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Chaos and damping in the post-Newtonian description of spinning compact binaries
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Binary systems of rapidly spinning compact objects, such as black holes or neutron stars, are prime targets
for gravitational wave astronomers. The dynamics of these systems can be very complicated due to spin-orbit
and spin-spin couplings. Contradictory results have been presented as to the nature of the dynamics. Here we
confirm that the dynamics—as described by the second post-Newtonian approximation to general relativity—is
formally chaotic, despite claims to the contrary. When dissipation due to higher order radiation reaction terms
is included, the chaos is damped. The damping time scale is found to be comparable to, but shorter than, the
time scale that characterizes the chaotic behavior. This result suggests that the gravitational waveforms com-
puted to 2.5 post-Newtonian order from spinning compact binaries will not suffer from sensitive dependence
on initial conditions. If the post-Newtonian approximation at this order is an adequate description, then the
waves can be detected using standard hierarchical matched filtering techniques. On the other hand, the com-
petition between chaotic decoherence and radiation induced dissipation is close enough that the merger history
does retain an imprint of the chaotic behavior. Moreover, the time scales are sufficiently close, and the
post-Newtonian approximation is sufficiently crude, that we cannot rule out the possibility that chaotic effects
play a role in real binary systems.
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Gravitational wave astronomy blurs the lines betweerries with realistic spins exhibited chaotic behavior at second
theory and observation by requiring accurate source modepost-Newtoniari2PN) order[2]. Commentaries were written
ing to facilitate detection. While it is possible to detect gravi- emphasizing that radiation reaction would damp the chaos
tational waves without precise waveform templates, matchefb6], and that the post-Newtonian approximation was being
filtering against a template bank is the only way to extractpushed beyond its domain of validify], although unavoid-
detailed information about the sources. A template basedibly since no better approximation is available. However,
matched filtering approach to gravitational wave data analyneither commentary disputed the central result of Refs.
sis is impractical if the orbital dynamics is chaofit—4]. [2,4]—that the second post-Newtonian equations of motion
Systems that exhibit sensitive dependence to initial condiadmit chaotic behavior. Then a paper was published “ruling
tions require template banks that are exponentially largesut chaos in compact binary systen$]. This study used
than those of nonchaotic systems. the same 2PN equations of motion, but a different method

Spinning compact binaries pose a challenge to templatgyr establishing chaos—Lyapunov exponents rather than
based detection and parameter extraction techniqugs. Theyctals. The results reported in Refg] and[8] sit in stark
waveforms depend on a large number of parameters, inclugsonirast, The trajectories that form the fractal basin bound-
ing the masses of the two bodies, their spins, and the relatiVgijes found inf2] belong to a set of unstable periodic orbits
alignment of the spin and orbital angular momentum—somg ., as the strange repellor. These orbits must have posi-

11 parameters in all. Even W'th a relatively coarse samplmqive Lyapunov exponents. Trajectories near the boundaries
of parameter space, the resulting template bank can be ver,

large. The hope is that hierarchical schemes can be used t \A\’/&” ?.IS?C ha]:ve pohsmge L)gapgnov exponents, as may orbits
start with a coarse sampling and proceed by successive r 1at lie far from the boundaries, . .
finement[5]. However, template based methods, hierarchical In yvhat follows, we refute Fhe claims ”_‘ade n RES]. by .
or otherwise, will not work if the underlying dynamics is SnoWing that the 2PN equations of motion do admit orbits
chaotic. The sensitivity to initial conditions that characterizesVith POSitive Lyapunov exponents.
chaotic systems implies that waveforms that are initially After establishing the presence of chaos, we then explore
nearby (as measured by their cross correlation over somdhe significance of this result by comparing three key time
time interva) will diverge exponentially with timé3]. scales in the problem—the average orbital period the

A debate has arisen as to whether spinning compact bindyapunov timeT, , and the decay tim&. If T, is short
ries exhibit chaotic behavior. The first indication of chaoticcompared tdl 4, the chaotic dynamics seen in the conserva-
behavior was found using a test particle approximafiblp ~ tive 2PN system will leave a strong imprint on the 2.5PN
but chaotic orbits were only found for unphysically large dissipative dynamics. On the other hand, if the Lyapunov
values of the particle’s spin. The problem was also apiime is long compared to the decay time, there will not be a
proached using the post-Newtonian approximation to generalhance for the orbits to diverge before the plunge and
relativity, and fractal methods were used to show that binamatched filtering will not be substantially degraded.
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For the specific binary orbits studied we find thBt  the validity of the approximation. Nonetheless, the PN ap-
=2T4. This tells us that the damping due to gravitationalproximation is the only description currently available. If any
wave emission is stronger than the instability seen in thalternative descriptions do become available, they too can be
undamped dynamics. In other words, the gravitational wavetested for the presence of chaos. In further defense of these
forms predicted by the 2.5PN dynamics will not suffer from approximations, we point out that the terms that we keep
sensitive dependence on initial conditions, so these wavesapture the maiualitativefeatures expected from full gen-
could be detected using a template based, matched filterirgral relativity. If anything, the higher order nondissipative
approach. We have to be a little cautious about using thiserms are likely to increase the strength of the chaotic behav-
result to draw conclusions about real astrophysical systemsor.

The chaotic effects seen at 2PN order become more pro- The dynamics takes place in a 12-dimensional phase

nounced as the spins or velocities are increased, whiclpace with coordinateX=(x,py,S;,S,), wherep, is the
pushes the system into a realm where the post-Newtoniamomentum conjugate to, andS; describes the spins of the
approximation starts to break down. While we expect thawo bodies. In the absence of radiation reaction there are 6
post-Newtonian approximation to provide a fair qualitative conserved quantities, the enerfytotal angular momentum
description of the dynamics, it may be unwise to place t00J=| +S,+S, and spin magnitude$S|. Linearizing the
much faith in the quantitative relationship betwegp and equations of motion about a reference trajectiity) gives

Tq. . . -
The post-Newtonian equations of motion are written as a{he evolution of the differencéX(t)

series expansion in?/c?, wherev is the relative velocity 2%
andc is the speed of light: 5Xi(t)= g_)(l 8X; () =K;; (1) 8X;(1). 2
I
C_EO) 4 EW) 4 A5 E@) 4 E@) 4 @)
pr=FNTHFentFso™ Fent FestFou The solution to this equation can be written:
FRRRPFEM PR @) 8X(1)=Ly; (1) 3%,(0). @

Here u=m,m,/M is the reduced massl=m; +m, is the  The eyolution matrix_;;(t) is given in terms of the linear
total mass, and is the relative acceleration of the two bod- stability matrix Kij by
ies. In these unit&=c=1 so that all lengths are measured

in units of the total maskl. The produciur is given in terms Lij=KjLyj, (4)

of a series of forces, starting with the usual Newtonian force o )

F(O=m;m,r/r3. The superscripts denote the order of theWith Lij(0)=4;; (repeated indices imply summatioriThe
post-Newtonian expansion and the subscripts denote the typ¢/@Punov exponents are defingt?] in terms of the eigen-
of force. The explicit form of the higher order terms can bevaluesAi(t) of the distortion matrix\j;=L; L

found in Refs[9-11]. Qualitatively, the 1PN forC(F(Pl,Ql in- 1

troduces perihelion precession. The 2PN foFcﬁéi intro- Ni=lim=log A;(t). (5)
duces isolated unstable orbits, along with an innermost stable A

circular orbit (ISCO), and the possibility of merger. The _ _ _

1.5PN spin-orbit forc&{: leads to precession of the orbital The 2PN equations of motion are conservative and can be
plane, as do the 2PN spin—spiﬁ(szs) and spin-induced derived from a Hamiltonian. The expansion and vorticity of

quadrupole-monopolég,ZA forces. The spin-spin force is at- the flow vanishes for Hamiltonian systertis canonical co-

tractive for spins that are aligned and repulsive for spins tha?rdmate% SO that_de/tﬁii)z.l'tﬁijt:/\ji and ?r‘]e LyapunO\t/. |
are antialigned. The 2.5PN order radiation reaction forceSXPONENts come irr pairs that measure the exponentia

F5, is the first nonconservative term, and it causes theShearlng of the flow. The principal Lyapunov exponapt

orbital energyE and angular momentuin to decay. Associ- :irgi)\(/g\lge(s:a:‘rr]o?ne calculated without directly isolating the
ated with the spin-orbit and spin-spin forces are torques that'J

act on the spin of each body, causing the spins to precess— 1 A (b)
see Ref[9] for details. To date, the expansion is known up to Np= Iim—Iog( I ) (6)
3PN order only under the very restrictive conditions of no t—e2t Aj;(0)

spins and/or circular or quasicircular orbits. In order to ex- o _ o -

plore the range of all orbits, including noncircular orbits with N the limit of very long times, the principal positive
spins, we consider terms up to 2.5PN order as was done #yapunov exponent will dominate the trace in ).
Refs.[2,8]. We also neglect the 2PN quadrupole-monopole BY contrast, the quantity calculated in RE8] was

and 2.5PN spin-orbit forces. The PN approximation in gen-

eral has many shortcomings. The convergence of the expan- Ag=lim lim Elog( m) 7)

sion to the full relativistic problem is very slow and therefore t—eedX(0)—0t dX(0)

does not reflect the full nonlinearity of the relativistic two-

body system. Additionally, for the innermost orbits, the ex-with dX={[X;(t)—Y;(t)][X;(t)— Y;(t)]}*”?> the Cartesian
pansion parametar?/c? is getting big enough to challenge distance between the 12-component vectors of a reference
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trajectoryX(t) and a nearby shadow trajectoryt). It must  3.14-
be emphasized that this it a Lyapunov exponent. Equa-
tion (7) will automatically yield zero for bound orbits when
the limitt— o is taken agl X(t) must remain finite. Equation
(7) can represent aapproximationto the Lyapunov expo-
nent if an additional rescaling of the shadow trajectories is
incorporated. The rescaling is accomplished by determining
whendX(t,)>RdX(0) for some threshol®, then starting a

new shadow trajectory’(t) with initial conditions 8,
Y (1) =X(t) +[Y(t) = X(t) VR, ®)

The rescaling is repeated throughout the evolution to ensurt
that one is accurately approximating the stability of the ref-
erence trajectorX(t). The problem with this method is that
the choice of threshold can significantly affect the value of
Ag. This may explain the disagreement between our results
and those in Ref.8]. A far more robust method is to evolve

the perturbationsX(t) directly using Eq(2). No rescaling is
needed as Eq2) defines the dynamic stability without ap-
proximation.

A second more subtle point to make regarding &¢.is
that whiled X(t) is often referred to as the “distance between
nearby trajectories in phase space,” this statement is mislead
ing as phase space does not admit a metric structure. Even
rescaled properly so thaX(t)~ 6X(t) from Eg. (2), the
distanced X(t) only measures the projection of the distortion
matrix onto the initial displacement vector:

14

1.64—

0,
d?X(t)~d?(t)=dX;(0)A;;(t)dX;(0). 9)

As a consequence of this additional approximatiog pro-
vides only a lower bound fox,.
We use three methods to estimate the principal Lyapunov
exponent:
Method(A) determines the full evolution matrix;; from
Eqg. (4) and uses Eq(6) to calculateh,. This is the most .
numerically intensive method as it involves integration of the ol o - "
144 components of the evolution mattiy as well as the 12 ' g ' '
components of the trajectory itself. The advantage of this
method is that it yields an unambiguous computation of the FIG. 1. Fractal basin boundaries showing three possible
stability of an orbit with no approximations. ogtcomes for the binary system as a function of the initial spin
Method (B) uses shadow trajectories and K@) with a  alignments.

careful rescaling of the shadow orbit. This method involves . . . .
the approximation of Eq(7), along with rescaling and the shadow trajectories. Accordlngxtc: R¢R], the phase differ-
projection described by Eq9). ence |6®(t)| should grow ase*e'. In summary, all four

> methods for estimating., use some measui@(t), where

Method (C) uses Eq(2) to evolve §X(t) along the refer- D(t) is equal toA-l-’Z(t) gde(t) d(t) or | 5 (1)| (d)epending

ence trajectoryX(t) so that a total of 24 equations are inte- J, the method. |rJ]J each case, the quarifit) will have an
grated and used to calculate initial power-law rise that is followed by exponential growth

1 SX(1) for unstable orbits.
A.=lim lim =log ) (10) The equations of motion and the linearized evolution ma-
tmwox)—ot | 6X(0) trix L;;(t) were evolved using a fourth order Runge-Kutta

integrator with adaptive step size. The six quantities,],
This method combines the accuracy of integrating the stabillS;| and|S,| were monitored to ensure that they were con-
ity equations with the approximation of projecting onto the served at 2PN order.
distortion matrix as in Eq(9). To illustrate the connection between the fractal structures
In addition to these methods we also studied the rate ofdnd Lyapunov exponents, we begin by regenerating Fig. 3 of
phase decoherence in the waveforms of the reference armRef.[2] in our Fig. 1. The trajectories were started in the
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1. The axes are scaled in units of the total mass.

—y plane with initial conditions X,x) = (5.0M,0,0,0,0.45,0)
and spin alignmentg; and 6, relative to the orbital angular
momentum. The bodies have a 1:3 mass ratio and pins
=O.6mi2. The trajectories were color coded according toP®
their outcomes: Black for merger from above they plane,
dark gray for merger from below the—y plane, white for
more than 50 orbits, and light gray for escape beyond
=1000M. The lower panel in Fig. 1 is a detail of the fractal
basin boundary, and the location of a long-lived orbit that
lies close to the basin boundary. A portion of this trajectory is
drawn in Fig. 2. The orbit has average peribg=168"™,
mean eccentricitye=0.922 and mean semimajor ax&s
=66.7M. Integrating the radiation reaction force along the

trajectory gives a decay rate t&') =-1.26x10®. In Fig. 3

20
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FIG. 4. Determination of the principal Lyapunov exponent for
the less eccentric orbit described in the text. The upper line is
log(d(t)/d(0)) while the lower line is log 5D (t)|/| 5P (0)]).

FIG. 2. Trajectory taken from the fractal basin boundary of Fig.

we plot logD(t)/D(0)) for this trajectory using methods A,
B and C described above. All three methods yidid
=1150(M ~6.8T, for the Lyapunov time scale, where we
take an orbit to be a topological winding around the center of
mass. The Lyapunov time scale is less than seven orbital
riods, indicating that the motion is very chaotic.
Similar results were found for many other orbits taken
from Fig. 1. Most of the orbits near the boundaries tend to be
highly eccentric €>0.9), by virtue of being on the bound-
ary and so on the cusp between merger and stability. It
should be emphasized that high eccentricity is not required
for chaotic behaviof4], although when both bodies spin
there areno circular orbits whatsoevef9]. (In any case,
highly eccentric orbits are important candidates for detection
by the gravitational wave observatorigist].)

We did find some less eccentric orbits that had positive
Lyapunov exponents. As an example of a less eccentric orbit,

we show that the trajectory with initial conditions,§)

log(D(1))

=(5.5M,0,0,0,0.4,0), 0,=w/2, 6,=x/6, mass ratio 1:3
and spin§i=mi2 is also highly chaotic. The orbit has aver-
age periodl ,=275M, mean eccentricitg=0.59 and mean
semimajor axisa=13.7M. Plots of lodD(t)/D(0)) are
drawn in Fig. 4. In this case we used meth®dnd the phase
divergence method to estimalg . Both methods gavé,
=3080M =11.2T,,, which indicates that the orbit is highly
chaotic.

We found large numbers of orbits, with a range of mass
ratios, spin parameters and spin alignments that had positive
Lyapunov exponents. The time scale for the chaotic behavior
was often a small multiple of the orbital period.

To further compare with Ref8], we took up their case of
a binary with mass ratio 1:1 and spigs= mi2, 0,=38,

50000 100000

t/M

6,=70°. We found a positive Lyapunov exponent for,X)
=(5.0M,0,0,0,0.399,0). Therefore at least some of the equal

FIG. 3. Determining of the principal Lyapunov exponent for the mass binaries demonstrate chaotic orbits. As is common in

trajectory in Fig. 2. The upper line uses method A, while the lowerchaotic systems, different trajectories came with different ex-
two lines(which lie over one anothguse methods B and C.

ponents, some of which were zero. For example, the orbit
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3.14

FIG. 5. A detail of trajectory(solid line) with the effect of ra-
diation reaction(dotted ling.

with initial conditions &,x)=(5.0M,0,0,0,0.428,0) gavi,

=0. Herein lies an inherent weakness of the Lyapunov ex-
ponents themselves. They vary from orbit to orbit. A much

more powerful survey of the phase space scans for chao™*
using fractal basin boundaries as in Fig. 1. -3,

We used four methods to determing,, along with a
battery of numerical tests, and our results have proven ro- ~
bust. We therefore confirm the chaos discovered in Refs,
[2,4], contrary to the claims of Ref8]. It should also be
emphasized that the fractal basin boundary method used i
Ref.[2] is an unambiguous declaration of chaos, and alone
stands as proof of chaotic dynami¢43,15. Still, the
Lyapunov time scales can be useful for determining the im-
pact of chaos on the gravitational wave detection.

Now that we have confirmed that the 2PN dynamics is
chaotic, we turn to the question of how significant the effect
is. To this end we went to the next order in the post-
Newtonian expansion and included the radiation reaction
force. The effect of the radiation reaction force on the trajec-
tory studied in Fig. 4 is shown in Fig. 5. Starting at an arbi-
trary point along the trajectory, we see that the radiation
reaction force drives the evolution from inspiral to plunge in
roughly 5 orbits. This is comparable to the Lyapunov time
scale of roughly 11 orbits. It tells us that the chaotic behavior , ., |
seen at 2PN order is marginal when radiation reaction is | |
included. That is, chaos is damped by dissipation, but at leas 8, .2
for some orbits the Lyapunov time scale is comparable to the
dissipation time scale. Both the instability of the orbits and FIG. 6. Basin boundaries with radiation reaction. The upper
the degree of damp|ng increase as merger is approached_ panel shows a Complicated intertWining of outcomes, however the

There is another way to show that the chaotic behaviofétailed view reveals that the boundaries are not fractal.

found in the nondissipative 2PN dynamics does leave an ¢ is worth comparing our results to the interesting work
imprint on the dissipative 2.5PN dynamics. The effect is il- ¢ Ret. [1]. The authors of Ref[1] also found a positive
IusFrated in Fig. 6 where trajectories with initial conditions Lyapunov exponent for spinning test particle motion around
(x,x)=(30M,0,0,0,0.12,0), mass ratio 1:1 and spiBs a Schwarzschild black hole. However, the light companion
=0.6m? were evolved for a range of spin-orbit alignments. required an unphysically large spin many times maximal.
The initial conditions were color coded using the sameHere we find that the additional nonlinearity from the gravi-
scheme as before. Despite the damping, the outcomes atational interaction of the two bodies has introduced chaotic
intertwined in a complicated fashion. As pointed out in Ref.dynamics for physically realistic spins below maximal. We
[3], with dissipation the system will not have fully fractal emphasize that the dynamics we study is only an approxima-
boundaries. However, the imprint of the underlying chaos otion, but we think it is unlikely that the chaos is an artifact of
the conservative system is recorded in the amount of strughe approximations. The very difficulty in solving the two-
ture in the basin boundaries before the fractal cuts off and isody problem in general relativity hints that the two-body
rendered smooth. The detailed view in the lower panel showproblem itself, perhaps even without the addition of spins, is
that the boundaries are eventually smooth rather than fractaully chaotic.

1.2i—

6,
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The effects that lead to the 2PN system being chaotic arether than the post-Newtonian approximation are needed to
most pronounced for the innermost orbits. Importantly, thestudy this transitior 7].
very idea of locating the innermost stable circular orbit In conclusion, there is chaos in the 2PN equations of mo-
(ISCO) in the conserative system in order to mark the tran-tion for spinning compact binaries. The chaos is damped by
sition to merger must be abandoned. The underlying chaos afissipation at 2.5PN order so that most orbits will only be
the conservative dynamics means that unstable periodic omildly influenced by the complicated dynamics.
bits crowd this region of phase spdde’]. The fractal basin N.J.C. is supported in part by National Science Founda-
boundaries are a reflection of this fractal set of unstable petion Grant No. PHY-0099532. J.L. is supported by PPARC
riodic orbits. Consequently chaos may be significant for theand NESTA(National Endowment for Science Technology
final orbits and the transition to plunge, though techniquesand Arts.
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