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Relativistic mean field model for entrainment in general relativistic superfluid neutron stars
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General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary
fluid counterparts. Superfluidity allows different superfluid~and superconducting! species of particles to have
independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid
element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another,
the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the
so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other
superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and
superconducting protons using a relativistics2v mean field model for the nucleons and their interactions. In
this context there are two notions of ‘‘relativistic’’: relativistic motion of the individual nucleons with respect
to a local region of the star~i.e. a fluid element containing, say, an Avogadro’s number of particles!, and the
motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will
typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a
neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The
formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing
characteristic being that the neutrons can rotate at a rate different from that of the protons.

DOI: 10.1103/PhysRevD.68.023002 PACS number~s!: 97.60.Jd, 26.60.1c, 47.75.1f, 95.30.Sf
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I. INTRODUCTION

A new generation of gravitational wave detectors@Laser
Interferometric Gravitational Wave Observatory~LIGO!,
VIRGO, etc.# are now working to detect gravitational wave
from compact objects, such as black holes and neutron s
With this detection we expect to have a unique probe of
physics that dictates their behavior. This is ushering in a n
era where strong-field relativistic effects will play an increa
ingly important role. Only through their inclusion can w
hope to accurately decipher what gravitational wave d
will have to tell us. With that in mind, we present here a fu
relativistic model of the so-called entrainment effect~to be
described in some detail below! that is a necessary feature
the dynamics of superfluid neutron stars.

For the densities appropriate to neutron stars there
attractive components of the strong force that should le
via BCS-like mechanisms, to nucleon superfluidity and
perconductivity. Indeed, calculations of supranulcear gap
ergies consistently lead to the conclusion that superfluid n
trons should form in the inner crust of a mature neutron s
with superfluid neutrons and superconducting protons in
core. Even more exotic possibilities have been sugges
such as pion condensates, superfluid hyperons, and supe
ducting quark matter. Perhaps most important is the w
established glitch phenomenon in pulsars the best descrip
of which is based on superfluidity and quantized vortic
Superfluidity should affect gravitational waves from neutr
stars by modifying the rotational equilibria and the modes
oscillations that these objects support@1–3#.

The success of superfluidity in describing the glitch ph
nomena is due in part to the fact that the superfluid neutr
0556-2821/2003/68~2!/023002~12!/$20.00 68 0230
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of the inner crust represent a component that can move fr
~for certain time scales! from the rest of the star. Explaining
the glitch phenomena then becomes a question of how
transfer angular momentum between the various ‘‘rotati
ally decoupled’’ components. For the modes of oscillation
is by now well established that a similar ‘‘decoupling,’’ th
time between the superfluid neutrons of the inner crust
core and a conglomerate of the remaining charged cons
ents ~e.g. crust nuclei, core superconducting protons, a
crust and core electrons!, leads to a mode spectrum for su
perfluid neutron stars that is quite different from that of th
ordinary fluid counterparts~see@3#, and references therein
for a complete review!.

Several recent studies@4–7# have established that the en
trainment effect is an important element in modelling t
rotational equilibria and modes of oscillation of superflu
neutron stars. Sauls@8# describes the entrainment effect as
result of the quasiparticle nature of the excitation spectr
of the superfluid and superconducting nucleons. That is,
bare neutrons~or protons! are accompanied by a polarizatio
cloud containing both neutrons and protons. Since both ty
of nucleon contribute to the cloud the momentum of t
neutrons is modified so that it is a linear combination of bo
the neutron and proton particle number density currents,
similarly for the proton momentum. Thus when one spec
of nucleon acquires momentum, both types of nucleons
begin to flow.

In the core of a neutron star, the Fermi energies of nuc
ons~as well as some of the leptons! can become comparabl
to their mass-energies, because the Fermi energies a
function of the local particle number densities, and these
be quite high. This implies that any Newtonian model f
©2003 The American Physical Society02-1
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entrainment must become less reliable as one probes de
into the core of a neutron star, and thus a relativistic form
lation is required. In fact, we will see that Newtonian para
etrized models@6,9# do deviate most from the relativisti
model in the core. There are two purposes for which a re
tivistic formulation is necessary. At the microscopic lev
the nucleons will~locally! have average speeds that are co
parable to the speed of light. As well, at a mesoscopic le
the fluid elements, which contain a large number of nuc
ons, could have average speeds that are also comparab
the speed of light. The formalism that we develop here w
be relativistic in both respects. One should note, though,
in realistic astrophysical scenarios~e.g. when an isolated
neutron star undergoes linearized oscillations, or a pulsar
hibits a glitch! the fluid element average speeds are typica
only a few percent of that of light.

To date, studies of superfluid dynamics in neutron st
have relied on models of entrainment that are obtained in
Newtonian regime. For instance, a few of the most rec
studies@4,9# have employed a parametrized model for e
trainment that is inspired by the Newtonian, Fermi-liqu
calculations of Borumandet al. @10#. An alternative formu-
lation @6#—motivated by mathematical simplicity that allow
for analytic solutions for slowly rotating Newtonian supe
fluid neutron stars—for parametrizing entrainment has b
recently put forward. Here we take a different approach,
that is to use as2v relativistic mean field model, of the
type that is described in detail by Glendenning@11#. Al-
though a relativistic Fermi-liquid formalism exists@12#, we
prefer to use the mean field model because it is sufficie
simple that semianalytical formulas result, and a clear c
nection between the coupling parameters at the microsc
level can be made to the macroscopic properties~such as
mass and radius! of the star.

The next section begins with a review of thes2v model.
That is followed by an application of the mean field appro
mation to obtain an equation of state that includes entr
ment. In Sec. III, we briefly review the general relativist
superfluid formalism and how it is used to describe slow
rotating configurations. We then use the mean field result
produce explicit models. Since we consider only the line
order frame dragging, the solutions constructed here ca
be considered as generalizations of those in@6#, but they can
be compared with those of@2#. After some concluding re-
marks, an Appendix is given that contains some of the te
nical details and results. Throughout we will use the Misn
Thorne-Wheeler~MTW! @13# conventions, a consequence
which is that several equations will have minus sign diff
ences with, for instance, those of@11#.

II. RELATIVISTIC MEAN FIELD THEORY
OF COUPLED FLUIDS

To create a seamless conceptual basis for general rel
istic calculations of dynamic processes in neutron stars,
need a covariant formalism that describes the strongly in
acting coupled neutron and proton fluids. It should be su
ciently simple that it provides physical insight, yet accura
enough that it can serve as the basis for realistic nume
02300
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calculations. For static stars, this role is played by thes
2v effective mean-field theory@11#. Our task in this paper
is to generalize this theory to dynamic stars. In particular,
are interested in situations where there is relative motion
the two fluids, since the entrainment of one by the other tu
out to play a large role in the dynamics.

The Lagrangian density for the baryons and the mes
that the baryons exchange is as in the static case. It is

L5Lb1Ls1Lv1Lint , ~1!

with

Lb5c̄~ igm]m2m!c ~2!

as the baryon Lagrangian. Herec is an 8-component spino
with the proton components as the top 4 and the neu
components as the bottom 4. Thegm are the corresponding
838 block diagonal Dirac matrices. The Lagrangian for t
s mesons is

Ls52
1

2
]ms]ms2

1

2
ms

2s2. ~3!

The Lagrangian for thev mesons is

Lv52
1

4
vmnvmn2

1

2
mv

2 vmvm ~4!

wherevmn5]mvn2]nvm . The interaction Lagrangian den
sity is

Lint5gssc̄c2gvvmc̄gmc. ~5!

The Euler-Lagrange equations are

~2h1ms
2 !s5gsc̄c, ~6!

~2h1mv
2 !vm1]m]nvn52gvc̄gmc, ~7!

~ igm]m2m!c5gvgmvmc2gssc. ~8!

Finally, the stress-energy tensor takes the form

Tmn5Tb
mn1Ts

mn1Tv
mn1Tint

mn ~9!

containing contributions from the baryons (b), the mesons
(s,v), and the interaction. Individually, these are

Tb
mn52 i c̄~gm]n2hmnga]a!c2mhmnc̄c, ~10!

Ts
mn5]ms]ns2

1

2
hmnms

2s22
1

2
hmn]as]as, ~11!

Tv
mn5~]mva2]avm!]nva2

1

2
hmnmv

2 vava

2
1

4
hmnmv

2 vabvab , ~12!
2-2
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Tint
mn5hmngssc̄c2hmngvvac̄gac. ~13!

We now solve these equations in the mean field appr
mation, eventually in a frame in which the neutrons ha
zero spatial momentum while the protons have on avera
wave vectorKm5(K0,0,0,Kz). In this approximation we ig-
nore all gradients of the averaged sigma and omega fie
and the neutrons and protons are taken to be in plane-w
states. The problem simplifies considerably and we find
the s andvm fields and the stress-energy tensorTn

m that

m* 5m2cs
2^c̄c&, ~14!

^gvvm&52cv
2 ^c̄gmc&, ~15!

^Tn
m&52

1

2
~cv

22^gvva&^gvva&

1cs
22@m2m* #2!dn

m2 i ^C̄gm]nC&, ~16!

where, for later convenience, we have introduced the n
tion cs

25(gs /ms)2 andcv
2 5(gv /mv)2 and the Dirac effec-

tive massm* , i.e.

^gss&5m2m* . ~17!

Restricting to the zero-momentum frame of the neutro
leads to a set of algebraic equations for thevm field:

^gvv0&52cv
2 ^c̄g0c&, ~18!

^gvvz&52cv
2 ^c̄gzc&. ~19!

The final equation is not needed in the case where both
trons and protons have zero average momentum, since^vz&
then vanishes by isotropy. In this case, the neutrons and
tons have a common rest frame and^c̄g0c&5c†c5n1p
wheren and p are the baryon number densities of the ne
trons and protons, respectively. The addition of the spa
velocity component complicates the solution of the probl
considerably, in part because there is no longer a comm
rest frame for all the baryons. Each expectation value on
RHS of these equations involves an integration over
Fermi spheres of the particles, whose radii can be shown~cf.
the next section! to bekn5(3p2n0)1/3 andkp5(3p2p0)1/3,
wheren0 (p0) is the zero-component of the conserved ne
tron ~proton! number density currentnm (pm). The proton
Fermi surface is displaced byKzẑ. We are interested in the
caseKz!kn ,kp , but the expressions for generalKz are not
more complicated than the power series expansion.

Noting that
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^c̄@gm~ i ]m2gvvm!2m* #c&50 ~20!

we find

~k01gvv0!25~kW1gvvzẑ!21m
*
2 , ~21!

where we have dropped expectation value brackets for
mean values of the fields. The energy« of a baryon in a
plane-wave state is given by

«~kW !5E~kW !2gvv05A~kW1gvvzẑ!21m
*
2 2gvv0.

~22!

Thus we see thatv0 contributes a constant shift,vz gives a
preferred frame for the momenta, ands renormalizes the
mass to the Dirac mass.

As an example of how the expectation values are eva
ated, we give the scalar density~letting Kz5K, for ease of
notation!:

^c̄c&5
1

~2p!3Eocc
d3k

]E

]m
~23!

5
2

~2p!3
E

ukW u,kn

d3k
m*

A~kW1gvvzẑ!21m
*
2

1
2

~2p!3
E

ukW2Kẑu,kp

d3k
m*

A~kW1gvvzẑ!21m
*
2

~24!

5
2

~2p!3
E

ukW u,kn

d3k
m*

A~kW1gvvzẑ!21m
*
2

1
2

~2p!3
E

ukW u,kp

d3k
m*

A~kW1gvvzẑ1Kẑ!21m
*
2

,

~25!

and the average four-velocity components of the baryons

^c̄g0c&5
1

~2p!3Eocc
d3k

]E

]k0

5
2

~2p!3EukW u,kn

d3k1
2

~2p!3EukW2Kẑu,kp

d3k

5
2

~2p!3EukW u,kn

d3k1
2

~2p!3EukW u,kp

d3k, ~26!
2-3
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^c̄gzc&5
1

~2p!3Eocc
d3k

]E

]kz

5
2

~2p!3
E

ukW u,kn

d3k
kz1gvvz

A~kW1gvvzẑ!21m
*
2

1
2

~2p!3
E

ukW2Kẑu,kp

d3k
kz1gvvz

A~kW1gvvzẑ!21m
*
2

5
2

~2p!3
E

ukW u,kn

d3k
kz1gvvz

A~kW1gvvzẑ!21m*
2

1
2

~2p!3
E

ukW u,kp

d3k
kz1gvvz1K

A~kW1gvvzẑ1Kẑ!21m
*
2

.

~27!

Thus we have reduced the problem to a set of nonlin
equations for them* , v0, andvz fields that must be solved
numerically. This can be done for any set of the input para
eterskn , kp , andK. The interaction and mass parameters
the effective fields have been determined from nuclear ph
ics, and they are discussed further below. Once this is d
we still need expressions for the stress-energy tensor, w
is the input for the Einstein equations.

Again, specializing to the zero-momentum frame of t
neutrons, the only nonzero stress-energy-tensor compon
are

^T0
0&52

1

2
cv

2 ~^c̄g0c&22^c̄gzc&2!

2
1

2
cs

22~m22m
*
2 !2^c̄g ikic&, ~28!

^Tz
0&5^c̄g0kzc&, ~29!

^Tx
x&5^Ty

y&5
1

2
cv

2 ~^c̄g0c&22^c̄gzc&2!

2
1

2
cs

22~m2m* !21^c̄gxkxc&, ~30!

^Tz
z&5

1

2
cv

2 ~^c̄g0c&22^c̄gzc&2!

2
1

2
cs

22~m2m* !21^c̄gzkzc&. ~31!

Some of the expressions have been simplified using
equations of motion.

Each component of̂Tn
m& again involves an integration

over the Fermi surfaces, but now in terms of complet
known parameters. For example, to determine^Tz

z&, we need
02300
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^c̄gzkzc&5
2

~2p!3EukW u,kn

d3kkz
]E

]kz

1
2

~2p!3EukW2Kẑu,kp

d3kkz
]E

]kz

5
2

~2p!3EukW u,kn

d3kkz@kz1gvvz#

3@~kW1gvvzẑ!21m
*
2 #21/2

1
2

~2p!3EukW u,kp

d3k@kz1K#@kz1gvvz1K#

3@~kW1gvvzẑ1Kẑ!21m
*
2 #21/2, ~32!

and for ^Tz
0&

^c̄g0kzc&5
2

~2p!3EukW u,kn

d3kkz

1
2

~2p!3EukW u,kp

d3k~kz1K !

5
kp

3

3p2 K. ~33!

The main result of this section is thus a well-defined p
scription for producing the functionŝTn

m& (kn ,kp ,Kz). In
the next section we take this prescription and produce from
the so-called master function, including entrainment, tha
used in the general relativistic superfluid field equations.

III. GENERAL RELATIVISTIC SUPERFLUID
FORMALISM

The formalism to be used here, and motivation for it, h
been described in great detail elsewhere@1,3,14–21#, and so
we will review only the highlights. The central quantity o
the superfluid formalism is the master functionL. It depends
on the three scalarsn252nmnm, p252pmpm and x25
2pmnm that can be formed from the conserved neutron (nm)
and proton (pm) number density currents. Furthermore, t
master function is such that2L(n2,p2,x2) corresponds to
the total thermodynamic energy density if the neutrons a
protons flow together~as measured in the comoving frame!.
Once the master function is provided the stress-energy te
is given by

Tn
m5Cdn

m1nmmn1pmxn , ~34!

where

C5L2nrmr2prxr ~35!

is the generalized pressure, and

mn5Bnn1Apn , ~36!
2-4
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xn5Ann1Cpn , ~37!

are the chemical potential covectors. We also have

A52
]L

]x2 , B522
]L

]n2 , C522
]L

]p2 . ~38!

The momentum covectorsmn and xn are dynamically, and
thermodynamically, conjugate tonn andpn and their magni-
tudes are the chemical potentials of the neutrons and
protons, respectively. The two covectors also make man
the entrainment effect; that is, we see that the momentum
one constituent (mn , say! carries along some of the mas
current of the other constituent (mn is a linear combination
of nn andpn). We can also see that there is no entrainm
unless the master function depends onx2.

The field equations for this system take the form of tw
conservation equations for the neutrons and protons, i.e

¹mnm50, ¹mpm50, ~39!

which is a reasonable approximation given that the w
interaction time scale is much longer than the dynam
time scale of neutron stars for small amplitude deviatio
from equilibrium @22#, and two Euler equations, i.e.

nm¹[mmn]50, pm¹[mxn]50, ~40!

where the square braces means antisymmetrization of
enclosed indices.

A. Extracting the master function from the mean field results

The two scales that enter this problem are the mic
scopic, on the scale of the nucleons, and the mesosc
where one speaks in terms of the two interpenetrating su
fluids. The fundamental ‘‘particles’’ at the fluid level are th
fluid elements which contain, say, an Avogadro’s num
worth of nucleons. The connection between the micro- a
mesoscopic levels is via the averaged stress-energy com
nents calculated earlier. Consider a fluid element deep in
core of the neutron star and orient the local coordinate fra
in such a way that thez axis of the frame is in the sam
direction as the proton momentum with respect to the n
trons. As shown just below, a unique combination of t
averaged stress-energy components determined via the
field theory will yield the master function. As this quantity
a scalar, the functional relationship we obtain betweenL and
the two particle number densities and the relative velocity
the protons with respect to the neutrons can then be app
anywhere in the star.

The key idea is to use the~local! relationship

^Tn
m&5Cdn

m1nmmn1pmxn ~41!

to obtain L. In the perfect fluid case, the identification
made immediate by the fact that there is only one fo
velocity um for the system, and hence a preferred rest-fra
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for the particles. The local energy density of the fluid is th
uniquely obtained fromL52^Tn

m&unum . In the superfluid
case there are two four-velocities, and thus no preferred r
frame. Fortunately, we can still obtainL in a unique, and
covariant, way, by using the trace^T&[^Tm

m& and the three
scalars that can be formed from contracting^Tn

m& with nm

and pm, i.e. ^Tn
m&nmnn, ^Tn

m&nmpn, and^Tn
m&pmpn. We thus

find thatL is given by

L52
1

2
^T&1

3

2
~x42n2p2!21S n2p2F 1

n2nmnn1
1

p2 pmpnG
2x2@nmpn1pmnn# D ^Tmn&, ~42!

and the generalized pressure is

C5
1

3
~^T&2L!. ~43!

In like manner we find that

A52~nmpn^Tn
m&1x2L!/~x42n2p2!,

B5~pmpn^Tn
m&1p2L!/~x42n2p2!,

C5~nmnn^Tn
m&1n2L!/~x42n2p2!. ~44!

One other necessary component of uniting the mean fi
theory with the superfluid formalism is to relate~locally! nm

andpm to the mean particle flux of the neutrons and proto
i.e.

nm[nun
m5^c̄ngmcn&,

pm[pup
m5^c̄pgmcp&, ~45!

wherecn and cp are the neutron and proton, respective
components of the Dirac spinorc. Recall again that we have
arranged that the average neutron and proton particle flu
are in thez direction. Thus, the unit vectors have only tw
components:

un
m5$un

0,0,0,un
3%, un

05A11~un
3!2,

up
m5$up

0,0,0,up
3%, up

05A11~up
3!2. ~46!

It thus follows that

L5^T0
0&1^Tz

z&2^Tx
x&. ~47!
2-5
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We will use cylindrical coordinates and definefz5gvvz so
that

m* 5m2
cs

2

2p2
m* S E

2kn

kn
dkz@kn

21fz
21m

*
2 12fzkz#

1/2

1E
2kp

kp
dkz@kp

21~fz1K !21m
*
2 12~fz1K !kz#

1/2

2E
2kn

kn
dkz@~kz1fz!

21m
*
2 #1/2

2E
2kp

kp
dkz@~kz1fz1K !21m

*
2 #1/2D , ~48!

n05
1

3p2 kn
3 , p05

1

3p2 kp
3 , ~49!

nz5
1

2p2E
2kn

kn
dkz~kz1fz!$@kn

21m
*
2 1fz

212fzkz#
1/2

2@~kz1fz!
21m

*
2 #1/2%,

pz5
1

2p2E
2kp

kp
dkz~kz1fz1K !

3$@kp
21m

*
2 1~fz1K !212~fz1K !kz#

1/2

2@~kz1fz1K !21m
*
2 #1/2%. ~50!

It is to be noticed that even though only the protons are gi
spatial momentumK, the neutron four-velocity nevertheles
acquires a nonzero spatial component. This, in fact, is a
nature of the entrainment effect, which is a momentum
duced in one fluid will cause part of the other fluid to flow

Of primary importance to the fluid equations are theA,
B, andC coefficients. We could, in principle, use Eq.~45! to
express (n2,p2,x2) in terms of (kn ,kp ,K), but practically
speaking this is not possible. Fortunately we see from
~44! that we can construct these coefficients algebraic
from the mean field values of the stress-energy tensor c
ponents. Thus, when it comes to the numerical work, we
the set (kn ,kp ,K) as the independent variables. Note th
because the master function is a scalar, it must be invaria
K→2K, and is thus an even function ofK.

B. Equilibrium models

The equilibrium configurations are spherically symmet
and static, so the metric can be written in the Schwarzsc
form

ds252en(r )dt21el(r )dr 21r 2~du21sin2udf2!. ~51!

The two metric coefficients are determined from two E
stein equations, which are written as
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28prelLu0 , n852

12el

r
18prelCu0 .

~52!

The equations that determine the radial profiles ofn(r ) and
p(r ) have been derived by Comeret al. @20# and they are

A 0
0u0p81B 0

0u0n81
1

2
mu0n850,

C 0
0u0p81A 0

0u0n81
1

2
xu0n850, ~53!

where

A 0
05A12

]B
]p2

np12
]A
]n2

n212
]A
]p2

p21
]A
]x2

pn, ~54!

B 0
05B12

]B
]n2

n214
]A
]n2

np1
]A
]x2

p2, ~55!

C 0
05C12

]C
]p2

p214
]A
]p2

np1
]A

]x2 n2, ~56!

and Lu0 , Cu0 , mu0, and xu0 are given in the Appendix. A
zero subscript means that after the partial derivatives
taken, then one takes the limitK→0.

Of course, since the variables that are more suited to
mean field theory are the two Fermi wave numbers,kn and
kp , we replace everywheren5kn

3/3p2 and p5kp
3/3p2 and

solve for the wave numbers instead. We have also foun
more convenient way of determining the Dirac effecti
massm* u0(kn ,kp), i.e., we have turned the transcenden
algebraic relation in Eq.~A2! of the Appendix into a differ-
ential equation via

m
*
8 u05

]m*
]kn

U
0

kn81
]m*
]kp

U
0

kp8 , ~57!

wherekn8 andkp8 are obtained from Eq.~53!.
The ‘‘boundary’’ conditions that must be imposed includ

a set at the center and another at the surface of the
Demanding a nonsingular behavior at the center of the
imposes thatl(0)50, and consequently thatl8(0) and
n8(0) must also vanish. This and Eq.~53! imply that kn8(0)
and kp8(0) have to vanish as well. A smooth joining of th
interior spacetime to a Schwarzschild vacuum exterior at
surface of the star, i.e.r 5R, implies that the total massM of
the system is given by

M524pE
0

R

drr 2Lu0~r ! ~58!

and thatCu0(R)50.
2-6
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C. The low velocity limit for fluid elements

Two immediate applications of the formalism develop
here are to model slowly rotating configurations@1# and lin-
earized perturbations, or quasinormal modes@4,20#. In both
cases the fluid element velocities are small in the sense
they are typically only a few percent of the speed of lig
The net effect is that these applications require only the
few terms from an expansion of the master function in ter
of the entrainment parameter~i.e. x2 in the canonical formu-
lation, andK2 in what we present here!. Such an expansion
has been described in@4,5#, and thus only the highlights wil
be reproduced here. It should be noted, however, that if
wanted to model rapidly rotating superfluid neutron st
@23#, say, then the expansion to be described below will
inappropriate.

For a region within the fluid that is small enough that t
gravitational field does not change appreciably across it,
can show that

x25npS 12vW n•vW p /c2

A12~vn /c!2A12~vp /c!2D . ~59!

If it is the case that the individual three-velocitiesvW n,p are
small with respect to the speed of light, i.e.

vn,p

c
!1, ~60!

then it will be true thatx2'np to leading order in the ratios
vn /c andvp /c. Thus, an appropriate expansion of the mas
function is

L~n2,p2,x2!5(
i 50

`

l i~n2,p2!~x22np! i , ~61!
02300
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sincex22np is small with respect tonp. In this case theA,
A 0

0, etc. coefficients that appear in the field equations can
written as

A52(
i 51

`

il i~n2,p2!~x22np! i 21,

B52
1

n

]l0

]n
2

p

n
A2

1

n (
i 51

`
]l i

]n
~x22np! i ,

C52
1

p

]l0

]p
2

n

p
A2

1

p (
i 51

`
]l i

]p
~x22np! i ,

A 0
052

]2l0

]p]n
2(

i 51

`
]2l i

]p]n
~x22np! i ,

B 0
052

]2l0

]n2 2(
i 51

`
]2l i

]n2 ~x22np! i ,

C 0
052

]2l0

]p2 2(
i 51

`
]2l i

]p2 ~x22np! i . ~62!

For quasinormal mode and slow-rotation calculatio
each of the coefficients are evaluated on the background
that x25np, and thus only the first fewl i are needed. In
fact, one needs to retain onlyl0 and l1, where the latter
contains the information concerning the entrainment effe
Some details are given in the Appendix, and the final res
are
Au05cv
2 1

cv
2

5m2u0
S 2kp

2
Akn

21m
*
2 u0

Akp
21m

*
2 u0

1
cv

2

3p2 F kn
2kp

3

Akn
21m

*
2 u0

1
kp

2kn
3

Akp
21m

*
2 u0

G D 1
3p2kp

2

5m2u0kn
3

kn
21m

*
2 u0

Akp
21m

*
2 u0

, ~63!

Bu05
3p2mu0

kn
3 2cv

2
kp

3

kn
3 2

cv
2 kp

3

5m2u0kn
3 S 2kp

2
Akn

21m
*
2 u0

Akp
21m

*
2 u0

1
cv

2

3p2 F kn
2kp

3

Akn
21m

*
2 u0

1
kp

2kn
3

Akp
21m

*
2 u0

G D 2
3p2kp

5

5m2u0kn
6

kn
21m

*
2 u0

Akp
21m

*
2 u0

,

~64!

Cu05
3p2xu0

kp
3 2cv

2
kn

3

kp
3 2

cv
2 kn

3

5m2u0kp
3 S 2kp

2
Akn

21m
*
2 u0

Akp
21m

*
2 u0

1
cv

2

3p2 F kn
2kp

3

Akn
21m

*
2 u0

1
kp

2kn
3

Akp
21m

*
2 u0

G D
2

3p2

5m2u0kp

kn
21m

*
2 u0

Akp
21m

*
2 u0

1
3p2

kp
3
Akp

21me
2, ~65!

A 0
0U052

p4

kn
2kp

2

]2L

]kp]kn
U

0

5cv
2 1

p2

kp
2

m* u0
]m*
]kp

U
0

Akn
21m

*
2 u0

, ~66!
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B 0
0u05

p4

kn
5 S 2

]L

]kn
U

0

2kn

]2L

]kn
2U

0
D 5cv

2 1
p2

kn
2

kn1m* u0

]m*
]kn

U
0

Akn
21m

*
2 u0

, ~67!

C 0
0u05

p4

kp
5 S 2

]L

]kp
U

0

2kp

]2L

]kp
2U

0
D 5cv

2 1
p2

kp
2

kp1m* u0
]m*
]kp

U
0

Akp
21m

*
2 u0

1
p2

kp

1

Akp
21me

2
, ~68!
w
o

al
-
um
is
th
s

e

o

er
-

th
bl
rs
u

r
n

s

s
n-
of

onal

ll
us-

el-

ors

e

nd

-

where]m* /]knu0 and ]m* /]kpu0 can be found in the Ap-
pendix andme5m/1836. For reasons to be discussed belo
we have included contributions due to a normal fluid
highly degenerate electrons.

D. Equilibrium configurations

We now use our model to construct static and spheric
symmetric configurations.A priori there are two input pa
rameters, which are the neutron and proton Fermi wave n
bers at the center of the star. However, we can reduce th
just the neutron wave number by imposing at the center
condition of chemical equilibrium between the nucleon
which, incidentally, also implies chemical equilibrium
throughout the star~cf. the discussion in@20#!. In order to
have a chemical equilibrium that is believed to be repres
tative of neutron stars@i.e. proton fractionsxp5p/(n1p)
'0.1], we have added to the master function a term~see, for
instance,@24#! that accounts for a highly degenerate gas
relativistic leptons~in our case, just electrons!. Figure 1
gives the massM as a function of the central neutron numb
densityn(0). We seebehavior that is typical of general rela
tivistic neutron stars, and that is a maximum value for
mass. Beyond this maximum, the stars will be in unsta
equilibria. As canonical models of superfluid neutron sta
we have chosen configurations that are near to the maxim
mass, but on the stable branch of the curves~cf. Table I!.

In several earlier studies@4,6,9#, parametrized models fo
entrainment have been used that are based on the Newto
calculations of Borumandet al. @10# and the effective mas

FIG. 1. MassM ~in units of solar massM () vs the central
neutron number densityn(0) ~in units of fm23) for the mean field
coupling values of models I and II of Table I.
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calculations of Sjo¨berg@25#. When the momenta are taken a
the fundamental fluid variables—which implies that the co
served number density currents are linear combinations
the momenta—then entrainment appears as an off-diag
component in the so-called mass-density matrix@26#. Denot-
ing this component asrnp , then one parametrized model@9#
takes the form

rnp52«mommn, ~69!

where the parameter is«mom and its ‘‘physical’’ range is
taken to be 0.04,«mom,0.2. In the present context, we wi
define the relativistic analog of the mass-density matrix
ing the relations

mnm5
rnn

m
mm1

rnp

m
xm, mpm5

rnp

m
mm1

rpp

m
xm,

~70!

which reduce to the Newtonian definitions when the nonr
ativistic limit is taken. By inverting Eq.~37! we can writenm

and pm as linear combinations of the momentum covect
mm andxm and thereby determine that

rnp52
m2Au0

Bu0Cu02Au0
2
[2«mom~r !mn. ~71!

Figure 2 shows the radial profile of«mom(r ), as defined by
Eq. ~71!, for models I and II of Table I. We see from th

TABLE I. Parameters describing our choice of mean field a
canonical superfluid neutron star models. The two values forcs

2 and
cv

2 represent the two extremes given in@11# that have been deter
mined from nuclear physics. Note that the baryon mass ism
54.7582 fm21.

Model I Model II

cs
2512.684 cs

258.403
cv

2 57.148 cv
2 54.233

n(0)522.316408 n(0)522.288385
kn(0)52.8 fm21 kn(0)53.25 fm21

xp(0)50.101 xp(0)50.102
M52.509M ( M51.996M (

R511.696 km R59.432 km
2-8
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figure that«mom(r ) is roughly constant in the deep core, b
takes values that are well outside the ‘‘physical’’ range us
in the earlier studies. The greatest variations in«mom(r ) oc-
cur in the outer third of the star.

An alternative parametrization is that of Prixet al. @6#.
They point out that there is some ambiguity in what is me
by the nucleon effective masses~i.e. the Landau, as oppose
to the Dirac, effective masses@11#!, which can be traced to
whether one chooses to define these masses with respe
the zero-momentum or zero-velocity frame of the nucleo
Their parametrization makes use of the zero-velocity fram
Denoting the parameter as«vel , the ‘‘physical’’ range is
taken as 0.4,«vel,0.7. Comparing with the Prixet al. ana-
log of the master function, we find that

«vel~r ![
Au0n

m
. ~72!

Figure 3 contains the radial profiles of«vel(r ) for models I
and II of Table I. On a qualitative level, we see behav
much like that of«mom(r ), except that in Fig. 3 the curve
for models I and II are closer in magnitude than in Fig. 2

FIG. 2. The entrainment parameter«mom(r ) as a function of
radius for models I and II of Table I.

FIG. 3. The entrainment parameter«vel(r ) as a function of ra-
dius for models I and II of Table I.
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Also used in Prixet al. @6# is the so-called symmetry en
ergy parameter

s5
]m/]p

]x/]n
~73!

that can be related to terms@27# in the equation of state tha
tend to force an equal number of protons and neutrons~as in
most nuclei!. For the relativistic mean field model used he
it is not difficult to show thats51 ~which is consistent with
the range of values used by@6#!.

IV. SLOW ROTATION CONFIGURATIONS:
THE FRAME DRAGGING

The key distinguishing feature of slowly rotating supe
fluid neutron stars is that the neutrons can rotate at r
different from that of the protons. The slow-rotation appro
mation is valid when the angular velocities are small enou
that the fractional changes in pressure, energy density,
gravitational field due to the rotation are all relatively sma
This translates into the inequalities~cf. @1,28#!

Vn
2 or Vp

2 or VnVp!S c

RD 2 GM

Rc2 , ~74!

where the speed of lightc and Newton’s constantG have
been restored, andR andM are the radius and mass, respe
tively, of the nonrotating configuration. SinceGM/c2R,1,
we also see that

VnR!c and VpR!c, ~75!

and thus the slow-rotation approximation ought to be use
for most astrophysical neutron stars. In fact a compari
@1,6# of the above conditions to empirical estimates for t
Kepler frequency~i.e. the rotation rate at which mass
shedding sets in at the equator! that can been obtained from
calculations using realistic supranuclear equations of s
reveals that even the fastest observed pulsars can be c
fied as slowly rotating.

It is of course important to also mention something ab
realistic expectations for the durations and magnitudes
relative rotation rates between the neutrons and protons.
the applications to be considered here we note that And
son and Comer@1# ~who have developed a formalism fo
modelling slowly rotating general relativistic superfluid ne
tron stars! have argued that once they are established, r
tive rotations can be sustained for time scales ranging fr
days to years. We can, at least, anticipate them to pe
much longer than the dynamical time scale~which is on the
order of milliseconds!. Andersson and Comer also show th
when a rigid, relative rotation exists, then there can be
chemical equilibrium between the neutrons and protons.
thus plausible to think that the ‘‘chemical beta reaction
would work to reestablish a corotation between the neutr
and protons. However, Prixet al. @6# ~who consider slowly
rotating Newtonian superfluid neutron stars! argue that these
reactions are quite slow, and certainly also much longer t
the dynamical time scale. As for the expected magnitud
2-9
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G. L. COMER AND R. JOYNT PHYSICAL REVIEW D68, 023002 ~2003!
the glitch data for pulsars indicate relative rates on the or
of (Vn2Vp)/Vp;1024. In what follows we will consider
rates that greatly exceed this limit. The point is not to arg
for relevant astrophysics, but to push the formalism and
termine, in principle, the extent to which relativistic config
rations can differ from their Newtonian counterparts. Su
differences can be used as numerical guideposts for tes
more complicated codes~for instance, the code which is dis
cussed in@23#!.

The only quantities that contain terms linear in the an
lar velocities are the metric coefficientv(r ), that represents
the dragging of inertial frames, and the fluid four-velocitie
All other effects due to rotation enter at the second-orde
the angular velocities. It is useful to define

L̃n5v2Vn , L̃p5v2Vp . ~76!

Up to an overall minus sign, these represent rotation frequ
cies as perceived by local zero-angular momentum obs
ers. The Einstein equation that determines the frame d
ging has been shown to be@1#

1

r 4 ~r 4e2(l1n)/2L̃p8!8216pe(l2n)/2~Cu02Lu0!L̃p

516pe(l2n)/2mu0n~Vn2Vp!. ~77!

It is of the same form as that obtained by Hartle@28# except
for the nonzero source term on the right-hand-side.

Exterior to the star, there is vacuum, and so the solu
for the frame dragging is the same as that considered
Hartle @28#, i.e.

v~r !5
2J

r 3 . ~78!

Assuming that the frame dragging is continuous at the s
face of the star, then

J52
8p

3 E
0

R

drr 4e(l2n)/2@mu0nL̃n1xu0pL̃p#, ~79!

where J is the total angular momentum. Andersson a
Comer @1# have furthermore shown that the neutron to
angular momentum is

Jn52
8p

3 E
0

R

drr 4e(l2n)/2@mu0nL̃n1Au0np~Vn2Vp!#

~80!

and

Jp52
8p

3 E
0

R

drr 4e(l2n)/2@xu0pL̃p1Au0np~Vp2Vn!#

~81!

for the proton total angular momentum, from which it fo
lows that

J5Jn1Jp . ~82!
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Any solution of Eq.~77! for the frame dragging is to be
such that the interior matches smoothly onto the kno
vacuum solution in Eq.~78!. This means that we must hav
for instance,

L̃p~R!52Vp1
2J

R3 . ~83!

We can easily see thatL̃p and its derivative are smooth pro
vided that we have

L̃p~R!52Vp2
R

3

dL̃p

dr
U

r 5R

. ~84!

Having obtained a value forL̃p(0) that satisfies Eq.~84!, an
acceptable solution is in hand, and we can thus determine
angular momentum of the configuration from Eq.~83!.

In Fig. 4 we have plots of the radial profile of the fram
dragging for model I for a range of values of the rat
Vn /Vp . For the values considered in the left panel we s
that the frame dragging is much like that of an ordina
one-fluid star, and is consistent with solutions obtained
Andersson and Comer@1#. For the negative ratios, we se
that the frame dragging is negative but increases monot
cally towards zero. This is the behavior we should expe
since the bulk of the matter is simply rotating the oppos
way. There is some asymmetry between the negative
positive ratios, but that is due to the small number of proto
that rotate oppositely to the neutrons when the ratio is ne
tive. In the right panel, we examine the solutions near t
ratio of zero. The frame dragging is no longer monotonic a
actually becomes negative inside the star. An explanation
this can be understood as follows: in the interior the proto
carry most of the angular momentum and thus have the l
est impact on the frame dragging, but further away from
center, the much larger mass contained in the neutrons be
to dominate@1#.

Figure 5 considers the same range for the ratio of
angular speeds, by showing how the total angular momen
J, and the neutron and proton angular momenta,Jn and Jp
respectively, vary asVn /Vp is changed. As one might ex
pect, when the ratio becomes greater than one, then the
gular momentum in the neutrons is significantly greater th
that of the protons. Likewise, as the ratio becomes sma

FIG. 4. The radial profile of the frame draggingv(r ) for model
I of Table I. In the left-panel we have curves forVn /Vp5(22.0,
21.0,0.0,1.0,2.0), and in the right we have takenVn /Vp5
(20.11,20.10,20.09).
2-10
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RELATIVISTIC MEAN FIELD MODEL FOR . . . PHYSICAL REVIEW D 68, 023002 ~2003!
we find that the protons can dominate. Something of a
prise is the extreme right-hand-side of the curves, whereJp
actually becomes negative, and yet the angular speeds o
neutrons and protons have the same sign. We can explain
behavior as a purely general relativistic effect that is in
mately connected with the frame dragging. With respec
infinity, particles that are rotating around at the same rate
the local inertial frames are found to have zero angular m
mentum. Thus, those particles that would be lagging beh
the frames, even though their angular trajectories would
in the same direction as the frames, will nevertheless h
negative angular momentum. Finally, one other feature is
configuration whereJn5Jp . In this case, the angular spee
are not equal, nor are the total neutron and proton part
numbers equal, and yet the angular momenta of both flu
are the same.

V. CONCLUSIONS

We have developed a formalism that uses relativis
mean field theory for supranuclear density matter that can
applied to general relativistic superfluid neutron stars. In t
formalism we have also allowed for the entrainment eff
between the various superfluid species. We have shown
to use our formalism in the relativistic superfluid field equ
tions that recently have been developed for modeling slo
rotating equilibrium configurations@1#, and linearized oscil-
lations @4,20#.

Our results should find a wide range of applications,
the least of which is to understand better the role of entra
ment in the superfluid modes of oscillation~e.g. the avoided
crossings described by@5#! and subsequent imprints@2,3#
that may be left in neutron star gravitational waves~emitted,
for instance, during glitches!.

Applications planned for the near future will include n
merical studies of rapidly rotating superfluid neutron st
~using an adaptation of the very accurateLORENE code@23#!
and continued research on the newly discovered two-str
instability @7#, which could have implications for pulsars. F
the rapid rotation calculations one must necessarily emp
the full formalism discussed here in the sense thatK will no
longer be kept small, since theLORENE code is specifically
designed to accurately handle relative velocities of the n
trons with respect to the protons that approach the spee

FIG. 5. The neutronJn , protonJp , and totalJ angular momenta
vs the ratioVn /Vp for model I of Table I.
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light. And for the two-stream instability entrainment pro
vides one of the main couplings between the two fluids.
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APPENDIX: LIMITING FORMS

The slow-rotation approximation is such that only term
up to and includingO(Vn,p

2 ) are required. This translate
into keeping only those terms in the mean field theory up
and includingO(K2). This is because those quantities su
asm* andL are scalars, and can only depend on terms t
are even inK. Likewise, those quantities that are like vecto
e.g.vz , can only depend on terms that are odd inK. Because
m* and vz are known only implicitly, we determine thei
expansion coefficients by assuming they take the form

fz5
]fz

]K U
0

K,

m* 5m* u01
]m*
]K2U

0

K2, ~A1!

where

m* u05m* ~kn ,kp,0!

5m2m* u0

cs
2

2p2S knAkn
21m

*
2 u01kpAkp

21m
*
2 u0

1
1

2
m

*
2 u0 lnF2kn1Akn

21m
*
2 u0

kn1Akn
21m

*
2 u0

G
1

1

2
m

*
2 u0 lnF2kp1Akp

21m
*
2 u0

kp1Akp
21m

*
2 u0

G D . ~A2!

By inserting Eq.~A1! into Eq.~50!, and expanding and keep
ing terms to the appropriate orders, we find

]fz

]K
U

0

52
cv

2

3p2

kp
3

Akp
21m

*
2 u0

3S 11
cv

2

3p2F kn
3

Akn
21m

*
2 u0

1
kp

3

Akp
21m

*
2 u0

G D 21

,

~A3!
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]m*
]kn

U
0

52
cs

2

p2

m* u0kn
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We note that the coefficient]m* /]K2u0 cancels everywhere
which is why it is not written here. Also, we find
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The condition of chemical equilibrium for the spherical
symmetric background solutions is thatmu05xu0
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