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Stability of neutral Fermi balls with multiflavor fermions
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A Fermi ball is a kind of nontopological soliton which is thought to arise from the spontaneous breaking of
an approximateZ, symmetry and to contribute to cold dark matter. We consider a simple model in which
fermion fields with multiflavors are coupled to a scalar field through Yukawa coupling and examine how the
number of the fermion flavors affects the stability of the Fermi ball against the fragmentdjiate find that
the Fermi ball is stable against fragmentation in most cases even in the lowest-order thin-wall approximation.
(2) We then find that in the other specific cases the stability is marginal in the lowest-order thin-wall approxi-
mation, and the next-to-leading order correction determines the stable region of the coupling constants; we
examine the simplest case where the total fermion nuribemd the Yukawa coupling consta@t of each
flavori are common to the flavors, and find that the Fermi ball is stable in a limited region of the parameters
and has the broader region for the larger number of flavors.
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I. INTRODUCTION Il. STABILITY OF THE FERMI BALL

We consider the following Lagrangian density for a scalar
A Fermi ball[1,2], a kind of nontopological solitof3,4],  field ¢ and fermion fields¥; with i=1,2,..., n being the
is composed of three parts: a false vacuum domain, a domaffavor indices:
wall enveloping the domain, and zero-mode fermi¢gf$
confined in the domain wall. The Fermi ball is stabilized 1 ) o -
owing to the dynamical balance between the shrinking force £~ 7 (9u¢) +Z’1 Vi(iyfd,—Gid)¥i—=U(e), (1)
due to the surface energy, as well as the volume energy, and
the expanding force due to the Fermi energy. The Fermi ballyhere the scalar potential () is given by
is thought to be a candidate for cold dark matter in the
present universgs,7]. A
Macpherson and Campbell pointed out that such stability U(g)= §(¢2—02)2+ A(e). 2
holds good only for the spherical shape of the Fermi [dll
They further showed that the Fermi ball is not stable agains o quantity|A(v) — A(—v)]| is zero, the Lagrangian den-
the deformation of the spherical shape, and thus flattens a”éi{ty is invariant under th&, transformationg-«> — ¢. There
fragments into tiny Fermi balls. The destabilization is causeqs, however, a small but finite quantitp (v)—A(—v)|=A
by the volume energy of the Fermi ball. In these analysesg)w{ where the invariance is not a strict one.
the effect of the domain wall curvature is neglected. We consider a spherical Fermi ball with radi@&and
We, in previous paper3,9], pointed out that the pertur- assume that the wave functitin, and bosony are static and
bative correction due to the domain wall curvature can stathat ¢ depends only on the radial coordinatd_et ¥; be the
bilize the Fermi ball when the volume energy is small eigenfunction of the total angular momentum squa?edhe

enough compared to the curvature effect. We found, hows component],, and the parityP with the eigenvalues of
ever, that the region of parameters where the Fermi ball bey 31 1) M, and (-1)?~ 72 (5==1), respectively. Then,

comes stable is quite narrow in a single fermion flavory. s written as

model.

The purpose of the present paper is to examine how the 1 f(r)yll\slw,(P)
fermion content of the model affects the stability of the (X :—( M ) (3
Fermi ball. As an example, we consider an extended model rlanyy,(6.¢)

in which fermions with multiflavors are coupled to a scalar .

field through Yukawa coupling. Since Pauli's exclusion prin-where Y} and yrff(ax/r)y,'\ﬁ' are the spherical spinors
ciple does not apply to the different flavors of fermions, thehaving eigenvalued andM, with J=1+ 5/2=1"— 5/2. Sub-
stable region of the parameters is expected to broaden.  stituting Eq.(3) into the Lagrangiah. = [d®x£, we obtain
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o 1/d¢\?
L[¢,¢i]=—fo dr 4wr2[§(d—? +U(¢>)]
+2 2 lﬁiTHflﬂi}, @)
i KM
where
1d K
Hfzo-li—a+o-2T+o-3Gid), (5

with K= 5(J+3) andy;(r)=({{}}). Since the Fermi ball is

a ground state with a fixed number of fermions,
Ni=J dBxww; (6)

we obtain the wave functio; and the scalar fieldp by
extremizing

L g wil=LLe ]+ 2 (gﬁ f:drwrwi—Ni), @)

with the Lagrange multipliers; . This multiplier turns out to
be the Fermi energy, since=f6°dr¢iTHf¢i is derived by

extremizingL . with respect tog; . The energy of the Fermi

ball is expressed in terms of the fields as

o 1({dg)\?
E=f dr 47rr2[— 4
o 2

+U(9)

+> > &, (9

KM
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%:% ¢=¢0+2i 4;3;22% oostio  (12)
and
(Ho=€i0)¥in= — (H1= €i1) o, (13
¢ U 2 deg
{W 992 ¢=¢J TR aw
+§i: 2712 % Yioosia
(14

NeglectingA(¢) in the scalar potentidl (¢) for simplicity,
we have analytic solutions fapy and ¢;,

do(W)=v tanh—W : (15)
b
Pio(W) —L (16)
iolW)= X+
M cosﬁ“iéﬂ
b

where 6,=2\"Y% 1 is the thickness of the domain wall,
yi=2\"Y2G; is the constanf11], NV;=["Zdw cosh 27w/

dr
where we have eliminated; by using the normalization &, is the normalization factor, ang.. is the eigenspinor of
Jodrylyi=1. In order to estimate the energy of the Fermi o, with the eigenvaluer 1. The neglect of\(¢) is allowed
ball, we take the thin-wall approximation and obtain the cor-here in the case that the volume energyA () R3] is much

rection due to the finite curvature radiisby the perturba-
tion with respect to R. We expandp, «;, andH; in pow-
ers of 1R [10],

d=dot -,

vi=diot hint -,

He=Ho+Hy+Hp+ -, )
where

1d

K
Ho=017 g To2g T 93Gido,

Kw
H1:_0'2§+0'36i¢1a

Kw?

szffz?, (10

with w=r—R. FroméL ./ d¢= L./ 6y =0, we obtain the
equations of motion,

Howio= €ioio, (11

smaller than the perturbed energy §/\) to be obtained
below. In Ref.[9], we find there is such a parameter region
that satisfies this inequality and is consistent with cosmologi-
cal constraints.

We note that the second term on the right-hand side
(RHS) of Eq. (12) vanishes. The leading order of the eigen-
value is given by

K

ﬁ! (17)

€i0~—

where we takeK positive (p=+1). We have solutions for
¢1 and ¢,

br(w) = _ f " dw’ cost W,dw”h(L),,,
w Jo SpJo
cosif — cosif —
b O
(18)
(W)= = {cr. (W)X + G (W)X} 19
i W)= — Ci+ W + Ci* W —
wl \/./\—/’, X X

where
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2v 1

h(w)=— 7 Ci_(w)= —cosW'—J’ aw' ———~ (21
Rcosr?— ZWR cosﬁ”l—
b 5b
KG; , W Substituting the solutions into E¢B), we obtain the energy
Xzi KEM N, dW w’ (20 of the Fermi ball,
cosﬁyig—
; E=Ey+ O, 22
and
whereE, is the leading order contribution to the energy,
1 2K? [w w’
Ci+(w)= W ?f dW'COSﬁyié—
) 0 b 3/2
coshi— 2> N
Sb E__8wx”%9R2 :? ' -
. W 0~ 3 + 3R ’ ( )
X f dw' ——— f dw’ ¢y (w') |,
w' Cosﬁyl_ and SE is the energy correction of the order d,
b X (6,/R)?,

+oo W2 +o0 1 w’ 4 h(w”
SE= I +7T7\U4f dW——ZW)\llzquf dw—f dw’ COSl”i1 v dW”¥
12R W 0

— 00 — 00 W 5b 0 W
cosh‘gb cosh‘gb osf‘?ﬁ—b
2 N_3/2 too W2 5/2 w (= w”
= N,; dw——— — 2> f dw——— f dw’ cosffi—— | dw'——— -
SRET Midee e SR cos HVI— bW sHYi—
b b b
2 GNPZree w : W fw o hw”
+ > N ' - f " aw"costf — | " dw” (—),, (24)
3RZ2 9 N - ) W' Jo SpJo w
cosh”i — H— osif —
b S Ob

1/3

2]

Kmax J Kmax Rmin:— (27)
NFE = z z = (ZK): Kmax(Kmax+ 1), 2,”_1/3)\1/60
KM K=1 M=-1J K=1
(29)
and the energy at the radius,
1 1
~ €io R “~ K=25 3R Kmaxd Kmaxt1) Kmax+§ s
E0=2771/3)\l/6(2 Ni3/2) v. (28
= 2Ni3/2+ N;llz (N;>1) (26) |
3R 1R e
We noted’Eq/dR*>0 atR=Ry,i,.
We note that the states with angular momentuns|0 We first examine the stability of the Fermi ball against
<K ax—1 are filled. emission of a free fermiof2]. Since the energy of the Fermi

(1) Stability in the leading order approximatioriet us  ball decreases b¥q(N;+1)—Eq(N;)~dEy/IN; for large
examine the stability of the Fermi ball within the leading N; by releasing a fermion and the fermion has a mass
order approximation in thé,/R expansion. FromdEq/dR  ~G;v in the vacuum, the conditiodEy/JIN;<m; is re-
=0, we get the minimizing radius quired. From Eq(28) we obtain the conditiof2]
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2 7113 16\ 172 1/3y 1/6) 172
e N (29 TN et
(2 N]S/Z) C(N\,Gj Ny = 73 NE
: e(z N§'2)
|
We next examine the stability against the fragmentaf@in 64m| >, N2\ 3(i)}
We compare two states: a statein which a single Fermi i |

ball has fermion numbeN; for ith flavor and a staté in +

which m Fermi balls have fermion numbed(® each and 3)\1/2(2 Nislz)
conserve the total fermion number 2% ;N®=N; for each
flavor. StatesA and B have the energy 4=Ey(N;) and
Es=S.Eo(N{®), respectively. To compare the energy of the
two states, we use Minkowski’'s inequality

204&5’3{ > NP2AGL (i )}

an 5/3
5)\7/6(2 Ni )

2/3 2/3
Z (N§1>+N§2))3’2) < Z (N?”)""z) 1287-{2 GiN?’ZMI5(i)}
o3 + (33
312

Here,l, to |5 are given by
where the equality is valid only fa¥{?=cN® (c=0) with tex2
¢ being common for all. Using the relation repeatedly, we |1:f dX—H"
have - coshx

too 1 X o F(X”)
213 2/3 l,= j dx J’ dx’ costix’ j dx” ,
(2 (Ni)3’2) <> (2 (N_(a))3/2> 31) —»  costixJo o coshx”
- - ] il
I a I
+o X2
I5(i)= f dx ,
_ & —=  coshYix
where the RHS is equal to the LHS only fof®=c@N,
(c®=0 and=]_,c®=1). This leads to the fact that except . y )
for the special case diili(a)zc(a)Ni , the energy of statel is l4(i)= f dx : f dx’ costix’
lower than that of stat#, and thus the Fermi ball is stable ~=  cosh”ixJo
against fragmentation in the leading order approximation. . Y
This situation—that the Fermi ball is stable in most cases—is X j ax———
characteristic of the case with a multiflavor of fermions and X’ coslt?ix”
qualitatively different from the case of a single flay8i. In
case ofN{®=c@N;, the two states have the same energy in o X . 1 (e
the leading order approximation, and the correction téEn I5(i)=f dx 2 f dx’ 2 ,J dx”cosHx”
determines the stability of the Fermi ball against the frag- —» COSITiXJo  COSiTX' /0
mentation. TG
(2) Stability in the next-to-leading order approximation in X jx ax”———, (34)

the special case {#=c(®N;. We examine the stability of 0 costx”

the Fermi ball against the fragmentation in the casali@f _ _
=c@N;. SubstitutingR=R.,;, into Eq. (24) yields with h(w) rescaled a#i(x) =(Rd,/v)h(px) and N; asN
=(1/8,) ;. We compare statel of the single Fermi ball
and state3 of m Fermi balls with the total fermion number to
be conserved for each flavor. Stagéend5 have the energy
SE=C(\,G; Ny, 32  E4=Eo(N)+C(\GiN)v  and  Ez=3,Eq(N(®)
+3,0(\, G ,N®)y, respectively. In the case oN®
=c@N;, we deriveS ,E(N®)=Ey(N;) from Eq.(28) and
where C(\,G;i ,Ni(a))=C()\,Gi ,N;) from Eq.(33), and thus find that
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FIG. 1. The allowed regiongshadowed of the scalar self-
coupling constanh and the Yukawa coupling consta@t for the
Fermi ball to be stable against fragmentation. We assume that the
fermion ¥;(1<i=<n) belongs to a multiplet and the bos@nto a
singlet of the internal symmetry, and that the fermion nunityeis
common to the flavor alsl;=N. The figure shows that the allowed
region broadens asincreases.

stateB3 has the energiz=E(N;) + mC(\,G; ,N;)v. There-
fore, if C(\,G;,N;) is positive, the energy of staté is lower
than that of staté3 by the magnitude of the correction term
S6E, and the Fermi ball is stable against fragmentation even

i i (@) — (AN,
in the special (_:ase ofl; __C . _N" . FIG. 2. The allowed regionshadowedl of the scalar self-
Let us consider the simplified model to examine how theg,pjing constant (left) and the Yukawa coupling constaG

number of the fermion flavora affects the stability of the (right) for the Fermi ball to be stable. The assumptions are the same
Fermi ball in the case Ollr\|i(a):(3(a)'\li- We assume tha¥; as those in Fig. 1. We see that the allowed regions broaden as
belongs to a multiplet of internal symmetry with a commonincreases.

Yukawa coupling constant and also assume that the fer-
mion number is common to the flavor—i.é&N;=N. Under
these assumptions, the coefficig¢his independent oN and
dependent on, G, andn from Eq. (33). We evaluate Eq.

the energy of the initial state of a single Fermi ball and that
of the final state ofm Fermi balls after fragmentation, with

) S . . the total fermion numbe; of each flavoi being conserved,
(33) using numerical integrations and obtain the stable re—E?:lNi(a):Ni_ We have found that the former is smaller

gion .Of the parameters whetis positive(see Flgs. 1 and than the latter, and thus the Fermi ball is stable against frag-

2). Figures 1 and 2 show that the allowed regions of paramfnentation excent for the special casel\éf‘):c(a)N- with

eters exist for the Fermi ball to be stable against fragmenta_, @) _ ptiorhe sp . ! .
c'®=1. This situation—that the Fermi ball is stable in

tion (the shadowed regions in the figuresVe see in the a=1

figures that the allowed region broadens as the number dpost cases—is characteristic of the case with a multiflavor of
flavors. n. increases. fermions and qualitatively different from the case of a single

flavor. In the special case di(®¥=c®N;, the two states
have the same energy in the leading order approximation and
the next-to-leading order correction tedi determines the
We have considered a model for the Fermi ball in whichstability. There we have found that the energy of the initial
the fermions with multiflavorsP;(1<i<n) are coupled to state isEq+Cv and that of the states after fragmentation is
the scalar fieldp and the total fermion number of eactn Eqo+mCv, wherev is a symmetry breaking scale adds a
flavor is fixed asN;. We have examined the region of pa- coefficient dependent on the scalar self-coupling constant
rameters for the Fermi ball to be stable against fragmentatiothe Yukawa coupling constai@; , and the fermion number
and observed how the number of fermion flavaraffects  N;. This tells us that even in that case the Fermi ball is stable

IIl. CONCLUSION

the stability. when C takes a positive value in the region of parameters
We have considered the thin-wall Fermi ball where the\, G;, andN;.
radiusR is much larger than the wall thicknesg. We have In the simplified model in which a multiplet of fermions

taken into account the effect due to the finite wall thicknesshas a commorG; and a commor\; for each flavori, we
by the perturbation expansion with respect&@R. In the  have found that the region of parameters for the Fermi ball to
leading-order thin-wall approximation, we have comparedbe stable broadens as the multiplet dimensidncreases.
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