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Chiral symmetry restoration in linear sigma models with different numbers of quark flavors
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Chiral symmetry restoration at nonzero temperature is studied in the framework O #jelinear sigma
model and theJ(N;), X U(N;), linear sigma model witiN=2, 3 and 4 quark flavors. We investigate the
temperature dependence of the masses of the scalar and pseudoscalar mesons, and the nonstrange, strange, and
charm condensates within the Hartree approximation as derived from the Cornwall-Jackiw-Tomboulis formal-
ism. We find that the masses of the nonstrange and strange mesons at nonzero temperature depend sensitively
on the particular symmetry of the model and the number of light quark flavpr€n the other hand, because
of the large charm quark mass, neither do charmed mesons significantly affect the properties of the other
mesons, nor do their masses change appreciably in the temperature range around the chiral symmetry resto-
ration temperature. In the chiral limit, the transition temperatures for chiral symmetry restoration are surpris-
ingly close to those found in lattice QCD.
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[. INTRODUCTION theory with the same chiral symmetries as QCD, for in-
stance, theJ (N¢), X U(N¢), linear sigma model. This argu-
For N; massless quark flavors, the QCD Lagrangian has anent was employed by Pisarski and WilcZ&} who found
chiral U(N;), XU(N;)¢=SU(N;), X SU(N¢),xU(1)y that forN;=2 flavors of massless quarks, the transition can
XU(1), symmetry. HereV=r+¢{, while A=r—¢. The be of second order, if th&(1), symmetry is explicitly bro-
U(1)y symmetry corresponds to baryon number conservaken by instantons. It is driven first order by fluctuations, if
tion. It is always respected and thus plays no role in théhe U(1)x symmetry is restored af.. For Ny=3 massless
symmetry breaking patterns considered in the fo”owing' |nﬂaV0rS, the transition is always first order. In this case, the
the vacuum, a nonvanishing expectation value of the quarkerm which breaks theJ(1), symmetry explicitly is a cubic

— invariant, and consequently drives the transition first order.
condensate (q.q,)#0, spontaneously breaks the aboveln the absence of explici(1), symmetry breaking, the
symmetry toSU(N¢)y. This gives rise toNf Goldstone P A SY Y 9

) . . transition is fluctuation-induced of first order. Fdf=4, the
bosons which dominate the low-energy dynamics of thezme argument leads to a first order chiral transition in the

theory. As shown by 't Hooff1,2], instantons break the apsence of thes(1), anomaly. The term which breaks the
U(1), symmetry explicitly t0Z(N¢) [3]. (For the low-  5(7), symmetry is no longer a cubic invariant, but of quar-
energy dynamics of QCD, however, th2|s discrete symmetry igic order in the fields. Since this term does not generate an
irrelevant) Consequently, one of thi¥i Goldstone bosons  jnfrared-stable fix point, the transition remains of first order.

becomes massive, leavingf—1 Goldstone bosons. The  For nonzero quark masses, the chiral symmetry of QCD is
SU(N¢) XSU(N¢) X U(1)s symmetry of the QCD La- explicitly broken. Nonzero quark masses act like a magnetic
grangian is also explicitly broken by nonzero quark massesield in spin systems, such that a second order phase transi-
The N?2—1 low-energy degrees of freedom then becometion becomes a crossover transition. When the quark masses
pseudo-Goldstone bosons. Adr<N; degenerate quark fla- increase, a first order phase transition may for a while remain
vors, anSU(M), symmetry is preserved. of first order, but it will ultimately become a crossover tran-
As indicated by lattice QCD calculatiofd], chiral sym-  sition, too. In order to decide whether this happens for a
metry is restored at temperatures arount50 MeV (at zero  particular choice of quark masses, universality arguments
net-baryon number densjtylt is difficult to determine the cannot be applied and one has to resort to numerical calcu-
order of the chiral phase transition on the lattice. At this time Jations. As an alternative to lattice QCD calculations, one can
lattice calculations have not unambiguously answered thiglso use linear sigma models to investigate this que$tign
question. For physical values of the quark masses, calcula- Studying the linear sigma model at nonzero temperature,
tions with staggered fermior{$] favor a smooth crossover however, requires many-body resummation schemes, be-
transition, while calculations with Wilson fermiof§] pre-  cause infrared divergences cause naive perturbation theory to
dict the transition to be of first order. break down[8]. In these resummation schemes, one neces-
For vanishing quark masses, i.e., in the chiral limit, how-sarily has to make approximations by selecting certain sub-
ever, one can use universality arguments to determine theets of diagrams. The most commonly employed scheme is
order of the phase transition. According to universality, thethe Hartree approximation. This approximation fails to repro-
order of the chiral transition in QCD is identical to that in a duce the correct order of the chiral transition for 1B¢é4)
linear sigma model: the transition is of second order, while
the Hartree approximation yields a first order transition. For

*Electronic address: roeder@th.physik.uni-frankfurt.de U(Nf), XU(Ny), linear sigma models withl;= 3, however,
"Electronic address: ruppert@th.physik.uni-frankfurt.de the Hartree approximation correctly produces a first order
*Electronic address: drischke@th.physik.uni-frankfurt.de chiral transition[9]. ForN;=2, in the absence of thg (1),
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TABLE |. The table shows the symmetry breaking patterns studied in this paper. 3yrabol indicates
that the specific symmetry breaking pattern is physically interesting and investigated herg. §ymabol
indicates that this symmetry breaking pattern does not exist at all and thymbolizes that the respective
symmetry breaking pattern is not studied.

0(4) U(2),xU(2), U(3) X U(3), U(4)xU(4),

Explicit chiral

symmetry breaking J J J
with U(1)a

anomaly

Explicit chiral

symmetry breaking X J J —
without U(1)a

anomaly

Chiral limit
with U(1)a -
anomaly

Chiral limit
without U(1), X J J —
anomaly

anomaly the transition is of first order and, as will be shownzero or nonzero values for the quark masses. In this sense,
in this paper, the Hartree approximation agrees with this rethe present study is an extension of previous W&HK.Q|.
sult. With theU(1), anomaly, the transition is of second Table | presents an overview of the different models and
order. We shall find that the Hartree approximatishightly)  patterns of symmetry breaking studied in this paper.
violates this prediction by producing @veak first order The U(2), X U(2), linear sigma model has eight degrees
transition. of freedom: the scalar fields are thbemeson and the threm

The utility of linear sigma models, however, transcendspesons, the pseudoscalar fields are theneson and the
further than just predicting the order of the chiral phase trany, ee pions. With spontaneous breaking of ), chiral

sition_. The degrees of freedom of thiNy), XU (Ny), lin- symmetry, but without th& (1), anomaly, the pions and the
ear sigma model are the scalar and pseudoscalar mesons. Pﬁneson arépseudo) Goldstone bosons, while theanda
L O

the vacuum, the latter are tlipseudo} Goldstone bosons of .
chiral symmetry breaking. Thus, the linear sigma model Carmeso|n ars heavy sthates. With t€1), anomaly, they me-
also be viewed as an effective low-energy theory for QCD.SOn a'so Decomes heavy.

With the explicit breaking of th&J (1), symmetry due to

At high temperatures, chiral symmetry is restored. Conse- X
quently, chiral partners among the scalar and pseudoscalft® @nomaljand neglecting the)(1)y symmetry of baryon

mesons must become degenerate in mass. Since tfsiMmber conservatidn the remaining symmetry of the
U(N¢), X U(N;), linear sigma model treats both scalar andU(2)rxU(2), linear sigma model isSU(2),XSU(2); .
pseudoscalar mesons on the same footing, it is particularljhis group is isomorphic t®(4). Theappropriate effective
suited to describe the change of meson properties across tHeggory incorporating this symmetry is ti@(4) linear sigma
chiral transition. Note that, in the case of a first order chiralmodel[11]. This model has only four degrees of freedom,
transition which coincides with the deconfinement transitionthe ¢ meson and the three pions. In this sense, it represents
the correct degrees of freedom in the high-temperature phagke limit of the U(2), XU (2), model for maximumU (1),

are quark and gluons instead of mesons. However, in theymmetry breaking. Th&(2),XU(2), model is more gen-
case of a crossover transition mesonic degrees of freedorral, since it allows us to consider the properties of mesons
are well-defined even above the chiral transition temperaturelso without theU (1), anomaly.

These arguments constitute the motivation for the present In the limit of maximumU (1), symmetry breaking, the
work. Let us briefly outline the contents of this paper. We» and a, mesons become infinitely heavy and are thus re-
investigate the change of meson masses and quark condeneved from the spectrum of physical excitations. This ap-
sates with temperature in the framework &f(Ny), proximation is justified at small temperatures, where the dy-
X U(N;), linear sigma models. We focus in particular on thenamics is determined by the lightest hadronic degrees of
question how the number of quark flavdxg changes the freedom, i.e., the pions and, to some extent,dhmeson. At
temperature dependence of the meson masses and the quhigher temperatures and, in particular, around the chiral tran-
condensates. For a givéy , we furthermore investigate the sition, however, heavier mesons become more and more im-
different patterns of symmetry breaking arising from theportant. It is therefore interesting to compare the results of
presence or absence of tb€1), anomaly, and from taking the O(4) model with those of thdJ(2),XU(2), model
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which incorporates these heavier degrees of freedom. Not®ur units arefi=c=kg=1. The metric tensor isg"”

that theO(4) linear sigma model at nonzero temperature has=diag(+,—,—,—). Throughout this work, all latin sub-

been discussed in Refsl0,12. scripts are adjointJ(Ny) indices,a=0,... N?°—1, and a
In the physical hadron spectrum, the kaons are lightesummation over repeated indices is understood.

than theay, and » mesons and thus are more copiously pro-

duced at nonzero temperature. Consequently, the kaons are

expected to influence the dynamics of the system to a larger !l LINEAR SIGMA MODELS IN THE HARTREE

extent than thea, and 7 mesons. Therefore, the APPROXIMATION

U(2),XU(2), model is unrealistic in the sense that it ne- A. The CJT formalism

glects these strange meson degrees of freedom. From a . .

physical point of view, it is thus necessary to enlarge the Th? CJT_formaI|srT{13]. genera_hzes the concept of the

symmetry group taJ(3), X U(3), and study the correspond- effgctlve action for one-point funct|.ons to 'ghat of.an effective

ing linear sigma model. Nevertheless, it is still interesting to2ction for one- ar)d two-point functions. Itis particularly use-

compare thel(2), X U(2), model with theU(3), X U(3), ful for theorle_s with spontaneously broken_symmetry. In th|_s

model in order to see how the strange degrees of freedoff?*>€: truncating the s_tandard loop expansion for the effective

affect the results. TheJ(3),x U(3), model was previously act|on[18] at some given order, at nonzero temperature one

studied at nonzero temperature in R, may optam unphysical, tachyonic propagation of_quaS|part|-
Finally, we extend our investigations by including the cles with small momenta. The reason for this fal'lure of the

charm degree of freedom. In principle, the correspondin tandard loop expansion is that only the expectation value of

: ; he one-point function is self-consistently determined in this
linear sigma model has aBU(4), X SU(4),XU(1), sym- .
metry, but in nature this symmetry is strongly explicitly bro- approach. The CJT formalism goes beyond the standard loop

ken by the large charm quark mass. Therefore, we only Congxpansion by seIf-co_nsistent!y d?term".“.”g the expectation
sider the physically relevant case of explicit chiral symmetryValue fpr the two-point fu.nct|on n addition to that O.f the
breaking withU(1), anomaly. one-point function. Effectively, this amounts to solving a

For all cases considerddee Table)lwe study the meson Dyson-Schwinger equation for the two-point functions and

masses and the condensates as functions of temperature.yl'ﬁlds a self-consistent computation of the quasiparticle self-

the chiral limit, we determine the phase transition tempera-energy' For translationally invariant systems, the effective

tures by computing the effective potentials. In this aspect, wéction becomes the effective .potentlal. To give an example,
extend the previous study of RéB]. For theO(4) model, Consider the general Lagrangian
this has already been done in REE2]. 1
Qur calculat_lons are done in the Hartree_apprOX|mat_|on L(p)= Eﬁﬂ(p&”(p—U(zp) 2
which we derive within the Cornwall-Jackiw-Tomboulis
(CJT) formalism [13]. The Hartree approximation has the
advantage that the meson self-energies become independéot a scalar quantum fielg. The effective potential in the
of momentum and energy and one only has to solve ga@JT formalism reads
equations for the meson masses as a function of temperature.
To go beyond the Hartree approximation, for instance by o 1 .
including energy-momentum-dependent contributions to the V[ ¢,G]= U(¢)+—f InG~(k)
self-energies, is considerably more difficiit4—17, and 2Jx
will be deferred to a future publication. 1 L L
The remainder of this paper is organized as follows. In +—f [G Yk #)G(K)—1]+V,[4,G], (3)
Sec. Il we review the formulas of the CJT formalism, which 2Jx
are relevant for the present study, and apply them to the

O(4) model and theJ(Ny) X U(Ny), linear sigma models \\hereq is ac-number field(t is the expectation value of the

for Ny=2, 3, and 4. In Sec. lll it is shown how to determine quantum fieldy in the presence of an external SOUK@(E)

the coupling constants of the different models from the. the classical potential energy densitiye tree-level poten-
vacuum properties of the mesons and condensates. In Sec. yhe classical potential energy _el _lﬁye ee-level pote
al) in the Lagrangian2), and G™ - is the inverse of the

we discuss the temperature dependence of the masses and Jevel
condensates. We conclude this work in Sec. V with a sum'Eree evel propagator,
mary of our results.
We use the imaginary-time formalism to compute quanti- G Yk p)=—Kk2+U"(). (4
ties at nonzero temperature. Our notation is

42 Here,U" () is the second derivative df () with respect

- k ks e
Jf(k)ET E 3f(27rinT,k), (1) to ¢. The last term in Eq(3), V5[ ¢,G], is the sum of all
K n=oe (2m) two-particle irreducible vacuum diagrams where all lines
T represent full propagatoiS. The expectation values of the
J f(X)EJ de d3xf(7,x). one-point functiong, and of the two-point functiong(k),
X 0 ' are determined from the stationarity conditions
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With Eq. (3), the latter can be written in the form \ !

G Y K)=G (ki) +T1(K), (63
where
H(k) = 2—§V2£¢’G] (6b)
G(k) $=¢,6=G

is the self-energy. SincH (k) is in general a functional af,
Eq. (6a represents a Schwinger-Dyson equation for the full
(dressel propagator.

The standard effective potential for the expectation value

of the one-point function\/(g), is obtained fronlthe effec-
tive potentiil (3) by taking the full propagatoz to be a
function of ¢, instead of an independent variable,

V($)=V[¢.G($)], (7)
whereé(k;a) is determined from :I ) ,’/ \\
Y / { [
N[ ¢,G \ /
& =0, (8) -- . S
8G(K) |5 a -

FIG. 1. Left-hand side: the double-bubble diagrams. Full lines
are scalar particles, dashed lines are pseudoscalar particles. Right-
T U R hand side: the tadpole contributions to the self-energies obtained by
G H(ki¢)=G (ki¢) +1I(k; ), (9a) cutting a line in the double-bubble diagrams on the left-hand side.

which is equivalent to

where . L . .
Dyson-Schwinger equation is an integral equation for the

self-energy as a function of energy and momentum.
) (9b) If one only takes the double-bubble diagrams on the left-
P hand side of Fig. 1 into account in the calculatiorVgf one
obtains the Hartree approximation. Cutting these diagrams
This expression and E¢3) can be used to obtain a compact yields the well-known tadpole diagrams for the self-energy,
form of the standard effective potential cf. the right-hand side of Fig. 1. The Dyson-Schwinger equa-
tion (6a) is a self-consistency equation for this self-energy
due to the fact that the internal lines in the tadpole diagrams
represent full propagators. The Hartree approximation is a
- particularly simple many-body approximation scheme, be-
+V,[¢,G]. (10 cause the tadpole diagrams are independent of energy and
momentum, and thus the Dyson-Schwinger equations are no
SinceV, contains infinitely many diagrams, an exact calcu-longer integral equations, but become fix-point equations for
lation is impossible. In practice, one has to restrict the comthe quasiparticle masses.
putation ofV, to a finite number of diagrams. The selected
set of diagrams defines a particular many-body approxima-
tion. Cutting internal lines in these diagrams according to Eq. B. The O(4) model
(6b), one obtains the diagrams contributing to the self-energy In this section we apply the CJT formalism to toé¢N)
of the quasiparticles in this approximation scheme. Solvingnodel. Our numerical results presented in Sec. IV are exclu-
the Dyson-Schwinger equatiori6a) provides a self- sively for the casédN=4. The CJT effective potential for the
consistent calculation of this self-energy. In general, theD(N) model is[10]

L 8Vy[¢,G]
(k;p)=2 T

V($):u@>+3f Iné-l(k-%—ff f1(k;)G(k; 9)
2 )k ’ 2 )« ’ ’
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e p .1 o1 —11. \ay 2 4\ 3 4N
V[a,s,P]=U(a)+§fk[|ns (k)+S 1(k;0)S(k)—1] H=uot o +Wofq[38(q)+(N—1)7’(q)],
N—1 o
p-1 1 D/ —
+—— Jk[InP (k)+ P~ (k;0)P(k)—1] S (k)= — K2+ M2, (16b)
+Vo[a,S,P], 1) P K)=—Kk*+M2, (160

where o is the expectation value of the scalar figld the whereM, and M are theo and pion masses dressed by
presence of external sour¢geBecause the vacuum of QCD contributions from the diagrams of Fig. 1,
has even parity, the expectation values of the pseudoscalar

fields can be set to zero. The quantit®andP are the full M22m2(0)+4_7‘
propagators for scalar and pseudoscalar particles, @hite T N
and P~! are the corresponding inverse tree-level propaga-

3JqS(Q)+(N—1)fq7’(O|)} (173

tors, s AN
MZ=mZ(0)+ J8<q>+<N+1)f P(a)|- a7
_ — q q
S Yk;0)=—K>+m(0), (129
Using Eqgs.(17a and(17b), Eq. (168 can be written in the
P1(k; o) = — K2+ m2(), (12  compact form
2 8A 2
where the tree-level masses are H=0c| M, — ~Nl (179
mi(;)=,u2+%;2, (133 Equations(l?a), (17b), an_d (170 are the station_arity_ condi-
N tions of theO(N) model in the Hartree approximation. The
explicit calculation of the tadpole integralf,S(q) and
_ AN JqP(q) will be discussed in Sec. Il D.
mf,( o)= ,LL2+WO'2. (13b

C. The U(N¢), XU (Ns), linear sigma model for Ny=2, 3 and

The constanj? is the bare mass term in the Lagrangian of 4 flavors

the O(N) model, while\ is the four-point coupling constant. The application of the CJT formalism to the
For u2<0, theO(N) symmetry is spontaneously broken to U(N;), X U(Ns), linear sigma model folN;=3 was dis-
O(N—1), leading toN— 1 Goldstone bosons. The tree-level cussed in Ref[9]. Since we want to treat the casiis=2
potential is andN¢=4 on the same footing, we derive the CJT effective
potential in somewhat greater detail than in the last section.
The Lagrangian of theJ(N¢),XU(N¢), linear sigma

— 1 - A— _
U(o)= 5“202+N04_H0' (14)  model forN;=2,3 or 4 flavors is given by19—22

L(P)=Tr(3,PT9*®—m2D D) — N\ [ Tr(dTd)]?
whereH is a term whi_ch_b_reaks th@(N) symmetry explic- o .
ity to O(N—1). V,[ o,S,P] is the sum of all two-particle ~ A TH(@ Q)"+ c[def( @) +de(DT)]
irreducible diagrams. In the following, we restrict ourselves +TH(®+dT)]. (18
to the Hartree approximation, i.e., we take into account only
the double-bubble diagrams shown on the left-hand side ab is a complexiN; X N; matrix parametrizing the scalar and
Fig. 1. These diagrams have no explicitependence. Then, pseudoscalar mesons,
only tadpole diagraméwith resummed propagatgrsontrib-
ute to the self-energies, cf. the right-hand side of Fig. 1. In O=Tappa=Ta(oatim,), (199

the Hartree approximation, _
whereo, are the scalarJ’=0") fields andm, are the pseu-

N[ 12 AN 12 doscalar §°=0") fields. TheN;xN; matrix H breaks the
Vo[ S, P]=3N{ ka(k) +(N+ 1)(N—1)N[ ka(k)} symmetry explicitly and is chosen as
N - H=Tzh,, (19b
F2N-1) fsuon P(p)} 15 |
k p whereh, are external fieldsT, are the generators &f (N;).
The T, are normalized such that Tr{T,)= 6,,/2. They
The stationarity condition&a) and (5b) read obey theU(N;) algebra with
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[T, Tol=ifapeTc, (209 - m o
) e U(0)= 505~ [38(N12Gap+ 8(N(.3) Gabcocl0a0ry

{Ta!Tb}:dabcTcy (20D 1 - _

+ §[-7:abcd+ O(Nt,4)Gapcdl 0a0p0c0q—hao,.

wheref . andd,,. are the standard antisymmetric and sym-

metric structure constants ddU(N¢), a,b,c=1,... ,Nf (23

-1, and
2
fabOEO’ dabOE N_f‘sab- (ZOC)

The terms in the first line of Eq18) are invariant under N
U(N¢); XU(N¢),=U(N¢)yXU(Ns)a transformations. The +—2(dabndncd+ dagrAnbet dacndnba)» (249
determinant terms are invariant und8lJ(N;), X SU(Ns), 8
=SU(N{)yXSU(N¢) 5, but break theJ(1), symmetry ex-
plicitly. These terms arise from th€ (1), anomaly of the c
QCD vacuum. The last term in E(L8) breaks the axial and gab:§[5a05b0_ 0a10b1~ 0a20h2~ 6a30h3l, (24b)
possibly theSU(N¢),, vector symmetries explicitly.
In the following we discuss the three different cadgs
=2, 3, and 4 in detail. The identification of the, and 7,
fields with the physical scalar and pseudoscalar mesons is
given in Appendix A. 9
A non-vanishing vacuum expectation value fbr + Edooo5ao5bo5co}, (240

The coefficientsF,pcds Gabr Gaber Gabed» and Hapeq are
given by

A
fabcd:Z(éabgcd"_ 0adObct Faclba)

c

3
gabczg dapc— §(5a0d0b0+ OpoUaoc T 6colano)

<¢>5Ta;av (21 c
Gabcd™ — 1_6[5ab5cd+ 0adSbct Saclbd

breaks the chiral symmetry spontaneouslf.the vacuum
does not break parity, the fields, cannot assume a non- ~ (daprdncat dagrdnpet dacrdnba)
vanishing vacuum expectation valughifting thed field by + 1684000000040~ 4 8a00000cd+ 8200:00bd
this expectation value, the Lagrangian can be rewritten as

+ 5a05d05bc+ 5b05005ad+ 5b05d05ac

L= 5[5,u0'aaﬂo'a+ ‘9,u77a0w'77a_ o'a( mg)abo'b + 5d05c05ab) + \/g( 5a0dbcd+ 5b0dcda+ 5c0ddab

+ 3godand) ], (240
4 _
— y( mlzﬁ)abﬂ'b] - [g}-abcdo'd_ O(Nt,3)Ganc A )
Habcd:Z 5ab5cd+§(dabndncd+ 1:acnfnbd+ fbcnfnad)-
4 _
+ § O(Nt,4) GapcaTd |Ta0K0¢ (249

40+ 36(N;.3)Gane The tree-level massefm3]., and[m3],,, are given by

—48(N1,4) Gapcaodl Tamhor [ME(0) Jap=M?8ap— 6[ 8(N(,2) Gap+ 8(N¢,3) Gapcorc]

—2[Habca— 6(Nt,4) Gapcdl aopme Ty +4[ Fapedt+ 5(Nf,4)gabcd];(:;d, (259
1 — JR—

~ 3l abcat d(N1.4) Gaped] [M2(0) Jap=M28a5+ 6[ 8(N§,2) Gap+ S(N1,3) Gapcorc]

X (0,0p0.0q+ mampmemy) —U(a), (22 +4[ Hapea— S(N¢,4) Gaped 060 - (25b)

_ . ' In general, these mass matrices are not diagonal. Conse-
wheres(n,m)= &, is the Kronecker delta and the fieldg quently, the fields ¢, ,,) in the standard basis af(N)

and m, are the fluctuations around the expectation valueégenerators are not mass eigenstates. Since the mass matrices
oa. The latter are determined from the condition gre symmetric and real, diagonalization is achieved by an
dU(o)/do,=0. The tree-level potential is orthogonal transformation,
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7;=0P0,, (268
m=0"m,, (26b)
[MEpli=05 P [mEplanOl ™. (260

The effective potential of thdJ(N¢), XU(N¢), linear
sigma model in the CJT formalism reads

R _ _
V[o,S,P]=U(0)+ Efk{[ln S (K Jaat NP~ H(K) Taa)

+1f[5‘1(k-3)§b (K)+ P (K; o) Ppa(K)
2 K ab ' a ab ’ ba

~2684500al + Vol 0, S,P]. 27
Here,U(o) is the tree-level potential of E423), and
Sap (K;0) =~ K28+ [ ME() L,

(283

Pa(k;0)=—k28ap+[M3(0) Jap, (28b)

are the tree-level propagators for scalar and pseudoscalar

particles, with the respective mass matri¢25). The fluc-

tuations o, and 7, around the expectation values, no
longer occur in the effective potentié?7). Therefore, from
now on we use the symbat, for the expectation values for
the scalar fields in the effective potenti@l7). These expec-
tation values, and the full propagators for scaf(k), and
pseudoscalarP(k), particles are determined from the sta-
tionarity conditions

V[0,S,P] o 293
60, 0=0,5=5P=P 1

8V[o,S,P] o
0Sab oo p5=sp=p |

—5V[;,§,5] =0 (29b)
OPab o, 5msporp

With Eq. (6h), the latter two equations can be written in the
form

San (k) =S (k;0) +3 4p(K), (308
Pan (k) =P (k; o) + I ap(K), (30b)
where
8V,[o,S,P]
! 05a(K) |~ 5 s5p
8Vo[o,S,P]
(k)y=2———— , (310
=20 | o o )

PHYSICAL REVIEW D68, 016003 (2003
are the self-energies for the scalar and pseudoscalar particles.
As in the case of théd(N) model, we include only the
two-loop diagrams of Fig. 1 iv,. Then,

Vz[gas] =[Fabcat 6(Nt,4) Gapedl

fkgab(k) f p§cd(p)+ fkﬁab(k) fpﬁcd(p)}

+ 2 Hapoq— 3N Gaved | Sl ffcd(m.

(32

X

Note that, in the Hartree approximatiosy, is independent of
o, . The stationarity conditions for the condensates are

ha= mzo'a_ [60(Nt,2)Gapt 33(N¢,3)Gapcocloy
4
+ §[fabcd+ O(Nt,4) Gapcdl 0p0c0¢
+{_ 36(N,3)Gapct 4 Fancat 6(Nt,4) Gapcdl U'd}

X JkScb( k) + {35(Nf13)gabc+ 4[Hbcad

— 8(Nt.4)Gapedl o} fkpcb(k)- (33

In the Hartree approximation, the self-enerdiéls) are inde-
pendent of momentum, and the Schwinger-Dyson equations
(309 for the full propagators assume the simple form

-1
ab

Sap(K)=—k?*8ap+[M&lap, (34)

Pan(K)=—k28ap+[MB]ap- (35)

The scalar and pseudoscalar mass matrices are given by
[M&lap=[M&(0) Jan+ 4l Favcat S(N14) Gavcdl qucd(m

+4[Habcd_ 5(va4)gabcd] Jqpcd(Q)v (363)

[ME= () e+ A Faper SN &) | P

+ 4[Habcd_ 5( Nf ’4) gabcd] Jqscd(q)- (36b)

In the Hartree approximation, all particles are stable quasi-
particles, i.e., the imaginary parts of the self-energies vanish.
Therefore, the inverse propagatddd) and(35) are real val-
ued. They are also symmetric in the standard basig$(df;)
generators and thus diagonalizable via an orthogonal trans-
formation. This transformation is given by E(R60), with

the obvious replacements
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[MEplab—[MEplan, [MEpli—[MEp].  (37) . — _8V[o,SP]

The propagator matrices are diagonalized by the same or- 0=0,5=5P=P

thogonal transformation as their inverse. The tadpole inte- o o
grals in Eqs.(33) and(36) are therefore computed as =4csj S(q;a)+2cspf P(q;0), (419
q q
=093 ) .
qubc(q) Ob| quI(q)OCI ’ " . 5V2[0',S,P]
38 INk;o)=2————
(38) Pk 1, s spp

f Poc(@)=0f) f Pi(a@)o. o
q q =4cpf P(q;a)+2cspf S(q;o).  (41b
q q

After this rotation, only tadpole integrals over propagators
with a single index have to be computed. This will be dis-with these expressions one derives the identity
cussed in the next section.

1. —. - 1(~ .
D. Explicit calculation of loop integrals and the effective - Eka(k;o-)S(k;a-) - Eka(k;o-)P(k; )
potential
In principle, the calculation of the tadpole integrals =—-2Vy[S(0),P(0)]. (42)

Si(q), [4S(q) and [4Pi(q), f4P(q) requires renormal-
{z%t:c()ﬂ) {?qerggr)malizaft?or;(qéf f(rqna(r?y)/-bogy approximation This considerably simplifies the expressions for the standard

schemes is nontrivial, but does not change the results qualgffective potential. For th©(N) model we obtain
tatively [9,10]. We therefore simply omit the vacuum contri-

; i — — 1 A — N-1 A —
butions to the loop integrals, V(o) =U(o)+ EJ’ NS (ko) + 5 fln P-1(k;or)
k k

_ #®q 1 el (M2)] )l o
fq&(q)zf (2m)° eqwg)i](expi T 7Y ~V,[8(0),P(0)], (433
(393

while for the U(N;¢), X U(N¢), model we have

- d? 1 M2), o
J =] (2 0;3 [(W)](ex’{eq[(Tp)] _1) ' L N g
q w € i = —_ - "
al(Mp 390 V(e)=U(o)+5 |Zo kInS (k; o)
d3q 1 [M2] -1 1 Nf271
B €q ol + ,'.:-_l el A — A —
qu(q)—f o Eq[Mi](exp{ = ] 1) , +5 2 | nPrikio) = VA8(0),P(0)]
(390 (43b)
d3q 1 eq[Mi] -1 The momentum integrals in Eq$43a and (43b) require
LP(QFJ 2m)% € [MZ] T -1 . renormalization, too. As above, we simply omit the vacuum
q .

(390) contribution, which leads to the following integrdB]:

Here,eq[M2]= Jg%?+ M? is the relativistic energy of a qua- . o d3k €k[(,@|§)i]
siparticle with mass and momentung. jInS,‘l(k;cr)=TJ 1- -,

Now we compute the standard effective potentigbr) (2m)? T (443
=V[o,5(c),P(o)] from Eq.(10). SinceV, has the general

structure ) - " i
L 2 12 Jklnpfl(k;cr)=Tf . 5In| 1—exp 1/
VZ[S,P]ch{ LS(k) +cp fkp(k)} (27) ap

+cs §<k>H P(p)|, (40) L 3 M2
P Jk fp fklnS_l(k;(r):TJ ((2:1 k)sln(l—exp{—ﬂ([.r 0]]),
o

cf. Egs.(15) and(27), the self-energie&31) assume the form (440
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A d3k e[ M2]
kanP 1(k,cr)=Tf (277)3In l—exp{— T ]

In these equations, the tilde denotes quantities which are djz

agonalized according to Eq&6¢) and(38), respectively. A SU(2),. The latter symmefry remains intact because

hat denotes propagators computed according to (Ea)- : ; - .
propag pu ing to (B =0. This case is referred to as the case of explicit chiral

Masses with a hat are the mass terms appearing in these . )
propagators. symmetry breaking without) (1), anomaly.

(4) h,#,c#0. AU(1), subgroup of theJ (N¢) o symme-
try is explicitly broken by instantons. As explained above we
restrict ourselves tdh3=0. This case is referred to as the
case of explicit chiral symmetry breaking withl(1),
In this section we discuss the patterns of symmetry breakanomaly.
ing in the vacuum and determine the coupling constants of ForN¢=4, we only study the last case, i.e., explicit chiral
the models from the vacuum properties of the mesons. ~ symmetry breaking with th&J(1), anomaly. To break the
U(4), symmetry explicitly, in addition tohy#0 and hg
A. Patterns of symmetry breaking #0, we haye to introduce a nonzero value for the field
. . corresponding to the fourth diagonal generator Wbf4).
For theO(N) model (with N=4) we study two different  gince the charm quark mass is much larger than the light up
patterns of symmetry breakingf. Table ): and down quark masses and the strange quark rhasss
(1) H=0. For u“<0 the _O_(N) symmetry IS spontane- 5o much larger than eithig or hg, cf. Table V. Therefore,
ously broken toO(N—1), giving rise to a non-vanishing it does not make too much sense to study the rather unreal-
expectation value for ther field and N—1 Goldstone stic first two cases of vanishing quark masses. We therefore
bosons. _ restrict our considerations to the physical case of explicit
(2) H#0. The term—Ho in Eq. (14) corresponds to chiral symmetry breaking with the&(1), anomaly.
non-zero quark masses in the QCD Lagrangian. It breaks the

these areny and hs, for Ny=3 there is an additional field,

hg. Because the masses of the up and down quarks are ap-

proximately equalm,=my, we restrict our study tt,+#0
(449 andh;=0 for all cases considered. Since the strange quark
assmg is larger thanm,=my, hg#0. In this case the
U(Nf)yXU(Ns)a symmetry is explicitly broken to

Ill. PATTERNS OF SYMMETRY BREAKING AND
VACUUM PROPERTIES

O(N) symmetry explicitly toO(N—1). The N—-1 Gold- B. Condensates and masses in the vacuum
stone bosons become pseudo-Goldstone bosons. In thi . q . h f the diff
For the U(N;), x U(N;), models withN;=2 and 3 we n this section we determine the parameters of the differ-
ent models from the vacuum values of the condensates and

tudy the followi tt f t kifeg. Tabl
Is).udy e following patterns of symmetry breakig. Table the meson masses for the various symmetry breaking pat-

1 h.=0c=0. For m2<0 the lobal tems discussed in Sec. lIA. For the_o(4), the
su((rilf)\,x U(N,) , symmetry is broken t&U(N,)y , ahaw U(3)XU(3),, and theU(4), X U(4), linear sigma model,
develops a non-vanishing vacuum expectation va{de) we simply follow Refs_.[9,10,2§,.respect|vely. Since it has
=T0;0. By the Vafa-Witten theorenj23], only the axial rl1Jot2 beeS 2d one E)jrelv_log_sly, f|tt|3g_ the pa(;atm thers of the
symmetries can be spontaneously broken, while the VeCtor(Fz;rfhe(o()2)mmoosellswclasf]:\s/zethrzen;)zrerth:ié X, and
symmetries stay intact. In order to retain 8Ri(Ny)y sym- w2, which are adjustéd to reproduce the vacuum \’/alues for
metry, only the term proportional t®, survives in the sum .

in Eq. (21 for th ati @ the pion decay constant,., the pion massm,_, and theo
overa in Eq. (21) for the vacuum expectation valyeb). mass,m, . For reasons explained below, for the latter we

Spontaneously breaking)(Ny), leads to N?_ Goldstone  .hon5em =400 MeV, instead of 600 MeV as in REfLO].
bosons which form a pseudoscalbi; dimensional multip-  The values for the parameters in the chiral limit and with

let. This case is referred to as the chiral limit withdalg1), explicit symmetry breaking are listed in Table I1.
anomaly. _ In the U(2), X U(2), model, for all symmetry breaking

(2) h,=0c#0. The symmetry iSSU(N{)yXSU(Nf)a-  patterns studied here, there is@pproximatg SU(2), sym-
A non-vanishing(®) spontaneously breaks the symmetry to metry due to théapproximate equality of the up and down
SU(Ny)y, with the appearance ®if—1 Goldstone bosons quark masses. Consequently, for all cases the vacuum expec-
which form a pseudoscalaN;—1 dimensional multiplet.  tation value i d)=Tyo. At zero temperature, the equation
The N?th pseudoscalar meson is no longer massless, becaugf the condensate, reads, cf. Eq(33),
the U(1), symmetry is already explicitly broken. This case
is referred to as the chiral limit witkJ (1), anomaly.

(3 h,#0c=0. In QCD this corresponds to non- ho= 07
vanishing quark masses, but a vanishidgl), anomaly.
Since(®) must carry the quantum numbers of the vacuum;The PCAC(partial conservation of axial vector currgme-
only the fieldso, corresponding to the diagonal generatorslations determine the value of the condensate from the pseu-
of U(N;) can be nonzero. The same holds for the externatioscalar meson decay constants,
fields h, which generate a non-vanishing expectation value
by explicitly breaking theU(N;), symmetry. ForN;=2 fa=0da2000- (46)

Ao

X (45)

m?—c+| A +—=| o3|
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TABLE II. The masses and decay constants at vanishing temperature and the corresponding parameter
sets for theO(4) linear sigma model for the two symmetry breaking patterns studied here.

Masses and decay constants

Parameter set

Explicit chiral f,=92.4 MeV H=(121.60 MeV}
symmetry m,=400 MeV A=8.230
breaking m_=139.5 MeV u?=—(225.41 MeVy
Chiral limit f =90 MeV H=0
m, =400 MeV A=9.877
m,.=0 MeV w?=—(282.84 MeVy

Sinced, =1, all meson decay constants are identical, andrhe pseudoscalar mass matrix is also diagonal, with the ele-
we obtaingy=f . The scalar mass matrix is diagonal, with ments

the elements

mZ=[mZ(ap)loo=m?—c+3

o5, (479

Ao
m%z[mé(ao)]00:m2+c+()\1+ _)0(2), (489

2

A2
+_
N1 >

mioz[mé( 09) 111

miz[m%(ffo)]n
=[m3(ao)]22

=[ma(oo)]as

:[mg(o'o)]zz
=[m&(oo)]as

3\
=mZ+c+| N+ 72) 3.

=m?-c+

0'3 . (48b)

Ao
J’__
N >

Without theU (1), anomaly,c=0, the pions and they me-
(47b) son become degenerate in mass. In the chiral limit, one then
has four(instead of threeGoldstone bosons. With tHé(1)

TABLE Ill. The masses and decay constants at vanishing temperature and the corresponding parameter
sets for theU(2), X U(2), model for the four symmetry breaking patterns studied here.

Masses and decay constants

Parameter set

Explicit chiral f,=92.4 MeV ho=(121.60 MeV}
symmetry breaking m,=400 MeV N,=-—31.03
with U(1)a M, = 984.7 MeV A,=78.52
anomaly m,=139.5 MeV m?=(298.44 MeVY
m, =547 MeV c=(374.00 MeVYy
Explicit chiral f.=92.4 MeV ho=(121.60 MeV}
symmetry breaking m,=400 MeV N=—47.41
without U (1), m,,=984.7 MeV A,=111.29
anomaly m,=m,=139.5 MeV m?= —(225.41 MeVYy
c=0
Chiral limit f =90 MeV hy=0
with U(1)a m, =400 MeV A =-3151
anomaly My, =984.7 MeV N,=82.77
m,=0 m?=(263.83 MeVY}
m, =547 MeV c=(386.79 MeVy
Chiral limit f =90 MeV hy=c=0
without U(1)a m, =400 MeV N =—49.98
anomaly My, = 984.7 MeV \,=119.71
m,=m,=0 m?= —(282.84 MeVYy
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TABLE IV. The masses and decay constants at vanishing temperature and the corresponding parameter
sets for theU(3),XU(3), model for the four symmetry breaking patterns studied here. The masses in
boldfaced letters are predicted; the other masses and decay constants are used to calculate the parameter set.

Masses and decay constants

Parameter set

Explicit chiral f.=92.4 MeV ho=(285.04 MeV}
symmetry beaking f =113 MeV hg=—(309.46 MeV}
with U(1)a m, =400 MeV N,=—5.38
anomaly M, =1024.6MeV \,=45.08
m,=1116.2MeV m2=(493.69 MeVy
m;, = 1188.7MeV c=4831.25 MeV
m,=139.5 MeV
mx =493 MeV
m,=536.5MeV
m,,=963.9MeV
Explicit chiral f,=92.4 MeV ho=(285.04 MeV}
symmetry breaking fx=113 MeV hg=—(309.46 MeV}
without U(1)a m, =400 MeV N1=—24.13
anomaly M, =844.4MeV \,=81.24
m,=1116.2MeV m?=(306.50 MeVY
m;, =1248.3MeV c=0
m,=m,,=139.5 MeV
mx=493 MeV
m,=630.6MeV
Chiral limit f,=fk=90 MeV ho=hg=0
with U(1)a m, =400 MeV N=—17.48
anomaly My =m,=m; =1225.8 MeV \,=109.97
m,=mg=m,=0 m2=(270.11 MeV}y
m,, =958 MeV c=6798.25 MeV
Chiral limit f,=fx=90 MeV ho=hg=c=0
without U(1), m,=400 MeV N,=—55.25
anomaly My, =M, =m; =1225.8 MeV \,=185.50

m,=mg=m,=m, =0 m?= —(282.84 MeVy

anomaly,c is.positive, cf. Taple Ill, and the; meson be- mi_mi_mi +mf, mg _m%
comes heavier than the pion. At zero temperature, the 5 —f = )\ ,= 0 S A= ————,
(squared mass difference between thg and the pion is 22 f2
determined by the parameterccharacterizing the strength of

theU(l')A anomaly,mf;—mf,=20. Simultaneously,. also the , mfl_ m2 mi_mi ,

mass difference between tiag and theo meson is deter- ~ m°=mi+———, c=——>—, he=f.mz. (49

mined by this parametemﬁo—m§=20—2xlag. (As N\

<0, cf. Table Ill, the second term always increases the masgjith the U(1), anomaly, there are five parameters,
difference) _ N ho, A1, Ao, M?, andc, which can be unambiguously deter-
The limit c—2 corresponds to maximum explidit(1)a  mined from the five quantitiet,, m,, m,, m,, andm,.
symmetry breaking. In this limit, for realistic values of the  \yipy h 1 v c= — In thi
meson and the pion magse., m?>—c=const), then anda thout the U(1), anomaly.c=0, andm,=m,. In this
on J ' 0  case, there are only four parameters and four quantities from
mesons become infinitely heavy and are thus removed froyhich the values of the parameters can be fixed. The values
the spectrum of physical excitations. In this limit, the for the parameters are listed in Table IIl.
U(2) X U(2), is identical to theD(4) model, where the, For theU(3),xU(3), model, we follow Ref[9] in fit-
and » meson are absent from the beginning. ting the parameters of the model to vacuum quantities. Our
With Egs. (45), (47), and(48), we can determine the pa- parameters differ from the ones given in RE], since we
rameters of the model from the pion decay constant and thesem,=400 MeV, and not 600 MeV. In the chiral limit, the
meson masses in the vacuum, number of parameters equals the number of vacuum quanti-
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TABLE V. The masses and decay constants at vanishing temperature and the corresponding parameter
sets for theJ(4), X U(4), model for the case of explicit chiral symmetry breaking witfil ), anomaly. The
masses written in boldfaced letters are predicted; the other masses and decay constants are used to calculate
the parameter set.

Masses and decay constants Parameter set

Explicit chiral f,=92.4 MeV ho=(917.24 MeV}
symmetry breaking fk=113 MeV hg=—(309.46 MeVy
with U(1)a m,=400.6MeV h,s=—(1088.67 MeV¥
anomaly M,,=1052.6MeV N =-0.12

m,=1116.2MeV \,=4.85

m;,=1178.6MeV m?=(345.78 MeVY

mD0=2370.OMeV c=-1.50

mDso=2480.1MeV
mXcO=3565.6MeV
m_=139.5 MeV
my =493 MeV
m,=542.5MeV
m,, =1028 MeV
mp=1944.1MeV
mp_=1899.1MeV

m,70=2129.8MeV

ties, and one can again obtain a uniqgue mapping between In Fig. 2(a) the masses of the meson and the pions are
these sets of quantities. With explicit chiral symmetry break-shown for all models. Ther meson and the pion become
ing, however, there are fewer parameters than vacuum quadegenerate in mass in the chirally restored phase. Comparing
tities. Consequently, some meson masses are predicted rathge ¢ meson and pion masses in tB&4) model with those
than used as fit parameters. The \(alues for the parametggs the U(2),xU(2), model, the difference is almost negli-
and the meson masses are given in Table IV. The vacuumjiple up to temperatures of 150 MeV. In the chirally restored
guantities predicted by the fit are given in bold-faced Iettersphase, the masses behave linearly with temperature, but

For theU(4),XU(4), model we adjust the parameters t0 grow faster in theU(2), X U(2), model than in theD(4)
obtain reasonable agreement between the vacuum mass@gdel. The reason is that there are twice as many fields in
[24] and the masses computed at tree level, and not th@he former model than in the latter, which results in twice as
masses computed to one-loop order as in R&d]. As for  many tadpole-like contributions in the equations for the in-
theU(3),XU(3), case, the number of parameters is smallefmedium masses. These come with a positive sign and thus
than the number of meson masses, such that some mespjtrease the masses.
masses cannot be fitted independently, but are predicted comparing the results of the(3), x U(3), model with
within this approach. We found that small values for the thgse of theU(2), X U(2), model, one observes differences
meson, m,~400 MeV, are favored, otherwise the massg|ready at a temperature of about 100 MeV. Furthermore, the
spectrum of the charmed mesons deviates too much from th@asses become even larger in the chirally restored phase.
one in nature. This is the reason why we choosem@eson  The reason for this behavior is the strange degrees of free-
massm, =400 MeV also in the other cases discussed abovegom in theN;=3 case which lead to additional tadpole-like
The values for the parameters and vacuum quantities af@rms in the self-energies. As above, they lead to an increase
listed in Table V. of the in-medium masses.

Finally, one observes that virtually nothing changes in the
temperature range of interest when including the charm de-
grees of freedom in the framework of thé(4),xXU(4),

In this section we discuss the numerical results at nonzermodel. The reason is that the charm quark is large compared
temperature for the cases listed in Table I. to the temperaturem:>T, and the contributions from
charmed particles to the equations for the in-medium masses
are suppressed. For two reasons, this is a non-trivial result.
First, the equations for the in-medium masses are structurally

In Fig. 2 we show the masses of the mesons as a functiodifferent for theU(4),xU(4), model as compared to the
of temperature for explicit chiral symmetry breaking, includ- U(3),XU(3), model, cf. Egs.(25 and (36). Second, al-
ing theU(1), anomaly. This is the case where chiral sym-though the tadpole term&9) are strongly suppressed for
metry breaking results in the smallest residual symmetryparticles with masses much larger than the temperature, Egs.
group, SU(N¢)y X U(N¢) o—SU(2)y . (33) and(36) form anonlinearsystem of coupled equations,

IV. RESULTS

A. Explicit chiral symmetry breaking with U(1), anomaly
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[ S g e | pemoty {e00 model are almost identical. The meson and kaon become
. U)X U, U@, | degenerate in mass at temperatures of the order of 400 MeV.
_m @O %600 In both models, the vacuum kaon mass is used as input,
20" 08, ctoscaar 2400 while the k mass is predicted. The deviation to the vacuum
x0} D, 3200 value in nature is about 21%.
S feeeen o0 Figure Zd) shows the masses of tlig and thez’ meson
§2“°° --------------- T m"g as a function of temperature. These mesons also become de-
S~ 2600 .
200 e w0 generate in mass at temperatures of the order of 400 MeV. In
T 535 the U(3),XU(3), model, the predicted;” mass is rather
B T o xea ] 2000 close to its value in nature; the deviation is 0.6%. In the
1800 e L T i U(4),xU(4), model, thep' mass deviates from its correct
TMeV) TtMeV) vacuum value by about 7%. THg mass is predicted in both

FIG. 2. The meson masses as a function of temperature for th@Od?IS' If we Identlfy' this Stateo with théO(.137O)’ these
different models studied here for the case with the), anomaly predicted masses deviate by 14% from their correct values.

and explicit chiral symmetry breaking. _ The masses of thB ¢y, Dy, D, andD mesons are shown

in Fig. 2e). The masses of the pseudoscalar mesons are
. ) . known but the scalar mesons and their masses have not yet
i.e., small perturbations could lead to large quantitativepeen experimentally identified. It is somewhat peculiar that
changes in the solution. the charmed, strang® meson is lighter than the charmed,

In Fig. 2(b) the masses of the, and then mesons are pon-stranged meson. This is an artifact of the particular set
shown as functions of temperature. Qualitatively, the behavof coupling constants chosen here. For a different choice,
ior of these masses is the same in all models. dheneson  this unphysical ordering of the masses can be reversed. Then,
mass is constant up to temperatures of 150—-200 MeV. It theRowever, the masses of the other mesons deviate by an un-
decreases, before increasing again above temperatures giceptably large extent from their physical values. Tempera-
200-250 MeV. Then meson mass is constant up 1  ture has virtually no effect on the heavy charmed mesons:
=50 MeV, and then monotonously increases with temperatheir mass changes at most by 10%, even in the chirally
ture. At large temperaturesa, and » become degenerate in restored phase. Because of the non-linear nature of the
mass, indicating restoration of chiral symmetry. In thecoupled system of Eqg33) and (36), this is a non-trivial
U(2),xU(2), model, this happens somewhat earlier, atresult, although not completely unexpected: we expect sig-
about 250 MeV, than in the other two cases. nificant changes of the meson masses only when the tem-

In the U(2), XU(2), model, thea, and » meson masses perature becomes of the order of the mass. For the charmed
are used to determine the parameters of the model. Thus, aiesons with masses of the order of 2 GeV, this is never the
zero temperature, the masses coincide with their correaase in the temperature range of interest.
vacuum values. In th&(3), X U(3), model, the predicted Finally, in Fig. Af) we show the masses of the, and 7,
mass deviates only by 2% from its vacuum value. Bae meson. Their large masses do not change at all for tempera-
mass is also rather close to the correct value; the predictedires below 450 MeV. The vacuum values for both meson
mass is about 4% too large. In th#&(4),XU(4),, the . masses are predicted. While the mass for g is within
mass is reproduced with excellent accurdtye deviation is 5% of its correct value, the deviation for thg is somewhat
less than 1% while thea, mass is within 7% of its vacuum |arger (=30%).
value. To summarize, the masses of the scalar mesons remain

In Fig. 2(c) the k meson[now referred to a¥g(1430)  approximately constant up to temperatures around 150 MeV,
[24]] and kaon masses are shown as a function of temperand then slightly decrease before they become degenerate
ture. The results for th&J(3), X U(3), andU(4),xU(4),  with the masses of the pseudoscalar mesons. On the other
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up-down quark condensaig,,_4ow,Can be directly identified diff

with the vacuum expectation value of tlefield, ¢, gown
=0y. On the other hand, in thg(3), <X U(3), model[9],
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and in theU(4),XU(4), model the condensates are given
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FIG. 5. The meson masses as a function of temperature for the
erent models in the case without thé(1), anomaly and ex-
plicit chiral symmetry breaking.

mately 10% larger than the vacuum value. We are not aware
of a simple explanation for this behavior.

B. Explicit chiral symmetry breaking without U(1), anomaly

In Fig. 5 we show the masses for the scalar and pseudo-
scalar mesons for the case of explicit chiral symmetry break-
ing in the absence of th&J(1), anomaly. We discuss the
results in comparison to the previous case. As in the previous
case, the scalar meson masses stay constant up to tempera-
tures close to the transition region, then decrease and finally
start to increase again when they become degenerate with the
pseudoscalar masses. In general, the pseudoscalar masses in-
crease monotonously with temperature. The difference be-
tween the results obtained in th&(2),xU(2), and
U(3),xU(3), model is rather small. An exception is thg
mass which is an input parameter in the former model, but is
predicted in the latter.

A marked difference to the case with(1), anomaly is
that the chiral symmetry restoration transition is much more

100 (@) o U;(:z-)c'i::(r%)fondensafe ) 100
In these formulasggiange aNd @cnam are the strange and —— e [T .
charm quark condensate, respectively. Seo \\\ Ny oS
All models predict a qualitatively similar behavior for the = -‘Q\ ™\ =
temperature dependence of the up-down quark condensaterg"0 1 ‘\ “5
The strange quark condensate decreases more slowly witg \ \\ m@
temperature than the up-down quark condensate. This ig N S
what one intuitively expects, as it appears more difficult to 2 \\\ 2
“melt” a condensate of heavier quark species than of light 2mrar. | —— shange condensate
guark species. %056 100 180 200 20 30 0 50 100 160 200 250 300 350 400 450
T(MeV) T(MeV)

Figure 4 shows the charm quark condensate. Note that

this condensate is much larger than the other two conden- F|G. 6. (a) The up-down quark condensate afij the strange

sates. A peculiar feature is that it first increases at a temperguark condensate as a function of temperature for the different

ture of about 200 MeV, assumes a maximum at about 406hodels in the case without thé(1), anomaly and explicitly bro-

MeV, and then decreases. The maximum value is approxiken
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rapid, and it occurs at a slightly smaller temperatufe, Goldstone boson due to the explicit breaking of thel),

=180 MeV. Moreover, above the transition the scalar andsymmetry by the anomaly. The scalar octet, comprising the
pseudoscalar masses become degenerate much more rapitdiyee a, mesons, the fouk mesons, and thé;, meson, is

The reason is the absence of expllditl), symmetry break- degenerate in mass, while the mass of the singleliffers

ing. Another consequence of this is that, in thefrom the mass of the octet. As the temperature increases, the
U(2),xU(2), model[the U(3),xU(3), model, the mass scalar masses decrease while the pseudoscalar masses in-
of the » meson(the »" meson becomes degenerate with that crease. The mass of the Goldstone bosons increases, because
of the pion at small and high temperatures. In the temperathe Hartree approximation does not respect Goldstone’s theo-
ture range from about 50 MeV to 225 MeV, however, theyrem at nonzero temperatuli@llo:l_

are different. We believe this to be an artifact originating  Because of the restoration of chiral symmetry above the
from the violation of Goldstone’s theorem in the Hartreeansition temperatur&, the masses of the chiral partners
approximation, which becomes even more obvious whemacome degenerate for temperatufesT,. For the O(4)

considering the chiral limit. model, the chiral partners are the and the pion, for the

The melting of the condensates is shown in Fig. 6. Th .
smaller transition temperature of about 180 MeV is also ape-U (62;’ XaLrJu(th)éemodBele(t:f;in:rgftT:-e aen;(d t“r::i pk;(r)enz,alfilrS] ch):cl ?hse
parent in the temperature dependence of the up-down quaiE 0 7 P 9

condensate. Again, the strange quark condensate melts Ieg ér}gﬁafgm_rmzt%;ggg/ f%':)?hzng:ﬁé zi(?roisnct):]e?fgroge i(rj1e-
; ' , b
rapidly than the up-down quark condensate. Eqgs.(25). As discussed in Sec. Il B, at zero temperature this

term leads to a difference in the masseguared of the

meson and pion, and of the) and o meson, respectively,
The masses as a function of temperature for @@)  which is proportional to 2. In the case with théJ(1),

model are shown in Fig.(@,1), for theU(2), XxU(2), model  anomaly, Z#0 even for temperatures abovg . Conse-

in Fig. 7(b,1), and for theU(3),xXU(3), model in Fig. quently, these mass differences persist also in the chirally

7(c,D. In the O(4) andU(2),xU(2), models, there are restored phase.

three Goldstone bosons, the pions, while in the ForN;=3, the situation is different. The term g, for

U(3),xU(3), model there are eight Goldstone bosons, theN;=2 is replaced by a term+G,,.0:. In the chirally sym-

pions, the kaons, and the meson. Thep’ meson is not a metric phaseg.=0, and consequently this term vanishes.

C. Chiral limit with U(1), anomaly
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Therefore, all meson masses become degenerate, even in tes only by about 20 MeVor 129 for N;=2 and only 10
case with thdJ (1), anomaly. MeV (or 6%) for N;=3. However, for the chiral models the

All models exhibit a first order phase transition betweentransition temperature is larger in the three-flavor case than
the low-temperature phase where chiral symmetry is broke the two-flavor case, while one finds the opposite behavior
and the high-temperature phase where chiral symmetry ig the lattice QCD calculations.
restored. For th©(4) model and théJ(2), X U(2), model For the sake of completeness we also show the conden-
with explicit breaking of theJ (1), symmetry, the transition  sates in the third column of Fig. 7. Note that, in contrast to
;hould be of second orde_r, cf.. Sec. I. It is a knpwn shortcomine cases where chiral symmetry is explicitly broken, the
ing of the Hartree approximation to predict a first order tran-gyrange condensate is smaller than the up-down condensate.
sition also in these cases. For €2), X U(2), model with-  1he reason is that, in the chiral limigz=0, such that
out explicit breaking of theJ(1), symmetry, and for all — 2 cf. Eq. (50)
U(Nj), X U(N¢), models withN;>2 the transition is of first Pup-dowr™ V& Pstrange &1 =H. 18-
order, which is correctly reproduced by the Hartree approxi-
mation.

We have determined the numerical valueTofby com- The masses as a function of temperature are shown in Fig.
puting the effective potentials. The latter are shown for the3(a,1) for the U(2),XU(2), model, and in Fig. &,1) for
three different models in the second column of Fig. 7 as dahe U(3),XU(3), model. In the first case, there are four
function of the condensate,. (In the chiral limit, o is the  Goldstone bosons, the pions and theneson, while in the
only non-trivial condensateFor the extraction of the transi- latter case there are nine Goldstone bosons, the pions, the
tion temperature, the absolute normalization of the effectivikaons, and they and ' mesons. As the temperature in-
potential is irrelevant. All that matters is to identify the tem- creases, the scalar masses decrease while the pseudoscalar
perature where the minimum at the origin and the one at anasses increase, until they become degenerate in a first order
non-zero value ofr, become degenerate. For this purposephase transition. The mass of the Goldstone bosons increases
we have plotted the effective potential for two temperaturesyvith temperature, because the Hartree approximation does
one slightly below and one slightly aboWe. From this we not respect Goldstone’s theorem at nonzero temperature
deduce that for th€@©(4) model, Fig. 7a,2, T, is between [9,10]. Moreover, the masses of the Goldstone bosons are not
159 and 160 MeV. For thg (2), X U(2), model, Fig. Tb,2,  equal: for theU(2),XU(2), model, they meson becomes
we obtain a critical temperature between 154 and 155 MeVheavier than the pion, while for the(3), X U(3), model the
This temperature is rather close to the one in &) n' meson becomes heavier than the other Goldstone bosons
model. Finally, for theU(3),xU(3), model, the critical (pions, kaonsy meson. Note that the role of thgg meson in
temperature is between 165 and 166 MeV, which is slightlythe two-flavor case is assumed by themeson in the three-
larger than in the previous cases. flavor case. The reason is that the physical meson corre-

These values are surprisingly close to those obtained froraponding to the singlet representation in thé2), X U(2),
lattice QCD calculation$4]. In the chiral limit, these calcu- model is the » meson, while it is thexn’ in the
lations predictT,=175 MeV for Ny=2 andT.=155 MeV  U(3),XU(3), model.
for Ny=3. The critical temperature obtained from the chiral The numerical values for the critical temperatiirehave
models in the Hartree approximation deviates from these valbeen determined by computing the effective potentials. The

D. Chiral limit without U(1), anomaly
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latter are shown in the second column of Fig. 8 as a functionntuitively clear from the physical point of view, but is still

of the condensate,, for temperatures slightly below and non-trivial: first, the equations for the in-medium masses are
aboveT,. In the U(2),xXU(2), model, Fig. 8a,2, we ob-  structurally different for theJ(4),XU(4), model as com-

tain a critical temperature of=150 MeV. For the pared to theU(3),xXU(3), model. Second, the set of
U(3), X U(3), model the temperature is slightly smaller, be- coupled equations for the masses and condensates is a non-
tween 147 and 148 MeV. The ordering of critical tempera-linear system of equations, which means that small perturba-
tures for the two- and three-flavor cases is now reversed #0ns could lead to large quantitative changes in the solution.
compared to the case with thé(1), anomaly, and is con- We_ then studied the case of explicit _chlrgl symmetry
sequently in agreement with the ordering found in latticePr®2king without aJ(1), anomaly. The main difference to
QCD calculations. One might be tempted to view this as arJj'he previous case was that the region of the chiral transition

indication for a rapidly decreasing(1), anomaly near the Is narrower and quated at a somewhat smaller temperature.
critical temperature, in agreement with the results of Ref., Finally, we considered the meson masses and quark con-

[25,26. Finally, the condensates are shown in the third Col_densates if‘ the chira] limit. Th? Hartree approximatio_n cor-
ectly predicts the chiral transition to be of first order in the

umn of Fig. 8. The results are qualitatively similar to the casd X .
with the U(1), anomaly. U(2),xU(2), model without thdJ (1), anomaly and in the

U(3),XU(3), model. For theO(4) model and theJ(2),
XU(2), model with theU(1), anomaly the Hartree ap-
proximation incorrectly produces a first order instead of a
In this work we have used several different chiral modelssecond order phase transition. The transition temperatures
the O(4), theU(2),xU(2),, theU(3),xU(3),, and the are surprisingly close to the ones obtained in lattice QCD
U(4),xU(4), linear sigma model, to compute the tempera-calculations. However, in the case with tb€1), anomaly
ture dependence of meson masses and quark condensalieg transition temperature increases with the number of fla-
across the chiral phase transition. The meson masses am@rs, while in lattice QCD it decreases. This picture changes
condensates were self-consistently calculated in the Hartrdg the case without th&J(1), anomaly, where the transition
approximation, which we derived via the CJT formalism.temperature shows the same behavior with the number of
Moreover, we have studied several distinct patterns of symdquark flavors as in lattice QCD. This may indicate that the
metry breaking within the different models. For a list of U(1), symmetry is, at least partially, restored at and above

V. CONCLUSIONS

cases studied here see Table I. the chiral phase transition temperature.
We first considered the physically relevant case of explicit
symmetry breaking in the presence of tbél), anomaly ACKNOWLEDGMENTS
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U(2),xU(2), model, one first notices that the degrees of
freedom have doubled: in addition to themeson and the APPENDIX: SCALAR AND PSEUDOSCALAR MESON
pions which are already present in Bé4) model, one now FIELDS

has in addition the; meson and they; mesons. This has the For N;=2, the identification of the physical scalar and

consequence that the meson masses grow more rapidly Wilse doscalar meson fields with the matrix fields defined in
temperature in the phase where chiral symmetry is restore%q_ (199 is

The reason for this are the tadpole contributions from the
additional degrees of freedom to the meson self-energies, 1 1
which lead to an increase in the meson masses. This result —opt —ag aa'
also applies when adding the strange degree of freedom in T _i V2 V2
the framework of theJ(3), X U(3), model. In fact, this pic- a%a™ V2 1 1 '
ture holds in general, as long as the masses of the additional ag —0op— —ag
degrees of freedom are of the same order of magnitude as the V2 V2
chiral phase transition temperature. On the other hand, add- (Ala)
ing the heavy charm quark degree of freedom in the frame-
work of theU(4),xU(4), model does not significantly in-
fluence the results for the masses of the non-charmed mesons
and the non-charmed condensates. The reason is that the ad- Tymy=
ditional tadpole contributions from the heavy charmed me- - 1 1,

i ; ™ =Ty =T
sons are exponentially suppressed with the meson mass, NA J2
~exp(=M/T). Vice versa, also the masses of the charmed (Alb)
mesons do not change appreciably from their vacuum values
over the range of temperatures of interest for chiral symmeHere, 7t =(mFim,)/\2 and 7= 3 are the charged and
try restoration, simply because the tadpole contributionseutral pions, respectively. Note the change of sign in the
from the non-charmed meson are small compared to thdefinition of the charged pion fields™ in terms of 7y, in
large vacuum mass of the charmed mesons. This result omparison to Ref[9]. The definition given here is the cor-

ol -
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rect one, as one can readily confirm by writing the mesorthe following. The fieldwy can be identified with thep
fields in terms of their quark content, meson. The parity partner of the pion is thg980 meson,
i.e., ag=(0,Fio,)/\2 andad=c;. The field oy corre-
sponds to thes meson[now also referred to a$y(400
—1200)].

This applies also to the other charged meson fields defined in For N;=3 we obtain the following matrix:

Ta~qTa¥s0. (A2)

1 0, 1 N 1 ot N
—a —= 0, —=0 K
2 0 /6 8 3 0 0
T _ L o _iag+i08+i0'o < (A3a)
0= 73 20 6 ’
—_— 2 1
K- K0 ——=0gt —=o0y
V3B
1 1 1
— '+ —=mgt+ —=7 " K*
20 B B
T . ) 04 gt KO (A3Db)
Ta= —F—= ™ — =T T —=Tgt =T
alla \/E \/E \/g 8 \/§ 0
_ 2 1
K KO —Eﬂg'f' ﬁﬂ'o
|
The fields K*=(msFims)/\2, KO=(me—im)/\2, and 1 2 1
KO=(mrg+im;)/\/2 are the kaons. In general, because the CSZEUO_%UW" \/TZUB'
strange quark is much heavier than the up or down quarks,
the 7ry and thewrg are admixtures of the and then’ meson. 1 3
We identify the parity partner of the kaon with tkemeson Dgs= 2007 =015,
[now referred to a& (1430) in[24]]. Finally, in general the V12
oo and theog are admixtures of the- and f,(980) mesons. 5nqg
For N;=4 the following identification of physical fields N + =0
with matrix elements holds: Ap m K" D
1|7 Bp K° D~
+ + =0 Tama=—= - =0 1, (A5)
As a; «k° Dy J2| K- K° Cp D
1|a Bs «° Dg D° D* D; Dp
Tioams—=| = — _ s (A4) _
V2| k= K Cs Dy with
Do Dy Dgo Ds N S S S
P_27TO \/577 \/6778 \/1—277151
where
B 1 1 0y 1 N 1
= ST~ =T =TT —F—= 1715,
. L L L P 2 0 \/E \/6 8 \/1—2 15
As= 0ot —ag+ —=og+ —o07s,
S 2 0 \/E 0 \/g 8 \/1—2 15 c :1 _i +i
p () T 15,
27 e " V12
- 1o, 1 1 5.t 3
=—-09g— —=a3t+ —=0gt —o015, = —TTg— — 15
820\/50\/68\/1—215 PZO\/1—215
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Here, D0=(7T9+i7710)/\/§, 5°=(w9—i7710)/\/§, D* mesons with_ charm quantum numbers alibsg:(ag
=(mu*im)/\2, and DZ=(miz+ima)/J2 are the +ioy)/\2, Dg=(og—io10/\2, Dgy=(on*ic1)/ 2,
charged and neutral pseudoscalar mesons with charm quaand D§0=(013iicrl4)/\/§. These scalar mesons have not
tum numbers. Thery, g, and s fields are admixtures of been identified experimentally, yet. The,, og, and o5
the », ', and 5. mesons. The charged and neutral scalafields are admixtures of the, f,, and ., mesons.
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