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Stability of neutral Fermi balls with multiflavor fermions
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A Fermi ball is a kind of nontopological soliton which is thought to arise from the spontaneous breaking of
an approximateZ2 symmetry and to contribute to cold dark matter. We consider a simple model in which
fermion fields with multiflavors are coupled to a scalar field through Yukawa coupling and examine how the
number of the fermion flavors affects the stability of the Fermi ball against the fragmentation.~1! We find that
the Fermi ball is stable against fragmentation in most cases even in the lowest-order thin-wall approximation.
~2! We then find that in the other specific cases the stability is marginal in the lowest-order thin-wall approxi-
mation, and the next-to-leading order correction determines the stable region of the coupling constants; we
examine the simplest case where the total fermion numberNi and the Yukawa coupling constantGi of each
flavor i are common to the flavors, and find that the Fermi ball is stable in a limited region of the parameters
and has the broader region for the larger number of flavors.
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I. INTRODUCTION

A Fermi ball @1,2#, a kind of nontopological soliton@3,4#,
is composed of three parts: a false vacuum domain, a dom
wall enveloping the domain, and zero-mode fermions@5#
confined in the domain wall. The Fermi ball is stabilize
owing to the dynamical balance between the shrinking fo
due to the surface energy, as well as the volume energy,
the expanding force due to the Fermi energy. The Fermi
is thought to be a candidate for cold dark matter in
present universe@6,7#.

Macpherson and Campbell pointed out that such stab
holds good only for the spherical shape of the Fermi ball@1#.
They further showed that the Fermi ball is not stable aga
the deformation of the spherical shape, and thus flattens
fragments into tiny Fermi balls. The destabilization is caus
by the volume energy of the Fermi ball. In these analys
the effect of the domain wall curvature is neglected.

We, in previous papers@8,9#, pointed out that the pertur
bative correction due to the domain wall curvature can s
bilize the Fermi ball when the volume energy is sm
enough compared to the curvature effect. We found, h
ever, that the region of parameters where the Fermi ball
comes stable is quite narrow in a single fermion flav
model.

The purpose of the present paper is to examine how
fermion content of the model affects the stability of t
Fermi ball. As an example, we consider an extended mo
in which fermions with multiflavors are coupled to a sca
field through Yukawa coupling. Since Pauli’s exclusion pr
ciple does not apply to the different flavors of fermions, t
stable region of the parameters is expected to broaden.
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II. STABILITY OF THE FERMI BALL

We consider the following Lagrangian density for a sca
field f and fermion fieldsC i with i 51,2, . . . , n being the
flavor indices:

L5
1

2
~]mf!21(

i 51

n

C i~ ig i
m]m2Gif!C i2U~f!, ~1!

where the scalar potentialU(f) is given by

U~f!5
l

8
~f22v2!21D~f!. ~2!

If the quantityuD(v)2D(2v)u is zero, the Lagrangian den
sity is invariant under theZ2 transformation,f↔2f. There
is, however, a small but finite quantityuD(v)2D(2v)u.L
!lv4, where the invariance is not a strict one.

We consider a spherical Fermi ball with radiusR and
assume that the wave functionC i and bosonf are static and
thatf depends only on the radial coordinater. Let C i be the
eigenfunction of the total angular momentum squaredJ¢2, the
z componentJz , and the parityP with the eigenvalues of
J(J11), M , and (21)J2h/2 (h561), respectively. Then,
C i is written as

C i~xW !5
1

r S f ~r !Y lJ
M~u,w!

g~r !Y l 8J
M

~u,w!
D , ~3!

where Y lJ
M and Y l 8J

M
5(sW xW /r )Y lJ

M are the spherical spinor
having eigenvaluesJ andM, with J5 l 1h/25 l 82h/2. Sub-
stituting Eq.~3! into the LagrangianL5*d3xL, we obtain
©2003 The American Physical Society19-1
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L@f,c i #52E
0

`

dr F4pr 2H 1

2 S df

dr D 2

1U~f!J
1(

i
(
KM

c i
†H fc i G , ~4!

where

H f5s1

1

i

d

dr
1s2

K

r
1s3Gif, ~5!

with K5h(J1 1
2 ) andc i(r )5(g(r )

f (r ) ). Since the Fermi ball is
a ground state with a fixed number of fermions,

Ni5E d3xC i
†C i , ~6!

we obtain the wave functionc i and the scalar fieldf by
extremizing

Le@f,c i #5L@f,c i #1(
i

e i S (
KM

E
0

`

drc i
†c i2Ni D , ~7!

with the Lagrange multiplierse i . This multiplier turns out to
be the Fermi energy, sincee i5*0

`drc i
†H fc i is derived by

extremizingLe with respect tof i . The energy of the Ferm
ball is expressed in terms of the fields as

E5E
0

`

dr F4pr 2H 1

2 S df

dr D 2

1U~f!J G1(
i

(
KM

e i , ~8!

where we have eliminatedc i by using the normalization
*0

`drc i
†c i51. In order to estimate the energy of the Fer

ball, we take the thin-wall approximation and obtain the c
rection due to the finite curvature radiusR by the perturba-
tion with respect to 1/R. We expandf, c i , andH f in pow-
ers of 1/R @10#,

f5f01f11•••,

c i5c i01c i11•••,

H f5H01H11H21•••, ~9!

where

H05s1

1

i

d

dr
1s2

K

R
1s3Gif0 ,

H152s2

Kw

R2
1s3Gif1 ,

H25s2

Kw2

R3
, ~10!

with w5r 2R. FromdLe /df5dLe /dc i
†50, we obtain the

equations of motion,

H0c i05e i0c i0 , ~11!
02351
i
-

d2f0

dw2
5

]U

]f U
f5f0

1(
i

Gi

4pR2 (
KM

c i0
† s3c i0 ~12!

and

~H02e i0!c i152~H12e i1!c i0 , ~13!

F d2

dw2
2

]2U

]f2 U
f5f0

Gf152
2

R

df0

dw

1(
i

Gi

2pR2 (
KM

c i0s3c i1 .

~14!

NeglectingD(f) in the scalar potentialU(f) for simplicity,
we have analytic solutions forf0 andc i0,

f0~w!5v tanh
w

db
, ~15!

c i0~w!5
1

ANi

1

coshg i
w

db

x1 , ~16!

wheredb52l21/2v21 is the thickness of the domain wal
g i52l21/2Gi is the constant@11#, Ni5*2`

1`dw cosh22g iw/
db is the normalization factor, andx6 is the eigenspinor of
s2 with the eigenvalue61. The neglect ofD(f) is allowed
here in the case that the volume energy@;D(f)R3# is much
smaller than the perturbed energy (;v/Al) to be obtained
below. In Ref.@9#, we find there is such a parameter regi
that satisfies this inequality and is consistent with cosmolo
cal constraints.

We note that the second term on the right-hand s
~RHS! of Eq. ~12! vanishes. The leading order of the eige
value is given by

e i05
K

R
, ~17!

where we takeK positive (h511). We have solutions for
f1 andc i1,

f1~w!5
1

cosh2
w

db

E
0

w

dw8cosh4
w8

db
E

0

w8
dw9

h~w9!

cosh2
w9

db

,

~18!

c i1~w!5
1

ANi

$ci 1~w!x11ci 2~w!x2%, ~19!

where
9-2
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h~w!52
2v

dbR cosh2
w

db

1
1

2pR4

3(
i

(
KM

KGi

Ni
E

w

`

dw8
w8

cosh2g i
w8

db

~20!

and

ci 1~w!5
1

coshg i
w

db

H 2K2

R3 E0

w

dw8cosh2g i
w8

db

3E
w8

`

dw9
w9

cosh2g i
w9

db

2GiE
0

w

dw8f1~w8!J ,
g

02351
ci 2~w!5
K

R2
coshg i

w

db
E

w

1`

dw8
w8

cosh2g i
w8

db

. ~21!

Substituting the solutions into Eq.~8!, we obtain the energy
of the Fermi ball,

E5E01dE, ~22!

whereE0 is the leading order contribution to the energy,

E05
8pl1/2v3R2

3
1

2(
i

Ni
3/2

3R
, ~23!

and dE is the energy correction of the order ofE0
3(db /R)2,
dE5

(
i

Ni
1/2

12R
1plv4E

2`

1`

dw
w2

cosh4
w

db

22pl1/2v2RE
2`

1`

dw
1

cosh4
w

db

E
0

w

dw8cosh4
w8

db
E

0

w8
dw9

h~w9!

cosh2
w

db

1
2

3R3 (
i

Ni
3/2

Ni
E

2`

1`

dw
w2

cosh2g i
w

db

2
4

5R5 (
i

Ni
5/2

Ni
E

2`

1`

dw
w2

cosh2g i
w

db

E
0

w

dw8cosh2g i
w8

db
E

w8

`

dw9
w9

cosh2g i
w9

db

1
2

3R2 (
i

GiNi
3/2

Ni
E

2`

1`

dw
w

cosh2g i
w

db

E
0

w

dw8
1

cosh2
w8

db

E
0

w8
dw9cosh4

w9

db
E

0

w9
dw-

h~w-!

cosh2
w9

db

. ~24!
st
i

In the above equations, we use the relations

Ni5(
KM

5 (
K51

Kmax

(
M52J

J

5 (
K51

Kmax

~2K !5Kmax~Kmax11!,

~25!

(
KM

e i05
1

R (
KM

K5
2

3R
Kmax~Kmax11!S Kmax1

1

2D
.

2Ni
3/2

3R
1

Ni
1/2

12R
~Ni@1!. ~26!

We note that the states with angular momentum 0< l
<Kmax21 are filled.

~1! Stability in the leading order approximation. Let us
examine the stability of the Fermi ball within the leadin
order approximation in thedb /R expansion. From]E0 /]R
50, we get the minimizing radius
Rmin5

S (
i

Ni
3/2D 1/3

2p1/3l1/6v
~27!

and the energy at the radius,

E052p1/3l1/6S (
i

Ni
3/2D 2/3

v. ~28!

We note]2E0 /]R2.0 at R5Rmin .
We first examine the stability of the Fermi ball again

emission of a free fermion@2#. Since the energy of the Ferm
ball decreases byE0(Ni11)2E0(Ni);]E0 /]Ni for large
Ni by releasing a fermion and the fermion has a massmf
;Giv in the vacuum, the condition]E0 /]Ni,mf is re-
quired. From Eq.~28! we obtain the condition@2#
9-3
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Gi.
2p1/3l1/6Ni

1/2

S (
j

Nj
3/2D 1/3 . ~29!

We next examine the stability against the fragmentation@9#.
We compare two states: a stateA in which a single Fermi
ball has fermion numberNi for i th flavor and a stateB in
which m Fermi balls have fermion numberNi

(a) each and
conserve the total fermion number as(a51

m Ni
(a)5Ni for each

flavor. StatesA and B have the energyEA5E0(Ni) and
EB5(aE0(Ni

(a)), respectively. To compare the energy of t
two states, we use Minkowski’s inequality

S (
i

~Ni
(1)1Ni

(2)!3/2D 2/3

<S (
i

~Ni
(1)!3/2D 2/3

1S (
i

~Ni
(2)!3/2D 2/3

, ~30!

where the equality is valid only forNi
(2)5cNi

(1) (c>0) with
c being common for alli. Using the relation repeatedly, w
have

S (
i

~Ni !
3/2D 2/3

<(
a

S (
i

~Ni
(a)!3/2D 2/3

, ~31!

where the RHS is equal to the LHS only forNi
(a)5c(a)Ni

(c(a)>0 and(a51
m c(a)51). This leads to the fact that exce

for the special case ofNi
(a)5c(a)Ni , the energy of stateA is

lower than that of stateB, and thus the Fermi ball is stabl
against fragmentation in the leading order approximati
This situation—that the Fermi ball is stable in most cases—
characteristic of the case with a multiflavor of fermions a
qualitatively different from the case of a single flavor@9#. In
case ofNi

(a)5c(a)Ni , the two states have the same energy
the leading order approximation, and the correction termdE
determines the stability of the Fermi ball against the fra
mentation.

~2! Stability in the next-to-leading order approximation
the special case Ni

(a)5c(a)Ni . We examine the stability o
the Fermi ball against the fragmentation in the case ofNi

(a)

5c(a)Ni . SubstitutingR5Rmin into Eq. ~24! yields

dE5C~l,Gi ,Ni !v, ~32!

where
02351
.
is

n

-

C~l,Gi ,Ni !5

p1/3l1/6S (
i

Ni
1/2D

6S (
i

Ni
3/2D 1/3 1

8p~ I 12I 2!

l1/2

1

64pF(
i

Ni
3/2Ni I 3~ i !G

3l1/2S (
i

Ni
3/2D

2

2048p5/3F(
i

Ni
5/2Ni I 4~ i !G

5l7/6S (
i

Ni
3/2D 5/3

1

128pF(
i

GiNi
3/2Ni I 5~ i !G

3lS (
i

Ni
3/2D . ~33!

Here,I 1 to I 5 are given by

I 15E
2`

1`

dx
x2

cosh4x
,

I 25E
2`

1`

dx
1

cosh4x
E

0

x

dx8cosh4x8E
0

x8
dx9

h̄~x9!

cosh2x9
,

I 3~ i !5E
2`

1`

dx
x2

cosh2g ix
,

I 4~ i !5E
2`

1`

dx
x

cosh2g ix
E

0

x

dx8cosh2g ix8

3E
x8

1`

dx9
x9

cosh2g ix9
,

I 5~ i !5E
2`

1`

dx
x

cosh2g ix
E

0

x

dx8
1

cosh2x8
E

0

x8
dx9cosh4x9

3E
0

x9
dx-

h̄~x-!

cosh2x-
, ~34!

with h(w) rescaled ash̄(x)5(Rdb /v)h(dbx) andNi asNi
5(1/db)Ni . We compare stateA of the single Fermi ball
and stateB of m Fermi balls with the total fermion number t
be conserved for each flavor. StatesA andB have the energy
EA5E0(Ni)1C(l,Gi ,Ni)v and EB5(aE0(Ni

(a))
1(aC(l,Gi ,Ni

(a))v, respectively. In the case ofNi
(a)

5c(a)Ni , we derive(aE0(Ni
(a))5E0(Ni) from Eq.~28! and

C(l,Gi ,Ni
(a))5C(l,Gi ,Ni) from Eq.~33!, and thus find that
9-4
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stateB has the energyEB5E0(Ni)1mC(l,Gi ,Ni)v. There-
fore, if C(l,Gi ,Ni) is positive, the energy of stateA is lower
than that of stateB by the magnitude of the correction ter
dE, and the Fermi ball is stable against fragmentation e
in the special case ofNi

(a)5c(a)Ni .
Let us consider the simplified model to examine how

number of the fermion flavorsn affects the stability of the
Fermi ball in the case ofNi

(a)5c(a)Ni . We assume thatC i

belongs to a multiplet of internal symmetry with a comm
Yukawa coupling constantG and also assume that the fe
mion number is common to the flavor—i.e.,Ni5N. Under
these assumptions, the coefficientC is independent ofN and
dependent onl, G, andn from Eq. ~33!. We evaluate Eq.
~33! using numerical integrations and obtain the stable
gion of the parameters whereC is positive~see Figs. 1 and
2!. Figures 1 and 2 show that the allowed regions of para
eters exist for the Fermi ball to be stable against fragme
tion ~the shadowed regions in the figures!. We see in the
figures that the allowed region broadens as the numbe
flavors,n, increases.

III. CONCLUSION

We have considered a model for the Fermi ball in wh
the fermions with multiflavorsC i(1< i<n) are coupled to
the scalar fieldf and the total fermion number of eachi th
flavor is fixed asNi . We have examined the region of p
rameters for the Fermi ball to be stable against fragmenta
and observed how the number of fermion flavorsn affects
the stability.

We have considered the thin-wall Fermi ball where t
radiusR is much larger than the wall thicknessdb . We have
taken into account the effect due to the finite wall thickne
by the perturbation expansion with respect todb /R. In the
leading-order thin-wall approximation, we have compar

FIG. 1. The allowed regions~shadowed! of the scalar self-
coupling constantl and the Yukawa coupling constantG for the
Fermi ball to be stable against fragmentation. We assume tha
fermion C i(1< i<n) belongs to a multiplet and the bosonf to a
singlet of the internal symmetry, and that the fermion numberNi is
common to the flavor asNi5N. The figure shows that the allowe
region broadens asn increases.
02351
n

e

-

-
a-

of

n

s

d

the energy of the initial state of a single Fermi ball and th
of the final state ofm Fermi balls after fragmentation, with
the total fermion numberNi of each flavori being conserved,
(a51

m Ni
(a)5Ni . We have found that the former is smalle

than the latter, and thus the Fermi ball is stable against fr
mentation, except for the special case ofNi

(a)5c(a)Ni with
(a51

m c(a)51. This situation—that the Fermi ball is stable
most cases—is characteristic of the case with a multiflavo
fermions and qualitatively different from the case of a sing
flavor. In the special case ofNi

(a)5c(a)Ni , the two states
have the same energy in the leading order approximation
the next-to-leading order correction termdE determines the
stability. There we have found that the energy of the init
state isE01Cv and that of the states after fragmentation
E01mCv, wherev is a symmetry breaking scale andC is a
coefficient dependent on the scalar self-coupling constanl,
the Yukawa coupling constantGi , and the fermion numbe
Ni . This tells us that even in that case the Fermi ball is sta
when C takes a positive value in the region of paramet
l, Gi , andNi .

In the simplified model in which a multiplet of fermion
has a commonGi and a commonNi for each flavori, we
have found that the region of parameters for the Fermi ba
be stable broadens as the multiplet dimensionn increases.

he

FIG. 2. The allowed region~shadowed! of the scalar self-
coupling constantl ~left! and the Yukawa coupling constantG
~right! for the Fermi ball to be stable. The assumptions are the s
as those in Fig. 1. We see that the allowed regions broadenn
increases.
9-5
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