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Experience with core-collapse supernova simulations shows that accurate accounting of total particle num-
ber and 4-momentum can be a challenge for computational radiative transfer. This accurate accounting would
be facilitated by the use of particle number and 4-momentum transport equations that allow transparent
conversion between volume and surface integrals in both configuration and momentum space. Such conserva-
tive formulations of general relativistic kinetic theory in multiple spatial dimensions are presented in this paper,
and their relevance to core-collapse supernova simulations is described.
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[. INTRODUCTION diation to the matter behind a stalled shock wave, and this
energy transfer may be necessary to propel the shock through
The state of the art in core-collapse supernova simulationthe outer layers in an explosid0,11]. But whether or not
now includes energy- and angle-dependent neutrino transpastich neutrino heating is the proximate cause of explosion,
[1-8]. However, experience shows that simultaneous consethe fact that neutrinos dominate the energetics implies that
vation of both energy and lepton number is difficult numeri-accurate neutrino transport is integral to any realistic and
cally [5,9]. This challenge motivates us to develop new con-comprehensive study of the explosion mechanism.
servative formulations of relativistic kinetic theory that are  The importance of accurate neutrino transport is a lesson
specifically attuned to the need for accurate accounting oearned from experience with supernova simulations. Param-
particle number and energy in numerical simulations of ra-<etrized studie$12] highlight the sensitivity of explosions to
diative transfer problems. neutrino luminosities and to conditions in the semitranspar-
Before describing the conservative formulations of kineticent region near the nascent neutron star’'s surfaee also
theory we seek, we explain why energy- and angleRef.[13])—precisely the region where neutrino energy and
dependent neutrino transport is hecessary in supernova simangle dependence must be tracked carefully. Moreover, there
lations and detail the magnitude of the challenge of energyemains a nagging qualititative uncertainty in simulations
conservation. with multidimensional hydrodynamics: Those with neutrino
Sophisticated treatments of neutrino transport are necesransport that depends on direction in configuration space but
sary because the ultimate energy source of the supernovs averaged over energy and angles exhibit explodidAs-
explosion—the gravitational potential energy of the stellarl6], while those with neutrino transport that depends on en-
progenitor's core—is eventually converted almost com-ergy but is averaged over angles in both configuration and
pletely into neutrinos. Some of the gravitational potentialmomentum space do not show explosi¢hs,1§. It may be
energy is lost to escaping neutrinos during core collapse, buhat these differing outcomes are due to the different neutrino
most of it is converted into a thermal bath of dense nucleatransport schemes, both of which are ultimately inadequate.
matter, photons, electron/positron pairs, and trapped neutri- Moving beyond these general arguments for the necessity
nos deep inside the nascent neutron star. Neutrinos, havirgf accurate neutrino transport, quantitative consideration of
the weakest interactions, are the most efficient means dhe energetics shows how severe the requirements are on one
cooling; they diffuse outward on a time scale of secondsaspect of accuracy: energy conservation. As mentioned
towards a semitransparent region near the surface of thabove, virtually all of the gravitational potential energy
newly forming neutron star, and eventually escape with(~ 10" erg) released during collapse is eventually converted
about 99% of the released gravitational energy. In modelingnto intense neutrino fluxes lasting several seconds. How-
the conversion of gravitational potential energy into neutrinoever, supernova explosion energigs kinetic energy of the
fluxes, energy- and angle-dependent neutrino transport isjecta are observed to be only 10°! erg. Now, because it is
necessary to accurately follow the transition from quasi-difficult to argue with any rigor about the physical impact of
isotropic diffusion to forward-peaked free streaming. In thisany energy lost or gained due to numerical error, the total
transition region, energy is transferred from the neutrino raenergy should be conserved to a precision corresponding to
the phenomena of interest in the problem. Hence a simula-
tion’s result for explosion energy accurate to, say, 10%
*Email address: ccardall@mail.phy.ornl.gov would require total energy conservation to an accuracy of
TEmail address: mezz@mail.phy.ornl.gov about 0.1%. Allowing for systematic error accrual, the total
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energy would have to be conserved at a level of ONYbér  rates of change of 4-momentum and baryon number in a
time step, wherédl~10° is the total number of time steps in volume to fluxes through a surface surrounding that volume;
the simulation. hence the labeling of Eq$4) and (5) asconservative

Conservative formulations of kinetic theory would help to  The right-hand side of Eq4) deserves note. After dis-
meet the numerical challenge of particle number and energyussing the reasons for this term’s existence, we comment on
conservation in core-collapse supernova simulations. To giv@hat it means for conservation issues.
an idea of the kind of formulation of kinetic theory that we  There are several important cases where the connection
seek, we first review familiar descriptions of the dynamics ofgefficientsI’” . on the right-hand side of E¢4) might not

. . . . . : [

a fluid medlum._The Qynamlcs can be described in two dif,gigh. They are present in curved spacetime, wiairkast
ferent ways, which might be calleelementalandconserva-  jn hary they embody gravitational forces. But even in flat

tive. . .
. . spacetime, coordinates employed by accelerated observers
The elemental formulation expresses the evolution of thegive rise to connection coefficients. And even without space-

fluid in terms of equations of motion for the velocity and time curvature or accelerated reference frames, connection
some independent set of quantitiesg., temperature, densi- e . . "
coefficients arise from the use of curvilinear coordinates.

ties of various species comprising the fluid, ptmeasured . _

by an observer moving along with the fluittcomoving ob- What does the rlgh_t-hand side of _qu.l) mean for .
server’). For example, consider a spacetime with metric4-momentum conservation? Only when it vanishes—that is,
componentdg,,,} and metric determinarg=det(,,), con- only for inertial observers in flat spacetime employing recti-

mv v/ . .

taining a perfect fluid with 4-velocity componerfts“} and ~ linear ~ coordinates—are th? components of total
baryon densityn. In the absence of radiative transfer andthis case do the coordinates reflect the translation invariance
significant energy input from nuclear reactions, the perfecef flat spacetime, the physical origin of 4-momentum conser-
fluid evolves according to vation. (Curved spacetime lacks translation invariance, so

i there is no 4-momentum conservatipRecause the pres-

ou i i i p ence, for whatever reason, of a source term like the right-
+ 7] — P4 iy gyt —= v y
(p+pu IXH T put (@F+uu )ax“ 0. @ hand side of Eq(4) means that the 4-momentum compo-
nents in such a basis are not conserved, it might more
d +p) 9 roperly be called a “balance equation” than a “conserva-
w2l 0P T (mgw=0, (@ ProPem, qua
axt  [—g ax* tion law.” But because the volume integral of the left-hand
side easily translates into a surface integral, we still call it a
an no 9 “conservative” formulation.
u“er \/: ax—u(\/—guﬂ)zo. (3 There are some special cases in which a conserved quan-
-9 tity associated with the time coordindtean be found, how-
(Greek and Latin letters are spacetime and space indice§Yel- FOr unaccelerated observers in flat spacetiiiig,
respectively. Supplementary relations between p, and =0, even in curvilinear coordinates. This means that energy

n—referred to as thequation of state-are determined by is conserved, though the 3-momentum components in curvi-
the microphysics of the fluid. The nanetéementaldenotes linear coordinates are not. Another special case is the restric-
the fact that by writing down separate equations of motiorfion to spherical symmetry in general relativity: Here certain
for the velocity and comoving-frame quantities, the kineticcoordinate choices allow the nonvanishifg,, terms to be
and “intrinsic” fluid energies—two “elements” of the absorbed into the left-hand side, leading to the identification
system—are analytically separated. of a conserved energy-like quantitsee, e.g., Ref.19]).

The conservative approach expresses the evolution of the Having used the familiar example of a perfect fluid to
system in terms of the divergence of the stress-energy tensdiscuss what we mean by “elemental” and “conservative”
T#”. For a perfect fluidT#”=(p+ p)uu”+pg"”, and Eqs.  formulations, we now consider kinetic theory in terms of

(1) and(2) are replaced by these categories. The evolution of a particle type described
L by kinetic theory is often expressed as an equation of motion

0 . . . . _ .

L ((=gTe)=—T", Ton, 4) for thg d|str|but_|on funcn_ori, the ensemble-averaged den§|ty

J—g Ix* pr of a given particle type in phase spa¢€hese concepts will
. . be defined with greater precision in subsequent sections; for
while Eq. (3) is replaced by the present discussion it is sufficient to understand that phase
. space is the combination of configuration space and momen-

J . — _ tum space, and that multiplyinigoy the volume of an infini-
[—g &x”“( gnu)=0. ©) tesimal cell in phase space gives the number of particles

having positions and momenta within the ranges defined by
Volume integrals of the left-hand sides of E¢$) and(5)—  that cell) The distribution function evolves due to advection
obtained by multiplying by the invariant spacetime volumethrough phase space and particle interactions.
elementy—gd*x and integrating—are related to surface in-  Advection through phase space gives rise to derivatives of
tegrals in an obvious manner. Physically, this relates the timéwith respect to the components of the position vegtand
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the momentum vectop. For numerical evolution it is con- space volume elementP) constitute a particle number cur-
venient to parametrize the distribution function in terms ofrentN* and particle stress-energy tengot”,

{x*}, the components ok in a global “coordinate basis”
[28]. (Here and throughout this paper, quantities defined with
respect to the coordinate basis have indices without actents.
For momentum we make a different choice of basis, because
interactions with a fluid are most easily described—and best , .

handled numerically—in terms of momentum components T :f fp#p"dP

measured by a comoving observer. The change from the co-

ordinate basis to an orthonormal basis associated with the _ DA AT

comoving observefa “noncoordinate basig"has two parts. B f TpA%eptA e dP, ®
First there is a transformatiaix”=e* ,dx* to an(in general ] ] ]

noncomoving orthonormal basis(Here and throughout this wh|ch_ (for electrically neutral particlesobey the balance
paper, quantities defined with respect to the noncomovin§duations
orthonormal basis have indices accented with g dduis is

followed by a Lorentz transformatiodx*=A*, dx* to a L i
comoving orthonormal basigHere and throughout this pa- J—g Ix*
per, quantities defined with respect to the comoving ortho-
normal basis have indices accented with a)hidence ad- 1
vection through phase space will involve derivativesfof _—
with respect to the coordinate basis position components \/—_g 2

{x*} and the comoving orthonormal basis momentum com- ] ] ) ) )
ponents{pf‘}. While this result is often stated in the literatue=g., see

Turning from advection to particle interactions, we con- Refs.[20], [22]3 [_23])’ becguse of th_e ”O”CO”SGW?‘“V? char-
sider the case where the particle species are sufficiently dcter of EQ(6) itis not obvious how its moments give rise to
lute that the interactions can be described in terms of a colEds-(9) and(10). Equation(6) contains factors\*; e/, out-
lision integral C[f] depending only on the distribution Sidedf/dx*; butfrom Eqs(7)—-(10) we see that these factors
functionsf of the individual particle specie§This approxi- have come inside the derivative with respectxta What
mation ignores correlations between particles; that is, théappens to the spacetime derivatives /of e that are
number of instances of finding particles at the same positio@enel’ated in taking these factors inside the derivative? Fur-
is obtained from the product of their distribution functions. thermore, according to Eq$7) and (8), the quantitiesN*

In this case, the equation of motion for the distribution func-and T#” involve no momentum derivatives &fBut the sec-
tion f is [20,2] ond term of Eq(6) contains a factop”(df/dp”). Because of
the momentum factor outside the momentum derivative, it is
Y 9 .. not obvious how this term will contribute to Eq&) and
p* A“,ze”ﬁax—ﬂ—ry,s,}ppa—; =C[f]. (6)  (10) when integrated over momentum space.
P How, then, is the connection between Eg). and Eqs(9)
and (10) established in detail? The reviews of relativistic

This is theBoltzmann equgtion . _ ._kinetic theory by Lindquisf20] and Israel[23] do not pro-
In terms of the categories described above in connectiofyye yetajled proofs. As discussed in Sec. Ill, an explicit

with fluid evolution, the Boltzmann equation is “elemental”: proof by Ehlers22] relies on the fact thall* and T#* are

The ~most fundamental quantity—the distribution momentum-integrated quantities, and no direct insight is

Iﬁnctlon—t'ls th_e ebvct)Lved V]f‘”ablt?’ and volume dlntegrals tOf ained into what happens to the momentum derivativels of
e equation in both configuration space and momentur, o inteqration over momentum space.

space are not obviously related to surface integrals. ThiS' £ "y nse interested in computer models of radiative
nonconservative cha_racter IS present even in flat_ SPacetim@anster problems, these are not idle academic questions;
and rectangular coordinates. The first term of &L.is non- .they are issues that must be faced in order to build simula-

conservative even in flat spac_etime and rectilinear Coo_rd'fions capable of making meaningful scientific statements
nates because the bodst ;—which depends on the coordi- 50yt the core-collapse supernova explosion mechanism. Ex-
nates{x*}—sits outside the derivativef/dx*. The spatial herience with supernova simulations in spherical symmetry
dependence of the boost also gives rise to nonvanishinghows that understanding the detailed connection between
I, even in flat spacetime and rectilinear coordinatesihe Boltzmann equation and the particle number and
therefore, the second term of E@) does not vanish. This 4-momentum balance equations has important consequences
second term is nonconservative because the faotosits  for how well these quantities are conserved in a simulation
outside the derivativef/dp”. [5,24]. While a discretization of the Boltzmann equation is a
While the Boltzmann equation is “elemental” or “non- natural numerical method of evolving the neutrino species,
conservative,” it is well known(e.g., see Refd.20], [22], naive differencings of the various terms in E§) generally
[23]) the first two momentum moments of the distribution will not be consistent with a straightforward differencing of
function (integrated over a suitable invariant momentumEgs.(9) and(10), leading to unacceptable numerical errors in

Nﬂzf fp#dpzf fpiA#et-dP, 7)

(J—_gNM>=fc[f]dP, 9)

i (\/—_gTV”)=F“pMTP“+fC[f]p”dP. (10)
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particle number and energy conservation. In Lagrangien O(v) limit in Lagrangian coordinates in spherical symmetry.
“comoving”) coordinates in spherical symmetry, Mezza- (While we review some aspects of exterior calculus in our
cappa and Bruenf24] derive a conservative formulation of presentation, these are mostly in end notes, and are more in
the Boltzmann equation transparently related to particléhe character of reminders than a self-contained introduction.
number balance as expressed in E). They also devise For the latter, we refer the reader to Ref22], [25].) A
methods of handling momentum derivatives that are consisconclusion(Sec. Vj summarizes our results, comments on
tent with both number and energy conserva{ieh Lieben- thg.lr connection to moment formalisms, a}nd dlgcusses the
dorfer et al. [5] went a step further in this spherically sym- utlllty of_these formulatlon_s for supernova _5|mulat|o_ns. As an
metric case, deducing the connection between th&Pplication of our formalism, an Appendix contaif{v)
Mezzacappa and Bruenn “number conservative” Boltzmanrfduations in flat spacetime, but in coor_dlnates sufﬁqen_tly
equation in comoving coordinates and energy conservatioﬁe”erf"‘l to represent rectangular, spherical, and cylindrical
as represented by an Euleriéor “lab frame”) version of coordinate systems.

Eqg. (10). Using complicated, nonintuitive differencings of

hydrodynamic and gravitational variables, they construct all. PHASE SPACE FOR PARTICLES OF DEFINITE MASS
numerical implementation of the Mezzacappa and Bruenn
“number conservative” Boltzmann equation that is stablede
and faithful to its analytic connection to the lab frame ver-
sion of Eq.(10) to the accuracy necessary to make solid

scientific statements about the neutrino-driven eXpIOSiOQoscopic observables frofrand operators that act upon it. In

mechanism in spherical symmeti¥,3,5. di ina th | caec. || follow Ehlers 22
Because spherically symmetric models with Boltzmann 1Scussing the general ¢ c. Il A4, we follow Ehlers22]

i  fail t d ) tant ob ble ch closely, and refer the reader to his work for more detailed
ransport fail to reproduce some important observablé thalgs . ssjons and proofs of some of the assertions made here.
acteristics of core-collapse supernovasy., the launch of an

: X : ) We extend his discussion to the use of momentum compo-
EXplps'On[l_@’ this work must be followed up in multiple nents measured in a frame comoving with the fluid that in-
spatlfal dimensiongsee Refs{7], [8]. for some early _eszori)s teracts with the particle species treated by kinetic theory. The
In this paper we develop—allowing for full relativity and

X . . ; . ) specific case of Lagrangian coordinates in spherical symme-
multiple spatial dimensions—conservative formulations of

I . ; . r is tr in . 1IB.
kinetic theory, such that volume integrals in both conflgura—t y 0 O(v) is treated in Sec

tion and momentum space atevially related to surface
integrals. These conservative expressiomke transparent
the connection between E) and Eqgs.(9) and(10). They A study of kinetic theory begins with consideration of the
can be used to deduce the term-by-term cancellations irtrajectories of individual particles. The worldling\) of a
volved in this connection, thereby illuminating the compli- particle of massn with 4-momentunp and electric charge,
cated differencings required to achieve the cancellations nunoving through a spacetime with metric componejgs, |
merically. Our conservative formulations also suggest nevand electromagnetic field tensor componeifts, }, is deter-
primary variables of radiation transport: particle number andnined by

energy variables describing the contribution of eaomov-

ing orthonormal basisnomentum bin to theoordinate basis dx*

In this section, we consider phase space for particles of
finite mass. We specify particle trajectories—the “states”
whose average occupation is specified by the distribution
function f—and the volume elements needed to derive mac-

A. Phase space for particles of definite mass: The general case

number and energy densities. It may be that the use of these dan P, (D
new radiation variables could provide a simpler path to an

accurate accounting of particle number and energy in simu- dp* , ,

lations of radiative transfer problems. o eFhpTT,,ppr. (12)

The organization of this paper is as follows. Differential
forms and exterior calculus are natural mathematical tool$n the coordinate basis associated with the position vector
for handling the volume elements and integrations needed ibomponent{x*}, the connection coefficients are
relativistic kinetic theory. We closely followand slightly
extend Ehlers’ work[22] in reviewing their use in the de- 4 _1on
scription of phase space for particles of definite micesc. I'*,p=29
II) and the derivation of the Boltzmann equati@ec. Il)).
The centerpieces of this paper—two conservative reformulaAs mentioned in Sec. I, we seek results expressed in terms of
tions of the Boltzmann equation, which provide transparentorthonormal momentum componen{g*} measured by an
connections to particle number and energy-momentum babbserver comoving with the fluid with which the particles
ance as expressed in E¢8) and(10)—are presented in Sec. interact. Combining the transformati@#, to an orthonor-

IV. Because differential forms and exterior calculus may bemng| tetrad and boosz&ﬁg to the comoving frame into the

unfamiliar to those whose primary interests are radiatiorbomposite transformation
transport, in general, or supernova science, in particular, ) o
Secs. |-V each will contain two subsections, one contain- LH = \b—gh (14)
. L . n ne o

ing a general derivation and a second that explicitly demon-

strates aspects of the derivation in the familiar case of th&qgs.(11) and(12) are replaced by

o ago’v ago’p_ &gvp
oxP ox¥  ox7 )’

(13
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L :pﬁﬁmi+(ep p’ FJ p” pp)_u,_(?, (22
" Fax# : It

where {a/9x*},{a/du'}) are now the chosen basis vectors
onMy
Before discussing volume and “surface” elements on

The connection coefficients do not transform exactly as teny .. we give a brief reminder of some properties of differ-

sor components, but as

J

axr -

F“”—U‘ LU Lr e, +£ WL

vp

17

This completes the desired specification of particle trajecto-

ries.

The set of position vectors and momentum vectorg
comprise an eight-dimensional manifditf the one-patrticle
phase space for particles of arbitrary rest massEse posi-
tionsx are points in spacetime, and the momentae points
in that portion of the tangent spacexatharacterized by?
<0 andp future-directed. The curvex(\),p(\)) obtained
from the particle equations of motion comprise thiease
flowin M. The phase flow is generated by thieuville vec-
tor

J
L= p“ﬁ"w#Jr(eF”p F” ppp)—r. (18

ential forms and their exterior derivativés.g., see Refs.
[22], [25]). If {dZ?} are basis 1-forms on some manifold, an
m-form ¢ can be expanded as

1
= H’pal--»amdzalmama (23

wheredZz?1 @m denotes the wedge produdiz?[]- - -Od Z2m.
The quantitiesa,bal...am are thecomponentsf . The compo-
nents are completely antisymmetriqba(i...am: w[al...am]), as
is the wedge product, so thatcan also be expressed

Y= l//‘al...am|d2a1mam, (24

where the vertical bars indicate that summation is taken only
over a;<a,<---<a,. The exterior derivativetakes an
mform into an (m+ 1)-form as follows:

a(/f|a1-~am\
dy= — dZm+13818m

§z%m+1 (25)

Here {a/ox*}, {(?/ap”}) have been chosen as basis vectors

on M.

Two properties of the exterior derivative will be used later in

Specification of a particle mass defines a hypersurface this paper:

of M, a seven-dimensional manifolifl,,, called theone-
particle phase space for particles of definite massTie
mass satisfies

m?=—0,,p*p"=—0,,Lr L ;P p". (19
Considered as a scalar functiom'x,p) on M, the particle
mass satisfies

L[m]=0, (20)

which expresses the constancy mfon each phase space

trajectory. Hence the seven-dimensional manifdld, is

(26)

(27)

d(¢+¢)=do+dy,
d(p0y)=depUy+(—

where ¢ is a p-form.

Now we turn to a discussion of volume and “surface”
elements oM ,,. The invariant volume element in spacetime
is the 4-form

1)Peldy,

1
7= 27 V™ 9€unpa @, (29

whereg is the determinant of the metrie is the com-

uvpo

generated by all the phase space trajectories of particles pletely antisymmetric symbol withey;,=+1, and the

massm. Equation(20) shows that is tangent toM,, and

Eq. (19 is a constraint indicating that it is one of the mo- tion dx#*?7=dx*Odx*0Odx°dx°

wedge product of basis 1-forms is abbreviated by the nota-
. Shifting attention to the

mentum dimensions d¥l that has been lost in going over to momentum space at a given spacetime point, an invariant

M. Hence the Liouville operator restricted k,, can be
expressed as

J
L _pl‘ﬁ/’-’ua p,+(e':l p 1_‘vap pp)_p'! (21)

volume element on a mass shell corresponding to meiss
the tangent space is

1 V=g

Tm=37 |p| €O|Jkdp (29)

Expressed in terms of basis 1-forms conjugate to orthonor-

where (9/3x*},{9/3p'}) have been chosen as basis Vectorsmal comoving frame momentum components, it becomes

in M,

dinates, for examp)e we rewrite Eq.(21) as

. To allow for a change of coordinates in momentum
space from{p'} to {u'} (to momentum space spherical coor-

—d p123 (30)

™ E(p)
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where the bold character denotes a 3-vector, &fg) B. Phase space for particles of definite mass: Lagrangian
= |[p|>+ m?. After a final change of momentum coordinates coordinates in spherical symmetry toO(v)
from p to u, the momentum space volume element can also  Here we specialize certain results of the previous subsec-
be expressed as tion to massless, electrically neutral particles propagating
through flat spacetime, employing Lagrangian coordinates in
o= de{% d ﬁé_ (31) spherical symmetry and retaining only termsQ¢v). _
E(p) au First we introduce these coordinates. In flat spacetime and

Eulerian spherical coordinates, the metric components are
A volume element orM, is a 7-form, which can be ex- specified by the line element

pressed as
ds?=—dt?+dr2+r2d 6%+ r?sir? 9 d¢>. (39

QO =nlm, (32

g

~E(p)

We seek Lagrangian coordinateand m to replace the Eu-
ap lerian coordinates andr. The enclosed baryon massis
de{%} dx?230d ut?, defined by
33 m= fr477r2p dr, (39

The “surface element” normal to the phase flowNh,, is an

important quantity; it is a 6-form, obtained by contracting wherep is the baryon mass density. The mass density obeys

[29] Q with the Liouville vectorL ,: the O(v) conservation law
w=Ln Q= J__gpﬁﬁhe oo (AX7PT0ar,) &—p+ii(r2pv)=0, (40)
31 pwEurvp pre r2 or
+ 1 de{ﬁ_p (eF'?Ap;—l“'?Mp;p;’) where
21E(p) au v vp
aul . p= (41)
ngﬁb?&ﬁ(duknﬂm- (34) dt

_ _ ) _ is the radial velocity measured by an Eulerian observer. We
The first term in Eq(34) can be written in terms of surface choose the Lagrangian time coordinate such that the metric

elements in spacetime. A surface element in spacetime witBomponents are specified by a line element of the form
normal in thex* direction is given by the contraction of the

vector g/ 9x* with the spacetime volume element ds?=—dt?+ g, dmP+r2de?+r2sir? 0d¢?. (42
J /_g The transformations between the Eulerian and Lagrangian
Op= i M= Tewwdx“"’. (35 coordinates involve eight nontrivial quantities, the elements

of the Jacobian matrices

In terms of these spacetime surface elements, the first term in

Eq. (34) can be expressed ﬁ ﬂ
B at  om
J=g - ) Jin—{tm= o o | (43)
30 PH LY 1€ po(AXPI0my) = pH L, (o, Omp). 5 Im
(36)
ot ot
This first term of the “surface elemen® is all that contrib- - —
utes to an integration over momentum sp§8@]; it corre- o gt ar
sponds to a cell in the familiar six-dimensional Newtonian Jem—tn= am  am (44)
phase space. The surface elemeraso shares an important — —
property with a Newtonian phase space volume element: It is gt or
invariant under phase flow. This result follows from the van- 5
ishing exterior derivative ob, Two of these elementsm/Jr anddm/Jdt, are determined by
Egs. (39) and (40). The relationship between Eq88) and
dw=0, (37  (42—specifically, the requirements gy=1 and

Oim=0—provide two more equations. The identity
and the use of Stokes’ theorem on a small tube of Worldlineg{{,,}ﬁ{tymf(J{t,m}ﬁ{]r})‘l provides the remaining four
[22]. equations, and we find that, ©(v),
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at ot v
-2 1 L= —, 52
gt om 4mrép ™ A4mrcp 52
= , 45
ar or ” 1 49 [,é _ 53
% am m o=, (53
£é¢=r siné. (54)
Jat  at
A o 1 B The element<#; of the inverse transformation are obvious.
- v _ Turning to the connection coefficients, we employ E4$S),
am  am —Amr?py  4mrp (47), and (45) to find the nonzero coordinate basis connec-
E o tion coefficientsl'#,, to be
(46) . 1 \?/2v dlnp
Fmm=— 47r2p T+T ' (55)
From these relations we see thaQév), the line element in
our Lagrangian coordinates is Ityy=rv, (56)
dszngVdXMdXV Ft¢¢: rv Slr]2 0, (57)
2
=—dt’+ dm?+r2d6?+r?sin? 6 d¢?, 2v  dlIn
(47Trzp) ¢ M =T"n=— T+ étp ) (58
(47)
1 dln
whose determinant is M=\ 5==-+ A, (59
2@rp  dm
o sing\? 49) '™,,=—4mrp, (60)
Aap)
These metric components can be used to obtain results valid
Now we consider the equations of motion that determine =TT =1%=1 A (62
the particle trajectories. The rates of change, along a particle
worldline, of the coordinate basis position components ) ) $ é 1
{x#*}={t,m,0,¢} and comoving orthornomal basis momen- o= om=T"my=T Ly p’ €3
tum components{p#}={p° p*,p? p3 are given by Egs.
(15) and (16): I'?4,=—sin6cosé, (64)
l[, 1
di Now we can obtain the connection coefficients in the ortho-
P normal comoving frame by employing Eq4.7), (51)—(54),
(iji)\: —F’A‘;,;Jp;pf’. (50) and(55—(65). We find that the nonzerb*;, are
- : 2v dlnp
. " - o FO“=F1”=—(— —) 66
We now consider the quantitie&“;, andI'*;; appearing in et r at (66)
these equations. As discussed in the previous subsection,
Qﬂﬂ=A“;g“M is a composite transfqrm_anon from the coor- Fa” =F6”=F§“=Fé“ _v 67
dinate basigdenoted by unadorned indiget® an orthonor- 22 33 20 307
mal comoving basis(denoted by hatted indicgsIn the
present case the coordinate basis is already comoving, so that i 5. a 1
the boostA*,; is simply the identity transformation. Under =T 33=—-T%-I5=— FE (68)
the remaining transformatioe, to an orthonormal basis,
the metric of Eq.(47) must become the Lorentz metric. We . « coto
make an obvious choice and take the nonzero transformation IZ33=—T3%=— —. (69)

eIementsCﬁ”M to be

Eot = 1, (51)

r

Note that unlike thel'#, , the F/};,;, are not symmetric in

their lower indicesvp because the comoving orthonormal
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basis is not a coordinate basis. Witlt';, and I‘f*;,ﬁ now d ) o o[3v  dInp| wv|d
explicitly specified, our consideration of the particle equa- Lm=€ g T4 pen st el pi| o=+ =5 =)o
tions of motion is complete.
The next topic to consider from the previous subsection is ) 3v dlnp\| d
. . : +te(l—p)|=+pu|l—+——||—+ (75)
the Liouville vector. This vector generates the phase flow— r r at | |ow '

the set of trajectorieé(\),p(\)) obtained from the particle
equations of motion, Eq$49) and (50). These are trajecto-
ries through the eight-dimensional manifold comprised o
position vectorsx and momentum vectorg. But a seven-
dimensional submanifold, the phase space for particles o
definite mass, is of more immediate interest: The physical
fact that the particles have definite mass—as embodied in t
“mass shell” constraint of Eq(19)—implies that there are
only three independent momentum variables. We choose

1Ewhere “ " representsd/db, dldp, anddldp terms whose ex-
plicit form we will not need in this spherically symmetric
ase.

Finally we consider volume and “surface” elements in
hase space. From Eq28) and(48), the spacetime volume
element is

these to be{u'}={e,u,¢}, related to the comoving ortho- sing
normal basis momentum componefits} by T 4mp dtbdmtdetid¢. (76)
pl=eu, (700 Contraction of » with the coordinate basis vectow dt,

alom, dla8, anddld¢ produceqsee Eq.(35)] the spacetime
surface elements

péz eVl— ,u? COSo, (71
Singd OdeOd ¢ (77
~ Oy= 57 m y
pi=ey1—u?sine. (72) 4mp
In the present case of massless particles, the mass shell con- sing
dition gives Om=— mdth o0d o, (78
6:
p°=e. (73 sing
op= 4—dthde¢, (79
From these expressions one can compute the Jacobian P
(ap'/ou)) and its inverse qu'/ap’); this inverse is
siné
04=——dtOdmOdé. (80
de de de 4mp
opt ap? opd .

P P P Turning to momentum space, from Eq81) and (70)—(73)
3_,“? 5_/{ ﬂ_l{ the invariant volume element in momentum space is found to
apt op? apd be
J J J
RAG 7= ede0duOde. 81)
apt op? opd

) \/1_M2 COS¢ \/1—,u,zsingJ We form the volume element on phase space, using Egs.
32), (76), and(81):
1—pu? —uV1—plcose —u\1l—pu?sing (32, (76) ®1)
= € € : Q=n0my, (82
0 —sing COSop
eVl—u? eVl—pu? siné

€
dtOdmOd 60d ¢0d e0d wOd . 83
(72 A ¢ pOde (83

We are now ready to write down the Liouville vector on the With the help of Eqs(75) and (83), we also construct the
phase space for particles of definite mass, obtained with thgurface element in phase space that is normal to the phase
help of Egs.(22), (51)—(54), (66)—(69), and(70)—(74): flow, the 6-formw of Eq. (34):
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w=Ly Q (84)
sinfe . " .
= amp [(Ly'dmOdeOd¢OdeOduOde — (L) "dtOd #0d ¢ OdeOd wOd @ + (L) €dt0d 9#0d o Od mOd w Od
—(Ly*dtOdmOdé0d pOdelld e+ - -] (85
SN0 oA Odeld g — 12 sin fe2udtTd 00 S OdeDd ud g+ S | 2 3L 7NP) Y
_47Tpm ¢Hdelidulide—r=sin e u ¢€,u<p477p,u7 ot r
sinfe?(1—u?)[1 3v dlnp
xdtOdeO0dpOdmOdudde — ————| =+ u| — + ——| |dtO0dmOd §0d pOdeOld o+ - - -, (86)
47p r r ot
where “--" represents terms arising from th#d6, d/d¢, anddldp terms of the Liouville vector. The validity of E¢37) can

be verified[see Eq.25) for the definition of the exterior derivatiye

(a0 singe . i, D)+ J [singe’[ 3v+(9|np ol] 9 (sinfe(1— u?)
R e et LA e e v e Ry e | 7 R e
1 3v dlnp
=0, (89

where the expression fair/odm is taken from Eq(45). The terms explicitly displayed in E¢87) do in fact sum to zero by
themselves, and it can be shown that those represented- Bydd as well.

Ill. THE DISTRIBUTION FUNCTION, BOLTZMANN
EQUATION, AND BALANCE EQUATIONS N[X]= fsz, (89

In this section—again following Ehlef{®2] for the gen-
eral case—we define the distribution functiGnderive the

Boltzmann equation, and present the equations describin . . . ; .
the balance of particle number and 4-momentum. In the gers rfaces like are oriented, and the particle trajectories have
’ a direction associated with them as well. The crossing of a

eral case we reproduce Ehlers’ derivation of the momentum® . : . 2
integrated number balance equation, and explain why it dogdyPersurface by an occupied trajectory can give a positive or

not yield a conservative reformulation of the Boltzmannn€gdative contribution to Eq89), depending on their relative
equation. We also present the balance equation foprientation] With this definition, the distribution function
4-momentum without derivation. In the special case of La-f (X,P) is a scalaf22]. _ o
grangian coordinates in spherical symmetry @gv), we An eq_uatlon_governmg the e_volutlon of th_e dl_stnbupon
verify part of the general derivation of the Boltzmann equa_functlon is obtained by_ con5|der|ng a closed six-dimensional
tion by explicit calculation. We also display the Boltzmann Nypersurfac&/D bounding a regio in M. The net num-
equation and the momentum-integrated number andger of occupled states emerging fr@nis, from Eq.(89) and
4-momentum balance equations pertaining to this specidl® generalized Stokes’ theorem,

case, including the transformation to the lab frame needed to
obtain a “conserved” energy.

here the surface elementis given by Eq.(34). [Hyper-

N[ﬁD]zJ fwzf d(fw). (90)
A. The distribution function, Boltzmann equation, 9D b
and balance equations: The general case

(We note in passing—and discuss in more detail in Sec. IV—
ép_at this expression, which relates a volume integral to a
Oﬁurface integral, is key to obtaining conservative formula-
tions of kinetic theory.Using the “product rule” of Eq(27),

fthe vanishing exterior derivative ab [Eq. (37)], and the
nqefinition of w as the contraction of the Liouville vectar,
with the volume elemenf) [Eq. (34)], we have

The distribution function ffor a particle of a given type
represents the density of particles in phase space. The p
ticle type’s seven-dimensional phase space for particles
definite massM ,, is filled with trajectoriex(\),p(\)), or
“states.” As a collection of particles evolves, the number o
particles in each state changes due to collisions. If one co
siders a six-dimensional hypersurface in M,,, the
ensemble-averaged numb¢r3 | of occupied states crossing
3 is d(fw)=dfJe=df0(Ly, Q). (91
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Any scalar functiorf, vector fieldL, andn-form field ) on  This is the number of particles whose worldlines crGsgat
an n-dimensional manifold obey the identif22] X); hence the 4-vector

G @=L, % N¥(x) = f FLHp = f P (99
Pm(x)

Pm(x

Hence the net number of occupied states emerging Dam
is the particle 4-current density. The electromagnetic

N[aD]:f L [f1Q. (93)  4-current is obtain(_ad by muItipIying_by the electric charge:
b J#=eN*. The particle 4-current satisfies the balance equa-
tion

[Equations(90)—(93) amount to the Liouville theorem in a
relativistic contexfl The domairD in phase space consists of
a regionH in spacetime, together with region, in the (\/_N )_J [ f]mm, (100
momentum spacéthe mass shell in the tangent sppeg \/_ axt

each spacetime point Recall also that the volume element . ,

Q in phase space is the product of the spacetime and m@&nd similarly for the electromagnetic 4-curre@f course
mentum space volume elemenés= y(lm,,. Hence the in- the collisions will be such that the sum of the divergences of

tegral overD in Eq. (93) can be expressed as the iterategthe electromagnetic 4-currents of all particle species will

integral vanish) The stress-energy tensor is
N[c?D]=f 7 f Lm[f]wm). (94) = fp (x)fﬁ“ﬁﬁ”;p“p”ww L (x)fp“p”wm,
H K m m
" (101
BecauseD is a closed surface, the net number of particles Wwhich obeys the balance equation
in trajectories emerging fro must equal the net number of
collisions inD. If correlations between particles can be ne-
glected, the spacetime density of collisions can be expressed M(J gT"#)=F", J#*~T", TPr
in terms of acollision integral C[ f] that depends only on \/ g X
one-particle distribution functions. Therefore,fi{x\(j[f]wm A
denotes the spacetime density of collisions, we have +f aficy;p’emn. (102
N[aD]:J ,](f C[f]mm|. (95) To conclude this subsection, we reproduce Ehlers’ deriva-
H Kx tion of Eq. (100 for number balance, and explain why this

proof does not yield a conservative reformulation of the
Boltzmann equation. The proof involves forming an integral
over a suitable hypersurface in phase space, evaluating that

Because the regiond andK, are arbitrary, comparison of
Eqgs.(94) and(95) shows that the evolution dfis determined

by integral in two different ways, and comparing the results.
L. [f]=C[f] (96) First we specialize the integral in EEB9) to a specific

m ' hypersurface of integration. Consider an arbitrary region in
or, using Eq.(22), spacetimeD, whose boundary isD. Form a hypersurface

. dD in the seven-dimensional phase spstg, composed of

f au' of ioAD i i i i
s +(eF'Vp 1 D oy 2L ey, the boundary regiodD in spacetlm_e toge'Eher with _the entire
IX apl au momentum spacl,,(x) at each point ofD. Equation(89)

(97)  becomes

puﬁ,u

This is the Boltzmann equation.

Next we consider the particle number 4-current, electro- N[JD]= LD‘(“” (103
magnetic 4-current, and stress-energy tensor, and present the
balance equations they satisfy. In E&9), specialize the the integral we will evaluate in two different ways.
hypersurface oM, to be X =GXP(x), whereG is an On the one hand, as derived in E480)—(93), the inte-
infinitesimal spacelike hypersurface in spacetime at pgint gral in Eq.(103 can be written
andP,(x) is the entire momentum space at poirfi31]. As

explained in the end note to the discussion following Eg. _
(36), on such a hypersurface the only relevant termn @ its NLID]= DLm[f]Q' (104
first term in Eq.(34) [given also by Eq(36)], so that Eq.
(89) becomes With the Boltzmann equation, E¢96),
N[G X Pm(x)]zf Uu(f fﬁ“,;pf‘rrm). (99 N[aD]:J C[f]Q=J, ”(J C[f]ﬂ'm). (105
G Pm(x) D D Pm(x)
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On the other hand, the integral in E§03 can be evalu- the Liouville vector with the phase space volume elenfént
ated directly. As a first step, integrate over momentum spackspection shows that the second term of B4) is closely
at each point obD. As discussed in Sec. I B, in such inte- related to the momentum derivative terms in the Boltzmann
gra|s over three-dimensional regions in momentum spac@quaﬂon. But in the above derivation of the number balance
only the first term ofw in Eq. (34) contributes[see in par- €quation, an expression fd* is obtained at an early stage
ticular the end note in the sentence following E86)]. Us- by integration over momentum space; this integration kills

ing Eq. (36) to express the first term af, Eq. (103 can be these terms ofy, so that they are no longer present by the
expressed as time the spacetime divergence theorem is applied. The power

and elegance of exterior calculus has hidden the algebraic

B P details of the connection between the Boltzmann equation
N[oD]= Msffu o (x)ﬁ aP“f (106 and the number balance equation.

" This is remedied in Sec. IV. Instead of choosing a special-

ized hypersurface involving all of momentum space and

= LﬁU”N#(X)' (107 evaluating the surface integral of the left-hand side of Eq.

(90), the path to conservative reformulations of the Boltz-
where the definitiofiEq. (99)] of the particle number current mann equations involves analysis of the volume integral on
has been employed in the second step. Equdtlon) is a  the right-hand side of E¢(90), for hereall the terms ofw
closed surface integral in spacetime; by the divergence thedave been brought inside the exterior derivative, including
rem (a special case of the generalized Stokes thepriécan ~ the ones related to the momentum derivative terms appearing

be converted into a spacetime volume integral: in the Boltzmann equation.
N[oD]= f N (108 B. The distribution function, Boltzmann equation, and balance
D i equations: Lagrangian coordinates in spherical symmetry
to O(v)
1 9 ) - . .
= |. p——= — (V—gN~). (109 The first result to specialize from the previous subsection
fo J—g x* is the Boltzmann equation. An aspect of the derivation that

R can be demonstrated by explicit calculation is the assertion

Because the spacetime regibnis arbitrary, Eq.(100) fol-
lows from comparison of Eq$105 and (109). dfJo=L,[f]Q (110

Now we can see why this type of proof does not yield a ) ) ,
conservative reformulation of the Boltzmann equation. Incontained in Eqs(91) and (92). In spherical symmetryf
particular, we can see why no direct insight is gained into the= f(t M, €, 1), so that its gradient is
fate of the nonconservative momentum derivative terms in 5 5 s s
the Boltzmann equatiofEq. (97)] upon integration over mo- _a ot b ar
mentum space. The left-hand side of E9j/) arises from the df= at de+ am dm-+ Jde de+ I dp. (119
action of the Liouville vector of. Similarly, the phase space
surface elemend of Eq. (34) is given by the contraction of Forming the wedge product witt of Eq. (86) results in

I sin fe? af+ 2 in g2 of +sinee3 ) 3v+z9|np v af+sin052(1—,u2) 1 30+¢9Inp of
= 47p at rsn €K om 47p e ot r|oe 4ap r T ot ﬁ
x dt0dmOd 60d ¢ Oded wOd o, (112

where all other terms vanish because the wedge product of a 1-form with itself vanishes due to antisymmetry. Comparison with
Eqgs.(75) and(83) for L, and() then shows thad fOw=L[f]{, as was to be demonstrated. The Boltzmann equation, Eq.
(97), specializes to

of
—=([f]. (113
I

AN
GE mr pE,LLO,)—m €

v dlnp\ wv|odf
H ( r ot ) I’Le (1=u)

2

3v dlIn
v dlnp
r ot )

L,
PR

This agrees with Eq(20) of Ref.[26].
Next we specialize Eq100) for particle number balance. Equatioi®®), (51)—(54), (70)—(73), and(81), together with the
fact thatf =f(t,m,e, x) in spherical symmetry, imply that

Nt=f f2me’dedu=pHN, (114
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=4mrep TEMAU= LTI p
N"=47r%p | f2me’udu=4mr?p?GN (115

are the only nonvanishing components of the particle number vector. With these expressions &48) Bqd.(81), Eq. (100
becomes

d 1
pr +—(477I’ 2pGNy= pJC[f]eded,ud(p. (116
This agrees with Eq28) (with lapse functiona set to 1 for flat spacetimeof Ref. [19].
Finally we specialize Eq102) for particle number 4-momentum balance. Equati@®, (51)—(54), (70)—(73), and(81),
together with the fact that=f(t,m,e, ) in spherical symmetry, imply that

TttZJ’ f2meddedu=pHE, (117

T’[m:TmI:4,ﬂ.r2pf f2’77'63/~lf d,lLE47TrZPZGE, (118)

Tmm=(4wr2p)2f f2mreuldu=(4mr?p)?pPE, (119
1

Ta(’:r—zf fred(1—u?)du= 2r2(HE P5), (120

R ffm?'(l— 2)du= 5y (HE— PF) (121
r2sin20 M K 2r25in20

are the only nonvanishing components of the particle stress-energy tensor. With these expressions @8y &f$—(65),
(51)—(54), (70—(73), and(81), thet andm components of Eq(102) become

JHE 9 2v dlnp
i Eyy ~ (HE_ pE omp
pm + (47TI’ pG )+ (H P=)— ( ; + P )
1
=;f C[f]e’dedu de, (122
d 1 2v dlnp 1 dlnp
92 ~E 7 E1_ ~ (4E_pE E E
Tﬁt(r pGF)+ . p am[(4’n’l’ 2p)2PE]— (H P=)— 2( pr )G —(4mr p)( p+ o )P
1
:;J ([fle’ndedu de. (123

With the help of Eq(45), them component equation can be It was also noted in Sec. | that in Eulerian coordinates in

expressed as flat spacetime, the connection coefficieiits,, vanish, so
9GE 4 2 | that a conserved energy can be defined. EquatioR) for
E E_ pE v dinp : . 7
P +a—(47-rr pP5)—— (H P=)— T particle 4-momentum balance is a vector equation; the
component of a vectov is obtained from theé andm com-
1 ponents by the transformation
=—f ([fle?udedu de. (129 N
P - At
Equationg122) and(124) agree with the expressions follow- v _EV + %V ' (129

ing Eq.(31) of Ref.[19]. As expected from the discussion in

Sec. |, these 4-momentum balance equations have noncowhere the transformation coefficients are given by &&).

servative terms arising from the nonvanishing connection coEquation (122) is actually p~! times thet component of
efficients of Eqs(55)—(65). 4-momentum balance, and E(L24) is (4mr2p?)~ ! times

023006-12



CONSERVATIVE FORMULATIONS OF GENERAL . .. PHSICAL REVIEW D 68, 023006 (2003

the m component. These factors must be restored before IV. CONSERVATIVE FORMULATIONS
plugging into Eq.(125); the final result for thd component OF PARTICLE KINETICS
of 4-momentum balance is We are now in a position to present conservative formu-

lations of kinetic theory. We seek expressions closely tied to
Eqg. (100 for particle number balance and E402) for par-
%(HEﬂ)GE)+ aim[4ﬂ_r2p(GE+vPE)] ticle 4-momentum balance. In addition to deriving these con-
servative formulations in the general case, we show the re-
lationship between them and explain the care that must be
_ i i(rzpv)GE exercised in finite differencing the number balance equation
in order to make it consistent with the energy balance equa-
tion. We also specialize these results to Lagrangian coordi-
_}f C[f](1+vu)ededud (126) nates in spherical symmetry @(v), and see that the “num-
p vpie et te. ber conservative” Boltzmann equation—arrived at in the past
by guesswork 24]—emerges naturally from our formalism.

[The O(v) baryon conservation expression A. Conservative formulations of particle kinetics:
The general case
alnp 2v ov For an expression related to particle number balance, the
o + — +477r2p(9_ =0, (127 derivation of the Boltzmann equation in the previous section
r m

had us closer to the desired result than might first be realized.
In rushing headlong towards an equation fiothe key rela-

. tion is easily overlooked: It is Eq(90), the result of the
obtained from Eqs(40) and(45), (46), has been employeqd. . , ! .
Equation(126) agrees with Eq(32) of Ref. [19]. The non- generalized Stokes’ theorem. The integrand on the right-hand

; . ; side of Eq.(90), d(fw), is conservative: Having been ob-
conservative third term on the lefi-hand S|d¢0$v_2) and tained froﬁ1 Stokeé’ th)eoret(mhe generalization o?the diver-
ought to be dropped at the level of approximation we ar&ence theorein it haseverythinginside the exterior deriva-
using. However, it is retained in Ref19)] for a practical e Being an exterior derivative, it is too abstract to be
reason. In supernova 5|mulat|.ons .velc_Jcmefs can Qxceed Va&irecﬂy useful; but massaging it just enough to bring it into
ues for which theD(v) approximation is strictly valid; and  the formd(fw)=N[f]Q, whereQ is the volume element in
while use of theO(v) formalism might be questioned on phase space, we shall see th@f] is in fact a conservative
physical grounds, th@(v?) nonconservative term can still differential operator in the familiar, elementary sense.
be used to check that the numerical implementation of the Now we take a detailed look at E¢R0), in particular the
O(v) Boltzmann equation is consistent with E426). exterior derivative

. . 1 ap
d(fw)=d(N—gp*L* 4 €, 4peidX"?7) O — (N —gpALH 1 0, Dd i+ d( ?p) de{%l

~ . - -~ ~ du i ~ . - N &u? A
x(eFJ;,pV—FI;;JprP)—J,rfe()ngmdu " Onp+ (eF’;p”—FJ;;,p”Dp)—;f66?|&ﬁ|du " Od 7,
ap ap

E(p)

d
de{—p
au
(128

where we have used Eq84), (35), (26), and(27) and employed the vertical bar notation introduced in @4). The exterior

derivatives will be expressed in terms of the bdsis*,du'} on M. First we note that in our chosen momentum coordinates,
the second term in Eq128) vanishes becausgr,,=0: This is becauser,, as expressed in E¢31) has no dependence on

{x#}, and while it depends ofu'}, adding another momentum 1-form to the wedge product® would cause it to vanish
due to its antisymmetry. Similarly, the fourth term vanishes because0. To understand what happens to the first term,
consider one of the terms in the sum oyer

N 0 R
d(\/—gp“ﬁoﬁfeo‘lzqulx)ﬂwmzm(\/—gpf‘ﬁoﬁf )dXOlz:thTm. (129)

While derivatives with respect tfx'} and{u'} are nonvanishing, only the wedge produciof with dx'?®is nonvanishing,
and the wedge product ifr,, does not admit another momentum 1-form. The other terms in the sumuoass similar. To

understand the third term in E¢L28), consider a particular term in the sum over
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d| —|de
E(p) ou

and similarly for the other terms in the sum ovierWith Eq. (33), all terms in EqQ.(128 can be assembled to form the
expression

é’ui 123
(eF‘ p F' ppp)—rf du=°Oxy,
ap’
(130

(eFJ FJ P) anf du (? ! de P
fe — =
p pp p 01/23| Unp= E(p) (9u

where
A~ - IS &U?
(eF;p"—T'5p'pP) —f|. (132
ap!

d(fw)=Nf]Q, (131
1
N[H= ——— (= gerapif )+ Ep)

opl| o[ 1 ap
def — — | ——|det —
‘/—g axH au E(p) au
In the derivation of the Boltzmann equation, EG31) can be used to replace E®3) with a similar expression in which
L [f] is replaced by\[ f], with the result that

N[f]=C[f]. (133

This is our conservative formulation of particle number kinetics.

Next we seek a formulation related to particle 4-momentum balance. With arhityarywe evaluate the exterior derivative
d(v,p“fw) in two separate waygTo simplify formulas, we often writep” instead ofC*;, p“ but because of our chosen
momentum coordinates dvi ,, the latter expression must often be used in computatlonal stejpst, employing Eqs(131)
and (133,

d(v,p*fo)=d(v,p"*) Ofo+uv,p"C f]Q. (134
Computation shows that

“.

J ~ L J 0 J i
d(v,p*) Of = p”p”f%-ﬁ-v#fpr“ ; “)QHM P P
X" X"

LPg—+ LM )(eFJ p’ F' A pp)fQ (135
Yopl ap!

Because of the mass shell constrdiag. (19)], pa is considered a function of th[ep?}. The geodesic equatiditg. (16)] can
be used to show that

7p° i i 0 0
%;(eF ;p’—T P "pP)=eF%p’—T P "pP. (136)

This, together with Eq(17) for the transformation of the connection coefficients, allows @85 to be written

d(v,p*)Ofw=

p“p

vpV_F’quprp)f>Q- (137}

Second, we evaluaté(v ,p*“fw) directly. A computation similar to that leading to E¢$31) and (132 yields

p“p ) Q, (138

HIFRETEF
de — de
au E(p) Ju

Recalling that , is arbitrary, Eqs(134) and(137)—(139 can be combined into

d(v ,p*fw)=

where

&u?
(eF; p7— FJ A p”)—ﬁ" pif
ap’

1

Sp“p’f ) +E(p)

—-g ax”
(139

Tef]=(eF* LY p"—T#, LY L0 p"p?P) f+ LF, pH (] f], (140
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a “conservative” formulation of particle 4-momentum kinetics.

To illuminate the practical problem of accurately accounting for both particle number and energy, we consider the rela-
tionship between Eq133) for particle number kinetics and thecomponent of Eq(140 for particle 4-momentum Kinetics.
(This is an issue when one follows the general approach of, for example, [REf§3], [5], in which a particle number
distribution equation is solved and a particle energy equation is used as a consistency $peciically, we need to relate
the spatial and momentum divergence terms of these equations to each other and identify terms that cancel.

First we relate the spatial and momentum divergence terms of188 and thet component of Eq(140. Their spatial
divergence terms,

Nl f]= J_ &Xﬂ(v gL ,pht), (141
(T [f]EL (V=gLhcrp i), (142
SN g
are related by
GpIN F1= (T ] FpipP s (£ 143
Lop N ]= (T 1= Tp#p " LF i (L55). (143
Their momentum divergence terms,
opl| ta [ 1 fopl| - . aul
No[f]=E(p)|det —|| —| ——|det— (eF',;p“—FJMp“pP)—rf (144
ouj| ou'\E(p)| [du] ap’
- o .
(L 1=E(p)|def P|| % 2| det || eF - 1 pi07) 2 £tpe (145
P oul| ou'\E(p)| |ou . e apl "
|
are related by is the “extra” term in Eq.(146) relating the momentum di-
vergence terms of the number and energy balance equations.
£t;ppr[f]:(Tt)p[f]_f(eFj/‘Lp’U“ Notlng that
i o ap” ap®
—I‘J”p"p”)—urﬁt ! . (146 —rﬁtv—p.r=—p~zto+5k L%, (150
ap! aul ap! ou'  ap!
Comparison of Eqs(143 and (146) with Eq. (133 and  E0- (136 can be used to rewrite EqL49) as
thet component of Eq(140 shows that the following equa- ; 5 .
tion must be valid: En=f(eF ,p"—T",;p"pf)LY; . (159

Eot EM=eFt;LL'“;;p’A‘—Ftﬂpﬁ”ﬁﬁpﬁp;‘pﬁ, (147 Use of Eq.(17) and two applications of the identity

where L —(E )——L”

i 5(LF5) (152

”&x

ESEprpVE’M“_(EtV) (148) lead f|na”y to

NG
— t nA_Tt PR RP
is the “extra” term of Eq. (143 relating the spatial diver- B =1 @R, LEp =17, L2, L7 p”
gence terms of the number and energy balance equations,
and 5
—p*p »C“;L(%(—#(»Cty) (153
N TUR T . : . .
Ew=f(eF ,p# Tl .pip) —L\—— (149 Equations(148) and (153 make it obvious that Eq147) is

ap! o' satisfied.
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In a computational approach to transport in which a parference representation of momentum variable€jp, and
ticle number distribution equation is solved and a particlethe momentum variables in terms &g that cancel with
energy equation is used as a consistency check, care must teems ofE,, must have a matching finite difference represen-
taken that Eq(147) is satisfied numerically. In particular, a tation.
given finite difference representation of the spacetime diver-
gencelN,[ f] implies a corresponding finite difference repre-
sentation of position-dependent quantitiesBg, and the
position-dependent quantities in termskgj that cancel with
Es must have a matching finite difference representation. Using Eqs.(48), (51)—(54), (66)—(69), and(70)—(73), the
Similarly, a given finite difference representation of the mo-“number conservative” formulation of Eq133 specializes
mentum divergencél [ f ] implies a corresponding finite dif- to

B. Conservative formulations of particle kinetics: Lagrangian
coordinates in spherical symmetry toO(v)

3 din
o2

r at | T L ™

E r

1 0
— Y )a3
zﬁe[e

f J 1
» (9,%(1 ,u)r+

3 aln
v, p)

f}_ 1 ot
o1~ pe [f],
(154

which agrees with Eq(23) of Ref. [24]. In Ref.[24], the necessity of making/p the evolved variable in order to get a
conservative particle number equation is left unexplained. In the present formalism, we see that thegactore$/from the
factor — g=sin 6/4mp in Eq.(100). Multiplication of Eq.(154) by e’de du de and integrating immediately yields EQ.16),
expressing particle number “conservation.”

Similarly, thet andm components of the “momentum conservative” formulation of Et{0) are

ef N d 4 f 10, , 3v+(9|np v|f N d 1- 2 1+ v dlnp)\| ef
(9tp Jm erf'up v e L R e e e R Ao P at || p
AL P Yt 15
=\ T entt e el ] (159
and
1 9 (r?peuf 1 d f 19 3v dlnp\ wv|f
-7 2 = 9] 4 2[ 2% e
r<p ot p )+47Trp&m<( er)e'up) 26’{ M[M(r+ at rp
d 1 v dlnp)\|euf
J— A 4
+(9M[(1 w7+ m at) P
2v dlnp ) 1 dlnp 5 1 ) wo
= (T+ gt )E,(Lf+(477|’ p)(m'f’ om €M f+FE(1—,U, )f+;‘L[f] (156

With the help of Eq.(45), the m component equation can be expressed

eunf d ,f 14, ,[3v dnp| v|f d o1 v dlnp\|enf
(9'[( p)-i-% 4gr? pE,LLp 2 e e ul u T+ it F; +£ (1 ,u,)?-i-,u, —+ ot p
2v dlnp 1 5 o
_<T+ at )G,U,f'f‘Fe(l—,u, )f+;‘C[f] (157

Multiplication of Egs.(155—(157) by e’dedu de and integrating immediately yields Eq&l22—(124), expressions for
particle 4-momentum balance in the comoving frame.
Just as the comoving franteandm momentum-integrated balance equations—E#22) and (124—can be combined to

form the lab frame “conservation” equation, Eq(126), Egs.(155 and(157) can be combined as

d|e(l+ovp)f d 4 1+ 1 f19 A1t o[3v dlnp| v|f

AT |t am| AT pen v/f«) ———( “po)ens 2ot L) w ot o -l
PR PN R AL | B S I 158
o (A=p)| p |+ |« UM); —’—)( vu)CLF]. (158
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Multiplication of this equation by?de du de and integrating immediately yields E(L26) for lab frame energy “conserva-
tion.”

We now examine the relationship between Edh4), a conservative formulation of particle number kinetics, and(E§9),
a conservative formulation of particle energy kinetics. We multiply §4) by (1+v u) and consider what it takes to get the
terms in Eq.(158. In doing so, we examine carefully on(v) terms. First the time derivative terms,

d (i)_i[e(l—kvu)f

6(1+U/.L)E o~ ot p }4—0(02). (159

Next we compare the mass derivative terms:

—4qrr2w2ﬁ i. (160
am p

d , f J ) f
e(1+v,u,)(9—m Ay pMI—) = 4y pe,u(l—i—v,u);

In the notation of the previous subsection, the “extra terms” from the spacetime divergence are
Es=4mr? 2'9Uf+o 2 (162
s=4mrcen am o (v9).
Next we relate the momentum divergence terms in the number and energy equations, looking first at the energy derivatives,
3v din v|f
AT )
p

3

r at r

19
6(1+v,u,)?£ €

19 414 ,[3v  dlnp| v |f 23v+c9|np v f+O ’ 162
=208 QAtop) | pi —+ —— ol 4\ T aw T (v9), (162
and then at the angle derivatives:
. J ot 3v+0|np) f
€( UM)(?,LL( w7 Hul at ||
d 1 3v dlnp f ev(l—pu?) f
- _ 2\ = _ I R R 2
&M((l ne) r+/.L( ; + 0 ) E(1+U,u)p] ; p-l—O(v ). (163

In the notation of the previous subsection, the “extra terms” from the momentum divergence are

f o oev(l—pu?) f
A R ) (164
p r p

3v dlnp
2
—+
“(r at

HavingEg andE,, , we are ready to verify Eq147), which must be satisfied for consistency between the particle number and
energy balance equations. Having specified electrically neutral particles, and having chosen to work with the lab frame energy
expression of Eq(158) (in which the connection coefficients vanjisthe right-hand side of Eq147) vanishes. Employing Eq.

(127) for baryon conservation, from Eq6l61) and(164) it is easy to see that

v

r

EMZG

is indeed satisfied analytically. But in solving the “number conservative”(Eg4) numerically, consistency with the “energy
conservative” Eq(158) requires that Eq(165) be satisfiechumericallyas well. Referencgb]| provides an example of a finite
difference representation of E(L54) that satisfies this criterion.

V. CONCLUSION

In this section we summarize our conservative formulations of kinetic theory, comment on their relation to moment
formalisms, and discuss their possible application in the core-collapse supernova environment.

Having in mind computational radiative transfer in astrophysical environments, we have sought formulations of relativistic
kinetic theory with the following propertiegi) they are expressed in terms of global, Eulerfan “lab-frame”) spacetime

coordinates{x”}; (ii) they are expressed in terms of convenient three-momentum coordingje€e.g., spherical polar
which are taken from the orthonormal momentum componfgiismeasured by an observer comoving with the medium; and
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(iii ) they are “conservative,” having transparent connections to total particle number and 4-momentum balance as expressed
in Egs.(100 and(102.
To express our formulations having these properties, we introduce hespehdic particle number flux vector

NE= L, pht (166
and thespecific particle stress-energy tensor
T*'=LF L7 pRp (167

where the transformation to the comoving fra®, is given by Eq.(14). (While the adjective “specific” often denotes a
guantity measured per unit mass, in this context we use it to denote the particle flux and stress energy in a given invariant
momentum space volume elemehile the distribution functiori of a given particle type of masa and charge obeys the
Boltzmann equatiofiEq. (97)], the specific particle number flux and stress energy satisfy the conservative equations

pl[7to [ 1 ap aul
\/—é,xﬂ(\/_./\/“)%—E(p) de{ —-( =) de{ (eFl,—Ti;;p? )—p~m M)
=C[f], (169
p o1 o?p S T
J—ﬁx ) det —— (eF;—T;pP) — poy — L', T
=FMN—FMVPTP+meﬁC[f]. (169

In stating that Eqs(168) and (169 constitute conservative forms is handled by two “levers” of considerable power,
formulations of particle kinetics, we mean that the connecnamely the generalized Stokes theorem and the key relation
tion to the balance equations of EG800 and(102) is trans-  dw=0, which is closely related to the relativistic Liouville
parent, in the following sense. We can use elementary calcitheorem.

lus to form the familiar invariant momentum space volume A concrete examp|e of our formalism is provided in the

element Appendix, which contain®(v) equations for the specific
d3p 1 p particle number density, specific particle energy density, and
= —de{— d3u (170  their angular moments—all in flat spacetime, but in coordi-
E(p) E(P) du nates sufficiently general to represent rectangular, spherical,

where a transformation from orthonormal momentum com- and cylindrical coordinate systems. .

We now comment on the connection of Eq$68 and
ponents{p'} to some other set offcoordlnatéxsg., momen- (169 to moment formalisms. In the usual treatments, if one
tum space spherical coordinatgs } ={|p|,¥,¢}) has been writes the distribution function as a function of momentum
performed. Multiplying Eqs(168 and (169 by Eqg. (1700  variables as measured in a given fraftabd or comoving, it
and integrating, the terms with momentum space derivativeis natural to form moments by multiplying the distribution
are obviously transformed into vanishing surface terms; théunction by, for example, energies and angles measured in
results are Eqg100) and(102) for total particle number and that frame, and integrating. Lo and behold, it turns out that
4-momentum balance. these moments are number densities and fluxes, and energy/

In terms of differential forms, the procedure for obtaining momentum densities and fluxes: components of a particle
the conservative formulations of kinetic theory is straightnumber flux vector and stress-energy tensor, measured in the
forward. First, express the volume eleméntin the phase same frame chosen to measure angles and energies. Tradi-
space for particles of definite mass in terms of the desiretional, then, are treatments in which the components of con-
spacetime and 3-momentum coordinates. Next, by contracerved tensors as measured in a given frame are expressed as
tion with the Liouville vector, form the hypersurface elementfunctions of momentum variables as measured in that same
w=Lp-Q. Then bring the exterior derivativ( f w) into the  frame.
form N[f]Q by direct computation; Eq(168 results on But this traditional approach to moments may not be the
comparison with the Boltzmann equation. This result cammost convenient, and Eqg&l68) and (169 provide an attrac-
then be used in conjunction with an evaluation oftive alternative. For example, Liebender et al.[5,19] form
d(v ,p*fw) for arbitraryv , to obtain Eq.(169. The reason moments in the traditional way, resulting in components of
the procedure is straightforward is that the “heavy lifting” of conserved tensors as measured irogthonormal comoving
transforming the Boltzmann equation into conservativeframe But it is the tensor components in theb framethat
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one would like to check, either because it is the COOfdinathrmS of \/__gTOO would have numerical errors unless cer-
basis(at least in a spatially multidimensional simulaiand  tain finite differencings were carefully designed. But with
therefore natural to deal Wlth, or because it is the basis imespect to the crucial energetics of the physica| system' itis
which energy is conservefgh a simulation in comoving co- worth noting that there are a couple of factors mitigating the
ordinates in spherical symmejryThe required transforma- jmpact of errors in number conservation in comparison with
tion of the tensor components between these frames leads rors in energy conservation. Errors in number conservation
the numerical complexity mentioned in Sec. |, and discussegangjate into errors in the electron fracti¥g, which affect
further in the Iat_ter parts ‘.Jf .Se.cs' IVAand IVB. In contrast, energy conservation through the equation of state, but note
when the coordinate basis is in the lab frame as expected if following. (i) Only v, and (), affectY,, while all spe-

spatially multidimensional simulationsntegration of Eqs. . . .
) . cies impact the energy budget. Better to have two species
(168) and (169) over momentum variables leads directly to ntributing to error rather than siti) The effects ofv, and

the tensor components in the desired coordinate basis, evez% o . . s
though the specific particle number and stress energy are”’/e on 'Y, are opposite in sigtunlike _the_lr c_ont_rlbutlons tf) .
functions of comoving frame momentum variablEse in- energy,'so that to thg extent that their dIStI’IbU.tIOHS are simi-
sight here is that the frame in which the tensor component¥; the impact of their errors o¥l, may approximately can-
are measured need not be the same as that employed to 5. ) o N
tain the momentum variables used to parametrize the particle A third possibility would be to solve foboththe specific
distributions. The Appendix provides an example of a mo-particle energy density/—g7® and the specific particle
ment formalism of this kind. number density/—gA°. (Rampp and Jankp4] solve for

In simulations of systems such as core-collapseboth number and energy distributions, but in the comoving
supernovae—in which careful attention to energetics idrame; this limits the utility of their approach with respect to
critical—a number of possible approaches, based on the comccurate tracking of lab frame quantitiekistead of prede-
servative formulations of kinetic theory presented in this pafining both the boundaries and center values of bins in en-
per, might be suggested. Below we suggest three possibkrgy space, one could define the boundaries only and use the
“direct” approaches, in which all terms are discretized in all values of/— g7 and+/—gN® (along with the transforma-
variables—time, space, energy, and angles. Then we descriign £~,) to obtain center values of the energy bins in each
how our formalism could be used in an “iterated moment” spatial zone and each time step. The consistency of the so-
method, which involves an approximation of the collision jutions would be arguably reasonable as long as the derived
integral. center values of the energy bins do not wander outside the

First, the general approach of, for example, RE2$.[3],  predefined bin boundaries.
[5], could be fO"OWEd, in which the conservative particle In the preceding paragraphs' our discussion of three pos-
number distribution equatiofEq. (168)] is solved, and the sjble ways to employ our conservative formulations of rela-
conservative particle energy equatishe time component of tjyistic kinetic theory assumed a “direct” approach, in which
Eqg. (169] is used as a consistency check. The quantity|| terms are discretized in all variables; it is also possible to
V—gN®, which might be called thepecific particle number apply these three basic philosophies to an “iterated moment”
density would be the primary neutrino distribution variable: method using our equation§lhis method has been applied,
It is the contribution of eachomoving framenomentum bin  in an approximate way, to conventional comoving frame mo-
to the lab frame particle number density. This approach ment equations in Ref§27] and[4].) As discussed earlier in
makes number conservation a somewhat natural outcomehis section, one forms “moment equations” by integrating
but energy conservation would require finite-differenced rep£qs. (168 and (169 over anglegand possibly energigsA
resentations of various quantities to be “matched” in orderspecific example is shown in the Appendix; see HAS2),
that Eq.(147) be satisfied numerically. This might be con- (A43), (A49), (A57), and(A65). In order to solve these equa-
sidered the most rigorous and self-consistent metfddte  tions, the “Eddington factors” defined by Eq$A38) and
that if one solves the “plain,” nonconservative Boltzmann (A73) are needed; these can be computed with knowledge of
equation—Eq(97)—for the scalar distribution functiohas  the angle-dependent distribution functions, obtaifiedthis
a function of comoving frame momentum variables, conserexamplg by solving Eqs.(A14) and (A26). The key to the
vation of neither lab frame particle number nor energy is iterated moment method is an approximation to the collision
straightforward. The same is true of methdelgy., Ref[27])  integral in the angle-dependent transport equations: the
based on a nonconservative form of the transport equatioangle-dependent distributions on the right-hand sides of Egs.
for the comoving frame specific intensity. (A14) and(A26) are replaced by the moments obtained from

In order to avoid the intricate finite differencing of numer- the solution of Eqs(A32), (A43), (A49), (A57), and(A65).
ous terms demanded by this method, a second option woulgh summary, the method is as follows: The moment equa-
be the use of/—g7°® which might be called thepecific tions need Eddington factors for closure, which are obtained
particle energy densityas the primary neutrino distribution from the solution of thegsimplified) angle-dependent trans-
variable. Designing a code around a differenced version oport equations, while the angle-dependent transport equa-
the =0 component of Eq(169 would make accurate ac- tions require the angular moments for their simplified colli-
counting of total neutrino energias represented by the  sion integral. This system is iterated to convergence. The
=0 component of Eq(102)] relatively straightforward. Of computational complexity of the angle-dependent transport
course, the neutrino number balance equation expressed @guations is reduced by this method, but at the cost of throw-
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ing out information beyond the first couple of terms in anwith
angular expansion of kernels in the collision integral; this

may not be a good approximation for neutrino/electron scat- 1 0 0 0
tering and neutrino pair production processes. ) 0 a(x) 0 0 e
€= 1 2
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APPENDIX: FLAT SPACETIME, O(v) EQUATIONS 0 0 Y3
IN A GENERAL COORDINATE SYSTEM —vy —Up —Us 1

In this appendix, we present an application of the conserrhe pars on the velocity indices are a reminder that the fluid
vative formulations of kinetic theory derived in this paper, ,e|ocity is expressed in the orthonormal lab frame coordinate
namelyO(v) equations for the specific particle number den-qystem. The combined transformation from the lab coordi-

sity and specific particle energy density, as well as angulafate frame to the orthonormal comoving frame is
integrals of these equations—all in flat spacetime, but in co-

ordinates sufficiently general to represent rectangular, spheri- dxi= A dy

S ) . Xt=L* dxH, (A7)
cal, and cylindrical coordinate systems. The angle-integrated ®
equations constitute “monochromatic” moment formalisms h
that provide an alternative to traditional variable EddingtonW ere
factor methods of handling radiation transport. We specialize
to massless, electrically neutral particles.

We begin by describing our spacetime and momentum ) ) ) ) _
space coordinate systems. While we assume flat spacetimEl€ neutrino 4-momentum is described in terms of its co-
in order to accommodate curvilinear coordinate systems wenoving frame components,pf)=(p,p? p3p°'. Only
employ a general spacetime coordinate labeling)( three momentum variables are independent; we choose polar

LF,=NFet,. (A8)

=(x5x2,x3,t)T. The line element is coordinates in momentum space, defined by
= “dx -
ds?=g,,dx“dx", (A1) bl e cosd, (A9)
with .
L 0 0 0 p2=esind coseg, (A10)
(0.)= 0 a*(x") 0 0 (A2) p®=esind sine. (A11)
ry 0 0 b2(xH)c?(x?) 0 |°
0 0 0 -1 The radiation field is a function of the variables

t,x%,x?,x3,€,9,¢. The invariant spacetime volume element

In this matrix expression for the metric components, rowsn EQ. (28) is abcdXdx’dx’dt, and the invariant volume

and columns are ordered 1,2,3,0. In Cartesian coordinate§'ement on the mass shell in momentum space in(&Q.is

(x1,x2,x3 =(x,y,2) and @,b,c)=(1,1,1). In spherical co- € SinYdeddde. _ . .

ordinates, x,x2,x%) = (r,6,4) and @,b,c)=(r,r,siné). In _ We flrst_present an equation for the specific particle den-

cylindrical coordinates, xt,x2,x3)=(r,z,¢) and (@,b,c) Sty N, defined by

=(1,r,1). Our spacetime coordinate systems are “lab .

frames,” so that the equations we derive are Eulerian. Ortho- N=p'f=L";p"f, (A12)

normal “lab frame” coordinates, indicated by barred indices,

are obtained by the transformation wheref is the invariant particle distribution function defined
_ in Sec. lll. The specific particle density is related to the lab

dx“=e*, dx*, (A3)  frame particle densitpn=N"' by
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D +D + Dy [ N+ Dy [ N]+D +D
_ f Ne sind dedd do. (A13) t[A/] xl[/\/] X [-/V] X [A/] 19[/\/] (p[/\/]
+UE[,/\/]+O,9[,/\/]+U¢[J\/]=C, (A14)
From Eq. (168, we find that the specific particle density whereC is the invariant collision integral appearing in the
satisfies Boltzmann equatiofiEq. (97)], and
IN
DN = —, (A15)
ot
D[ N]= ab axl{ab[(l c2)vitcy(l— SyC,U2— SyS,U3) ING, (A16)
Dy N]= ac axz{c[ (1-sfc )02+C So(1—Cyv1—SyS,v3) N, (A17)
J
Dys[N]= bc 3 {[a- 3193 2 )ua+ SpSu(1—Cyv1—SyC,02) INT, (A18)
D[ A]=— 1Rt P M, A19
ol M= s, 00| la ax %" b ax I SIS (AL9)
1 9 1 0a 1 b 1 dc ,
Dy[N]=— 59 % ~3 mcﬁsﬁc¢s¢+ 5 Wcﬁsﬁc¢s¢+ ac Wsﬁs(p N, (A20)
1d| [or , vz vz 1(dvy vy 3
e[/\/]__gx( pv c5+ xI C0S0Cs + X 10195195 + x2 CoS0Ce + X 2Sﬁc¢+ ax ZSﬁCq:S:p
1 (dvy w7 , w3 , ,| 1 da 1 b
+— be | 7x ——3CySyS,+ x 35,90 S+ v 3sﬁs¢ +5(9 l(sﬁc V1~ CySyCul2) T 1= b (sl,s U1~ CySySel3)
1 dc
&—Xz(sﬂs vy— sﬁc S,v3) [N}, (A21)
1 9 vy vy s , 1 vy 4 vy 5, dvz
@19[./\/]2 - S_ﬁ %{ C7X1 CysS 19+ X -7 Ci,S,gC + ﬁXl CﬁS,gs(P'i‘ —| — WS@QPJF WC{)S@C@-F WC,})SﬂC‘PS(’D
1( dvy, vy vy 1 ga - 30 o3
+b—C =3 S05e + P 30,95,90 S,+ P 30,95,35 +5m(c¢sﬂvz+c(psﬁsq,vz—c‘psﬁs(pvg)
1db
+ - b o'?xl( c sﬂs v+ 5SS, vz+c sﬁs v3)+ — 2c 2 (cﬂsﬂs vo— cﬁsﬂc S,v3) [N, (A22)
o 19 z?vz L] dvg L1 1 vy N v 1 vy N dvg
Og[ M= Sy I axTCSeT T CaCet G| T @ SCeSeT 512800 | ic| T 53 505 ax3 30Ce%e
1db 1 Jc s B P
+Bm(sﬁc¢s cﬁsﬁc swv2+cﬁc v3+cﬂsﬂc 33+ C§—Xg(—c,§,sﬁs¢v1+ C9S9CeSel 2T Syv3+ CySyS,U3)
10a — 3 — 2.3, — 2 2
+ - 2 —(— sﬁc GU1— CySeU2— CySHS U2+ CySyC,Syu3) (N7 (A23)
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In these expressions, we have employed the notagipn where

=sindY, cg=cosd. In accordance with th®(v) limit, we

have ignored acceleration terms and terms nonlinear in ve- Dot = N

locities and/or velocity spatial derivatives. [0 = at (A33)
Next we consider an equation for the specific particle en-

ergy density€, defined by 1 9

£ ottt = £ ppind o4 Da[N]= o Zxalab(fi+tvi—fijvi—fizv,—figug) NI,

=ppf=L0L5p"p . (A24) (A34)

The specific particle energy density is related to the lab

frame particle energy densige=T" b 1 9 e e
P 9y b= y ]sz[‘ﬁ]:5&—Xz[C(ferUz_flzvl_fzzvz_f23l}§)m]a

e=f esind dedd de. (A25) (A35)
- oy - B 1 (9 -~ _ PPN _ PPN _ ~An
From Eq. (169, we find that the specific particle density Dys[91]= b——3[(f3+ v3— 13075305 f3303) M,
satisfies (A36)
D E]+ Dya[ E]+ Dy E]+ Dya[ £]+ D[ £]+ D[ ]+ O L £]
J (71}1 (91.)2 (?Ug
+0p[E]+ O [E]=€(1+v1Cy+v359C, T v3SsS,) C. OLN]=—— € de e’ oxt fii+ axt f12Jr ot fi3
(A26) 1 avlf auzf &v3f ) 1 (&vaM
The terms on the left-hand side are given by Ed@sl5)— a\ 2 2t g tet Gt T | gahs

(A23) with A replaced by [32]. Thet component of the

H “ v, Jvs 1 Ja
second term of Eq(169), which we refer to as the “accel- 42y S fos0T—f50
eration term,” vanishes for the flat spacetime metric of Eq. axd 1t g tas) + g pra(faavi—Tizva)

(A2).

We now consider angle-integrated versions of Eg4.4) 1 oo L gc

b X ——1(f33v1—fi3v3) +

and (A26), which constitute equations for “monochromatic ac ax?
moments” of the radiation field. These moments are func-
tions of the variables,x",x?,x° €. In deriving and present- X (f3307— f3303) m] (A37)
ing these expressions, it is convenient to define

nj=cosd, (A27)  In these expressions, we have defined

n>=sin9 cose, (A28) fi= f A sin® d9 de.

n3=sind sine, (A29)

1

the orthonormal comoving frame components of the unit f}jzﬁf/\/n;n; sind dd de, (A38)

3-vector specifying the particle direction. In accordance with
the O(v) limit, we ignore acceleration terms and terms non-
linear in velocities and/or velocity spatial derivatives.

Our first equation of this type dictates the evolution of the
lab frame monochromatic particle density, defined by

which are akin to Eddington factors in traditional moment
approaches to radiation transport.

Finally, we present a set of coupled equations for the lab
frame monochromatic particle energy densityand ortho-
normal lab frame monochromatic particle momentum den-

‘ﬁ=fj\/sinﬁdﬁdgo. (A30) ity 3, defined by

It is related to the lab frame particle densit=N' by ¢ J’ csinddod (A39)
= ®,

=f Nede, (A31)

' o ‘Bi_zei_ﬂf fp'p#sindddde.
and its evolution is governed by (A40)

DL FDal N+ D M+ Do N+ 07 They are related to the lab frame particle energy density
=T" and orthonormal lab frame particle momentum density

:f@‘sinﬁdﬁdgo, (A3D) i Ty
y3
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=f Cede, (A41) Dya[ €]= 5)‘133 (A4T7)
X bc ax3’
pi:J Plede (A42) 10| ot Py vz
DJ¢]=—=—{eq —hi;+ 2h1§+ 3h
. , , de axl ax?
The evolution of the lab frame monochromatic particle en- €

ergy density is governed by 1 vy vy dvg
h3s hs5+ h; )
Dy €]+ Dya[ €]+ Dy €]+ Dys[ €]+ 0 [ €] alax? 2t g N2t G
. 1 t?l)l (91)2 (91)3
= ef C(1+vini+ovyns+ov3ng)sind dd de, + = be | ox3 hiz+ Ev ha3+ w3 h33
(A43) 1 gda 1 0b
e 3 axl(hZZUl hisvo) + b xl —1 (h33v7
D €]= T (A44) Je
—hizv3)+ ac axz(hssvz hzévg)}@]-
Dal€]= axl(abipl) (A45) (A48)
2, The evolution of the lab frame monochromatic particle en-
Del €]= ac &xz (¥, (A46) ergy density is governed by
Dt[qﬁ]+Dxl[snf]+DXz[q3T]+st[spf]+F22[q3?]+1ﬁ‘33[q3?]+®6[q§]=ef C(nj+opsinddode,  (A49)
where
ml
DIPY= =, (A50)
><1[‘13 1= ab (7X1 (ab{20m1+[h11 2(hiiiv1+hiisvo+hijsus) 1€}), (A51)
><2[‘43 ]_ ac Ix2 (c{‘l?zvﬁ%lvﬂ[hlz 2(hi15v1+hi%505+ hiss03) 1€}), (A52)
x3[q3 ]_ bo r9X3 {33301+‘13103+[h13 2(hii3v1+hizsv,+hizsvs) 1€}, (A53)
Fzz[q3 1=- 2 F{2‘3202+[h222(h12201+ h35505+ h55303) €}, (A54)
- 1 0b 3 B o
Fad P]=— b m{z‘ﬁ vat[has—2(hissv1+ hassvo+ hissvs) 1€}, (A55)
1 Jd &Ul L &Uz o (9()3 1 &Ul o (91)2 1903 L
e[q3 1=- “Jel € 3x1 it o1 —rhiis+ It hiiz+ &—thnz 0—th122 é,_xfhlZS
1 (901 al}z o 603 . 1 a S L d L L
+i—= be | ax3 hiiz+ X ——3hix+ w3 hizz|+ m(h12201_h112v?)+ Bm(hmsl&_hnsv?)
1 oc
2C 2 —— (hi33v,—hi303) | €. (A56)
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The evolution of the first component of the orthonormal lab frame monochromatic particle momentum density is governed by

DLP2]+ Dl P21+ Dyl P21+ Dyl P21+ Fof P21+ Fod P21+ O 2] = e J C(nztvpsindddde,  (AST)
where
2

Dt[‘»Bz]— , (A58)

xl[‘pz]_ ab axl (ab{&Bzvl+‘Blvz+[h12 2(hii5v1+hisv+ hissus) [€}), (A59)

DAL= 20 7 03+ [z 2(izavr+ hau+ hizsvs)1€)) (A6O)

x3[%2] bC &X3 {‘43302"‘% vat[h33—2(his3v 1+ h35305+ hassvs) 1€}, (A61)

12[&]3 ]— a oxt {‘13201+‘13102+[h12 2(hi15v1+hi%5v5+ hisses) 1€}, (A62)

2 1 dc 3
Fad P]=— ac F{Z&B vat[h33—2(hi33v1+h333v,+ h3ssvs) 1€}, (A63)

(91)1 al}z 603 1 &vl 31)2 &U3
(9X h112 axl h122+ (9X h123 bC (9X3 hl23 F7X3 h223 (9X3 h233

LT

l 5U1 302 071)3 1 da o L db L o
al\ ox2 his+ v h355+ a2 h353 | + _&Xl(hzzzvl_h12205)+B_axl(hzssvl_hlzsva
1 Jdc B
e &XZ(h233U2 h35303) | €. (A64)

The evolution of the second component of the orthonormal lab frame monochromatic particle momentum density is governed
by

D]+ Dl P31+ Dl B+ D[]+ Fid B3]+ Fod 3]+ O[5 = f C(nz+vz)sind ddde, (AB5)
where
D= ms. (AB6)
Dl P = ab axl (ab{fp3vl+q3103+[h13 2(hii3v1+his305+hi3303) 1€}, (A67)
Dy B3] = % Fve ({30 5+ P2u3+ [ 33— 2(hi5301+ hassvs+ hazsvs+hss03) 1€D), (A68)
D P3]= be 70 {2m3vs+[h33 2(hi3301+h333v2+ hassva) ] €, (A69)
Fid B°1= béxl{‘13301+‘}3v3+[h13 2(hii3v1+hizsva+hizs) 1€}, (A70)
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— 1 dc = .
Fod $°1= —2 52 {FPv2+ PPos+ [ha3—2(hizsua+hazsva+ haszus) 1€l (A72)
19| ,dvy dvy vy 1 r?vl vy dvg, 1 (dvy dvy
E[;B3]____( (9Xl h113 IX 1h123 X 1h133 IX 2h123 X 2h223 oX 2h233 b X 3 133 IX 3h233
dvg 1 ga 1ob 1 N
+ o ahass |+ o o (hassvi—hisgua) + o1 (h3sa,—hisgvs) + - =2 (hassua—hassvs) | €. (A72)
In these energy and momentum equations, we have defined
1 :
hﬁEEf &ninjsind dd de,
hijk=— fen ninigsind dd de, (A73)

which are akin to Eddington factors in traditional moment approaches to radiation transport. We point éuisthat equal

to P'/¢, and that the second angular moment facfgrsand hjj are not equal to each other. This is becatsand £ have
different angular dependences, as can be seen from(&42) and (A24). This complication is a result of taking moments of
lab framenumber and energy distributions with respecttonoving framengular variables.
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coefficients in a noncoordinate basis are obtained from those in momentum space. In the contraction of this parallelpiped

of a coordinate basis via the transformatioﬁ“'y,p, with w, the only terms that do not vanish are those in B6);

=LA LY LP, TR, L LP, (0LF,, 9xP). the other terms of E¢(34) have only two momentum space
[29] The contraction of a basis vectétdz® with a 1-formdz° is 1-forms.

(9/9z%)-dz°= 6. In the contraction of a vector with a direct [31] Other six-dimensional hypersurfaces can be formed, which

product of 1-forms, the contraction is with the first 1-form in contain a four-dimensional region in spacetime and a two-

the direct product. This means that the contraction of a vector  dimensional surface in momentum space or a timelike region

with a wedgeproduct ofn 1-forms givesn terms, because the in spacetime together with a three-dimensional region in mo-

wedge product is the completely antisymmetrized summ of mentum space; such hypersurfaces are not of use in defining

direct products.. . . . the particle number 4-current and stress-energy tensor.
[30] The computational procedure for integrals over differential [32] Because the relations betwedf &, andf have different de-

forms involves(i) forming an infini_tesimal parallelpiped_—g _ pendences on velocity, expressions of E4d.4) and(A26) in
wedge product of the vectors forming the edges of the infini- terms off would differ by terms ofO(v2) and higher. While in

Fe3|mal.reg_|on—?t each" point in t.he rﬁ_g'(_)nf_ over WhI'Ch the principle these discrepancies vanish @{v), a simulation
|n|;[e|gr.at|(;n Istr?(ti: org]f?c(al)tgoln;[ractm?t |sh|n |q|t?§|ma| par- solving for bothA/ and & in which v? turns out to be non-
aleipiped wi e differential form at each poiriii) calcu- negligible compared to unity can be expected to exhibit some

Iatlr?g .th.e mtegral with th_e usgal rules of elementar_y calculus. inconsistency between valuesfaferived from Eqs(A12) and
An infinitesimal parallelpiped in momentum space is a wedge (A24)

product of displacement vectors in each of the three directions
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