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Can the dark energy equation-of-state parametemw be less than—1?
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Models of dark energy are conveniently characterized by the equation-of-state parametgs, wherep
is the energy density arulis the pressure. Imposing the dominant energy condition, which guarantees stability
of the theory, implies thalv=—1. Nevertheless, it is conceivable that a well-defined model cpédhaps
temporarily havew<—1 , and indeed such models have been proposed. We study the stability of dynamical
models exhibitingw<—1 by virtue of a negative kinetic term. Although naively unstable, we explore the
possibility that these models might be phenomenologically viable if thought of as effective field theories valid
only up to a certain momentum cutoff. Under our most optimistic assumptions, we argue that the instability
time scale can be greater than the age of the universe, but only if the cutoff is at or beldveM0We
conclude that it is difficult, although not necessarily impossible, to construct viable models of dark energy with
w< —1; observers should keep an open mind, but the burden is on theorists to demonstrate that any proposed
new models are not ruled out by rapid vacuum decay.
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[. INTRODUCTION tion for a componenp; in a Robertson-Walker cosmology
with scale factora(t) and Hubble parametét =a/a,
Cosmological observations strongly indicate that the uni-
verse is dominated by a smoothly distributed, slowly varying pi=—3H(pi+p), 3)
dark energy componerif1,2]; for reviews sed3,4].) The
simplest candidate for such a source is vacuum energy, or thefollows that this component evolves with the scale factor
cosmological constant, characterized by a pressure equal jx
magnitude and opposite in sign to the energy density:

dlnpi
(1) —dlna=—3(1+Wi). (4)

Pvac™ ~ Pvac-
While vacuum energy is strictly constant throughout spacéVe notice in particular that the vacuum energy remains con-
and time, it is also worthwhile to consider dynamical candi-stant, while the energy density would actually increase as the
dates for the dark energy. A convenient parametrization ofiniverse expands if;<—1. The Friedmann equations may
the recent behavior of any such candidate comes from gerpe written as
eralizing the vacuum-energy equation of state to
H2_8’7TG K 5
p=wp, @ 3 P a
which should be thought of as a phenomenological reIatior\NhereK Is the spatial curvature and
reflecting the current amount of pressure and energy density .
in the dark energy. In particular, the equation-of-state param- a__ ﬁ( +3p)
eterw=p/p is not necessarily constant. However, given that a 3
there are an uncountable number of conceivable behaviors
for the dark energy, a simple relation such as E&j.is a - ﬁ(lJrgW)p_ (6)
useful way to characterize its current state. 3
The equation-of-state parameter is connected directly to
the evolution of the energy density and, thus, to the expanFrom Eq. (6), we see that the universe will accelerate (
sion of the universe. From the conservation-of-energy equa>0) if w<—1/3. (Of course this is the effective of all the
energy in the universe; if there is a combination of matter
and dark energy, the dark energy will have to have a more

*Email address: carroll@theory.uchicago.edu negativew in order to cause acceleratipicrom Eq.(5) we
"Email address: mb-hoffman@uchicago.edu see that a flat universe dominated by a component with con-
*Email address: trodden@phy.syr.edu stantw will expand as
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aoct2B+w) (7)  positive-energy and negative-energy particles. If the time

scale for such an instability is less than the age of the uni-

unlessw= —1, for which the expansion will be exponential. verse, the phantom component would not be a viable candi-
(Forw<—1, one should choose<0 in this expression. date for dark energy.

What are the possible valueg may take? It is hard to Our goal in this paper is to ask whether phantom compo-
make sweeping statements about a component of energyents are necessarily plagued by vacuum instability and,
about which we know so little. In general relativity, it is hence, whether observers should take seriously the possibil-
conventional to restrict the possible energy-momentum tenity that w<<—1. We will start with a survey of energy con-
sors by imposing “energy conditions.” If5] it was sug- ditions and model-independent considerations in Sec. Il. In
gested that a reasonable constraint to impose would be tHgec. I, we describe the cosmologywi —1 models more
null dominant energy conditiotNDEC) (see Sec. Il for dis- thoroughly and investigate linear perturbations in a cosmo-
cussion. The physical motivation for a condition such as thelogical model, demonstrating that it can be compatible with
NDEC is to prevent instability of the vacuum or propagationcurrent observations. To investigate stability beyond linear
of energy outside the light cone. Applied to an equation oforder, in Sec. IV we consider a classical toy model of a
state of the form(2), the NDEC impliesv=—1. Thus, pure phantom harmonic oscillator coupled to an ordinary oscilla-
vacuum energy is a limiting case; any other allowed compotor and demonstrate numerically that, for small perturbations
nent would diminish in energy as the universe expands. and sufficiently small values of the coupling constant, there

Given our ignorance about the nature of the dark energyexist both stable and unstable regions of parameter space.
it is worth asking whether this mysterious substance might The heart of our paper is in Sec. V, where we consider the
actually confound our expectations for a well-behaved enfield theory of a phantom component coupled to gravity and
ergy source by violating the NDEC. Given that the dark en-calculate the decay rate of a single phantom particle into
ergy should have positive energy dendity account for the several phantoms plus gravitons. The rate is naively infinite,
necessary density to make the universe) fiatd negative due to the infinite phase space of high-momentum particles.
pressuregto explain the acceleration observed in the superWe argue that, considering the phantom Lagrangian as an
nova daty such a violation would implyw<—1. It has effective theory, the rate may be rendered finite by imposing
been known for some time that such energy components cam momentum cutoff and demonstrate that, if we restrict at-
occur[6—8]. Their role as possible dark energy candidategention to couplings in the potential, then, for a momentum
was raised by Caldwe[R], who referred to NDEC-violating cutoff not far below the Planck scale and for a suitable po-
sources as “phantom” components, and has been since ifential, phantom quanta may be stable against decay into
vestigated by several authoffor some examples sg¢0—  gravitons and other particles over a time scale long compared
19]). Observational limits orw [20,21] are conventionally to the age of the universe. However, when we include de-
expressed as allowed regions in the,, plane, assuming a rivative couplings of phantom particles to gravitons, we find
flat universe =0, or Q)+ Qyx=1, whereX stands for the that such operators can lead to unacceptably short lifetimes
dark energy. Current limits[21], obtained by combining re- for phantom particles.
sults from cosmic microwave background experiments with

large scale structure data, the Hubble parameter measure- Il. CLASSICAL ENERGY CONDITIONS

ment from the Hubble Space Telescope and luminosity mea-

surements of type la supernovas, givd.62<w< —0.74 at In classical general relativity, without having a specific
the 95% confidence level. model for the matter sources, we can nevertheless invoke

It is straightforward to examine the cosmological conse-energy conditions which restrict the form of the energy-
quences of a dark energy component which is strictly conimomentum tensor ,, . In this section we will briefly review
stant throughout space and evolving with any valuenof these energy conditions, discuss which are relevant for cos-
Any physical example of such a component, however, willmology, and compare them to the conditiar®—1. A re-
necessarily have fluctuatiofias long asv+ —1). Itis there- lated discussion can be found [iB2].
fore important to determine whether these fluctuations can Each of the energy conditions can be stated in a
lead to a catastrophic destabilization of the vacuum. Unforcoordinate-invariant way, in terms df,, and some vector
tunately, becausp=wp is a phenomenological description fields of fixed charactetimelike, null, spacelikg For pur-
valid for a certain configuration rather than a true equation oposes of physical insight, it is often helpful to consider the
state, specifyingv is not enough to sensibly discuss the evo-case of a perfect fluid, for which the energy-momentum ten-
lution of perturbations, sincép+wdp. We must therefore sor takes the form
choose a specific model. In particular, the simplest way to
obtain a phantom componenv — 1) is to consider a sca- T,=(p+p)U,U,+pg,,, (9)
lar field ¢ with negativekinetic and gradient enerdg],
wherep is the energy densityy the pressureyJ* the fluid
four-velocity, andg,,, the metric.(More precisely,p andp
are the energy density and pressure as measured in the rest
frame of the fluid, but the shorthand designations are stan-
Fluctuations in this field have a negative energy, and it mayard) Our metric signature convention throughout this paper
be possible for the vacuum to decay into a collection ofis (—++ +).

1., 1 )
py=— 382 5(VZH V(o). ®
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The most common energy conditions are the following: a) WEC £ b) NEC 5

@ The weak energy condition(WEC) states that
T,,t“t"=0 for all timelike vectorst* or, equiva-
lently, thatp=0 andp+p=0.

(i)  The null energy condition (NEC) states that
T,,0#€"=0 for all null vectors¢* or, equivalently,
thatp+p=0.

(i)  The dominant energy conditiofDEC) includes the
WEC (T,,t“t"=0 for all timelike vectorst”), as
well as the additional requirement that’t, be a ¢) DEC P d) NDEC P
non-spacelike vectdi.e., thatT ,, T",t“t*<0). For a
perfect fluid, these conditions together are equivalent
to the simple requirement that=|p|.

(iv)  The null dominant energy conditiotNDEC) is the
DEC for null vectors only: for any null vectof#,
T,,0"€"=0 and T#"¢, is a non-spacelike vector.
The allowed density and pressure are the same as fo
the DEC, except that negative densities are allowed as
long asp=—p.

(v)  The strong energy conditionSEQ states that e)SEC E
T, 1= 3 T\, for all timelike vectorst* or,
equivalently, thap+p=0 andp+3p=0.

In Fig. 1 we have plotted these conditions as restrictions
on allowed regions of the-p plane. We have also plotted
the conditionw= —1 for comparison. Note that=—1 is
not equivalent to any of the energy conditions, although it is
implied by the WEC, the DEC, and the NDEC.

The different energy conditions are used in different £ 1. shaded regions in thep plane are those which obey
contexts—for example, the WEC and SEC are used in singe designated energy conditions. lllustrated are the weak energy
gularity theorems—and we will not review them in detail condition (WEC), null energy conditio(NEC), dominant energy
here (see[23] for a discussion Our present concern is t0 condition (DEC), null dominant energy conditiofNDEC), the
understand under what conditions a hypothetical dark energstrong energy conditiofSEQ), and the conditiow= — 1. Defini-
component would be guaranteed to be stable. For this putions of each condition are found in the text.
pose, the relevant result is the “conservation theorem” of
Hawking and Ellis[23,24]. The conservation theorem in-
vokes the DEC and uses it to show that energy cannot prop
gate outside the light cone; in particular,Tif,, vanishes on

space. The energy-momentum tensor of this configuration is
6éxactly zerdsinceV(¢) = —pyad, but it would instantly be-

some closed region of a spacelike hypersurface, it will vanis in evolving asy rolled toward the minimum of its potential.
'eg P yp ’ here is nothing unphysical about such a situation, however,
everywhere in the future Cauchy development of that_.

. since a stable state is achieved once the field reaghes
region—energy-momentum cannot spontaneously appear

from nothing. A source obeving the DEC is therefore uar-_o' The NDEC, therefore, does not guarantee stability with
anteed to bg'stable ying 9Uahe confidence that the DEC does. However, it seems legiti-
X mate to ask that dynamical fields obey the DEC, while the

For cosmological purposes, however, the DEC is some- . . -
g purp ?osmologlcal constant is allowed as an exception.

what too restrictive, as it excludes a negative cosmologica L - .
constant(which is physically perfectly reasonable, even if it u;”;esgsEvaem;?ge;tth;Z d iln. gng:ueriéfor_;og _mi(r)]lot?]'acfl

is not indicated by the dataThis is why[5] advocated use Easz Il of the enerav conditions imol >_Vf') Tﬁerefore

of the NDEC in cosmology, since the NDEC is equivalent toif we’gllow for presgt):res which are Fezls/tham; we cannoit
the DEC except that negative valuespodre allowed as long guarantee the stability of the vacuum. The converse, how-

asp=—p. Of course, the less restrictive NDEC invalidates ver, is not true; a phantom component will not necessaril
the conservation theorem, as a simple example shows. Cofiveh ap mp o y
allow vacuum decay. In fact, singe=wp is just a conve-

sider a theory with a negative vacuum enepgy.<0 and an . o : . )
ordinary scalar fields (not a phantormwith potentialV () nient parametrization anq not strictly speaking an equation of
state, the issue of stability is somewhat complicated, as we

= 3 m?y?. Then both the vacuum energy and the scalar fieldsha)| see in the next few sections. Nevertheless, it seems very
obey the NDEC(although their sum may not, since the |ikely that energy sources which violate the DEC generally
NDEC is a nonlinear constraintimagine a field configura- - will be unstable, and this is what we will find in the specific
tion with =\~ 2p,a./M? andy=0 everywhere throughout example considered in Sec. V. Our philosophy, therefore, is
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neither to dismiss the possibility of DEC violation on the whereV? is the spatial Laplaciany?¢=d;¢+d;p+d; ¢,

grounds that we cannot prove stability nor to blithely acceptand a prime denotes differentiation with respeciptoHere
DEC violation on the grounds that we cannot prove instabilthe energy density, and the pressure, for a homoge-
ity, but instead to see whether it is plausible that the timeneous¢ field are given by

scale for instability could be sufficiently long so as to be

irrelevant for practical purposes. 1.
Praciest pHp po=— 5P+ V(8), (15)
I1l. COSMOLOGICAL EVOLUTION 1
AND PERTURBATIONS :
Ps=— 56"~ V(&) (16)

Consider a flat Robertson-Walker universe with metric
so that the equation-of-state parameter

ds?=—dt?+a?(t)[dx®+dy>+d 7], (10)
. - . , . p 3> +V(e)
for which the Einstein equations are the Friedmann equations W= == oo (17
(5) and(6). The cosmology and fate of a universe containing P 3¢°=V(¢)

an energy component with constant< —1 are relatively
simple and have been examined in, for examf@&, As an
example, consider the case in which the universe contains
only dust and phantom matter. Then, if the universe ceases
be matter dominated at cosmological titpe then the solu-
tion for the scale factor is

t

tm

From this expression it is easy to see that phantom matter
eventually comes to dominate the universe and that, since th& Fourier mode of the phantom field
Ricci scalar is given by

satisfiesw=—1.

We are interested in the cosmological evolution of this
odel and in the behavior of linearized perturbations of the
phantom scalar field in the resulting cosmological back-
ground. As noted iff9], the spectrum of fluctuations of a
phantom field evolves similarly to that for a quintessence
—2/3(1+w) field. Consider metric perturbations in the synchronous

(1)  gauge,

a()=a(ty)| —w+(1+w)

ds?= —dt?+a?( 5 + hyj)dx'dx. (18)

(t,k)= Lf o(t,x)e” k- xd3x (19
) \/Z 1

w
1+w

4(1—3w){
R= _
3(1+w)?

-2
tm} L] (12)
satisfies the equation of motion

there is a future curvature singularity stwtq,/(1+w). ) 1
This occurs because, even though the energy densities in 8¢+ 3H 8P+ (k2= V") 8 = — =h e, (20)
ordinary types of matter are redshifting away, the energy 2

density in phantom matter increases in an expanding un
verse. Thus, the fate of the universe in these mo{&l}
may be very different from that expect¢d8-32 in w>

Whereh is the trace of the synchronous gauge metric pertur-
bation h;; . The effective mass for the perturbation i (
—V")¥2"0On large scales one may worry that this effective
—1 dark energy models. Id b : ; f VA W
It is, however, simple to construct models of phantommass could become imaginary for a positve. We note,
' ’ however, that a similar problem exists for a canonical scalar

energy in which a future singularity is avoided. As we shall . o . . . .
see in this section, scalar field models can yield a period o?eld for negativev” and is thus easily avoided by the choice

time in which the expansion proceeds with< —1 and yet S/f”g%ter'lot\lal; n lpa.rtlaiclar, \;vebm?y chpose a potentlall W'th_
settles back tav=—1 (in our casew=—1) at even later - AN analysis of perturbations in more general non

. . . e canonical scalar field models is given[iB5]. In this paper,
times, thus_ydesteppmg the predlcnonswaﬁf: co_nstant mOd' we will examine by explicit calculation the evolution of fluc-
els. Consider a scalar field theory with actioB

o tuations in a specific model.

_ 4

=/ Lylgl d*x and Lagrange density given by Since scalar fields with negative kinetic terms evolve to
the maximaof their classical potential, we consider a Gauss-

= %9‘”(8#¢)(3V¢)—V( ¢). (13~ fan potential,

V() =Voe (#7177, (21)
The notable feature of this model is that the sign of the
kinetic term is reversed from its conventional valie our ~ whereV, is the overall scale and is a constant describing
conventions the usual expression would-bg(d¢$)?]. The  the width of the Gaussian. The potential is represented in

equation of motion forp becomes Fig. 2. We obtained the cosmological evolution by numeri-
cally solving the equations of motidi®), (6), and(14). The
d+3Hp—a 2V2p—V'($)=0, (14)  initial conditions were ¢iiia=Mp and ¢iiia=0, where
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V(q)) LES R LR B B LU LR L UL R B R ALY LR L
1
0.8 |-
) L
FIG. 2. The Gaussian potential energy of E2{l). The phantom o8 N
scalar will evolve to the top of the hill and oscillate around the L
maximum. S
Mp=(87G) 2 is the reduced Planck mass. Since we re- [
quire dark energy domination at the present epoch in the -
universe, withQx~0.7 we chooser=Mp, Vo=3M2H3. 0zl
The results are plotted in Figs. 3, 4 and 5. L
Note that during the initial stages of evolution the figld -
is frozen by the expansion and acts as a negligibly small g
vacuum energy componefwith w=—1). However, at later L
H : H H MERRTIT B AR R TTIT R EEATTTT B AR R B SRR TTT EENET R R BTSN TITT B R R
times the field begins to evolve more rapidly towards the e 163 6ol i i & iE i@

maximum of its potential, the energy density in the phantom

field becomes cosmologically dominant, and during this pe- a/ao

riod the equation of state parameter is much more negative. . . .

Finally, in the very late universe, the field comes to rest at the FIG. 4. Evolution of the phantom fielg> as a function of the
. . . Scale factor.

maximum of the potential and a period wf= —1 accelera-

tion begins. Sincev is no longer less thar-1, this ensures  conventional dark-energy scenarios; in particular, there is no
that there is no future singularity; rather, the universe evenevidence of dramatic instabilities distorting the power spec-
tually settles into a de Sitter phase. trum. (A more detailed study of the effect on the CMB power
Using the formalism for calculating fluctuations in a gen- spectrum of phantom fields with a constantan be found in
eral matter field developed if26], one may calculate the [14].) However, the formalism for this analysis was based on
effects of the fluctuations in this phantom field on the cosmidinear perturbation theory, and it is quite plausible that insta-
microwave background(CMB) radiation. The resulting bilities only become manifest at higher orders. In the follow-
power spectrum of CMB fluctuations is shown in Fig. 6. Weing sections we address this issue, first through numerical
have not attempted a detailed parameter fitting to CMB datanvestigation of a model with two oscillators and next by

but it should be clear that our phantom model with the po-calculating the decay rate of phantom particles into phan-
tential (21) does not predict any significant departures fromtoms plus gravitons.

TP TP -0.8
1 <
Qqs i
0.8 - i
-1
0.6 - |
o €
G =z r
04 . “LE ]
0.2 = L
1.4 -
. |
TR B R R T A TTTT B AR R SRR TTIT EE R RIS TTTT B W R sl vl vl vl vl vl vl
104 10-* 0.01 0.1 1 10 102 108 10* 10+ 10 0.01 0.1 1 10 102 108 10*
a/a, a/a,
FIG. 3. Evolution of the density parameters in radiatiébg}, FIG. 5. Evolution of the equation of state parametefor the
matter (Qy), and the phantom field(f ). phantom field as a function of the scale factor.
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10~ 1. 1.
cz(ng—miwz) —(§¢2—m§,,¢2> NP, (22)
8x10-10 . ] where\ is a dimensionless coupling constant. We are inter-
ested in the evolution of the energy of each oscillator,
L i 1.
k& _ 2 2
QA 6x10-10 - - py= S m,
~
(&)
= =— (3¢2+ my (23)
\i_./ 4x10-10 |- i P 2 Ik
The equations of motion are
2
2x10-10 - - — my|* —|—
n— _ _¥ +
¥ (m¢ N }w
0_ canandw aaael  w iial ] ¢"'=—[1-\y?] o, (24
10 102 108
1 where we have defined dimensionless rescaled variables
FIG. 6. Predicted multipole momen® for cosmic microwave b= bIM
background anisotropies. b=4¢
IV. COUPLINGS TO NORMAL MATTER =yIM
AND INSTABILITY
N — 2
Excitations of the scalar field from the model in the pre- A=N(M/my)
vious section have negative energy. The existence of nega- — it 25
tive energy particles may cause the system to be unstable due T=mgl. (25

to interactions involving these particles. In this section a prime denotes diferentiation with respect to
In the next section we examine this possibility by estimat- P P

ing the tree level decay rate of negative energy phantont1h.e dimensionless time parameterandM is the scale of the

particles into other phantoms and gravitons. Before delvindmt\'/"z‘/I d|spllacerrt1hentstokf)'r.r:e ofstcrl]l'latorsd | by int ting th
into that calculation, we will first try to build some intuition ¢ explore the stability of this model by integrating the

about possible instabilities by considering the classical evo(_equatlons (?f _“_“0“0“24? _numencally f(_)r a range of param-
lution of a simple system, a coupled pair of simple harmoniceters and initial conditions. Of particular interest are the

oscillators. Conservation of energy limits the phase space osf'm.lfll"’lttIonS W|thr|n.,,=0, tm ;’r:h'Ch onle may th.'tnk Of”t]hq’ h
a coupled pair of oscillators when both oscillators have posip.SCI ator as analogous 1o the massiess graviton. ihree suc
imulations are shown in Fig. 7. In each of these integrations

tive energy. Though the oscillators may exchange energ . . .
neither oscillator may ever reach an energy greater than th%e oscillators are started at rest, displaced a distshizem

total initial energy of the system. Allowing one of the oscil- t e origin. These plots are s_imilar to t_hose obtained for other
lators to have negative energy removes this limitation on thénltlal condltlo_ns,_ and allowing they field to have a mass
phase space. In this case the positive energy oscillator m es not qualitatively change the plots shown here. Note that
increase its energy to any level as long as the negative enerd§’ A<1, p, and p, exhibit a stable oscillatory behavior,
oscillator decreases its energy by a compensating amounthile forA\>1, p, and—p rapidly grow. From this analy-
Hence the positive energy oscillator may reach arbitrarilysis we conclude that this simple model is stable for small
high energies, and the negative energy oscillator may reaatnough coupling but exhibits an instability for a large cou-
correspondingly large negative energies. pling. While the analysis of this simple model does not prove

While conservation of energy does not prevent the oscilthat a phantom field in the cosmological context will be
lators in this simple model from reaching arbitrarily large stable to excitations and interactions with the gravitational
energies, there is no guarantee that the system will be urield, it does provide some evidence that stability is possible.
stable in all regimes. In fact, the following analysis will To make some connection to the cosmological model of
show that for a weak coupling, the evolution of the energy ofthe previous section, we consider how small the coupling in
each oscillator exhibits a stable oscillation for an arbitrarilythis simple model should be in order to have a stable solu-
long time. tion. If we imagine a period of early universe inflation, then

We consider a coupled pair of oscillators, olewith ~ one expects perturbations in the phantom and gravitational
positive energy, representing normal matter, and the ather fields to be of ordeM ~10 °Mp. The mass squared of the
with negative energy, representing the phantom componenphantom field is
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100

] arbitrarily high momenta are included, but can be rendered
< s B finite if a cutoff (which might arise, for example, from
. 4L higher-derivative terms in the actipis introduced.
< z0f Since we are interested in the allowed decay modes of
- ZLO — 4LO phantom particlesp and their associated decay rates, it is
. instructive to first analyze the kinematics of reactions involv-
ing phantom fields. Let us adopt the convention that ordinary
k2 E Eegmt . B T ey particles have 4-momenta with positive timelike component.
T‘f it E Then, since our field has a negative kinetic term, the corre-
5 05 __LV\/”\H“J“VV”\/“\/”J“V\/“\/“\/”L“V\/“\/“\M"J—_: sponding 4-momentum will have a negative timelike compo-
< A A ~ e A nent. This leads to the following useful dictionary for trans-

lating between kinematically allowed reactions for phantom
.- particles and those for ordinary particles.

Denote ordinary particles ag. To ask whether a certain
reaction is kinematically allowed, we can just switch the
v phantom particles from the right side to the left, and vice
050 4 versa, and ask whether the resulting reaction would normally

F i be allowed. Consider for example the decay of an ordinary
particle into another particle plus a phantom:

T P1— ot . (27
FIG. 7. Evolution of the energies of a coupled pair of oscillators, __ | ) . )
one with positive energyp,, (thin line), and one with negative 1his will be allowed if the reaction

energy,p, (thick line), as a function of the rescaled cou lingThe
gyqu( ) pling l/ll+ (b_) 1#2 (28)

oscillators are both started at rest displaced a distdhdeom the

! \ ced a s
origin, and the energies are expressed in unitsnofN1)=. Note 14 he allowed by conventional kinematics—in particular,
that for A <1, p, and —p,, exhibit a stable oscillatory behavior, it the mass of ordinary particle 2 were greater than the sum

Py
?

L

while for \>1, p,, and —p,, rapidly grow. of the masses of ordinary particle 1 and the phantom. So it is
clear that ordinary particles can decay imeavierparticles
5 d?v  V, plus phantoms. For example, if the electron were coupled to
mi=——~—~(10% ev)% (26)  the phantom field, processes such as
d¢° Mg
€ —pu +vetv,td (29)

The restriction\ <1 then implies that the coupling in the
Lagrangian satisfies <10 % While this at first seems to would be allowed. The muon would then decay back into an
be an absurdly small number, we will see in the next sectiorlectron, as part of a potentially disasterous cascade.
that, given the cosmological constraints of the previous sec- Next we turn to the decay of phantoms. First consider
tion, such a coupling naturally results from considering per-decays into ordinary particles,
turbations of the phantom and gravitational fields.

d— 1+, (30

V. PHANTOM DECAY RATE IN FIELD THEORY will be allowed if

The toy model of the previous section demonstrated that
coupling a phantom oscillator to an ordinary oscillator re- [0)= ¢+ gty 3D

sults in a system which may or may not be unstable, dependyq 14 pe conventionally allowed, which it is not. However,
ing on the magnitude of the coupling between them. It is far

from clear, however, that this conclusion extends immedi-ConSIder a decay into one phantom and one ordinary particle,
ately to field theory. Rough_ly speaking, oscillators_with some b1— b+ o, (32)
frequency correspond to field-theory modes of fixed wave-
length; even if the model is stable when only certain wavewill be allowed if
lengths are considered, it does not follow that stability con-
tinues to obtain when integrating over all momenta. b= i1t (33

One way of stating this concern is to ask about the decay o ) .
rate of single particles that would conventionally be stableWould ordinarily be, which requiremy >my +m,. So a
Because excitations of the phantom field have negative erphantom can decay into a heavier phantom plus a not-too-
ergy, we could imagine a single particle decaying into a largéneavy ordinary particle.
number of phantoms and ordinary particles. The rate for this If there is only one kind of phantom, one might think it
process can be calculatéat tree level using ordinary Feyn-  would be stable since there would be no heavier phantoms to
man diagrams. We will find that the rate is infinite when decay into. However, several lighter particles can mimic the
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potential, simply because there is no way to construct a sca-

h lar from a single tracelesk,,. But to avoid a surfeit of
indices and because it will not affect the final answer, we will
o; simply think of the graviton as a dimensionless scalar field
1 to get a canonically normalized field we multiply b§p.
““““ ~ o To study the decay36), we require the interaction part of
\\ S~ o j)l the Lagrangian to first order imand third order inp, which
\ * is
S
N 1
\ﬂ)z L= (Mph) TV (o)

FIG. 8. Decay of a phantom particle into two other phantoms = )\eﬁ(Mph)ng, (38

and a graviton.
where
4-momentum of a heavier particle. Consider the decay of one
hantom into two phantoms plus an ordinary particle: \Y, \Y,
p p P yp Aoy 2y L P0) (do) 2 10-120 39
$1— bot+ b3t . (34) Mp Mg
This will be allowed if The decay rate of a phantom particle through this channel is
hot bz—p1t (35) e 1 d3p;, d®py, d°py,

would ordinarily be, which it aways is for large enough rela- myJ) (2m)32E, (277)32E(/,1 (277')32E¢2
tive velocities of¢, and ¢s. 5 4 5(4)

In summary, if there is only one kind of phantom particle X[ M?(2m)* 5 (py.—Pg,~Py,~Pn),  (40)

(with a unique magsit can only decay by emitting at least

two more phantoms, plus at least one ordinary particle. Orwhere the matrix elemefi\1| is justA ¢ at tree level. To get
dinary particles, meanwhile, may decay into phantoms plugn upper limit on the reaction rate and, hence, a lower limit
other ordinary particles with a larger effective mass than then the time scale, we assume approximate isotropyl®go
original. A special case to these rules comes from massless|p|?dp. Because the relevant momenta are very laaye
particles. Although it would seem kinematically possible forthe masses very smalwe can also approximate~p. Put-
massless particles to decay into massive particles plus phating all of this together we obtain

toms, massless particles cannot decay in flat sfaceason-

able approximation in the backgrounds we are considgring Fw_eﬁf Ipy|d f | q J’ q
simply because there is no rest frame in which to calculate Mg PnldPn p¢1| Po, |p¢z| Ps,
the rate—no proper time elapses along a null path.
Like any other dark-energy scalar field, the phantom X 8Py~ Py, ~ Pg,~ Pr)- (41)

should be weakly coupled to ordinary mati@r it would

have been detected through fifth-force experiments or variaf we take the limits on the integrals to be, the decay rate
tion of the constants of natuf83]). We therefore restrict our is clearly infinite. Hence, the answer to our investigation into
attention to only gravitons and phantoms. With the abovenstability seems very clear: the theory is dramatically un-
rules in mind, the phantom decay channel involving thestable, as individual particles rapidly decay into cascades of

smallest number of particles is phantoms and gravitons.
However, our philosophy has been to think of this model
di—h+ ¢+ ¢y, (36)  as an effective theory valid at low energies. The reason why

the decay rate diverges is because the phase space is infinite,
whereh is a graviton andp is a phantom particle, illustrated gjnce the phantoms can have arbitrarily large negative ener-

in Fig. 8. . ) . . gies. Therefore, this result relies on taking the calculation at
Consider the specific model investigated in Sec. Ill, aface value up to infinite momentum transfer. Instead, we
phantom scalar with potential should only trust the phase-space integrals up to some cutoff
5 2 where new physics might enter. For example, we could
V(¢)=Voe *'M?. (37)  imagine a higher-derivative term of the form
We will first consider this potential expanded as a power L~—(dd)* (42)

series around some background valhg~Mp. Gravitons,

meanwhile, may be represented by transverse-traceless methich would eventually dominate over the negative-kinetic-
ric perturbationsg,,,=g'%)+h,,, whereg'? is the back- energy term we have already introduced.

ground Robertson- Walker metric. Strlctly speaking, there is We have not investigated closely the properties of phan-
no way for a single graviton to couple non-derivatively to thetom models with higher-derivative terms. Instead, let us
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crudely approximate the effect of a momentum cutoff at awhereg is a dimensionless coupling/Ve will use the same
scaleA by only allowing the phase-space integrals to rangecutoff A for our nonrenormalizable terms as in our momen-
up to that cutoff. Looking at Eq41), we can estimate the tum integrals; theMp in the denominator comes from nor-
truncated decay rate as malization ofh#”.) This term will also contribute to the in-

) teraction shown in Fig. 8. Following similar logic as above

T~\2,— (43) (including two powers of the momentum M from the
my derivatives, we get
The time scale for decay is=I" 1. Despite any fundamen- B2A4
tal instability, a model will be phenomenologically viable if r~ (49

. . . . -1 m MZI
the lifetime is greater than the Hubble timeél, oV

~10%Mp'. Recalling that my,~10"Mp and e

. — — _60 . B . .
~10 129 the lifetime in units of the Hubble time is Using Ho~m;~10""Mp, the lifetime in units of the

Hubble time is now

2
4

(44) Mp

M
Hor~ 10120( —
10°°A

A

H07~B72

(50

In other words, the lifetime from this decay channel exceeds
cosmological time scales as long As<10°°Mp, which is  Therefore, if 8 is of order unity, to obtain cosmologically

certainly not a stringent constraint. viable decay ratesH,7>1) we require the cutoff to be
However, the infinite phase space for this one decay is not
the only infinity we have to deal with; a single phantom can A<10 3Mp~10"2 eV. (51)

decay into arbitrary numbers of gravitons and phantoms, so _

we must sum over all the channels. For each new final-statéhis is a much smaller cutoff than was required when we

particleI' gets multiplied by a factor of A\/Mp)2. The A2 considered coupling through the potential, since the small

comes from the new momentum integral, and Mg? is  PrefactorVy is not around to help us. '

introduced intox%,. So, if we denote the decay ra#3) by One might hope that the above result is alleviated some-
eff - '

Ty, then if there aren additional particles in the final state, What by imposing an approximate global symmetry on the
the decay rate is given by theory, e.g., that the Lagrangian density be invariant under

¢— ¢+ constant. Such a symmetry is quite reasonable, as it

A \2n is the only known way to ensure both a nearly flat potential
In= M_) Lo. (45 and appropriately small couplings to ordinary maf@s]. In
P this case, the irrelevant operator of lowest dimension leading
Therefore, the total decay rate is to phantom decay into gravitons is
- y
Piai= 2, (N 1)1y, (46) L= g g (M)0, 60, 90,495, (52
n= P

where the factorrf+ 1) comes from the number of different The decay rate is then

ways the final state can be composed of gravitons and phan-

toms. This yields Y2A4
myMp’

(53

A 271-2
Iiota= Fo[l_(M_> } . (47)
P which is identical to(49). Thus, the associated lifetime is
Thus, the decay rate remains of ordgyas long as\ is not
larger thanMp. This still seems like a comfortable result.
There is, however, one more possibility to be accounted
for. Part of the reason we obtained reasonable decay rates
from interactions originating in the potentisl( ¢) was be- which, if y~1, leads to the same requirement
cause of the small value &fy~(10 2 eV)*. This suppres- <10 3Mp~103 eV.
sion is lost if we consider couplings of gravitons to deriva-  Under our most optimistic assumptioisf an approxi-
tives of ¢. Since we are claiming that our model is simply anmate global symmetjy we therefore find that the momen-
effective field theory, we are obligated to include all possibletum cutoff characterizing our effective theory must be less
non-renormalizable interactions, suppressed by appropriathan 10 3 eV to guarantee that the instability time scale is
powers of the cutoff scale. Consider for example the operatogreater than the age of the universe. We find this value to be
8 uncomfortably low, but this should not be taken to rule out
_ P v such theories altogether. Alternatively, one might imagine
£ MpA ¢(Meh*)9, b3, ¢, (48) searching for some mechanism which would suppress de-

4

Me ) (54)

10%°A

-2

Hor~7y
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rivative couplings, leaving only the couplings of gravitons to below a scale\. Interestingly, couplings of gravitons to an
the potential, which were consistent with a cutoff as high asappropriate scalar potential do not lead to decay of phantoms

the Planck scal€34-34. into gravitons and other phantoms on sub-Hubble time
scales, as long as the cutoff is below the Planck scale.
VI. CONCLUSIONS However, in such an effective field theory approach, we are

) . mandated to include in the Lagrangian operators all possible

There is no doubt that the discovery of a new componenfjimensions, suppressed by suitable powers of the cutoff
of the energy density of the universe has profound implicaxcale. In particular, we must include couplings of gravitons
tions for the relationship between particle physics and gravg gerivatives of the phantom field. We find that such opera-
ity. Whetherth_is component be a pure cosmological constanbrs  even though they may be of high order, can lead to
(whose magnitude we have no idea how to understaad nacceptably short lifetimes for phantom particles unless the
dynamical componer{tl0-19,37—48 (whose special inter-  ¢off scale is less than 16 eV, so new physics must ap-
actions give rise to the tiny vacuum energy we obSBV@n  pegr in the phantom sector at scales lower than this.
as yet unimagined source, its nature is an outstanding prob- o, analysis demonstrates that a model with a well-
lem of fundamental physics. The data thus far, althoughyepaved cosmological evolution and stability to linear per-
pointing conclusively to the existence of this dark energy, dqyrhations may still exhibit instability due to higher order
not allow us to distinguish between competing scenarios. Ifieractions. We may therefore ask another crucial question:
particular, much of the allowed parameter space lies in th&noyid observers seeking to constrain cosmological param-
reg|onw<—1_ in which some .c_henshed notion behind our giers take seriously the possibility that< —17? Unfortu-
present theories must be sacrificed. _ nately the answer is somewhat ambiguous. On the one hand,

There are several ways in which one may achie®e  \ve know of no easy way to construct a viable model of this
—1, including purely negative kinetic terms, non-minimal sort: on the other, it is certainly conceivable that new physics
kinetic terms, and scalar-tensor theories. In addition, ong, the dark-energy sector kicks in at low scales to render a
might imagine that effective superexponential expansion ohhantom model stable or that phantom behavior is mimicked
the universe might be obtained by modifying the Friedmanryy even more exotic mechanisrtsuch as modifications of
equation[44]. While this is at odds with a purely four- {he Friedmann equatipriTherefore, whether or not observa-
dimensional general relativistic description of the universesons constrairw to be greater than or equal tel is still an
such an effect might be obtained in the context of braneinteresting question, although there is a substaatiptiori
world models[45-47. However, any such modification of hias against the possibility. For theorists, our conclusion is
the Friedmann equation must avoid conflict with the preci-pore straightforward: the onus is squarely on would-be

sion predictions of primordial nucleosynthep#8-50. phantom model builders to show how any specific proposal
In this paper we have taken seriously the possibility that anages to avoid rapid vacuum decay.

may be less thar-1 and have asked the question, from a
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