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Electroweak phase diagram at finite lepton number density

A. Gynther*
Department of Physical Sciences, Theoretical Physics Division, P.O. Box 64, FIN-00014 University of Helsinki, Finland

~Received 19 March 2003; published 2 July 2003!

We study the thermodynamics of the electroweak theory at a finite lepton number density. The phase
diagram of the theory is calculated by relating the full 4-dimensional theory to a 3-dimensional effective theory
which has been previously solved using nonperturbative methods. It is seen that the critical temperature
increases and the value of the Higgs boson mass at which the first order phase transition line ends decreases
with increasing leptonic chemical potential.
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I. INTRODUCTION

The complete thermodynamic description of the el
troweak theory1 depends on only five intensive variables: t
temperatureT of the system, the strength of the extern
U(1) magnetic fieldHY and the leptonic chemical potentia
mLi

. The most studied case is that when only the tempera
T and the conjugated variable entropy are nonzero as it
early understood that at high temperatures the symmetr
the electroweak theory would be restored@1#. Much work
was devoted to this problem using, for example, perturba
one-loop@2–4# and two-loop@5# effective potential calcula-
tions. These only work for small scalar self-couplings or
small Higgs boson masses and the full solution of the pr
lem required first a perturbative matching of the fu
4-dimensional theory to an effective 3-dimensional the
@6#. The phase diagram of the effective theory was then
merically solved with lattice Monte Carlo techniques@7# ~the
phase diagram has been studied numerically also with
4-dimensional theory, see@8#!. The result is that the phas
diagram contains a first-order line which ends in a sec
order critical point of Ising universality class@9#. Similar
techniques were then applied to solve the phase diag
when alsoHY and the conjugate extensive variableVBY
were nonzero@10#. The purpose of this paper is to study th
remaining case: how the phase diagram depends on fi
chemical potentials related to lepton and baryon numb
and on the conjugate extensive variables, net lepton
baryon number densities.

The thermodynamical properties of the electrowe
theory at nonzero lepton number density are interesting f
many points of view. Theoretically, the minimal standa
model describes nature to very high accuracy and thus
important that we know the theory completely. The partiti
function especially is a fundamental concept and to know
under the most general circumstances is of interest. In
mology, the neutrino degeneracy~the net neutrino number!
of the universe is a poorly known number. Best limits a

*Email address: antti.gynther@helsinki.fi
1To fix the terminology, in this paper electroweak theory mea

the electroweak sector of the minimal standard model with
known physical parameters, essentiallyGm , mW , mZ andmtop, but
parametrized withmH .
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given by constraints from big bang nucleosynthesis and c
mic microwave background radiation which limits the d
generacy parameterjn[mn /Tn to jm,t<2.1 for the muon
and tau neutrinos and toje<0.3 for the electron neutrino
wheremn are the neutrino chemical potentials andTn is the
temperature of the neutrino background@11#. If such large
chemical potentials were present in the very early unive
then it raises a question about how they affect the e
troweak thermodynamics and especially the electrow
phase transition. It has, for example, been proposed tha
presence of a large lepton number asymmetry might exp
the absence of topological defects@12# as well as the ob-
served baryon number asymmetry@13#. Finally, a compari-
son between QCD thermodynamics and electroweak ther
dynamics is interesting. QCD thermodynamics has of cou
attracted a lot of interest during the last years due to exp
ments carried out at the moment at the Relativistic Hea
Ion Collider ~RHIC! in Brookhaven and in the future at th
Large Hadron Collider~LHC! in CERN. It should be inter-
esting to see how the properties of the QCD phase trans
as a function of the baryonic chemical potential and the nu
ber of light flavors~strange quark mass! compare to the prop-
erties of the electroweak phase transition as a function
leptonic chemical potentials and the number of light boso
degrees of freedom~Higgs boson mass!.

The role of the finite lepton number density in the the
modynamics of the electroweak theory has been discus
already in the literature@14–20#. Those studies rely on per
turbative one-loop calculations of the effective potential a
the conclusion made is that the critical temperature increa
with increasing chemical potentials. This can be underst
in terms of the Bose-Einstein condensation of the Higgs fi
due to finite chemical potentials related to gauge charg
The fate of theW6 boson condensate, predicted in@15#, at
high temperatures is also discussed on the same foo
@17,18#. Vector boson condensation is also discussed in@21#.

Purely perturbative calculations are, however, doom
due to infrared divergences and a nonperturbative stud
needed, in general. However, direct Monte Carlo studies
the full electroweak theory at high temperatures and fin
chemical potentials are very difficult for numerous reaso
For example, the system is characterized by a multitude
scales extending frompT ~mass scale of nonzero Matsuba
modes! to g2T ~mass scale of the magnetic sector of t
system!. This leads to a need for large lattices in solving t
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properties of the system. Furthermore, chiral fermions
notoriously very hard to implement on a lattice. At fini
density there is also the famous ‘‘sign’’ problem: the ferm
onic determinant is complex and thus the integration m
sure is not positive definite which spoils importance sa
pling.

We approach this problem by generalizing the succes
methods of@6,7# to finite chemical potentials. That is, w
calculate the dimensional reduction of the full 4-dimensio
electroweak theory at high temperatures and finite dens
to a 3-dimensional effective field theory. The effective theo
can then be solved using Monte Carlo methods in orde
find out the phase diagram. This method is, however,
construction limited to small chemical potentials.

The paper is organized as follows. In Sec. II we define
theories and give the matching between them. In Sec. III
give the results for the phase diagram and in the final sect
Sec. IV, we discuss their meaning. Results for the requ
sum integrals are given in the Appendix.

II. DIMENSIONAL REDUCTION OF THE ELECTROWEAK
THEORY AT FINITE CHEMICAL POTENTIALS

In this section we describe the construction of high te
perature effective field theories at finite chemical potentia

A. The fundamental theory

The electroweak theory at finite temperatures is defi
by the Euclidean action

S5E
0

b

dtE d3xL

with

L5~DmF!†DmF2n2F†F1l~F†F!21
1

4
Gmn

a Gmn
a

1
1

4
FmnFmn1 l̄LD” lL1ēRD” eR1q̄LD” qL1ūRD” uR

1d̄RD” dR1gY~ q̄LF̃tR1 t̄ RF̃†qL!. ~1!

Here Dm5]m1I igAm
a ta1Yig8Bm , where I and Y are the

weak isospin and weak hypercharge of the correspond
doublet/singlet,lL and qL denote the left-handed lepton an
quark doublets andeR , uR and dR denote the right-hande
leptons, up-type quarks and down-type quarks, respectiv
Also, Gmn

a 5]mAn
a2]nAm

a 2geabcAm
b An

c , Fmn5]mBn2]nBm

and F̃5 i t2F* . Only the top quark is taken to have a no
zero Yukawa coupling. The convention for the Euclide
gamma matrices is as given in@6#. The bosonic fields (f)
are periodic int while fermionic fields (c) are anti-periodic.
Thus they can be expanded in Fourier series~Matsubara
modes!

f~t,x!5 (
n52`

`

fn~x!ei2npTt, ~2!
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c~t,x!5 (
n52`

`

cn~x!ei (2n11)pTt. ~3!

We will employ the power-counting rulesg82;g3, l;gY
2

;g2. The Lagrangian isCP symmetric. Calculations are per
formed in Landau gauge.

As is well known, the thermodynamics of any system
described by the partition function defined as a trace of
density matrix

Z5Tr e2b(H2mkNk). ~4!

HereNk are all the conserved~global or local! charges of the
system andmk are the corresponding chemical potentials.
the electroweak theory, at a classical level, the lepton num
currents and the baryon number current are conserved i
pendently. However, due to the triangle anomaly, these
rents are not conserved in quantum theory~for a review see,
e.g. @22#!

]m j m}g2eabmnGab
a Gmn

a for each current. ~5!

It is thus possible to form onlynf conserved linear combina
tions of these currents. These are usually defined to be

Xi5
1

nf
B2Li , i 51, . . . ,nf ~6!

wherenf is the number of families,B is the baryon number
andLi are the lepton numbers for each family

B5
1

3 (
f ,c

E d3xq̄c, fg0qc, f ,

Li5E d3x~ ēig0ei1 n̄ ig0aLn i ! ~7!

where

aL5
1

2
~12g5!.

Heref andc stand for flavor and color, respectively, andqc, f
are the quark fields. The remaining currentnfB1( iL i is not
conserved.

In addition to these globally conserved charges there
locally conserved charges related to the gauge symmetrie
the theory. Of the four gauge generators we can choose
mutually commuting ones for which it is possible to assi
chemical potentials. One must be the hypercharge and a
other one it is convenient to choose the third componen
the isospin. The corresponding currents are
1-2
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j m
Y5

1

2 (
fam.

S 1

3
q̄LgmqL1

4

3
ūRgmuR2

2

3
d̄RgmdR2 l̄LgmlL

22ēRgmeRD2
i

2
@~DmF!†F2F†DmF#,

j m
3 5

1

2 (
fam.

~ q̄Lgmt3qL1 l̄Lgmt3lL!

2
i

2
@~DmF!†t3F2F†t3DmF#2e3bcAn,bGmn

c . ~8!

The sums run over the families. Chemical potentials rela
to gauge charges cannot, however, be chosen freely. In
mal equilibrium the system must be neutral with respec
gauge charges. This requirement fixes the values of th
chemical potentials, which are then functions of temperat
and chemical potentials related to global charges. This ca
seen explicitly below.

Taking all the conserved currents into account, the pa
tion function is given by the path integral@18#

Z5Tr exp@2b~H2m iXi2mYQY2mT3QT3!# ~9!

5E Dw expF2S S2E
0

b

dt(
i 51

nf

m iXi D G ~10!

[E Dw expF2S1E
0

b

dtS mBB1(
i 51

nf

mLi
Li D G

wherew denotes the set of all the fields. Here we have
fined (w̃ excludesB0 andA0

3)

mB[
1

nf
(
i 51

nf

m i , mLi
[2m i , ~11!

and

S5SF w̃,B01
imY

g8
,A0

31
imT3

g G ~12!

with S containing also the gauge fixing and ghost terms.
see that the constraintnfmB1( imLi

50 is satisfied. We also
note from Eqs.~10! and ~12! that after the integration ove
the conjugated momentum fields is done@going from Eq.~9!
to Eq. ~10!#, the chemical potentials related to the gau
charges enter the path integral the same way as the s
modes of the temporal components of the correspond
gauge fields. Thus, we can interpret them as acting as b
grounds for the gauge fields. Therefore, writingB0→B0

1^B0&,A0
3→A0

31^A0
3& and requiring stationarity of free en

ergy with respect to expectation values^B0& and^A0
3& ~con-

dition for thermal equilibrium! is equivalent to requiring
neutrality with respect to corresponding gauge charges:

05
] ln Z
]^B0&

52 ig8
] ln Z
]mY

52
ig8QY

T
~13!
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and similarly for^A0
3&. It is then convenient to redefineB0

andA0
3 in Eqs.~10! and ~12! as

g8B0→g8B02 imY , gA0
3→gA0

32 imT3. ~14!

This way the action in Eq.~12! becomes the standard ele
troweak action for these redefined fields andmY andmT3 are
not explicit in the path integral anymore. The chemical p
tentials can be recovered as expectation values for the r
fined B0 andA0

3 at equilibrium2

^B0&5
imY

g8
, ^A0

3&5
imT3

g
. ~15!

This explicitly shows that these chemical potentials can
be chosen freely, but are fixed by requiring that the system
in thermal equilibrium.

B. Dimensional reduction at finite µ

Due to infrared divergences which arise when integrat
over the bosonic zero modesf0(x) ~static modes int), the
path integral~10! cannot be reliably evaluated within pertu
bation theory. The reason for this is that these modes
light when the temperature is much larger than any ot
mass scale in the theory and therefore the high tempera
expansion parameterg2T/E is large for them. All the other
modes~nonstatic int), fnÞ0(x) andcn(x), are on the other
hand always very massive,m;pT, and can therefore be
integrated out perturbatively, as can also the static mo
with upu.gT. We are then led to the very natural idea
formulating a three dimensional effective field theory for t
static modesf0(x) @6,23#. This effective theory is defined to
be the most general theory for the static modes respecting
required symmetries. It reproduces the Green’s functions
these static modes to a controllable accuracy.

Finite fermion number density affects dimensional redu
tion in two ways. First, the renormalization of the fields a
parameters as the heavy modes are integrated out cha
when compared to the casem50. Second, the symmetries o
the fundamental four dimensional theory are reduced wh
gives rise to terms in the effective theories absent atm50.
More precisely, the introduction of chemical potentials to t
theory leads to terms in the path integral which breakC but
preserveP andT thus making the theory, in addition to bein
C andP breaking, alsoCP andCPT breaking. The effective
theories may therefore contain terms which breakCP and
CPT and which do not appear atm50. Such terms mus
nevertheless still preserve 3-dimensional gauge and r
tional invariance as well asT invariance.

The first effective theory is obtained after integrating o
the nonzero Matsubara modes. The resulting effective the
is a 3-dimensional SU(2)3U(1) gauge field theory with a
fundamental scalar doublet~Higgs! and four adjoint scalars

2To be precise, this requires that the expectation values of
original B0 andA0

3 vanish in equilibrium. This certainly is the cas
when the system is neutral.
1-3
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corresponding to the temporal components of the ga
fields in the fundamental 4-dimensional theory. The dim
sionally lowest orderCP and CPT violating terms in this
theory, arising from the finite chemical potentials, are~in
three dimensions@w#5GeV1/2)

dim5GeV1/2: iB0 ,

dim5GeV3/2: iB0
3 , iF†A0

ataF, iF†B0F, iB0A0
aA0

a ,

dim5GeV2: e i jkBiF jk , e i jk S Ai
aGjk

a 2
i

3
geabcAi

aAj
bAk

cD ,

~16!

which arise from diagrams given in Fig. 1. The factors oi
are chosen in such a way that these operators areT invariant
~with T transformations adopted from the 4-dimension
theory!. The effective theory does not contain the term
Tr A0

ata and Tr(A0
ata)3 since these vanish identically due

the properties of the SU(2) generators. The coefficient of
term B0

3 is of the orderg8 3;g9/2 and when the matching o
the Green’s functions is done to orderg4 it can be neglected

The possibility that there are terms linear in the adjo
scalars in the action of the effective theory is notewort
Such terms induce condensates of the corresponding fiel
equilibrium. As already discussed, such condensates for
adjoint scalars are equivalent to nonzero chemical poten
for the gauge charges. Thus the emergence of linear term
the effective theory takes care of neutrality of the syst
with respect to gauge charges.

The last two terms of Eq.~16!, the so-called Chern
Simons terms, are interesting. There of course is a vas
erature on the physics induced by them~for a review, see
@24#!. That such terms appear in chiral gauge field theo
when fermions are integrated out was first observed in@25#.
However, in the present study we observe that the coe
cients of these terms in the effective theories vanish du
the nonconservation ofB1L (nfmB1( imLi

50). Thus they
do not play any role in them. The role of those terms
smaller temperatures, where they may be important, has
discussed in@26#.

The second effective theory is obtained after further in
grating out the adjoint scalars, the zero components of
gauge fields. The resulting theory is a 3-dimensional SU
3U(1)1Higgs gauge field theory. The form of the theory
fully determined by the gauge invariance. There cann

FIG. 1. Diagrams leading to new terms in the effective theor
Solid lines correspond to fermions, wavy lines to gauge fields
dashed lines to scalars.
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e
-

l
s

e

t
.
in

he
ls
in

it-

s

fi-
to

t
en

-
e
)

t,

therefore, be any terms in the theory that would be absen
m50 as far as symmetries are considered~apart from the
Chern-Simons terms, which nevertheless, as stated ab
turn out to be absent!. Finite chemical potentials show u
only in the mapping of the parameters of this theory to
physical variables.

C. Integration over the superheavy modes

The first effective theory in its most general form is d
fined by the Lagrangian

L15
1

4
Gi j

a Gi j
a 1

1

4
Fi j Fi j 1~DiF!†DiF1m3

2F†F

1l3~F†F!21
1

2
~DiA0

a!21
1

2
mD

2 A0
aA0

a

1
1

4
lAA0

aA0
aA0

bA0
b1

1

2
~] iB0!21

1

2
mD8

2B0
2

1h3F†FA0
aA0

a1h38F
†FB0

21
1

2
g3g38B0F†A0

ataF

1ae i jk S Ai
aGjk

a 2
i

3
g3eabcAi

aAj
bAk

cD1a8e i jkBiF jk

1k1B01rF†A0
ataF1r8F†FB01rGB0A0

aA0
a ,

~17!

where DiA0
a5] iA0

a2g3eabcAi
bA0

c . The parameters of this
theory are to be matched to those of the 4-dimensio
theory up to orderg4. The factors ofi are included in the
coefficientsk1 , r, r8 andrG .

In general, theories are related by matching correspond
Green’s functions calculated in each theory. If the fields
renormalized as (w denotes a generic field!

w3D
2 5

1

T
Zww4D

2 , ~18!

then theN-point Green’s functions are related by

G3D
$ni %5

1

T)
i

S T

Zi
D ni /2

G4D
$ni % , (

i
ni5N, ~19!

where i labels the different fields andni is the number of
times the fieldi occurs in the Green’s function. This match
ing has been performed for the minimal standard mode
zero chemical potentials in@6#. At finite fermion number
density those results are modified.

Let us denote byDG4D and DZw the change in the
4-dimensional Green’s functions and field renormalizatio
due to finite chemical potentials, and byDG3D the change in
the 3-dimensional Green’s functions due to changes in
parameters of the effective theory. We then get from Eq.~19!
that

.
d

1-4
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DG3D
($ni %)5TN/221F S)

i
Zi ,m50

2ni /2 DDG4D
($ni %)

2S (
i

ni

2
DZi DG4D

($ni %)G ~20!

which holds whenZw are calculated up to one-loop orde
This formula allows us to calculate the changes in the m
ping of the parameters of the effective theory to physi
variables.

1. Changes in the coefficients of the terms present already
at µÄ0

The field renormalizations can be calculated from the m
mentum dependent part of the two-point functions. Denot
by Z w

0 the results at zero chemical potential given in E
~141!, ~142! and ~143! of @6# we get

Zf5Z f
0 F12

3gY
2

16p2
AS mB

3 D G ,

ZA0
5Z A0

0 H 12
g2

48p2 F9AS mB

3 D1(
i 51

nf

A~mLi
!G J ,

ZAi
5Z Ai

0 H 12
g2

48p2 F9AS mB

3 D1(
i 51

nf

A~mLi
!G J . ~21!

Here we have defined the functionA(m) ~see the Appendix!

A~m!5cS 1

2
1

im

2pTD1cS 1

2
2

im

2pTD12gE12 ln 4.

~22!

It is now straightforward to find the modifications of th
renormalization of the parameters. The Debye masses g
correction coming from the diagrams in Fig. 2. These
needed only to orderg2 ~as discussed in@6#! and thus the
modification of the field renormalizations do not affect t
Debye masses. Denoting by subscriptm50 the results from
Eqs.~160! and ~161! of @6# we get

FIG. 2. The required diagrams for Debye masses and the
plings. Solid lines correspond to fermions, dashed lines to sca
and wavy lines to gauge bosons.
01600
-
l

-
g
.

t a
e

mD
2 5mD,m50

2 1
g2

4p2 S mB
21(

i 51

nf

mLi

2 D ,

mD8
25mD,m5082 1

g82

4p2 S 11

9
mB

213(
i 51

nf

mLi

2 D . ~23!

The coupling constants, on the other hand, are modified
to both changes in field renormalizations and changes in l
integrals. The required diagrams are shown in Fig. 2. T
results are

l35l3,m502
3gY

2T

16p2
~gY

222l!AS mB

3 D ,

h35h3,m501
g4T

192p2 F9AS mB

3 D1(
i 51

nf

A~mLi
!G ,

g3
25g3,m50

2 1
g4T

48p2 F9AS mB

3 D1(
i 51

nf

A~mLi
!G , ~24!

where l3,m50 , h3,m50 and g3,m50
2 are given in Eqs.~150!,

~147! and ~146! of @6#, respectively. One may note thatlA ,
the self-coupling of the adjoint scalars, does not get any c
rections from the chemical potentials and thus Eq.~162! of
@6# holds. Also,h385g38

2/4.
Last, the scalar mass parameter is calculated to two lo

One must carefully obtain all the contributions from fie
renormalizations and loop integrals. The diagrams need
recalculation are shown in Fig. 3. The result ism3

2(m̄)

5m3,m50
2 (m̄)1Dm3

2 wherem3,m50
2 (m̄) is given by Eq.~156!

of @6# and

u-
rs

FIG. 3. The required scalar two-point functions for the ma
parameter. Solid lines correspond to fermions, dashed lines to
lars, wavy lines to electroweak gauge bosons and curly lines
gluons. Crosses denote counterterms.
1-5
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Dm3
25

gY
2~m̄ !

12p2
mB

22
3gY

2

16p2 S n22
lT2

2
2

3g2T2

16
2

gY
2T2

4 DAS mB

3 D1
gY

2mB
2

64p4 H 3

4
g2Lb~m̄ !2gY

2FL f~m̄ !2AS mB

3 D G J
2F S 9gY

41
9

2
gY

2g2116gY
2gs

2DAS mB

3 D2S 9gY
41

9

4
gY

2g2218lgY
2216gY

2gs
22

27

4
g4D16BS mB

3 D G T2

128p2

1S 9gY
41

9

4
gY

2g2218lgY
2216gY

2gs
22

27

4
g4D imBT

48p3
lnS GS 1

2
2

imB

6pTD
GS 1

2
1

imB

6pTD D
1F9gY

2g226~3gY
428gY

2gs
2!Lb~m̄ !19gY

4L f~m̄ !1S 9

2
gY

2g2116gY
2gs

2D ~4 ln 221!

1S 9gY
41

9

4
gY

2g2218lgY
2216gY

2gs
22

27

4
g4D4gE2S 9gY

41
9

2
gY

2g2116gY
2gs

2DAS mB

3 D G mB
2

1152p4

2
3

4
g4(

i 51

nf F T2

8p2
B~mLi

!1
imLi

T

16p3
lnS GS 1

2
2

imLi

2pT
D

GS 1

2
1

imLi

2pT
D D 1

mLi

2

32p4
gEG . ~25!
a

c
th

the
e

ffi-
oop

re
uge
Here the functionB(m) ~see the Appendix! is defined by

B~m!5z8S 21,
1

2
1

im

2pTD1z8S 21,
1

2
2

im

2pTD
22z8S 21,

1

2D ~26!

and the functionsLb(m̄) andL f(m̄) are as defined in@6#

Lb~m̄ !5 ln
m̄2

T2
22 ln 4p12gE

L f~m̄ !5 ln
m̄2

T2
22 lnp12gE . ~27!

Herem̄ is the renormalization scale in the modified minim
subtraction (MS) scheme. Note thatDm3

2 is independent of

m̄ when the running ofgY
2 is taken into account.

2. New terms

As already pointed out, chemical potentials also indu
new terms to the effective theories. These arise from
01600
l

e
e

diagrams in Fig. 1. The most important one of these is
term linear inB0 which is related to the neutrality of th
system. Calculating to two loops~not including contributions
of the orderg83;g9/2) we get

k152
ip

3
g8T5/2H S 12

9g2

64p2D (i 51

nf mLi

pT
F11S mLi

pT
D 2G

2S 12
5gY

2

32p2
2

9g2

64p2
2

gs
2

2p2D mB

pT F11
1

9 S mB

pTD 2G J .

~28!

The corresponding diagrams are given in Fig. 4. The coe
cients of the other new terms are needed only to one l
order. The result for them is

FIG. 4. Diagrams contributing to the linear term. Solid lines a
fermions, dashed lines scalars, wavy lines electroweak ga
bosons, curly lines are gluons and external legs areB0 legs.
1-6
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r5
i

8p
ggY

2T3/2
mB

pT
,

r852
5i

24p
g8gY

2T3/2
mB

pT
,

rG52
i

8p
g8g2T3/2S mB

pT
2(

i 51

nf mLi

pTD ,

a5
g2

32p2 S nfmB1(
i 51

nf

mLi D 50,

a852
g8 2

32p2 S nfmB1(
i 51

nf

mLi D 50. ~29!

These come from the diagrams in Fig. 1. As already no
the Chern-Simons terms vanish due to the nonconserva
of B1L which setsnfmB1( imLi

50.

D. One-loop effective potential

Before integrating over the adjoint scalarsA0
a andB0 it is

instructive to consider the effective potenti
Veff(w,^A0

3&,^B0&) for the condensates (^F&
51/A2(0, w)T). Although not completely reliable,Veff is
known to give a rather good description of the phase tra
tion at small mH where the scalar self-coupling is sma
Studies of the electroweak phase transition at finite chem
potentials using perturbatively derived effective potenti
have been carried also previously@16–18#.

At this point we are only interested in the qualitative e
fects finite chemical potentials can have. Therefore, in or
to simplify the procedure, we neglect the contributions fro
the terms lAA0

aA0
aA0

bA0
b , rF†A0

ataF, r8B0F†F and
rGB0A0

aA0
a . This is motivated sincelA;g4 and rG;g7/2

are small and since the three point verticesB0F†F;r8 and
A0

aF†F;r are negligible when compared to similar vertic
obtained from the four point verticesB0

2F†F and
B0F†A0

ataF after annihilating aB0 leg by thek1 vertex.
Likewise, we will use h35g3

2/4, h385g38
2/4, neglecting

higher order corrections, which simplifies some expressi
below. This is also consistent with all the approximatio
above. Furthermore, we will only consider quantum fluctu
tions of the magnetic sectorAi

a , Bi and of the scalars
A0

1 , A0
2 , and treat all the condensing scalarsF, B0 andA0

3

only at the tree level. This approximation is adequate
show the effects of chemical potentials. A standard calcu
tion of the one-loop effective potential gives
01600
d,
on

i-

al
s

r

s
s
-

o
-

Veff~w,^B0&,^A0
3&!

5
1

2
m3

2w21
l3

4
w41

1

2
mD

2 ^A0
3&21

1

2
mD8

2^B0&
2

1
1

2
~h3^A0

3&21h38^B0&
2!w22

1

4
g3g38w

2^B0&^A0
3&

1k1^B0&2
1

12p S 3

4
g3

3~w214^A0
3&2!3/2

1
3

8
~g3

21g38
2!3/2w312~mD

2 1h3w2!3/2D . ~30!

Requiring neutrality with respect to gauge charges enfor
the conditions

]Veff

]^B0&
50

]Veff

]^A0
3&

50, ~31!

which gives us

^B0&5^B0&01^B0&1 , ^A0
3&5^A0

3&01^A0
3&1

with

^B0&052
k1

mD8
2 S 11

h3

mD
2

w2D 1

11S h3

mD
2

1
h38

mD8
2D w2

,

^A0
3&052

k1g3g38w
2

4mD
2 mD8

2

1

11S h3

mD
2

1
h38

mD8
2D w2

,

^B0&15
3

16p

g3
4g38

mD
2 mD8

2 ^A0
3&0w2

Aw214^A0
3&0

2

11S h3

mD
2

1
h38

mD8
2D w2

,

^A0
3&15

3

4p

g3
3

mD
2 ^A0

3&0S 11
h38

mD8
2
w2D

3
Aw214^A0

3&0
2

11S h3

mD
2

1
h38

mD8
2D w2

. ~32!

Here ^B0&0 and ^A0
3&0 are tree level contributions to theB0

andA0
3 condensates, and̂B0&1 and ^A0

3&1 are corrections to
those from the one-loop term of the effective potential.
serting these back to the effective potential in Eq.~30! gives
us then the effective potential for the Higgs expectat
value
1-7
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Veff~w!5
1

2 S m3
22

1

2p
h3mD1

h38k1
2

mD8
4 D w2

1
1

4 Fl32
1

4p

h3
2

mD
2

2h38k1
2

mD8
4 S h3

mD
2

1
h38

mD8
2D Gw4

2
1

32p
@2g3

31~g3
21g38

2!3/2#w31O~w5!

[Veff
(4)~w!1O~w5!. ~33!

The error made by neglecting higher order terms inw is
small near the phase transition as can be seen from the
ample in Fig. 5. In terms of the physical parameters we
@' corresponds to only tree level matching between c
plings of the 4-dimensional theory and physical variabl
given, for example, in Eqs.~184!, ~185! of @6#. The exact
one-loop matching, given in Eqs.~183! and ~194! of @6#,
would not change the qualitative considerations.#

Veff
(4)~w!'

1

2 F2
mH

2

2
1

g2

16mW
2 ~mH

2 12mW
2 1mZ

212mt
2!T2

2
16

121
m21T2OS m4

T4
,g2

m2

T2
,g4D Gw2

2
g3T3/2

32pmW
3 ~2mW

3 1mZ
3!w3

1
T

4 Fl1
96

1331

m2

T2
1OS m4

T4
,g2

m2

T2
,g4D Gw4

~34!

FIG. 5. The one-loop effective potentials at the phase transi
point for mH560 GeV. As can be seen, the omission of the hig
order terms@see Eq.~33!# has only a small effect.
01600
x-
t
-
,

where we have set all the leptonic chemical potentials eq
and m5mLi

52mB and only leading order terms inm are
kept.

This effective potential gives a qualitative picture of th
effect of the chemical potentials. First, the critical tempe
ture increases due to decrease of the Higgs mass term.
ond, the scalar self-coupling increases leading to a sma
Dw at the transition and thus to a weaker transition. Also
‘‘barrier’’ responsible for the first order phase transition
lower. All these effects can be seen in Fig. 5. In Fig. 6 it c
be explicitly seen that finite chemical potentials tend to bre
the symmetry of the theory.

The leadingm-induced corrections to both the scalar ma
parameter and self-coupling come from theB0 condensate.
Thus, at leading order the leptonic chemical potenti
change the properties of the phase transition through ge
ating nonzero chemical potentials for the gauge charg
These couple to the Higgs field and thus change the dyn
ics of the Higgs field.

We can also note that theW6 boson mass is reduced i
the broken phase due to theA0

3 condensate given in Eq
~32!,3

mW
2 '

1

4 S g3
22

576

14641

m2

T2
w2D w2. ~35!

If m/T is large enough, theW6 bosons may become unstab
leading to aW6 condensate. We, however, restrict ourselv

3This means that the physics behind theW6 condensation is re-
lated to the nonzero chemical potentials for the gauge char
These chemical potentials couple to theW6 bosons and this con
densation is nothing but Bose-Einstein condensation due to t
chemical potentials.

n
r

FIG. 6. The evolution of the effective potential at fixed tempe
tureT598 GeV and Higgs boson massmH560 GeV as the chemi-
cal potential is increased.
1-8
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to small chemical potentials and study phenomena near
phase transition wherew2!T and then theW6 condensation
is not relevant.

Although the perturbatively derived effective potentia
serve well in giving a qualitative, and even a quantitati
picture of the phase transition, they cannot be trusted as
Higgs boson mass increases. This is clearly seen, for
ample, in predictions of the nature of the phase transit
Perturbative calculations predict a first order phase transi
for all Higgs masses while nonperturbative studies show
there, in fact, is only a crossover formH*72 GeV at m
50. Since the physical Higgs boson mass is large, it is
portant not to rely on perturbative calculations.

E. Integration over the adjoint scalars

The phase transition occurs when the scalar mass pa
eterm3

2 becomes small,m3
2;g4T2. Then the adjoint scalar

may be considered heavy,mD
2 ;g2T2, and they can therefore

be integrated out. The resulting effective theory is defined
the Lagrangian

L25
1

4
Gi j

a Gi j
a 1

1

4
Fi j Fi j 1~DiF!†DiF1m̃3

2F†F

1l̃3~F†F!2. ~36!

This reduction stepL1→L2 is performed in@6# in the case
k15r5r85rG50. We now generalize this to finite
k1 , r, r8 and rG . We use as the expansion parame
h3 /mD and the goal is to calculate the corrections up to or
(h3 /mD)2mD

2 for the scalar mass and to order (h3 /mD)2mD

for the couplings in the reductionL1→L2. To keep track of
the contribution of different terms we use the followin
power counting rules:

g3
2;h3;

h3

mD
mD , g38

2;h38;
h3

mD
h3;S h3

mD
D 2

mD ,

mD8
2;

h3

mD
mD

2 , k1;S h3

mD
D a21

mD
5/2,

r;S h3

mD
D a21/2

mD
3/2, r8;S h3

mD
D a

mD
3/2,

rG;S h3

mD
D 21a

mD
3/2. ~37!

These arise from the power counting rules of the origi
theory supplemented by settingm/(pT);(h3 /mD)a for
somea wherem can be any of the chemical potentials. D
to the large mass of the top quark we have also relaxed
power counting ofr andr8 by treatinggY

2;1. This protects
us from neglectingr andr8 in situations where they would
be important.

It is essential to keep the chemical potentials sufficien
small in order to keep this last reduction step meaning
Consider, for example, the set of diagrams in Fig. 7~a!. Such
diagrams would lead to terms of the form (F†F)n, n>3 in
01600
he

,
he
x-
.
n

at

-

m-

y

r
r

l

he

y
l.

the final effective theory. If such higher order terms are n
to be included in the effective theory, then the contribution
those terms to the corresponding Green’s functions mus
sufficiently suppressed so that they can be neglected. M
specifically, in the theory described byL2, the leading con-
tribution to the Green’s function̂(F†F)n& comes from the
scalar loop in Fig. 7~b! and is by naive dimensional calcula
tion of the order l̃3

nm̃3
322n;(h3 /mD)32nmD

32n near the

phase transition wherem̃3
2;(h3 /mD)2mD

2 . The contribution
from the graph in Fig. 7~a!, on the other hand, is of the orde
of (h3 /mD)2a1n23mD

32n . Thus, if we require that the effec
tive theory can reproduce the Green’s functions up to or
g3;(h3 /mD)3 and we neglect the higher order operato
produced by the graphs in Fig. 7~a!, then we must require
that

a*
3

2
or equivalently

m

pT
&g8. ~38!

This determines the powercounting rules fork1 , r, r8 and
rG which are used when integrating out the adjoint scala

Another set of interesting tree level diagrams are those
Fig. 7~c!. They would lead to terms of the form
(F†F)nAi

aAi
a in the effective theoryL2. These are interest

ing since it is these terms that are responsible for theW6

condensation, as can, for example, be seen from Eq.~35!.
There the leading correction to theW6 mass is;w4 and
thus the term in the effective theoryL2 that would be respon-
sible for this correction would be;(F†F)2Ai

aAi
a . The

above determined power counting rules allow us to neg
these terms but this means that the effective theoryL2 cannot
predictW6 condensation. As already discussed, this is no
problem when we study phenomena near the phase trans
and at small chemical potentials.

Since the reduction atk15r5r85rG50 is given in@6#
we now only need to take into account the contribution fro
the new terms. Calculating to the accuracy mentioned bef
they only contribute to the scalar mass para meter~up to
one-loop level! and scalar self-coupling~up to tree level!.
Other contributions are of higher order. The required d
grams are shown in Fig. 8. The results for the parameters

FIG. 7. ~a! A tree level diagram in the theory given byL1

leading to a higher order term (F†F)4 in the last effective theory.
~b! A leading order contribution to the Green’s function^(F†F)4&
in the theory given byL2. ~c! A tree level diagram in the theory
given byL1, leading to a higher order term (F†F)2Ai

aAi
a in the last

effective theory responsible for theW6 condensation. Dashed line
correspond to the fundamental scalar, solid lines to adjoint sca
wavy lines to gauge fields and dots to thek1 vertex.
1-9
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m̃3
25m̃3,0

2 1
h38k1

2

mD8
4

2
r8k1

mD8
2

2
1

4p
F S 3g3

2g38
2

4mD
1

4h38
2

mD8
D k1

2

mD8
4

2S 3g3g38r

mD
1

4h38r8

mD8
D k1

mD8
2

1
3r2

mD
1

r82

mD8
G ,

l̃35l̃3,02
1

2 F S g3
2g38

2

4mD
2

1
4h38

2

mD8
2 D k1

2

mD8
4

2S g3g38r

mD
2

1
4h38r8

mD8
2 D k1

mD8
2

1
r2

mD
2

1
r82

mD8
2G . ~39!

Herem̃3,0
2 and l̃3,0 are as given in Eqs.~174! ~first equality!

and~169! of @6# ~where they are denoted bym̄3
2 andl̄3). All

the other couplings ofL2 are as given in@6# as functions of
the parameters ofL1.

The construction of the theoriesL1 andL2 differs in one
qualitative aspect. Although neither theory is applicable
high chemical potentials,m.pT, there nevertheless was n
expansion inm/(pT) in the construction ofL1. That is, the
matching of the parameters ofL1 to those of the
4-dimensional theory is given to a certain accuracy ing2 for
arbitrarym. This is not true for the matching betweenL1 and
L2. There it was essential to assume that the chemical
tential is small. This is easy to understand since some of
couplings ofL1 are directly proportional tom/(pT) and thus
m must be small whenL1 is studied perturbatively. We ma
therefore assume thatL1 is applicable to somewhat highe
chemical potentials thanL2, up to m&pT. In the range
g8pT<m<pT the dynamics ofL1 may be dominated by
nonperturbative effects.

III. THE PHASE DIAGRAM

The effective theory for the light modes is infrared dive
gent in perturbation theory and thus it cannot be relia
studied perturbatively. It has, however, been studied non
turbatively by Monte Carlo studies in@7#.

The theory is parametrized by four parameters. It is c
venient to express three of them in a dimensionless fo
while leaving one of them to give the energy scale. We de

x[
l̃3

g̃3
2

, y[
m̃3

2~ g̃3
2!

g̃3
4

, z[
g̃38

2

g̃3
2

~40!

FIG. 8. Additional diagrams needed in integration over the
joint scalars. The dashed lines correspond to the fundamental s
solid lines to adjoint scalars and the dot is thek1 vertex.
01600
t

o-
e

y
r-

-
m
e

and leaveg̃3
2 to give the dimensions. The value ofz is essen-

tially fixed by the Weinberg mixing angle,z'tan2uW'0.3.
The value ofy is tuned to find the phase transition at a fix
value of x which determines the nature of the phase tran
tion.

The phase diagram of the effective theory is given in F
9. The continuous line is a curve fitted to the lattice resu
which are given in@7# and @9# for SU(2)1Higgs gauge
theory. The effect of the U(1) subgroup is to increase
critical y slightly @7#. The critical line given by a perturbative
calculation is given by the dashed line. As can be seen,
perturbative result gives quite a good estimate for the va
of y at the transition,y5yc(x), for smallx. It, however, fails
completely in describing the nature of the transition at h
x. Perturbation theory predicts a first order phase transi
for all x, while Monte Carlo studies have shown that there
a first order phase transition at smallx but that the first order
phase transition line has a second order end point ax
'0.0983,y'20.0173 and for largerx no phase transition is
observed@7,9#. Thus, there is no phase transition for suf
ciently large Higgs boson masses.

The phase diagram in Fig. 9 can be expressed in term
the physical parameters by the mapping described in Sec
For simplicity we set all the leptonic chemical potentials
be equal to each other,mLi

5m52mB . The theory is speci-

fied by giving the physical parameters the valuesGm
51.66431025 GeV22, mW580.42 GeV,mZ591.19 GeV,
mt5174.3 GeV andas(mZ)50.118. The Higgs boson mas
is left as a free parameter.

The exact relation between (mH ,T,m) and (x,y) is a
complicated function ofm. However, the essential feature
of the effect of the chemical potentials can be seen q
easily by just taking the leading corrections due to finitem
into account. We get

x~m!'x~0!1
1

g2

96

1331

m2

T2
'

mH
2

8mW
2

1
1

g2

96

1331

m2

T2
,

-
lar,

FIG. 9. The phase diagram of the effective theory. The res
are from@7# and @9#.
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y~m!'y~0!2
1

g4

16

121

m2

T2

'2
mH

2

2g4T2
1

1

g2 S mH
2

16mW
2

1
3

16
1

1

16

g82

g2
1

1

4

gY
2

g2D
2

1

g4

16

121

m2

T2
. ~41!

Thus the effect of finitem is to increasex and decreasey.
Perturbatively, at tree level the phase transition occursy
5yc50. The critical temperature can then be solved to b

T0
25

1

8l13g21g8 214gY
2 S 8mH

2 1
256

121
m2D ~42!

which explicitly shows that a finite chemical potential i
creases the critical temperature. At one-loop order the crit
line is given byycx51/(128p2) and expanding this aroun
the tree level solutionTc5T0 we get for the critical tempera
ture @to first order in (Tc2T0)/T0]

Tc5T0S 11
1

16p2

g6

8l13g21g8 214gY
2

1

l1
96

1331

m2

T0
2
D .

~43!

The factor multiplying the tree level critical temperature d
creases as the chemical potentials are increased but tha
crease is negligible in comparison to the simultaneous
crease inT0. Thus the critical temperature increases also
one-loop order.

The above reasoning gives a valid qualitative understa
ing of the behavior of the system but to obtain quantitativ
more reliable results we must map the phase diagram in
9 to (T,m,mH) using the complete results from Sec. II. Th
the values ofx and y along the phase transition line,xc
5x(Tc ,m,mH) and yc5y(Tc ,m,mH), are given in Fig. 10
as functions ofm. It can be observed that as the chemic
potentials are increased, the subsequent increase and
crease ofxc andyc , respectively, are fastest at small Hig
boson masses. This is easy to understand sincexc andyc are
essentially functions ofm/T. Thus, at small Higgs boso
masses where the critical temperature is lower, increasinm
leads to a larger increase inm/Tc than at large Higgs boso
masses where the critical temperature is higher. There
the changes inxc and yc are also larger at smaller Higg
boson masses.

This has an interesting consequence. Thexc(m) curves
for different mH intersect and for sufficiently large chemic
potentials the value ofxc is, in fact, a decreasing function o
the Higgs boson mass~at least for sufficiently small Higgs
boson masses!. This can be seen explicitly in Fig. 11. Ther
fore, under these specific conditions, the phase transition
pears to become stronger as the Higgs boson mass i
creased~again, at least as long as the Higgs boson m
01600
al

-
de-
-
t

d-
y
ig.

l
de-

re

p-
in-
ss

remains sufficiently small!. This, however, does not seem
have any physical relevance. Dimensional reduction is
reliable at small Higgs boson masses where this effec
strongest. As the Higgs boson mass is increased also
chemical potentials must be increased in order to recover
anomalous behavior. However, at these larger Higgs bo
masses and chemical potentials, the value ofxc is above the
end point valuexc

end point50.0983 and there is therefore n
phase transition. Especially, at physical Higgs boson mas
mH*115 GeV, there is no phase transition.

The phase diagram in terms of the physical parameter
given in Figs. 12 and 13. The qualitative picture based
perturbation theory can be seen to be correct. The crit
temperature increases withm. Some interesting thermody
namics can be deduced from this. According to the Claus
Clapeyron relations

dT

dm
52

ns2nb

ss2sb
, ~44!

FIG. 10. Behavior ofxc andyc as a function ofm for different
Higgs boson masses. The regions above the linexc5xc

end point and
below the lineyc5yc

end point correspond to the crossover region
the theory.

FIG. 11. The behavior ofxc as a function ofmH .
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where dT/dm is measured along the phase transition lin
andns,b andss,b are the lepton number and entropy densit
in each phase, respectively. SincedT/dm is positive, the lep-
ton number difference between the phases is of the oppo
sign than the entropy difference. Furthermore, since entr
is higher in the symmetric phase~the high temperature
phase! it means that the lepton number density is higher
the broken symmetry phase.

The behavior of the end point of the first order pha
transition line is also of interest. For a fixed Higgs bos
mass, a finite chemical potential strengthens the scalar
coupling at the transition point as seen from Fig. 10. Th
increasingm weakens the transition and the value of t
critical Higgs boson mass, where the first order phase t
sition line ends in a second order end point, is a decrea
function of m. Especially, there cannot be a first order ele
troweak phase transition at physical Higgs masses in
minimal standard model even whenmÞ0. Moreover, for a
sufficiently high chemical potential there appears to be

FIG. 12. The electroweak phase diagram on themH2T plane.

FIG. 13. The electroweak phase diagram on them2T plane.
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phase transition for any value ofmH . The location of the
second order end point in terms of the Higgs boson mass
critical temperature is given in Table I for some values of t
chemical potential.

IV. DISCUSSION

In this paper we have determined quantitatively how
equilibrium phase diagram of the electroweak theory, para
etrized by the Higgs boson mass, depends on the temper
and small leptonic chemical potentials. In particular, we ha
studied the change of the second order end point of the
order phase transition line. It is seen that the critical tempe
ture increases and the critical value of the Higgs boson m
where the first order phase transition line ends decrease
the chemical potentials are increased. These results are
marized in Fig. 14.

It is interesting to qualitatively compare these results
the critical temperatureT5Tc(mH ,m) of the electroweak
phase transition to the critical temperatureT5Tc(ms ,mB),
ms5 strange quark mass,mB5 baryonic chemical potential
of the QCD phase transition. In QCD there is also a fi
order critical line ending in a second order point: ifmB50
then forms50 (Nf53) there is a first order phase transitio
while for ms5` (Nf52) there is only a crossover. Thus, th

TABLE I. The location of the end point of the first order pha
transition line.

m mH
end point Tc

end point

0 GeV 72 GeV 109 GeV
15 GeV 71 GeV 108 GeV
30 GeV 66 GeV 104 GeV
45 GeV 52 GeV 94 GeV

FIG. 14. The phase diagram. Note that the temperature gr
downwards.
1-12
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situation on thems-T plane is like in Fig. 12. However, in
contrast to Fig. 13, on themB-T plane the critical lines for
different ms bend downwards starting frommB50 ~in Fig.
12 themB.0 curves would reside below themB50 curve!.
As discussed after Eq.~44!, this implies that in the QCD
phase transition the entropy density and the baryon num
density change in a similar way. Also, in QCD, whenms is
large enough, there is a first order phase transition only ifmB
is greater than some critical valuemB,c(ms), again in con-
trast to Fig. 13 which says that there is a first order el
troweak phase transition only ifm is less then some critica
valuemc(mH).

The effective theory used in this paper to study the el
troweak phase transition cannot be used at large chem
potentials. Therefore, it cannot, for example, predict
emergence~or perhaps lack of it! of theW6 condensate. The
reason for this is that the driving force behind theW6 con-
densation, the Bose-Einstein condensation, would appea
this theory through higher order terms of the for
(F†F)nAi

aAi
a , n>2. Those terms would modify theW6

mass in such a way that the condensation might occur.
have, however, neglected such higher order terms from
theory which is possible if the chemical potentials are sm
The W6 condensation is in any case a highm phenomenon
and thus our approximation is self-consistent.
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APPENDIX: SUM-INTEGRALS AT FINITE µ

In this appendix we give the results for the required f
mionic sum-integrals for arbitrarym. Similar integrals also
appear in the context of computing QCD quark number s
ceptibilities @27#.

1. One-loop integrals

At one loop we have two types of integrals. Both of the
are easily evaluated by first doing the 322e dimensional
momentum integration and then performing the sum us
Riemann zeta functions. Denoting the sum-integrals by

X

p

[S egEm̄2

4p
D e

(
n52`

` E d322ep

~2p!322e
,

p05~2n11!pT2 im, ~A1!

wherem̄ is the scale in theMS scheme, we get
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I a
2n[X

pf

p0
2n

~p2!a

5
G~a23/21e!

8p3/2G~a!
~egEm̄2!eT~2pT!2n1322e22a

32 ReFzS 2a22n2312e,
1

2
2

im

2pTD G ,
I a

2n11[X
pf

p0
2n11

~p2!a

5
G~a23/21e!

8p3/2G~a!
~egEm̄2!eT~2pT!2n1422e22a

32i ImFzS 2a22n2412e,
1

2
2

im

2pTD G , ~A2!

where

z~z,q!5 (
n50

`
1

~n1q!z
, z.1 ~A3!

is the generalized zeta function. Its properties are discus
below. Especially the following special cases, expand
arounde50, are needed:

I 1
052

T2

24H 11
3

p2

m2

T2
1eF S 11

3

p2

m2

T2 D ~L f~m̄ !

22gE1224 ln 2!124z8S 21,
1

2
2

im

2pTD
124z8S 21,

1

2
1

im

2pTD G J 1O~e2!, ~A4!

I 2
05

1

16p2 F1

e
1L f~m̄ !22gE24 ln 22cS 1

2
2

im

2pTD
2cS 1

2
1

im

2pTD G1O~e!, ~A5!

I 1
15

ipT3

12

m

pT S 11
m2

p2T2D 1O~e!, ~A6!

I 2
15

iT

8p

m

pT
1O~e!, ~A7!

where the primes in zeta functions denote derivatives w
respect to the first argument andc(z)[]zln G(z). The results
are exact inm. Terms of the ordere are needed only for the
first sum-integral.
1-13
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2. Two-loop integrals

Most of the needed two-loop sum-integrals can be
duced to products of one-loop sum-integrals. Only the su
integral corresponding to the ‘‘setting sun’’ diagram must
evaluated explicitly. In calculating it we follow the procedu
outlined in @28#.

The integral we are interested in is

I sunset[ X

pf ,kb

1

p2k2~p1k!2
5X

kb

1

k2
P f~k!

p05~2n11!pT2 im, k052mpT, n,mPZ, ~A8!

where we have defined the integralP f(k) as in @28#. By
going to configuration space where the propagator is gi
by ~at e50)

D~p0 ,r!5
e2up0ur

4pr
, ~A9!

this integral becomes

P f~k!5T(
$p0%

E d3reik•rD~p0 ,r!D~p01k0 ,r!

5
T

16p2 (
$p0%

E d3r
eik•r

r 2
e2up0ure2up01k0ur .

~A10!

Here we have used the notation of@28# where($p0% means
summation over fermionic Matsubara modes.

The influence of the chemical potentials resides now
the sum

(
$p0%

e2up0ure2up01k0ur5e2uk0ur S cos~2mr !

sinh~2pTr !
1

uk0u
2pTD

~A11!

and thus we get

P f~k!5
T

16p2E d3r
eik•r

r 2 S cos~2mr !

sinh~2pTr !
1

uk0u
2pTDe2uk0ur .

~A12!

From here we can proceed as in@28# by first subtracting the
T50, m50 part~which contains the ultraviolet divergence!
and then evaluating the remaining integral. The final resu

I sunset52
m2

64p4 S 1

e
12 ln

m̄2

T2
24 ln 4p12D

1
imT

16p3
ln

GS 1

2
2

im

2pTD
GS 1

2
1

im

2pTD 1O~e!. ~A13!

We were unable to find whether this integral had been
culated at finitem previously.
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3. Some properties of the required special functions

The central function is the generalized zeta functi
z(z,q), defined in Eq.~A3! for Re(z).1, and its derivative
with respect toz, z8(z,q). From the integral representation

z~z,q!5
1

G~z!
E

0

`

dttz21
e(12q)t

et21
, ~A14!

valid at Re(z).1, Re(q).0, it is possible to analytically
continue this function to the double complex plane (z,q), z
Þ1. For us it is sufficient to consider only the half plan
Re(q).0 where we can write

z~z,q!5
1

G~z! (
n50

`
Bn~q!

G~n11!

~21!n

z1n21

1
1

G~z!
E

1

`

dttz21
e(12q)t

et21
. ~A15!

Here Bn(q) are Bernoulli polynomials. This expression
well defined as long aszÞ1 and Re(q).0 „the limit of
1/@G(z)(z1n21)# is well defined atz50,21,22, . . .… and
thus it can be used to define the analytic continuation
z(z,q) to that region. For the derivative we get

z8~z,q!52
1

G~z! (
n50

`
Bn~q!

G~n11!

~21!n

~z1n21!2

1
1

G~z!
E

1

`

dttz21ln t
e(12q)t

et21
2c~z!z~z,q!.

~A16!

All the required special functions appearing in the integr
can be related to these functions. This is trivially true for t
one-loop integrals by Eqs.~A2!. The logarithm of the gamma
functions present in the sunset integral Eq.~A13! can on the
other hand be written as@x5m/(pT)#

ln

GS 1

2
2

ix

2 D
GS 1

2
1

ix

2 D 5z8S 0,
1

2
2

ix

2 D2z8S 0,
1

2
1

ix

2 D . ~A17!

Thus the mathematical properties of the non-polynomial p
in m/T of all the required integrals are given by the gener
ized zeta function.

The asymptotic behavior of the integrals at the lim
m/T→0 andT/m→0 is of interest. The smallm limit is a
straightforward Taylor expansion and is not given here
plicitly. The largem limit for the required functions is mos
easily obtained from Stirling’s approximation for the gamm
function:
1-14
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ln

GS 1

2
2

ix

2 D
GS 1

2
1

ix

2 D 52
ix

2 S ln
x2

4
22D2

i

6x
1OS 1

x3D .

~A18!

Thus

2 ReFcS 1

2
2

ix

2 D G52i
d

dx
ln

GS 1

2
2

ix

2 D
GS 1

2
1

ix

2 D
5 ln

x2

4
2

1

3x2
1OS 1

x4D
2 ReFz8S 21,

1

2
2

ix

2 D G52
x2

8 S ln
x2

4
21D2

1

24
ln x2

1O~x0!. ~A19!

The last expansion can be derived with the help of Eq.~A17!
after noting that the zeta function satisfies the relation

]

]q
z8~z,q!52z~z11,q!2zz8~z11,q! ~A20!
,

h

h

,

.

.

.E

D

01600
and thatz(0,q)51/22q. Low temperature expansion of th
integrals~A4!, ~A5! and ~A13! is now straightforward. We
get

I 1
052

m2

8p2 H 11
p2

3

T2

m2
1eF S 11

p2

3

T2

m2D ln
m̄2

m2

1322 ln 21OS T2

m2D G J 1O~e2!

I 2
05

1

16p2 F1

e
1 ln

m̄2

m2
22 ln 21

p2

3

T2

m2
1OS T4

m4D G
1O~e!

I sunset52
m2

64p4 F1

e
1 ln

m̄2

m2
24 ln 2162

2p2

3

T2

m2

1OS T4

m4D G1O~e!. ~A21!

Thus, although separate terms of the integrals diverge lo
rithmically at T/m→0, the integrals themselves are conve
gent in that limit, as they should.
hys.
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