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Can the dark energy equation-of-state parameterw be less thanÀ1?
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Models of dark energy are conveniently characterized by the equation-of-state parameterw5p/r, wherer
is the energy density andp is the pressure. Imposing the dominant energy condition, which guarantees stability
of the theory, implies thatw>21. Nevertheless, it is conceivable that a well-defined model could~perhaps
temporarily! havew,21 , and indeed such models have been proposed. We study the stability of dynamical
models exhibitingw,21 by virtue of a negative kinetic term. Although naively unstable, we explore the
possibility that these models might be phenomenologically viable if thought of as effective field theories valid
only up to a certain momentum cutoff. Under our most optimistic assumptions, we argue that the instability
time scale can be greater than the age of the universe, but only if the cutoff is at or below 1023 eV. We
conclude that it is difficult, although not necessarily impossible, to construct viable models of dark energy with
w,21; observers should keep an open mind, but the burden is on theorists to demonstrate that any proposed
new models are not ruled out by rapid vacuum decay.
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I. INTRODUCTION

Cosmological observations strongly indicate that the u
verse is dominated by a smoothly distributed, slowly vary
dark energy component~@1,2#; for reviews see@3,4#.! The
simplest candidate for such a source is vacuum energy, o
cosmological constant, characterized by a pressure equ
magnitude and opposite in sign to the energy density:

pvac52rvac. ~1!

While vacuum energy is strictly constant throughout sp
and time, it is also worthwhile to consider dynamical can
dates for the dark energy. A convenient parametrization
the recent behavior of any such candidate comes from g
eralizing the vacuum-energy equation of state to

p5wr, ~2!

which should be thought of as a phenomenological rela
reflecting the current amount of pressure and energy den
in the dark energy. In particular, the equation-of-state par
eterw5p/r is not necessarily constant. However, given th
there are an uncountable number of conceivable behav
for the dark energy, a simple relation such as Eq.~2! is a
useful way to characterize its current state.

The equation-of-state parameter is connected directly
the evolution of the energy density and, thus, to the exp
sion of the universe. From the conservation-of-energy eq
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tion for a componentr i in a Robertson-Walker cosmolog
with scale factora(t) and Hubble parameterH5ȧ/a,

ṙ i523H~r i1pi !, ~3!

it follows that this component evolves with the scale fac
as

d ln r i

d ln a
523~11wi !. ~4!

We notice in particular that the vacuum energy remains c
stant, while the energy density would actually increase as
universe expands ifwi,21. The Friedmann equations ma
be written as

H25
8pG

3
r2

k

a2 , ~5!

wherek is the spatial curvature and

ä

a
52

4pG

3
~r13p!

52
4pG

3
~113w!r. ~6!

From Eq. ~6!, we see that the universe will accelerateä
.0) if w,21/3. ~Of course this is the effectivew of all the
energy in the universe; if there is a combination of mat
and dark energy, the dark energy will have to have a m
negativew in order to cause acceleration.! From Eq.~5! we
see that a flat universe dominated by a component with c
stantw will expand as
©2003 The American Physical Society09-1
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a}t2/3(11w), ~7!

unlessw521, for which the expansion will be exponentia
~For w,21, one should chooset,0 in this expression.!

What are the possible valuesw may take? It is hard to
make sweeping statements about a component of en
about which we know so little. In general relativity, it
conventional to restrict the possible energy-momentum
sors by imposing ‘‘energy conditions.’’ In@5# it was sug-
gested that a reasonable constraint to impose would be
null dominant energy condition~NDEC! ~see Sec. II for dis-
cussion!. The physical motivation for a condition such as t
NDEC is to prevent instability of the vacuum or propagati
of energy outside the light cone. Applied to an equation
state of the form~2!, the NDEC impliesw>21. Thus, pure
vacuum energy is a limiting case; any other allowed com
nent would diminish in energy as the universe expands.

Given our ignorance about the nature of the dark ene
it is worth asking whether this mysterious substance mi
actually confound our expectations for a well-behaved
ergy source by violating the NDEC. Given that the dark e
ergy should have positive energy density~to account for the
necessary density to make the universe flat! and negative
pressure~to explain the acceleration observed in the sup
nova data!, such a violation would implyw,21. It has
been known for some time that such energy components
occur @6–8#. Their role as possible dark energy candida
was raised by Caldwell@9#, who referred to NDEC-violating
sources as ‘‘phantom’’ components, and has been since
vestigated by several authors~for some examples see@10–
19#!. Observational limits onw @20,21# are conventionally
expressed as allowed regions in thew-VM plane, assuming a
flat universe (k50, or VM1VX51, whereX stands for the
dark energy!. Current limits@21#, obtained by combining re
sults from cosmic microwave background experiments w
large scale structure data, the Hubble parameter meas
ment from the Hubble Space Telescope and luminosity m
surements of type Ia supernovas, give21.62,w,20.74 at
the 95% confidence level.

It is straightforward to examine the cosmological con
quences of a dark energy component which is strictly c
stant throughout space and evolving with any value ofw.
Any physical example of such a component, however, w
necessarily have fluctuations~as long aswÞ21). It is there-
fore important to determine whether these fluctuations
lead to a catastrophic destabilization of the vacuum. Un
tunately, becausep5wr is a phenomenological descriptio
valid for a certain configuration rather than a true equation
state, specifyingw is not enough to sensibly discuss the ev
lution of perturbations, sincedpÞwdr. We must therefore
choose a specific model. In particular, the simplest way
obtain a phantom component (w,21) is to consider a sca
lar field f with negativekinetic and gradient energy@9#,

rf52
1

2
ḟ22

1

2
~¹f!21V~f!. ~8!

Fluctuations in this field have a negative energy, and it m
be possible for the vacuum to decay into a collection
02350
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positive-energy and negative-energy particles. If the ti
scale for such an instability is less than the age of the u
verse, the phantom component would not be a viable ca
date for dark energy.

Our goal in this paper is to ask whether phantom com
nents are necessarily plagued by vacuum instability a
hence, whether observers should take seriously the poss
ity that w,21. We will start with a survey of energy con
ditions and model-independent considerations in Sec. II
Sec. III, we describe the cosmology ofw,21 models more
thoroughly and investigate linear perturbations in a cosm
logical model, demonstrating that it can be compatible w
current observations. To investigate stability beyond lin
order, in Sec. IV we consider a classical toy model of
phantom harmonic oscillator coupled to an ordinary osci
tor and demonstrate numerically that, for small perturbatio
and sufficiently small values of the coupling constant, th
exist both stable and unstable regions of parameter spac

The heart of our paper is in Sec. V, where we consider
field theory of a phantom component coupled to gravity a
calculate the decay rate of a single phantom particle i
several phantoms plus gravitons. The rate is naively infin
due to the infinite phase space of high-momentum partic
We argue that, considering the phantom Lagrangian as
effective theory, the rate may be rendered finite by impos
a momentum cutoff and demonstrate that, if we restrict
tention to couplings in the potential, then, for a momentu
cutoff not far below the Planck scale and for a suitable p
tential, phantom quanta may be stable against decay
gravitons and other particles over a time scale long compa
to the age of the universe. However, when we include
rivative couplings of phantom particles to gravitons, we fi
that such operators can lead to unacceptably short lifeti
for phantom particles.

II. CLASSICAL ENERGY CONDITIONS

In classical general relativity, without having a speci
model for the matter sources, we can nevertheless inv
energy conditions which restrict the form of the energ
momentum tensorTmn . In this section we will briefly review
these energy conditions, discuss which are relevant for c
mology, and compare them to the conditionw>21. A re-
lated discussion can be found in@22#.

Each of the energy conditions can be stated in
coordinate-invariant way, in terms ofTmn and some vector
fields of fixed character~timelike, null, spacelike!. For pur-
poses of physical insight, it is often helpful to consider t
case of a perfect fluid, for which the energy-momentum t
sor takes the form

Tmn5~r1p!UmUn1pgmn , ~9!

wherer is the energy density,p the pressure,Um the fluid
four-velocity, andgmn the metric.~More precisely,r and p
are the energy density and pressure as measured in the
frame of the fluid, but the shorthand designations are s
dard.! Our metric signature convention throughout this pap
is (2111).
9-2
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The most common energy conditions are the following

~i! The weak energy condition~WEC! states that
Tmntmtn>0 for all timelike vectorstm or, equiva-
lently, thatr>0 andr1p>0.

~ii ! The null energy condition ~NEC! states that
Tmn,m,n>0 for all null vectors,m or, equivalently,
that r1p>0.

~iii ! The dominant energy condition~DEC! includes the
WEC (Tmntmtn>0 for all timelike vectorstm), as
well as the additional requirement thatTmntm be a
non-spacelike vector~i.e., thatTmnT l

n tmtl<0). For a
perfect fluid, these conditions together are equival
to the simple requirement thatr>upu.

~iv! The null dominant energy condition~NDEC! is the
DEC for null vectors only: for any null vector,m,
Tmn,m,n>0 and Tmn,m is a non-spacelike vector
The allowed density and pressure are the same as
the DEC, except that negative densities are allowed
long asp52r.

~v! The strong energy condition~SEC! states that

Tmntmtn> 1
2 T l

l tsts for all timelike vectors tm or,
equivalently, thatr1p>0 andr13p>0.

In Fig. 1 we have plotted these conditions as restrictio
on allowed regions of ther-p plane. We have also plotte
the conditionw>21 for comparison. Note thatw>21 is
not equivalent to any of the energy conditions, although i
implied by the WEC, the DEC, and the NDEC.

The different energy conditions are used in differe
contexts—for example, the WEC and SEC are used in
gularity theorems—and we will not review them in deta
here ~see@23# for a discussion!. Our present concern is t
understand under what conditions a hypothetical dark ene
component would be guaranteed to be stable. For this
pose, the relevant result is the ‘‘conservation theorem’’
Hawking and Ellis @23,24#. The conservation theorem in
vokes the DEC and uses it to show that energy cannot pr
gate outside the light cone; in particular, ifTmn vanishes on
some closed region of a spacelike hypersurface, it will van
everywhere in the future Cauchy development of t
region—energy-momentum cannot spontaneously ap
from nothing. A source obeying the DEC is therefore gu
anteed to be stable.

For cosmological purposes, however, the DEC is som
what too restrictive, as it excludes a negative cosmolog
constant~which is physically perfectly reasonable, even if
is not indicated by the data!. This is why@5# advocated use
of the NDEC in cosmology, since the NDEC is equivalent
the DEC except that negative values ofr are allowed as long
as p52r. Of course, the less restrictive NDEC invalidat
the conservation theorem, as a simple example shows. C
sider a theory with a negative vacuum energyrvac,0 and an
ordinary scalar fieldc ~not a phantom! with potentialV(c)

5 1
2 m2c2. Then both the vacuum energy and the scalar fi

obey the NDEC~although their sum may not, since th
NDEC is a nonlinear constraint.! Imagine a field configura-
tion with c5A22rvac/m

2 andċ50 everywhere throughou
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space. The energy-momentum tensor of this configuratio
exactly zero@sinceV(c)52rvac], but it would instantly be-
gin evolving asc rolled toward the minimum of its potential
There is nothing unphysical about such a situation, howe
since a stable state is achieved once the field reachec
50. The NDEC, therefore, does not guarantee stability w
the confidence that the DEC does. However, it seems le
mate to ask that dynamical fields obey the DEC, while
cosmological constant is allowed as an exception.

The DEC implies thatw>21. ~Indeed, for cosmologica
purposes we are interested in a source withr.0; in that
case,all of the energy conditions implyw>21.! Therefore,
if we allow for pressures which are less than2r, we cannot
guarantee the stability of the vacuum. The converse, h
ever, is not true; a phantom component will not necessa
allow vacuum decay. In fact, sincep5wr is just a conve-
nient parametrization and not strictly speaking an equation
state, the issue of stability is somewhat complicated, as
shall see in the next few sections. Nevertheless, it seems
likely that energy sources which violate the DEC genera
will be unstable, and this is what we will find in the specifi
example considered in Sec. V. Our philosophy, therefore

FIG. 1. Shaded regions in ther-p plane are those which obe
the designated energy conditions. Illustrated are the weak en
condition ~WEC!, null energy condition~NEC!, dominant energy
condition ~DEC!, null dominant energy condition~NDEC!, the
strong energy condition~SEC!, and the conditionw>21. Defini-
tions of each condition are found in the text.
9-3
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neither to dismiss the possibility of DEC violation on th
grounds that we cannot prove stability nor to blithely acc
DEC violation on the grounds that we cannot prove insta
ity, but instead to see whether it is plausible that the ti
scale for instability could be sufficiently long so as to
irrelevant for practical purposes.

III. COSMOLOGICAL EVOLUTION
AND PERTURBATIONS

Consider a flat Robertson-Walker universe with metric

ds252dt21a2~ t !@dx21dy21dz2#, ~10!

for which the Einstein equations are the Friedmann equat
~5! and~6!. The cosmology and fate of a universe containi
an energy component with constantw,21 are relatively
simple and have been examined in, for example,@9#. As an
example, consider the case in which the universe cont
only dust and phantom matter. Then, if the universe cease
be matter dominated at cosmological timetm , then the solu-
tion for the scale factor is

a~ t !5a~ tm!F2w1~11w!S t

tm
D G22/3(11w)

. ~11!

From this expression it is easy to see that phantom ma
eventually comes to dominate the universe and that, since
Ricci scalar is given by

R5
4~123w!

3~11w!2 F t2S w

11wD tmG22

, ~12!

there is a future curvature singularity att5wtm /(11w).
This occurs because, even though the energy densitie
ordinary types of matter are redshifting away, the ene
density in phantom matter increases in an expanding
verse. Thus, the fate of the universe in these models@27#
may be very different from that expected@28–32# in w.
21 dark energy models.

It is, however, simple to construct models of phanto
energy in which a future singularity is avoided. As we sh
see in this section, scalar field models can yield a period
time in which the expansion proceeds withw,21 and yet
settles back tow>21 ~in our casew521) at even later
times, thus sidestepping the predictions ofw5constant mod-
els. Consider a scalar field theory with actionS
5*LAugu d4x and Lagrange density given by

L5
1

2
gmn~]mf!~]nf!2V~f!. ~13!

The notable feature of this model is that the sign of
kinetic term is reversed from its conventional value@in our
conventions the usual expression would be2 1

2 (]f)2]. The
equation of motion forf becomes

f̈13Hḟ2a22¹2f2V8~f!50, ~14!
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where¹2 is the spatial Laplacian,¹2f5]x
2f1]y

2f1]x
2f,

and a prime denotes differentiation with respect tof. Here
the energy densityrf and the pressurepf for a homoge-
neousf field are given by

rf52
1

2
ḟ21V~f!, ~15!

pf52
1

2
ḟ22V~f!, ~16!

so that the equation-of-state parameter

w5
p

r
5

1
2 ḟ21V~f!

1
2 ḟ22V~f!

~17!

satisfiesw<21.
We are interested in the cosmological evolution of th

model and in the behavior of linearized perturbations of
phantom scalar field in the resulting cosmological ba
ground. As noted in@9#, the spectrum of fluctuations of
phantom field evolves similarly to that for a quintessen
field. Consider metric perturbations in the synchrono
gauge,

ds252dt21a2~d i j 1hi j !dxidxj . ~18!

A Fourier mode of the phantom field

f~ t,k!5
1

A2p
E f~ t,x!e2 ik•xd3x ~19!

satisfies the equation of motion

df̈k13Hdḟk1~k22V9!dfk52
1

2
ḣḟ, ~20!

whereh is the trace of the synchronous gauge metric per
bation hi j . The effective mass for the perturbation is (k2

2V9)1/2. On large scales one may worry that this effecti
mass could become imaginary for a positiveV9. We note,
however, that a similar problem exists for a canonical sca
field for negativeV9 and is thus easily avoided by the choic
of potential; in particular, we may choose a potential w
V9,0. An analysis of perturbations in more general no
canonical scalar field models is given in@25#. In this paper,
we will examine by explicit calculation the evolution of fluc
tuations in a specific model.

Since scalar fields with negative kinetic terms evolve
themaximaof their classical potential, we consider a Gaus
ian potential,

V~f!5V0e2(f2/s2), ~21!

whereV0 is the overall scale ands is a constant describing
the width of the Gaussian. The potential is represented
Fig. 2. We obtained the cosmological evolution by nume
cally solving the equations of motion~5!, ~6!, and~14!. The
initial conditions weref initial5MP and ḟ initial50, where
9-4
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MP5(8pG)21/2 is the reduced Planck mass. Since we
quire dark energy domination at the present epoch in
universe, withVX;0.7 we chooses5MP, V053MP

2H0
2 .

The results are plotted in Figs. 3, 4 and 5.
Note that during the initial stages of evolution the fieldf

is frozen by the expansion and acts as a negligibly sm
vacuum energy component~with w.21). However, at later
times the field begins to evolve more rapidly towards
maximum of its potential, the energy density in the phant
field becomes cosmologically dominant, and during this
riod the equation of state parameter is much more nega
Finally, in the very late universe, the field comes to rest at
maximum of the potential and a period ofw521 accelera-
tion begins. Sincew is no longer less than21, this ensures
that there is no future singularity; rather, the universe ev
tually settles into a de Sitter phase.

Using the formalism for calculating fluctuations in a ge
eral matter field developed in@26#, one may calculate the
effects of the fluctuations in this phantom field on the cosm
microwave background~CMB! radiation. The resulting
power spectrum of CMB fluctuations is shown in Fig. 6. W
have not attempted a detailed parameter fitting to CMB d
but it should be clear that our phantom model with the p
tential ~21! does not predict any significant departures fro

FIG. 2. The Gaussian potential energy of Eq.~21!. The phantom
scalar will evolve to the top of the hill and oscillate around t
maximum.

FIG. 3. Evolution of the density parameters in radiation (VR),
matter (VM), and the phantom field (Vf).
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conventional dark-energy scenarios; in particular, there is
evidence of dramatic instabilities distorting the power sp
trum. ~A more detailed study of the effect on the CMB pow
spectrum of phantom fields with a constantw can be found in
@14#.! However, the formalism for this analysis was based
linear perturbation theory, and it is quite plausible that ins
bilities only become manifest at higher orders. In the follo
ing sections we address this issue, first through numer
investigation of a model with two oscillators and next b
calculating the decay rate of phantom particles into ph
toms plus gravitons.

FIG. 4. Evolution of the phantom fieldf as a function of the
scale factor.

FIG. 5. Evolution of the equation of state parameterw for the
phantom field as a function of the scale factor.
9-5
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IV. COUPLINGS TO NORMAL MATTER
AND INSTABILITY

Excitations of the scalar field from the model in the pr
vious section have negative energy. The existence of n
tive energy particles may cause the system to be unstable
to interactions involving these particles.

In the next section we examine this possibility by estim
ing the tree level decay rate of negative energy phan
particles into other phantoms and gravitons. Before delv
into that calculation, we will first try to build some intuitio
about possible instabilities by considering the classical e
lution of a simple system, a coupled pair of simple harmo
oscillators. Conservation of energy limits the phase spac
a coupled pair of oscillators when both oscillators have po
tive energy. Though the oscillators may exchange ene
neither oscillator may ever reach an energy greater than
total initial energy of the system. Allowing one of the osc
lators to have negative energy removes this limitation on
phase space. In this case the positive energy oscillator
increase its energy to any level as long as the negative en
oscillator decreases its energy by a compensating amo
Hence the positive energy oscillator may reach arbitra
high energies, and the negative energy oscillator may re
correspondingly large negative energies.

While conservation of energy does not prevent the os
lators in this simple model from reaching arbitrarily larg
energies, there is no guarantee that the system will be
stable in all regimes. In fact, the following analysis w
show that for a weak coupling, the evolution of the energy
each oscillator exhibits a stable oscillation for an arbitrar
long time.

We consider a coupled pair of oscillators, onec with
positive energy, representing normal matter, and the othef
with negative energy, representing the phantom compon

FIG. 6. Predicted multipole momentsCl for cosmic microwave
background anisotropies.
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L5S 1

2
ċ22mc

2c2D2S 1

2
ḟ22mf

2 f2D2lf2c2, ~22!

wherel is a dimensionless coupling constant. We are int
ested in the evolution of the energy of each oscillator,

rc5
1

2
ċ21mc

2

rf52S 1

2
ḟ21mf

2 D . ~23!

The equations of motion are

c̄952F S mc

mf
D 2

1l̄f̄2G c̄
f̄952@12l̄c̄2#f̄, ~24!

where we have defined dimensionless rescaled variables

f̄5f/M

c̄5c/M

l̄5l~M /mf!2

t5mft. ~25!

In this section a prime denotes diferentiation with respec
the dimensionless time parametert, andM is the scale of the
initial displacements of the oscillators.

We explore the stability of this model by integrating th
equations of motion~24! numerically for a range of param
eters and initial conditions. Of particular interest are t
simulations withmc50, in which one may think of thec
oscillator as analogous to the massless graviton. Three
simulations are shown in Fig. 7. In each of these integrati
the oscillators are started at rest, displaced a distanceM from
the origin. These plots are similar to those obtained for ot
initial conditions, and allowing thec field to have a mass
does not qualitatively change the plots shown here. Note
for l̄,1, rc and rf exhibit a stable oscillatory behavio
while for l̄.1, rc and2rf rapidly grow. From this analy-
sis we conclude that this simple model is stable for sm
enough coupling but exhibits an instability for a large co
pling. While the analysis of this simple model does not pro
that a phantom field in the cosmological context will b
stable to excitations and interactions with the gravitatio
field, it does provide some evidence that stability is possib

To make some connection to the cosmological mode
the previous section, we consider how small the coupling
this simple model should be in order to have a stable so
tion. If we imagine a period of early universe inflation, the
one expects perturbations in the phantom and gravitatio
fields to be of orderM;1025MP. The mass squared of th
phantom field is
9-6
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mf
2 5

d2V

df2
;

V0

MP
2
;~10233 eV!2. ~26!

The restrictionl̄,1 then implies that the coupling in th
Lagrangian satisfiesl,102110. While this at first seems to
be an absurdly small number, we will see in the next sec
that, given the cosmological constraints of the previous s
tion, such a coupling naturally results from considering p
turbations of the phantom and gravitational fields.

V. PHANTOM DECAY RATE IN FIELD THEORY

The toy model of the previous section demonstrated
coupling a phantom oscillator to an ordinary oscillator
sults in a system which may or may not be unstable, depe
ing on the magnitude of the coupling between them. It is
from clear, however, that this conclusion extends imme
ately to field theory. Roughly speaking, oscillators with so
frequency correspond to field-theory modes of fixed wa
length; even if the model is stable when only certain wa
lengths are considered, it does not follow that stability co
tinues to obtain when integrating over all momenta.

One way of stating this concern is to ask about the de
rate of single particles that would conventionally be stab
Because excitations of the phantom field have negative
ergy, we could imagine a single particle decaying into a la
number of phantoms and ordinary particles. The rate for
process can be calculated~at tree level! using ordinary Feyn-
man diagrams. We will find that the rate is infinite whe

FIG. 7. Evolution of the energies of a coupled pair of oscillato
one with positive energy,rc ~thin line!, and one with negative

energy,rf ~thick line!, as a function of the rescaled couplingl̄. The
oscillators are both started at rest displaced a distanceM from the
origin, and the energies are expressed in units of (mfM )2. Note

that for l̄,1, rc and 2rf exhibit a stable oscillatory behavio

while for l̄.1, rc and2rf rapidly grow.
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arbitrarily high momenta are included, but can be rende
finite if a cutoff ~which might arise, for example, from
higher-derivative terms in the action! is introduced.

Since we are interested in the allowed decay modes
phantom particlesf and their associated decay rates, it
instructive to first analyze the kinematics of reactions invo
ing phantom fields. Let us adopt the convention that ordin
particles have 4-momenta with positive timelike compone
Then, since our field has a negative kinetic term, the co
sponding 4-momentum will have a negative timelike comp
nent. This leads to the following useful dictionary for tran
lating between kinematically allowed reactions for phanto
particles and those for ordinary particles.

Denote ordinary particles asc. To ask whether a certain
reaction is kinematically allowed, we can just switch t
phantom particles from the right side to the left, and vi
versa, and ask whether the resulting reaction would norm
be allowed. Consider for example the decay of an ordin
particle into another particle plus a phantom:

c1→c21f. ~27!

This will be allowed if the reaction

c11f→c2 ~28!

would be allowed by conventional kinematics—in particul
if the mass of ordinary particle 2 were greater than the s
of the masses of ordinary particle 1 and the phantom. So
clear that ordinary particles can decay intoheavierparticles
plus phantoms. For example, if the electron were coupled
the phantom field, processes such as

e2→m21ne1 n̄m1f ~29!

would be allowed. The muon would then decay back into
electron, as part of a potentially disasterous cascade.

Next we turn to the decay of phantoms. First consid
decays into ordinary particles,

f→c11c2 , ~30!

will be allowed if

u0&→f1c11c2 ~31!

would be conventionally allowed, which it is not. Howeve
consider a decay into one phantom and one ordinary part

f1→f21c, ~32!

will be allowed if

f2→f11c ~33!

would ordinarily be, which requiresmf2
.mf1

1mc . So a
phantom can decay into a heavier phantom plus a not-
heavy ordinary particle.

If there is only one kind of phantom, one might think
would be stable since there would be no heavier phantom
decay into. However, several lighter particles can mimic

,
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4-momentum of a heavier particle. Consider the decay of
phantom into two phantoms plus an ordinary particle:

f1→f21f31c. ~34!

This will be allowed if

f21f3→f11c ~35!

would ordinarily be, which it aways is for large enough re
tive velocities off2 andf3.

In summary, if there is only one kind of phantom partic
~with a unique mass!, it can only decay by emitting at leas
two more phantoms, plus at least one ordinary particle.
dinary particles, meanwhile, may decay into phantoms p
other ordinary particles with a larger effective mass than
original. A special case to these rules comes from mass
particles. Although it would seem kinematically possible f
massless particles to decay into massive particles plus p
toms, massless particles cannot decay in flat space~a reason-
able approximation in the backgrounds we are consider!
simply because there is no rest frame in which to calcu
the rate—no proper time elapses along a null path.

Like any other dark-energy scalar field, the phanto
should be weakly coupled to ordinary matter~or it would
have been detected through fifth-force experiments or va
tion of the constants of nature@33#!. We therefore restrict ou
attention to only gravitons and phantoms. With the abo
rules in mind, the phantom decay channel involving t
smallest number of particles is

f i→h1f11f2 , ~36!

whereh is a graviton andf is a phantom particle, illustrate
in Fig. 8.

Consider the specific model investigated in Sec. III
phantom scalar with potential

V~f!5V0e2f2/MP
2
. ~37!

We will first consider this potential expanded as a pow
series around some background valuef0;MP. Gravitons,
meanwhile, may be represented by transverse-traceless
ric perturbationsgmn5gmn

(0)1hmn , where gmn
(0) is the back-

ground Robertson-Walker metric. Strictly speaking, there
no way for a single graviton to couple non-derivatively to t

FIG. 8. Decay of a phantom particle into two other phanto
and a graviton.
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potential, simply because there is no way to construct a s
lar from a single tracelesshmn . But to avoid a surfeit of
indices and because it will not affect the final answer, we w
simply think of the graviton as a dimensionless scalar fieldh;
to get a canonically normalized field we multiply byMP.

To study the decay~36!, we require the interaction part o
the Lagrangian to first order inh and third order inf, which
is

LI5
1

MP
~MPh!

1

3!
V-~f0!f3

5leff~MPh!f3, ~38!

where

leff[2f0

V~f0!

MP
5

;
V0

MP
4
;102120. ~39!

The decay rate of a phantom particle through this channe

G5
1

mf
E d3ph

~2p!32Eh

d3pf1

~2p!32Ef1

d3pf2

~2p!32Ef2

3uMu2~2p!4d (4)~pf i
2pf1

2pf2
2ph!, ~40!

where the matrix elementuMu is justleff at tree level. To get
an upper limit on the reaction rate and, hence, a lower li
on the time scale, we assume approximate isotropy, sod3p
;upu2dp. Because the relevant momenta are very large~and
the masses very small!, we can also approximateE;p. Put-
ting all of this together we obtain

G;
leff

2

mf
E uphudphE upf1

udpf1
E upf2

udpf2

3d (4)~pf i
2pf1

2pf2
2ph!. ~41!

If we take the limits on the integrals to bè, the decay rate
is clearly infinite. Hence, the answer to our investigation in
instability seems very clear: the theory is dramatically u
stable, as individual particles rapidly decay into cascade
phantoms and gravitons.

However, our philosophy has been to think of this mod
as an effective theory valid at low energies. The reason w
the decay rate diverges is because the phase space is in
since the phantoms can have arbitrarily large negative e
gies. Therefore, this result relies on taking the calculation
face value up to infinite momentum transfer. Instead,
should only trust the phase-space integrals up to some cu
where new physics might enter. For example, we co
imagine a higher-derivative term of the form

L;2~]f!4, ~42!

which would eventually dominate over the negative-kinet
energy term we have already introduced.

We have not investigated closely the properties of ph
tom models with higher-derivative terms. Instead, let

s

9-8



t
g

-
if

ed

n
an
, s
ta

,

t
ha

te
a

a
an
bl
ria
at

n-
r-
-
ve

we
all

e-
the
der
s it

tial

ing

-
ss
is
be

ut
ine
de-

CAN THE DARK ENERGY EQUATION-OF-STATE . . . PHYSICAL REVIEW D 68, 023509 ~2003!
crudely approximate the effect of a momentum cutoff a
scaleL by only allowing the phase-space integrals to ran
up to that cutoff. Looking at Eq.~41!, we can estimate the
truncated decay rate as

G;leff
2 L2

mf
. ~43!

The time scale for decay ist5G21. Despite any fundamen
tal instability, a model will be phenomenologically viable
the lifetime is greater than the Hubble timeH0

21

;1060MP
21 . Recalling that mf;10260MP and leff

;102120, the lifetime in units of the Hubble time is

H0t;10120S MP

L D 2

. ~44!

In other words, the lifetime from this decay channel exce
cosmological time scales as long asL,1060MP, which is
certainly not a stringent constraint.

However, the infinite phase space for this one decay is
the only infinity we have to deal with; a single phantom c
decay into arbitrary numbers of gravitons and phantoms
we must sum over all the channels. For each new final-s
particle G gets multiplied by a factor of (L/MP)

2. The L2

comes from the new momentum integral, and theMP
22 is

introduced intoleff
2 . So, if we denote the decay rate~43! by

G0, then if there aren additional particles in the final state
the decay rate is given by

Gn5S L

MP
D 2n

G0 . ~45!

Therefore, the total decay rate is

G total5 (
n50

`

~n11!Gn , ~46!

where the factor (n11) comes from the number of differen
ways the final state can be composed of gravitons and p
toms. This yields

G total5G0F12S L

MP
D 2G22

. ~47!

Thus, the decay rate remains of orderG0 as long asL is not
larger thanMP. This still seems like a comfortable result.

There is, however, one more possibility to be accoun
for. Part of the reason we obtained reasonable decay r
from interactions originating in the potentialV(f) was be-
cause of the small value ofV0;(1023 eV)4. This suppres-
sion is lost if we consider couplings of gravitons to deriv
tives off. Since we are claiming that our model is simply
effective field theory, we are obligated to include all possi
non-renormalizable interactions, suppressed by approp
powers of the cutoff scale. Consider for example the oper

L5
b

MPL
f~MPh

mn!]mf]nf, ~48!
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whereb is a dimensionless coupling.~We will use the same
cutoff L for our nonrenormalizable terms as in our mome
tum integrals; theMP in the denominator comes from no
malization ofhmn.! This term will also contribute to the in
teraction shown in Fig. 8. Following similar logic as abo
~including two powers of the momentum inM from the
derivatives!, we get

G;
b2L4

mfMP
2

. ~49!

Using H0;mf;10260MP, the lifetime in units of the
Hubble time is now

H0t;b22S MP

1030L
D 4

. ~50!

Therefore, ifb is of order unity, to obtain cosmologically
viable decay rates (H0t.1) we require the cutoff to be

L,10230MP;1023 eV. ~51!

This is a much smaller cutoff than was required when
considered coupling through the potential, since the sm
prefactorV0 is not around to help us.

One might hope that the above result is alleviated som
what by imposing an approximate global symmetry on
theory, e.g., that the Lagrangian density be invariant un
f→f1constant. Such a symmetry is quite reasonable, a
is the only known way to ensure both a nearly flat poten
and appropriately small couplings to ordinary matter@33#. In
this case, the irrelevant operator of lowest dimension lead
to phantom decay into gravitons is

L5
g

MP
2L4

hab~MPh
mn!]mf]nf]af]bf. ~52!

The decay rate is then

G;
g2L4

mfMP
4

, ~53!

which is identical to~49!. Thus, the associated lifetime is

H0t;g22S MP

1030L
D 4

, ~54!

which, if g;1, leads to the same requirement,L
,10230MP;1023 eV.

Under our most optimistic assumptions~of an approxi-
mate global symmetry!, we therefore find that the momen
tum cutoff characterizing our effective theory must be le
than 1023 eV to guarantee that the instability time scale
greater than the age of the universe. We find this value to
uncomfortably low, but this should not be taken to rule o
such theories altogether. Alternatively, one might imag
searching for some mechanism which would suppress
9-9
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CARROLL, HOFFMAN, AND TRODDEN PHYSICAL REVIEW D68, 023509 ~2003!
rivative couplings, leaving only the couplings of gravitons
the potential, which were consistent with a cutoff as high
the Planck scale@34–36#.

VI. CONCLUSIONS

There is no doubt that the discovery of a new compon
of the energy density of the universe has profound impli
tions for the relationship between particle physics and gr
ity. Whether this component be a pure cosmological cons
~whose magnitude we have no idea how to understand!, a
dynamical component@10–19,37–43# ~whose special inter-
actions give rise to the tiny vacuum energy we observe! or an
as yet unimagined source, its nature is an outstanding p
lem of fundamental physics. The data thus far, althou
pointing conclusively to the existence of this dark energy,
not allow us to distinguish between competing scenarios
particular, much of the allowed parameter space lies in
region w,21 in which some cherished notion behind o
present theories must be sacrificed.

There are several ways in which one may achievew,
21, including purely negative kinetic terms, non-minim
kinetic terms, and scalar-tensor theories. In addition,
might imagine that effective superexponential expansion
the universe might be obtained by modifying the Friedma
equation @44#. While this is at odds with a purely four
dimensional general relativistic description of the univer
such an effect might be obtained in the context of bra
world models@45–47#. However, any such modification o
the Friedmann equation must avoid conflict with the pre
sion predictions of primordial nucleosynthesis@48–50#.

In this paper we have taken seriously the possibility thaw
may be less than21 and have asked the question, from
particle-physics and general-relativistic point of view, c
such theories be made consistent? In particular, we have
sidered a specific toy model in which the null dominant e
ergy condition is violated and hence the resulting space-t
may be unstable. In this model the cosmology is well b
haved and the theory may be constructed so that it is st
to small, linear perturbations. When we consider higher or
effects, however, the model fails to remain stable. The c
tral result of this paper is a field theory calculation of t
decay rate of phantom particles into gravitons. This de
rate would be infinite if the phantom theory was fundame
tal, valid up to arbitrarily high momenta, and would rend
the theory useless as a dark energy candidate. We ther
consider the phantom theory to be an effective theory v
tte
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below a scaleL. Interestingly, couplings of gravitons to a
appropriate scalar potential do not lead to decay of phant
into gravitons and other phantoms on sub-Hubble ti
scales, as long as the cutoffL is below the Planck scale
However, in such an effective field theory approach, we
mandated to include in the Lagrangian operators all poss
dimensions, suppressed by suitable powers of the cu
scale. In particular, we must include couplings of gravito
to derivatives of the phantom field. We find that such ope
tors, even though they may be of high order, can lead
unacceptably short lifetimes for phantom particles unless
cutoff scale is less than 1023 eV, so new physics must ap
pear in the phantom sector at scales lower than this.

Our analysis demonstrates that a model with a w
behaved cosmological evolution and stability to linear p
turbations may still exhibit instability due to higher ord
interactions. We may therefore ask another crucial quest
Should observers seeking to constrain cosmological par
eters take seriously the possibility thatw,21? Unfortu-
nately the answer is somewhat ambiguous. On the one h
we know of no easy way to construct a viable model of t
sort; on the other, it is certainly conceivable that new phys
in the dark-energy sector kicks in at low scales to rende
phantom model stable or that phantom behavior is mimic
by even more exotic mechanisms~such as modifications o
the Friedmann equation!. Therefore, whether or not observa
tions constrainw to be greater than or equal to21 is still an
interesting question, although there is a substantiala priori
bias against the possibility. For theorists, our conclusion
more straightforward: the onus is squarely on would-
phantom model builders to show how any specific propo
manages to avoid rapid vacuum decay.
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