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Chaos and damping in the post-Newtonian description of spinning compact binaries
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Binary systems of rapidly spinning compact objects, such as black holes or neutron stars, are prime targets
for gravitational wave astronomers. The dynamics of these systems can be very complicated due to spin-orbit
and spin-spin couplings. Contradictory results have been presented as to the nature of the dynamics. Here we
confirm that the dynamics—as described by the second post-Newtonian approximation to general relativity—is
formally chaotic, despite claims to the contrary. When dissipation due to higher order radiation reaction terms
is included, the chaos is damped. The damping time scale is found to be comparable to, but shorter than, the
time scale that characterizes the chaotic behavior. This result suggests that the gravitational waveforms com-
puted to 2.5 post-Newtonian order from spinning compact binaries will not suffer from sensitive dependence
on initial conditions. If the post-Newtonian approximation at this order is an adequate description, then the
waves can be detected using standard hierarchical matched filtering techniques. On the other hand, the com-
petition between chaotic decoherence and radiation induced dissipation is close enough that the merger history
does retain an imprint of the chaotic behavior. Moreover, the time scales are sufficiently close, and the
post-Newtonian approximation is sufficiently crude, that we cannot rule out the possibility that chaotic effects
play a role in real binary systems.

DOI: 10.1103/PhysRevD.68.024004 PACS number~s!: 04.30.Db, 04.25.Nx, 05.45.Jn, 95.30.Sf
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Gravitational wave astronomy blurs the lines betwe
theory and observation by requiring accurate source mo
ing to facilitate detection. While it is possible to detect gra
tational waves without precise waveform templates, matc
filtering against a template bank is the only way to extr
detailed information about the sources. A template bas
matched filtering approach to gravitational wave data an
sis is impractical if the orbital dynamics is chaotic@1–4#.
Systems that exhibit sensitive dependence to initial con
tions require template banks that are exponentially lar
than those of nonchaotic systems.

Spinning compact binaries pose a challenge to temp
based detection and parameter extraction techniques.
waveforms depend on a large number of parameters, inc
ing the masses of the two bodies, their spins, and the rela
alignment of the spin and orbital angular momentum—so
11 parameters in all. Even with a relatively coarse samp
of parameter space, the resulting template bank can be
large. The hope is that hierarchical schemes can be used
start with a coarse sampling and proceed by successive
finement@5#. However, template based methods, hierarch
or otherwise, will not work if the underlying dynamics
chaotic. The sensitivity to initial conditions that characteriz
chaotic systems implies that waveforms that are initia
nearby ~as measured by their cross correlation over so
time interval! will diverge exponentially with time@3#.

A debate has arisen as to whether spinning compact b
ries exhibit chaotic behavior. The first indication of chao
behavior was found using a test particle approximation@1#,
but chaotic orbits were only found for unphysically larg
values of the particle’s spin. The problem was also
proached using the post-Newtonian approximation to gen
relativity, and fractal methods were used to show that bi
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ries with realistic spins exhibited chaotic behavior at seco
post-Newtonian~2PN! order@2#. Commentaries were written
emphasizing that radiation reaction would damp the ch
@6#, and that the post-Newtonian approximation was be
pushed beyond its domain of validity@7#, although unavoid-
ably since no better approximation is available. Howev
neither commentary disputed the central result of Re
@2,4#—that the second post-Newtonian equations of mot
admit chaotic behavior. Then a paper was published ‘‘rul
out chaos in compact binary systems’’@8#. This study used
the same 2PN equations of motion, but a different meth
for establishing chaos—Lyapunov exponents rather t
fractals. The results reported in Refs.@2# and @8# sit in stark
contrast. The trajectories that form the fractal basin bou
aries found in@2# belong to a set of unstable periodic orbi
known as the strange repellor. These orbits must have p
tive Lyapunov exponents. Trajectories near the bounda
will also have positive Lyapunov exponents, as may orb
that lie far from the boundaries.

In what follows, we refute the claims made in Ref.@8# by
showing that the 2PN equations of motion do admit orb
with positive Lyapunov exponents.

After establishing the presence of chaos, we then exp
the significance of this result by comparing three key tim
scales in the problem—the average orbital periodTo , the
Lyapunov timeTl , and the decay timeTd . If Tl is short
compared toTd , the chaotic dynamics seen in the conserv
tive 2PN system will leave a strong imprint on the 2.5P
dissipative dynamics. On the other hand, if the Lyapun
time is long compared to the decay time, there will not be
chance for the orbits to diverge before the plunge a
matched filtering will not be substantially degraded.
©2003 The American Physical Society04-1
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For the specific binary orbits studied we find thatTl

*2Td . This tells us that the damping due to gravitation
wave emission is stronger than the instability seen in
undamped dynamics. In other words, the gravitational wa
forms predicted by the 2.5PN dynamics will not suffer fro
sensitive dependence on initial conditions, so these wa
could be detected using a template based, matched filte
approach. We have to be a little cautious about using
result to draw conclusions about real astrophysical syste
The chaotic effects seen at 2PN order become more
nounced as the spins or velocities are increased, w
pushes the system into a realm where the post-Newto
approximation starts to break down. While we expect
post-Newtonian approximation to provide a fair qualitati
description of the dynamics, it may be unwise to place
much faith in the quantitative relationship betweenTl and
Td .

The post-Newtonian equations of motion are written a
series expansion inv2/c2, wherev is the relative velocity
andc is the speed of light:

m r̈5FN
(0)1FPN

(1)1FSO
(1.5)1FPN

(2)1FSS
(2)1FQM

(2)

1FRR
(2.5)1FSO

(2.5)1FPN
(3)1FSS

(3)1 . . . . ~1!

Herem5m1m2 /M is the reduced mass,M5m11m2 is the
total mass, andr̈ is the relative acceleration of the two bo
ies. In these unitsG5c51 so that all lengths are measure
in units of the total massM. The productm r̈ is given in terms
of a series of forces, starting with the usual Newtonian fo
FN

(0)5m1m2r /r 3. The superscripts denote the order of t
post-Newtonian expansion and the subscripts denote the
of force. The explicit form of the higher order terms can
found in Refs.@9–11#. Qualitatively, the 1PN forceFPN

(1) in-
troduces perihelion precession. The 2PN forceFPN

(2) intro-
duces isolated unstable orbits, along with an innermost st
circular orbit ~ISCO!, and the possibility of merger. Th
1.5PN spin-orbit forceFSO

(1.5) leads to precession of the orbit
plane, as do the 2PN spin-spinFSS

(2) and spin-induced
quadrupole-monopoleFQM

(2) forces. The spin-spin force is a
tractive for spins that are aligned and repulsive for spins
are antialigned. The 2.5PN order radiation reaction for
FRR

(2.5) , is the first nonconservative term, and it causes
orbital energyE and angular momentumL to decay. Associ-
ated with the spin-orbit and spin-spin forces are torques
act on the spin of each body, causing the spins to prece
see Ref.@9# for details. To date, the expansion is known up
3PN order only under the very restrictive conditions of
spins and/or circular or quasicircular orbits. In order to e
plore the range of all orbits, including noncircular orbits wi
spins, we consider terms up to 2.5PN order as was don
Refs. @2,8#. We also neglect the 2PN quadrupole-monop
and 2.5PN spin-orbit forces. The PN approximation in g
eral has many shortcomings. The convergence of the ex
sion to the full relativistic problem is very slow and therefo
does not reflect the full nonlinearity of the relativistic tw
body system. Additionally, for the innermost orbits, the e
pansion parameterv2/c2 is getting big enough to challeng
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the validity of the approximation. Nonetheless, the PN a
proximation is the only description currently available. If an
alternative descriptions do become available, they too can
tested for the presence of chaos. In further defense of th
approximations, we point out that the terms that we ke
capture the mainqualitativefeatures expected from full gen
eral relativity. If anything, the higher order nondissipati
terms are likely to increase the strength of the chaotic beh
ior.

The dynamics takes place in a 12-dimensional ph
space with coordinatesXW 5(x,px ,S1 ,S2), where px is the
momentum conjugate tox, andSi describes the spins of th
two bodies. In the absence of radiation reaction there a
conserved quantities, the energyE, total angular momentum
J5L1S11S2 and spin magnitudesuSi u. Linearizing the
equations of motion about a reference trajectoryXW (t) gives
the evolution of the differencedXW (t)

dẊi~ t !5
]Ẋi

]Xj
U

XW (t)

dXj~ t ![Ki j ~ t !dXj~ t !. ~2!

The solution to this equation can be written:

dXi~ t !5Li j ~ t !dXj~0!. ~3!

The evolution matrixLi j (t) is given in terms of the linear
stability matrixKi j by

L̇ i j 5Kil Ll j , ~4!

with Li j (0)5d i j ~repeated indices imply summation!. The
Lyapunov exponents are defined@12# in terms of the eigen-
valuesL i(t) of the distortion matrixL i j 5Lil Ll j :

l i5 lim
t→`

1

2t
logL i~ t !. ~5!

The 2PN equations of motion are conservative and can
derived from a Hamiltonian. The expansion and vorticity
the flow vanishes for Hamiltonian systems~in canonical co-
ordinates!, so that det(L i j )51, L i j 5L j i and the Lyapunov
exponents come in1/2 pairs that measure the exponent
shearing of the flow. The principal Lyapunov exponentlp
5max(l i) can be calculated without directly isolating th
eigenvalues from

lp5 lim
t→`

1

2t
logS L j j ~ t !

L j j ~0! D . ~6!

In the limit of very long times, the principal positive
Lyapunov exponent will dominate the trace in Eq.~6!.

By contrast, the quantity calculated in Ref.@8# was

ld5 lim
t→`

lim
dX(0)→0

1

t
logS dX~ t !

dX~0! D ~7!

with dX5$@Xi(t)2Yi(t)#@Xi(t)2Yi(t)#%1/2 the Cartesian
distance between the 12-component vectors of a refere
4-2
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trajectoryXW (t) and a nearby shadow trajectoryYW (t). It must
be emphasized that this isnot a Lyapunov exponent. Equa
tion ~7! will automatically yield zero for bound orbits whe
the limit t→` is taken asdX(t) must remain finite. Equation
~7! can represent anapproximationto the Lyapunov expo-
nent if an additional rescaling of the shadow trajectories
incorporated. The rescaling is accomplished by determin
whendX(t r).RdX(0) for some thresholdR, then starting a
new shadow trajectoryYW 8(t) with initial conditions

YW 8~ t r !5XW ~ t r !1@YW ~ t r !2XW ~ t r !#/R. ~8!

The rescaling is repeated throughout the evolution to en
that one is accurately approximating the stability of the r
erence trajectoryX(t). The problem with this method is tha
the choice of threshold can significantly affect the value
ld . This may explain the disagreement between our res
and those in Ref.@8#. A far more robust method is to evolv
the perturbationdXW (t) directly using Eq.~2!. No rescaling is
needed as Eq.~2! defines the dynamic stability without ap
proximation.

A second more subtle point to make regarding Eq.~7! is
that whiledX(t) is often referred to as the ‘‘distance betwe
nearby trajectories in phase space,’’ this statement is misl
ing as phase space does not admit a metric structure. Ev
rescaled properly so thatdX(t)'dX(t) from Eq. ~2!, the
distancedX(t) only measures the projection of the distortio
matrix onto the initial displacement vector:

d2X~ t !'d2~ t !5dXi~0!L i j ~ t !dXj~0!. ~9!

As a consequence of this additional approximation,ld pro-
vides only a lower bound forlp .

We use three methods to estimate the principal Lyapu
exponent:

Method~A! determines the full evolution matrixLi j from
Eq. ~4! and uses Eq.~6! to calculatelp . This is the most
numerically intensive method as it involves integration of t
144 components of the evolution matrixLi j as well as the 12
components of the trajectory itself. The advantage of t
method is that it yields an unambiguous computation of
stability of an orbit with no approximations.

Method ~B! uses shadow trajectories and Eq.~7! with a
careful rescaling of the shadow orbit. This method involv
the approximation of Eq.~7!, along with rescaling and the
projection described by Eq.~9!.

Method~C! uses Eq.~2! to evolvedXW (t) along the refer-
ence trajectoryXW (t) so that a total of 24 equations are int
grated and used to calculate

lc5 lim
t→`

lim
dX(0)→0

1

t
logS dX~ t !

dX~0! D . ~10!

This method combines the accuracy of integrating the sta
ity equations with the approximation of projecting onto t
distortion matrix as in Eq.~9!.

In addition to these methods we also studied the rate
phase decoherence in the waveforms of the reference
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shadow trajectories. According to Ref.@3#, the phase differ-
ence udF(t)u should grow aselpt. In summary, all four
methods for estimatinglp use some measureD(t), where
D(t) is equal toL j j

1/2(t), dX(t), d(t) or udF(t)u, depending
on the method. In each case, the quantityD(t) will have an
initial power-law rise that is followed by exponential grow
for unstable orbits.

The equations of motion and the linearized evolution m
trix Li j (t) were evolved using a fourth order Runge-Kut
integrator with adaptive step size. The six quantities,E, J,
uS1u and uS2u were monitored to ensure that they were co
served at 2PN order.

To illustrate the connection between the fractal structu
and Lyapunov exponents, we begin by regenerating Fig.
Ref. @2# in our Fig. 1. The trajectories were started in thex

FIG. 1. Fractal basin boundaries showing three poss
outcomes for the binary system as a function of the initial s
alignments.
4-3
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2y plane with initial conditions (x,ẋ)5(5.0M ,0,0,0,0.45,0)
and spin alignmentsu1 andu2 relative to the orbital angula
momentum. The bodies have a 1:3 mass ratio and spinSi

50.6mi
2 . The trajectories were color coded according

their outcomes: Black for merger from above thex2y plane,
dark gray for merger from below thex2y plane, white for
more than 50 orbits, and light gray for escape beyonr
51000M . The lower panel in Fig. 1 is a detail of the fract
basin boundary, and the location of a long-lived orbit th
lies close to the basin boundary. A portion of this trajectory
drawn in Fig. 2. The orbit has average periodTo51687M ,
mean eccentricitye50.922 and mean semimajor axisa
566.7M . Integrating the radiation reaction force along t
trajectory gives a decay rate of^Ė&521.2631026. In Fig. 3

FIG. 2. Trajectory taken from the fractal basin boundary of F
1. The axes are scaled in units of the total mass.

FIG. 3. Determining of the principal Lyapunov exponent for t
trajectory in Fig. 2. The upper line uses method A, while the low
two lines ~which lie over one another! use methods B and C.
02400
t
s

we plot log„D(t)/D(0)… for this trajectory using methods A
B and C described above. All three methods yieldTl

511500M;6.8To for the Lyapunov time scale, where w
take an orbit to be a topological winding around the cente
mass. The Lyapunov time scale is less than seven orb
periods, indicating that the motion is very chaotic.

Similar results were found for many other orbits tak
from Fig. 1. Most of the orbits near the boundaries tend to
highly eccentric (e.0.9), by virtue of being on the bound
ary and so on the cusp between merger and stability
should be emphasized that high eccentricity is not requ
for chaotic behavior@4#, although when both bodies spi
there areno circular orbits whatsoever@9#. ~In any case,
highly eccentric orbits are important candidates for detect
by the gravitational wave observatories@14#.!

We did find some less eccentric orbits that had posit
Lyapunov exponents. As an example of a less eccentric o
we show that the trajectory with initial conditions (x,ẋ)
5(5.5M ,0,0,0,0.4,0),u15p/2, u25p/6, mass ratio 1:3
and spinsSi5mi

2 is also highly chaotic. The orbit has ave
age periodTo5275M , mean eccentricitye50.59 and mean
semimajor axisa513.7M . Plots of log„D(t)/D(0)… are
drawn in Fig. 4. In this case we used methodC and the phase
divergence method to estimateTl . Both methods gaveTl

53080M511.2To , which indicates that the orbit is highly
chaotic.

We found large numbers of orbits, with a range of ma
ratios, spin parameters and spin alignments that had pos
Lyapunov exponents. The time scale for the chaotic beha
was often a small multiple of the orbital period.

To further compare with Ref.@8#, we took up their case o
a binary with mass ratio 1:1 and spinsSi5mi

2 , u1538o,

u2570o. We found a positive Lyapunov exponent for (x,ẋ)
5(5.0M ,0,0,0,0.399,0). Therefore at least some of the eq
mass binaries demonstrate chaotic orbits. As is commo
chaotic systems, different trajectories came with different
ponents, some of which were zero. For example, the o

.

r

FIG. 4. Determination of the principal Lyapunov exponent f
the less eccentric orbit described in the text. The upper line
log„d(t)/d(0)… while the lower line is log„udF(t)u/udF(0)u….
4-4



ex
ch
a

r
ef

d
on

im

i
ec
st
tio
ec
bi
io
in
e

io

ea
th
nd
d.
io
a
il
s

ts
m

ef
l
o

ru
d
ow
ct

rk

nd
ion
al.

vi-
tic
e

ma-
of
-

dy
, is

er
the

CHAOS AND DAMPING IN THE POST-NEWTONIAN . . . PHYSICAL REVIEW D68, 024004 ~2003!
with initial conditions (x,ẋ)5(5.0M ,0,0,0,0.428,0) gavelp
50. Herein lies an inherent weakness of the Lyapunov
ponents themselves. They vary from orbit to orbit. A mu
more powerful survey of the phase space scans for ch
using fractal basin boundaries as in Fig. 1.

We used four methods to determinelp , along with a
battery of numerical tests, and our results have proven
bust. We therefore confirm the chaos discovered in R
@2,4#, contrary to the claims of Ref.@8#. It should also be
emphasized that the fractal basin boundary method use
Ref. @2# is an unambiguous declaration of chaos, and al
stands as proof of chaotic dynamics@13,15#. Still, the
Lyapunov time scales can be useful for determining the
pact of chaos on the gravitational wave detection.

Now that we have confirmed that the 2PN dynamics
chaotic, we turn to the question of how significant the eff
is. To this end we went to the next order in the po
Newtonian expansion and included the radiation reac
force. The effect of the radiation reaction force on the traj
tory studied in Fig. 4 is shown in Fig. 5. Starting at an ar
trary point along the trajectory, we see that the radiat
reaction force drives the evolution from inspiral to plunge
roughly 5 orbits. This is comparable to the Lyapunov tim
scale of roughly 11 orbits. It tells us that the chaotic behav
seen at 2PN order is marginal when radiation reaction
included. That is, chaos is damped by dissipation, but at l
for some orbits the Lyapunov time scale is comparable to
dissipation time scale. Both the instability of the orbits a
the degree of damping increase as merger is approache

There is another way to show that the chaotic behav
found in the nondissipative 2PN dynamics does leave
imprint on the dissipative 2.5PN dynamics. The effect is
lustrated in Fig. 6 where trajectories with initial condition
(x,ẋ)5(30M ,0,0,0,0.12,0), mass ratio 1:1 and spinsSi

50.6mi
2 were evolved for a range of spin-orbit alignmen

The initial conditions were color coded using the sa
scheme as before. Despite the damping, the outcomes
intertwined in a complicated fashion. As pointed out in R
@3#, with dissipation the system will not have fully fracta
boundaries. However, the imprint of the underlying chaos
the conservative system is recorded in the amount of st
ture in the basin boundaries before the fractal cuts off an
rendered smooth. The detailed view in the lower panel sh
that the boundaries are eventually smooth rather than fra

FIG. 5. A detail of trajectory~solid line! with the effect of ra-
diation reaction~dotted line!.
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It is worth comparing our results to the interesting wo
of Ref. @1#. The authors of Ref.@1# also found a positive
Lyapunov exponent for spinning test particle motion arou
a Schwarzschild black hole. However, the light compan
required an unphysically large spin many times maxim
Here we find that the additional nonlinearity from the gra
tational interaction of the two bodies has introduced chao
dynamics for physically realistic spins below maximal. W
emphasize that the dynamics we study is only an approxi
tion, but we think it is unlikely that the chaos is an artifact
the approximations. The very difficulty in solving the two
body problem in general relativity hints that the two-bo
problem itself, perhaps even without the addition of spins
fully chaotic.

FIG. 6. Basin boundaries with radiation reaction. The upp
panel shows a complicated intertwining of outcomes, however
detailed view reveals that the boundaries are not fractal.
4-5
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The effects that lead to the 2PN system being chaotic
most pronounced for the innermost orbits. Importantly,
very idea of locating the innermost stable circular or
~ISCO! in the conserative system in order to mark the tra
sition to merger must be abandoned. The underlying chao
the conservative dynamics means that unstable periodic
bits crowd this region of phase space@17#. The fractal basin
boundaries are a reflection of this fractal set of unstable
riodic orbits. Consequently chaos may be significant for
final orbits and the transition to plunge, though techniqu
.
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other than the post-Newtonian approximation are neede
study this transition@7#.

In conclusion, there is chaos in the 2PN equations of m
tion for spinning compact binaries. The chaos is damped
dissipation at 2.5PN order so that most orbits will only
mildly influenced by the complicated dynamics.
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tion Grant No. PHY-0099532. J.L. is supported by PPAR
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