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Chiral symmetry restoration in linear sigma models with different numbers of quark flavors

Dirk Röder,* Jörg Ruppert,† and Dirk H. Rischke‡
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Chiral symmetry restoration at nonzero temperature is studied in the framework of theO(4) linear sigma
model and theU(Nf) r3U(Nf), linear sigma model withNf52, 3 and 4 quark flavors. We investigate the
temperature dependence of the masses of the scalar and pseudoscalar mesons, and the nonstrange, strange, and
charm condensates within the Hartree approximation as derived from the Cornwall-Jackiw-Tomboulis formal-
ism. We find that the masses of the nonstrange and strange mesons at nonzero temperature depend sensitively
on the particular symmetry of the model and the number of light quark flavorsNf . On the other hand, because
of the large charm quark mass, neither do charmed mesons significantly affect the properties of the other
mesons, nor do their masses change appreciably in the temperature range around the chiral symmetry resto-
ration temperature. In the chiral limit, the transition temperatures for chiral symmetry restoration are surpris-
ingly close to those found in lattice QCD.
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I. INTRODUCTION

For Nf massless quark flavors, the QCD Lagrangian ha
chiral U(Nf) r3U(Nf),5SU(Nf) r3SU(Nf),3U(1)V

3U(1)A symmetry. Here,V5r 1,, while A5r 2,. The
U(1)V symmetry corresponds to baryon number conser
tion. It is always respected and thus plays no role in
symmetry breaking patterns considered in the following.
the vacuum, a nonvanishing expectation value of the qu

condensate,̂ q̄,qr&Þ0, spontaneously breaks the abo
symmetry toSU(Nf)V . This gives rise toNf

2 Goldstone
bosons which dominate the low-energy dynamics of
theory. As shown by ’t Hooft@1,2#, instantons break the
U(1)A symmetry explicitly toZ(Nf)A @3#. ~For the low-
energy dynamics of QCD, however, this discrete symmetr
irrelevant.! Consequently, one of theNf

2 Goldstone bosons
becomes massive, leavingNf

221 Goldstone bosons. Th
SU(Nf) r3SU(Nf),3U(1)A symmetry of the QCD La-
grangian is also explicitly broken by nonzero quark mass
The Nf

221 low-energy degrees of freedom then beco
pseudo-Goldstone bosons. ForM<Nf degenerate quark fla
vors, anSU(M )V symmetry is preserved.

As indicated by lattice QCD calculations@4#, chiral sym-
metry is restored at temperatures around;150 MeV~at zero
net-baryon number density!. It is difficult to determine the
order of the chiral phase transition on the lattice. At this tim
lattice calculations have not unambiguously answered
question. For physical values of the quark masses, calc
tions with staggered fermions@5# favor a smooth crossove
transition, while calculations with Wilson fermions@6# pre-
dict the transition to be of first order.

For vanishing quark masses, i.e., in the chiral limit, ho
ever, one can use universality arguments to determine
order of the phase transition. According to universality,
order of the chiral transition in QCD is identical to that in
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theory with the same chiral symmetries as QCD, for
stance, theU(Nf) r3U(Nf), linear sigma model. This argu
ment was employed by Pisarski and Wilczek@3# who found
that for Nf52 flavors of massless quarks, the transition c
be of second order, if theU(1)A symmetry is explicitly bro-
ken by instantons. It is driven first order by fluctuations,
the U(1)A symmetry is restored atTc . For Nf53 massless
flavors, the transition is always first order. In this case,
term which breaks theU(1)A symmetry explicitly is a cubic
invariant, and consequently drives the transition first ord
In the absence of explicitU(1)A symmetry breaking, the
transition is fluctuation-induced of first order. ForNf54, the
same argument leads to a first order chiral transition in
absence of theU(1)A anomaly. The term which breaks th
U(1)A symmetry is no longer a cubic invariant, but of qua
tic order in the fields. Since this term does not generate
infrared-stable fix point, the transition remains of first ord

For nonzero quark masses, the chiral symmetry of QCD
explicitly broken. Nonzero quark masses act like a magn
field in spin systems, such that a second order phase tra
tion becomes a crossover transition. When the quark ma
increase, a first order phase transition may for a while rem
of first order, but it will ultimately become a crossover tra
sition, too. In order to decide whether this happens fo
particular choice of quark masses, universality argume
cannot be applied and one has to resort to numerical ca
lations. As an alternative to lattice QCD calculations, one c
also use linear sigma models to investigate this question@7#.

Studying the linear sigma model at nonzero temperatu
however, requires many-body resummation schemes,
cause infrared divergences cause naive perturbation theo
break down@8#. In these resummation schemes, one nec
sarily has to make approximations by selecting certain s
sets of diagrams. The most commonly employed schem
the Hartree approximation. This approximation fails to rep
duce the correct order of the chiral transition for theO(4)
linear sigma model: the transition is of second order, wh
the Hartree approximation yields a first order transition. F
U(Nf) r3U(Nf), linear sigma models withNf53, however,
the Hartree approximation correctly produces a first or
chiral transition@9#. For Nf52, in the absence of theU(1)A
©2003 The American Physical Society03-1
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TABLE I. The table shows the symmetry breaking patterns studied in this paper. TheA symbol indicates
that the specific symmetry breaking pattern is physically interesting and investigated here. The3 symbol
indicates that this symmetry breaking pattern does not exist at all and the2 symbolizes that the respectiv
symmetry breaking pattern is not studied.

O(4) U(2)r3U(2), U(3)r3U(3), U(4)r3U(4),

Explicit chiral
symmetry breaking A A A A

with U(1)A

anomaly

Explicit chiral
symmetry breaking 3 A A 2

without U(1)A

anomaly

Chiral limit
with U(1)A A A A 2

anomaly

Chiral limit
without U(1)A 3 A A 2

anomaly
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anomaly the transition is of first order and, as will be sho
in this paper, the Hartree approximation agrees with this
sult. With the U(1)A anomaly, the transition is of secon
order. We shall find that the Hartree approximation~slightly!
violates this prediction by producing a~weak! first order
transition.

The utility of linear sigma models, however, transcen
further than just predicting the order of the chiral phase tr
sition. The degrees of freedom of theU(Nf) r3U(Nf), lin-
ear sigma model are the scalar and pseudoscalar meson
the vacuum, the latter are the~pseudo-! Goldstone bosons o
chiral symmetry breaking. Thus, the linear sigma model
also be viewed as an effective low-energy theory for QC
At high temperatures, chiral symmetry is restored. Con
quently, chiral partners among the scalar and pseudosc
mesons must become degenerate in mass. Since
U(Nf) r3U(Nf), linear sigma model treats both scalar a
pseudoscalar mesons on the same footing, it is particul
suited to describe the change of meson properties acros
chiral transition. Note that, in the case of a first order ch
transition which coincides with the deconfinement transiti
the correct degrees of freedom in the high-temperature p
are quark and gluons instead of mesons. However, in
case of a crossover transition mesonic degrees of free
are well-defined even above the chiral transition temperat
These arguments constitute the motivation for the pres
work. Let us briefly outline the contents of this paper. W
investigate the change of meson masses and quark con
sates with temperature in the framework ofU(Nf) r
3U(Nf), linear sigma models. We focus in particular on t
question how the number of quark flavorsNf changes the
temperature dependence of the meson masses and the
condensates. For a givenNf , we furthermore investigate th
different patterns of symmetry breaking arising from t
presence or absence of theU(1)A anomaly, and from taking
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zero or nonzero values for the quark masses. In this se
the present study is an extension of previous work@9,10#.
Table I presents an overview of the different models a
patterns of symmetry breaking studied in this paper.

The U(2)r3U(2), linear sigma model has eight degre
of freedom: the scalar fields are thes meson and the threea0

mesons, the pseudoscalar fields are theh meson and the
three pions. With spontaneous breaking of theU(2)A chiral
symmetry, but without theU(1)A anomaly, the pions and th
h meson are~pseudo-! Goldstone bosons, while thes anda0

meson are heavy states. With theU(1)A anomaly, theh me-
son also becomes heavy.

With the explicit breaking of theU(1)A symmetry due to
the anomaly@and neglecting theU(1)V symmetry of baryon
number conservation#, the remaining symmetry of the
U(2)r3U(2), linear sigma model isSU(2)r3SU(2), .
This group is isomorphic toO(4). Theappropriate effective
theory incorporating this symmetry is theO(4) linear sigma
model @11#. This model has only four degrees of freedo
the s meson and the three pions. In this sense, it repres
the limit of the U(2)r3U(2), model for maximumU(1)A
symmetry breaking. TheU(2)r3U(2), model is more gen-
eral, since it allows us to consider the properties of mes
also without theU(1)A anomaly.

In the limit of maximumU(1)A symmetry breaking, the
h and a0 mesons become infinitely heavy and are thus
moved from the spectrum of physical excitations. This a
proximation is justified at small temperatures, where the
namics is determined by the lightest hadronic degrees
freedom, i.e., the pions and, to some extent, thes meson. At
higher temperatures and, in particular, around the chiral tr
sition, however, heavier mesons become more and more
portant. It is therefore interesting to compare the results
the O(4) model with those of theU(2)r3U(2), model
3-2
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which incorporates these heavier degrees of freedom. N
that theO(4) linear sigma model at nonzero temperature
been discussed in Refs.@10,12#.

In the physical hadron spectrum, the kaons are ligh
than thea0 andh mesons and thus are more copiously p
duced at nonzero temperature. Consequently, the kaon
expected to influence the dynamics of the system to a la
extent than the a0 and h mesons. Therefore, th
U(2)r3U(2), model is unrealistic in the sense that it n
glects these strange meson degrees of freedom. Fro
physical point of view, it is thus necessary to enlarge
symmetry group toU(3)r3U(3), and study the correspond
ing linear sigma model. Nevertheless, it is still interesting
compare theU(2)r3U(2), model with theU(3)r3U(3),

model in order to see how the strange degrees of free
affect the results. TheU(3)r3U(3), model was previously
studied at nonzero temperature in Ref.@9#.

Finally, we extend our investigations by including th
charm degree of freedom. In principle, the correspond
linear sigma model has anSU(4)r3SU(4),3U(1)A sym-
metry, but in nature this symmetry is strongly explicitly br
ken by the large charm quark mass. Therefore, we only c
sider the physically relevant case of explicit chiral symme
breaking withU(1)A anomaly.

For all cases considered~see Table I! we study the meson
masses and the condensates as functions of temperatu
the chiral limit, we determine the phase transition tempe
tures by computing the effective potentials. In this aspect,
extend the previous study of Ref.@9#. For theO(4) model,
this has already been done in Ref.@12#.

Our calculations are done in the Hartree approximat
which we derive within the Cornwall-Jackiw-Tomboul
~CJT! formalism @13#. The Hartree approximation has th
advantage that the meson self-energies become indepe
of momentum and energy and one only has to solve
equations for the meson masses as a function of tempera
To go beyond the Hartree approximation, for instance
including energy-momentum-dependent contributions to
self-energies, is considerably more difficult@14–17#, and
will be deferred to a future publication.

The remainder of this paper is organized as follows.
Sec. II we review the formulas of the CJT formalism, whi
are relevant for the present study, and apply them to
O(4) model and theU(Nf) r3U(Nf), linear sigma models
for Nf52, 3, and 4. In Sec. III it is shown how to determin
the coupling constants of the different models from t
vacuum properties of the mesons and condensates. In Se
we discuss the temperature dependence of the masses a
condensates. We conclude this work in Sec. V with a su
mary of our results.

We use the imaginary-time formalism to compute quan
ties at nonzero temperature. Our notation is

E
k
f ~k![T (

n52`

` E d3k

~2p!3
f ~2p inT,k!, ~1!

E
x
f ~x![E

0

1/T

dtE d3xf ~t,x!.
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Our units are \5c5kB51. The metric tensor isgmn

5diag(1,2,2,2). Throughout this work, all latin sub
scripts are adjointU(Nf) indices,a50, . . . ,Nf

221, and a
summation over repeated indices is understood.

II. LINEAR SIGMA MODELS IN THE HARTREE
APPROXIMATION

A. The CJT formalism

The CJT formalism@13# generalizes the concept of th
effective action for one-point functions to that of an effecti
action for one- and two-point functions. It is particularly us
ful for theories with spontaneously broken symmetry. In th
case, truncating the standard loop expansion for the effec
action @18# at some given order, at nonzero temperature o
may obtain unphysical, tachyonic propagation of quasipa
cles with small momenta. The reason for this failure of t
standard loop expansion is that only the expectation valu
the one-point function is self-consistently determined in t
approach. The CJT formalism goes beyond the standard
expansion by self-consistently determining the expecta
value for the two-point function in addition to that of th
one-point function. Effectively, this amounts to solving
Dyson-Schwinger equation for the two-point functions a
yields a self-consistent computation of the quasiparticle s
energy. For translationally invariant systems, the effect
action becomes the effective potential. To give an exam
consider the general Lagrangian

L~w!5
1

2
]mw]mw2U~w! ~2!

for a scalar quantum fieldw. The effective potential in the
CJT formalism reads

V@f̄,Ḡ#5U~f̄ !1
1

2Ek
ln Ḡ21~k!

1
1

2Ek
@G21~k;f̄ !Ḡ~k!21#1V2@f̄,Ḡ#, ~3!

wheref̄ is ac-number field~it is the expectation value of the
quantum fieldw in the presence of an external source!, U(f̄)
is the classical potential energy density~the tree-level poten-
tial! in the Lagrangian~2!, and G21 is the inverse of the
tree-level propagator,

G21~k;f̄ ![2k21U9~f̄ !. ~4!

Here,U9(f̄) is the second derivative ofU(f̄) with respect
to f̄. The last term in Eq.~3!, V2@f̄,Ḡ#, is the sum of all
two-particle irreducible vacuum diagrams where all lin
represent full propagatorsḠ. The expectation values of th
one-point function,f, and of the two-point function,G(k),
are determined from the stationarity conditions
3-3
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dV@f̄,Ḡ#

df̄
U

f̄5f,Ḡ5G
50, ~5a!

dV@f̄,Ḡ#

dḠ~k!
U

f̄5f,Ḡ5G
50. ~5b!

With Eq. ~3!, the latter can be written in the form

G 21~k!5G21~k;f!1P~k!, ~6a!

where

P~k![2
dV2@f̄,Ḡ#

dḠ~k!
U

f̄5f,Ḡ5G
~6b!

is the self-energy. SinceP(k) is in general a functional ofG,
Eq. ~6a! represents a Schwinger-Dyson equation for the
~dressed! propagator.

The standard effective potential for the expectation va
of the one-point function,V(f̄), is obtained from the effec
tive potential ~3! by taking the full propagatorḠ to be a
function of f̄, instead of an independent variable,

V~f̄ !5V@f̄,Ĝ~f̄ !#, ~7!

whereĜ(k;f̄) is determined from

dV@f̄,Ḡ#

dḠ~k!
U

Ḡ5Ĝ

50, ~8!

which is equivalent to

Ĝ21~k;f̄ !5G21~k;f̄ !1P̂~k;f̄ !, ~9a!

where

P̂~k;f̄ ![2
dV2@f̄,Ḡ#

dḠ~k!
U

Ḡ5Ĝ

. ~9b!

This expression and Eq.~3! can be used to obtain a compa
form of the standard effective potential

V~f̄ !5U~f̄ !1
1

2Ek
ln Ĝ21~k;f̄ !2

1

2Ek
P̂~k;f̄ !Ĝ~k;f̄ !

1V2@f̄,Ĝ#. ~10!

SinceV2 contains infinitely many diagrams, an exact calc
lation is impossible. In practice, one has to restrict the co
putation ofV2 to a finite number of diagrams. The select
set of diagrams defines a particular many-body approxi
tion. Cutting internal lines in these diagrams according to
~6b!, one obtains the diagrams contributing to the self-ene
of the quasiparticles in this approximation scheme. Solv
the Dyson-Schwinger equation~6a! provides a self-
consistent calculation of this self-energy. In general,
01600
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Dyson-Schwinger equation is an integral equation for
self-energy as a function of energy and momentum.

If one only takes the double-bubble diagrams on the le
hand side of Fig. 1 into account in the calculation ofV2, one
obtains the Hartree approximation. Cutting these diagra
yields the well-known tadpole diagrams for the self-ener
cf. the right-hand side of Fig. 1. The Dyson-Schwinger eq
tion ~6a! is a self-consistency equation for this self-ener
due to the fact that the internal lines in the tadpole diagra
represent full propagators. The Hartree approximation i
particularly simple many-body approximation scheme, b
cause the tadpole diagrams are independent of energy
momentum, and thus the Dyson-Schwinger equations ar
longer integral equations, but become fix-point equations
the quasiparticle masses.

B. The O„4… model

In this section we apply the CJT formalism to theO(N)
model. Our numerical results presented in Sec. IV are ex
sively for the caseN54. The CJT effective potential for the
O(N) model is@10#

FIG. 1. Left-hand side: the double-bubble diagrams. Full lin
are scalar particles, dashed lines are pseudoscalar particles. R
hand side: the tadpole contributions to the self-energies obtaine
cutting a line in the double-bubble diagrams on the left-hand si
3-4
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V@s̄,S̄,P̄#5U~ s̄ !1
1

2Ek
@ ln S̄21~k!1S21~k;s̄ !S̄~k!21#

1
N21

2 E
k
@ ln P̄21~k!1P21~k;s̄ !P̄~k!21#

1V2@s̄,S̄,P̄#, ~11!

where s̄ is the expectation value of the scalar field~in the
presence of external sources!. Because the vacuum of QCD
has even parity, the expectation values of the pseudosc
fields can be set to zero. The quantitiesS̄ and P̄ are the full
propagators for scalar and pseudoscalar particles, whileS21

and P21 are the corresponding inverse tree-level propa
tors,

S21~k;s̄ !52k21ms
2~ s̄ !, ~12a!

P21~k;s̄ !52k21mp
2 ~ s̄ !, ~12b!

where the tree-level masses are

ms
2~ s̄ !5m21

12l

N
s̄2, ~13a!

mp
2 ~ s̄ !5m21

4l

N
s̄2. ~13b!

The constantm2 is the bare mass term in the Lagrangian
theO(N) model, whilel is the four-point coupling constan
For m2,0, theO(N) symmetry is spontaneously broken
O(N21), leading toN21 Goldstone bosons. The tree-lev
potential is

U~ s̄ !5
1

2
m2s̄21

l

N
s̄42Hs̄, ~14!

whereH is a term which breaks theO(N) symmetry explic-
itly to O(N21). V2@s̄,S̄,P̄# is the sum of all two-particle
irreducible diagrams. In the following, we restrict ourselv
to the Hartree approximation, i.e., we take into account o
the double-bubble diagrams shown on the left-hand side
Fig. 1. These diagrams have no explicits̄ dependence. Then
only tadpole diagrams~with resummed propagators! contrib-
ute to the self-energies, cf. the right-hand side of Fig. 1.
the Hartree approximation,

V2@S̄,P̄#53
l

N F E
k
S̄~k!G2

1~N11!~N21!
l

N F E
k
P̄~k!G2

12~N21!
l

N F E
k
S̄~k!GF E

p
P̄~p!G . ~15!

The stationarity conditions~5a! and ~5b! read
01600
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H5m2s1
4l

N
s31

4l

N
sE

q
@3S~q!1~N21!P~q!#,

~16a!

S 21~k!52k21Ms
2 , ~16b!

P 21~k!52k21Mp
2 , ~16c!

where Ms and Mp are thes and pion masses dressed b
contributions from the diagrams of Fig. 1,

Ms
25ms

2~s!1
4l

N F3E
q
S~q!1~N21!E

q
P~q!G ~17a!

Mp
2 5mp

2 ~s!1
4l

N F E
q
S~q!1~N11!E

q
P~q!G . ~17b!

Using Eqs.~17a! and ~17b!, Eq. ~16a! can be written in the
compact form

H5sFMs
22

8l

N
s2G . ~17c!

Equations~17a!, ~17b!, and~17c! are the stationarity condi
tions of theO(N) model in the Hartree approximation. Th
explicit calculation of the tadpole integrals*qS(q) and
*qP(q) will be discussed in Sec. II D.

C. The U„Nf… rÃU„Nf…ø linear sigma model for NfÄ2, 3 and
4 flavors

The application of the CJT formalism to th
U(Nf) r3U(Nf), linear sigma model forNf53 was dis-
cussed in Ref.@9#. Since we want to treat the casesNf52
andNf54 on the same footing, we derive the CJT effecti
potential in somewhat greater detail than in the last sect

The Lagrangian of theU(Nf) r3U(Nf), linear sigma
model forNf52,3 or 4 flavors is given by@19–22#

L~F!5Tr~]mF†]mF2m2F†F!2l1@Tr~F†F!#2

2l2Tr~F†F!21c@det~F!1det~F†!#

1Tr@H~F1F†!#. ~18!

F is a complexNf3Nf matrix parametrizing the scalar an
pseudoscalar mesons,

F5Tafa5Ta~sa1 ipa!, ~19a!

wheresa are the scalar (JP501) fields andpa are the pseu-
doscalar (JP502) fields. TheNf3Nf matrix H breaks the
symmetry explicitly and is chosen as

H5Taha , ~19b!

whereha are external fields.Ta are the generators ofU(Nf).
The Ta are normalized such that Tr(TaTb)5dab/2. They
obey theU(Nf) algebra with
3-5
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@Ta ,Tb#5 i f abcTc , ~20a!

$Ta ,Tb%5dabcTc , ~20b!

wheref abc anddabc are the standard antisymmetric and sy
metric structure constants ofSU(Nf), a,b,c51, . . . ,Nf

2

21, and

f ab0[0, dab0[A 2

Nf
dab . ~20c!

The terms in the first line of Eq.~18! are invariant under
U(Nf) r3U(Nf),>U(Nf)V3U(Nf)A transformations. The
determinant terms are invariant underSU(Nf) r3SU(Nf),

>SU(Nf)V3SU(Nf)A , but break theU(1)A symmetry ex-
plicitly. These terms arise from theU(1)A anomaly of the
QCD vacuum. The last term in Eq.~18! breaks the axial and
possibly theSU(Nf)V vector symmetries explicitly.

In the following we discuss the three different casesNf
52, 3, and 4 in detail. The identification of thesa and pa
fields with the physical scalar and pseudoscalar meson
given in Appendix A.

A non-vanishing vacuum expectation value forF,

^F&[Tas̄a , ~21!

breaks the chiral symmetry spontaneously.~If the vacuum
does not break parity, the fieldspa cannot assume a non
vanishing vacuum expectation value.! Shifting theF field by
this expectation value, the Lagrangian can be rewritten a

L5
1

2
@]msa]msa1]mpa]mpa2sa~mS

2!absb

2pa~mP
2 !abpb#2F4

3
Fabcds̄d2d~Nf ,3!Gabc

1
4

3
d~Nf ,4!Gabcds̄dGsasbsc

2@4Habcds̄d13d~Nf ,3!Gabc

24d~Nf ,4!Gabcds̄d#papbsc

22@Habcd2d~Nf ,4!Gabcd#sasbpcpd

2
1

3
@Fabcd1d~Nf ,4!Gabcd#

3~sasbscsd1papbpcpd!2U~ s̄ !, ~22!

whered(n,m)[dnm is the Kronecker delta and the fieldssa
and pa are the fluctuations around the expectation val
s̄a . The latter are determined from the conditio
dU(s̄)/ds̄a50. The tree-level potential is
01600
-

is

s

U~ s̄ !5
m2

2
s̄a

22@3d~Nf ,2!Gab1d~Nf ,3!Gabcs̄c#s̄as̄b

1
1

3
@Fabcd1d~Nf ,4!Gabcd#s̄as̄bs̄cs̄d2has̄a .

~23!

The coefficientsFabcd, Gab , Gabc , Gabcd, and Habcd are
given by

Fabcd5
l1

4
~dabdcd1daddbc1dacdbd!

1
l2

8
~dabndncd1dadndnbc1dacndnbd!, ~24a!

Gab5
c

6
@da0db02da1db12da2db22da3db3#, ~24b!

Gabc5
c

6 Fdabc2
3

2
~da0d0bc1db0da0c1dc0dab0!

1
9

2
d000da0db0dc0G , ~24c!

Gabcd52
c

16
@dabdcd1daddbc1dacdbd

2~dabndncd1dadndnbc1dacndnbd!

116da0db0dc0dd024~da0db0dcd1da0dc0dbd

1da0dd0dbc1db0dc0dad1db0dd0dac

1dd0dc0dab!1A8~da0dbcd1db0dcda1dc0ddab

1dd0dabc!#, ~24d!

Habcd5
l1

4
dabdcd1

l2

8
~dabndncd1 f acnf nbd1 f bcnf nad!.

~24e!

The tree-level masses,@mS
2#ab and @mP

2 #ab , are given by

@mS
2~ s̄ !#ab5m2dab26@d~Nf ,2!Gab1d~Nf ,3!Gabcs̄c#

14@Fabcd1d~Nf ,4!Gabcd#s̄cs̄d , ~25a!

@mP
2 ~ s̄ !#ab5m2dab16@d~Nf ,2!Gab1d~Nf ,3!Gabcs̄c#

14@Habcd2d~Nf ,4!Gabcd#s̄cs̄d . ~25b!

In general, these mass matrices are not diagonal. Co
quently, the fields (sa ,pa) in the standard basis ofU(Nf)
generators are not mass eigenstates. Since the mass ma
are symmetric and real, diagonalization is achieved by
orthogonal transformation,
3-6
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s̃ i5Oia
(S)sa , ~26a!

p̃ i5Oia
(P)pa , ~26b!

@m̃S,P
2 # i5Oai

(S,P)@mS,P
2 #abObi

(S,P) . ~26c!

The effective potential of theU(Nf) r3U(Nf), linear
sigma model in the CJT formalism reads

V@s̄,S̄,P̄#5U~ s̄ !1
1

2Ek
$@ ln S̄21~k!#aa1@ ln P̄21~k!#aa%

1
1

2Ek
@Sab

21~k;s̄ !S̄ba~k!1Pab
21~k;s̄ !P̄ba~k!

22dabdba#1V2@s̄,S̄,P̄#. ~27!

Here,U(s̄) is the tree-level potential of Eq.~23!, and

Sab
21~k;s̄ !52k2dab1@mS

2~ s̄ !#ab , ~28a!

Pab
21~k;s̄ !52k2dab1@mP

2 ~ s̄ !#ab , ~28b!

are the tree-level propagators for scalar and pseudos
particles, with the respective mass matrices~25!. The fluc-
tuations sa and pa around the expectation valuess̄a no
longer occur in the effective potential~27!. Therefore, from
now on we use the symbolsa for the expectation values fo
the scalar fields in the effective potential~27!. These expec-
tation values, and the full propagators for scalar,S(k), and
pseudoscalar,P(k), particles are determined from the st
tionarity conditions

dV@s̄,S̄,P̄#

ds̄a
U

s̄5s,S̄5S,P̄5P
50, ~29a!

dV@s̄,S̄,P̄#

dS̄ab
U

s̄5s,S̄5S,P̄5P
50,

dV@s̄,S̄,P̄#

d P̄ab
U

s̄5s,S̄5S,P̄5P
50. ~29b!

With Eq. ~6b!, the latter two equations can be written in th
form

S ab
21~k!5Sab

21~k;s̄ !1Sab~k!, ~30a!

P ab
21~k!5Pab

21~k;s̄ !1Pab~k!, ~30b!

where

Sab~k![2
dV2@s̄,S̄,P̄#

dS̄ba~k!
U

s̄5s,S̄5S,P̄5P
, ~31a!

Pab~k![2
dV2@s̄,S̄,P̄#

d P̄ba~k!
U

s̄5s,S̄5S,P̄5P
, ~31b!
01600
lar

are the self-energies for the scalar and pseudoscalar part
As in the case of theO(N) model, we include only the
two-loop diagrams of Fig. 1 inV2. Then,

V2@S̄,P̄#5@Fabcd1d~Nf ,4!Gabcd#

3F E
k
S̄ab~k!E

p
S̄cd~p!1E

k
P̄ab~k!E

p
P̄cd~p!G

12@Habcd2d~Nf ,4!Gabcd#E
k
S̄ab~k!E

p
P̄cd~p!.

~32!

Note that, in the Hartree approximation,V2 is independent of
s̄a . The stationarity conditions for the condensates are

ha5m2sa2@6d~Nf ,2!Gab13d~Nf ,3!Gabcsc#sb

1
4

3
@Fabcd1d~Nf ,4!Gabcd#sbscsd

1$23d~Nf ,3!Gabc14@Fabcd1d~Nf ,4!Gabcd#sd%

3E
k
Scb~k!1$3d~Nf ,3!Gabc14@Hbcad

2d~Nf ,4!Gabcd#sd%E
k
Pcb~k!. ~33!

In the Hartree approximation, the self-energies~6b! are inde-
pendent of momentum, and the Schwinger-Dyson equat
~30a! for the full propagators assume the simple form

S ab
21~k!52k2dab1@MS

2#ab , ~34!

P ab
21~k!52k2dab1@M P

2 #ab . ~35!

The scalar and pseudoscalar mass matrices are given b

@MS
2#ab5@mS

2~s!#ab14@Fabcd1d~Nf ,4!Gabcd#E
q
Scd~q!

14@Habcd2d~Nf ,4!Gabcd#E
q
Pcd~q!, ~36a!

@M P
2 #ab5@mP

2 ~s!#ab14@Fabcd1d~Nf ,4!Gabcd#E
q
Pcd~q!

14@Habcd2d~Nf ,4!Gabcd#E
q
Scd~q!. ~36b!

In the Hartree approximation, all particles are stable qua
particles, i.e., the imaginary parts of the self-energies van
Therefore, the inverse propagators~34! and~35! are real val-
ued. They are also symmetric in the standard basis ofU(Nf)
generators and thus diagonalizable via an orthogonal tr
formation. This transformation is given by Eq.~26c!, with
the obvious replacements
3-7
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@mS,P
2 #ab→@MS,P

2 #ab , @m̃S,P
2 # i→@M̃S,P

2 # i . ~37!

The propagator matrices are diagonalized by the same
thogonal transformation as their inverse. The tadpole in
grals in Eqs.~33! and ~36! are therefore computed as

E
q
Sbc~q!5Obi

(S)E
q
S̃i~q!Oci

(S) ,

~38!

E
q
Pbc~q!5Obi

(P)E
q
P̃i~q!Oci

(P) .

After this rotation, only tadpole integrals over propagato
with a single index have to be computed. This will be d
cussed in the next section.

D. Explicit calculation of loop integrals and the effective
potential

In principle, the calculation of the tadpole integra
*qS̃i(q), *qS(q) and *qP̃i(q), *qP(q) requires renormal-
ization. Renormalization of many-body approximatio
schemes is nontrivial, but does not change the results q
tatively @9,10#. We therefore simply omit the vacuum contr
butions to the loop integrals,

E
q
S̃i~q!5E d3q

~2p!3

1

eq@~M̃S
2! i #

S expH eq@~M̃S
2! i #

T J 21D 21

,

~39a!

E
q
P̃i~q!5E d3q

~2p!3

1

eq@~M̃ P
2 ! i #

S expH eq@~M̃ P
2 ! i #

T J 21D 21

,

~39b!

E
q
S~q!5E d3q

~2p!3

1

eq@Ms
2 #

S expH eq@Ms
2 #

T J 21D 21

,

~39c!

E
q
P~q!5E d3q

~2p!3

1

eq@Mp
2 #

S expH eq@Mp
2 #

T J 21D 21

.

~39d!

Here,eq@M2#5Aq21M2 is the relativistic energy of a qua
siparticle with massM and momentumq.

Now we compute the standard effective potentialV(s̄)
[V@s̄,Ŝ(s̄),P̂(s̄)# from Eq. ~10!. SinceV2 has the genera
structure

V2@S̄,P̄#5csF E
k
S̄~k!G2

1cpF E
k
P̄~k!G2

1cspF E
k
S̄~k!GF E

p
P̄~p!G , ~40!

cf. Eqs.~15! and~27!, the self-energies~31! assume the form
01600
r-
-

s
-

li-

Ŝ~k;s̄ !52
dV2@s̄,S̄,P̄#

dS̄~k!
U

s̄5s,S̄5Ŝ,P̄5 P̂

54csE
q
Ŝ~q;s̄ !12cspE

q
P̂~q;s̄ !, ~41a!

P̂~k;s̄ !52
dV2@s̄,S̄,P̄#

d P̄~k!
U

s̄5s,S̄5Ŝ,P̄5 P̂

54cpE
q
P̂~q;s̄ !12cspE

q
Ŝ~q;s̄ !. ~41b!

With these expressions one derives the identity

2
1

2Ek
Ŝ~k;s̄ !Ŝ~k;s̄ !2

1

2Ek
P̂~k;s̄ !P̂~k;s̄ !

[22V2@Ŝ~ s̄ !,P̂~ s̄ !#. ~42!

This considerably simplifies the expressions for the stand
effective potential. For theO(N) model we obtain

V~ s̄ !5U~ s̄ !1
1

2Ek
ln Ŝ21~k;s̄ !1

N21

2 E
k
ln P̂21~k;s̄ !

2V2@Ŝ~ s̄ !,P̂~ s̄ !#, ~43a!

while for theU(Nf) r3U(Nf), model we have

V~ s̄ !5U~ s̄ !1
1

2 (
i 50

Nf
2
21 E

k
lnŜ̃i

21~k;s̄ !

1
1

2 (
i 50

Nf
2
21 E

k
ln P̂̃i

21~k;s̄ !2V2@Ŝ~ s̄ !,P̂~ s̄ !#.

~43b!

The momentum integrals in Eqs.~43a! and ~43b! require
renormalization, too. As above, we simply omit the vacuu
contribution, which leads to the following integrals@8#:

E
k
lnŜ̃i

21~k;s̄ !5TE d3k

~2p!3
lnS 12expH 2

ek@~ M̂̃ S
2! i #

T
J D ,

~44a!

E
k
ln P̂̃i

21~k;s̄ !5TE d3k

~2p!3
lnS 12expH 2

ek@~ M̂̃ P
2 ! i #

T
J D ,

~44b!

E
k
ln Ŝ21~k;s̄ !5TE d3k

~2p!3
lnS 12expH 2

ek@M̂s
2 #

T J D ,

~44c!
3-8
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E
k
ln P̂21~k;s̄ !5TE d3k

~2p!3
lnS 12expH 2

ek@M̂p
2 #

T J D .

~44d!

In these equations, the tilde denotes quantities which are
agonalized according to Eqs.~26c! and ~38!, respectively. A
hat denotes propagators computed according to Eq.~9a!.
Masses with a hat are the mass terms appearing in t
propagators.

III. PATTERNS OF SYMMETRY BREAKING AND
VACUUM PROPERTIES

In this section we discuss the patterns of symmetry bre
ing in the vacuum and determine the coupling constants
the models from the vacuum properties of the mesons.

A. Patterns of symmetry breaking

For theO(N) model~with N54) we study two different
patterns of symmetry breaking~cf. Table I!:

~1! H50. For m2,0 the O(N) symmetry is spontane
ously broken toO(N21), giving rise to a non-vanishing
expectation value for thes field and N21 Goldstone
bosons.

~2! HÞ0. The term2Hs̄ in Eq. ~14! corresponds to
non-zero quark masses in the QCD Lagrangian. It breaks
O(N) symmetry explicitly toO(N21). The N21 Gold-
stone bosons become pseudo-Goldstone bosons.

For the U(Nf) r3U(Nf), models withNf52 and 3 we
study the following patterns of symmetry breaking~cf. Table
I!.

~1! ha50,c50. For m2,0 the global
SU(Nf)V3U(Nf)A symmetry is broken toSU(Nf)V , andF
develops a non-vanishing vacuum expectation value,^F&
5T0s̄0. By the Vafa-Witten theorem@23#, only the axial
symmetries can be spontaneously broken, while the ve
symmetries stay intact. In order to retain anSU(Nf)V sym-
metry, only the term proportional toT0 survives in the sum
over a in Eq. ~21! for the vacuum expectation value^F&.
Spontaneously breakingU(Nf)A leads to Nf

2 Goldstone
bosons which form a pseudoscalar,Nf

2 dimensional multip-
let. This case is referred to as the chiral limit withoutU(1)A
anomaly.

~2! ha50,cÞ0. The symmetry isSU(Nf)V3SU(Nf)A .
A non-vanishinĝ F& spontaneously breaks the symmetry
SU(Nf)V , with the appearance ofNf

221 Goldstone bosons
which form a pseudoscalar,Nf

221 dimensional multiplet.
TheNf

2th pseudoscalar meson is no longer massless, bec
the U(1)A symmetry is already explicitly broken. This cas
is referred to as the chiral limit withU(1)A anomaly.

~3! haÞ0,c50. In QCD this corresponds to non
vanishing quark masses, but a vanishingU(1)A anomaly.
Since^F& must carry the quantum numbers of the vacuu
only the fieldss̄a corresponding to the diagonal generato
of U(Nf) can be nonzero. The same holds for the exter
fields ha which generate a non-vanishing expectation va
by explicitly breaking theU(Nf)A symmetry. ForNf52
01600
i-

se

k-
of

he

or

use

,

al
e

these areh0 and h3, for Nf53 there is an additional field
h8. Because the masses of the up and down quarks are
proximately equal,mu.md , we restrict our study toh0Þ0
andh350 for all cases considered. Since the strange qu
massms is larger thanmu.md , h8Þ0. In this case the
SU(Nf)V3U(Nf)A symmetry is explicitly broken to
SU(2)V . The latter symmetry remains intact becauseh3
50. This case is referred to as the case of explicit ch
symmetry breaking withoutU(1)A anomaly.

~4! haÞ,cÞ0. A U(1)A subgroup of theU(Nf)A symme-
try is explicitly broken by instantons. As explained above w
restrict ourselves toh350. This case is referred to as th
case of explicit chiral symmetry breaking withU(1)A
anomaly.

For Nf54, we only study the last case, i.e., explicit chir
symmetry breaking with theU(1)A anomaly. To break the
U(4)A symmetry explicitly, in addition toh0Þ0 and h8
Þ0, we have to introduce a nonzero value for the fieldh15
corresponding to the fourth diagonal generator ofU(4).
Since the charm quark mass is much larger than the ligh
and down quark masses and the strange quark mass,h15 is
also much larger than eitherh0 or h8, cf. Table V. Therefore,
it does not make too much sense to study the rather unr
istic first two cases of vanishing quark masses. We there
restrict our considerations to the physical case of expl
chiral symmetry breaking with theU(1)A anomaly.

B. Condensates and masses in the vacuum

In this section we determine the parameters of the diff
ent models from the vacuum values of the condensates
the meson masses for the various symmetry breaking
terns discussed in Sec. III A. For theO(4), the
U(3)r3U(3), , and theU(4)r3U(4), linear sigma model,
we simply follow Refs.@9,10,22#, respectively. Since it has
not been done previously, fitting the parameters of
U(2)r3U(2), model is discussed in more detail.

For theO(4) model, we have three parameters,H, l, and
m2, which are adjusted to reproduce the vacuum values
the pion decay constant,f p , the pion mass,mp , and thes
mass,ms . For reasons explained below, for the latter w
choosems5400 MeV, instead of 600 MeV as in Ref.@10#.
The values for the parameters in the chiral limit and w
explicit symmetry breaking are listed in Table II.

In the U(2)r3U(2), model, for all symmetry breaking
patterns studied here, there is an~approximate! SU(2)V sym-
metry due to the~approximate! equality of the up and down
quark masses. Consequently, for all cases the vacuum ex
tation value iŝ F&5T0s̄0. At zero temperature, the equatio
for the condensates0 reads, cf. Eq.~33!,

h05s0Fm22c1S l11
l2

2 Ds0
2G . ~45!

The PCAC~partial conservation of axial vector current! re-
lations determine the value of the condensate from the p
doscalar meson decay constants,

f a5daa0s0 . ~46!
3-9
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RÖDER, RUPPERT, AND RISCHKE PHYSICAL REVIEW D68, 016003 ~2003!
TABLE II. The masses and decay constants at vanishing temperature and the corresponding pa
sets for theO(4) linear sigma model for the two symmetry breaking patterns studied here.

Masses and decay constants Parameter set

Explicit chiral f p592.4 MeV H5(121.60 MeV)3

symmetry ms5400 MeV l58.230
breaking mp5139.5 MeV m252(225.41 MeV)2

Chiral limit f p590 MeV H50
ms5400 MeV l59.877
mp50 MeV m252(282.84 MeV)2
n
th

ele-

hen
Sincedaa051, all meson decay constants are identical, a
we obtains0[ f p . The scalar mass matrix is diagonal, wi
the elements

ms
2[@mS

2~s0!#005m22c13S l11
l2

2 Ds0
2 , ~47a!

ma0

2 [@mS
2~s0!#11

5@mS
2~s0!#22

5@mS
2~s0!#33

5m21c1S l11
3l2

2 Ds0
2 . ~47b!
01600
dThe pseudoscalar mass matrix is also diagonal, with the
ments

mh
2[@mP

2 ~s0!#005m21c1S l11
l2

2 Ds0
2 , ~48a!

mp
2 [@mP

2 ~s0!#11

5@mP
2 ~s0!#22

5@mP
2 ~s0!#33

5m22c1S l11
l2

2 Ds0
2 . ~48b!

Without theU(1)A anomaly,c50, the pions and theh me-
son become degenerate in mass. In the chiral limit, one t
has four~instead of three! Goldstone bosons. With theU(1)A
rameter
TABLE III. The masses and decay constants at vanishing temperature and the corresponding pa
sets for theU(2)r3U(2), model for the four symmetry breaking patterns studied here.

Masses and decay constants Parameter set

Explicit chiral f p592.4 MeV h05(121.60 MeV)3

symmetry breaking ms5400 MeV l15231.03
with U(1)A ma0

5984.7 MeV l2578.52
anomaly mp5139.5 MeV m25(298.44 MeV)2

mh5547 MeV c5(374.00 MeV)2

Explicit chiral f p592.4 MeV h05(121.60 MeV)3

symmetry breaking ms5400 MeV l15247.41
without U(1)A ma0

5984.7 MeV l25111.29
anomaly mp5mh5139.5 MeV m252(225.41 MeV)2

c50

Chiral limit f p590 MeV h050
with U(1)A ms5400 MeV l15231.51
anomaly ma0

5984.7 MeV l2582.77
mp50 m25(263.83 MeV)2

mh5547 MeV c5(386.79 MeV)2

Chiral limit f p590 MeV h05c50
without U(1)A ms5400 MeV l15249.98
anomaly ma0

5984.7 MeV l25119.71
mp5mh50 m252(282.84 MeV)2
3-10
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TABLE IV. The masses and decay constants at vanishing temperature and the corresponding pa
sets for theU(3)r3U(3), model for the four symmetry breaking patterns studied here. The mass
boldfaced letters are predicted; the other masses and decay constants are used to calculate the para

Masses and decay constants Parameter set

Explicit chiral f p592.4 MeV h05(285.04 MeV)3

symmetry beaking f K5113 MeV h852(309.46 MeV)3

with U(1)A ms5400 MeV l1525.38
anomaly ma0

51024.6MeV l2545.08
mk51116.2MeV m25(493.69 MeV)2

mf 0
51188.7MeV c54831.25 MeV

mp5139.5 MeV
mK5493 MeV

mh5536.5MeV
mh85963.9MeV

Explicit chiral f p592.4 MeV h05(285.04 MeV)3

symmetry breaking f K5113 MeV h852(309.46 MeV)3

without U(1)A ms5400 MeV l15224.13
anomaly ma0

5844.4MeV l2581.24
mk51116.2MeV m25(306.50 MeV)2

mf 0
51248.3MeV c50

mp5mh85139.5 MeV
mK5493 MeV

mh5630.6MeV

Chiral limit f p5 f K590 MeV h05h850
with U(1)A ms5400 MeV l15217.48
anomaly ma0

5mk5mf 0
51225.8 MeV l25109.97

mp5mK5mh50 m25(270.11 MeV)2

mh85958 MeV c56798.25 MeV

Chiral limit f p5 f K590 MeV h05h85c50
without U(1)A ms5400 MeV l15255.25
anomaly ma0

5mk5mf 0
51225.8 MeV l25185.50

mp5mK5mh5mh850 m252(282.84 MeV)2
th

f

a

ro
e

-
th

s,
r-

rom
lues

ur

nti-
anomaly,c is positive, cf. Table III, and theh meson be-
comes heavier than the pion. At zero temperature,
~squared! mass difference between theh and the pion is
determined by the parameterc characterizing the strength o
the U(1)A anomaly,mh

22mp
2 52c. Simultaneously, also the

mass difference between thea0 and thes meson is deter-
mined by this parameter,ma0

2 2ms
252c22l1s0

2 . ~As l1

,0, cf. Table III, the second term always increases the m
difference.!

The limit c→` corresponds to maximum explicitU(1)A

symmetry breaking. In this limit, for realistic values of thes
meson and the pion mass~i.e., m22c5const), theh anda0

mesons become infinitely heavy and are thus removed f
the spectrum of physical excitations. In this limit, th
U(2)r3U(2), is identical to theO(4) model, where thea0

andh meson are absent from the beginning.
With Eqs.~45!, ~47!, and~48!, we can determine the pa

rameters of the model from the pion decay constant and
meson masses in the vacuum,
01600
e

ss

m

e

s05 f p , l15
ms

22mp
2 2ma0

2 1mh
2

2 f p
2

, l25
ma0

2 2mh
2

f p
2

,

m25mp
2 1

mh
22ms

2

2
, c5

mh
22mp

2

2
, h05 f pmp

2 . ~49!

With the U(1)A anomaly, there are five parameter
h0 , l1 , l2 , m2, andc, which can be unambiguously dete
mined from the five quantitiesf p , ms , ma0

, mh , andmp .

Without the U(1)A anomaly,c50, and mh5mp . In this
case, there are only four parameters and four quantities f
which the values of the parameters can be fixed. The va
for the parameters are listed in Table III.

For theU(3)r3U(3), model, we follow Ref.@9# in fit-
ting the parameters of the model to vacuum quantities. O
parameters differ from the ones given in Ref.@9#, since we
usems5400 MeV, and not 600 MeV. In the chiral limit, the
number of parameters equals the number of vacuum qua
3-11
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TABLE V. The masses and decay constants at vanishing temperature and the corresponding pa
sets for theU(4)r3U(4), model for the case of explicit chiral symmetry breaking withU(1)A anomaly. The
masses written in boldfaced letters are predicted; the other masses and decay constants are used to
the parameter set.

Masses and decay constants Parameter set

Explicit chiral f p592.4 MeV h05(917.24 MeV)3

symmetry breaking f K5113 MeV h852(309.46 MeV)3

with U(1)A ms5400.6MeV h1552(1088.67 MeV)3

anomaly ma0
51052.6MeV l1520.12

mk51116.2MeV l254.85
mf 0

51178.6MeV m25(345.78 MeV)2

mD0
52370.0MeV c521.50

mDs0
52480.1MeV

mxc0
53565.6MeV

mp5139.5 MeV
mK5493 MeV

mh5542.5MeV
mh851028MeV
mD51944.1MeV
mDs

51899.1MeV
mhc

52129.8MeV
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ties, and one can again obtain a unique mapping betw
these sets of quantities. With explicit chiral symmetry bre
ing, however, there are fewer parameters than vacuum q
tities. Consequently, some meson masses are predicted r
than used as fit parameters. The values for the param
and the meson masses are given in Table IV. The vacu
quantities predicted by the fit are given in bold-faced lette

For theU(4)r3U(4), model we adjust the parameters
obtain reasonable agreement between the vacuum ma
@24# and the masses computed at tree level, and not
masses computed to one-loop order as in Ref.@22#. As for
theU(3)r3U(3), case, the number of parameters is sma
than the number of meson masses, such that some m
masses cannot be fitted independently, but are predi
within this approach. We found that small values for thes
meson, ms;400 MeV, are favored, otherwise the ma
spectrum of the charmed mesons deviates too much from
one in nature. This is the reason why we choose as meson
massms5400 MeV also in the other cases discussed abo
The values for the parameters and vacuum quantities
listed in Table V.

IV. RESULTS

In this section we discuss the numerical results at nonz
temperature for the cases listed in Table I.

A. Explicit chiral symmetry breaking with U„1…A anomaly

In Fig. 2 we show the masses of the mesons as a func
of temperature for explicit chiral symmetry breaking, inclu
ing the U(1)A anomaly. This is the case where chiral sym
metry breaking results in the smallest residual symme
group,SU(Nf)V3U(Nf)A→SU(2)V .
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In Fig. 2~a! the masses of thes meson and the pions ar
shown for all models. Thes meson and the pion becom
degenerate in mass in the chirally restored phase. Compa
the s meson and pion masses in theO(4) model with those
in the U(2)r3U(2), model, the difference is almost negl
gible up to temperatures of 150 MeV. In the chirally restor
phase, the masses behave linearly with temperature,
grow faster in theU(2)r3U(2), model than in theO(4)
model. The reason is that there are twice as many field
the former model than in the latter, which results in twice
many tadpole-like contributions in the equations for the
medium masses. These come with a positive sign and
increase the masses.

Comparing the results of theU(3)r3U(3), model with
those of theU(2)r3U(2), model, one observes difference
already at a temperature of about 100 MeV. Furthermore,
masses become even larger in the chirally restored ph
The reason for this behavior is the strange degrees of f
dom in theNf53 case which lead to additional tadpole-lik
terms in the self-energies. As above, they lead to an incre
of the in-medium masses.

Finally, one observes that virtually nothing changes in
temperature range of interest when including the charm
grees of freedom in the framework of theU(4)r3U(4),

model. The reason is that the charm quark is large compa
to the temperature,mc@T, and the contributions from
charmed particles to the equations for the in-medium mas
are suppressed. For two reasons, this is a non-trivial re
First, the equations for the in-medium masses are structur
different for theU(4)r3U(4), model as compared to th
U(3)r3U(3), model, cf. Eqs.~25! and ~36!. Second, al-
though the tadpole terms~39! are strongly suppressed fo
particles with masses much larger than the temperature,
~33! and~36! form anonlinearsystem of coupled equations
3-12
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CHIRAL SYMMETRY RESTORATION IN LINEAR SIGMA . . . PHYSICAL REVIEW D68, 016003 ~2003!
i.e., small perturbations could lead to large quantitat
changes in the solution.

In Fig. 2~b! the masses of thea0 and theh mesons are
shown as functions of temperature. Qualitatively, the beh
ior of these masses is the same in all models. Thea0 meson
mass is constant up to temperatures of 150–200 MeV. It t
decreases, before increasing again above temperature
200–250 MeV. Theh meson mass is constant up toT
.50 MeV, and then monotonously increases with tempe
ture. At large temperatures,a0 andh become degenerate i
mass, indicating restoration of chiral symmetry. In t
U(2)r3U(2), model, this happens somewhat earlier,
about 250 MeV, than in the other two cases.

In theU(2)r3U(2), model, thea0 andh meson masse
are used to determine the parameters of the model. Thu
zero temperature, the masses coincide with their cor
vacuum values. In theU(3)r3U(3), model, the predictedh
mass deviates only by 2% from its vacuum value. Thea0
mass is also rather close to the correct value; the predi
mass is about 4% too large. In theU(4)r3U(4), , the h
mass is reproduced with excellent accuracy~the deviation is
less than 1%!, while thea0 mass is within 7% of its vacuum
value.

In Fig. 2~c! the k meson@now referred to asK0* (1430)
@24## and kaon masses are shown as a function of temp
ture. The results for theU(3)r3U(3), and U(4)r3U(4),

FIG. 2. The meson masses as a function of temperature fo
different models studied here for the case with theU(1)A anomaly
and explicit chiral symmetry breaking.
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model are almost identical. Thek meson and kaon becom
degenerate in mass at temperatures of the order of 400 M
In both models, the vacuum kaon mass is used as in
while thek mass is predicted. The deviation to the vacuu
value in nature is about 21%.

Figure 2~d! shows the masses of thef 0 and theh8 meson
as a function of temperature. These mesons also becom
generate in mass at temperatures of the order of 400 MeV
the U(3)r3U(3), model, the predictedh8 mass is rather
close to its value in nature; the deviation is 0.6%. In t
U(4)r3U(4), model, theh8 mass deviates from its correc
vacuum value by about 7%. Thef 0 mass is predicted in both
models. If we identify this state with thef 0(1370), these
predicted masses deviate by 14% from their correct valu

The masses of theDs0 , D0 , Ds , andD mesons are shown
in Fig. 2~e!. The masses of the pseudoscalar mesons
known but the scalar mesons and their masses have no
been experimentally identified. It is somewhat peculiar t
the charmed, strangeDs meson is lighter than the charme
non-strangeD meson. This is an artifact of the particular s
of coupling constants chosen here. For a different cho
this unphysical ordering of the masses can be reversed. T
however, the masses of the other mesons deviate by an
acceptably large extent from their physical values. Tempe
ture has virtually no effect on the heavy charmed meso
their mass changes at most by 10%, even in the chir
restored phase. Because of the non-linear nature of
coupled system of Eqs.~33! and ~36!, this is a non-trivial
result, although not completely unexpected: we expect
nificant changes of the meson masses only when the t
perature becomes of the order of the mass. For the char
mesons with masses of the order of 2 GeV, this is never
case in the temperature range of interest.

Finally, in Fig. 2~f! we show the masses of thexc0 andhc
meson. Their large masses do not change at all for temp
tures below 450 MeV. The vacuum values for both mes
masses are predicted. While the mass for thexc0 is within
5% of its correct value, the deviation for thehc is somewhat
larger (.30%).

To summarize, the masses of the scalar mesons rem
approximately constant up to temperatures around 150 M
and then slightly decrease before they become degene
with the masses of the pseudoscalar mesons. On the o

he

FIG. 3. ~a! The up-down quark condensate and~b! the strange
quark condensate as functions of temperature for the different m
els in the case withU(1)A anomaly and explicitly broken chira
symmetry.
3-13
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RÖDER, RUPPERT, AND RISCHKE PHYSICAL REVIEW D68, 016003 ~2003!
hand, with the exception of theh8 mass, the pseudoscala
masses in general increase monotonously with temperat

In Fig. 3~a! the up-down quark condensate and in 3~b! the
strange quark condensate are shown as functions of tem
ture. In theO(4) model and in theU(2)r3U(2), model the
up-down quark condensatewup-downcan be directly identified
with the vacuum expectation value of thes field, wup-down
[s0. On the other hand, in theU(3)r3U(3), model @9#,

wup-down5A2

3
s01

1

A3
s8 , ~50a!

wstrange5
1

A3
s02A2

3
s8 , ~50b!

and in theU(4)r3U(4), model the condensates are giv
by

wup-down5
1

A2
s01

1

A3
s81

1

A6
s15, ~51a!

wstrange5
1

2
s02A2

3
s81

1

2A3
s15, ~51b!

wcharm5
1

2
s02

A3

2
s15. ~51c!

In these formulaswstrange and wcharm are the strange an
charm quark condensate, respectively.

All models predict a qualitatively similar behavior for th
temperature dependence of the up-down quark condens
The strange quark condensate decreases more slowly
temperature than the up-down quark condensate. Thi
what one intuitively expects, as it appears more difficult
‘‘melt’’ a condensate of heavier quark species than of lig
quark species.

Figure 4 shows the charm quark condensate. Note
this condensate is much larger than the other two cond
sates. A peculiar feature is that it first increases at a temp
ture of about 200 MeV, assumes a maximum at about
MeV, and then decreases. The maximum value is appr

FIG. 4. The charm quark condensate as a function of temp
ture.
01600
e.

ra-

tes.
ith
is

t

at
n-
ra-
0
i-

mately 10% larger than the vacuum value. We are not aw
of a simple explanation for this behavior.

B. Explicit chiral symmetry breaking without U„1…A anomaly

In Fig. 5 we show the masses for the scalar and pseu
scalar mesons for the case of explicit chiral symmetry bre
ing in the absence of theU(1)A anomaly. We discuss the
results in comparison to the previous case. As in the previ
case, the scalar meson masses stay constant up to tem
tures close to the transition region, then decrease and fin
start to increase again when they become degenerate wit
pseudoscalar masses. In general, the pseudoscalar mass
crease monotonously with temperature. The difference
tween the results obtained in theU(2)r3U(2), and
U(3)r3U(3), model is rather small. An exception is thea0
mass which is an input parameter in the former model, bu
predicted in the latter.

A marked difference to the case withU(1)A anomaly is
that the chiral symmetry restoration transition is much m

a-

FIG. 5. The meson masses as a function of temperature for
different models in the case without theU(1)A anomaly and ex-
plicit chiral symmetry breaking.

FIG. 6. ~a! The up-down quark condensate and~b! the strange
quark condensate as a function of temperature for the diffe
models in the case without theU(1)A anomaly and explicitly bro-
ken chiral symmetry.
3-14
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FIG. 7. The chiral limit with
U(1)A anomaly. The temperature
dependence of the meson mass
are shown in panels (,1) and tha
of the up-down and strange quar
condensates in panels (,3). Th
results for theO(4) model are
shown in panels ~a,!, for the
U(2)r3U(2), model in panels
~b,!, and for the U(3)r3U(3),

model in panels~c,!. The effective
potential ~in arbitrary units! as a
function of the condensates0 is
shown in panels (,2).
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rapid, and it occurs at a slightly smaller temperature,T
.180 MeV. Moreover, above the transition the scalar a
pseudoscalar masses become degenerate much more ra
The reason is the absence of explicitU(1)A symmetry break-
ing. Another consequence of this is that, in t
U(2)r3U(2), model @the U(3)r3U(3), model#, the mass
of theh meson~theh8 meson! becomes degenerate with th
of the pion at small and high temperatures. In the tempe
ture range from about 50 MeV to 225 MeV, however, th
are different. We believe this to be an artifact originati
from the violation of Goldstone’s theorem in the Hartr
approximation, which becomes even more obvious wh
considering the chiral limit.

The melting of the condensates is shown in Fig. 6. T
smaller transition temperature of about 180 MeV is also
parent in the temperature dependence of the up-down q
condensate. Again, the strange quark condensate melts
rapidly than the up-down quark condensate.

C. Chiral limit with U„1…A anomaly

The masses as a function of temperature for theO(4)
model are shown in Fig. 7~a,1!, for theU(2)r3U(2), model
in Fig. 7~b,1!, and for theU(3)r3U(3), model in Fig.
7~c,1!. In the O(4) and U(2)r3U(2), models, there are
three Goldstone bosons, the pions, while in t
U(3)r3U(3), model there are eight Goldstone bosons,
pions, the kaons, and theh meson. Theh8 meson is not a
01600
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Goldstone boson due to the explicit breaking of theU(1)A

symmetry by the anomaly. The scalar octet, comprising
threea0 mesons, the fourk mesons, and thef 0 meson, is
degenerate in mass, while the mass of the singlets differs
from the mass of the octet. As the temperature increases
scalar masses decrease while the pseudoscalar mass
crease. The mass of the Goldstone bosons increases, be
the Hartree approximation does not respect Goldstone’s th
rem at nonzero temperature@9,10#.

Because of the restoration of chiral symmetry above
transition temperatureTc , the masses of the chiral partne
become degenerate for temperaturesT.Tc . For theO(4)
model, the chiral partners are thes and the pion, for the
U(2)r3U(2), model they are thes and the pion, as well as
the a0 and theh. Because of the explicit breaking of th
U(1)A symmetry, thes/pion anda0 /h do not become de-
generate. The reason for this behavior is the term;Gab in
Eqs.~25!. As discussed in Sec. III B, at zero temperature t
term leads to a difference in the masses~squared! of the h
meson and pion, and of thea0 and s meson, respectively
which is proportional to 2c. In the case with theU(1)A
anomaly, 2cÞ0 even for temperatures aboveTc . Conse-
quently, these mass differences persist also in the chir
restored phase.

For Nf53, the situation is different. The term;Gab for
Nf52 is replaced by a term;Gabcsc . In the chirally sym-
metric phase,sc50, and consequently this term vanishe
3-15
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FIG. 8. The chiral limit with-
out theU(1)A anomaly. The tem-
perature dependence of the mes
masses are shown in panels (,
and that of the up-down and
strange quark condensates in pa
els (,3). The results for the
U(2)r3U(2), model are shown
in panels~a,!, and for theU(3)r

3U(3), model in panels~b,!. The
effective potential ~in arbitrary
units! as a function of the conden
sates0 is shown in panels (,2).
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Therefore, all meson masses become degenerate, even
case with theU(1)A anomaly.

All models exhibit a first order phase transition betwe
the low-temperature phase where chiral symmetry is bro
and the high-temperature phase where chiral symmetr
restored. For theO(4) model and theU(2)r3U(2), model
with explicit breaking of theU(1)A symmetry, the transition
should be of second order, cf. Sec. I. It is a known shortco
ing of the Hartree approximation to predict a first order tra
sition also in these cases. For theU(2)r3U(2), model with-
out explicit breaking of theU(1)A symmetry, and for all
U(Nf) r3U(Nf), models withNf.2 the transition is of first
order, which is correctly reproduced by the Hartree appro
mation.

We have determined the numerical value ofTc by com-
puting the effective potentials. The latter are shown for
three different models in the second column of Fig. 7 a
function of the condensates0. ~In the chiral limit,s0 is the
only non-trivial condensate.! For the extraction of the transi
tion temperature, the absolute normalization of the effec
potential is irrelevant. All that matters is to identify the tem
perature where the minimum at the origin and the one a
non-zero value ofs0 become degenerate. For this purpo
we have plotted the effective potential for two temperatur
one slightly below and one slightly aboveTc . From this we
deduce that for theO(4) model, Fig. 7~a,2!, Tc is between
159 and 160 MeV. For theU(2)r3U(2), model, Fig. 7~b,2!,
we obtain a critical temperature between 154 and 155 M
This temperature is rather close to the one in theO(4)
model. Finally, for theU(3)r3U(3), model, the critical
temperature is between 165 and 166 MeV, which is sligh
larger than in the previous cases.

These values are surprisingly close to those obtained f
lattice QCD calculations@4#. In the chiral limit, these calcu
lations predictTc.175 MeV for Nf52 andTc.155 MeV
for Nf53. The critical temperature obtained from the chi
models in the Hartree approximation deviates from these
01600
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ues only by about 20 MeV~or 12%! for Nf52 and only 10
MeV ~or 6%! for Nf53. However, for the chiral models th
transition temperature is larger in the three-flavor case t
in the two-flavor case, while one finds the opposite behav
in the lattice QCD calculations.

For the sake of completeness we also show the cond
sates in the third column of Fig. 7. Note that, in contrast
the cases where chiral symmetry is explicitly broken, t
strange condensate is smaller than the up-down conden
The reason is that, in the chiral limit,s850, such that
wup-down5A2wstrange, cf. Eq. ~50!.

D. Chiral limit without U„1…A anomaly

The masses as a function of temperature are shown in
8~a,1! for the U(2)r3U(2), model, and in Fig. 8~b,1! for
the U(3)r3U(3), model. In the first case, there are fo
Goldstone bosons, the pions and theh meson, while in the
latter case there are nine Goldstone bosons, the pions
kaons, and theh and h8 mesons. As the temperature in
creases, the scalar masses decrease while the pseudo
masses increase, until they become degenerate in a first o
phase transition. The mass of the Goldstone bosons incre
with temperature, because the Hartree approximation d
not respect Goldstone’s theorem at nonzero tempera
@9,10#. Moreover, the masses of the Goldstone bosons are
equal: for theU(2)r3U(2), model, theh meson becomes
heavier than the pion, while for theU(3)r3U(3), model the
h8 meson becomes heavier than the other Goldstone bo
~pions, kaons,h meson!. Note that the role of theh meson in
the two-flavor case is assumed by theh8 meson in the three-
flavor case. The reason is that the physical meson co
sponding to the singlet representation in theU(2)r3U(2),

model is the h meson, while it is the h8 in the
U(3)r3U(3), model.

The numerical values for the critical temperatureTc have
been determined by computing the effective potentials. T
3-16
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CHIRAL SYMMETRY RESTORATION IN LINEAR SIGMA . . . PHYSICAL REVIEW D68, 016003 ~2003!
latter are shown in the second column of Fig. 8 as a func
of the condensates0, for temperatures slightly below an
aboveTc . In the U(2)r3U(2), model, Fig. 8~a,2!, we ob-
tain a critical temperature of.150 MeV. For the
U(3)r3U(3), model the temperature is slightly smaller, b
tween 147 and 148 MeV. The ordering of critical tempe
tures for the two- and three-flavor cases is now reverse
compared to the case with theU(1)A anomaly, and is con-
sequently in agreement with the ordering found in latt
QCD calculations. One might be tempted to view this as
indication for a rapidly decreasingU(1)A anomaly near the
critical temperature, in agreement with the results of R
@25,26#. Finally, the condensates are shown in the third c
umn of Fig. 8. The results are qualitatively similar to the ca
with the U(1)A anomaly.

V. CONCLUSIONS

In this work we have used several different chiral mode
the O(4), theU(2)r3U(2), , the U(3)r3U(3), , and the
U(4)r3U(4), linear sigma model, to compute the tempe
ture dependence of meson masses and quark conden
across the chiral phase transition. The meson masses
condensates were self-consistently calculated in the Ha
approximation, which we derived via the CJT formalis
Moreover, we have studied several distinct patterns of s
metry breaking within the different models. For a list
cases studied here see Table I.

We first considered the physically relevant case of expl
symmetry breaking in the presence of theU(1)A anomaly
and compared the results of the different chiral models
order to clarify how they change with the number of qua
flavors Nf . Comparing the O(4) model with the
U(2)r3U(2), model, one first notices that the degrees
freedom have doubled: in addition to thes meson and the
pions which are already present in theO(4) model, one now
has in addition theh meson and thea0 mesons. This has th
consequence that the meson masses grow more rapidly
temperature in the phase where chiral symmetry is resto
The reason for this are the tadpole contributions from
additional degrees of freedom to the meson self-energ
which lead to an increase in the meson masses. This re
also applies when adding the strange degree of freedom
the framework of theU(3)r3U(3), model. In fact, this pic-
ture holds in general, as long as the masses of the additi
degrees of freedom are of the same order of magnitude a
chiral phase transition temperature. On the other hand,
ing the heavy charm quark degree of freedom in the fram
work of theU(4)r3U(4), model does not significantly in
fluence the results for the masses of the non-charmed me
and the non-charmed condensates. The reason is that th
ditional tadpole contributions from the heavy charmed m
sons are exponentially suppressed with the meson m
;exp(2M/T). Vice versa, also the masses of the charm
mesons do not change appreciably from their vacuum va
over the range of temperatures of interest for chiral symm
try restoration, simply because the tadpole contributio
from the non-charmed meson are small compared to
large vacuum mass of the charmed mesons. This resu
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intuitively clear from the physical point of view, but is sti
non-trivial: first, the equations for the in-medium masses
structurally different for theU(4)r3U(4), model as com-
pared to theU(3)r3U(3), model. Second, the set o
coupled equations for the masses and condensates is a
linear system of equations, which means that small pertu
tions could lead to large quantitative changes in the solut

We then studied the case of explicit chiral symme
breaking without aU(1)A anomaly. The main difference to
the previous case was that the region of the chiral transi
is narrower and located at a somewhat smaller temperat

Finally, we considered the meson masses and quark
densates in the chiral limit. The Hartree approximation c
rectly predicts the chiral transition to be of first order in t
U(2)r3U(2), model without theU(1)A anomaly and in the
U(3)r3U(3), model. For theO(4) model and theU(2)r
3U(2), model with theU(1)A anomaly the Hartree ap
proximation incorrectly produces a first order instead o
second order phase transition. The transition temperat
are surprisingly close to the ones obtained in lattice Q
calculations. However, in the case with theU(1)A anomaly
the transition temperature increases with the number of
vors, while in lattice QCD it decreases. This picture chan
in the case without theU(1)A anomaly, where the transition
temperature shows the same behavior with the numbe
quark flavors as in lattice QCD. This may indicate that t
U(1)A symmetry is, at least partially, restored at and abo
the chiral phase transition temperature.
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APPENDIX: SCALAR AND PSEUDOSCALAR MESON
FIELDS

For Nf52, the identification of the physical scalar an
pseudoscalar meson fields with the matrix fields defined
Eq. ~19a! is

Tasa5
1

A2 S 1

A2
s01

1

A2
a0

0 a0
1

a0
2 1

A2
s02

1

A2
a0

0D ,

~A1a!

Tapa5
1

A2 S 1

A2
p01

1

A2
p0 p1

p2 1

A2
p02

1

A2
p0D .

~A1b!

Here,p6[(p17 ip2)/A2 andp0[p3 are the charged and
neutral pions, respectively. Note the change of sign in
definition of the charged pion fieldsp6 in terms ofp1,2 in
comparison to Ref.@9#. The definition given here is the cor
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rect one, as one can readily confirm by writing the mes
fields in terms of their quark content,

pa;q̄Tag5q. ~A2!

This applies also to the other charged meson fields define
th
rk

01600
n

in

the following. The fieldp0 can be identified with theh
meson. The parity partner of the pion is thea0~980! meson,
i.e., a0

6[(s17 is2)/A2 and a0
0[s3. The field s0 corre-

sponds to thes meson @now also referred to asf 0(400
21200)].

For Nf53 we obtain the following matrix:
Tasa5
1

A2S 1

A2
a0

01
1

A6
s81

1

A3
s0 a0

1 k1

a0
2

2
1

A2
a0

01
1

A6
s81

1

A3
s0 k0

k2
k 0̄ 2

2

A3
s81

1

A3
s0

D , ~A3a!

Tapa5
1

A2S 1

A2
p01

1

A6
p81

1

A3
p0 p1 K1

p2
2

1

A2
p01

1

A6
p81

1

A3
p0 K0

K2
K 0̄ 2

2

A3
p81

1

A3
p0

D . ~A3b!
The fields K6[(p47 ip5)/A2, K0[(p62 ip7)/A2, and
K̄0[(p61 ip7)/A2 are the kaons. In general, because
strange quark is much heavier than the up or down qua
thep0 and thep8 are admixtures of theh and theh8 meson.
We identify the parity partner of the kaon with thek meson
@now referred to asK0* (1430) in@24##. Finally, in general the
s0 and thes8 are admixtures of thes and f 0(980) mesons.

For Nf54 the following identification of physical fields
with matrix elements holds:

Tasa5
1

A2 S AS a0
1 k1 D̄0

0

a0
2 BS k0 D0

2

k2 k̄0 CS Ds,0
2

D0
0 D0

1 Ds,0
1 DS

D , ~A4!

where

AS5
1

2
s01

1

A2
a0

01
1

A6
s81

1

A12
s15,

BS5
1

2
s02

1

A2
a0

01
1

A6
s81

1

A12
s15,
e
s,

CS5
1

2
s02

2

A6
s81

1

A12
s15,

DS5
1

2
s02

3

A12
s15,

and

Tapa5
1

A2 S AP p1 K1 D̄0

p2 BP K0 D2

K2 K̄0 CP Ds
2

D0 D1 Ds
1 DP

D , ~A5!

with

AP5
1

2
p01

1

A2
p01

1

A6
p81

1

A12
p15,

BP5
1

2
p02

1

A2
p01

1

A6
p81

1

A12
p15,

CP5
1

2
p02

2

A6
p81

1

A12
p15,

DP5
1

2
p02

3

A12
p15.
3-18



u
f
la

ot

CHIRAL SYMMETRY RESTORATION IN LINEAR SIGMA . . . PHYSICAL REVIEW D68, 016003 ~2003!
Here, D05(p91 ip10)/A2, D̄05(p92 ip10)/A2, D6

5(p116 ip12)/A2, and Ds
65(p136 ip14)/A2 are the

charged and neutral pseudoscalar mesons with charm q
tum numbers. Thep0 , p8, andp15 fields are admixtures o
the h, h8, and hc mesons. The charged and neutral sca
Z

y

01600
an-

r

mesons with charm quantum numbers areD0
05(s9

1 is10)/A2, D̄0
05(s92 is10)/A2, D0

65(s116 is12)/A2,
and Ds,0

6 5(s136 is14)/A2. These scalar mesons have n
been identified experimentally, yet. Thes0 , s8, and s15
fields are admixtures of thes, f 0, andxc0 mesons.
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