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Conservative formulations of general relativistic kinetic theory

Christian Y. Cardall*
Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6354, USA,

Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200, USA,
and Joint Institute for Heavy Ion Research, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6374, USA

Anthony Mezzacappa†

Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6354, USA
~Received 19 December 2002; published 30 July 2003!

Experience with core-collapse supernova simulations shows that accurate accounting of total particle num-
ber and 4-momentum can be a challenge for computational radiative transfer. This accurate accounting would
be facilitated by the use of particle number and 4-momentum transport equations that allow transparent
conversion between volume and surface integrals in both configuration and momentum space. Such conserva-
tive formulations of general relativistic kinetic theory in multiple spatial dimensions are presented in this paper,
and their relevance to core-collapse supernova simulations is described.
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I. INTRODUCTION

The state of the art in core-collapse supernova simulat
now includes energy- and angle-dependent neutrino trans
@1–8#. However, experience shows that simultaneous con
vation of both energy and lepton number is difficult nume
cally @5,9#. This challenge motivates us to develop new co
servative formulations of relativistic kinetic theory that a
specifically attuned to the need for accurate accounting
particle number and energy in numerical simulations of
diative transfer problems.

Before describing the conservative formulations of kine
theory we seek, we explain why energy- and ang
dependent neutrino transport is necessary in supernova s
lations and detail the magnitude of the challenge of ene
conservation.

Sophisticated treatments of neutrino transport are ne
sary because the ultimate energy source of the super
explosion—the gravitational potential energy of the ste
progenitor’s core—is eventually converted almost co
pletely into neutrinos. Some of the gravitational potent
energy is lost to escaping neutrinos during core collapse,
most of it is converted into a thermal bath of dense nucl
matter, photons, electron/positron pairs, and trapped ne
nos deep inside the nascent neutron star. Neutrinos, ha
the weakest interactions, are the most efficient means
cooling; they diffuse outward on a time scale of secon
towards a semitransparent region near the surface of
newly forming neutron star, and eventually escape w
about 99% of the released gravitational energy. In mode
the conversion of gravitational potential energy into neutr
fluxes, energy- and angle-dependent neutrino transpo
necessary to accurately follow the transition from qua
isotropic diffusion to forward-peaked free streaming. In th
transition region, energy is transferred from the neutrino
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diation to the matter behind a stalled shock wave, and
energy transfer may be necessary to propel the shock thro
the outer layers in an explosion@10,11#. But whether or not
such neutrino heating is the proximate cause of explos
the fact that neutrinos dominate the energetics implies
accurate neutrino transport is integral to any realistic a
comprehensive study of the explosion mechanism.

The importance of accurate neutrino transport is a les
learned from experience with supernova simulations. Par
etrized studies@12# highlight the sensitivity of explosions to
neutrino luminosities and to conditions in the semitransp
ent region near the nascent neutron star’s surface~see also
Ref. @13#!—precisely the region where neutrino energy a
angle dependence must be tracked carefully. Moreover, t
remains a nagging qualititative uncertainty in simulatio
with multidimensional hydrodynamics: Those with neutrin
transport that depends on direction in configuration space
is averaged over energy and angles exhibit explosions@14–
16#, while those with neutrino transport that depends on
ergy but is averaged over angles in both configuration
momentum space do not show explosions@17,18#. It may be
that these differing outcomes are due to the different neut
transport schemes, both of which are ultimately inadequa

Moving beyond these general arguments for the neces
of accurate neutrino transport, quantitative consideration
the energetics shows how severe the requirements are on
aspect of accuracy: energy conservation. As mentio
above, virtually all of the gravitational potential energ
(;1053 erg) released during collapse is eventually conver
into intense neutrino fluxes lasting several seconds. H
ever, supernova explosion energies~the kinetic energy of the
ejecta! are observed to be only;1051 erg. Now, because it is
difficult to argue with any rigor about the physical impact
any energy lost or gained due to numerical error, the to
energy should be conserved to a precision correspondin
the phenomena of interest in the problem. Hence a sim
tion’s result for explosion energy accurate to, say, 10
would require total energy conservation to an accuracy
about 0.1%. Allowing for systematic error accrual, the to
©2003 The American Physical Society06-1
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energy would have to be conserved at a level of 0.1%/N per
time step, whereN;105 is the total number of time steps i
the simulation.

Conservative formulations of kinetic theory would help
meet the numerical challenge of particle number and ene
conservation in core-collapse supernova simulations. To g
an idea of the kind of formulation of kinetic theory that w
seek, we first review familiar descriptions of the dynamics
a fluid medium. The dynamics can be described in two d
ferent ways, which might be calledelementalandconserva-
tive.

The elemental formulation expresses the evolution of
fluid in terms of equations of motion for the velocity an
some independent set of quantities~e.g., temperature, dens
ties of various species comprising the fluid, etc.! measured
by an observer moving along with the fluid~‘‘comoving ob-
server’’!. For example, consider a spacetime with met
components$gmn% and metric determinantg[det(gmn), con-
taining a perfect fluid with 4-velocity components$um% and
comoving frame total energy densityr, pressurep, and
baryon densityn. In the absence of radiative transfer a
significant energy input from nuclear reactions, the perf
fluid evolves according to

~r1p!umS ]ui

]xm 1G i
rmurD1~gim1uium!

]p

]xm50, ~1!

um
]r

]xm 1
~r1p!

A2g

]

]xm ~A2gum!50, ~2!

um
]n

]xm 1
n

A2g

]

]xm ~A2gum!50. ~3!

~Greek and Latin letters are spacetime and space ind
respectively.! Supplementary relations betweenr, p, and
n—referred to as theequation of state—are determined by
the microphysics of the fluid. The nameelementaldenotes
the fact that by writing down separate equations of mot
for the velocity and comoving-frame quantities, the kine
and ‘‘intrinsic’’ fluid energies—two ‘‘elements’’ of the
system—are analytically separated.

The conservative approach expresses the evolution o
system in terms of the divergence of the stress-energy te
Tmn. For a perfect fluid,Tmn5(r1p)umun1pgmn, and Eqs.
~1! and ~2! are replaced by

1

A2g

]

]xm ~A2gTmn!52Gn
rmTrm, ~4!

while Eq. ~3! is replaced by

1

A2g

]

]xm ~A2gnum!50. ~5!

Volume integrals of the left-hand sides of Eqs.~4! and~5!—
obtained by multiplying by the invariant spacetime volum
elementA2gd4x and integrating—are related to surface i
tegrals in an obvious manner. Physically, this relates the t
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rates of change of 4-momentum and baryon number i
volume to fluxes through a surface surrounding that volum
hence the labeling of Eqs.~4! and ~5! asconservative.

The right-hand side of Eq.~4! deserves note. After dis
cussing the reasons for this term’s existence, we commen
what it means for conservation issues.

There are several important cases where the connec
coefficientsGn

rm on the right-hand side of Eq.~4! might not
vanish. They are present in curved spacetime, where~at least
in part! they embody gravitational forces. But even in fl
spacetime, coordinates employed by accelerated obse
give rise to connection coefficients. And even without spa
time curvature or accelerated reference frames, connec
coefficients arise from the use of curvilinear coordinates.

What does the right-hand side of Eq.~4! mean for
4-momentum conservation? Only when it vanishes—that
only for inertial observers in flat spacetime employing rec
linear coordinates—are the components of to
4-momentum constant in time~‘‘conserved’’!. For only in
this case do the coordinates reflect the translation invaria
of flat spacetime, the physical origin of 4-momentum cons
vation. ~Curved spacetime lacks translation invariance,
there is no 4-momentum conservation.! Because the pres
ence, for whatever reason, of a source term like the rig
hand side of Eq.~4! means that the 4-momentum comp
nents in such a basis are not conserved, it might m
properly be called a ‘‘balance equation’’ than a ‘‘conserv
tion law.’’ But because the volume integral of the left-han
side easily translates into a surface integral, we still call
‘‘conservative’’ formulation.

There are some special cases in which a conserved q
tity associated with the time coordinatet can be found, how-
ever. For unaccelerated observers in flat spacetime,G t

rm

50, even in curvilinear coordinates. This means that ene
is conserved, though the 3-momentum components in cu
linear coordinates are not. Another special case is the res
tion to spherical symmetry in general relativity: Here certa
coordinate choices allow the nonvanishingG t

rm terms to be
absorbed into the left-hand side, leading to the identificat
of a conserved energy-like quantity~see, e.g., Ref.@19#!.

Having used the familiar example of a perfect fluid
discuss what we mean by ‘‘elemental’’ and ‘‘conservativ
formulations, we now consider kinetic theory in terms
these categories. The evolution of a particle type descri
by kinetic theory is often expressed as an equation of mo
for the distribution functionf, the ensemble-averaged dens
of a given particle type in phase space.~These concepts will
be defined with greater precision in subsequent sections
the present discussion it is sufficient to understand that ph
space is the combination of configuration space and mom
tum space, and that multiplyingf by the volume of an infini-
tesimal cell in phase space gives the number of partic
having positions and momenta within the ranges defined
that cell.! The distribution function evolves due to advectio
through phase space and particle interactions.

Advection through phase space gives rise to derivative
f with respect to the components of the position vectorx and
6-2
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CONSERVATIVE FORMULATIONS OF GENERAL . . . PHYSICAL REVIEW D 68, 023006 ~2003!
the momentum vectorp. For numerical evolution it is con
venient to parametrize the distribution function in terms
$xm%, the components ofx in a global ‘‘coordinate basis’’
@28#. ~Here and throughout this paper, quantities defined w
respect to the coordinate basis have indices without acce!
For momentum we make a different choice of basis, beca
interactions with a fluid are most easily described—and b
handled numerically—in terms of momentum compone
measured by a comoving observer. The change from the
ordinate basis to an orthonormal basis associated with
comoving observer~a ‘‘noncoordinate basis’’! has two parts.
First there is a transformationdxm̄5em̄

mdxm to an~in general
noncomoving! orthonormal basis.~Here and throughout this
paper, quantities defined with respect to the noncomov
orthonormal basis have indices accented with a bar.! This is
followed by a Lorentz transformationdxm̂5Lm̂

m̄dxm̄ to a
comoving orthonormal basis.~Here and throughout this pa
per, quantities defined with respect to the comoving ort
normal basis have indices accented with a hat.! Hence ad-
vection through phase space will involve derivatives of
with respect to the coordinate basis position compone
$xm% and the comoving orthonormal basis momentum co
ponents$pm̂%.

Turning from advection to particle interactions, we co
sider the case where the particle species are sufficiently
lute that the interactions can be described in terms of a
lision integral C@ f # depending only on the distributio
functionsf of the individual particle species.~This approxi-
mation ignores correlations between particles; that is,
number of instances of finding particles at the same posi
is obtained from the product of their distribution functions!
In this case, the equation of motion for the distribution fun
tion f is @20,21#

pm̂S Lm̄
m̂em

m̄

] f

]xm2Gn̂
r̂m̂pr̂

] f

]pn̂D 5C@ f #. ~6!

This is theBoltzmann equation.
In terms of the categories described above in connec

with fluid evolution, the Boltzmann equation is ‘‘elemental
The most fundamental quantity—the distributio
function—is the evolved variable, and volume integrals
the equation in both configuration space and momen
space are not obviously related to surface integrals. T
‘‘nonconservative’’ character is present even in flat spacet
and rectangular coordinates. The first term of Eq.~6! is non-
conservative even in flat spacetime and rectilinear coo
nates because the boostLm̄

m̂—which depends on the coord
nates$xm%—sits outside the derivative] f /]xm. The spatial
dependence of the boost also gives rise to nonvanis
Gn̂

r̂m̂ , even in flat spacetime and rectilinear coordinat
therefore, the second term of Eq.~6! does not vanish. This
second term is nonconservative because the factorpr̂ sits
outside the derivative] f /]pn̂.

While the Boltzmann equation is ‘‘elemental’’ or ‘‘non
conservative,’’ it is well known~e.g., see Refs.@20#, @22#,
@23#! the first two momentum moments of the distributio
function ~integrated over a suitable invariant momentu
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space volume elementdP! constitute a particle number cur
rent Nm and particle stress-energy tensorTmn,

Nm5E f pmdP5E f pm̂Lm̄
m̂em

m̄dP, ~7!

Tmn5E f pmpndP

5E f pm̂Lm̄
m̂em

m̄pn̂Ln̄
n̂en

n̄dP, ~8!

which ~for electrically neutral particles! obey the balance
equations

1

A2g

]

]xm ~A2gNm!5E C@ f #dP, ~9!

1

A2g

]

]xm ~A2gTnm!5Gm
rmTrm1E C@ f #pndP. ~10!

While this result is often stated in the literature~e.g., see
Refs.@20#, @22#, @23#!, because of the nonconservative ch
acter of Eq.~6! it is not obvious how its moments give rise t
Eqs.~9! and~10!. Equation~6! contains factorsLm̄

m̂em
m̄ out-

side] f /]xm; but from Eqs.~7!–~10! we see that these factor
have come inside the derivative with respect toxm. What
happens to the spacetime derivatives ofLm̄

m̂em
m̄ that are

generated in taking these factors inside the derivative? F
thermore, according to Eqs.~7! and ~8!, the quantitiesNm

andTmn involve no momentum derivatives off. But the sec-
ond term of Eq.~6! contains a factorpr̂(] f /]pn̂). Because of
the momentum factor outside the momentum derivative, i
not obvious how this term will contribute to Eqs.~9! and
~10! when integrated over momentum space.

How, then, is the connection between Eq.~6! and Eqs.~9!
and ~10! established in detail? The reviews of relativist
kinetic theory by Lindquist@20# and Israel@23# do not pro-
vide detailed proofs. As discussed in Sec. III, an expli
proof by Ehlers@22# relies on the fact thatNm andTmn are
momentum-integrated quantities, and no direct insight
gained into what happens to the momentum derivativesf
in the integration over momentum space.

For those interested in computer models of radiat
transfer problems, these are not idle academic questi
they are issues that must be faced in order to build sim
tions capable of making meaningful scientific stateme
about the core-collapse supernova explosion mechanism
perience with supernova simulations in spherical symme
shows that understanding the detailed connection betw
the Boltzmann equation and the particle number a
4-momentum balance equations has important conseque
for how well these quantities are conserved in a simulat
@5,24#. While a discretization of the Boltzmann equation is
natural numerical method of evolving the neutrino speci
naive differencings of the various terms in Eq.~6! generally
will not be consistent with a straightforward differencing
Eqs.~9! and~10!, leading to unacceptable numerical errors
6-3
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C. Y. CARDALL AND A. MEZZACAPPA PHYSICAL REVIEW D 68, 023006 ~2003!
particle number and energy conservation. In Lagrangian~or
‘‘comoving’’ ! coordinates in spherical symmetry, Mezz
cappa and Bruenn@24# derive a conservative formulation o
the Boltzmann equation transparently related to part
number balance as expressed in Eq.~9!. They also devise
methods of handling momentum derivatives that are con
tent with both number and energy conservation@9#. Lieben-
dörfer et al. @5# went a step further in this spherically sym
metric case, deducing the connection between
Mezzacappa and Bruenn ‘‘number conservative’’ Boltzma
equation in comoving coordinates and energy conserva
as represented by an Eulerian~or ‘‘lab frame’’! version of
Eq. ~10!. Using complicated, nonintuitive differencings o
hydrodynamic and gravitational variables, they construc
numerical implementation of the Mezzacappa and Bru
‘‘number conservative’’ Boltzmann equation that is stab
and faithful to its analytic connection to the lab frame ve
sion of Eq. ~10! to the accuracy necessary to make so
scientific statements about the neutrino-driven explos
mechanism in spherical symmetry@2,3,5#.

Because spherically symmetric models with Boltzma
transport fail to reproduce some important observable c
acteristics of core-collapse supernovae~e.g., the launch of an
explosion@1–6#!, this work must be followed up in multiple
spatial dimensions~see Refs.@7#, @8# for some early efforts!.
In this paper we develop—allowing for full relativity an
multiple spatial dimensions—conservative formulations
kinetic theory, such that volume integrals in both configu
tion and momentum space aretrivially related to surface
integrals. These conservative expressionsmake transparent
the connection between Eq.~6! and Eqs.~9! and ~10!. They
can be used to deduce the term-by-term cancellations
volved in this connection, thereby illuminating the comp
cated differencings required to achieve the cancellations
merically. Our conservative formulations also suggest n
primary variables of radiation transport: particle number a
energy variables describing the contribution of eachcomov-
ing orthonormal basismomentum bin to thecoordinate basis
number and energy densities. It may be that the use of th
new radiation variables could provide a simpler path to
accurate accounting of particle number and energy in si
lations of radiative transfer problems.

The organization of this paper is as follows. Different
forms and exterior calculus are natural mathematical to
for handling the volume elements and integrations neede
relativistic kinetic theory. We closely follow~and slightly
extend! Ehlers’ work @22# in reviewing their use in the de
scription of phase space for particles of definite mass~Sec.
II ! and the derivation of the Boltzmann equation~Sec. III!.
The centerpieces of this paper—two conservative reform
tions of the Boltzmann equation, which provide transpar
connections to particle number and energy-momentum
ance as expressed in Eqs.~9! and~10!—are presented in Sec
IV. Because differential forms and exterior calculus may
unfamiliar to those whose primary interests are radiat
transport, in general, or supernova science, in particu
Secs. II–IV each will contain two subsections, one conta
ing a general derivation and a second that explicitly dem
strates aspects of the derivation in the familiar case of
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O(v) limit in Lagrangian coordinates in spherical symmet
~While we review some aspects of exterior calculus in o
presentation, these are mostly in end notes, and are mo
the character of reminders than a self-contained introduct
For the latter, we refer the reader to Refs.@22#, @25#.! A
conclusion~Sec. V! summarizes our results, comments
their connection to moment formalisms, and discusses
utility of these formulations for supernova simulations. As
application of our formalism, an Appendix containsO(v)
equations in flat spacetime, but in coordinates sufficien
general to represent rectangular, spherical, and cylindr
coordinate systems.

II. PHASE SPACE FOR PARTICLES OF DEFINITE MASS

In this section, we consider phase space for particles
definite mass. We specify particle trajectories—the ‘‘state
whose average occupation is specified by the distribu
function f—and the volume elements needed to derive m
roscopic observables fromf and operators that act upon it. I
discussing the general case~Sec. II A!, we follow Ehlers@22#
closely, and refer the reader to his work for more detai
discussions and proofs of some of the assertions made h
We extend his discussion to the use of momentum com
nents measured in a frame comoving with the fluid that
teracts with the particle species treated by kinetic theory. T
specific case of Lagrangian coordinates in spherical sym
try to O(v) is treated in Sec. II B.

A. Phase space for particles of definite mass: The general cas

A study of kinetic theory begins with consideration of th
trajectories of individual particles. The worldlinex(l) of a
particle of massm with 4-momentump and electric chargee,
moving through a spacetime with metric components$gmn%
and electromagnetic field tensor components$Fmn%, is deter-
mined by

dxm

dl
5pm, ~11!

dpm

dl
5eFm

npn2Gm
nrpnpr. ~12!

In the coordinate basis associated with the position ve
components$xm%, the connection coefficients are

Gm
nr5 1

2 gmsS ]gsn

]xr 1
]gsr

]xn 2
]gnr

]xs D . ~13!

As mentioned in Sec. I, we seek results expressed in term
~orthonormal! momentum components$pm̂% measured by an
observer comoving with the fluid with which the particle
interact. Combining the transformationem̄

m to an orthonor-
mal tetrad and boostLm̂

m̄ to the comoving frame into the
composite transformation

Lm̂
m5Lm̂

m̄em̄
m , ~14!

Eqs.~11! and ~12! are replaced by
6-4
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dxm

dl
5Lm

m̂pm̂, ~15!

dpm̂

dl
5eFm̂

n̂pn̂2Gm̂
n̂r̂pn̂pr̂. ~16!

The connection coefficients do not transform exactly as t
sor components, but as

Gm̂
n̂r̂5Lm̂

mLn
n̂Lr

r̂Gm
nr1Lm̂

mLr
r̂

]Lm
n̂

]xr . ~17!

This completes the desired specification of particle trajec
ries.

The set of position vectorsx and momentum vectorsp
comprise an eight-dimensional manifoldM, theone-particle
phase space for particles of arbitrary rest masses. The posi-
tionsx are points in spacetime, and the momentap are points
in that portion of the tangent space atx characterized byp2

<0 andp future-directed. The curves„x(l),p(l)… obtained
from the particle equations of motion comprise thephase
flow in M. The phase flow is generated by theLiouville vec-
tor

L5pm̂Lm
m̂

]

]xm 1~eFm̂
n̂pn̂2Gm̂

n̂r̂pn̂pr̂ !
]

]pm̂ . ~18!

Here ($]/]xm%,$]/]pm̂%) have been chosen as basis vect
on M.

Specification of a particle massm defines a hypersurfac
of M, a seven-dimensional manifoldMm called theone-
particle phase space for particles of definite mass m. The
mass satisfies

m252gmnpmpn52gmnLm
m̂Ln

n̂pm̂pn̂. ~19!

Considered as a scalar functionm(x,p) on M, the particle
mass satisfies

L@m#50, ~20!

which expresses the constancy ofm on each phase spac
trajectory. Hence the seven-dimensional manifoldMm is
generated by all the phase space trajectories of particle
massm. Equation~20! shows thatL is tangent toMm , and
Eq. ~19! is a constraint indicating that it is one of the m
mentum dimensions ofM that has been lost in going over t
Mm . Hence the Liouville operator restricted toMm can be
expressed as

Lm5pm̂Lm
m̂

]

]xm 1~eFî
n̂pn̂2G î

n̂ r̂pn̂pr̂ !
]

]pî
, ~21!

where ($]/]xm%,$]/]pî %) have been chosen as basis vect
in Mm . To allow for a change of coordinates in momentu

space from$pî % to $uî % ~to momentum space spherical coo
dinates, for example!, we rewrite Eq.~21! as
02300
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Lm5pm̂Lm
m̂

]

]xm 1~eFĵ
n̂pn̂2G ĵ

n̂ r̂pn̂pr̂ !
]uî

]pĵ

]

]uî
, ~22!

where ($]/]xm%,$]/]uî %) are now the chosen basis vecto
on Mm .

Before discussing volume and ‘‘surface’’ elements
Mm , we give a brief reminder of some properties of diffe
ential forms and their exterior derivatives~e.g., see Refs
@22#, @25#!. If $dza% are basis 1-forms on some manifold, a
m-form c can be expanded as

c5
1

m!
ca1¯am

dza1¯am, ~23!

wheredza1¯am denotes the wedge productdza1∧¯∧dzam.
The quantitiesca1¯am

are thecomponentsof c. The compo-

nents are completely antisymmetric (ca1¯am
5c@a1¯am#), as

is the wedge product, so thatc can also be expressed

c5c ua1¯amudza1¯am, ~24!

where the vertical bars indicate that summation is taken o
over a1,a2,¯,am . The exterior derivative takes an
m-form into an (m11)-form as follows:

dc5
]c ua1¯amu

]zam11
dzam11a1¯am. ~25!

Two properties of the exterior derivative will be used later
this paper:

d~f1c!5df1dc, ~26!

d~f∧c!5df∧c1~21!pf∧dc, ~27!

wheref is a p-form.
Now we turn to a discussion of volume and ‘‘surface

elements onMm . The invariant volume element in spacetim
is the 4-form

h5
1

4!
A2gemnrsdxmnrs, ~28!

whereg is the determinant of the metric,emnrs is the com-
pletely antisymmetric symbol withe0123511, and the
wedge product of basis 1-forms is abbreviated by the no
tion dxmnrs[dxm∧dxn∧dxr∧dxs. Shifting attention to the
momentum space at a given spacetime point, an invar
volume element on a mass shell corresponding to massm in
the tangent space is

pm5
1

3!

A2g

up0u
e0i jkdpi jk . ~29!

Expressed in terms of basis 1-forms conjugate to orthon
mal comoving frame momentum components, it become

pm5
1

E~p!
dp1̂2̂3̂, ~30!
6-5
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where the bold character denotes a 3-vector, andE(p)
[Aupu21m2. After a final change of momentum coordinat
from p to u, the momentum space volume element can a
be expressed as

pm5
1

E~p!
UdetF]p

]uGUdu1̂2̂3̂. ~31!

A volume element onMm is a 7-form, which can be ex
pressed as

V5h∧pm ~32!

5
A2g

E~p!
UdetF]p

]uGUdx0123∧du1̂2̂3̂.

~33!

The ‘‘surface element’’ normal to the phase flow inMm is an
important quantity; it is a 6-form, obtained by contractin
@29# V with the Liouville vectorLm :

v5Lm•V5
A2g

3!
pm̂Lm

m̂emnrs~dxnrs∧pm!

1
1

2!E~p!
UdetF]p

]uGU~eFĵ
n̂pn̂2G ĵ

n̂ r̂pn̂pr̂ !

3
]uî

]pĵ
e 0̂ î k̂n̂~duk̂n̂∧h!. ~34!

The first term in Eq.~34! can be written in terms of surfac
elements in spacetime. A surface element in spacetime
normal in thexm direction is given by the contraction of th
vector]/]xm with the spacetime volume elementh:

sm5
]

]xm •h5
A2g

3!
emnrsdxnrs. ~35!

In terms of these spacetime surface elements, the first ter
Eq. ~34! can be expressed

A2g

3!
pm̂Lm

m̂emnrs~dxnrs∧pm!5pm̂Lm
m̂~sm∧pm!.

~36!

This first term of the ‘‘surface element’’v is all that contrib-
utes to an integration over momentum space@30#; it corre-
sponds to a cell in the familiar six-dimensional Newtoni
phase space. The surface elementv also shares an importan
property with a Newtonian phase space volume element:
invariant under phase flow. This result follows from the va
ishing exterior derivative ofv,

dv50, ~37!

and the use of Stokes’ theorem on a small tube of worldli
@22#.
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B. Phase space for particles of definite mass: Lagrangian
coordinates in spherical symmetry toO„v…

Here we specialize certain results of the previous subs
tion to massless, electrically neutral particles propagat
through flat spacetime, employing Lagrangian coordinate
spherical symmetry and retaining only terms toO(v).

First we introduce these coordinates. In flat spacetime
Eulerian spherical coordinates, the metric components
specified by the line element

ds252dt21dr21r 2du21r 2 sin2 u df2. ~38!

We seek Lagrangian coordinatest andm to replace the Eu-
lerian coordinatest̃ and r. The enclosed baryon massm is
defined by

m5E r

4pr 2r dr, ~39!

wherer is the baryon mass density. The mass density ob
the O(v) conservation law

]r

] t̃
1

1

r 2

]

]r
~r 2rv !50, ~40!

where

v5
dr

d t̃
~41!

is the radial velocity measured by an Eulerian observer.
choose the Lagrangian time coordinate such that the me
components are specified by a line element of the form

ds252dt21gmmdm21r 2du21r 2 sin2 u df2. ~42!

The transformations between the Eulerian and Lagrang
coordinates involve eight nontrivial quantities, the eleme
of the Jacobian matrices

J$ t̃ ,r %→$t,m%5S ] t̃

]t

] t̃

]m

]r

]t

]r

]m

D , ~43!

J$t,m%→$ t̃ ,r %5S ]t

]t

]t

]r

]m

] t̃

]m

]r

D . ~44!

Two of these elements,]m/]r and]m/] t̃ , are determined by
Eqs. ~39! and ~40!. The relationship between Eqs.~38! and
~42!—specifically, the requirements gtt51 and
gtm50—provide two more equations. The identi
J$ t̃ ,r %→$t,m%5(J$t,m%→$ t̃ ,r %)

21 provides the remaining fou
equations, and we find that, toO(v),
6-6
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S ] t̃

]t

] t̃

]m

]r

]t

]r

]m

D 5S 1
v

4pr 2r

v
1

4pr 2r

D , ~45!

S ]t

]t

]t

]r

]m

] t̃

]m

]r

D 5S 1 2v

24pr 2rv 4pr 2r
D .

~46!

From these relations we see that toO(v), the line element in
our Lagrangian coordinates is

ds25gmndxmdxn

52dt21S 1

4pr 2r D 2

dm21r 2du21r 2 sin2 u df2,

~47!

whose determinant is

g52S sinu

4pr D 2

. ~48!

These metric components can be used to obtain results
to O(v) @26#.

Now we consider the equations of motion that determ
the particle trajectories. The rates of change, along a par
worldline, of the coordinate basis position compone
$xm%5$t,m,u,f% and comoving orthornomal basis mome

tum components$pm̂%5$p0̂,p1̂,p2̂,p3̂% are given by Eqs.
~15! and ~16!:

dxm

dl
5Lm

m̂pm̂, ~49!

dpm̂

dl
52Gm̂

n̂r̂pn̂pr̂. ~50!

We now consider the quantitiesLm
m̂ andGm̂

n̂r̂ appearing in
these equations. As discussed in the previous subsec
Lm̂

m5Lm̂
m̄em̄

m is a composite transformation from the coo
dinate basis~denoted by unadorned indices! to an orthonor-
mal comoving basis~denoted by hatted indices!. In the
present case the coordinate basis is already comoving, so
the boostLm̂

m̄ is simply the identity transformation. Unde
the remaining transformationem̄

m to an orthonormal basis
the metric of Eq.~47! must become the Lorentz metric. W
make an obvious choice and take the nonzero transforma
elementsLm̂

m to be

L0̂
t51, ~51!
02300
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L1̂
m5

1

4pr 2r
, ~52!

L2̂
u5r , ~53!

L3̂
f5r sinu. ~54!

The elementsLm
m̂ of the inverse transformation are obviou

Turning to the connection coefficients, we employ Eqs.~13!,
~47!, and ~45! to find the nonzero coordinate basis conne
tion coefficientsGm

nr to be

G t
mm52S 1

4pr 2r D 2S 2v
r

1
] ln r

]t D , ~55!

G t
uu5rv, ~56!

G t
ff5rv sin2 u, ~57!

Gm
tm5Gm

mt52S 2v
r

1
] ln r

]t D , ~58!

Gm
mm52S 1

2pr 3r
1

] ln r

]m D , ~59!

Gm
uu524pr 3r, ~60!

Gm
ff524pr 3r sin2 u, ~61!

Gu
tu5Gu

ut5Gf
tf5Gf

ft5
v
r

, ~62!

Gu
mu5Gu

um5Gf
mf5Gf

fm5
1

4pr 3r
, ~63!

Gu
ff52sinu cosu, ~64!

Gf
uf5Gf

fu5cotu. ~65!

Now we can obtain the connection coefficients in the orth
normal comoving frame by employing Eqs.~17!, ~51!–~54!,
and ~55!–~65!. We find that the nonzeroGm̂

n̂r̂ are

G 0̂
1̂1̂5G 1̂

1̂0̂52S 2v
r

1
] ln r

]t D , ~66!

G 0̂
2̂2̂5G 0̂

3̂3̂5G 2̂
2̂0̂5G 3̂

3̂0̂5
v
r

, ~67!

G 1̂
2̂2̂5G 1̂

3̂3̂52G 2̂
2̂1̂2G 3̂

3̂1̂52
1

r
, ~68!

G 2̂
3̂3̂52G 3̂

3̂2̂52
cotu

r
. ~69!

Note that unlike theGm
nr , the Gm̂

n̂r̂ are not symmetric in
their lower indicesn̂ r̂ because the comoving orthonorm
6-7
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basis is not a coordinate basis. WithLm
m̂ and Gm̂

n̂r̂ now
explicitly specified, our consideration of the particle equ
tions of motion is complete.

The next topic to consider from the previous subsectio
the Liouville vector. This vector generates the phase flow
the set of trajectories„x(l),p(l)… obtained from the particle
equations of motion, Eqs.~49! and ~50!. These are trajecto
ries through the eight-dimensional manifold comprised
position vectorsx and momentum vectorsp. But a seven-
dimensional submanifold, the phase space for particles
definite mass, is of more immediate interest: The phys
fact that the particles have definite mass—as embodied in
‘‘mass shell’’ constraint of Eq.~19!—implies that there are
only three independent momentum variables. We cho

these to be$uî %5$e,m,w%, related to the comoving ortho

normal basis momentum components$pî % by

p1̂5em, ~70!

p2̂5eA12m2 cosw, ~71!

p3̂5eA12m2 sinw. ~72!

In the present case of massless particles, the mass shell
dition gives

p0̂5e. ~73!

From these expressions one can compute the Jaco

(]pî /]uĵ ) and its inverse (]uî /]pĵ ); this inverse is

S ]e

]p1̂

]e

]p2̂

]e

]p3̂

]m

]p1̂

]m

]p2̂

]m

]p3̂

]w

]p1̂

]w

]p2̂

]w

]p3̂

D
5S m A12m2 cosw A12m2 singJ

12m2

e

2mA12m2 cosw

e

2mA12m2 sinw

e

0
2sinw

eA12m2

cosw

eA12m2

D .

~74!

We are now ready to write down the Liouville vector on t
phase space for particles of definite mass, obtained with
help of Eqs.~22!, ~51!–~54!, ~66!–~69!, and~70!–~74!:
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Lm5e
]

]t
14pr 2rem

]

]m
1e2Fm2S 3v

r
1

] ln r

]t D2
v
r G ]

]e

1e~12m2!F1

r
1mS 3v

r
1

] ln r

]t D G ]

]m
1¯ , ~75!

where ‘‘̄ ’’ represents]/]u, ]/]f, and]/]w terms whose ex-
plicit form we will not need in this spherically symmetri
case.

Finally we consider volume and ‘‘surface’’ elements
phase space. From Eqs.~28! and~48!, the spacetime volume
element is

h5
sinu

4pr
dt∧dm∧du∧df. ~76!

Contraction ofh with the coordinate basis vectors]/]t,
]/]m, ]/]u, and]/]f produces@see Eq.~35!# the spacetime
surface elements

s t5
sinu

4pr
dm∧du∧df, ~77!

sm52
sinu

4pr
dt∧du∧df, ~78!

su5
sinu

4pr
dt∧dm∧df, ~79!

sf52
sinu

4pr
dt∧dm∧du. ~80!

Turning to momentum space, from Eqs.~31! and ~70!–~73!
the invariant volume element in momentum space is found
be

pm5ede∧dm∧dw. ~81!

We form the volume element on phase space, using E
~32!, ~76!, and~81!:

V5h∧pm ~82!

5
sinue

4pr
dt∧dm∧du∧df∧de∧dm∧dw. ~83!

With the help of Eqs.~75! and ~83!, we also construct the
surface element in phase space that is normal to the p
flow, the 6-formv of Eq. ~34!:
6-8
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v5Lm•V ~84!

5
sinue

4pr
@~Lm! tdm∧du∧df∧de∧dm∧dw2~Lm!mdt∧du∧df∧de∧dm∧dw1~Lm!edt∧du∧df∧dm∧dm∧dw

2~Lm!mdt∧dm∧du∧df∧de∧dw1¯# ~85!

5
sinue2

4pr
dm∧du∧df∧de∧dm∧dw2r 2 sinue2mdt∧du∧df∧de∧dm∧dw1

sinue3

4pr Fm2S 3v
r

1
] ln r

]t D2
v
r G

3dt∧du∧df∧dm∧dm∧dw2
sinue2~12m2!

4pr F1

r
1mS 3v

r
1

] ln r

]t D Gdt∧dm∧du∧df∧de∧dw1¯ , ~86!

where ‘‘̄ ’’ represents terms arising from the]/]u, ]/]f, and]/]w terms of the Liouville vector. The validity of Eq.~37! can
be verified@see Eq.~25! for the definition of the exterior derivative#:

dv5X ]

]t S sinue2

4pr D1
]

]m
~r 2 sinue2m!1

]

]e H sinue3

4pr Fm2S 3v
r

1
] ln r

]t D2
v
r G J 1

]

]m H sinue2~12m2!

4pr

3F1

r
1mS 3v

r
1

] ln r

]t D G1¯J C3dt∧dm∧du∧df∧de∧dm∧dw ~87!

50, ~88!

where the expression for]r /]m is taken from Eq.~45!. The terms explicitly displayed in Eq.~87! do in fact sum to zero by
themselves, and it can be shown that those represented by ‘‘¯’’ do as well.
bi
e

um
o
nn
f
a

a
n

an
ci
d

p
s

o
o

g

ve
f a
or

n
nal

—
a

la-
III. THE DISTRIBUTION FUNCTION, BOLTZMANN
EQUATION, AND BALANCE EQUATIONS

In this section—again following Ehlers@22# for the gen-
eral case—we define the distribution functionf, derive the
Boltzmann equation, and present the equations descri
the balance of particle number and 4-momentum. In the g
eral case we reproduce Ehlers’ derivation of the moment
integrated number balance equation, and explain why it d
not yield a conservative reformulation of the Boltzma
equation. We also present the balance equation
4-momentum without derivation. In the special case of L
grangian coordinates in spherical symmetry toO(v), we
verify part of the general derivation of the Boltzmann equ
tion by explicit calculation. We also display the Boltzman
equation and the momentum-integrated number
4-momentum balance equations pertaining to this spe
case, including the transformation to the lab frame neede
obtain a ‘‘conserved’’ energy.

A. The distribution function, Boltzmann equation,
and balance equations: The general case

The distribution function ffor a particle of a given type
represents the density of particles in phase space. The
ticle type’s seven-dimensional phase space for particle
definite mass,Mm , is filled with trajectories„x(l),p(l)…, or
‘‘states.’’ As a collection of particles evolves, the number
particles in each state changes due to collisions. If one c
siders a six-dimensional hypersurfaceS in Mm , the
ensemble-averaged numberN@S# of occupied states crossin
S is
02300
ng
n-
-

es

or
-

-

d
al
to

ar-
of

f
n-

N@S#5E
S

f v, ~89!

where the surface elementv is given by Eq.~34!. @Hyper-
surfaces likeS are oriented, and the particle trajectories ha
a direction associated with them as well. The crossing o
hypersurface by an occupied trajectory can give a positive
negative contribution to Eq.~89!, depending on their relative
orientation.# With this definition, the distribution function
f (x,p) is a scalar@22#.

An equation governing the evolution of the distributio
function is obtained by considering a closed six-dimensio
hypersurface]D bounding a regionD in Mm . The net num-
ber of occupied states emerging fromD is, from Eq.~89! and
the generalized Stokes’ theorem,

N@]D#5E
]D

f v5E
D

d~ f v!. ~90!

~We note in passing—and discuss in more detail in Sec. IV
that this expression, which relates a volume integral to
surface integral, is key to obtaining conservative formu
tions of kinetic theory.! Using the ‘‘product rule’’ of Eq.~27!,
the vanishing exterior derivative ofv @Eq. ~37!#, and the
definition of v as the contraction of the Liouville vectorLm
with the volume elementV @Eq. ~34!#, we have

d~ f v!5d f∧v5d f∧~Lm•V!. ~91!
6-9
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Any scalar functionf, vector fieldL, andn-form field V on
an n-dimensional manifold obey the identity@22#

d f∧~L•V!5L@ f #V. ~92!

Hence the net number of occupied states emerging fromD is

N@]D#5E
D

Lm@ f #V. ~93!

@Equations~90!–~93! amount to the Liouville theorem in a
relativistic context.# The domainD in phase space consists
a regionH in spacetime, together with regionsKx in the
momentum space~the mass shell in the tangent space! at
each spacetime pointx. Recall also that the volume eleme
V in phase space is the product of the spacetime and
mentum space volume elements,V5h∧pm . Hence the in-
tegral overD in Eq. ~93! can be expressed as the iterat
integral

N@]D#5E
H

hS E
Kx

Lm@ f #pmD . ~94!

Because]D is a closed surface, the net number of partic
in trajectories emerging fromD must equal the net number o
collisions in D. If correlations between particles can be n
glected, the spacetime density of collisions can be expre
in terms of acollision integral C@ f # that depends only on
one-particle distribution functions. Therefore, if*Kx

C@ f #pm

denotes the spacetime density of collisions, we have

N@]D#5E
H

hS E
Kx

C@ f #pmD . ~95!

Because the regionsH and Kx are arbitrary, comparison o
Eqs.~94! and~95! shows that the evolution off is determined
by

Lm@ f #5C@ f #, ~96!

or, using Eq.~22!,

pm̂Lm
m̂

] f

]xm 1~eFĵ
n̂pn̂2G ĵ

n̂ r̂pn̂pr̂ !
]uî

]pĵ

] f

]uî
5C@ f #.

~97!

This is the Boltzmann equation.
Next we consider the particle number 4-current, elect

magnetic 4-current, and stress-energy tensor, and presen
balance equations they satisfy. In Eq.~89!, specialize the
hypersurface ofMm to be S5G3Pm(x), where G is an
infinitesimal spacelike hypersurface in spacetime at poinx,
andPm(x) is the entire momentum space at pointx @31#. As
explained in the end note to the discussion following E
~36!, on such a hypersurface the only relevant term ofv is its
first term in Eq.~34! @given also by Eq.~36!#, so that Eq.
~89! becomes

N@G3Pm~x!#5E
G

smS E
Pm~x!

fLm
m̂pm̂pmD . ~98!
02300
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This is the number of particles whose worldlines crossG ~at
x!; hence the 4-vector

Nm~x!5E
Pm~x!

fLm
m̂pm̂pm5E

Pm~x!
f pmpm ~99!

is the particle 4-current density. The electromagne
4-current is obtained by multiplying by the electric charg
Jm5eNm. The particle 4-current satisfies the balance eq
tion

1

A2g

]

]xm ~A2gNm!5E C@ f #pm , ~100!

and similarly for the electromagnetic 4-current.~Of course
the collisions will be such that the sum of the divergences
the electromagnetic 4-currents of all particle species w
vanish.! The stress-energy tensor is

Tmn5E
Pm~x!

fLm
m̂Ln

n̂pm̂pn̂pm5E
Pm~x!

f pmpnpm ,

~101!

which obeys the balance equation

1

A2g

]

]xm ~A2gTnm!5Fn
mJm2Gn

rmTrm

1E C@ f #Ln
n̂pn̂pm . ~102!

To conclude this subsection, we reproduce Ehlers’ deri
tion of Eq. ~100! for number balance, and explain why th
proof does not yield a conservative reformulation of t
Boltzmann equation. The proof involves forming an integ
over a suitable hypersurface in phase space, evaluating
integral in two different ways, and comparing the results.

First we specialize the integral in Eq.~89! to a specific
hypersurface of integration. Consider an arbitrary region
spacetime,D̂, whose boundary is]D̂. Form a hypersurface
]D in the seven-dimensional phase spaceMm , composed of
the boundary region]D̂ in spacetime together with the entir
momentum spacePm(x) at each point of]D̂. Equation~89!
becomes

N@]D#5E
]D

f v, ~103!

the integral we will evaluate in two different ways.
On the one hand, as derived in Eqs.~90!–~93!, the inte-

gral in Eq.~103! can be written

N@]D#5E
D

Lm@ f #V. ~104!

With the Boltzmann equation, Eq.~96!,

N@]D#5E
D
C@ f #V5E

D̂
hS E

Pm~x!
C@ f #pmD . ~105!
6-10
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On the other hand, the integral in Eq.~103! can be evalu-
ated directly. As a first step, integrate over momentum sp
at each point of]D̂. As discussed in Sec. II B, in such inte
grals over three-dimensional regions in momentum sp
only the first term ofv in Eq. ~34! contributes@see in par-
ticular the end note in the sentence following Eq.~36!#. Us-
ing Eq. ~36! to express the first term ofv, Eq. ~103! can be
expressed as

N@]D#5E
]D̂

smS E
Pm~x!

Lm
m̂pm̂ f pmD ~106!

5E
]D̂

smNm~x!, ~107!

where the definition@Eq. ~99!# of the particle number curren
has been employed in the second step. Equation~107! is a
closed surface integral in spacetime; by the divergence th
rem~a special case of the generalized Stokes theorem!, it can
be converted into a spacetime volume integral:

N@]D#5E
D̂

hNm
;m ~108!

5E
D̂

h
1

A2g

]

]xm ~A2gNm!. ~109!

Because the spacetime regionD̂ is arbitrary, Eq.~100! fol-
lows from comparison of Eqs.~105! and ~109!.

Now we can see why this type of proof does not yield
conservative reformulation of the Boltzmann equation.
particular, we can see why no direct insight is gained into
fate of the nonconservative momentum derivative terms
the Boltzmann equation@Eq. ~97!# upon integration over mo
mentum space. The left-hand side of Eq.~97! arises from the
action of the Liouville vector onf. Similarly, the phase spac
surface elementv of Eq. ~34! is given by the contraction o
02300
ce

e

o-

e
n

the Liouville vector with the phase space volume elementV.
Inspection shows that the second term of Eq.~34! is closely
related to the momentum derivative terms in the Boltzma
equation. But in the above derivation of the number bala
equation, an expression forNm is obtained at an early stag
by integration over momentum space; this integration k
these terms ofv, so that they are no longer present by t
time the spacetime divergence theorem is applied. The po
and elegance of exterior calculus has hidden the algeb
details of the connection between the Boltzmann equa
and the number balance equation.

This is remedied in Sec. IV. Instead of choosing a spec
ized hypersurface involving all of momentum space a
evaluating the surface integral of the left-hand side of E
~90!, the path to conservative reformulations of the Bol
mann equations involves analysis of the volume integral
the right-hand side of Eq.~90!, for hereall the terms ofv
have been brought inside the exterior derivative, includ
the ones related to the momentum derivative terms appea
in the Boltzmann equation.

B. The distribution function, Boltzmann equation, and balance
equations: Lagrangian coordinates in spherical symmetry

to O„v…

The first result to specialize from the previous subsect
is the Boltzmann equation. An aspect of the derivation t
can be demonstrated by explicit calculation is the assert

d f∧v5Lm@ f #V ~110!

contained in Eqs.~91! and ~92!. In spherical symmetryf
5 f (t,m,e,m), so that its gradient is

d f5
] f

]t
dt1

] f

]m
dm1

] f

]e
de1

] f

]m
dm. ~111!

Forming the wedge product withv of Eq. ~86! results in
ison with
Eq.
d f∧v5H sinue2

4pr

] f

]t
1r 2 sinue2m

] f

]m
1

sinue3

4pr Fm2S 3v
r

1
] ln r

]t D2
v
r G ] f

]e
1

sinue2~12m2!

4pr F1

r
1mS 3v

r
1

] ln r

]t D G ] f

]mJ
3dt∧dm∧du∧df∧de∧dm∧dw, ~112!

where all other terms vanish because the wedge product of a 1-form with itself vanishes due to antisymmetry. Compar
Eqs.~75! and~83! for Lm andV then shows thatd f∧v5Lm@ f #V, as was to be demonstrated. The Boltzmann equation,
~97!, specializes to

e
] f

]t
14pr 2rem

] f

]m
1e2Fm2S 3v

r
1

] ln r

]t D2
v
r G ] f

]e
1e~12m2!F1

r
1mS 3v

r
1

] ln r

]t D G ] f

]m
5C@ f #. ~113!

This agrees with Eq.~20! of Ref. @26#.
Next we specialize Eq.~100! for particle number balance. Equations~99!, ~51!–~54!, ~70!–~73!, and~81!, together with the

fact that f 5 f (t,m,e,m) in spherical symmetry, imply that

Nt5E f 2pe2de dm[rHN, ~114!
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Nm54pr 2rE f 2pe2mdm[4pr 2r2GN ~115!

are the only nonvanishing components of the particle number vector. With these expressions and Eqs.~48! and~81!, Eq. ~100!
becomes

]HN

]t
1

]

]m
~4pr 2rGN!5

1

r E C@ f #e de dm dw. ~116!

This agrees with Eq.~28! ~with lapse functiona set to 1 for flat spacetime! of Ref. @19#.
Finally we specialize Eq.~102! for particle number 4-momentum balance. Equations~99!, ~51!–~54!, ~70!–~73!, and~81!,

together with the fact thatf 5 f (t,m,e,m) in spherical symmetry, imply that

Ttt5E f 2pe3de dm[rHE, ~117!

Ttm5Tmt54pr 2rE f 2pe3m dm[4pr 2r2GE, ~118!

Tmm5~4pr 2r!2E f 2pe3m2dm[~4pr 2r!2rPE, ~119!

Tuu5
1

r 2 E f pe3~12m2!dm[
r

2r 2 ~HE2PE!, ~120!

Tff5
1

r 2 sin2 u E f pe3~12m2!dm[
r

2r 2 sin2 u
~HE2PE! ~121!

are the only nonvanishing components of the particle stress-energy tensor. With these expressions and Eqs.~48!, ~55!–~65!,
~51!–~54!, ~70!–~73!, and~81!, the t andm components of Eq.~102! become

]HE

]t
1

]

]m
~4pr 2rGE!1

v
r

~HE2PE!2S 2v
r

1
] ln r

]t D PE

5
1

r E C@ f #e2de dm dw, ~122!

1

r 2r

]

]t
~r 2rGE!1

1

4pr 2r

]

]m
@~4pr 2r!2PE#2

1

r
~HE2PE!22S 2v

r
1

] ln r

]t DGE2~4pr 2r!S 1

2pr 3r
1

] ln r

]m D PE

5
1

r E C@ f #e2m de dm dw. ~123!
e

-
in
co
co

in

e

With the help of Eq.~45!, them component equation can b
expressed as

]GE

]t
1

]

]m
~4pr 2rPE!2

1

r
~HE2PE!2S 2v

r
1

] ln r

]t DGE

5
1

r E C@ f #e2m de dm dw. ~124!

Equations~122! and~124! agree with the expressions follow
ing Eq.~31! of Ref. @19#. As expected from the discussion
Sec. I, these 4-momentum balance equations have non
servative terms arising from the nonvanishing connection
efficients of Eqs.~55!–~65!.
02300
n-
-

It was also noted in Sec. I that in Eulerian coordinates

flat spacetime, the connection coefficientsG t̃
mn vanish, so

that a conserved energy can be defined. Equation~102! for
particle 4-momentum balance is a vector equation; tht̃
component of a vectorV is obtained from thet andm com-
ponents by the transformation

Vt̃5
] t̃

]t
Vt1

]t

]m
Vm, ~125!

where the transformation coefficients are given by Eq.~45!.
Equation ~122! is actually r21 times the t component of
4-momentum balance, and Eq.~124! is (4pr 2r2)21 times
6-12
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the m component. These factors must be restored be
plugging into Eq.~125!; the final result for thet̃ component
of 4-momentum balance is

]

]t
~HE1vGE!1

]

]m
@4pr 2r~GE1vPE!#

2
1

r 2r

]

]t
~r 2rv !GE

5
1

r E C@ f #~11vm!e2de dm dw. ~126!

@The O(v) baryon conservation expression

] ln r

]t
1

2v
r

14pr 2r
]v
]m

50, ~127!

obtained from Eqs.~40! and~45!, ~46!, has been employed.#
Equation~126! agrees with Eq.~32! of Ref. @19#. The non-
conservative third term on the left-hand side isO(v2) and
ought to be dropped at the level of approximation we
using. However, it is retained in Ref.@19# for a practical
reason. In supernova simulations velocities can exceed
ues for which theO(v) approximation is strictly valid; and
while use of theO(v) formalism might be questioned o
physical grounds, theO(v2) nonconservative term can sti
be used to check that the numerical implementation of
O(v) Boltzmann equation is consistent with Eq.~126!.
02300
re

e

al-

e

IV. CONSERVATIVE FORMULATIONS
OF PARTICLE KINETICS

We are now in a position to present conservative form
lations of kinetic theory. We seek expressions closely tied
Eq. ~100! for particle number balance and Eq.~102! for par-
ticle 4-momentum balance. In addition to deriving these c
servative formulations in the general case, we show the
lationship between them and explain the care that mus
exercised in finite differencing the number balance equa
in order to make it consistent with the energy balance eq
tion. We also specialize these results to Lagrangian coo
nates in spherical symmetry toO(v), and see that the ‘‘num-
ber conservative’’ Boltzmann equation—arrived at in the p
by guesswork@24#—emerges naturally from our formalism

A. Conservative formulations of particle kinetics:
The general case

For an expression related to particle number balance,
derivation of the Boltzmann equation in the previous sect
had us closer to the desired result than might first be realiz
In rushing headlong towards an equation forf, the key rela-
tion is easily overlooked: It is Eq.~90!, the result of the
generalized Stokes’ theorem. The integrand on the right-h
side of Eq.~90!, d( f v), is conservative: Having been ob
tained from Stokes’ theorem~the generalization of the diver
gence theorem!, it haseverythinginside the exterior deriva-
tive. Being an exterior derivative, it is too abstract to
directly useful; but massaging it just enough to bring it in
the formd( f v)5N@ f #V, whereV is the volume element in
phase space, we shall see thatN@ f # is in fact a conservative
differential operator in the familiar, elementary sense.

Now we take a detailed look at Eq.~90!, in particular the
exterior derivative
tes,
n

m,
d~ f v!5d~A2gpm̂Lm
m̂ f emunrsudxnrs!∧pm2~A2gpm̂Lm

m̂ f sm!∧dpm1dS 1

E~p!
UdetF ]p

]u
GU

3~eFĵ
n̂pn̂2G ĵ

n̂ r̂pn̂pr̂ !
]uî

]pĵ
f e 0̂ î uk̂n̂uduk̂n̂D ∧h1S 1

E~p!
UdetF ]p

]u
GU~eFĵ

n̂pn̂2G ĵ
n̂ r̂pn̂pr̂ !

]uî

]pĵ
f e 0̂ î uk̂n̂uduk̂n̂D ∧dh,

~128!

where we have used Eqs.~34!, ~35!, ~26!, and~27! and employed the vertical bar notation introduced in Eq.~24!. The exterior

derivatives will be expressed in terms of the basis$dxm,duî % on Mm . First we note that in our chosen momentum coordina
the second term in Eq.~128! vanishes becausedpm50: This is becausepm as expressed in Eq.~31! has no dependence o

$xm%, and while it depends on$uî %, adding another momentum 1-form to the wedge productdu1̂2̂3̂ would cause it to vanish
due to its antisymmetry. Similarly, the fourth term vanishes becausedh50. To understand what happens to the first ter
consider one of the terms in the sum overm:

d~A2gpm̂L0
m̂ f e0u123udx123!∧pm5

]

]x0 ~A2gpm̂L0
m̂ f !dx0123∧pm . ~129!

While derivatives with respect to$xi% and$uî % are nonvanishing, only the wedge product ofdx0 with dx123 is nonvanishing,
and the wedge product inpm does not admit another momentum 1-form. The other terms in the sum overm are similar. To
understand the third term in Eq.~128!, consider a particular term in the sum overî :
6-13
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dS 1

E~p!
UdetF ]p

]u
GU~eFĵ

n̂pn̂2G ĵ
n̂ r̂pn̂pr̂ !

]u1̂

]pĵ
f e 0̂1̂u2̂3̂udu2̂3̂D ∧h5

]

]u1̂ S 1

E~p!
UdetF ]p

]u
GU~eFĵ

n̂pn̂2G ĵ
n̂ r̂pn̂pr̂ !

]u1̂

]pĵ
f D du1̂2̂3̂∧h,

~130!

and similarly for the other terms in the sum overî . With Eq. ~33!, all terms in Eq.~128! can be assembled to form th
expression

d~ f v!5N@ f #V, ~131!

where

N@ f #[
1

A2g

]

]xm
~A2gLm

m̂pm̂ f !1E~p!UdetF ]p

]u
GU21

]

]uî
S 1

E~p!
UdetF ]p

]u
GU~eFĵ

n̂pn̂2G ĵ
n̂ r̂pn̂pr̂ !

]uî

]pĵ
f D . ~132!

In the derivation of the Boltzmann equation, Eq.~131! can be used to replace Eq.~93! with a similar expression in which
Lm@ f # is replaced byN@ f #, with the result that

N@ f #5C@ f #. ~133!

This is our conservative formulation of particle number kinetics.
Next we seek a formulation related to particle 4-momentum balance. With arbitraryvm , we evaluate the exterior derivativ

d(vmpm f v) in two separate ways.~To simplify formulas, we often writepm instead ofLm
m̂pm̂, but because of our chose

momentum coordinates onMm the latter expression must often be used in computational steps.! First, employing Eqs.~131!
and ~133!,

d~vmpm f v!5d~vmpm!∧ f v1vmpmC@ f #V. ~134!

Computation shows that

d~vmpm!∧ f v5S pmpn f
]vm

]xn
1vm f pnpm̂

]Lm
m̂

]xn D V1vmS Lm
0̂

]p0̂

]pĵ
1Lm

î

]pî

]pĵ D ~eFĵ
n̂pn̂2G ĵ

n̂ r̂pn̂pr̂ ! f V. ~135!

Because of the mass shell constraint@Eq. ~19!#, p0̂ is considered a function of the$pî %. The geodesic equation@Eq. ~16!# can
be used to show that

]p0̂

]pĵ
~eFĵ

n̂pn̂2G ĵ
n̂ r̂pn̂pr̂ !5eF0̂

n̂pn̂2G 0̂
n̂ r̂pn̂pr̂. ~136!

This, together with Eq.~17! for the transformation of the connection coefficients, allows Eq.~135! to be written

d~vmpm!∧ f v5S pmpn f
]vm

]xn 1vm~eFm
npn2Gm

nrpnpr! f DV. ~137!

Second, we evaluated(vmpm f v) directly. A computation similar to that leading to Eqs.~131! and ~132! yields

d~vmpm f v!5S pmpn f
]vm

]xn 1vmTm@ f # DV, ~138!

where

Tm@ f #[
1

A2g

]

]xn
~A2gLm

m̂Ln
n̂pm̂pn̂ f !1E~p!UdetF ]p

]u
GU21

]

]uî
S 1

E~p!
UdetF ]p

]u
GU~eFĵ

n̂pn̂2G ĵ
n̂ r̂pn̂pr̂ !

]uî

]pĵ
Lm

m̂pm̂ f D .

~139!

Recalling thatvm is arbitrary, Eqs.~134! and ~137!–~139! can be combined into

Tm@ f #5~eFm
nLn

n̂pn̂2Gm
nrLn

n̂Lr
r̂pn̂pr̂ ! f 1Lm

m̂pm̂C@ f #, ~140!
023006-14
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a ‘‘conservative’’ formulation of particle 4-momentum kinetics.
To illuminate the practical problem of accurately accounting for both particle number and energy, we consider th

tionship between Eq.~133! for particle number kinetics and thet component of Eq.~140! for particle 4-momentum kinetics
~This is an issue when one follows the general approach of, for example, Refs.@2#, @3#, @5#, in which a particle number
distribution equation is solved and a particle energy equation is used as a consistency check.! Specifically, we need to relate
the spatial and momentum divergence terms of these equations to each other and identify terms that cancel.

First we relate the spatial and momentum divergence terms of Eq.~133! and thet component of Eq.~140!. Their spatial
divergence terms,

Nx@ f #[
1

A2g

]

]xm ~A2gLm
m̂pm̂ f !, ~141!

~Tt!x@ f #[
1

A2g

]

]xm ~A2gLt
n̂Lm

m̂pn̂pm̂ f !, ~142!

are related by

Lt
n̂pn̂Nx@ f #5~Tt!x@ f #2 f pm̂pn̂Lm

m̂

]

]xm ~Lt
n̂ !. ~143!

Their momentum divergence terms,

Np@ f #[E~p!UdetF ]p

]u
GU21

]

]uî S 1

E~p!
UdetF ]p

]u
GU~eFĵ

m̂pm̂2G ĵ
m̂r̂pm̂pr̂ !

]uî

]pĵ
f D , ~144!

~Tt!p@ f #[E~p!UdetF ]p

]u
GU21

]

]uî S 1

E~p!
UdetF ]p

]u
GU~eFĵ

m̂pm̂2G ĵ
m̂r̂pm̂pr̂ !

]uî

]pĵ
Lt

n̂pn̂ f D , ~145!
-

io

ions.

are related by

Lt
n̂pn̂Np@ f #5~Tt!p@ f #2 f ~eFĵ

m̂pm̂

2G ĵ
m̂r̂pm̂pr̂ !

]uî

]pĵ
Lt

n̂

]pn̂

]uî
. ~146!

Comparison of Eqs.~143! and ~146! with Eq. ~133! and
the t component of Eq.~140! shows that the following equa
tion must be valid:

ES1EM5eFt
m̂Lm

m̂pm̂2G t
mrLm

m̂Lr
r̂pm̂pr̂, ~147!

where

ES[ f pm̂pn̂Lm
m̂

]

]xm ~Lt
n̂ ! ~148!

is the ‘‘extra’’ term of Eq. ~143! relating the spatial diver-
gence terms of the number and energy balance equat
and

EM[ f ~eFĵ
m̂pm̂2G ĵ

m̂r̂pm̂pr̂ !
]uî

]pĵ
Lt

n̂

]pn̂

]uî
~149!
02300
ns,

is the ‘‘extra’’ term in Eq.~146! relating the momentum di-
vergence terms of the number and energy balance equat
Noting that

]uî

]pĵ
Lt

n̂

]pn̂

]uî
5

]p0̂

]pĵ
Lt

0̂1d k̂
ĵLt

k̂ , ~150!

Eq. ~136! can be used to rewrite Eq.~149! as

EM5 f ~eFn̂
m̂pm̂2Gn̂

m̂r̂pm̂pr̂ !Lt
n̂ . ~151!

Use of Eq.~17! and two applications of the identity

Lm
r̂

]

]xs ~Lr̂
n!52Lr̂

n

]

]xs ~Lm
r̂! ~152!

lead finally to

EM5 f FeFt
mLm

m̂pm̂2G t
mrLm

m̂Lr
r̂pm̂pr̂

2pm̂pn̂Lm
m̂

]

]xm ~Lt
n̂ !G . ~153!

Equations~148! and~153! make it obvious that Eq.~147! is
satisfied.
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In a computational approach to transport in which a p
ticle number distribution equation is solved and a parti
energy equation is used as a consistency check, care mu
taken that Eq.~147! is satisfied numerically. In particular,
given finite difference representation of the spacetime div
genceNx@ f # implies a corresponding finite difference repr
sentation of position-dependent quantities inES , and the
position-dependent quantities in terms ofEM that cancel with
ES must have a matching finite difference representati
Similarly, a given finite difference representation of the m
mentum divergenceNp@ f # implies a corresponding finite dif
02300
r-
e
t be

r-

.
-

ference representation of momentum variables inEM , and
the momentum variables in terms ofES that cancel with
terms ofEM must have a matching finite difference represe
tation.

B. Conservative formulations of particle kinetics: Lagrangian
coordinates in spherical symmetry toO„v…

Using Eqs.~48!, ~51!–~54!, ~66!–~69!, and~70!–~73!, the
‘‘number conservative’’ formulation of Eq.~133! specializes
to
a

]

]t S f

r D1
]

]m S 4pr 2rm
f

r D1
1

e2

]

]e H e3Fm2S 3v
r

1
] ln r

]t D2
v
r G f

r J 1
]

]m H ~12m2!F1

r
1mS 3v

r
1

] ln r

]t D G f

r J 5
1

re
C@ f #,

~154!

which agrees with Eq.~23! of Ref. @24#. In Ref. @24#, the necessity of makingf /r the evolved variable in order to get
conservative particle number equation is left unexplained. In the present formalism, we see that the factor 1/r comes from the
factorA2g5sinu/4pr in Eq. ~100!. Multiplication of Eq.~154! by e2de dm dw and integrating immediately yields Eq.~116!,
expressing particle number ‘‘conservation.’’

Similarly, thet andm components of the ‘‘momentum conservative’’ formulation of Eq.~140! are

]

]t S e f

r D1
]

]m S 4pr 2rem
f

r D1
1

e2

]

]e S e4Fm2S 3v
r

1
] ln r

]t D2
v
r G f

r D1
]

]m S ~12m2!F1

r
1mS 3v

r
1

] ln r

]t D G e f

r D
5S 2v

r
1

] ln r

]t D em2f 2
v
r

e~12m2! f 1
1

r
C@ f # ~155!

and

1

r 2r

]

]t S r 2rem f

r D1
1

4pr 2r

]

]m S ~4pr 2r!2em2
f

r D1
1

e2

]

]e H e4mFm2S 3v
r

1
] ln r

]t D2
v
r G f

r J
1

]

]m H ~12m2!F1

r
1mS 3v

r
1

] ln r

]t D G em f

r J
52S 2v

r
1

] ln r

]t D em f 1~4pr 2r!S 1

2pr 3r
1

] ln r

]m D em2f 1
1

r
e~12m2! f 1

m

r
C@ f #. ~156!

With the help of Eq.~45!, them component equation can be expressed

]

]t S em f

r D1
]

]m S 4pr 2rem2
f

r D1
1

e2

]

]e H e4mFm2S 3v
r

1
] ln r

]t D2
v
r G f

r J 1
]

]m H ~12m2!F1

r
1mS 3v

r
1

] ln r

]t D G em f

r J
5S 2v

r
1

] ln r

]t D em f 1
1

r
e~12m2! f 1

m

r
C@ f #. ~157!

Multiplication of Eqs. ~155!–~157! by e2de dm dw and integrating immediately yields Eqs.~122!–~124!, expressions for
particle 4-momentum balance in the comoving frame.

Just as the comoving framet andm momentum-integrated balance equations—Eqs.~122! and~124!—can be combined to
form the lab framet̃ ‘‘conservation’’ equation, Eq.~126!, Eqs.~155! and ~157! can be combined as

]

]t Fe~11vm! f

r G1
]

]m S 4pr 2rem~11vm!
f

r D2
1

r 2r

]

]t
~r 2rv !em

f

r

1

e2

]

]e H e4~11vm!Fm2S 3v
r

1
] ln r

]t D2
v
r G f

r J
1

]

]m H ~12m2!F1

r
1mS 3v

r
1

] ln r

]t D Ge~11vm!
f

rJ 5
1

r
~11vm!C@ f #. ~158!
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Multiplication of this equation bye2de dm dw and integrating immediately yields Eq.~126! for lab frame energy ‘‘conserva
tion.’’

We now examine the relationship between Eq.~154!, a conservative formulation of particle number kinetics, and Eq.~158!,
a conservative formulation of particle energy kinetics. We multiply Eq.~154! by (11vm) and consider what it takes to get th
terms in Eq.~158!. In doing so, we examine carefully onlyO(v) terms. First the time derivative terms,

e~11vm!
]

]t S f

r D5
]

]t Fe~11vm! f

r G1O~v2!. ~159!

Next we compare the mass derivative terms:

e~11vm!
]

]m S 4pr 2rm
f

r D5
]

]m S 4pr 2rem~11vm!
f

r D24pr 2em2
]v
]m

f

r
. ~160!

In the notation of the previous subsection, the ‘‘extra terms’’ from the spacetime divergence are

ES54pr 2em2
]v
]m

f

r
1O~v2!. ~161!

Next we relate the momentum divergence terms in the number and energy equations, looking first at the energy de

e~11vm!
1

e2

]

]e H e3Fm2S 3v
r

1
] ln r

]t D2
v
r G f

r J
5

1

e2

]

]e H e4~11vm!Fm2S 3v
r

1
] ln r

]t D2
v
r G f

r J 2eFm2S 3v
r

1
] ln r

]t D2
v
r G f

r
1O~v2!, ~162!

and then at the angle derivatives:

e~11vm!
]

]m H ~12m2!F1

r
1mS 3v

r
1

] ln r

]t D G f

r J
5

]

]m H ~12m2!F1

r
1mS 3v

r
1

] ln r

]t D Ge~11vm!
f

rJ 2
ev~12m2!

r

f

r
1O~v2!. ~163!

In the notation of the previous subsection, the ‘‘extra terms’’ from the momentum divergence are

EM5eFm2S 3v
r

1
] ln r

]t D2
v
r G f

r
1

ev~12m2!

r

f

r
1O~v2!. ~164!

HavingES andEM , we are ready to verify Eq.~147!, which must be satisfied for consistency between the particle numbe
energy balance equations. Having specified electrically neutral particles, and having chosen to work with the lab fram
expression of Eq.~158! ~in which the connection coefficients vanish!, the right-hand side of Eq.~147! vanishes. Employing Eq
~127! for baryon conservation, from Eqs.~161! and ~164! it is easy to see that

ES1EM50 ~165!

is indeed satisfied analytically. But in solving the ‘‘number conservative’’ Eq.~154! numerically, consistency with the ‘‘energ
conservative’’ Eq.~158! requires that Eq.~165! be satisfiednumericallyas well. Reference@5# provides an example of a finite
difference representation of Eq.~154! that satisfies this criterion.

V. CONCLUSION

In this section we summarize our conservative formulations of kinetic theory, comment on their relation to m
formalisms, and discuss their possible application in the core-collapse supernova environment.

Having in mind computational radiative transfer in astrophysical environments, we have sought formulations of rela
kinetic theory with the following properties:~i! they are expressed in terms of global, Eulerian~or ‘‘lab-frame’’! spacetime

coordinates$xm%; ~ii ! they are expressed in terms of convenient three-momentum coordinates$uî % ~e.g., spherical polar!,

which are taken from the orthonormal momentum components$pî % measured by an observer comoving with the medium;
023006-17
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~iii ! they are ‘‘conservative,’’ having transparent connections to total particle number and 4-momentum balance as e
in Eqs.~100! and ~102!.

To express our formulations having these properties, we introduce here thespecific particle number flux vector

Nm[Lm
m̂rm̂ f ~166!

and thespecific particle stress-energy tensor

Tmn[Lm
m̂Ln

n̂pm̂pn̂ f , ~167!

where the transformation to the comoving frameLm̂
m is given by Eq.~14!. ~While the adjective ‘‘specific’’ often denotes

quantity measured per unit mass, in this context we use it to denote the particle flux and stress energy in a given
momentum space volume element.! While the distribution functionf of a given particle type of massm and chargee obeys the
Boltzmann equation@Eq. ~97!#, the specific particle number flux and stress energy satisfy the conservative equations

1

A2g

]

]xm ~A2gNm!1E~p!UdetF]p

]uGU21 ]

]uî S 1

E~p!
UdetF]p

]uGU~eFĵ
m̂2G ĵ

m̂n̂pn̂ !
]uî

]pĵ
Lm̂

mNmD
5C@ f #, ~168!

1

A2g

]

]xn ~A2gTmn!1E~p!UdetF]p

]uGU21 ]

]uî S 1

E~p!
UdetF]p

]uGU~eFĵ
n̂2G ĵ

n̂ r̂pr̂ !
]uî

]pĵ
Ln̂

nTmnD
5Fm

nNn2Gm
nrTnr1Lm

m̂pm̂C@ f #. ~169!
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In stating that Eqs.~168! and ~169! constitute conservative
formulations of particle kinetics, we mean that the conn
tion to the balance equations of Eqs.~100! and~102! is trans-
parent, in the following sense. We can use elementary ca
lus to form the familiar invariant momentum space volum
element

d3p

E~p!
5

1

E~p!
UdetF]p

]uGUd3u, ~170!

where a transformation from orthonormal momentum co

ponents$pî % to some other set of coordinates~e.g., momen-

tum space spherical coordinates$uî %5$upu,q,w%) has been
performed. Multiplying Eqs.~168! and ~169! by Eq. ~170!
and integrating, the terms with momentum space derivat
are obviously transformed into vanishing surface terms;
results are Eqs.~100! and~102! for total particle number and
4-momentum balance.

In terms of differential forms, the procedure for obtainin
the conservative formulations of kinetic theory is straig
forward. First, express the volume elementV in the phase
space for particles of definite mass in terms of the des
spacetime and 3-momentum coordinates. Next, by cont
tion with the Liouville vector, form the hypersurface eleme
v5Lm•V. Then bring the exterior derivatived( f v) into the
form N@ f #V by direct computation; Eq.~168! results on
comparison with the Boltzmann equation. This result c
then be used in conjunction with an evaluation
d(vmpm f v) for arbitraryvm to obtain Eq.~169!. The reason
the procedure is straightforward is that the ‘‘heavy lifting’’ o
transforming the Boltzmann equation into conservat
02300
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forms is handled by two ‘‘levers’’ of considerable powe
namely the generalized Stokes theorem and the key rela
dv50, which is closely related to the relativistic Liouvill
theorem.

A concrete example of our formalism is provided in th
Appendix, which containsO(v) equations for the specific
particle number density, specific particle energy density,
their angular moments—all in flat spacetime, but in coor
nates sufficiently general to represent rectangular, spher
and cylindrical coordinate systems.

We now comment on the connection of Eqs.~168! and
~169! to moment formalisms. In the usual treatments, if o
writes the distribution function as a function of momentu
variables as measured in a given frame~lab or comoving!, it
is natural to form moments by multiplying the distributio
function by, for example, energies and angles measure
that frame, and integrating. Lo and behold, it turns out t
these moments are number densities and fluxes, and en
momentum densities and fluxes: components of a part
number flux vector and stress-energy tensor, measured in
same frame chosen to measure angles and energies. T
tional, then, are treatments in which the components of c
served tensors as measured in a given frame are express
functions of momentum variables as measured in that s
frame.

But this traditional approach to moments may not be
most convenient, and Eqs.~168! and~169! provide an attrac-
tive alternative. For example, Liebendo¨rfer et al. @5,19# form
moments in the traditional way, resulting in components
conserved tensors as measured in anorthonormal comoving
frame. But it is the tensor components in thelab framethat
6-18
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CONSERVATIVE FORMULATIONS OF GENERAL . . . PHYSICAL REVIEW D 68, 023006 ~2003!
one would like to check, either because it is the coordin
basis~at least in a spatially multidimensional simulation! and
therefore natural to deal with, or because it is the basis
which energy is conserved~in a simulation in comoving co-
ordinates in spherical symmetry!. The required transforma
tion of the tensor components between these frames lea
the numerical complexity mentioned in Sec. I, and discus
further in the latter parts of Secs. IV A and IV B. In contra
when the coordinate basis is in the lab frame as expecte
spatially multidimensional simulations,integration of Eqs.
(168) and (169) over momentum variables leads directly
the tensor components in the desired coordinate basis, e
though the specific particle number and stress energy
functions of comoving frame momentum variables. The in-
sight here is that the frame in which the tensor compone
are measured need not be the same as that employed t
tain the momentum variables used to parametrize the par
distributions. The Appendix provides an example of a m
ment formalism of this kind.

In simulations of systems such as core-collap
supernovae—in which careful attention to energetics
critical—a number of possible approaches, based on the
servative formulations of kinetic theory presented in this
per, might be suggested. Below we suggest three pos
‘‘direct’’ approaches, in which all terms are discretized in
variables—time, space, energy, and angles. Then we des
how our formalism could be used in an ‘‘iterated momen
method, which involves an approximation of the collisio
integral.

First, the general approach of, for example, Refs.@2#, @3#,
@5#, could be followed, in which the conservative partic
number distribution equation@Eq. ~168!# is solved, and the
conservative particle energy equation@the time component o
Eq. ~169!# is used as a consistency check. The quan
A2gN 0, which might be called thespecific particle number
density, would be the primary neutrino distribution variabl
It is the contribution of eachcomoving framemomentum bin
to the lab frame particle number density. This approac
makes number conservation a somewhat natural outco
but energy conservation would require finite-differenced r
resentations of various quantities to be ‘‘matched’’ in ord
that Eq.~147! be satisfied numerically. This might be co
sidered the most rigorous and self-consistent method.@Note
that if one solves the ‘‘plain,’’ nonconservative Boltzman
equation—Eq.~97!—for the scalar distribution functionf as
a function of comoving frame momentum variables, cons
vation of neither lab frame particle number nor energy
straightforward. The same is true of methods~e.g., Ref.@27#!
based on a nonconservative form of the transport equa
for the comoving frame specific intensity.#

In order to avoid the intricate finite differencing of nume
ous terms demanded by this method, a second option w
be the use ofA2gT 00, which might be called thespecific
particle energy density, as the primary neutrino distributio
variable. Designing a code around a differenced version
the m50 component of Eq.~169! would make accurate ac
counting of total neutrino energy@as represented by them
50 component of Eq.~102!# relatively straightforward. Of
course, the neutrino number balance equation expresse
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terms ofA2gT 00 would have numerical errors unless ce
tain finite differencings were carefully designed. But wi
respect to the crucial energetics of the physical system,
worth noting that there are a couple of factors mitigating
impact of errors in number conservation in comparison w
errors in energy conservation. Errors in number conserva
translate into errors in the electron fractionYe , which affect
energy conservation through the equation of state, but n
the following. ~i! Only ne and (n̄)e affect Ye , while all spe-
cies impact the energy budget. Better to have two spe
contributing to error rather than six.~ii ! The effects ofne and
( n̄)e on Ye are opposite in sign~unlike their contributions to
energy!, so that to the extent that their distributions are sim
lar, the impact of their errors onYe may approximately can-
cel.

A third possibility would be to solve forboth the specific
particle energy densityA2gT 00 and the specific particle
number densityA2gN 0. ~Rampp and Janka@4# solve for
both number and energy distributions, but in the comov
frame; this limits the utility of their approach with respect
accurate tracking of lab frame quantities.! Instead of prede-
fining both the boundaries and center values of bins in
ergy space, one could define the boundaries only and use
values ofA2gT 00 andA2gN 0 ~along with the transforma-
tion Lm̂

m) to obtain center values of the energy bins in ea
spatial zone and each time step. The consistency of the
lutions would be arguably reasonable as long as the der
center values of the energy bins do not wander outside
predefined bin boundaries.

In the preceding paragraphs, our discussion of three p
sible ways to employ our conservative formulations of re
tivistic kinetic theory assumed a ‘‘direct’’ approach, in whic
all terms are discretized in all variables; it is also possible
apply these three basic philosophies to an ‘‘iterated mome
method using our equations.~This method has been applied
in an approximate way, to conventional comoving frame m
ment equations in Refs.@27# and@4#.! As discussed earlier in
this section, one forms ‘‘moment equations’’ by integratin
Eqs.~168! and ~169! over angles~and possibly energies!. A
specific example is shown in the Appendix; see Eqs.~A32!,
~A43!, ~A49!, ~A57!, and~A65!. In order to solve these equa
tions, the ‘‘Eddington factors’’ defined by Eqs.~A38! and
~A73! are needed; these can be computed with knowledg
the angle-dependent distribution functions, obtained~in this
example! by solving Eqs.~A14! and ~A26!. The key to the
iterated moment method is an approximation to the collis
integral in the angle-dependent transport equations:
angle-dependent distributions on the right-hand sides of E
~A14! and~A26! are replaced by the moments obtained fro
the solution of Eqs.~A32!, ~A43!, ~A49!, ~A57!, and~A65!.
In summary, the method is as follows: The moment eq
tions need Eddington factors for closure, which are obtain
from the solution of the~simplified! angle-dependent trans
port equations, while the angle-dependent transport eq
tions require the angular moments for their simplified co
sion integral. This system is iterated to convergence. T
computational complexity of the angle-dependent transp
equations is reduced by this method, but at the cost of thr
6-19
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C. Y. CARDALL AND A. MEZZACAPPA PHYSICAL REVIEW D 68, 023006 ~2003!
ing out information beyond the first couple of terms in
angular expansion of kernels in the collision integral; t
may not be a good approximation for neutrino/electron sc
tering and neutrino pair production processes.
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APPENDIX: FLAT SPACETIME, O„v… EQUATIONS
IN A GENERAL COORDINATE SYSTEM

In this appendix, we present an application of the cons
vative formulations of kinetic theory derived in this pape
namelyO(v) equations for the specific particle number de
sity and specific particle energy density, as well as ang
integrals of these equations—all in flat spacetime, but in
ordinates sufficiently general to represent rectangular, sph
cal, and cylindrical coordinate systems. The angle-integra
equations constitute ‘‘monochromatic’’ moment formalism
that provide an alternative to traditional variable Eddingt
factor methods of handling radiation transport. We specia
to massless, electrically neutral particles.

We begin by describing our spacetime and moment
space coordinate systems. While we assume flat space
in order to accommodate curvilinear coordinate systems
employ a general spacetime coordinate labeling (xm)
5(x1,x2,x3,t)T. The line element is

ds25gmndxmdxn, ~A1!

with

~gmn!5S 1 0 0 0

0 a2~x1! 0 0

0 0 b2~x1!c2~x2! 0

0 0 0 21

D . ~A2!

In this matrix expression for the metric components, ro
and columns are ordered 1,2,3,0. In Cartesian coordina
(x1,x2,x3)5(x,y,z) and (a,b,c)5(1,1,1). In spherical co-
ordinates, (x1,x2,x3)5(r ,u,f) and (a,b,c)5(r ,r ,sinu). In
cylindrical coordinates, (x1,x2,x3)5(r ,z,f) and (a,b,c)
5(1,r ,1). Our spacetime coordinate systems are ‘‘
frames,’’ so that the equations we derive are Eulerian. Ort
normal ‘‘lab frame’’ coordinates, indicated by barred indice
are obtained by the transformation

dxm̄5em̄
mdxm, ~A3!
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with

~em̄
m!5S 1 0 0 0

0 a~x1! 0 0

0 0 b~x1!c~x2! 0

0 0 0 1

D . ~A4!

The transformation to an orthonormal frame comoving w
the fluid, indicated by indices adorned with a hat, is

dxm̂5Lm̂
m̄dxm̄, ~A5!

where toO(v)

Lm̂
m̄5S 1 0 0 2v 1̄

0 1 0 2v 2̄

0 0 1 2v 3̄

2v 1̄ 2v 2̄ 2v 3̄ 1

D . ~A6!

The bars on the velocity indices are a reminder that the fl
velocity is expressed in the orthonormal lab frame coordin
system. The combined transformation from the lab coor
nate frame to the orthonormal comoving frame is

dxm̂5Lm̂
mdxm, ~A7!

where

Lm̂
m5Lm̂

m̄em̄
m . ~A8!

The neutrino 4-momentum is described in terms of its

moving frame components, (pm̂)5(p1̂,p2̂,p3̂,p0̂)T. Only
three momentum variables are independent; we choose p
coordinates in momentum space, defined by

p1̂5e cosq, ~A9!

p2̂5e sinq cosw, ~A10!

p3̂5e sinq sinw. ~A11!

The radiation field is a function of the variable
t,x1,x2,x3,e,q,w. The invariant spacetime volume eleme
in Eq. ~28! is abcdx1dx2dx3dt, and the invariant volume
element on the mass shell in momentum space in Eq.~31! is
e sinq de dq dw.

We first present an equation for the specific particle d
sity N, defined by

N5pt f 5Lt
m̂pm̂ f , ~A12!

wheref is the invariant particle distribution function define
in Sec. III. The specific particle density is related to the l
frame particle densityn[Nt by
6-20



ty e

CONSERVATIVE FORMULATIONS OF GENERAL . . . PHYSICAL REVIEW D 68, 023006 ~2003!
n5E Ne sinq de dq dw. ~A13!

From Eq. ~168!, we find that the specific particle densi
satisfies
Dt@N#1Dx1@N#1Dx2@N#1Dx3@N#1Dq@N#1Dw@N#

1Oe@N#1Oq@N#1Ow@N#5C, ~A14!

whereC is the invariant collision integral appearing in th
Boltzmann equation@Eq. ~97!#, and
Dt@N#5
]N
]t

, ~A15!

Dx1@N#5
1

ab

]

]x1 $ab@~12cq
2 !v 1̄1cq~12sqcwv 2̄2sqswv 3̄!#N%, ~A16!

Dx2@N#5
1

ac

]

]x2 $c@~12sq
2 cw

2 !v 2̄1cwsq~12cqv 1̄2sqswv 3̄!#N%, ~A17!

Dx3@N#5
1

bc

]

]x3 $@~12sq
2 sw

2 !v 3̄1sqsw~12cqv 1̄2sqcwv 2̄!#N%, ~A18!

Dq@N#52
1

sq

]

]q F S 1

a

]a

]x1 sq
2 cw

21
1

b

]b

]x1 sq
2 sw

2 DNG , ~A19!

Dw@N#52
1

sq

]

]w F S 2
1

a

]a

]x1 cqsqcwsw1
1

b

]b

]x1 cqsqcwsw1
1

ac

]c

]x2 sq
2 swDNG , ~A20!

Oe@N#52
1

e

]

]e H e2F]v 1̄

]x1 cq
2 1

]v 2̄

]x1 cqsqcw1
]v 3̄

]x1 cqsqsw1
1

a S ]v 1̄

]x2 cqsqcw1
]v 2̄

]x2 sq
2 cw

21
]v 3̄

]x2 sq
2 cwswD

1
1

bc S ]v 1̄

]x3 cqsqsw1
]v 2̄

]x3 sq
2 cwsw1

]v 3̄

]x3 sq
2 sw

2 D1
1

a

]a

]x1 ~sq
2 cw

2v 1̄2cqsqcwv 2̄!1
1

b

]b

]x1 ~sq
2 sw

2v 1̄2cqsqswv 3̄!

1
1

ac

]c

]x2 ~sq
2 sw

2v 2̄2sq
2 cwswv 3̄!GNJ , ~A21!

Oq@N#52
1

sq

]

]q H F2
]v 1̄

]x1 cqsq
2 1

]v 2̄

]x1 cq
2 sqcw1

]v 3̄

]x1 cq
2 sqsw1

1

a S 2
]v 1̄

]x2 sq
3 cw1

]v 2̄

]x2 cqsq
2 cw

21
]v 3̄

]x2 cqsq
2 cwswD

1
1

bc S 2
]v 1̄

]x3 sq
3 sw1

]v 2̄

]x3 cqsq
2 cwsw1

]v 3̄

]x3 cqsq
2 sw

2 D1
1

a

]a

]x1 ~cwsqv 2̄1cwsq
3 sw

2v 2̄2cw
2sq

3 swv 3̄!

1
1

b

]b

]x1 ~2cwsq
3 sw

2v 2̄1sqswv 3̄1cw
2sq

3 swv 3̄!1
1

ac

]c

]x2 ~cqsq
2 sw

2v 2̄2cqsq
2 cwswv 3̄!GNJ , ~A22!

Ow@N#52
1

sq

]

]w H F2
]v 2̄

]x1 cqsw1
]v 3̄

]x1 cqcw1
1

a S 2
]v 2̄

]x2 sqcwsw1
]v 3̄

]x2 sqcw
2 D1

1

bc S 2
]v 2̄

]x3 sqsw
21

]v 3̄

]x3 sqcwswD
1

1

b

]b

]x1 ~sq
3 cwswv 1̄2cqsq

2 cw
2swv 2̄1cq

3 cwv 3̄1cqsq
2 cw

3v 3̄!1
1

ac

]c

]x2 ~2cqsq
2 swv 1̄1cq

2 sqcwswv 2̄1sqv 3̄1cq
2 sqsw

2v 3̄!

1
1

a

]a

]x1 ~2sq
3 cwswv 1̄2cq

3 swv 2̄2cqsq
2 sw

3v 2̄1cqsq
2 cwsw

2v 3̄!GNJ . ~A23!
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In these expressions, we have employed the notationsq

5sinq, cq5cosq. In accordance with theO(v) limit, we
have ignored acceleration terms and terms nonlinear in
locities and/or velocity spatial derivatives.

Next we consider an equation for the specific particle
ergy densityE, defined by

E5ptpt f 5Lt
m̂Lt

n̂pm̂pn̂ f . ~A24!

The specific particle energy density is related to the
frame particle energy densitye[Ttt by

e5E Ee sinq de dq dw. ~A25!

From Eq. ~169!, we find that the specific particle densi
satisfies

Dt@E#1Dx1@E#1Dx2@E#1Dx3@E#1Dq@E#1Dw@E#1Oe@E#

1Oq@E#1Ow@E#5e~11v 1̄cq1v 2̄sqcw1v 3̄sqsw!C.

~A26!

The terms on the left-hand side are given by Eqs.~A15!–
~A23! with N replaced byE @32#. The t component of the
second term of Eq.~169!, which we refer to as the ‘‘accel
eration term,’’ vanishes for the flat spacetime metric of E
~A2!.

We now consider angle-integrated versions of Eqs.~A14!
and ~A26!, which constitute equations for ‘‘monochromat
moments’’ of the radiation field. These moments are fu
tions of the variablest,x1,x2,x3,e. In deriving and present
ing these expressions, it is convenient to define

n1̂5cosq, ~A27!

n2̂5sinq cosw, ~A28!

n3̂5sinq sinw, ~A29!

the orthonormal comoving frame components of the u
3-vector specifying the particle direction. In accordance w
theO(v) limit, we ignore acceleration terms and terms no
linear in velocities and/or velocity spatial derivatives.

Our first equation of this type dictates the evolution of t
lab frame monochromatic particle densityN, defined by

N5E N sinq dq dw. ~A30!

It is related to the lab frame particle densityn[Nt by

n5E Ne de, ~A31!

and its evolution is governed by

Dt@N#1Dx1@N#1Dx2@N#1Dx3@N#1Oe@N#

5E C sinq dq dw, ~A32!
02300
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Dt@N#5
]N

]t
, ~A33!

Dx1@N#5
1

ab

]

]x1 @ab~ f 1̂1v 1̄2 f 1̂1̂v 1̄2 f 1̂2̂v 2̄2 f 1̂3̂v 3̄!N#,

~A34!

Dx2@N#5
1

ac

]

]x2 @c~ f 2̂1v 2̄2 f 1̂2̂v 1̄2 f 2̂2̂v 2̄2 f 2̂3̂v 3̄!N#,

~A35!

Dx3@N#5
1

bc

]

]x3 @~ f 3̂1v 3̄2 f 1̂3̂v 1̄2 f 2̂3̂v 2̄2 f 3̂3̂v 3̄!N#,

~A36!

Oe@N#52
1

e

]

]e H e2F]v 1̄

]x1 f 1̂1̂1
]v 2̄

]x1 f 1̂2̂1
]v 3̄

]x1 f 1̂3̂

1
1

a S ]v 1̄

]x2 f 1̂2̂1
]v 2̄

]x2 f 2̂2̂1
]v 3̄

]x2 f 2̂3̂D1
1

bc S ]v 1̄

]x3 f 1̂3̂

1
]v 2̄

]x3 f 2̂3̂1
]v 3̄

]x3 f 3̂3̂D1
1

a

]a

]x1 ~ f 2̂2̂v 1̄2 f 1̂2̂v 2̄!

1
1

b

]b

]x1 ~ f 3̂3̂v 1̄2 f 1̂3̂v 3̄!1
1

ac

]c

]x2

3~ f 3̂3̂v 2̄2 f 2̂3̂v 3̄!GNJ . ~A37!

In these expressions, we have defined

f î[
1

N
E Nnî sinq dq dw,

f î ĵ[
1

N
E Nnînĵ sinq dq dw, ~A38!

which are akin to Eddington factors in traditional mome
approaches to radiation transport.

Finally, we present a set of coupled equations for the
frame monochromatic particle energy densityE and ortho-
normal lab frame monochromatic particle momentum d

sity P ī , defined by

E5E E sinq dq dw, ~A39!

P ī 5eī
mE f ptpm sinq dq dw.

~A40!

They are related to the lab frame particle energy densite
[Ttt and orthonormal lab frame particle momentum dens

p ī [eī
mTtm by
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e5E Ee de, ~A41!

p ī 5E P ī e de. ~A42!

The evolution of the lab frame monochromatic particle e
ergy density is governed by

Dt@E#1Dx1@E#1Dx2@E#1Dx3@E#1Oe@E#

5eE C~11v 1̄n1̂1v 2̄n2̂1v 3̄n3̂!sinq dq dw,

~A43!

Dt@E#5
]E

]t
, ~A44!

Dx1@E#5
1

ab

]

]x1 ~abP1̄!, ~A45!

Dx2@E#5
1

ac

]

]x2 ~cP2̄!, ~A46!
02300
-

Dx3@E#5
1

bc

]P3̄

]x3 , ~A47!

Oe@E#52
1

e

]

]e H e2F]v 1̄

]x1 h1̂1̂1
]v 2̄

]x1 h1̂2̂1
]v 3̄

]x1 h1̂3̂

1
1

a S ]v 1̄

]x2 h1̂2̂1
]v 2̄

]x2 h2̂2̂1
]v 3̄

]x2 h2̂3̂D
1

1

bc S ]v 1̄

]x3 h1̂3̂1
]v 2̄

]x3 h2̂3̂1
]v 3̄

]x3 h3̂3̂D
1

1

a

]a

]x1 ~h2̂2̂v 1̄2h1̂2̂v 2̄!1
1

b

]b

]x1 ~h3̂3̂v 1̄

2h1̂3̂v 3̄!1
1

ac

]c

]x2 ~h3̂3̂v 2̄2h2̂3̂v 3̄!GEJ .

~A48!

The evolution of the lab frame monochromatic particle e
ergy density is governed by
Dt@P
1̄#1Dx1@P1̄#1Dx2@P1̄#1Dx3@P1̄#1F22@P

1̄#1F33@P
1̄#1Oe@P

1̄#5eE C~n1̂1v 1̄!sinq dq dw, ~A49!

where

Dt@P
1̄#5

]P1̄

]t
, ~A50!

Dx1@P1̄#5
1

ab

]

]x1 „ab$2v 1̄P
1̄1@h1̂1̂22~h1̂1̂1̂v 1̄1h1̂1̂2̂v 2̄1h1̂1̂3̂v 3̄!#E%…, ~A51!

Dx2@P1̄#5
1

ac

]

]x2 „c$P2̄v 1̄1P1̄v 2̄1@h1̂2̂22~h1̂1̂2̂v 1̄1h1̂2̂2̂v 2̄1h1̂2̂3̂v 3̄!#E%…, ~A52!

Dx3@P1̄#5
1

bc

]

]x3 $P3̄v 1̄1P1̄v 3̄1@h1̂3̂22~h1̂1̂3̂v 1̄1h1̂2̂3̂v 2̄1h1̂3̂3̂v 3̄!#E%, ~A53!

F22@P
1̄#52

1

a

]a

]x1 $2P2̄v 2̄1@h2̂2̂2~h1̂2̂2̂v 1̄1h2̂2̂2̂v 2̄1h2̂2̂3̂v 3̄!#E%, ~A54!

F33@P
1̄#52

1

b

]b

]x1 $2P3̄v 3̄1@h3̂3̂22~h1̂3̂3̂v 1̄1h2̂3̂3̂v 2̄1h3̂3̂3̂v 3̄!#E%, ~A55!

Oe@P
1̄#52

1

e

]

]e H e2F]v 1̄

]x1 h1̂1̂1̂1
]v 2̄

]x1 h1̂1̂2̂1
]v 3̄

]x1 h1̂1̂3̂1
1

a S ]v 1̄

]x2 h1̂1̂2̂1
]v 2̄

]x2 h1̂2̂2̂1
]v 3̄

]x2 h1̂2̂3̂D
1

1

bc S ]v 1̄

]x3 h1̂1̂3̂1
]v 2̄

]x3 h1̂2̂3̂1
]v 3̄

]x3 h1̂3̂3̂D1
1

a

]a

]x1 ~h1̂2̂2̂v 1̄2h1̂1̂2̂v 2̄!1
1

b

]b

]x1 ~h1̂3̂3̂v 1̄2h1̂1̂3̂v 3̄!

1
1

ac

]c

]x2 ~h1̂3̂3̂v 2̄2h1̂2̂3̂v 3̄!GEJ . ~A56!
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The evolution of the first component of the orthonormal lab frame monochromatic particle momentum density is gove

Dt@P
2̄#1Dx1@P2̄#1Dx2@P2̄#1Dx3@P2̄#1F12@P

2̄#1F33@P
2̄#1Oe@P

2̄#5eE C~n2̂1v 2̄!sinq dq dw, ~A57!

where

Dt@P
2̄#5

]P2̄

]t
, ~A58!

Dx1@P2̄#5
1

ab

]

]x1 „ab$P2̄v 1̄1P1̄v 2̄1@h1̂2̂22~h1̂1̂2̂v 1̄1h1̂2̂2̂v 2̄1h1̂2̂3̂v 3̄!#E%…, ~A59!

Dx2@P2̄#5
1

ac

]

]x2 „c$P2̄v 2̄1@h2̂2̂22~h1̂2̂2̂v 1̄1h2̂2̂2̂v 2̄1h2̂2̂3̂v 3̄!#E%…, ~A60!

Dx3@P2̄#5
1

bc

]

]x3 $P3̄v 2̄1P2̄v 3̄1@h2̂3̂22~h1̂2̂3̂v 1̄1h2̂2̂3̂v 2̄1h2̂3̂3̂v 3̄!#E%, ~A61!

F12@P
2̄#5

1

a

]a

]x1 $P2̄v 1̄1P1̄v 2̄1@h1̂2̂22~h1̂1̂2̂v 1̄1h1̂2̂2̂v 2̄1h1̂2̂3̂v 3̄!#E%, ~A62!

F33@P
2̄#52

1

ac

]c

]x2 $2P3̄v 3̄1@h3̂3̂22~h1̂3̂3̂v 1̄1h2̂3̂3̂v 2̄1h3̂3̂3̂v 3̄!#E%, ~A63!

Oe@P
2̄#52

1

e

]

]e H e2F]v 1̄

]x1 h1̂1̂2̂1
]v 2̄

]x1 h1̂2̂2̂1
]v 3̄

]x1 h1̂2̂3̂1
1

bc S ]v 1̄

]x3 h1̂2̂3̂1
]v 2̄

]x3 h2̂2̂3̂1
]v 3̄

]x3 h2̂3̂3̂D
1

1

a S ]v 1̄

]x2 h1̂2̂2̂1
]v 2̄

]x2 h2̂2̂2̂1
]v 3̄

]x2 h2̂2̂3̂D1
1

a

]a

]x1 ~h2̂2̂2̂v 1̄2h1̂2̂2̂v 2̄!1
1

b

]b

]x1 ~h2̂3̂3̂v 1̄2h1̂2̂3̂v 3̄!

1
1

ac

]c

]x2 ~h2̂3̂3̂v 2̄2h2̂2̂3̂v 3̄!GEJ . ~A64!

The evolution of the second component of the orthonormal lab frame monochromatic particle momentum density is g
by

Dt@P
3̄#1Dx1@P3̄#1Dx2@P3̄#1Dx3@P3̄#1F13@P

3̄#1F23@P
3̄#1Oe@P

3̄#5eE C~n3̂1v 3̄!sinq dq dw, ~A65!

where

Dt@P
3̄#5

]P3̄

]t
, ~A66!

Dx1@P3̄#5
1

ab

]

]x1 „ab$P3̄v 1̄1P1̄v 3̄1@h1̂3̂22~h1̂1̂3̂v 1̄1h1̂2̂3̂v 2̄1h1̂3̂3̂v 3̄!#E%…, ~A67!

Dx2@P3̄#5
1

ac

]

]x2 „c$P3̄v 2̄1P2̄v 3̄1@h2̂3̂22~h1̂2̂3̂v 1̄1h2̂2̂3̂v 2̄1h2̂3̂3̂v 2̄1h2̂3̂3̂v 3̄!#E%…, ~A68!

Dx3@P3̄#5
1

bc

]

]x3 $2P3̄v 3̄1@h3̂3̂22~h1̂3̂3̂v 1̄1h2̂3̂3̂v 2̄1h3̂3̂3̂v 3̄!#E%, ~A69!

F13@P
3̄#5

1

b

]b

]x1 $P3̄v 1̄1P1̄v 3̄1@h1̂3̂22~h1̂1̂3̂v 1̄1h1̂2̂3̂v 2̄1h1̂3̂3̂v 3̄!#E%, ~A70!
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F23@P
3̄#5

1

ac

]c

]x2 $P3̄v 2̄1P2̄v 3̄1@h2̂3̂22~h1̂2̂3̂v 1̄1h2̂2̂3̂v 2̄1h2̂3̂3̂v 3̄!#E%, ~A71!

Oe@P
3̄#52

1

e

]

]e H e2F]v 1̄

]x1 h1̂1̂3̂1
]v 2̄

]x1 h1̂2̂3̂1
]v 3̄

]x1 h1̂3̂3̂1
1

a S ]v 1̄

]x2 h1̂2̂3̂1
]v 2̄

]x2 h2̂2̂3̂1
]v 3̄

]x2 h2̂3̂3̂D1
1

bc S ]v 1̄

]x3 h1̂3̂3̂1
]v 2̄

]x3 h2̂3̂3̂

1
]v 3̄

]x3 h3̂3̂3̂D1
1

a

]a

]x1 ~h2̂2̂3̂v 1̄2h1̂2̂3̂v 2̄!1
1

b

]b

]x1 ~h3̂3̂3̂v 1̄
2h1̂3̂3̂v 3̄!1

1

ac

]c

]x2 ~h3̂3̂3̂v 2̄2h2̂3̂3̂v 3̄!GEJ . ~A72!

In these energy and momentum equations, we have defined

hî ĵ[
1

E
E Enînĵ sinq dq dw,

hî ĵ k̂[
1

E
E Enînĵnk̂ sinq dq dw, ~A73!

which are akin to Eddington factors in traditional moment approaches to radiation transport. We point out thatf i is not equal

to P ī /E, and that the second angular moment factorsf î ĵ andhî ĵ are not equal to each other. This is becauseN andE have
different angular dependences, as can be seen from Eqs.~A12! and~A24!. This complication is a result of taking moments
lab framenumber and energy distributions with respect tocomoving frameangular variables.
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@28# In a ‘‘coordinate basis’’ the basis vectors areeWm5]/]xm. These

basis vectors ‘‘commute’’ because the order of partial deri
tives can be interchanged freely. The connection coefficient
a coordinate basis are given by

Gm
nr5

1
2g

maS]gsn

]xr 1
]gsr

]ẋn 2
]gnr

]xs D.
In a ‘‘noncoordinate basis’’ obtained from the coordinate ba
by a transformationeWm85Lm

m8eWm , the basis vectorseWm8
5Lm

m8(]/]xm) do not commute ifLm
m8 depends on position

in spacetime. The connection coefficients in a noncoordin
basis have extra terms associated with the nonvanishing c
mutators of the basis vectors. In this paper, the connec
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coefficients in a noncoordinate basis are obtained from th

of a coordinate basis via the transformationGm8
n8r8

5Lm8
mLn

n8L
r

r8G
m

nr1Lm8
mLr

r8(]Lm
n8 /]xr).

@29# The contraction of a basis vector]/]za with a 1-form dzb is
(]/]za)•dzb5da

b . In the contraction of a vector with a direc
product of 1-forms, the contraction is with the first 1-form
the direct product. This means that the contraction of a ve
with a wedgeproduct ofn 1-forms givesn terms, because the
wedge product is the completely antisymmetrized sum on
direct products.

@30# The computational procedure for integrals over differen
forms involves~i! forming an infinitesimal parallelpiped—a
wedge product of the vectors forming the edges of the infi
tesimal region—at each point in the region over which t
integration is performed;~ii ! contracting this infinitesimal par
allelpiped with the differential form at each point;~iii ! calcu-
lating the integral with the usual rules of elementary calcul
An infinitesimal parallelpiped in momentum space is a wed
product of displacement vectors in each of the three directi
02300
e

r

l

-

.
e
s

in momentum space. In the contraction of this parallelpip
with v, the only terms that do not vanish are those in Eq.~36!;
the other terms of Eq.~34! have only two momentum spac
1-forms.

@31# Other six-dimensional hypersurfaces can be formed, wh
contain a four-dimensional region in spacetime and a tw
dimensional surface in momentum space or a timelike reg
in spacetime together with a three-dimensional region in m
mentum space; such hypersurfaces are not of use in defi
the particle number 4-current and stress-energy tensor.

@32# Because the relations betweenN, E, and f have different de-
pendences on velocity, expressions of Eqs.~A14! and~A26! in
terms off would differ by terms ofO(v2) and higher. While in
principle these discrepancies vanish toO(v), a simulation
solving for bothN and E in which v2 turns out to be non-
negligible compared to unity can be expected to exhibit so
inconsistency between values off derived from Eqs.~A12! and
~A24!.
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