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Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

G. L. Comer
Department of Physics, Saint Louis University, St. Louis, Missouri 63156-0907, USA

R. Joynt
Department of Physics, University of Wisconrgitadison, Madison, Wisconsin 53706, USA
(Received 19 December 2002; revised manuscript received 6 May 2003; published 3 July 2003

General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary
fluid counterparts. Superfluidity allows different superfl@gahd superconductingpecies of particles to have
independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid
element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another,
the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the
so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other
superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and
superconducting protons using a relativisiie: ® mean field model for the nucleons and their interactions. In
this context there are two notions of “relativistic”: relativistic motion of the individual nucleons with respect
to a local region of the stdi.e. a fluid element containing, say, an Avogadro’s number of parjjciesl the
motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will
typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a
neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The
formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing
characteristic being that the neutrons can rotate at a rate different from that of the protons.
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[. INTRODUCTION of the inner crust represent a component that can move freely
(for certain time scalgdrom the rest of the star. Explaining

A new generation of gravitational wave detectpaser the glitch phenomena then becomes a question of how to
Interferometric Gravitational Wave Observato(IGO), transfer angular momentum between the various “rotation-
VIRGO, etc] are now working to detect gravitational waves ally decoupled” components. For the modes of oscillation, it
from compact objects, such as black holes and neutron staris. by now well established that a similar “decoupling,” this
With this detection we expect to have a unique probe of théime between the superfluid neutrons of the inner crust and
physics that dictates their behavior. This is ushering in a neweore and a conglomerate of the remaining charged constitu-
era where strong-field relativistic effects will play an increas-ents (e.g. crust nuclei, core superconducting protons, and
ingly important role. Only through their inclusion can we crust and core electropdeads to a mode spectrum for su-
hope to accurately decipher what gravitational wave datg@erfluid neutron stars that is quite different from that of their
will have to tell us. With that in mind, we present here a fully ordinary fluid counterpartésee[3], and references therein,
relativistic model of the so-called entrainment eff¢itt be  for a complete revieyv
described in some detail belpwhat is a necessary feature of ~ Several recent studig¢d—7] have established that the en-
the dynamics of superfluid neutron stars. trainment effect is an important element in modelling the

For the densities appropriate to neutron stars there an@tational equilibria and modes of oscillation of superfluid
attractive components of the strong force that should leadjeutron stars. Sau[8] describes the entrainment effect as a
via BCS-like mechanisms, to nucleon superfluidity and su+tesult of the quasiparticle nature of the excitation spectrum
perconductivity. Indeed, calculations of supranulcear gap emsf the superfluid and superconducting nucleons. That is, the
ergies consistently lead to the conclusion that superfluid nelware neutrongor protons are accompanied by a polarization
trons should form in the inner crust of a mature neutron stargloud containing both neutrons and protons. Since both types
with superfluid neutrons and superconducting protons in thef nucleon contribute to the cloud the momentum of the
core. Even more exotic possibilities have been suggestedieutrons is modified so that it is a linear combination of both
such as pion condensates, superfluid hyperons, and supercdhe neutron and proton particle number density currents, and
ducting quark matter. Perhaps most important is the wellsimilarly for the proton momentum. Thus when one species
established glitch phenomenon in pulsars the best descriptiasf nucleon acquires momentum, both types of nucleons will
of which is based on superfluidity and quantized vorticesbegin to flow.
Superfluidity should affect gravitational waves from neutron In the core of a neutron star, the Fermi energies of nucle-
stars by modifying the rotational equilibria and the modes ofons(as well as some of the leptonsan become comparable
oscillations that these objects suppldrt-3]. to their mass-energies, because the Fermi energies are a

The success of superfluidity in describing the glitch phe-function of the local particle number densities, and these can
nomena is due in part to the fact that the superfluid neutronbe quite high. This implies that any Newtonian model for
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entrainment must become less reliable as one probes deepmiculations. For static stars, this role is played by the
into the core of a neutron star, and thus a relativistic formu— w effective mean-field theorjl1]. Our task in this paper
lation is required. In fact, we will see that Newtonian param-is to generalize this theory to dynamic stars. In particular, we
etrized modeld6,9] do deviate most from the relativistic are interested in situations where there is relative motion of
model in the core. There are two purposes for which a relathe two fluids, since the entrainment of one by the other turns
tivistic formulation is necessary. At the microscopic level, out to play a large role in the dynamics.

the nucleons wil(locally) have average speeds that are com- The Lagrangian density for the baryons and the mesons
parable to the speed of light. As well, at a mesoscopic levelthat the baryons exchange is as in the static case. It is

the fluid elements, which contain a large number of nucle-

ons, could have average speeds that are also comparable to L=Lp+Ls+Ly+Lint, 1)

the speed of light. The formalism that we develop here will

be relativistic in both respects. One should note, though, tha#ith

in realistic astrophysical scenarigs.g. when an isolated —

neutron star undergoes linearized oscillations, or a pulsar ex- Lp=¢(iy, 0" —m)y 2

hibits a glitch the fluid element average speeds are typically . . .
only a few percent of that of light. as the baryon Lagrangian. Hegeis an 8-component spinor

To date, studies of superfluid dynamics in neutron stard/ith the proton components as the top 4 and the neutron

have relied on models of entrainment that are obtained in the°MmPonents as the bottom 4. The are the corresponding
Newtonian regime. For instance, a few of the most recend X 8 block diagonal Dirac matrices. The Lagrangian for the

studies[4,9] have employed a parametrized model for en-@ MESONS IS
trainment that is inspired by the Newtonian, Fermi-liquid 1 1
calculations of Borumanet al. [10]. An alternative formu- L,=— =d,00*c— =mia>. 3
lation [6]—motivated by mathematical simplicity that allows 2 2
for analytic solutions for slowly rotating Newtonian super- ) )
fluid neutron stars—for parametrizing entrainment has beefl "€ Lagrangian for the mesons is
recently put forward. Here we take a different approach, and 1
that is to use ar— w relativistic mean field model, of the L,=— ~w,,0"" — =M2w,o* (4)
type that is described in detail by Glendennifil]. Al- 4 2wk
though a relativistic Fermi-liquid formalism exist$2], we . ) .
prefer to use the mean field model because it is sufficientiy’Ne€®.,=d,©,~d,0, . The interaction Lagrangian den-
simple that semianalytical formulas result, and a clear con3'Y 1S
nection between the coupling parameters at the microscopic — —
level can be made to the macroscopic propertmsh as Lint=9o0¢y—guw, P y"¢. )
mass and radiusf the star.

The next section begins with a review of the- w model.
That is followed by an application of the mean field approxi-

The Euler-Lagrange equations are

5 _
mation to obtain an equation of state that includes entrain- (=L+my)o=g,4, )
ment. In Sec. lll, we briefly review the general relativistic 5 —

superfluid formalism and how it is used to describe slowly (—H+Mmg)w,+3,0"w,=—g,¢v,¥, 7
rotating configurations. We then use the mean field results to

produce explicit models. Since we consider only the linear- (iyd*—mygy=g,y,0"b—9,0. (8)

order frame dragging, the solutions constructed here cannot
be considered as generalizations of thosgsinbut they can ~ Finally, the stress-energy tensor takes the form
be compared with those ¢2]. After some concluding re-
marks, an Appendix is given that contains some of the tech-
nical details and results. Throughout we will use the Misner- . I
Thorne-WheeletMTW) [13] conventions, a consequence of containing contrllbutlons from t.h? baryonb)( the mesons
which is that several equations will have minus sign differ-(7,@), and the interaction. Individually, these are

ences with, for instance, those [df1].

THY =T A+ THY + T+ T 9)

Th" = —1(y*3" = 7" y*de) y—mn* i, (10

Il. RELATIVISTIC MEAN FIELD THEORY , 1 , , 1
OF COUPLED FLUIDS T '=0tod"o— > *’'mio— > "’d%ad o, (12)

To create a seamless conceptual basis for general relativ-
istic calculations of dynamic processes in neutron stars, we
need a covariant formalism that describes the strongly inter-
acting coupled neutron and proton fluids. It should be suffi-
ciently simple that it provides physical insight, yet accurate
enough that it can serve as the basis for realistic numerical

1
TE = (Hw*— 0"w*)d"w,— > n””miw“wa
1 w2 af
27 Mmooz, (12
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THY = "9, 0= 777G @ Y . (13) (W y"(id,—g,0,)—m,Jh)=0 (20)

We now solve these equations in the mean field approxiwe find
mation, eventually in a frame in which the neutrons have
zero spatial momentum while the protons have on average a 0 o o o
wave vectorK , = (K,0,0K,). In this approximation we ig- (K°+g,0°)°=(k+g,072)+mg, (21)
nore all gradients of the averaged sigma and omega fields, )
and the neutrons and protons are taken to be in plane-wavéhere we have dropped expectation value brackets for the
states. The problem simplifies considerably and we find fof€@n values of the fields. The energyof a baryon in a

the o andw,, fields and the stress-energy ten3dr that plane-wave state is given by
m, =m—c2(y), (14) 8(K)=E(K)—g,0°= V(K+g,0%2)2+m? —g,’.
(22)
(guw,)= —C2<Ey ) (15) Thus we see thab, contributes a constant shity, gives a
o%u/ %) N ’

preferred frame for the momenta, awedrenormalizes the
mass to the Dirac mass.
As an example of how the expectation values are evalu-

1
(THy=— E(c;2<gww“><gwwa> ated, we give the scalar densitietting K,=K, for ease of
notation:
e m-m, )8 —i(Wyra, W),  (16)
JE
y)=——7 f d*ko— 23
where, for later convenience, we have introduced the nota- (2m)*Jocc  IM
tion c2=(g, /m,)? andc2=(g,/m,)? and the Dirac effec-
tive massm,, , i.e.
2 m,
= 3[* d3k =
(g,0)=m—m, . (17) (2)3J 1K<k \/(k+gwwzz)2+mi
Restricting to the zero-momentum frame of the neutrons + 2 f d3k M (24)
leads to a set of algebraic equations for thg field: (27r)3J [k—Kzl<ky \/(Iz+gww22)2+ m?
(9uw0) == Co(Uyod), (18) X
m*
_ 2 K| <kn C SN2 2
(9u2) = —C2(hyah). (19 2m Vi 027 mé
2 5 m,
The final equation is not needed in the case where both neu- + 3f§<k d°k ——= —
trons and protons have zero average momentum, giage (27) P \/(kﬂL 9,0,Z+Kz)“+mj
then vanishes by isotropy. In this case, the neutrons and pro- (25)

tons have a common rest frame aqtlyy) =y y=n+p

wheren andp are the baryon number densities of the neu-and the average four-velocity components of the baryons:
trons and protons, respectively. The addition of the spatial

velocity component complicates the solution of the problem

considerably, in part because there is no longer a commop— o, 1 d3k‘9E

rest frame for all the baryons. Each expectation value on thg%’ ¥)= (2m)% ) oce ko

RHS of these equations involves an integration over the

Fermi spheres of the particles, whose radii can be sh@ivn

the next sectionto bek,= (372n°) 3 andk,= (37?p%) 3, 2

wheren® (p°) is the zero-component of the conserved neu- = 3f» 3k+ 3[‘ ~ d%

tron (proton) number density currem* (p#). The proton (27)° K <kn (27)°Jk=Kzl<kp

Fermi surface is displaced Uyzi. We are interested in the

caseK <Kk, ,k,, but the expressions for geneig} are not 5 5

more complicated than the power series expansion. = f d3k+ J d3k, (26)
Noting that (27)% ) K<k, (2m)3 ) K<k,
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YKL = 3 ki—
(v (ZW)JMH -

(2m)°
2 3 k*+ gwwz + f 3Lz
= J- d°k —= = (2m)3ik-Ka<k, K2
2m3 K<k \J(k+g,0%2)2+m?2
2 k*+g,0 = f d3kk,[ K, +
+ 3f~ o d% N (2m)3J K<k, ALKzt goer]
(2m)>J [k=Kzl<ky k+g,w?2)%+m?2 . .
e guerzm; X[(k+g,072)%+m ]~
2 f . k*+g,0*
= . d%k + f d3k[k,+ K[k, + +K
mK<a (Kt g,02)2+m,? (2m)3 ) K<k, Har kit gue K]
2 J e KHGu0tHK X[(K+g,0z+K2)?+mi] (32
+ } .
@m3 W<k (Kt g, 0%2+K2)?+m? and for(T¢)
(27) — ,
h=—— d
Thus we have reduced the problem to a set of nonlinear (ke (27)3J K<k,
equations for then, , wy, andw, fields that must be solved
numerically. This can be done for any set of the input param- n &Kk, +K)
etersk,, k,, andK. The interaction and mass parameters for (2% 1K<k, z
the effective fields have been determined from nuclear phys-
ics, and they are discussed further below. Once this is done, kg
we still need expressions for the stress-energy tensor, which = WK- (33

is the input for the Einstein equations.

Again, specializing to the zero-momentum frame of the The main result of this section is thus a well-defined pre-
neutrons, the onIy nonzero stress-energy-tensor componerggription for producing the functionéTﬁ) (kn,kp,KZ). In

are
0\ __ l 2:/ .0 2 oz 2
<To>——§cw(<l/f7 W)= Py )©)
1 .
=50 (mP=m) —(yykiy),  (29)
(T =¥k, (29)
1 _ _
(TO=(M)=5calr )= (wy'h)?
1 -2 2 TIoX
= 5C, A(M=m) >+ (Y k), (30)
z 1 20/ 7 .0,\2 T z.\2
<Tz>=§cw(<l/f7 W)=Yy )©)

—Ec’z(m—m )2+ (ry’k 31
2o * Yka). (31)

Some of the expressions have been simplified using the

equations of motion.

the next section we take this prescription and produce from it
the so-called master function, including entrainment, that is
used in the general relativistic superfluid field equations.

Ill. GENERAL RELATIVISTIC SUPERFLUID
FORMALISM

The formalism to be used here, and motivation for it, has
been described in great detail elsewhgl8,14—-21, and so
we will review only the highlights. The central quantity of
the superfluid formalism is the master functidn It depends
on the three scalars?=—n,n*, p?=—p,p* and x’=
—p,n* that can be formed from the conserved neutnot)
and proton p#) number density currents. Furthermore, the
master function is such that A (n?,p? x?) corresponds to
the total thermodynamic energy density if the neutrons and
protons flow togethefas measured in the comoving frame
Once the master function is provided the stress-energy tensor
is given by

Ty =Y, +n"u,+p“y,, (34
where

q,:A_anp_prp (35)

Each component ofT}) again involves an integration js the generalized pressure, and
over the Fermi surfaces, but now in terms of completely

known parameters. For example, to determ{ii&, we need

w,=Bn,+Ap,, (36)
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x,=An,+Cp,, (37)  for the particles. The local energy density of the fluid is thus
_ . uniquely obtained from\ =—(T/)u"u,, . In the superfluid
are the chemical potential covectors. We also have case there are two four-velocities, and thus no preferred rest-
frame. Fortunately, we can still obtaift in a unique, and
IA IA IA covariant, way, by using the tra¢d)=(T/;) and the three
A=— vl B= _ZW’ Cc= _2(9_p2' (38  scalars that can be formed from contractifigf:) with n#

andp*, i.e.(Ty)n,n”, (T4)n,p", and(T,)p,p". We thus
The momentum covectorg, and y, are dynamically, and find thatA is given by
thermodynamically, conjugate t@" andp” and their magni-
tudes are the chemical potentials of the neutrons and the

. . 3
protons, respectively. The two covectors also make manifest A = — —(T)+ _(x*— n2p2)1( n?p?
the entrainment effect; that is, we see that the momentum of 2 2
one constituent 4, , say carries along some of the mass

1MV_|_1 K“pV
an Fpp

current of the other constitueng(, is a linear combination — X[ n*p’+ p“n”])(TW), (42
of n, andp,). We can also see that there is no entrainment
unless the master function dependsx3n and the generalized pressure is
The field equations for this system take the form of two 9 P
conservation equations for the neutrons and protons, i.e.
1
T=-({(T)—A). (43
v,n#=0, V,p*=0, (39 3
which is a reasonable approximation given that the weakn like manner we find that
interaction time scale is much longer than the dynamical
time scale of neutron stars for small amplitude deviations , ) 4 2
from equilibrium[22], and two Euler equations, i.e. A== (n,p"(T})+x°A)/(x"=n"p?),
Vs =0, P*Vuxy =0, (40 B=(p,p*(Th)+p*A)/(x*~n?p?),
where the square braces means antisymmetrization of the
enclosed indices. C=(n,n"(T4) +n?A)/(x*—n?p?). (44)
A. Extracting the master function from the mean field results One other necessary component of uniting the mean field

The two scales that enter this problem are the microth€ory with the superfluid formalism is to relaecally) n*

scopic, on the scale of the nucleons, and the mesoscopﬂpdpﬂ to the mean particle flux of the neutrons and protons;
where one speaks in terms of the two interpenetrating supet-*:

fluids. The fundamental “particles” at the fluid level are the

fluid elements which contain, say, an Avogadro’s number P

worth of nucleons. The connection between the micro- and n“=nun=(¢ny*¢n),

mesoscopic levels is via the averaged stress-energy compo-

nents calculated earlier. Consider a fluid element deep in the —

core of the neutron star and orient the local coordinate frame p#Ep“5:<‘/’p7#‘/’p>' (45)

in such a way that the axis of the frame is in the same ,
direction as the proton momentum with respect to the neuWhere ¢, and ¢, are the neutron and proton, respectively,

trons. As shown just below, a unique combination of theComponents of the Dirac spingr. Recall again that we have
averaged stress-energy components determined via the me@fanged that the average neutron and proton particle fluxes
field theory will yield the master function. As this quantity is &€ in thez direction. Thus, the unit vectors have only two
a scalar, the functional relationship we obtain betwaeand ~ Components:
the two particle number densities and the relative velocity of
the protons with respect to the neutrons can then be applied
anywhere in the star.

The key idea is to use thgocal) relationship

u={u’,0,0u3, ul=y1+(u3)?

ut={up,0,0u3}, ud=1+(uy)? (46)

It thus follows that
to obtain A. In the perfect fluid case, the identification is
made immediate by the fact that there is only one four- 0 : .
velocity u* for the system, and hence a preferred rest-frame A=(To) +(T) —(TH- (47)

(T)=Wa,+n"u,+p“x, (41)
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We will use cylindrical coordinates and defidg=g,w, SO 1—et 1—et
that N = - —8mreAly, v'=-— - +8mre’v|,.
(52
c? Kn
m, =m-— Z—”Zm*( f ) dk,[ K3+ pZ+m2 + 2k, ]2 The equations that determine the radial profilesgf) and
™ ~Kn

p(r) have been derived by Comet al.[20] and they are

kp
+f dk[ K2+ (d,+ K)2+m2 +2(p,+ K)k,]H2 1
Ky T ’ * ’ ’ A8|op’+5’8|on’+§,u|ov’=0,

kn
- [ dat e+ gz me e
7kn

0 ’ 0 ’ 1 ’
Colop’ +Aglon +§X|0V =0, (53
k
- [* akd e g 0742122, (49
—kp where
0= 13 po= i 49 A9=a+228 npr2 Az 272 g2 2 54
1 [k B JA JA
n’= WJ' dkz(kz+ ¢z){[k§+mi+¢§+2¢zkz]l/2 68:B+ 2—2n2+4—2np+_2p2, (55
—kn on on X
~[ (kg ¢,)*+mZ]"3,
c3=c+22C prea? s B (56)
0~ — P t4—np+ ——5n”,
L1 op> ap? X
p = ﬁf " dkz(kz+ ¢+ K)
B andAlg, Yo, ulo, and x|, are given in the Appendix. A
x{[kf,+ m2 + (,+K)2+2( g, + K)k, ]2 zero subscript means that after the partial derivatives are
taken, then one takes the linkt—0.
—[(k,+ ¢, +K)2+m2 Y2, (50) Of course, since the variables that are more suited to the

mean field theory are the two Fermi wave numbé&gsand

Itis to be noticed that even though only the protons are giverfp: We replace everywherez_kﬁ/&rz and p=k;/37 and
spatial momentunk, the neutron four-velocity nevertheless Solve for the wave numbers instead. We have also found a
acquires a nonzero spatial component. This, in fact, is a sighore convenient way of determining the Dirac effective
nature of the entrainment effect, which is a momentum inJnassm |o(Ks k), i.e., we have turned the transcendental
duced in one fluid will cause part of the other fluid to flow, algebraic relation in Eq(A2) of the Appendix into a differ-

Of primary importance to the fluid equations are tde  €ntial equation via
B, andC coefficients. We could, in principle, use E¢5) to
express §?,p?,x?) in terms of k,,k,,K), but practically
speaking this is not possible. Fortunately we see from Eq.
(44) that we can construct these coefficients algebraically
from the mean field v_alues of the stress—en_ergy tensor conwherekrf] andk’, are obtained from Eq53).
ponents. Thus, when it comes to the numerical work, we use The *
the set k,,k,,K) as the independent variables. Note that
because the master function is a scalar, it must be invariant
K— —K, and is thus an even function &f

k! + oMy
0 " akp

am,

!

m*|0_ ok
n

Kp. (57)
0

boundary” conditions that must be imposed include
set at the center and another at the surface of the star.
emanding a nonsingular behavior at the center of the star
imposes that\(0)=0, and consequently that’'(0) and
v'(0) must also vanish. This and EG3) imply thatk/(0)
B. Equilibrium models and k,’)(O) have to vanish as well. A smooth joining of the
The equilibrium configurations are spherically symmetricimerior spacetime to a Schwarzschild vacuum exterior at the

and static, so the metric can be written in the Schwarzschilgurface of the star, i.e=R, implies that the total madd of
the system is given by

form
ds?=—e"dt2+erdr2+r2(de?+ sirtode?). (51 R
( ¢%). (5 M=—4wf drr2A|o(r) (58
0
The two metric coefficients are determined from two Ein-
stein equations, which are written as and that¥|o(R)=0.
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C. The low velocity limit for fluid elements si

Two immediate applications of the formalism developedA
here are to model slowly rotating configuratidrig and lin- W
earized perturbations, or quasinormal mof&0]. In both
cases the fluid element velocities are small in the sense that
they are typically only a few percent of the speed of light.
The net effect is that these applications require only the first
few terms from an expansion of the master function in terms
of the entrainment parametére. x? in the canonical formu-
lation, andK? in what we present hereSuch an expansion
has been described j#,5], and thus only the highlights will
be reproduced here. It should be noted, however, that if one
wanted to model rapidly rotating superfluid neutron stars
[23], say, then the expansion to be described below will be
inappropriate.

For a region within the fluid that is small enough that the
gravitational field does not change appreciably across it, one
can show that

- s,
1-v,-vplc

2_
P V1= (v,/c)?\V1—(v,/c)?)

(59

X

If it is the case that the individual three-velocitiégyp are
small with respect to the speed of light, i.e.

Unp

c <1, (60)

PHYSICAL REVIEW D 68, 023002 (2003

ncex?—np is small with respect tap. In this case thed,
8, etc. coefficients that appear in the field equations can be
ritten as

A:—Zl iNi(n2,p?)(x®—np)' 1,

)

1.3 I\

=~ 5n 74 n ;1 %(Xz—np)i,
Ag=— j:;g—le %(xz—np)i,
B3-— TS TN e—npy,
Co=— ﬂzo—i o (x*=np)". (62)

ap 1 op?

For quasinormal mode and slow-rotation calculations,

- 2 ; : i -
then it will be true thak“~np to leading order in the ratios each of the coefficients are evaluated on the background, so
vn/c andv/c. Thus, an appropriate expansion of the masteinat x2=np, and thus only the first few; are needed. In

function is

fact, one needs to retain only, and A\, where the latter
contains the information concerning the entrainment effect.

ANZ.p2.x2) = N (n2.p2)(x2—np)'. 61 Some details are given in the Appendix, and the final results
(n%p?x%) = 24 \i(n?,p?) (*~np) 6y >
o 2 VkaEmilo el [ kokp K2k 3m%k3 Ka+mil
Alg=c2+ +— + , (63)
5\ " ke+mily 377 VKZ+m |, \/k§+m§|o 5u?loky Vk2+m2|,
5 ~3n%ulo o K 2k ( 2\/|<§+m,{|oJr 2 KA kK3 372kS  K2+m?
0= "3 Curz p I - ’
ks Ky 5u? kS K+mZly 372 \I+mZly  VkZ+mZlo))  Bu?lok§ Vk2+m2]g
(64)
. 372y, Czkg c2k3 ( 2\/k§+mi|o+ 2 K k2K3 )
0= 3 Curz” p .
Kp Kp  5u?|ok’ kKa+mZ|, 377 \/k§+mi|0 \/k,23+mi|o
3m2  Ki+mil, 372
- + ——k2+mz, (65)
Suflokp \iZ+m2], Ky T T
| am,
m —_—
A0 m PN |, w kg 66)
0|0~ T 21,2 Tl T o
knkp FKpknl, Ko Vka+milo
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am,
o 't 2N PPN ) 772kn+m*|o‘9kn 0

om,
R I A T .
T, L T e, e Ve

where am, /dkn|q and dm, /dk,|o can be found in the Ap- calculations of Sjberg[25]. When the momenta are taken as
pendix andm,=m/1836. For reasons to be discussed belowthe fundamental fluid variables—which implies that the con-
we have included contributions due to a normal fluid ofserved number density currents are linear combinations of
highly degenerate electrons. the momenta—then entrainment appears as an off-diagonal
component in the so-called mass-density mdi2#]. Denot-
ing this component ag,,,, then one parametrized modél]
takes the form

We now use our model to construct static and spherically
symmetric configurationsA priori there are two input pa- Pnp= ~ EmondMN, (69
rameters, which are the neutron and proton Fermi wave num-
bers at the center of the star. However, we can reduce this {ghere the parameter isy,n and its “physical” range is
just the neutron wave number by imposing at the center théaken to be 0.04 &,,,<0.2. In the present context, we will
condition of chemical equi"brium between the nuc|eon3'deﬁne the relativistic analog of the mass-denSity matrix us-
which, incidentally, also implies chemical equilibrium ing the relations
throughout the stafcf. the discussion i20]). In order to
haye a chemical equiliprium that is bel_ieved to be represen- mnﬂzmﬂ,“r @Xﬂ' mp“=m,u“+ mxﬂ'
tative of neutron stargi.e. proton fractionsx,=p/(n+p) m m m m
~0.1], we have added to the master function a tésee, for (70
instance[24]) that accounts for a highly degenerate gas of ) o
relativistic leptons(in our case, just electropsFigure 1 Which reduce to the Newtonian definitions when the nonrel-
gives the masM as a function of the central neutron number ativistic limit is taken. By inverting Eq(37) we can writen”
densityn(0). We seebehavior that is typical of general rela- and p* as linear combmatlons'of the momentum covectors
tivistic neutron stars, and that is a maximum value for the, @ndx, and thereby determine that
mass. Beyond this maximum, the stars will be in unstable
equilibria. As canonical models of superfluid neutron stars, _ m*Alg _
we have chosen configurations that are near to the maximum Pnp= "~ B| oC|o—A|S -
mass, but on the stable branch of the curtasTable ).

In _several earlier studid€,6,9], parametrized models for Figure 2 shows the radial profile f,,{r), as defined by
entramment have been used that are based on the Nevvton@a. (72), for models | and Il of Table I. We see from the
calculations of Borumanet al. [10] and the effective mass

D. Equilibrium configurations

—Emon{r)mn. (71

TABLE |. Parameters describing our choice of mean field and

S IR LN B UL canonical superfluid neutron star models. The two values¥@nd
3 cf, represent the two extremes given[itl] that have been deter-
i mined from nuclear physics. Note that the baryon massnis
2 =4.7582 fm L.
=T ] Model | Model Il
'r ] c2=12.684 2-8.403
] ol ] c2=7.148 c2=4.233
ol ] v(0)=—2.316408 v(0)=—2.288385
0 05 N (10) L5 2 k,(0)=2.8 fm? k,(0)=3.25 fm !
X,(0)=0.101 X,(0)=0.102
FIG. 1. MassM (in units of solar masM) vs the central M=2.509M ¢y M=1.996M
neutron number density(0) (in units of fm™ %) for the mean field R=11.696 km R=9.432 km

coupling values of models | and 1l of Table I.
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L L B L L Also used in Prixet al.[6] is the so-called symmetry en-
I ] ergy parameter
| duldp
- 77 9xlon 73

1 that can be related to termi27] in the equation of state that
7 tend to force an equal number of protons and neuttaasn
most nuclei. For the relativistic mean field model used here,
N it is not difficult to show thatr=1 (which is consistent with

L j the range of values used B§]).

— Model I
[ |[--— Model Il

Sn‘“)ﬂl(l.)

ol a IV. SLOW ROTATION CONFIGURATIONS:

0 0.2 0.4 0.6 0.8 1 THE FRAME DRAGGING
/R

The key distinguishing feature of slowly rotating super-
fluid neutron stars is that the neutrons can rotate at rates
different from that of the protons. The slow-rotation approxi-

i ) _ mation is valid when the angular velocities are small enough
figure thate n,,{r) is roughly constant in the deep core, but ihat the fractional changes in pressure, energy density, and

takes values that are well outside the “physical” range usedyryitational field due to the rotation are all relatively small.
in the earlier studies. The greatest variationg jy«{(r) 0C-  This translates into the inequalitiésf. [1,28])
cur in the outer third of the star.

An alternative parametrization is that of Prét al. [6]. 5 5 2
They point out that there is some ambiguity in what is meant Q5 or Qp or Qn9p<(§> RS’ (74)
by the nucleon effective mass@<. the Landau, as opposed
to the Dirac, effective mass¢s1]), which can be traced to \yhere the speed of light and Newton’s constan® have

whether one chooses to define these masses with respectdgen restored, and andM are the radius and mass, respec-
the zero-momentum or zero-velocity frame of the nucleonsjyely, of the nonrotating configuration. Sin€M/c?R<1,
Their parametrization makes use of the zero-velocity frameywe also see that

Denoting the parameter as,, the “physical” range is
taken as 0.4 ¢,,<0.7. Comparing with the Prigt al. ana- Q,R<c and Q,R<c, (75)
log of the master function, we find that

FIG. 2. The entrainment parametef,,(r) as a function of
radius for models | and Il of Table I.

and thus the slow-rotation approximation ought to be useful
Alon for most astrophysical neutron stars. In fact a comparison
(72 [1,6] of the above conditions to empirical estimates for the
Kepler frequency(i.e. the rotation rate at which mass-
. . . . shedding sets in at the equattinat can been obtained from
Figure 3 contains the radial profiles efe (r) for models |~ 50jations using realistic supranuclear equations of state

and Il of Table I. On a qualitative level, we see behaviorq\qqis that even the fastest observed pulsars can be classi-
much like that ofenon{r), except that in Fig. 3 the curves fiqq a5 slowly rotating.

for models | and Il are closer in magnitude than in Fig. 2.

8uel(r)E m

It is of course important to also mention something about
realistic expectations for the durations and magnitudes of
relative rotation rates between the neutrons and protons. For
| the applications to be considered here we note that Anders-
L _ son and Comefl] (who have developed a formalism for
modelling slowly rotating general relativistic superfluid neu-
tron star$ have argued that once they are established, rela-
tive rotations can be sustained for time scales ranging from
days to years. We can, at least, anticipate them to persist
much longer than the dynamical time scakéhich is on the
order of milliseconds Andersson and Comer also show that

when a rigid, relative rotation exists, then there can be no
v A chemical equilibrium between the neutrons and protons. It is
I thus plausible to think that the “chemical beta reactions”
N I T R B would work to reestablish a corotation between the neutrons
0 02 04 R 0.6 0.8 1 and protons. However, Prigt al. [6] (who consider slowly
rotating Newtonian superfluid neutron staasgue that these

FIG. 3. The entrainment paramete(r) as a function of ra-  reactions are quite slow, and certainly also much longer than

dius for models | and 1l of Table I. the dynamical time scale. As for the expected magnitudes,

l.5|||||||||||||||||

€D
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the glitch data for pulsars indicate relative rates on the order 21— 02— T 1 T 1
of (Q,—Q)/Q,~10"* In what follows we will consider F20 I
rates that greatly exceed this limit. The point is not to argue !
for relevant astrophysics, but to push the formalism and de-~
termine, in principle, the extent to which relativistic configu- §
rations can differ from their Newtonian counterparts. Such
differences can be used as numerical guideposts for testin
more complicated code$or instance, the code which is dis- T L
cussed if23]). 20 02 04 06 o038 1% 02 04 08 08 I
The only quantities that contain terms linear in the angu- " =

lar velocities are the metric coefficient(r), that represents FIG. 4. The radial profile of the frame draggiagr) for model
the dragging of inertial frames, and the fluid four-velocities.! of Table I. In the left-panel we have curves ffr,/Q,=(—2.0,
All other effects due to rotation enter at the second-order in-1.0,0.0,1.0,2.0), and in the right we have taken,/Q,=
the angular velocities. It is useful to define (-0.11-0.10,-0.09).

0015

0.01

0 L
0.005—

-1

il

tn:w—Qn, Lp=0—Q,. (76) Any solution of Eq.(77) for the frame dragging is to be
such that the interior matches smoothly onto the known

Up to an overall minus sign, these represent rotation frequensacuum solution in Eq(78). This means that we must have,
cies as perceived by local zero-angular momentum obsenfer instance,
ers. The Einstein equation that determines the frame drag- "
ging has been shown to ih&] Ep(R)z —Qp+ = 83)
1 ~
2 (rte” WL —16meM (W o~ Aly)L,

-

We can easily see tha~1tp and its derivative are smooth pro-
vided that we have

=16me 24 on(Q,— Q). (77
- R dL
It is of the same form as that obtained by Haf®&] except LR =—Q,— % —r ) (84)
for the nonzero source term on the right-hand-side. 3 dr r=R

Exterior to the star, there is vacuum, and so the solution _ - o
for the frame dragging is the same as that considered blfaving obtained a value fdr,(0) that satisfies Eq84), an

Hartle[28], i.e. acceptable solution is in hand, and we can thus determine the
angular momentum of the configuration from E§3).
2J In Fig. 4 we have plots of the radial profile of the frame
w(r)=r—3. (78 dragging for model | for a range of values of the ratio

Q,/Q,. For the values considered in the left panel we see
Assuming that the frame dragging is continuous at the surthat the frame dragging is much like that of an ordinary
face of the star, then one-fluid star, and is consistent with solutions obtained by
Andersson and Comdd]. For the negative ratios, we see
8w (R, ()12 ~ ~ that the frame dragging is negative but increases monotoni-
J=- ?fo drre LulonLatxloPLpl, (79 cally towards zero. This is the behavior we should expect,
since the bulk of the matter is simply rotating the opposite

where J is the total angular momentum. Andersson andway. There is some asymmetry between the negative and

Comer[1] have furthermore shown that the neutron totalPositive ratios, but that is due to the small number of protons
angular momentum is that rotate oppositely to the neutrons when the ratio is nega-

tive. In the right panel, we examine the solutions near to a
8w (R =)/ ~ ratio of zero. The frame Qraggir_lg is no longer monotoniq and
In=— ?JO drre [ulonLy+ Alonp(Q,—Qp)] actually becomes negative inside the star. An explanation of
(80) this can be understood as follows: in the interior the protons
carry most of the angular momentum and thus have the larg-
and est impact on the frame dragging, but further away from the
center, the much larger mass contained in the neutrons begins
8m (R (=112 - to dominate1].
Jpz_?fo drr e [xloPLp+ Alonp(Qp— Q)] Figure 5 considers the same range for the ratio of the
81) angular speeds, by showing how the total angular momentum
J, and the neutron and proton angular momedtaand J,,
for the proton total angular momentum, from which it fol- respectively, vary as),/(), is changed. As one might ex-
lows that pect, when the ratio becomes greater than one, then the an-
gular momentum in the neutrons is significantly greater than
J=J,+J;. (82 that of the protons. Likewise, as the ratio becomes smaller
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1.5%10° pr—— light. And for the two-stream instability entrainment pro-
" 10735 1 vides one of the main couplings between the two fluids.
Ux F =
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APPENDIX: LIMITING FORMS
we find that the protons can dominate. Something of a sur- . T
prise is the extreme right-hand-side of the curves, wiigre The slovy-rotat!on appzroxmatlon 'S.SUCh th.at only terms
actually becomes negative, and yet the angular speeds of ti#® t©© and includingO(€; ;) are required. This translates
neutrons and protons have the same sign. We can explain tHi&© keeping only ghose terms in the mean field theory up to
behavior as a purely general relativistic effect that is inti-2nd includingO(K?). This is because those quantities such
mately connected with the frame dragging. With respect t3SMx andA are scalars, and can only depend on terms that
infinity, particles that are rotating around at the same rate ad'® €ven irk. Likewise, those quantities that are like vectors,
the local inertial frames are found to have zero angular mo€-9-@z, can only depend on terms that are odéirBecause
mentum. Thus, those particles that would be lagging behin@« and , are known only implicitly, we determine their
the frames, even though their angular trajectories would b&XPansion coefficients by assuming they take the form
in the same direction as the frames, will nevertheless have
negative angular momentum. Finally, one other feature is the b,= 92
configuration wherd,,=J,. In this case, the angular speeds K
are not equal, nor are the total neutron and proton particle
numbers equal, and yet the angular momenta of both fluids m,
are the same. m,=m,[o+ K2

0

K2, (A1)
0

V. CONCLUSIONS where

We have developed a formalism that uses relativistion, [,=m, (k,,kp,0)
mean field theory for supranuclear density matter that can be
applied to general relativistic superfluid neutron stars. In this 2
formalism we have also allowed for the entrainment effect =m—m*|o—02 kn\/kﬁ+mi|o+ kp\/k;2)+mi|0
between the various superfluid species. We have shown how 2m
to use our formalism in the relativistic superfluid field equa-
tions that recently have been developed for modeling slowly 1 —ky+ \/k§+ mi lo
rotating equilibrium configurationgl], and linearized oscil- + —mi|0|n
lations[4,20]. 2 Ko+ VK2+m2 |,
Our results should find a wide range of applications, not
the least of which is to understand better the role of entrain- 1, —kpt \/k§+ m2|,
ment in the superfluid modes of oscillatiog.g. the avoided +§m* loIn CBR
crossings described bjf]) and subsequent imprin{,3] kpt VKp+m o
that may be left in neutron star gravitational wavemitted, ) ) ] )
for instance, during glitchgs By inserting Eqg(Al) into Eq.(SO), and expgndmg and keep-
Applications planned for the near future will include nu- ing terms to the appropriate orders, we find
merical studies of rapidly rotating superfluid neutron stars
(using an adaptation of the very accurat&keNE code[23]) d¢p, » b
and continued research on the newly discovered two-stream — | =~ 5 2 5 ——5—
instability [ 7], which could have implications for pulsars. For Kl 3m \/k;Z)"'mi lo
the rapid rotation calculations one must necessarily employ ( 2 [ 3 3 >_ 1
1+

(A2)

c? K3

the full formalism discussed here in the sense Katill no n . p
longer be kept small, since theRENE code is specifically 372 \/k2+m2| \/k2+m2|
designed to accurately handle relative velocities of the neu- nt k0 Pl kIO

trons with respect to the protons that approach the speed of (A3)
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We note that the coefficiemm, /9K?|, cancels everywhere,

2 2
d c.  mg|gk 3m-2 L L ; '
M - _‘; ok m—2m, o which is why it is not written here. Also, we find
Ky T \JKZ+ m?2 m*|0
i e Al :—i(k3\/k2+m2| +iSVk2+m2 o)
C2 k3 k3 -1 0 77_2 nVhn * 10 pVhp * 10
o n p
-— +
2, 2 2, 2 ' 1 1
LGl igemo — Smiw- zc,2(2m=m, ) (m-m,]o)
(Ad)
1
om, Cg. m*|0kf, 3m—2m*|0 _W( mekp[ka+me] \/k;23+mg
)
Kp 1o 77 \/k§+mi|o M, [o \ kp'*'\/m
2 3 3 -1 —mgIn| —————|, (A8)
C, kn kp Me
- — +
2 ’
™| k2 +m2 [, \/k;2)+ m; o mlo=9,w0+ VKi+ms o, (A9)
(A5 Xlo=guwo+ ViZ+m2],, (A10)
ky ¢, 1
n*= ﬁ\/I@:ﬂWOK, (A6) Vo=Alo+ ﬁ(#|okﬁ+[x|o+ VkS+mz1ks).
n+m* 0 (
Al1)
1 kg ((9¢Z The condition of chemical equilibrium for the spherically
= —r| K. (A7)  symmetric background solutions is thatu|o=x|o
37 kg +milo | K g + Vkp+mg.
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