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Magnetic monopoles from gauge theory phase transitions
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Thermal fluctuations of the gauge field lead to monopole formation at the grand unified phase transition in
the early Universe, even if the transition is merely a smooth crossover. The dependence of the produced
monopole density on various parameters is qualitatively different from theories with global symmetries, and
the monopoles have a positive correlation at short distances. The number density of monopoles may be
suppressed if the grand unified symmetry is only restored for a short time by, for instance, nonthermal
symmetry restoration after preheating.
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It is a generic property of grand unified theories~GUTs!
that magnetic monopoles of mass of the order ofmM

'1016 GeV exist @1,2#, and these monopoles would hav
been produced in large numbers in the GUT phase trans
atTGUT'mM @3#. Afterwards, pair annihilations can decrea
the monopole density, but estimates show that the num
density would still be comparable to baryons@4#. Because
the monopoles are 1016 times heavier than protons, th
would have caused the Universe to collapse under its o
weight long ago.

This monopole problem, alongside several other cosm
logical puzzles, was wiped away by the theory of inflati
@5#, as the monopole density would have been diluted t
negligible level by a period of accelerating expansion. F
this to solve the problem, the reheat temperature at which
Universe thermalizes must be lower thanTGUT. These con-
straints are even stronger in models with nonperturbative
fects such as preheating@6#, since the GUT symmetry can b
temporarily restored@7,8# and topological defects forme
even if the reheat temperature is well belowTGUT @9,10#. It is
therefore important to understand how monopoles
formed to estimate how strong the bounds imposed by
monopole problem really are.

In this paper, I will discuss monopole formation at a pha
transition that starts from a complete thermal equilibrium
is clear that this is not actually the case for the GUT tran
tion, because of the high expansion rate and the n
equilibrium effects mentioned above. Nevertheless, the
sumption of thermal equilibrium simplifies the proble
significantly and makes it possible to identify the physic
mechanisms that are responsible for monopole format
Once these mechanisms are understood, their effects ca
studied in more realistic non-equilibrium settings.

The symmetry broken at the GUT phase transition i
local gauge invariance, whereas most of the existing lite
ture on monopole formation implicitly assumes a breakdo
of a global symmetry. The Kibble~or Kibble-Zurek! mecha-
nism@3,11#, which forms the monopoles in the global case
ultimately based on the observation that the direction of
order parameter cannot be correlated at infinitely long d
tances. Because the direction of the order parameter is
gauge invariant, this argument cannot be used in GUTs.

Moreover, gauge symmetries cannot be spontaneo
broken @12#. For rather generic parameter values, there
0556-2821/2003/68~2!/021301~5!/$20.00 68 0213
n

er

n

o-

a
r

he

f-

e
e

e
t
i-
n-
s-

l
n.
be

a
-

n

e
-
ot

ly
s

actually no phase transition at all, but simply a smooth cro
over between the phases@13,14#. Does this mean that the
whole evolution could be adiabatic and thereby there wo
be no monopole formation at all?

I will present an argument that shows that monopoles
still formed. This result is based on causality and the con
vation of magnetic charge. In fact, Weinberg and Lee@15,16#
have used somewhat similar reasoning to constrain later
nihilations of monopoles after the phase transition in the c
text of the Kibble mechanism. As I will argue, there a
long-wavelength thermal fluctuations of the magnetic cha
in the symmetric phase, and they will freeze out formi
monopoles. These fluctuations are physical and well defin
because the high and low temperature phases are smo
connected. As there is, in this sense, a high density of mo
poles above the transition, one could say that we are des
ing annihilation rather than formation of monopoles. This
obviously a matter of taste, but in any case, the monopo
do not correspond to localized energy concentrations in
symmetric phase and cannot therefore be thought of as
ticles.

The mechanism presented in this paper is physically
ferent from global theories. Both involve a freeze-out
long-wavelength degrees of freedom, but in global theor
this happens when the scalar correlation length diverge
the transition point. In our case, everything is finite at t
~approximate! transition point but the magnetic screenin
length diverges in the zero-temperature limit. The reas
why this freeze-out leads to monopole formation is also d
ferent. As we shall see, the monopoles formed in a ga
theory have positive correlations at short distances, whic
the opposite of what the Kibble mechanism predicts@17#.
The number density of monopoles will also be qualitative
different from the Kibble mechanism.

Let us start by briefly reviewing the standard Kibb
mechanism@3#, which is valid in the case of global symme
tries. For simplicity, we shall discuss the SU~2! symmetry
group only, but the same arguments should apply to SU~5!,
SO~10! or other possible GUTs. The Lagrangian of th
theory is

L5Tr]mF]mF2m2TrF22l~TrF2!2, ~1!

whereF is in the adjoint representation, and we are assu
©2003 The American Physical Society01-1
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ing that at zero temperature, the SU~2! symmetry is broken.
To leading order, this meansm2,0.

We shall consider this theory at a non-zero temperaturT.
When the temperature is high enough, the SU~2! symmetry
is unbroken. We are asking what happens if we start fr
thermal equilibrium in the symmetric phase and gradua
decrease the temperature so that the symmetry gets bro
As long as couplings are weak, we can approximate the e
librium and near-equilibrium dynamics reasonably well by
classical field theory with a temperature-dependent m
term m2(T) @18–21#. Although it is difficult to make this
approach quantitatively very accurate, it gives us a way
thinking about the dynamics in terms of hot classical fie
without quantum mechanical complications.

It only takes a small change in temperature near the c
cal temperatureTc to cause the phase transition, and th
effect is mainly due to the changing of the effective ma
parameter from positive to negative. Therefore, we shall s
ply consider keepingT fixed and varyingm2.

Let us now discuss the dynamics of the global theory~1!.
In the high-temperature phase, the fieldF vanishes on the
average. In the broken phase, it would ideally have a n
zero constant valueF(xW )5F0, where TrF0

25f2/25
2m2/2l.0, but this would require ordering of the field a
infinite distances, which cannot be achieved in finite tim
Instead, the scalar correlation lengthj grows as the transition
point is approached, but freezes out to some finite valueĵ,
which is determined by the critical dynamics of the syst
@11# and ultimately limited by causality.

After the transition, we can imagine that the system c
sists of domains of radiusĵ, between whichF is totally
uncorrelated. At each point where four of these doma
meet, there is a fixed, non-zero probability that the field c
not smoothly interpolate between the domains without v
ishing at a point. This point is a monopole, and therefore
scenario predicts a monopole density

nM
Kibble'ĵ23. ~2!

Furthermore, there is a strong negative correlation betw
monopoles at short distances@17,27#: Imagine a sphere cen
tered at a monopole. If the radius is greater thanĵ, each
point at the sphere is uncorrelated with its center and th
fore insensitive to whether there is a monopole inside or n
Consequently, the average winding number must be zero
there must be an antimonopole within the distance'ĵ from
each monopole.

Having reviewed the Kibble-Zurek scenario, let us no
turn our attention to the gauge theory. The gradients in
Lagrangian are replaced by covariant derivativesDm5]m
1 igAm ,

L52 1
2 TrFmnFmn1Tr@Dm ,F#@Dm,F#2m2TrF2

2l~TrF2!2, ~3!

whereFmn5( ig)21@Dm ,Dn#.
At a high temperatureT and at weak couplingg, the phase

structure of this theory is given to a good approximation
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a three-dimensional effective theory@20#, which depends on
two parameters,g22(T/Tc21) and the ratio of the coupling
constantsl/g2. There is a line of first-order transitions a
small l/g2 @22#, which ends at a second-order point
aroundl/g2'0.3 @23#. To simplify the estimates, we actu
ally assume thatl/g2'1, which is above the critical value
so that the two phases are smoothly connected@14# and all
correlation lengths are finite. In particular, the scalar corre
tion length is microscopic@23#, of the order of 1/g2T, and
therefore we ignore scalar fluctuations. Even then, it is s
possible to find an approximate crossover point, which se
rates a ‘‘symmetric’’ and a ‘‘broken’’ phase, and we will us
this terminology although it is not quite precise.

In the broken phase, there is still an unbroken U~1! sub-
group, and the corresponding magnetic field is given by
’t Hooft operator@1#,

Bi5
1

2
e i jkFTrF̂F jk1

1

2ig
TrF̂~D jF̂!~DkF̂!G , ~4!

whereF̂5FA2/TrF2 is well defined almost everywhere. I
continuum,Bi is sourceless apart from points whereF van-
ishes, and has sources of integer multiples of 4p/g at those
points. Being sources of the magnetic field, these points
quantized magnetic charges, and therefore we call them m
netic monopoles, whether or not they resemble the ’t Hoo
Polyakov monopole solution@1,2#. It is straightforward to
see that magnetic charge defined in this way is conser
i.e., the world lines of these monopoles cannot end.

The same construction has also been done on la
@24,25#, and the conservation law of magnetic charge is p
served. Even though we will not discuss numerical simu
tions in this paper, this is very important, because class
field theory cannot be in thermal equilibrium in continuum
Because the monopoles are well defined and stable on lat
we can consistently talk about them and the magnetic fiel
a non-zero temperature.

Deep in the broken phase, wheremM.T, we can treat the
monopoles as point-like particles. Therefore, we have
standard expression for the equilibrium monopole densit

nM
eq'~mMT!3/2expS 2

mM

T D . ~5!

The monopole mass mM is roughly mM'f/g
'(2m2/lg2)1/2. When m2 decreases further,mM grows
rapidly, which suppressesnM

eq.
If the monopoles did not have long-range interactio

they would be essentially uncorrelated and behave v
much like the magnetic field in the Abelian Higgs mod
@26,27#, albeit in three rather than two dimensions. There
however, a magnetic Coulomb interaction between
monopoles, and we shall see that it suppresses their pro
tion. This interaction gives rise to correlations, which a
reflected in the screening of the magnetic field by the mo
poles @13,28#, in analogy with the Debye screening of th
electric field.
1-2
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We define the magnetic screening lengthjB as the decay
rate of the correlator of ’t Hooft field strength operatorsBi .
In equilibrium, it is approximately

jB[1/mB'A T

nMqM
2

'Ag2T

nM
, ~6!

where qM54p/g is the magnetic charge of a monopol
Correspondingly, if we define

rM5¹W •BW , ~7!

the magnetic charge-charge correlator is

^rM~xW !rM~yW !&'qM
2 nMS d~xW2yW !2

mB
2

4puxW2yW u
e2mBuxW2yW u D .

~8!

Using Eq.~5!, we find that the equilibrium screening leng
behaves as

jB'S g4

TmM
3 D 1/4

emM /2T. ~9!

Because there is no phase transition, the correlators ofBi or
rM cannot change qualitatively when we move to the sy
metric phase. Otherwise, their behavior could be used to
tinguish between the phases. Consequently, the scree
length is always well defined, and we can actually use
~6! to define the monopole densitynM in the symmetric
phase. Furthermore, we expect that above the crossovejB
'(g2T)21, because the only relevant scale for equal-ti
correlations isg2T @14#.1

If m2 is decreased at a constant rate,jB would have to
grow exponentially fast to stay in equilibrium, but, obv
ously, it cannot grow faster than the speed of light. In pr
tice, it would grow much slower than this. This means th
sooner or later the growth ratedjB /dt needed for the system
to stay in equilibrium exceeds the maximum value, and
system falls out of equilibrium. We shall denote the tim
when this happens byt̂ .

The screening lengthjB can still keep on growing, but so
slowly that we can ignore it if we are only interested
finding an order-of-magnitude estimate for the initial mon
pole density. Therefore, we define the freeze-out scree
length ĵB asjB at the time when it falls out of equilibrium

ĵB5jB~ t̂ !. ~10!

At the time of the freeze-out, the monopole density is

1The scaleg2T is generic in hot gauge theories and is known
the magnetic screening scale. This magnetic screening refe
non-Abelian magnetic fields, and it is uncertain whether it can
thought of as originating from some kind of monopoles. In contra
the field Bi is, by definition, screened by monopoles, because
monopoles were defined as sources ofBi .
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n̂M'
T

qM
2 ĵB

2
'

g2T

ĵB
2

. ~11!

Note that by cooling the system slowly, we can makeĵB

arbitrarily large. WhenĵB@(g2T)21, the typical distanced̂
'n̂M

21/3 between monopoles and antimonopoles is mu
shorter than the screening length.

Even after the freeze-out, the monopole density will ke
on decreasing, but this is now due to pair annihilations
length scales shorter thanĵB . These annihilations smoothe
the distribution of monopoles at short distances, but th
cannot remove them completely@15,16#. To see this, con-
sider a sphere of radiusĵB . The annihilations may reduce th
number of monopoles inside the sphere to the minimum,
they cannot change its net magnetic charge significan
While the net magnetic charge is zero on the average
fluctuates with a root-mean-squared value of

QM~ ĵB!5AK S E ĵB
d3xrM~xW ! D 2L 'ATĵB. ~12!

Since the annihilations cannot reduce the charge below
the monopole density cannot fall below

nM'
QM~ ĵB!

qM ĵB
3

'qM
21A T

ĵB
5
'gA T

ĵB
5
. ~13!

We have not shown how to estimateĵB , but nevertheless
this expression is clearly different from the Kibble-Zure
result ~2!, because of the explicit appearance ofg andT.

Moreover, as long asQM( ĵB)@qM , there will be clusters
of monopoles of equal sign, and the number of monopole
each of them can be large ifT@ ĵB

21 . This means that there
is a positive correlation between monopoles at short d
tances, very much in the same way as in the case of vort
in the Abelian Higgs model@26,27# and in stark contrast with
the Kibble mechanism.

We can reach the same conclusions by studying the t
evolution of the magnetic charge correlator in the Four
space. We define the equal-time correlatorG(k) by

^rM~kW !rM~qW !&5qM
2 G~k!~2p!3d~kW1qW !, ~14!

and from Eq.~8!, we find

G~k!5
T

qM
2

mB
2k2

k21mB
2

. ~15!

As there is no transition, we expect that

G~k!'
Tk2

qM
2

~16!

in the symmetric phase wheremB is large.
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Deep in the broken phase,G(k) approaches zero, but cau
sality implies that very long-wavelength~low k) correlations
can only change slowly@15,16#. We can give a rough uppe
bound for the rate of change,

Ud ln G~k!

dt U&k. ~17!

Using Eq.~15!, this becomes

k2

k21mB
2

d ln mB
2

dt
&k. ~18!

Below the transition, lnmB'A2m2/g2T, and if we keep on
decreasingm2, then sooner or later Eq.~18! ceases to be
satisfied fork less than some critical valuek̂. The modes
with higher k keep on decreasing and we approximate
final correlator by

G~k!'
Tk2

qM
2

expS 2
k2

2k̂2D . ~19!

A Gaussian falloff such as this would follow naturally fro
diffusion, but our conclusions do not depend on the prec
form of the correlator, as long as it has a relatively sh
cutoff at k̂. The corresponding monopole density is given

nM'S E d3k

~2p!3
G~k!D 1/2

'qM
21ATk̂5, ~20!

which agrees with Eq.~13! if we identify k̂51/ĵB .
We can also find the monopole-monopole correlator

coordinate space by taking the Fourier transform of Eq.~19!,

G~r !'
Tk̂5

qM
2

e2r 2k̂2/2

~2p!3/2
~32r 2k̂2!, ~21!

and it is indeed positive at distancesr &A3/k̂.
As a concrete example, let us now estimate the monop

density produced in the GUT phase transition using o
causality to limit the growth ofjB . It is clear that causality
leads to a freeze-out, because the current magnetic scree
length would be proportional to exp(mM/2T);exp(1028) and
therefore enormously longer than the size of the observ
Universe. This is still an oversimplification and the estima
should not be taken literally.

At high temperatures, the effective mass parameter of
theory ism2(T)'g2(T22TGUT

2 ). Because of the expansio
of the Universe, the temperature is decreasing at the
dT/dt'2T3/M P , where M P'1019 GeV is the Planck
mass. NearTGUT, we can therefore approximate

m2'2g2
TGUT

4

M P
t. ~22!

Deep enough in the broken phase, the monopole mass g
as
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mM'A t

g2M P

TGUT
2 . ~23!

From Eq.~9! we see that the growth rate ofjB is

djB

dt
'

TGUT
11/4

gmM
7/4M P

emM /2TGUT5
TGUT

gMP
x27/4ex, ~24!

where we have introduced the dimensionless variablex
5mM/2TGUT. We require that this is equal to 1 for th
freeze-out scale, and findx' ln(gMP /TGUT), and conse-
quently ĵB'g2M P /TGUT

2 . Then, Eq.~13! tells us that the
monopole density is

nM'
1

g4 S TGUT
11

M P
5 D 1/2

, ~25!

which we can compare with the prediction of the Kibb
mechanism under the same circumstances@29#,

nM
Kibble'

g2TGUT
4

M P
. ~26!

The two results differ by a factor ofg6(M P /TGUT)
3/2, which

is not particularly large for realistic GUTs, but could in prin
ciple have any value.

According to Eq.~12!, the typical number of monopole
in a cluster is

NM
net5

QM

qM
'g2A M P

TGUT
. ~27!

This combination is, again, of the order of 1, which mea
that there is a possibility of forming small clusters.

As already mentioned, the estimate in Eq.~25! is not very
precise. The main factor in this is that the magnetic char
are likely to move diffusively rather than at the speed
light. The true freeze-out scaleĵB is necessarily shorter tha
our estimate and therefore Eq.~25! can be thought of as an
approximate lower bound and Eq.~27! as an upper bound
Furthermore, if the transition is fast enough, which may
tually be the case in the GUT transition, the approximation
Eq. ~5! that the monopoles are point particles is not justifi
and one should instead use a field theory description. Ne
theless, this simplified calculation shows the places wh
more accurate physical input is needed to improve the e
mates.

It is also interesting to apply this same picture to ca
where the GUT symmetry is restored only briefly after infl
tion, either because of ‘‘nonthermal’’ fluctuations@7,8,10,9#
or because the reheat temperature is slightly aboveTGUT.
The estimated monopole density depends on the l
momentum behavior ofG(k) given in Eq.~16!. Because of
charge conservation, the monopoles and antimonopoles m
be produced in pairs, and even if they move at the spee
light, the leading term inG(k) grows asG(k);nMk2t2. It
will therefore take at least the timeteq'(g2T/nM)1/2'jB to
1-4
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achieve the form~16!. This conclusion can also be reach
by considering the time it takes for the pairs to reach
equilibrium size;jB .

This means that if the GUT symmetry is restored on
very briefly, for a period shorter thanteq'(g2TGUT)

21, the
number density of monopoles will be suppressed. In rea
the equilibration process is probably significantly slower, a
thereforeteq can be much larger, perhaps even so large
the bounds on the reheat temperature disappear comple
tt.
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In any case, a more careful analysis of the dynamics
needed to estimate how strong the suppression is in pra
and whether it solves the monopole problem in the case
nonthermal symmetry restoration.
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