized by one of us@10#. In this paper,
we look in more detail at the use of slow light in such
analog, and try to understand in what sense slow light co
be used to create an analog for black holes, and why, de
that analog, it will not create the thermal radiation charac
istic of the Hawking process.

II. DESCRIPTION OF THE SET-UP

In order to generate slow light, one first chooses an a
with a convenient set of atomic transitions, cf.@1,11#. In
particular, a system is chosen with two long lived me
stable or stable states, and with one state which is couple
these two states via dipole electromagnetic transiti
(L-system!. Let us call the two lower meta-stable statesua&
and ub&. The third higher energy state isuc&. The two states
ua& and ub& are assumed to have energy2va , 2vb , and
uc& has energy zero and decay constantG.0. ~That is, this

*Email address: unruh@physics.ubc.ca
†Email address: schuetz@physics.ubc.ca
1It should be mentioned here that the analogy between the pr

gation of light in gravitational fields on the one hand and with
dielectric and permeable media~moving or at rest! on the other
hand in general has been noticed much earlier, see, e.g.,@4#, i.e.,
even before the Hawking effect has been found.
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higher energy state is assumed to have decay channels
than electromagnetic radiation to theua& and ub& states.!

The electromagnetic field, which we will assume has
fixed polarization, will be represented by the vector poten
A whereE5] tA ~temporal gauge!.

A. Effective Lagrangian

The effective Lagrangian for this system can be written
(\5c51 throughout!

L5E dxL A1(
j

~L j
c1L j

Ac!, ~1!

with the usual term governing the dynamics of the elect
magnetic field

L A5
1

2
@E22B2#5

1

2
@~] tA!22~]xA!2#, ~2!

and the Lagrangian of the atomic states

L j
c5 i ~ca j* ] tca j1cb j* ] tcb j1cc j* ] tcc j!1vaca j* ca j

1vbcb j* cb j1 iGcc j* cc j , ~3!

as well as the interaction term in the dipole approximatio

L j
Ac5E~xj !~eacc j* ca j1ebcc j* cb j!1H.c., ~4!

wherexj is the location of thej-th atom. Here thec . . . j are
the amplitudes for thej-th particle being in the correspondin
stateuatom j &5ca jua&1cb jub&1cc juc& and ea , eb are the
associated dipole transition amplitudes.

In contrast to the usual setup, i.e., a strong control be
and a weak~perpendicular! probe beam, let us assume th
there is a strong background counter-propagating elec
magnetic field

A0~ t,x!5VS cosu

eava
eiva(t2x)1

sinu

ebvb
eivb(t1x)D1H.c.,

~5!

i.e., at the resonant frequencies of the two transitions.
mixing angleu controls the relative strength of the left- an
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right-moving beam andV denotes the averaged Ra
frequency.2 For a single beam (u50 or u5p/2) V reduces
to the exact Rabi frequency of that beam. The fact that
phase velocity is unity~i.e., the light speed! prefigures the
fact that the effective dielectric constant of the atoms is un
at these transition frequencies when the atoms are in th
called ‘‘dark state,’’ cf.@1,11#.

In the following we shall assume that we can and
making the rotating wave approximation. One solution,
only ~up to an overall phase! nondecaying solution, for the
atoms is

ca j
0 51eiva(t2xj )sinu,

cb j
0 52eivb(t1xj )cosu,

cc j
0 50. ~6!

Since the Rabi oscillations between the statesua& and uc&
interfere destructively with those between the statesub& and
uc& ~leading to a vanishing occupation ofuc&), this solution
is called a dark state~no spontaneous emission!.

B. Linearization

Let us redefine our electromagnetic field such that

A~ t,x!5S V
cosu

eava
1Fa~ t,x! De2 iva(t2x)

1S V
sinu

ebvb
1Fb~ t,x! De2 ivb(t1x)1H.c., ~7!

where we are going to assume that bothFb and Fa are
slowly varying functions of time and space~i.e., beat fluc-
tuations!.

Furthermore, let us define

ca j5~Ca j1sinu!eiva(t2xj ),

cb j5~Cb j2cosu!eivb(t1xj ),

cc j5Cc j , ~8!

where the new variablesC are also assumed to be slow
varying.

Substituting into the Lagrangian, retaining only the se
ond order terms3 in theC, Fb , Fa , using the rotating wave
approximation, and neglecting time derivatives ofFb and
Fa with respect tova andvb we get the effective~approxi-
mated! Lagrangian for the beat fluctuations

L A.2ivaFa* ~] t1]x!Fa12ivbFb* ~] t2]x!Fb , ~9!

2Note thatV is often defined differently, i.e., with an additiona
factor of two.

3The zeroth-order contributions decouple and the first-order te
vanish after an integration by parts, since the background fi
solve the equations of motion.
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and the atomic states

L j
C. i ~Ca j* ] tCa j1Cb j* ] tCb j

1Cc j* ] tCc j1GCc j* Cc j!2 iV~Cc j* Ca jcosu

1Cc j* Cb jsinu2H.c.!, ~10!

as well as the interaction

L j
AC.2 ivaeasinuFa~xj !Cc j*

1 ivbebcosuFb~xj !Cc j* 1H.c. ~11!

III. EQUATIONS OF MOTION

The equations of motion for the particle amplitudes c
be derived from the effective Lagrangian

] tCa j52V cosuCc j ,

] tCb j52V sinuCc j ,

] tCc j5V~cosuCa j1sinuCb j!2GCc j

1vaeasinuFa~xj !2vbebcosuFb~xj !, ~12!

and the equation of motion for the fieldsFa andFb are

2~] t1]x!Fa52easinu(
j

Cc jd~x2xj !,

2~] t2]x!Fb51ebcosu(
j

Cc jd~x2xj !. ~13!

Assuming that the particles are sufficiently closely spaced
that there are many particles in a space of the order o
wavelength of the field, the sum overj can be replaced by the
density of the particles

2~] t1]x!Fa52r~x!easinuCc~x!,

2~] t2]x!Fb51r~x!ebcosuCc~x!. ~14!

A. Effective dispersion relation

Assuming harmonic space-time dependencee2 ivt1 ikx of
all of the variables, we can solve the equations of motion
the atomic amplitudes~12!

Cc j~v!5@eavasinuFa~v,xj !2ebvbcosuFb~v,xj !#

3
iv

v22V21 iGv
, ~15!

and inserting this result into Eq.~14! we finally obtain the
dispersion relation

@v1X~v!2k#@v1Y~v!1k#5X~v!Y~v!, ~16!

where

s
s
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X~v!5
v

2

rvaea
2sin2u

V22v22 iGv
,

Y~v!5
v

2

rvbeb
2cos2u

V22v22 iGv
. ~17!

B. Adiabatic regime

For smallv andk, the dispersion relation derived abov
turns out to be linear, i.e.,v}k. Let us specify the required
conditions. As already mentioned above, Eq.~14! is valid for
wavelengths which are much larger than the interatomic
tanceDx ~typically a few hundreds of nanometers! only

k!
1

Dx
. ~18!

In addition, the manipulations of the previous section~rotat-
ing wave approximation! are based on the assumption th
the fieldsFb and Fa are slowly varying, i.e.,v!va ,vb .
However, since the Rabi frequencyV is supposed to be
much smaller than the atomic transition energiesva ,vb and
the decay rate is assumed to be smallG,V, the knee fre-
quencyV of the above dispersion relation yields the releva
frequency cutoff

v!minH V,va ,vb ,
V2

G J 5V. ~19!

In this limit, i.e., in the adiabatic regime, Eq.~12! can be
solved via

Cc5
vaeasinu

V2
Ḟa2

vbebcosu

V2
Ḟb . ~20!

Rescaling the fields via

F̃a5vaeasinuFa ,

F̃b5vbebcosuFb , ~21!

Eqs.~13! and ~14! become

~] t1]x!F̃a52
rvaea

2sin2u

2V2
~] tF̃a2] tF̃b!,

~] t2]x!F̃b51
rvbeb

2cos2u

2V2
~] tF̃a2] tF̃b!. ~22!

In order to cast these two first-order differential equatio
into the usual second-order form, let us chooseu such that4

4Otherwise one would obtain a velocity-like term even for a m
dium at rest, cf. Sec. V below. However, this term alone can
generate an effective horizon.
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rvaea
2sin2u

2V2
5

rvbeb
2cos2u

2V2
5:, ~23!

where the dimensionless quantity: describes the slow-down
of the waves and can be very large:@1. In terms of the
fields

F65F̃a6F̃b , ~24!

we can indeed combine the two first-order equalities ab
into one second-order equation

S ]2

]t2
2

]

]x

1

112:

]

]xD F150. ~25!

Obviously, small background fields, i.e., small Rabi freque
ciesV, may generate a drastic slow-down:@1.

Note, however, that the above wave equation differs fr
the equation of motion describing a slow-light pulse in t
usual setup—i.e., a strong control beam and a weak~perpen-
dicular! probe beam, cf.@1,11#

~@11:#] t6]x!F50. ~26!

Hence the slow-down in Eq.~25! vgroup5vphase51/A112:
of the design proposed in the present article is not as extr
as that of the usual setupvgroup51/(11:)Þvphase'1, but
still substantial.

IV. EFFECTIVE GEOMETRY

So far we considered a static medium at rest with a p
sibly position-dependent:5:(x). Now we allow for a
space-time varying variable:5:(t,x), where the medium
is still at rest. A change of: can be generated by varyingr,
i.e., by adiabatically adding or removing atoms. The oth
parameters in Eq.~23! remain constant—a time-depende
V, for example, would generate additional source terms
thereby invalidate the background solution.

Furthermore, we shall assumeva5vb as well asea5ea
~which is a reasonable approximation! and henceu5p/4 for
the sake of simplicity and absorb these quantities by res
ing the fieldsF6 .

A. Effective action

Introducing the abbreviationC5(Ca ,Cb ,Cc)
T the lin-

earized Lagrangian governing the dynamics of theC-fields
in Eqs.~10! and ~11! can be cast into the following form:

A C5E d2x~ i C†
•Ċ1C†

•M•C1@C†
•N#F2

1@N†
•C#F2* !, ~27!

with M denoting a~self-adjoint! 333 matrix andN a three-
component vector as determined by Eqs.~10! and ~11!. In
terms of the differential operator defined viaD̂5 i ] t1M and
its formal inverseD̂21 we may complete the square

-
t
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W. G. UNRUH AND R. SCHÜTZHOLD PHYSICAL REVIEW D 68, 024008 ~2003!
A C5E d2x~C̃†
•D̂•C̃2F2* N†

•D̂21
•NF2!, ~28!

with

C̃5C1D̂21
•NF2 . ~29!

Assuming that the quantum state of theC-fields is ad-
equately described by the path-integral with the usual~regu-
lar! measureDC we are now able to integrate out~i.e.,
eliminate! those degrees of freedom explicitly arriving at
effective action for theF-fields alone

exp$ iAeff%5
1

ZC
E DC exp$ i ~A F1A C!%. ~30!

As demonstrated in Eq.~28!, the above path-integral i
Gaussian (DC5DC̃) and the associated Jacobi determin
is independent ofF. Hence we obtain

Aeff5A F2E d2xF2* N†
•D̂21

•NF2 . ~31!

As usual, the inverse differential operatorD̂21 causes the
effective action to be nonlocal~in time!—but in the adiabatic
limit v!V, :v!va,b , k!1/Dx, and :k!va,b the low-
energy effective action is locali :F2* Ḟ2 . An easy way to
reproduce this result is to remember the original equation
motion

D̂•C1NF250 C52D̂21
•NF2 , ~32!

and its solution in the adiabatic limit as given by Eq.~20!.
Together with Eq.~9! we finally arrive at

Leff5
i

2
~F1* Ḟ11@112:#F2* Ḟ21F1* F28 1F2* F18 !

1H.c. ~33!

Strictly speaking, one obtains an effective action for ea
atom

Aeff
j } i E dtF2* ~ t,xj !

dF2~ t,xj !

dt
1H.c., ~34!

where the total effective action incorporates the sum ove
atoms. With the assumption that the atoms are sufficie
closely spaced, cf. Eq.~18!, and moving in a direction per
pendicular to the beam~e.g., in they-direction! only, we
recover Eq.~33!.

An alternative method for effectively changing the dens
r is to cause transitions between the statesua& and ub& and
further statesud& and ue&, which do not couple to the elec
tromagnetic fieldF6 under consideration. The dynamics
these additional states is governed by the Lagrangian

Ladd5 icd* ċd1 ice* ċe1vdcd* cd1vece* ce

1~ i żcd* ca1 i żce* cb1H.c.!, ~35!
02400
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wherei ż denotes the space-time dependent transition am
tude. ~This particular parametrization will be more conv
nient later on.!

If the amplitude~population! of the statesud& and ue& is
largecd,e@ca,b and the transition weakz!1, we may ne-
glect the back-reaction (ca,b→cd,e) as well as the associ
ated ~quantum! fluctuations and describe the process by
classical external source forca,b .

Furthermore, assumingva5vd andvb5ve as well as

cd51eiva(t2x)sinu1O~z2!,

ce52eivb(t1x)cosu1O~z2!, ~36!

the background solution in Eq.~6! acquires an overall pref
actor

ca
051z~ t,x!eiva(t2x)sinu,

cb
052z~ t,x!eivb(t1x)cosu,

cc
050. ~37!

This scale factorz(t,x) enters the subsequent formulas a
effectively changes the density of the contributing ato
reff5z2r. In particular, the wave equation~22! gets modified
via

] tF21]xF112:z] t~zF2!50, ~38!

which is exactly the same equation as derived from the
fective action in Eq.~33! with :→z2:.

B. Effective spinor-representation

According to Eq.~33! the total effective action for the
beat fluctuationsF6 of the electromagnetic field can be wri
ten as

A5
i

2E d2x@~112: !~F2* ] tF22@] tF2* #F2!1~F1* ] tF1

2@] tF1* #F1!1~F1* ]xF22@]xF1* #F2!

1~F2* ]xF12@]xF2* #F1!#. ~39!

Introducing the effective two-component spinorc ~not to be
confused with the atomic amplitudesca,b,c)

c5S A112:F2

F1
D , ~40!

this action can be rewritten as

A5
i

2E d2x

A112:
FA112:~c†] tc2@] tc

†#c!

1~c†sx]xc2@]xc†#sxc!2
]x:

112:
c†isycG , ~41!
8-4
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with sx , sy , sz being the Pauli~spin! matrices obeying
sx

25sy
25sz

251.
But this exactly corresponds to the expression for a~1

11!-dimensional Dirac fieldc

A5E d2xA2gF i

2
~c̄gm¹mc2@¹mc̄#gmc!2mc̄cG ,

~42!

if we define the Diracg-matrices via

g05A112:sy ,

g152 isz , ~43!

and, accordingly, the Dirac adjoint (c̄c,c̄gmcPR)

c̄5c†sy , ~44!

as well as introduce the effective mass

m52
1

2

1

112:

]:

]x
. ~45!

The effective metric is given by$gm,gn%52gmn

ds25
dt2

112:
2dx2, ~46!

and displays the expected slow-down.
For deriving the identity of Eqs.~39! and~42! we need the

properties of the spin connectionGm ~Fock-Ivaneneko coef-
ficient! which enters into the spin derivative@remember
]m(c̄c)5(¹mc̄)c1c̄¹mc]

¹mc5]mc1Gmc, ¹mc̄5]mc̄2c̄Gm , ~47!

and is defined by@¹m(c̄gnc)5(¹mc̄)gnc1c̄gn¹mc#

]mgn1Gn
rmgr5@gn,Gm#, ~48!

with Gn
rm being the Christoffel symbol. In our~111!-

dimensional representation, the l.h.s. is a linear combina
of sy andsz , cf. Eq. ~43!, and, therefore, the spin conne
tion Gm has to be proportional tosx . As a result we obtain
the relation

$Gm ,gn%50, ~49!

and thus confirm the identity of Eqs.~39! and ~42!

2iLm505@¹mc̄#gmc2c̄gm¹mc

5@]mc̄#gmc2c̄gm]mc2c̄$Gm ,gm%c

5@]mc̄#gmc2c̄gm]mc. ~50!

Finally, if we were to choose~over some finite region, sinc
:.0)

112:~ t,x!5 f ~ t !e24mx, ~51!
02400
n

the effective massm in Eq. ~45! would be constant~which,
however, is not necessary for the introduction of an effect
geometry! and the analogy to the~111!-dimensional mas-
sive Dirac field complete

~ igm¹m2m!c50. ~52!

C. Effective energy

The energy-momentum tensor of a Dirac field reads

Tmn5
i

2
~c̄g (m¹n)c2@¹(mc̄#gn)c!

5
i

2
~c̄g (m]n)c2@] (mc̄#gn)c!, ~53!

where the second equality sign holds in general only
~111! dimensions~in analogy to the simplifications above!.
For an arbitrarily space-time dependent:, however, there is
no energy or momentum conservation law associated to
tensor. But assuming time-translation symmetry as descr
by the Killing vectorj5]/]t we may construct a conserve
energy via

E5E dSmTmnjn5E dxA2gT0
0 , ~54!

which, for the Dirac field in Eq.~53! and the~static! metric
in Eq. ~46!, reads

E5E dx
i

2
~c†ċ2ċ†c!. ~55!

On the classical level, this quantity is~even in flat space-
time! not positive definite~as is well-known!. For quantum
fields the situation can be different. Imposing fermionic~i.e.,
anti! commutation relations the energy operator is—af
renormalization of the zero-point energy and definition of t
vacuum state as the filled Dirac sea—indeed non-nega
~again in flat space-time!. However, the fields c
5(A112:F2 ,F1)T do not obey fermionic but bosoni
statistics~as one would expect, cf. Sec. VI below! and, there-
fore, the effective energy possesses negative parts.

This fact is not surprising in the context of the electr
magnetic field, since one has the huge background field w
which these perturbations can exchange energy. Howe
since in the laboratory frame, the background metric is s
tionary, the energy is a conserved quantity, and the poten
instability of the negative energy will not be triggered.

D. Inner product

Since the~classical! equation of motion~52! can be de-
scribed by means of an effective metric in Eqs.~46! and~60!
below, we can introduce a conserved inner product for t
solutions of the wave equationc1 and c2. As usual, the
inner product of the Dirac field can be derived by means
the Noether theorem associated to the glo
U(1)-symmetryc→eiwc and reads
8-5
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~c1uc2!5E dSmc̄1gmc2

5E dxA2gc̄1g0c2

5E dxc1
†c2 . ~56!

In contrast to the energy in Eq.~55!, this quantity is non-
negative on the classical level~as well as for quantum field
with bosonic statistics!. If we were to impose fermionic com
mutation relations, the above pseudo-norm would equal
difference of the number of particles and antiparticles a
hence not be positive definite. But for bosonic statistics i
non-negative.

Note that, for a scalar field, the situation is complete
different since in that case, the inner product is not posit
definite: (F* uF* )52(FuF).

V. BLACK HOLE ANALOGUE

After introducing the notion of the effective geometry w
can now design an analogue of a black or white hole. To
end we move the medium with a constant velocityv in order
to be able to correct~tune! the background beam accordin
to the resulting Doppler shift. Again the background so
tion, i.e., V and u, should be homogeneous if we want
avoid additional source terms for the linearized fields.~In the
reference frame of the moving atoms, an inhomogene
background becomes time-dependent and thereby
causes a deviation from the dark state.!

The only parameter left for influencing the effective g
ometry is the densityr. In order to arrive at a stationar
effective metric, the density profile in the laboratory fram
should be time-independentr5r(x). In the rest frame of the
fluid, this requirement implies a space-time dependence
r5r(x2vt). At a first glance, such a scenario seems to
inconsistent with a constant velocityv, but one could ar-
range a flow profile such asv5vex2vyr8ey /r which, for a
light beam aty50, reproduces these properties. As alrea
mentioned at the end of Sec. IV A, an alternative possibi
is to cause transitionsud&,ue&→ua&,ub&.

Since we are still working with nonrelativistic velocitie
v!1, the rest frame of the medium and the laboratory
related by a Galilei transformation

]

]t
→ ]

]t
1v

]

]x
,

]

]x
→ ]

]x
. ~57!

Having derived a covariant, i.e., coordinate-independe
representation of the effective action in Eq.~42!, this trans-
formation is completely equivalent to a correspondi
change of the effective geometry

g0→g0, g1→g11vg0. ~58!

The effective metric is then given by the well-know
Painlevé-Gullstrand-Lemaıˆtre form @12#
02400
e
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geff
mn5~112: !S 1 v

v v221/~112: !
D . ~59!

The inverse metric simply reads

gmn
eff 5S 1/~112: !2v2 v

v 21D . ~60!

Obviously, a horizon (g00
eff50) occurs forv251/(112:),

which could be a relatively low velocity and perhaps expe
mentally accessible.

A. Negative effective energy

For stationary~in the laboratory frame! parameters:
5:(x) andv5const one may construct a conserved ene
~Noether theorem! of the beat fluctuationsc via Eq. ~54!.
Since for a moving medium, the effective metric in Eq.~60!
has off-diagonal elements, the resulting expression is m
complicated than in Eq.~55!. For the sake of convenience
we adopt the geometric-optics approximationv,k@:8/:
and obtain

E'E dxc†
v1~11sxvA112: !~v1vk!

2
c, ~61!

and, after diagonalization and normalization (cuc)51, the
solutions for the effective energy assume the following for

Eeff'
1

2
@v1~16vA112: !~v1vk!#. ~62!

Using the approximate (v,k@:8/:'0) equations of mo-
tion, we obtain

Eeff'v1vk, ~63!

which is the frequency as measured in the rest frame of
fluid.

We observe that even the branchv.0 of the dispersion
relation which would correspond to a positive energy
flat space-time~with v50) can have a negative effectiv
energy beyond the horizonv.1/A112: sincev.0 does
not imply v1vk.0 anymore. This purely classica
phenomenon—i.e., that the energy~density! measured at in-
finity can become negative beyond the ergo-sph
g0050—occurs for real black holes as well and can be c
sidered as the underlying reason for the mechanism of su
radiance, etc.

Of course, the total energy of the system as derived by
total action in Eq.~1! is always positive. The modes with
negative effective energy~pseudo- or quasienergy, cf.@13#!
possess a total energy which is smaller than that of the b
ground. In this regard a~classical! mixing of positive and
negative~effective! energy modes is possible.

B. ‘‘Bogoliubov’’ coefficients

If the effective metric possesses a horizon, one wo
expect the usual mixing of positive and negative energy
lutions as governed by the ‘‘Bogoliubov’’ coefficientsaE and
bE defined via
8-6
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cE
out5aEc1

in1bEc2
in , ~64!

wherecE
out denotes the outgoing ‘‘would-be’’ Hawking par

ticle and E its ~positive! energy according to Eq.~54!;
whereasc1

in andc2
in are incoming~trans-Planckian, cf.@17#!

modes whose energy~i.e., frequency! in the fluid’s rest frame
is positive (c1

in ) or negative (c2
in ), respectively. As we shal

see in the next section, the commutation relations are s
that Eq. ~64! describes a mixing of annihilation operato
only and hence does not imply any particle creation.~Hence
the quotation marks in ‘‘Bogoliubov’’ coefficients and th
notion of a ‘‘would-be’’ Hawking particle.!

These wave-packets are normalized via

~c1
in uc1

in !5~c2
in uc2

in !5~cE
outucE

out!51, ~65!

and orthogonal

~c1
in uc2

in !50. ~66!

Owing to the positivity of the inner product in Sec. IV D th
completeness relation has a plus sign instead of a minu
for the scalar field, i.e.,

uaEu21ubEu251. ~67!

Consequently we obtain the Fermi-Dirac factor for the sc
tering ~‘‘Bogoliubov’’ ! coefficients ~instead of the Bose
Einstein distribution for scalar fields!

ubEu5epE/ksuaEu ubEu25
1

e2pE/ks11
. ~68!

However, it should be emphasized here that this mode m
ing is a priori a purely classical phenomenon and indep
dent of the quantum features~commutation relations!—the
fields ĉ do not obey Fermi-Dirac statistics, see the next s
tion. Only if the quantum commutation relations assigne
physically reasonable particle interpretation to the mo
cE—as it is the case for a truly fermionic Dirac quantu
field, for example, but not for the fieldsF̂6 ~see below!—
could one infer the~quantum! Hawking radiation.

The surface gravity of the effective horizon atv251/(1
12:)5cslow

2 depends on the rate of change of the veloc
of light in the laboratory frame across the horizon

ks5U]~ uvu2cslow!

]x U
horizon

5U]cslow

]x U
horizon

5
1

A~112: !3 U]:

]xU
horizon

. ~69!

By comparison with Eq.~45!, we observe thatks is of the
same order of magnitude as the rest energy induced by
effective mass@remember the homogeneous Dirac equat
( ig0] t2m)c50]
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A112:
52

1

2

1

A~112: !3

]:

]x
. ~70!

As a result, the relevant mode-mixing effects—i.e., the ‘‘B
goliubov’’ b-coefficients—are not strongly suppressed by
effective mass.

VI. COMMUTATION RELATIONS

Having derived an effective metric which may exhibit
horizon, one is immediately led to the question of wheth
the system under consideration could be used to simulate
Hawking effect. As it will turn out, the answer is ‘‘no’’—
since the Hawking effect is a quantum effect, it is not su
cient to consider the wave equation, one also has to ch
the commutation relations which generate the zero-po
fluctuations~the source of the Hawking radiation! according
to the Heisenberg uncertainty principle. For convenience
shall transform back into the rest frame of the medium a
assume a constant: for the calculations in this section.

A. Commutators

Obviously the effective action derived above is intrins
cally different from the one of a charged scalar field, f
example. To make the difference more explicit let us co
sider the effective~adiabatic limit! commutation relations
following from Eq. ~33!.

For any given timet0, the equal-time commutation rela
tions of the fieldsF̂6 vanish. Since the equations of motio
do not mixF̂6 with F̂6

† , this remains true for all times

@F̂6~ t,x!,F̂6~ t8,x8!#5@F̂6
† ~ t,x!,F̂6

† ~ t8,x8!#50.
~71!

According to Eq.~33! the canonical conjugated momenta a
iF1* and i @112:#F2* , respectively, and hence we obtain

@F̂1~ t,x!,F̂1
† ~ t,x8!#5d~x2x8!, ~72!

and

@F̂2~ t,x!,F̂2
† ~ t,x8!#5

d~x2x8!

112:
. ~73!

The remaining~equal-time! commutators vanish

@F̂1
† ~ t,x!,F̂2~ t,x8!#5@F̂1~ t,x!,F̂2

† ~ t,x8!#50, ~74!

and the commutation relations for the time-derivatives of
fields can be inferred from the equations of motionḞ1

1F28 50 and (112:)Ḟ21F18 50.
Remembering the definition of the effective two

component spinor in Eq.~40! the above relations can be ca
into the compact form

@ĉA~ t,x!,ĉB~ t8,x8!#5@ĉA
†~ t,x!,ĉB

†~ t8,x8!#50, ~75!

as well as
8-7
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@ĉA~ t,x!,ĉB
†~ t,x8!#5dABd~x2x8!. ~76!

Since the beat fluctuation of the electromagnetic fi
~coupled to the medium! does not obey the Pauli exclusio
principle, one cannot fill the Dirac sea consisting of all neg
tive ~effective! energy~in flat space-time! states and thereb
define a new vacuum state—as it is possible for fermio
quantum fields.

B. Comparison with other fields

Let us compare the above commutation relations w
those of a@~111! dimensional# Schrödinger fieldc

@ĉ~ t,x!,ĉ~ t8,x8!#5@ĉ†~ t,x!,ĉ†~ t8,x8!#50, ~77!

as well as

@ĉ~ t,x!,ĉ†~ t,x8!#5d~x2x8!, ~78!

on the one hand and with the commutators of a@~111!-
dimensional# charged scalar fieldf

@f̂~ t,x!,f̂~ t8,x8!#5@f̂†~ t,x!,f̂†~ t8,x8!#50,

@f̂~ t,x!,f̂†~ t,x8!#5@f̂†~ t,x!,f̂~ t,x8!#50,
~79!

as well as

@f̂~ t,x!,] tf̂
†~ t,x8!#5 id~x2x8!, ~80!

on the other hand. In the latter case~charged scalar fieldf),
the equation of motion can mix positive and negative f
quencies and thereby lead to particle production—wherea
the former situation~Schrödinger field c), the number of
particles is conserved. This difference becomes more evi
when one decomposes the fields into real~self-adjoint! and
imaginary ~anti-self-adjoint! parts. Forc, the independen
canonical conjugated variables areRc andIc—whereas for
f, they areRf andRḟ ~as well asIf andIḟ).

Obviously, the commutation relations of the fieldsF6 are
clearly inconsistent with those of a charged scalar fieldf
and show more similarity to the~bosonic! Schrödinger field.
Therefore, the system under consideration cannot serve
true analog for the quantum effects in the presence of a b
hole horizon—such as Hawking radiation—although it
produces all classical phenomena.

Since the fieldsF̂6 describe fluctuations of the electro
magnetic field, it is also clear that they do not obey t
fermionic ~anti!commutation rules

$ĉA~ t,x!,ĉB~ t,x8!%5$ĉA
†~ t,x!,ĉB

†~ t,x8!%50, ~81!

as well as

$ĉA~ t,x!,ĉB
†~ t,x8!%5dABd~x2x8!. ~82!

An effective Dirac field satisfying bosonic commutation r
lations might seem rather strange in view of the sp
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statistics theorem. Indeed, one key ingredient needed for
derivation of this theorem, the spectral condition~which is
one of the Wightman axioms!, is not satisfied in our case
since the effective energy can become negative owing to
huge total energy of the background field, see also Sec. IV

C. Particle creation

In order to answer the question of whether there is a
particle creation at all in the described slow-light system, o
has to clarify the notion of~quasi!particles to be created~or
not! and to specify the corresponding~in/out! vacuum state.

For example, an appropriate initial stateu in&, which is a
coherent state in terms of the fundamental creation and
nihilation operators of the electromagnetic field, could
chosen such that it is annihilated5 by all fieldsF̂6 ,

;x : F̂1~ t in ,x!u in&5F̂2~ t in ,x!u in&50. ~83!

This is possible because~in the rotating wave approxima
tion! the fieldsF̂6 are composed only of positive frequenc
parts of the electromagnetic fieldÂ, cf. Eq.~7!, i.e., they are
annihilators displaced byc-numbers describing the back
ground field~coherent transformation!.

In this case the initial~vacuum! state is annihilated by the
fields F̂6 at all times

;t,x : F̂1~ t,x!u in&5F̂2~ t,x!u in&50, ~84!

as the time-evolution does not mixF̂6 with F̂6
† , and there

is no particle creation.
For another initial~vacuum! state~e.g., a squeezed state!

and a different particle concept,

f @F̂6 ,F̂6
† #u in8&50, ~85!

however, some effects of~quasi!particle creation might oc-
cur. These phenomena could be tested by sending in a~multi-
mode! squeezed state and comparing the number of pho
per mode in the in- and out-states.

Another possible source for~quasi!particle creation is the
finite life-time of the atomic stateuc& as represented by th
effective decay rateG. Realistically, this decay correspond
to some spontaneous emission process generated by
quantum fluctuations of the electromagnetic field, for e
ample. Consistent with the fluctuation-dissipation theor
this coupling also introduces~quantum! noise, which is not
included in our treatment and could possibly lead to parti
creation. However, this is clearly a pure trans-Planckian
fect and cannot be interpreted as Hawking radiation.

5Note that this state is therefore annihilated by the~normal-
ordered! effective energy in Eq.~55!, which is, however, not posi-
tive definite ~no ground state!. Consequently, it cannot be th
equivalent of the Israel-Hartle-Hawking@14# state, in which the
Hawking radiation is somewhat hidden by the fact that there is
net energy flux.
8-8
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VII. DISPERSION RELATION

Although slow light cannot be used to simulate the Haw
ing effect it can reproduce various classical effects associ
to horizons,6 such as mode mixing and the associated Bo
liubov coefficients, see Sec. V B. In view of the red- or blu
shift near the horizon deviations from the linear dispers
relation have to be taken into account, cf.@17#. With the
choice in Eq.~23! the dispersion relation in Sec. III A sim
plifies because ofX(v)5Y(v), and we obtain for a medium
at rest, cf. Figs. 1 and 2

k56vA112:
V2

V22v22 iGv
. ~86!

We observe two major differences between the dispers
relation above and that for the sonic black hole analogs,
example in Bose-Einstein condensates~see @18# and Sec.
IX A ! with

6Other systems which are potentially capable of simulating th
classical effects with present-day technology are discussed in R
@15# and @16#.

FIG. 1. One branch of the dispersion relation of theF-field in
Eq. ~86!. Frequencyv and wave-numberk are plotted in units of
the Rabi frequencyV for :510 andG/V51/10. These values~of
order one! are but illustrative and chosen in order to resolve
characteristic features in one figure—realistically the orders of m
nitude are different. The imaginary part describes the absorp
and does not change significantly in the limitG↓0. For very large
as well as for very smallv the medium becomes transparent. T
steep slope within the transparency windowv!V corresponds to
the reduced propagation velocity—whereas the effect of the
dium for largev is negligible. As one can observe, the anomalo
frequency solutionsv.V are separated from the normal onesv
,V by a large region of absorption.
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v25csound
2 k2~11j2k2!, ~87!

wherej denotes the so-called healing length and provide
wave-number cutoff, cf. Fig. 3.

The sonic black hole analogs generate a deviation fr
the linear dispersion relation via the spatial dependencek)
and, consequently, for each value of the wave-numbek
there exist two possible solutions for the frequency (6v for
a medium at rest!. In contrast, for the black hole analog
based on slow light the deviation is mainly7 caused by the
~nonlocal! temporal dependence.~This remains true for all
dielectric/optical black hole analogs, cf.@7,9#.! As a result,
one has two values ofk for each value ofv, but can have
more than two solutions forv for some values ofk. Even
though these anomalous solutions forv are separated from
the normal ones by a relatively large region of absorption
would be interesting to see under which circumstances
peculiar behavior may give raise to additional effects~such
as mode mixing, etc.!.

Another major difference between the dispersion relatio
~86! and ~87! is that the sonic dispersion relation~87! is
‘‘superluminal’’/supersonic for large wave-numbersvgroup
5dv/dk.csound for jk!” 1 whereas the slow-light disper
sion relation ~86! is ‘‘subluminal’’ vgroup5dv/dk
,1/A112: within the transparency window, sayuvu

e
fs.

7Of course, the finite interatomic distance results in a deviat
from the linear dispersion relation too, but the cutoff given by t
Rabi frequency is usually reached earlier.

g-
n

e-
s

FIG. 2. The real part of the dispersion relation in Fig. 1 asv vs
k with the same values. One can easily recognize that the
deviation from the linear dispersion relation atv!V is
‘‘subluminal’’—although it becomes finally ‘‘superluminal’’ forv
@V. The solutions with an anomalous~negative or even infinite!
group velocity lie completely in the absorptive region, cf. Fig. 1
8-9
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W. G. UNRUH AND R. SCHÜTZHOLD PHYSICAL REVIEW D 68, 024008 ~2003!
,V/2, but uvu!” V. For very large frequenciesv@V one
recovers the speed of light in vacuumv5k—although this
limit is totally outside the region of applicability of our ap
proximations.

VIII. PROBLEMS OF SLOW LIGHT

The direct~naive! way to use the most common setup~see
Figs. 4 and 5! for slow-light experiments—i.e., a strong con
trol beam and a weak~perpendicular! probe beam—in orde
to build a black hole analog goes along with a number
~somewhat related! difficulties listed below. Whereas the firs
three obstacles can be avoided by the arrangement prop
in this article, the fourth one persists—indicating that th
system is a classical, but not a quantum analogue of a b
hole.

A. Frequency window

Light pulses~of the probe beam! are only slowed down
drastically—or may propagate at all—in an extremely n
row frequency window in the optical or near-optical regim
But the frequency of the particles constituting the Hawki

FIG. 3. One branch of the dispersion relation of~zero! sound
waves in Bose-Einstein condensates at rest, cf. Eq.~87!, in arbitrary
units. If the condensate is moving the variousk-solutions for a
given frequencyv in the laboratory frame can be found by th
points of intersection with straight lines as determined by Eq.~88!.
For a subsonic velocityv,csound, there is only one solution, de
noted by s1, which has a small wave-number and a positi
pseudo-norm, i.e., a positivevfluid8s rest-frame ~assumingv lab-frame

.0). For supersonic velocities, on the other hand, i.e., beyond
horizon, there are three possible solutions—one with a small wa
number and a negative pseudo-norm~s-! as well as two others with
large wave-numbers and positive~l1! and negative~l-! pseudo-
norm, respectively. The mixing between these modes at the hor
generates the Hawking radiation~s1!.
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radiation cannot be much larger than the surface gra
~e.g., the gradient of the fluid’s velocity! which makes an
experimental verification in this way very unlikely.

B. Doppler shift

In a stationary medium, the frequency as measured in
laboratory frame is conserved—but the frequency in the
om’s rest frame changes as soon as the velocity of the
dium ~Doppler shift! or the wave-number~redshift! varies
~which necessarily happens near the horizon!. Hence the
beam will leave the narrow frequency window—which
generated by the~moving! atoms—in general.

C. Group and phase velocity

Since the group and the phase velocity of the probe be
are extremely differentvgroup!vphase'1, it is not possible to
describe its dynamics by an effective local wave equat
resembling a scalar field in a curved space-time.

D. PositiveÕnegative frequency-mixing

In order to obtain particle creation, one has to have
mixing of positive and negative frequencies, or, more ac
rately, positive and negative pseudo-norm~as induced by the
inner product, cf. Sec. V B! solutions. In a stationary flowing

e
e-

on

FIG. 4. One branch of the dispersion relation of a slow-lig
pulse ~in the usual setup! k25v2@11`(v1v0)2`(v2v0)#
where `(v)52:(V2/v0)v/(v22V21 iGv), see e.g.,@1,10#, in
units of the Rabi frequencyV for v0 /V520, G/V51/2, and:
55. Again, these unrealistic values have been chosen in orde
illustrate the characteristic features. For more realistic values
peaks would be more pronounced, the transparency windowsuv
6v0u!V narrower, and the slope inside them steeper, etc., but
main structure remains. Foruv6v0u@V the influence of the me-
dium is negligible. Within the transparency windowsuv6v0u
!V, the steep slope indicates a reduced group velocity and
solutions with an anomalous group velocityuv6v0u5O(V) lie
inside the absorptive regions.
8-10
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ON SLOW LIGHT AS A BLACK HOLE ANALOGUE PHYSICAL REVIEW D 68, 024008 ~2003!
medium~as used for the black hole analogs!, this can occur
by tilting the dispersion relation due to the Doppler effe
caused by the velocity of the medium

v lab-frame5vfluid8s rest-frame1vmediumk. ~88!

As soon as the velocity on the medium exceedsuv/ku, i.e.,
the phase velocity, a mixing of positive and negative f
quencies~in the fluid’s rest frame! becomes possible, cf
@10#. However, since the phase velocity of the slow-lig
pulse is basically the same as in vacuum, this mechan
does not work in this situation and, consequently, there is
particle creation.

IX. COMPARISON WITH OTHER SYSTEMS

One of the main points of the present article is the obs
vation that an appropriate wave equation and the resul
effective geometry of a black hole analog isnot enough for
predicting Hawking radiation. Although all the classical e
fects can be reproduced in such a situation, the adeq
simulation of thequantumeffects requires the correct com
mutation relations as well.

In view of this observation one might wonder wheth
this is actually the case for the currently discussed~e.g.,
sonic/acoustic and dielectric/optical! black hole analogs. In
the following we shall deal with this question for two repr

FIG. 5. The real part of the dispersion relation in Fig. 4 asv vs
k with the same values. The additional line demonstrates the s
corresponding to a motion of the medium with the reduced gr
velocity as in Fig. 3. Obviously, there can be no mixing of positi
and negative pseudo-norms via the usual mechanism sketche
low Fig. 3 in this case. Even though the peaks can be much hi
for small G and thereby could possibly intersect with the straig
line, the resulting solutions would lie completely in the region
strong absorption~cf. Fig. 4! and therefore do certainly not mode
Hawking radiation.
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sentative examples, for which the commutation relations
be derived easily.

A. Bose-Einstein condensates

The dynamics of Bose-Einstein condensates are to a
good approximation described by the Gross-Pitaevskii eq
tion

i ċ5S 2
“

2

2m
1V~r!1h2ucu2Dc, ~89!

wherec denotes the mean-field amplitude,m the mass of the
bosons,V an external~trapping! potential, andh is the scat-
tering parameter governing the two-body repulsion of
constituents. Inserting the eikonal ansatz~Madelung repre-
sentation!,

c5A%eiS, ~90!

and introducing the~mean-field! velocity v5“S/m, one ob-
tains the equation of continuity%̇1“(%v) and the equiva-
lent of the Bernoulli or the Hamilton-Jacobi equation

Ṡ1V1h2%1
~“S!2

2m
5

1

2m

“

2A%

A%
. ~91!

Within the Thomas-Fermi approximation, one neglects
quantum potential, i.e., the term on the l.h.s., and hence
covers the usual equations of fluid dynamics, see also@18#.
The linearization around a given~stationary! background
profile %0 andS0→v0 yields the well-known wave equatio

~] t1“•v0!~] t1v0•“ !dS5
h2

m
“%0“dS. ~92!

The commutation relations ofdS, which we are interested in
can be derived from the commutator of the fundamen
fields

@ĉ~ t,r!,ĉ†~ t,r8!#5d3~r2r8!. ~93!

Inserting the linearization ofĉ5A%̂ exp(iŜ) around a classi-
cal background via%̂5%01d%̂ and Ŝ5S01dŜ we obtain
~note that%̂5%̂† and Ŝ5Ŝ†)

@d%̂~ t,r!,dŜ~ t,r8!#5 id3~r2r8!. ~94!

The relation betweend%̂ anddŜ follows from Eq.~91! in the
Thomas-Fermi approximation

d%̂52
1

h2
~] t1v0•“ !dŜ. ~95!

Henced%̂ is indeed the~negative! canonical conjugated mo
mentum todŜ—provided that one inserts the constant fac
h2 correctly into the~effective! action—and the commuta
tion relations are equivalent~within the used approximation!
to those of a quantum field in a curved space-time.
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B. Nondispersive dielectric media

As another example we study nondispersive and lin
dielectric media, see e.g.@7#. For a medium at rest the fun
damental Lagrangian describing the electromagnetic fi
the dynamics of the medium (L@P#), as well as their mutua
interaction (E•P) is given by

L5
1

2
~E22B2!1E•P1L@P#. ~96!

Accordingly, using the temporal gauge and introducing
vector potential viaE5] tA and B52“3A, the canonical
momentum is just the electric displacement

P5D5E1P. ~97!

Performing basically the same steps as in Sec. IV A we m
integrate out the degrees of freedom associated to the
dium P and thereby arrive at an effective~low-energy! action
for the ~macroscopic! electromagnetic field alone, cf.@7#.
But, in contrast to the highly resonant behavior ofP in slow-
light systems, nondispersive media respond adiabatic
with a constant susceptibilityx5«21, i.e.,P5xE and thus
P5D5«E, to the external field~at sufficiently low frequen-
cies!, cf. @7#.

If the ~nondispersive! medium is moving with the velocity
b the electric and magnetic fields get mixed and one obta

P5D5«E1~«21!B3b1O~b2!. ~98!

Again, the commutation relations fit to an effective-met
description—which is not completely surprising because
effective action has the same form as in curved space-tim
cf. @7#.

X. DISCUSSION

Let us summarize: The naive application of slow lig
~i.e., the most common setup! in order to create a black hol
analog goes along with several problems, cf. Sec. VIII. W
the scenario proposed in this article, the problems associ
with the classical wave equation can be solved and it is—
least in principle—possible to create a~classical! black hole
analog for theF field. At low wave-number, the correspond
ing dispersion relation represents a quadratic relation
tweenk and v, and can thus be written in terms of an e
fective metric. If the fluid is in motion, this low wave
number equation can be changed into a black hole type w
equation.

However, this classical black hole analog doesnot repro-
duce the expected quantum effects—such as Hawk
radiation.8 In order to simulate the Hawking effect, it is no
sufficient to design a system with an equivalent effect

8This conclusion applies in the same way to the scenario propo
in Ref. @8#, where the Schwarzschild metric is simulated by a m
dium at rest with the horizon corresponding to a singularity in
effective refractive index. Such static analogs of the Schwarzsc
geometry~see also@19#! have further problems.
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equation of motion—the commutation relations have
match as well. This is indeed the case for the sonic bl
hole analogs in Bose-Einstein condensates and nondispe
dielectric black hole analogs—but for sound waves in m
complicated systems, for example, it is not immediately o
vious.

Nevertheless, in the scenario described in this article,
field F governing the beat fluctuations of an electromagne
background field obey the same equation of motion as in
presence of a horizon and hence can be used to model
eral classical effects associated with black holes—for
ample the mode mixing at the horizon as described by
‘‘Bogoliubov’’ coefficients, see Sec. V B. One way of mea
suring the ‘‘Bogoliubov’’ coefficients could be to send in
‘‘classical’’ pulse above the background—i.e., a particu
coherent state in terms of the fundamental electromagn
field—and compare it with the outcoming pulse. As anoth
~more fancy! possibility one might think of a multimode
squeezed state—which in some sense simulates the vac
fluctuations which are transformed into quasiparticles by
mode mixing.

However, one should bear in mind that, as the wa
packets propagate away from the horizon and get stron
blueshifted, they eventually reach the regime where the c
cept of the effective geometry breaks down and effects
dispersion, nonlocality~in time! of the effective action, and
finally, absorption become relevant. For a reasonably cl
interpretation, therefore, one should investigate the scatte
of the wave-packets not too far away from the horizon.

A. Miles instability

Another interesting classical effect is related to the ne
tive parts of the energy in Eq.~62!. Since a conserved pos
tive definite energy functional of the linearized perturbatio
would demonstrate linear stability, the negative contribut
in Eq. ~62! can be interpreted as an indicator for a poten
instability ~e.g., super-radiance!—provided a suitable cou
pling between positive and negative~effective! energy
modes.

As an example, let us assume that the ‘‘superluminal
flowing v.1/A112: slow-light medium interacts with the
environment in the laboratory frame via a friction term su
asG] tF ~with possible spatial derivatives!. For smallv and
k the resulting dissipation alters the dispersion relation v

~v1vk!25
k2

112:
2 ivG~k!, ~99!

with the potentiallyk-dependent~additional spatial deriva-
tives! friction term G(k) describing the interaction of the
F-field with the environment at rest.

For small G the imaginary part of the solutions for th
frequencyv ~assuming a real wave-numberkPR) reads

I~v!52
G~k!

2
~16vA112: !. ~100!

ed
-
e
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Consequently, beyond the horizonv.1/A112: one of the
allowed frequency solutions acquires a positive imagin
part and thus the dissipation~interaction with the environ-
ment! generates an instability. Note that the relative veloc
v.1/A112: between the slow-light medium and the env
ronment ~at rest! is crucial since a friction term likeG(] t
1v]x)F→ i (v1vk)G would of course not lead to an
instability.

This instability is somewhat analogous to the Miles ins
bility @20# generating surface waves in water by wind blo
ing over it. In Ref.@16#, this phenomenon is called thermo
dynamic instability since it occurs when the free ener
of the medium acquires negative parts in the frame of
environment.

B. Outlook

Apart from the aforementioned experiments there
many more conceivable tests one could perform with
proposed classical black hole analog based on slow ligh
more drastic way of investigating the interior structure of t
.
-

v.

D
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sample~than the mere comparison of the in- and out-stat!
could be to freeze the dark state by completely switching
the background field and take a ‘‘snap-shot’’ of the state
the atoms by illuminating them with strong laser beams w
frequencies corresponding to certain atomic transitions
measuring the absorption.

Furthermore it would be interesting to investigate the
fluence of the anomalous frequency solutions of the disp
sion relation generated by the nonlocal temporal depende
~cf. Sec. VII!, for example, on additional mode-mixing. Th
question is relevant for more general~nondispersive! dielec-
tric black hole analogs and might also lead to some insi
into the trans-Planckian problem.
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