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Thermal fluctuations of the gauge field lead to monopole formation at the grand unified phase transition in
the early Universe, even if the transition is merely a smooth crossover. The dependence of the produced
monopole density on various parameters is qualitatively different from theories with global symmetries, and
the monopoles have a positive correlation at short distances. The number density of monopoles may be
suppressed if the grand unified symmetry is only restored for a short time by, for instance, nonthermal
symmetry restoration after preheating.
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It is a generic property of grand unified theori@UTs)  actually no phase transition at all, but simply a smooth cross-
that magnetic monopoles of mass of the order my over between the phas¢$3,14]. Does this mean that the
~10'% GeV exist[1,2], and these monopoles would have whole evolution could be adiabatic and thereby there would
been produced in large numbers in the GUT phase transitioRe No monopole formation at all?
at Tgur~my [3]. Afterwards, pair annihilations can decrease | will present an argument that shows that monopoles are
the monopole density, but estimates show that the numbéitill formed. This result is based on causality and the conser-
density would still be comparable to baryop¥. Because Vation of magnetic charge. In fact, Weinberg and [£8,16
the monopoles are 10 times heavier than protons, this have used somewhat similar reasoning to constrain later an-
would have caused the Universe to collapse under its owfihilations of monopoles after the phase transition in the con-
weight long ago. text of the Kibble mechanism. As | will argue, there are

This monop0|e prob]em, a|ongside several other Cosmolong—wavelength thermal fluctuations of the magnetic Charge
logical puzzles, was wiped away by the theory of inflationin the symmetric phase, and they will freeze out forming
[5], as the monopole density would have been diluted to dnonopoles. These fluctuations are physical and well defined,
negligible level by a period of accelerating expansion. Fooecause the high and low temperature phases are smoothly
this to solve the problem, the reheat temperature at which théonnected. As there is, in this sense, a high density of mono-
Universe thermalizes must be lower th@ig ;. These con- Poles above the transition, one could say that we are describ-
straints are even stronger in models with nonperturbative efind annihilation rather than formation of monopoles. This is
fects such as preheatilﬁ@]' since the GUT symmetry can be ObViOUS'y a matter of taste, but in any case, the monopoles
temporarily restored7,8] and topological defects formed do not cgrrespond to localized energy concentrations in the
even if the reheat temperature is well beldw; [9,10]. Itis ~ Symmetric phase and cannot therefore be thought of as par-
therefore important to understand how monopoles ardicles.
formed to estimate how strong the bounds imposed by the The mechanism presented in this paper is physically dif-
monopole problem really are. ferent from global theories. Both involve a freeze-out of

In this paper, | will discuss monopole formation at a phasdong-wavelength degrees of freedom, but in global theories
transition that starts from a complete thermal equilibrium. Itthis happens when the scalar correlation length diverges at
is clear that this is not actually the case for the GUT transithe transition point. In our case, everything is finite at the
tion, because of the high expansion rate and the non@Ppproximatg transition point but the magnetic screening
equilibrium effects mentioned above. Nevertheless, the adength diverges in the zero-temperature limit. The reason
sumption of thermal equilibrium simplifies the problem why this freeze-out leads to monopole formation is also dif-
significantly and makes it possible to identify the physicalferent. As we shall see, the monopoles formed in a gauge
mechanisms that are responsible for monopole formatiorfheory have positive correlations at short distances, which is
Once these mechanisms are understood, their effects can B opposite of what the Kibble mechanism predicg].
studied in more realistic non-equilibrium settings. The number density of monopoles will also be qualitatively

The symmetry broken at the GUT phase transition is glifferent from the Kibble mechanism.
local gauge invariance, whereas most of the existing litera- Let us start by briefly reviewing the standard Kibble
ture on monopole formation implicitly assumes a breakdowrmechanisni3], which is valid in the case of global symme-
of a global symmetry. The Kibbléor Kibble-ZureR mecha-  tries. For simplicity, we shall discuss the &Y symmetry
nism[3,11], which forms the monopoles in the global case, isgroup only, but the same arguments should apply t¢55U
ultimately based on the observation that the direction of theSQ(10) or other possible GUTs. The Lagrangian of the
order parameter cannot be correlated at infinitely long distheory is
tances. Because the direction of the order parameter is not
gauge invariant, this argument cannot be used in GUTs. L=Trd,®*® —m?Trd?—\(Trd?)?, (1)

Moreover, gauge symmetries cannot be spontaneously
broken[12]. For rather generic parameter values, there isvhere® is in the adjoint representation, and we are assum-
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ing that at zero temperature, the @Usymmetry is broken. a three-dimensional effective thedi®0], which depends on
To leading order, this meams?<0. two parametersy~?(T/T,—1) and the ratio of the coupling
We shall consider this theory at a non-zero temperalure constants\/g2. There is a line of first-order transitions at
When the temperature is high enough, the(@3ymmetry  small A/g? [22], which ends at a second-order point at
is unbroken. We are asking what happens if we start fronaround\/g?~0.3[23]. To simplify the estimates, we actu-
thermal equilibrium in the symmetric phase and graduallyally assume thak/g?~1, which is above the critical value
decrease the temperature so that the symmetry gets brokego that the two phases are smoothly conne¢ted and all
As long as couplings are weak, we can approximate the equeorrelation lengths are finite. In particular, the scalar correla-
librium and near-equilibrium dynamics reasonably well by ation length is microscopi¢23], of the order of 1g°T, and
classical field theory with a temperature-dependent mastherefore we ignore scalar fluctuations. Even then, it is still
term m?(T) [18-21. Although it is difficult to make this possible to find an approximate crossover point, which sepa-
approach quantitatively very accurate, it gives us a way ofates a “symmetric” and a “broken” phase, and we will use
thinking about the dynamics in terms of hot classical fieldsthis terminology although it is not quite precise.
without quantum mechanical complications. In the broken phase, there is still an unbrokefi)Usub-
It only takes a small change in temperature near the critigroup, and the corresponding magnetic field is given by the
cal temperaturel; to cause the phase transition, and this’t Hooft operator[1],
effect is mainly due to the changing of the effective mass
parameter from positive to negative. Therefore, we shall sim- 1 . 1 . A A
ply consider keepind fixed and varyingm?. Bi=5 €jjx| Tr®Fj+ 5—Trd(D;®)(D®) |, 4)
Let us now discuss the dynamics of the global thedyy 2 2ig
In the high-temperature phase, the fiddvanishes on the
average. In the broken phase, it would ideally have a nonwhered = ®/2/Trd? is well defined almost everywhere. In
zero constant valued(x)=®,, where T3= ¢p?/2= continuum,3; is sourceless apart from points whebevan-
—m?/2x>0, but this would require ordering of the field at ishes, and has sources of integer multiples o at those
infinite distances, which cannot be achieved in finite timepoints. Being sources of the magnetic field, these points are
Instead, the scalar correlation lengtigrows as the transition quantized magnetic charges, and therefore we call them mag-
point is approached, but freezes out to some finite vélue netic monopoles, whether.or not they resemble the 't Hooft-
which is determined by the critical dynamics of the systemPolyakov monopole solutiopl,2]. It is straightforward to
[11] and ultimately limited by causality. see that magngtlc charge defined in this way is conserved,
After the transition, we can imagine that the system cond-€:, the world lines of these monopoles cannot end.

. . oA . . The same construction has also been done on lattice
sists of domains of radiug, between whichd is totally 24,25, and the conservation law of magnetic charge is pre-
uncorrelated. At each point where four of these domain£ o 9 g P

. . o . served. Even though we will not discuss numerical simula-
meet, there is a fixed, non-zero probability that the field can:. ; . o . .

. . : tions in this paper, this is very important, because classical
not smoothly interpolate between the domains without van;

ishing at a point. This point is a monopole. and therefore thi field theory cannot be in thermal equilibrium in continuum.
g ata point. P Opol€, Because the monopoles are well defined and stable on lattice,
scenario predicts a monopole density

we can consistently talk about them and the magnetic field at
pKibble__ 3-3 @) a non-zero temperature.
M ' Deep in the broken phase, wheng,>T, we can treat the

Furthermore, there is a strong negative correlation betweefiOnNopPoles as point-like particles. Therefore, we have the
monopoles at short distancik?,27): Imagine a sphere cen- standard expression for the equilibrium monopole density

tered at a monopole. If the radius is greater tianeach

point at the sphere is uncorrelated with its center and there- NS (m T)g,zexp( B @) )
fore insensitive to whether there is a monopole inside or not. M T/

Consequently, the average winding number must be zero and

there must be an antimonopole within the distarcg from The monopole massmy is roughly my=~ /g

each monopole. _ _ ~(—m?/Ag®)Y2 When m? decreases furthem,, grows
Having reviewed the Kibble-Zurek scenario, let us NOW ranidly, which suppressax’.

turn our_attention to the gauge the(_)ry. The.gre_ldients inthe "t the monopoles did not have long-range interactions,

Lagrangian are replaced by covariant derivat®$=d,  they would be essentially uncorrelated and behave very
+TigA,, much like the magnetic field in the Abelian Higgs model
__1 v B 2T 2 [26,27], albeit in three rather than two dimensions. There is,

£ 2 1F,, FHHTID,, @J[DX, ] =mTrd however, a magnetic Coulomb interaction between the

—\(Trd?)2, (3 monopoles, and we shall see that it suppresses their produc-
tion. This interaction gives rise to correlations, which are
whereFW=(ig)*1[DM ,D,]. reflected in the screening of the magnetic field by the mono-

At a high temperatur@ and at weak coupling, the phase poles[13,28, in analogy with the Debye screening of the
structure of this theory is given to a good approximation byelectric field.
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We define the magnetic scree_ning lengthas the decay A T 92T

rate of the correlator of 't Hooft field strength operatdts Nu~ >+~ =5 - (11
In equilibrium, it is approximately auwées s

T g°T Note that by cooling the system slowly, we can m@ge

¢ép=1/mg~ anzM% Vi ®  arbitrarily large. Whergg>(g2T) "1, the typical distancel

~ny'® between monopoles and antimonopoles is much
where qy,=4m/g is the magnetic charge of a monopole. shorter than the screening length.

Correspondingly, if we define Even after the freeze-out, the monopole density will keep
o on decreasing, but this is now due to pair annihilations at

pm=V-B, (7) length scales shorter thar . These annihilations smoothen
] . the distribution of monopoles at short distances, but they

the magnetic charge-charge correlator is cannot remove them completel¢t5,16. To see this, con-

2 sider a sphere of radi@sB. The annihilations may reduce the
<P|\/|(>Z)Pm()7)>~qmm( 5()2_?)_ 'TIB _ e Malx—vl| number of monopoles inside the sphere to the minimum, but
4a|x—y| they cannot change its net magnetic charge significantly.

(80  While the net magnetic charge is zero on the average, it

) _ o ) fluctuates with a root-mean-squared value of
Using Eq.(5), we find that the equilibrium screening length

behaves as P 2
~ £ N =
\ s Qu(s)= \/ < ( f "d*xpu(X) >wT§B. (12
éB% 9 emM/ZT_ (9)
Tmﬁ,I Since the annihilations cannot reduce the charge below this,

the monopole density cannot fall below

Because there is no phase transition, the correlato; of
pm cannot change qualitatively when we move to the sym- Qu(&r) LT T
metric phase. Otherwise, their behavior could be used to dis- Ny~ =3~ 0w =~0\/ = (13
tinguish between the phases. Consequently, the screening Awés &8 &
length is always well defined, and we can actually use Eq. R
(6) to define the monopole density,, in the symmetric We have not shown how to estimagg, but nevertheless,
phase. Furthermore, we expect that above the crossgyer, this expression is clearly different from the Kibble-Zurek
~(g®T) "%, because the only relevant scale for equal-timeresult(2), because of the explicit appearancegadndT.
correlations isy®T [14].* Moreover, as long a@y(£g)>qy , there will be clusters

If m? is decreased at a constant ragg, would have to  of monopoles of equal sign, and the number of monopoles in
grow exponentially fast to stay in equilibrium, but, obvi- g5ch of them can be IargeTf>>%B_1. This means that there
ously, it cannot grow faster than the speed of light. In pracis 5 positive correlation between monopoles at short dis-
tice, it would grow much slower than this. This means thatiances, very much in the same way as in the case of vortices
sooner or later the growth ratig /dt needed for the system i, the Abelian Higgs modd6,27] and in stark contrast with
to stay in equilibrium exceeds the maximum value, and thgne Kibble mechanism.
system falls out of gquilibrium. We shall denote the time  \ye can reach the same conclusions by studying the time
when this happens bty evolution of the magnetic charge correlator in the Fourier

The screening lengthg can still keep on growing, but so space. We define the equal-time correla@(k) by
slowly that we can ignore it if we are only interested in
finding an_order-of-magnitude e_stimate for the initial mono- (Pm(‘z)Pm(a»:qﬁnG(k)(Zﬂ)35(R+Ci), (14)
pole density. Therefore, we define the freeze-out screening
length &5 as &g at the time when it falls out of equilibrium, and from Eq.(8), we find

&a=ép(D). (10 T mike
_ o GK=—5 5. (15
At the time of the freeze-out, the monopole density is Oy ko+mg

As there is no transition, we expect that
1The scaleg?T is generic in hot gauge theories and is known as

the magnetic screening scale. This magnetic screening refers to TK2

non-Abelian magnetic fields, and it is uncertain whether it can be G(k)~— (16)
thought of as originating from some kind of monopoles. In contrast, Aam

the field 5; is, by definition, screened by monopoles, because the

monopoles were defined as sourcesB3pf in the symmetric phase whengg is large.
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Deep in the broken phas€é(k) approaches zero, but cau- ¢

sality implies that very long-wavelengtlow k) correlations My~ 2—T<23UT- (23

can only change slowl{15,16. We can give a rough upper Mp

bound for the rate of change, )
From Eq.(9) we see that the growth rate & is

‘M =<k. (17) d¢ TLu/4 T
dt 58 TGUT  myf2rgur— YT, ~7iagx (24)
dt  gm/*Mp gMp ’

Using Eqg.(15), this becomes

) 2 where we have introduced the dimensionless variable
k® din Ms _ (18 —Mu/2Tcur. We require that this is equal to 1 for the

k?4+m3 dt o freeze-out scale, and find~In(gMp/Tgy7), and conse-

quently £5~g?Mp/TZ,;. Then, Eq.(13) tells us that the

Below the transition, Img~+/—m?/g?T, and if we keep on monopole density is
decreasingm?, then sooner or later Eq18) ceases to be

1/2

satisfied fork less than some critical value The modes 1 Taur
with higher k keep on decreasing and we approximate the Nu=~— ME ; (25
final correlator by 9 P
TK? K2 which we can compare with the prediction of the Kibble
G(k)~ —exp( _ _) (19 mechanism under the same circumstari@s,
2 L2
2k
M

Ki ngéUT
] ) n ibble__ ) (26)
A Gaussian falloff such as this would follow naturally from M M

. . . . P
diffusion, but our conclusions do not depend on the precise
form of the correlator, as long as it has a relatively sharprhe two results differ by a factor @®(Mp/Tgy7) % which
cutoff atk. The corresponding monopole density is given byis not particularly large for realistic GUTs, but could in prin-
ciple have any value.

d3k 2 B — According to Eq.(12), the typical number of monopoles
Ny~ J SG(k) | =qy'VTi, (200 in a cluster is
(27)
. . . . . ran net__ QM 2 M P
which agrees with Eq13) if we identify k= 1/¢5. Ny =——=~g"\/—/—. (27)
We can also find the monopole-monopole correlator in Am Teur

coordinate space by taking the Fourier transform of &), This combination is, again, of the order of 1, which means

6 o122 that there is a possibility of forming small clusters.
G(r)~— (3—r2k?), (21) As already mentioned, the estimate in E2f) is not very
az, (2m)%? precise. The main factor in this is that the magnetic charges
A are likely to move diffusively rather than at the speed of
and it is indeed positive at distances \/3/k. light. The true freeze-out scalg is necessarily shorter than

As a concrete example, let us now estimate the monopolgur estimate and therefore E@5) can be thought of as an
density produced in the GUT phase transition using Onlyapproximate lower bound and E(R7) as an upper bound.
causality to limit the growth ofg. It is clear that causality Furthermore, if the transition is fast enough, which may ac-
leads to a freeze-out, because the current magnetic screenitigally be the case in the GUT transition, the approximation in
length would be proportional to exp(,/2T) ~exp(1G®%) and  Eq. (5) that the monopoles are point particles is not justified
therefore enormously longer than the size of the observablgnd one should instead use a field theory description. Never-
Universe. This is still an oversimplification and the estimatesheless, this simplified calculation shows the places where
should not be taken literally. more accurate physical input is needed to improve the esti-

At high temperatures, the effective mass parameter of thenates.
theory ism?(T)~g?(T?—T2,;). Because of the expansion It is also interesting to apply this same picture to cases
of the Universe, the temperature is decreasing at the rat@here the GUT symmetry is restored only briefly after infla-
dT/dt~—T3Mp, where Mp~10' GeV is the Planck tion, either because of “nonthermal” fluctuatiofig,8,10,9
mass. Neafl g7, We can therefore approximate or because the reheat temperature is slightly abbygr.

The estimated monopole density depends on the low-
momentum behavior o&(k) given in Eq.(16). Because of
charge conservation, the monopoles and antimonopoles must
be produced in pairs, and even if they move at the speed of
Deep enough in the broken phase, the monopole mass growight, the leading term irG(k) grows asG(k)~nykt2. It

as will therefore take at least the tintg~(g°T/ny)*~ &3 to

STy (22)

021301-4



RAPID COMMUNICATIONS

MAGNETIC MONOPOLES FROM GAUGE THEORY PHAS. .. PHYSICAL REVIEW D 68, 021301R) (2003

achieve the form(16). This conclusion can also be reachedIn any case, a more careful analysis of the dynamics is

by considering the time it takes for the pairs to reach theneeded to estimate how strong the suppression is in practice

equilibrium size~ ¢g. and whether it solves the monopole problem in the case of
This means that if the GUT symmetry is restored onlynonthermal symmetry restoration.

very briefly, for a period shorter tha~(g°Tgyr) ', the _ _

number density of monopoles will be suppressed. In reality, The author would like to thank Mark Hindmarsh, Tom

the equilibration process is probably significantly slower, andKibble and Andrei Linde for useful discussions, and PPARC,

thereforet, can be much larger, perhaps even so large tha€hurchill College and the ESF Program “Cosmology in the

the bounds on the reheat temperature disappear completelyaboratory” for financial support.
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