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Electroweak phase diagram at finite lepton number density
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We study the thermodynamics of the electroweak theory at a finite lepton number density. The phase
diagram of the theory is calculated by relating the full 4-dimensional theory to a 3-dimensional effective theory
which has been previously solved using nonperturbative methods. It is seen that the critical temperature
increases and the value of the Higgs boson mass at which the first order phase transition line ends decreases
with increasing leptonic chemical potential.
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[. INTRODUCTION given by constraints from big bang nucleosynthesis and cos-
mic microwave background radiation which limits the de-
The complete thermodynamic description of the elecgeneracy parametef,=u,/T, to £, ,<2.1 for the muon
troweak theory depends on only five intensive variables: the and tau neutrinos and t6,<0.3 for the electron neutrino
temperatureT of the system, the strength of the externalwhereu, are the neutrino chemical potentials ahglis the
U(1) magnetic fieldHy and the leptonic chemical potentials temperature of the neutrino backgroufid]. If such large
wi,- The most studied case is that when only the temperaturehemical potentials were present in the very early universe
T and the conjugated variable entropy are nonzero as it waien it raises a question about how they affect the elec-
early understood that at high temperatures the symmetry dfoweak thermodynamics and especially the electroweak
the electroweak theory would be restorgld. Much work  phase transition. It has, for example, been proposed that the
was devoted to this problem using, for example, perturbativg@resence of a large lepton number asymmetry might explain
one-loop[2—4] and two-loop[5] effective potential calcula- the absence of topological defedts?] as well as the ob-
tions. These only work for small scalar self-couplings or forserved baryon number asymme{y3]. Finally, a compari-
small Higgs boson masses and the full solution of the probson between QCD thermodynamics and electroweak thermo-
lem required first a perturbative matching of the full dynamics is interesting. QCD thermodynamics has of course
4-dimensional theory to an effective 3-dimensional theoryattracted a lot of interest during the last years due to experi-
[6]. The phase diagram of the effective theory was then numents carried out at the moment at the Relativistic Heavy
merically solved with lattice Monte Carlo techniqUag (the  lon Collider (RHIC) in Brookhaven and in the future at the
phase diagram has been studied numerically also with thearge Hadron Collide\LHC) in CERN. It should be inter-
4-dimensional theory, sd@]). The result is that the phase esting to see how the properties of the QCD phase transition
diagram contains a first-order line which ends in a seconds a function of the baryonic chemical potential and the num-
order critical point of Ising universality clag®]. Similar  ber of light flavors(strange quark magsompare to the prop-
techniques were then applied to solve the phase diagragrties of the electroweak phase transition as a function of
when alsoH, and the conjugate extensive variablB, leptonic chemical potentials and the number of light bosonic
were nonzerd10]. The purpose of this paper is to study the degrees of freedorfHiggs boson mags
remaining case: how the phase diagram depends on finite The role of the finite lepton number density in the ther-
chemical potentials related to lepton and baryon numbergiodynamics of the electroweak theory has been discussed
and on the conjugate extensive variables, net lepton andlready in the literaturgl4—-20. Those studies rely on per-
baryon number densities. turbative one-loop calculations of the effective potential and
The thermodynamical properties of the electroweakthe conclusion made is that the critical temperature increases
theory at nonzero lepton number density are interesting frorwith increasing chemical potentials. This can be understood
many points of view. Theoretically, the minimal standardin terms of the Bose-Einstein condensation of the Higgs field
model describes nature to very high accuracy and thus it igue to finite chemical potentials related to gauge charges.
important that we know the theory completely. The partitionThe fate of thew™= boson condensate, predicted[irb], at
function especially is a fundamental concept and to know ihigh temperatures is also discussed on the same footing
under the most general circumstances is of interest. In co$d7,18. Vector boson condensation is also discuss€@1n.
mology, the neutrino degeneracthe net neutrino numbgr Purely perturbative calculations are, however, doomed
of the universe is a poorly known number. Best limits aredue to infrared divergences and a nonperturbative study is
needed, in general. However, direct Monte Carlo studies of
the full electroweak theory at high temperatures and finite
*Email address: antti.gynther@helsinki.fi chemical potentials are very difficult for numerous reasons.
170 fix the terminology, in this paper electroweak theory meansFOr example, the system is characterized by a multitude of
the electroweak sector of the minimal standard model with allscales extending fromrT (mass scale of nonzero Matsubara
known physical parameters, essentiadly , my,, m; andm,, but ~ modeg to g°T (mass scale of the magnetic sector of the
parametrized withmy, . system. This leads to a need for large lattices in solving the
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properties of the system. Furthermore, chiral fermions are *

notoriously very hard to implement on a lattice. At finite P X)= D, P(x)d@nFDaTr ©)
density there is also the famous “sign” problem: the fermi- n=-w=

onic determinant is complex and thus the integration mea-

sure is not positive definite which spoils importance samype will employ the power-counting ruleg'2~g3, )\Ng\z(

pling. ) . ~g2. The Lagrangian i€P symmetric. Calculations are per-
We approach this problem by generalizing the successfuimed in Landau gauge.

methods of]6,7] to finite chemical potentials. That is, we As is well known, the thermodynamics of any system is

calculate the dimensional reduction of the full 4-dimensionalyaqcribed by the partition function defined as a trace of the
electroweak theory at high temperatures and finite de”Sitie&ensity matrix

to a 3-dimensional effective field theory. The effective theory

can then be solved using Monte Carlo methods in order to

find out the phase diagram. This method is, however, by Z=Tre AH7mNJ, 4
construction limited to small chemical potentials.

The paper is organized as follows. In Sec. Il we define theqereN, are all the conservelobal or loca) charges of the
theories and g|Ve the matCh|ng between them. In Sec. lll W%ystem ande are the Corresponding Chemica| potentialS. In
give the results for the phase diagram and in the final sectiofpe electroweak theory, at a classical level, the lepton number
Sec. 1V, we discuss their meaning. Results for the requiredyrrents and the baryon number current are conserved inde-

sum integrals are given in the Appendix. pendently. However, due to the triangle anomaly, these cur-
rents are not conserved in quantum the@oy a review see,
II. DIMENSIONAL REDUCTION OF THE ELECTROWEAK e.q.[22])

THEORY AT FINITE CHEMICAL POTENTIALS
In this section we describe the construction of high tem- 9] n*9%€,p5,,GapGh, foreachcurrent. (5
perature effective field theories at finite chemical potential.

It is thus possible to form only; conserved linear combina-
A. The fundamental theory tions of these currents. These are usually defined to be

The electroweak theory at finite temperatures is defined

by the Euclidean action 1
Xi:_B_Li7 i:].,...,nf (6)
B N
SIJ drf d*xL
0
wheren; is the number of familiesB is the baryon number
with andL; are the lepton numbers for each family
L= (D,0)'D, & TP+ \(DD)2+ G2 G2 L 5o
B we VY 4 Zuvuy BzngC d*X et Yode, »
1 — — — —
+ZFM,,FIW-F|LD|L+eRDeR+qLDqL+URDUR - o
Li:f d*x(€;yoei + viyoaLvi) (7)

+dgDdr+gv(q Ptr+trdTq). (1

Here D,=d,+ligA%72+Yig'B,, wherel andY are the where

weak isospin and weak hypercharge of the corresponding

doublet/singlet), andq, denote the left-handed lepton and 1

quark doublets an@g, ug anddg denote the right-handed a,_=§(1— ¥s)-
leptons, up-type quarks and down-type quarks, respectively.

Also, G2 ,=d,A2—3,A%—ge**A°AS, F,,=3,B,—d,B,
and®=i72®*. Only the top quark is taken to have a non-
zero Yukawa coupling. The convention for the Euclidean
gamma matrices is as given [B]. The bosonic fields ¢)

are periodic inr while fermionic fields ¢) are anti-periodic.
Thus they can be expanded in Fourier seridgtsubara
mode$

Heref andc stand for flavor and color, respectively, angd;
are the quark fields. The remaining currenB+ =,L; is not
conserved.

In addition to these globally conserved charges there are
locally conserved charges related to the gauge symmetries of
the theory. Of the four gauge generators we can choose two
mutually commuting ones for which it is possible to assign
o chemical potentials. One must be the hypercharge and as the

_ j2naTr other one it is convenient to choose the third component of
#(7.x) nzz—oc $n(x0€ ’ @ the isospin. The corresponding currents are
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v 1 1 4 2 — and similarly for(A3). It is then convenient to redefirg,
1w=3 fazm 3070t FURYLURT §dR?’udR_ Iyl andAj in Egs.(10) and(12) as
- i 0'Bo—9'Bo—imy, OA—gAT—iurs. (14
—2ery,Er —5[(DM(I))T<D—CI>TDM(I)],

This way the action in Eq(12) becomes the standard elec-

1 - - troweak action for these redefined fields andand us are

ji: 3 E (qL7M73QL+ |L7M7'3|L) not explicit in the path integral anymore. The chemical po-
fam. tentials can be recovered as expectation values for the rede-
i fined B, and A3 at equilibriunt

—E[(DMQ)TF’(D—(I)TT?’DM(D]—e3b°A”’bew. (8) i i
Ty 3, ' MTS

The sums run over the families. Chemical potentials related (Bo) g’ - B g (19

to gauge charges cannot, however, be chosen freely. In ther-

mal equilibrium the system must be neutral with respect torhis explicitly shows that these chemical potentials cannot

gauge charges. This requirement fixes the values of thedme chosen freely, but are fixed by requiring that the system be

chemical potentials, which are then functions of temperaturén thermal equilibrium.

and chemical potentials related to global charges. This can be

seen explicitly below. . . B. Dimensional reduction at finite pt
Taking all the conserved currents into account, the parti- . . . . . .
tion function is given by the path integrid8] Due to infrared divergences which arise when integrating

~ i i3
S=5|3,Bo+ —— AZ+ ’;

over the bosonic zero modefs(x) (static modes irv), the
Z=Trexgd —B(H— uiX;— uyQy—u73Qq3)] (90  path integral10) cannot be reliably evaluated within pertur-
bation theory. The reason for this is that these modes are
g M light when the temperature is much larger than any other
=f Do exp{ - ( S—f drz MiXi (10 mass scale in the theory and therefore the high temperature
o =t expansion parametg”T/E is large for them. All the other
5 ny modes(nonstatic in7), ¢,.¢(X) and,(x), are on the other
_ _ . hand always very massiven~«T, and can therefore be
_f De ex;{ St fo dr MBB+;1 i integrated out perturbatively, as can also the static modes
with |p|>gT. We are then led to the very natural idea of
where ¢ denotes the set of all the fields. Here we have deformulating a three dimensional effective field theory for the
fined (¢ excludesB, andA3) static modespy(x) [6,23]. This effective theory is defined to
be the most general theory for the static modes respecting the
10 required symmetries. It reproduces the Green’s functions for
MB= o Z My ML= M, (11)  these static modes to a controllable accuracy.
fi=1 .. . . . .
Finite fermion number density affects dimensional reduc-
and tion in two ways. First, the renormalization of the fields and
parameters as the heavy modes are integrated out changes
when compared to the cage=0. Second, the symmetries of
= (12 the fundamental four dimensional theory are reduced which
gives rise to terms in the effective theories absent at0.
: - - More precisely, the introduction of chemical potentials to the
With ﬁconhtamlng aIsp the gauge flxmg and_ gfh%st termf,. W%heory leads to terms in the path integral which br€akut
see that the constraifik g+ 2, =0 Is satisfied. We also o cared andT thus making the theory, in addition to being
note from Eqs(10) and(12) that after the integration over ¢ gndp breaking, alscCP and CPT breaking. The effective
the conjugated momentum fields is ddgeing from Eq.(9)  theories may therefore contain terms which br&® and
to Eq. (10)], the chemicgl potentials related to the gaugecpT and which do not appear at=0. Such terms must
charges enter the path integral the same way as the staliayertheless still preserve 3-dimensional gauge and rota-
modes of the temporal components of the correspondingonal invariance as well & invariance.
gauge fields. Thus, we can interpret them as acting as back- The first effective theory is obtained after integrating out
grounds for the gauge fields. Therefore, writi3—Bo  the nonzero Matsubara modes. The resulting effective theory
+(Bo),A5—A5+(AS) and requiring stationarity of free en- s a 3-dimensional SU(2JU(1) gauge field theory with a
ergy with respect to expectation valugBo) and(A3) (con-  fundamental scalar doublétliggs and four adjoint scalars
dition for thermal equilibrium is equivalent to requiring
neutrality with respect to corresponding gauge charges:

2To be precise, this requires that the expectation values of the
(13 original By andAg vanish in equilibrium. This certainly is the case

dlnZ . ,0InZ ig’' Qv
= —_— = | [
d(Byg) Iy T when the system is neutral.
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By, Ao therefore, be any terms in the theory that would be absent at

A;
n=0 as far as symmetries are considefapart from the
Chern-Simons terms, which nevertheless, as stated above,
Ai ( ) 4 turn out to be absentFinite chemical potentials show up
B; B; only in the mapping of the parameters of this theory to the
A; a4 °
By

physical variables.

C. Integration over the superheavy modes
FIG. 1. Diagrams leading to new terms in the effective theories. e first effective theory in its most general form is de-
Solid lines correspond to fermions, wavy lines to gauge fields anqined by the Lagrangian
dashed lines to scalars.
1 1
corresponding to the temporal components of the gauge 51=ZGﬁGﬂ+ZFijFijJr(Di‘D)TDiq)er%‘PT‘D
fields in the fundamental 4-dimensional theory. The dimen-
sionally lowest orderCP and CPT violating terms in this i, 1 a2 > ana
theory, arising from the finite chemical potentials, diwe +A3(P1P)"+ 5(DiAg)"+ 5 MpAcAg
three dimensionge]=GeV*?)
1 1 1
dim=GeV*2 iB,, + Z)\AASASABABJr E(ﬁiBo)2+ Em'DZBg
dim=GeV¥2 B3, i®TASAD, idTByd, iBoAZAS, 1
0 0 oo +ha®TDAGAG+hid BB+ 5 gsgiBe® 'AG D

i
dim=GeV?%: €BiFj, €| A'G— g€ AAPAL ], i
Gkl €| AT g de AR +aeij| ATGH ~ 3056 ATAPA |+ € BiF
(16)

: : . o . + Kk1Bo+ pPTAS 2D + p' DTDBy+ pgBoAIAS
which arise from diagrams given in Fig. 1. The factors of K1BoT P AT TP 0™ PGB0 o

are chosen in such a way that these operatord amegariant 17
(with T transformations adopted from the 4-dimensional
theory. The effective theory does not contain the termsynere D;A3=3,A3—g3e?°°APAS . The parameters of this

Tr A37® and Tr(A57")° since these vanish identically due o0 theory are to be matched to those of the 4-dimensional

the prosperties of the SU(2) generators. The coefficient of theneory up to ordeg®. The factors ofi are included in the

term By is of the orderg’ $~g% and when the matching of coefficientsk; , p, p’ andpg .

the Green’s functions is done to ordgt it can be neglected. In general, theories are related by matching corresponding
The possibility that there are terms linear in the adjointGreen’s functions calculated in each theory. If the fields are

scalars in the action of the effective theory is noteworthy.renormalized as¢ denotes a generic field

Such terms induce condensates of the corresponding fields in

equilibrium. As already discussed, such condensates for the 1

adjoint scalars are equivalent to nonzero chemical potentials ‘PgD:_Zqo@thlD' (18)

for the gauge charges. Thus the emergence of linear terms in T

the effective theory takes care of neutrality of the system

with respect to gauge charges. then theN-point Green’s functions are related by
The last two terms of Eq(16), the so-called Chern-
Simons terms, are interesting. There of course is a vast lit- 1 T \nil2
erature on the physics induced by théfar a review, see rind = 11 (_> rint > n=N, (19
[24]). That such terms appear in chiral gauge field theories T 4P i

when fermions are integrated out was first observel@8j.

However, in the present study we observe that the coeffiysherei labels the different fields and, is the number of
cients of these terms in the effective theories vanish due tgmes the fieldi occurs in the Green'’s function. This match-
the nonconservation @&+L (njug+2iu, =0). Thus they ing has been performed for the minimal standard model at
do not play any role in them. The role of those terms atzero chemical potentials if6]. At finite fermion number
smaller temperatures, where they may be important, has beelensity those results are modified.
discussed iri26]. Let us denote byAT',p and AZ, the change in the
The second effective theory is obtained after further inte4-dimensional Green’s functions and field renormalizations
grating out the adjoint scalars, the zero components of thdue to finite chemical potentials, and Ay"5 the change in
gauge fields. The resulting theory is a 3-dimensional SU(2}he 3-dimensional Green’s functions due to changes in the
X U(1)+ Higgs gauge field theory. The form of the theory is parameters of the effective theory. We then get from(&6).
fully determined by the gauge invariance. There cannotthat
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FIG. 2. The required diagrams for Debye masses and the cou @ __________ @ _____
plings. Solid lines correspond to fermions, dashed lines to scalars

and wavy lines to gauge bosons. ) . )
FIG. 3. The required scalar two-point functions for the mass

parameter. Solid lines correspond to fermions, dashed lines to sca-

dnih) _ +N2-1 —n/2 dnh lars, wavy lines to electroweak gauge bosons and curly lines to
Arso =T [(H Zi,MO)AFm gluons. Crosses denote counterterms.

Nt

—(2 mAa)F“”i” (20) g
- 4D
T 2 mZDZm%,,LL:O+ —4 /,LZB-I— izl ,uEi

77_2

which holds whenz, are calculated up to one-loop order.
This formula allows us to calculate the changes in the map-
ping of the parameters of the effective theory to physical

> 12
variables.

12__ 12
My —mD,M:0+ —4772

Nt

11
e+ mi |- (23)

1. Changes in the coefficients of the terms present already
at u=0
The field renormalizations can be calculated from the mo-/ "€ coupling constants, on the other hand, are modified due
mentum dependent part of the two-point functions. Denotingto both changes in f!eld re_normallzatlons and c_hanges in loop
by Zg the results at zero chemical potential given in Eqs'lntegrals. The required diagrams are shown in Fig. 2. The

(141), (142 and (143 of [6] we get results are
2291~ A<MB) Na=\ g$T( v zx)A(MB)
6= 29| 1T EAE =Ngu—0— —~ =2,
16772 3 3 3u=0 772 Y 3
9 te| | <
ZA02220 1- [9«4(_ +2 Alpy) ] g*T i il
4872 3/ = ' ha=ha ot —— gA(_B +> 4
3 3u=0 1927T2 3 IZI (Iu’Li) ’
g pe) <
Zy=2311- 9A(—)+ Alp) | (21
a=Zh, 48772{ 3|t Al | D
g'T pe) <
95=03,—0t ~—— QA(?)#Z Alpp) | (24)
Here we have defined the functiot( ) (see the Appendjx 48w i=1 '
1 iu 1 i where;, g, h3,—o and gg’ﬂzo are given in Eqs(150),
Alp) =5+ m) + lﬂ(z— 2.7 T2vet2in4. (147 and(146) of [6], respectively. One may note thaf,

(22) the self-coupling of the adjoint scalars, does not get any cor-
rections from the chemical potentials and thus B2 of

[6] holds. Also,h;=g}%/4.

Last, the scalar mass parameter is calculated to two loops.

e must carefully obtain all the contributions from field

It is now straightforward to find the modifications of the
renormalization of the parameters. The Debye masses gets,

correction coming from the diagrams in Fig. 2. These G enormalizations and loop integrals. The diagrams needin
needed only to ordeg? (as discussed ifi6]) and thus the P gra's. g ¢

modification of the field renormalizations do not affect the "écalculation arezshown ig Fig._3j The result rig;(u)
Debye masses. Denoting by subscyipt O the results from =15, _o(x) +Am3 wherem3 ,_o(x) is given by Eq.(156)
Eqgs. (160 and(161) of [6] we get of [6] and
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2, 2 2 272 4272 202
9w 3g% AT 3¢°T% gyT®| (ms| 9vms|3
2_ 2 2 M 99 7 = 2
L P e 1 S T I i3 R Pl Dt L AT
9 MB 9 7 MB T2
_[(99¢+§g\2(g +169Ygs> ( 3 )_<9g¢+ 29392_18)\9\( 1®Ygs g4> 168(?) 128572
2o
9 27 \iugT 2 6nT
4, > 2 2 2 2__
+ ggY+4ng 1897 — 169793 )48773 : 1 iug
27 6aT
+ 99\2(92—6(39\( ngs) b(,u)-l—ggYLf(,u,)-i-(Engz-i-ngygs)(‘]- In2—1)
MB /’“é
B 2
9gY+4ng 18ng— 169595~ 475 ( 9gy+ 5 ng +169Y93) ( 3 ”1152774
|,U«L
. - n .
392 | gt g3 'ML NE
2 27T

Here the function3(w) (see the Appendijxis defined by diagrams in Fig. 1. The most important one of these is the
term linear inBy which is related to the neutrality of the
system. Calculating to two loogsot including contributions

1 i 1 i of the orderg’3~g%?) we get
’3“”:5( 15+ 507+ 4 z‘m)
. i 9g? | of ML, |2
-2 ,(_1,—> 26 — _ _ ~'T52 _ _
_( 507 99® g MB[ }(&ﬂ
and the functiond ,(x) andL(x) are as defined if6] 322 64w? 2m2) wT|T 9\a@T

Lb(,u)=|n—2—2 INdm+2vyg
T The corresponding diagrams are given in Fig. 4. The coeffi-
cients of the other new terms are needed only to one loop
order. The result for them is

Li(w)=In= —2Inm+2y

Here,u is the renormalization scale in the modified minimal
subtracuon MS) scheme. Note thalm3 is independent of
m w« when the running ogY is taken into account.

2. New terms . I . -
FIG. 4. Diagrams contributing to the linear term. Solid lines are

As already pointed out, chemical potentials also induceermions, dashed lines scalars, wavy lines electroweak gauge
new terms to the effective theories. These arise from théosons, curly lines are gluons and external legsBaréegs.
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2 3/2'“B
p= SngY aT’

5i MB
P _ r~2 3/2
P 4 g Y ’7TT,
n¢
MB H
__ ' 927372 _
Pe g g°T T =L aT)’
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Veri(@.(Bo).(A3))

1 ) A3 4 1 ) 1 )
=§m3<P +z<P+ mD<AO>+ mpX(Bo)

1 1
+ E(h3<Ag>2+ h3(Bo)?) ¢*— nggé€02<50><Ag>
+ B.)— i E 3 2+4 A3 2\3/2

K1< 0> 127 493((10 < 0) )

3
+5(05+03°) %%+ 2(mp +hae?)*?). (30

Requiring neutrality with respect to gauge charges enforces

the conditions

2 ng
=——| nfupt =0,
3972 f4B 241 M
AV _ IV et _ 31
9(Bo) HAY
r2 Nt
r—_ niug+ 2, uL | =0. (299  which gives us
32m? =1
. N (Bo)=(Bo)ot+(Bo)1, (AD=(A3o+(Ad)1
These come from the diagrams in Fig. 1. As already noted,
the Chern-Simons terms vanish due to the nonconservatiapjth
of B+L which setsnf,uBJrEi,uLi:O.
K h 1
<Bo>0:__,12(1+—2¢2) p :
D. One-loop effective potential mp mga 1+( h3 N h; ) )
—+—e
Before integrating over the adjoint scala#®§ andBy, it is mg sz
instructive  to  consider the effective  potential
Veﬁ(¢,<Ag>,<TBo>) for ~ the  condensates (@) , k195942 1
=1/\/2(0, ¢)T). Although not completely reliableY is (ADo=———= 13 - ,
known to give a rather good description of the phase transi- 4mpmg E+ h_ o2
tion at smallmy where the scalar self-coupling is small. m3, 2
Studies of the electroweak phase transition at finite chemical
potentials using perturbatively derived effective potentials YV
have been carried also previou$ly6—18§. (Bo)1= —— 9395 (Ad) o2 ¢™+4{A0)o '
At this point we are only interested in the qualitative ef- 167 m3my hy hg) |
fects finite chemical potentials can have. Therefore, in order 1+ F+ 2 ¢
to simplify the procedure, we neglect the contributions from D D
the terms A ASAZARAL, pdTAZAD, p'Byd'd  and
pcBoA3AS. This is motivated sincé ,~g* and pg~g”?2 A 93 A 1+h_
are small and since the three point verti@e®'®~p’ and (A= m2 —(Ado mi2 ¢°
AS(I)TQ)~p are negligible when compared to similar vertices
obtained from the four point verticesBSdD*(D and Vo2+ 4<A8)(2)
BO<I>TA 72® after annihilating aBO leg by the kx; vertex. h h! . (32
Likewise, we will use hy=g3/4, h;=g5%4, neglecting 1+(—2+ —,32 @2
higher order corrections, which simplifies some expressions Mp Mp

below. This is also consistent with all the approximations

above. Furthermore, we will only consider quantum fluctua-Here (Bo)o and(Ag), are tree level contributions to th,
tions of the magnetic sectoA?, B; and of the scalars andAj condensates, and,); and(A3), are corrections to

AO, A2, and treat all the condensmg scaldrs B, andA0

those from the one-loop term of the effective potential. In-

only at the tree level. This approximation is adequate tcserting these back to the effective potential in E3f) gives
show the effects of chemical potentials. A standard calculaus then the effective potential for the Higgs expectation

tion of the one-loop effective potential gives
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T T I
I Ve,?((p)’ n=30GeV, T, =99.0 GeV
60 - ——- v, ”(),n=30GeV, T,=99.0GeV ] 3200 |
e V(@), 0 =0GeV, T, = 96.9 GeV
_____________ 2200 |
n> ,,-" . “>
> 40 3
O s
2 C
G ;% 1200 |
" F TR X
N
20 + R\
\ 200 -
A\
A
N\
\\
\ 800 ‘ ‘ : ‘
0 : . 0 2 4 6 8
0 2 l ¢/ Gev'”
9/Gev'"”

FIG. 6. The evolution of the effective potential at fixed tempera-

FIG. 5. The one-loop effective potentials at the phase transitioRyre T=98 GeV and Higgs boson mass, =60 GeV as the chemi-
point for my =60 GeV. As can be seen, the omission of the higherca| potential is increased.

order termgsee Eq(33)] has only a small effect.

where we have set all the leptonic chemical potentials equal

Vel )_1 mz—ih _— hjk? 5 and u=pu =—up and only leading order terms ip are
effl @ _2 3 2ar 31D m,D4 [ kept

This effective potential gives a qualitative picture of the
effect of the chemical potentials. First, the critical tempera-
o ture increases due to decrease of the Higgs mass term. Sec-
ond, the scalar self-coupling increases leading to a smaller
1 A ¢ at the transition and thus to a weaker transition. Also the
- 3[292+(g§+ 952203+ O(¢") “barrier” responsible for the first order phase transition is
m lower. All these effects can be seen in Fig. 5. In Fig. 6 it can
be explicitly seen that finite chemical potentials tend to break
E\/gflf)((P)Jr O(¢®). (33 the symmetry of'the theory. .
The leadingu-induced corrections to both the scalar mass
) ) o parameter and self-coupling come from tBg condensate.
The error made by neglecting higher order termseiis  Thys at leading order the leptonic chemical potentials
small near the phase transition as can be seen from the expange the properties of the phase transition through gener-
ample in Fig. 5. In terms of the physical parameters we gekiing nonzero chemical potentials for the gauge charges.

[~ corresponds to only tree level matching between couTnese couple to the Higgs field and thus change the dynam-
plings of the 4-dimensional theory and physical variables;cs of the Higgs field.

given, for example, in Eqs(184), (185 of [6]. The exact We can also note that tH&/* boson mass is reduced in

one-loop matching, given in Eq$183 and (194 of [6], e proken phase due to the condensate given in Eq.
would not change the qualitative consideratidns.

1 hi 2h3«f[ hy hy
drmp mf \md m2

2 12
Mmp Mp

(32),°
1l mgy g?
Vé‘f‘f)(qo)*z -5t Ton? (m2+2m3,+ ma+2m?)T? - 1, 576 ,u_2 o) 35
W W=7\ 957 1464172 |9
16 1u’4 /*LZ
—ElMZJFTzO =979 |#?
T T If w/T is large enough, th&/= bosons may become unstable
goTo2 leading to aWV~ condensate. We, however, restrict ourselves
- (2myTm)e®
32mmy,
3This means that the physics behind #& condensation is re-
2 4 2
T 6 u Y 4 lated to the nonzero chemical potentials for the gauge charges.
+ 4 A+ 1331§+O F’g ﬁ’g ¢ These chemical potentials couple to & bosons and this con-

densation is nothing but Bose-Einstein condensation due to these
(34 chemical potentials.
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to small chemical potentials and study phenomena near the
phase transition wherg?<T and then th&V* condensation

is not relevant. AN
Although the perturbatively derived effective potentials __..---1---..__ SN
serve well in giving a qualitative, and even a quantitative, oo
picture of the phase transition, they cannot be trusted as th (a) (b) (©

Higgs boson mass increases. This is clearly seen, for ex- G evel di in the th .
ample, in predictions of the nature of the phase transition g_' 't7' (ar)]_A;]tree devi n'gggrﬂ .'nﬂt] elt teo;fy %Pveqhbgl
Perturbative calculations predict a first order phase transitioﬁia Ing fo a higher order ter )" in the last effective theory.

. . . 3, . T— 4
for all Higgs masses while nonperturbative studies show tha ) A leading or_der contribution to the Green's f”nc.t'mﬁ ©)%)
. . in the theory given byZ,. (c) A tree level diagram in the theory
there, in fact, is only a crossover fang=72 GeV atu

: . ; : - given byL,, leading to a higher order ternd(®)2A2A2 in the last
=0. Since the physical Higgs poson mass Is large, it is iIMgoctive theory responsible for the™ condensation. Dashed lines
portant not to rely on perturbative calculations. correspond to the fundamental scalar, solid lines to adjoint scalars,
wavy lines to gauge fields and dots to the vertex.
E. Integration over the adjoint scalars

The phase transition occurs when the scalar mass pararte final effective theory. If such higher order terms are not
eterm% becomes smalm§~g4T2. Then the adjoint scalars to be included in the effective theory, then the contribution of
may be considered heaup3~g?T?, and they can therefore those terms to the corresponding Green’s functions must be
be integrated out. The resulting effective theory is defined byufficiently suppressed so that they can be neglected. More
the Lagrangian specifically, in the theory described I#, the leading con-
tribution to the Green’s functiof(®'®)") comes from the
scalar loop in Fig. @) and is by naive dimensional calcula-
tion of the orderAim3 2"~ (h3/mp) "md " near the
phase transition when@3~ (h;/mp)2m3 . The contribution
from the graph in Fig. (&), on the other hand, is of the order
This reduction step;— £, is performed in[6] in the case ©f (hg/mp)?* ™" 3m3™". Thus, if we require that the effec-
ki=p=p'=ps=0. We now generalize this to finite tive theory can reproduce the Green’s functions up to order
1, p, p' and pg. We use as the expansion parameterd’~(hs/mp)® and we neglect the higher order operators
hs/mp and the goal is to calculate the corrections up to ordeProduced by the graphs in Fig(&/, then we must require
(h3/mp)2m for the scalar mass and to orddry(mp)2my  that
for the couplings in the reductiofi,— £,. To keep track of
the contribution of different terms we use the following 3 “
power counting rules: a=3 orequivalently ——=<g'. (39

L =£G-‘"‘-G?+1F~F--+(D-¢>)TD-<I>+H12<I>T¢
2 4 070 g i i 3

+N3(DTD)2, (36)

hs 2 ., hs hs |2
—Mp, 932~h3~_h3~(_ Mp,

2 _hae
g3~ N3 Mo mo

This determines the powercounting rules far, p, p’ and
ha a1 pe Which are used when integrating out the adjoint scalars.
12 3 M2 K1~( 3) m2/2 Another set of interesting tree level diagrams are those in
Fig. 7(c). They would lead to terms of the form
b ya-12 hoye (dTD)"AA? in the effective theonyC,. These are interest-
p~<_3> m3/2 p,~<_3> 3/2 ing since it is these terms that are responsible for\Wie
mMp D> condensation, as can, for example, be seen from(&4).
There the leading correction to th&/* mass is~ ¢* and
32 3 thus the term in the effective theon, that would be respon-
D - (8% sible for this correction would be~ (®Td)2AA?. The
above determined power counting rules allow us to neglect
These arise from the power counting rules of the originakhese terms but this means that the effective thegrgannot
theory supplemented by setting/(#T)~(hz/mp)® for  predictW™ condensation. As already discussed, this is not a
somea Where can be any of the chemical potentials. Due problem when we study phenomena near the phase transition
to the large mass of the top quark we have also relaxed thgnd at small chemical potentials.
power counting op andp’ by treatinggZ~ 1. This protects Since the reduction at;=p=p’'=ps=0 is given in[6]
us from neglecting andp’ in situations where they would we now only need to take into account the contribution from
be important. the new terms. Calculating to the accuracy mentioned before,
It is essential to keep the chemical potentials sufficientlythey only contribute to the scalar mass para méter to
small in order to keep this last reduction step meaningfulone-loop level and scalar self-couplingup to tree level
Consider, for example, the set of diagrams in Fi@).7Such  Other contributions are of higher order. The required dia-
diagrams would lead to terms of the forf{®)", n=3 in  grams are shown in Fig. 8. The results for the parameters are

h3 2+a
”GN(m_D) "
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| R S SN ' '
l \/ U Symmetric phase
0.08 i
® Lattice results
l I I Curve fitted to the lattice results
— — - 2-loop perturbative result
FIG. 8. Additional diagrams needed in integration over the ad- 0.04 1 i
joint scalars. The dashed lines correspond to the fundamental scala>
solid lines to adjoint scalars and the dot is thevertex.
212 2\ 2 or = )
’ ’ ! ~
= 2 h3Kl _ p K1 _ i 39393 + 4h3 K1 Broken symmetry phase \\\\\
M3=M3 4 4 2 4w amp m- | m End point of the first "
D D D D order phase transition
0.04 ' e
30950950 . 4hsp'\ Ky . 3p2 p? o 0.05 0.1 0.15
Mp my /m2 Mo m| b
FIG. 9. The phase diagram of the effective theory. The results
are from[7] and[9].
_ 1) (e )
N3=A30™ 5 2 2 | 4 ~ . . .
amp  mg"/mp and leavgys to give the dimensions. The value ofs essen-
tially fixed by the Weinberg mixing angle~tarf6,~0.3.
0s05p 4hip'\ ki p?  p? The value ofy is tuned to find the phase transition at a fixed
- s T2 2t =t 3l (39 value ofx which determines the nature of the phase transi-
Mo Mo /Mo Mp  Mp tion.

The phase diagram of the effective theory is given in Fig.
9. The continuous line is a curve fitted to the lattice results
which are given in[7] and [9] for SU(2)+Higgs gauge
theory. The effect of the U(1) subgroup is to increase the
the parameters of;. critical y slightly [ 7]. The critical line given by a perturbative

The construction of the theorigd; and £, differs in one  calculation is given by the dashed line. As can be seen, the
gualitative aspect. Although neither theory is applicable aperturbative result gives quite a good estimate for the value
high chemical potentialgy> 7T, there nevertheless was no of y at the transitiony=y.(x), for smallx. It, however, fails

Herem3, andX 3, are as given in Eqg174) (first equality
and (169 of [6] (where they are denoted Iy and\ ). All
the other couplings of, are as given ifi6] as functions of

expansion inu/(7T) in the construction ofZ;. That is, the
matching of the parameters of; to those of the
4-dimensional theory is given to a certain accuracgirfor

completely in describing the nature of the transition at high
X. Perturbation theory predicts a first order phase transition
for all x, while Monte Carlo studies have shown that there is

arbitrary w. This is not true for the matching betwegpand  a first order phase transition at smalbut that the first order
L,. There it was essential to assume that the chemical pghase transition line has a second order end poink at
tential is small. This is easy to understand since some of the=0.0983,y~ —0.0173 and for largex no phase transition is
couplings of., are directly proportional ta/(7rT) and thus  observed 7,9]. Thus, there is no phase transition for suffi-
n must be small wheit, is studied perturbatively. We may ciently large Higgs boson masses.
therefore assume that, is applicable to somewhat higher ~ The phase diagram in Fig. 9 can be expressed in terms of
chemical potentials thar,, up to u<=T. In the range the physical parameters by the mapping described in Sec. Il.
g'mT<u<=T the dynamics of£; may be dominated by For simplicity we set all the leptonic chemical potentials to
nonperturbative effects. be equal to each othan,,_i=M= — ug. The theory is speci-
fied by giving the physical parameters the valués,
=1.664<10 ° GeV 2, my=280.42 GeV,m,=91.19 GeV,
i _ o _ m,=174.3 GeV andrg(m;)=0.118. The Higgs boson mass
Thg effective theory for the light modes is infrared d|_ver- is left as a free parameter.
gent in perturbat_lon theory and thus it cannot k_)e reliably  The exact relation betweerm{;,T,x) and &.,y) is a
studied perturbatively. It has, however, been studied nonpegomplicated function ofu. However, the essential features
turbatively by Monte Carlo studies {]. of the effect of the chemical potentials can be seen quite

The theory is parametrized by four parameters. It is COngagily by just taking the leading corrections due to fipite
venient to express three of them in a dimensionless form,iq account. We get

while leaving one of them to give the energy scale. We define

Ill. THE PHASE DIAGRAM

96 w2 my 1 96 wu?

~r2
_ O3 - A il ”
gz 1331 '|'2 8m\2N 92 1331 T2 ’

(40) X(m)=x(0)+

2

O3
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0.2 T T 0.03 T T

0.15

1 16 ,LL2 w 0.1 1 s 001}

g T
Thus the effect of finitew is to increasex and decreasy. 0.05 -0.03
Perturbatively, at tree level the phase transition occung at
=y.=0. The critical temperature can then be solved to be

12 1 (8 , 256 2) 2 % 20 40 o % 20 40 60
= mg+ — 1/ GeV u/Gev
O 8\+3g%+g 2+4gZl 121

FIG. 10. Behavior ok, andy. as a function ofu for different
end point

which explicitly shows that a finite chemical potential in- Higgs boson masses. The regions above thefjfex; and

creases the critical temperature. At one-loop order the criticatelow the liney .=y

end point ;orrespond to the crossover region of

line is given byy.x=1/(1287?) and expanding this around the theory.

the tree level solutioif .= T, we get for the critical tempera-

ture[to first order in T.—Tg)/To]

TomTo| 14 — 9° !
¢ 16m2 8\ +3g2+g' 2+4g2 96 u?
133172

(43

remains sufficiently small This, however, does not seem to
have any physical relevance. Dimensional reduction is not
reliable at small Higgs boson masses where this effect is
strongest. As the Higgs boson mass is increased also the
chemical potentials must be increased in order to recover this
anomalous behavior. However, at these larger Higgs boson
masses and chemical potentials, the valug.as above the

end point valuext"P°"=0.0983 and there is therefore no

The factor multiplying the tree level critical temperature de-Phase transition. Especially, at physical Higgs boson masses,
creases as the chemical potentials are increased but that d8+=115 GeV, there is no phase transition.

crease is negligible in comparison to the simultaneous in- The phase diagram in terms of the physical parameters is
crease inT,. Thus the critical temperature increases also a@iven in Figs. 12 and 13. The qualitative picture based on

one-loop order.

perturbation theory can be seen to be correct. The critical

The above reasoning gives a valid qualitative understand€mperature increases wifla. Some interesting thermody-
ing of the behavior of the system but to obtain quantitativelytamics can be deduced from this. According to the Clausius-
more reliable results we must map the phase diagram in Fig=1apeyron relations

9 to (T, u,my) using the complete results from Sec. Il. Then

the values ofx andy along the phase transition line, d_T:_m, (44)
=X(T¢,pu,my) andy.=y(T;,u,my), are given in Fig. 10 du Ss— Sp

as functions ofu. It can be observed that as the chemical 018

potentials are increased, the subsequent increase and d - OGeV' '

crease of. andy,, respectively, are fastest at small Higgs —-— u=15GeV

boson masses. This is easy to understand sipeady, are ——- n=30GevV

essentially functions ofu/T. Thus, at small Higgs boson 014 | 77" k=43GeV

masses where the critical temperature is lower, incregsing
leads to a larger increase /T than at large Higgs boson
masses where the critical temperature is higher. Therefore

the changes irx; andy, are also larger at smaller Higgs
boson masses.

This has an interesting consequence. kheu) curves
for differentmy, intersect and for sufficiently large chemical 006 ¢
potentials the value of. is, in fact, a decreasing function of
the Higgs boson magat least for sufficiently small Higgs

—

boson masseésThis can be seen explicitly in Fig. 11. There- 0.02
fore, under these specific conditions, the phase transition ap
pears to become stronger as the Higgs boson mass is in-

creased(again, at least as long as the Higgs boson mass FIG. 11.

016001-11
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T " T " TABLE |. The location of the end point of the first order phase
110 | i transition line.
—— p=0GeV
——- u=15GeV . w mﬁnd point Tgnd point
100 ---- p=30GeV P i
0 GeV 72 GeV 109 GeV
15 GeV 71 GeV 108 GeV
> 90 . 30 GeV 66 GeV 104 GeV
< 45 GeV 52 GeV 94 GeV
=
80 .
phase transition for any value of,,. The location of the
70 i second order end point in terms of the Higgs boson mass and
s critical temperature is given in Table | for some values of the
chemical potential.
%02 40 60 80

my / GeV
IV. DISCUSSION
FIG. 12. The electroweak phase diagram onrie-T plane.

In this paper we have determined quantitatively how the
where dT/dy is measured along the phase transition line €auilibrium phase diagram of the electroweak theory, param-
andn, , ands, , are the lepton number and entropy densitiesetized by the Higgs boson mass, depends on the temperature
in each phase, respectively. Sirtt®dy is positive, the lep- and small leptonic chemical potentials. In particular, we have
ton number difference between the phases is of the opposifdudied the change of the second order end point of the first
sign than the entropy difference. Furthermore, since entrop?l’del’ phase transition line. It is seen that the critical tempera-
is higher in the symmetric phaséhe high temperature ture increases and the critical value of the Higgs boson mass
phase it means that the |epton number density is h|gher inWhel'e the first order phase transition line ends decreases as
the broken symmetry phase. the chemical potentials are increased. These results are sum-

The behavior of the end point of the first order phasemarized in Fig. 14.
transition line is also of interest. For a fixed Higgs boson It is interesting to qualitatively compare these results for
mass, a finite chemical potential strengthens the scalar selfbe critical temperaturd =T.(my,x) of the electroweak
coupling at the transition point as seen from Fig. 10. Thusphase transition to the critical temperatdre T(ms, ug),
increasingu weakens the transition and the value of theMs= strange quark masgg= baryonic chemical potential,
critical Higgs boson mass, where the first order phase traref the QCD phase transition. In QCD there is also a first
sition line ends in a second order end point, is a decreasingrder critical line ending in a second order pointuif=0
function of u. Especially, there cannot be a first order elec-then formg=0 (N=3) there is a first order phase transition
troweak phase transition at physical Higgs masses in thwhile for mg=9 (N¢=2) there is only a crossover. Thus, the
minimal standard model even when#0. Moreover, for a
sufficiently high chemical potential there appears to be no g4

110 b — m;=20GeV |
——- m,;=38GeV
....................................................... -==- my=56GeV 80.0
------------ my =68 GeV
100 [ 8 E—I | |
> g0 T . 14— ]
§ 100.0
= . I T
sor -7 - 1
A 00
70 | B m.l] m.n SU 3 0'2 0.1
.U Bu 0 0 4 ﬂ-
< . 0.5 ¥
60 1 1 1 1 1
0 10 20 30 40 50 60 H T
n/Gev
FIG. 14. The phase diagram. Note that the temperature grows
FIG. 13. The electroweak phase diagram onzgheT plane. downwards.
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situation on themg-T plane is like in Fig. 12. However, in pgn
contrast to Fig. 13, on thgg-T plane the critical lines for |2”_$
different mg bend downwards starting fromg=0 (in Fig. (p?)*
12 theug>0 curves would reside below thegs=0 curve.
As discussed after Eq44), this implies that in the QCD F(a—3/2+€) .
phase transition the entropy density and the baryon number = (& ®)T(27 )32 2
density change in a similar way. Also, in QCD, whem is 877 ()
large enough, there is a first order phase transition onlyif 1 ip
is greater than some critical valyes .(mg), again in con- X2 R{g(Za 2n—3+2¢, = 575 T”
trast to Fig. 13 which says that there is a first order elec-
troweak phase transition only ji is less then some critical
value pe(my). N po" !
The effective theory used in this paper to study the elec- 1o = a
troweak phase transition cannot be used at large chemical pr (P9
potentials. Therefore, it cannot, for example, predict the
emergenceor perhaps lack of jtof the W= condensate. The I'(a—3/2+¢€) — ot 4 e
L L . 4 ) =—(e7E,u )GT(Z'JTT) n+4—2e—2a
reason for this is that the driving force behind ¥& con 870 ()

densation, the Bose-Einstein condensation, would appear in

this theory through higher order terms of the form ] 1 i
(®TD)"APA?, n=2. Those terms would modify th&* X2 Im{{(Za—Zn—4+26,§—m”, (A2)
mass in such a way that the condensation might occur. We

have, however, neglected such higher order terms from th@here

theory which is possible if the chemical potentials are small.

The W= condensation is in any case a highphenomenon o 1
and thus our approximation is self-consistent. {(z,q)= , z>1 (A3)
n=0 (n+q)*
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APPENDIX: SUM-INTEGRALS AT FINITE p —2yet2-4In2)+24 15_ T
In this appendix we give the results for the required fer- 1 i
mionic sum-integrals for arbitrary. Similar integrals also +247 ( 1=+ L) +0(€?), (A4)
appear in the context of computing QCD quark number sus- 2 27T
ceptibilities[27].
1 |1 i
19= 2ye—4In2—y| = — —
1. One-loop integrals 2 16m2 [ Liw) = 27e- lﬂ( 2 27TT)
At one loop we have two types of integrals. Both of these 1 iu
are easily evaluated by first doing the-2e dimensional - §+ > T +0(e), (A5)
momentum integration and then performing the sum using ™
Riemann zeta functions. Denoting the sum-integrals by
T3 2
1 M M
o 1= —| 1+ == | +0(e), (AB)
(e’YEMZ)E % f 4% 2¢p 12 =T w2T?
% 4 n=—oo (277')3—25’ Il - L , .
2= g7 -1 Ol (A7)
po=(2n+1)7T—ipum, (A1)
where the primes in zeta functions denote derivatives with
respect to the first argument agdz) =d,In I'(2). The results
o . are exact inu. Terms of the ordee are needed only for the
whereu is the scale in thé/S scheme, we get first sum-integral.
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2. Two-loop integrals 3. Some properties of the required special functions

Most of the needed two-loop sum-integrals can be re- The central function is the generalized zeta function
duced to products of one-loop sum-integrals. Only the sum{(z,q), defined in Eq(A3) for Re(z)>1, and its derivative
integral corresponding to the “setting sun” diagram must bewith respect taz, {'(z,q). From the integral representation
evaluated explicitly. In calculating it we follow the procedure

outlined in[28]. o=, 1-g)t
The integral we are interested in is {(z,9)= NCIAR dtt a1 (A14)
1 i .
Isunset_—pf’kb m— A EH (k) valid at Reg)>1, Re(@)>0, it is possible to analytically

continue this function to the double complex plarzeq, z
po=(2n+1)7T—ip, ko=2maT, nmeZ (A8) #1. For us itis sufficient to consider only the half plane
Re(q) >0 where we can write
where we have defined the integl'(k) as in[28]. By
going to configuration space where the propagator is given

_ 1 & Ba@ (-1
by (at e=0) - n
{29=1 2 i+ 1) 7401
e—|Po|f
A(pOIr): ’ (Ag) 1—q)t
4 1 © e( q
o b f dttz 2 . (A15)
. I'(2) )1 e—-1
this integral becomes
ik =T, dereik»rA(pO,r)A(poJr Ko,T) Here B,(q) are Bernoulli polynomials. This expression is
{po} well defined as long ag#1 and Re{)>0 (the limit of

r 1 I'(z)(z+n—-1)] is well defined az=0,—1,—-2, ...) and
T 2 fd3re' o~ IPolr g=IPo+kolr thus it can be used to define the analytic continuation of
5 .

1672 {po} r {(z,q) to that region. For the derivative we get
(A10) .
. , 1 Ba(@) (—1)"
Here We_ have used the _notatlon (@8] WhereE{pO} means {'(z,9)= T(2) & T(N+1) (z4n—1)2
summation over fermionic Matsubara modes.
The influence of the chemical potentials resides now in 1 (=, g1t
the sum + F(z)jl dtt* "Int — W(2){(2,9).
> epore|p0+kor:e|kor( coszur) “‘0') (A16)
oo} sinh27Tr) 2aT
(A11) . ) . _ .
All the required special functions appearing in the integrals
and thus we get can be related to these functions. This is trivially true for the
' one-loop integrals by Eq§A2). The logarithm of the gamma
; T 3 ekl cog2ur) kol |\ functions present in the sunset integral E§13) can on the
f(k) = J T + Ikolr, - _
162 r2 \sinh2#Tr)  2aT other hand be written <= u/(7T)]
(A12)
) ) 1 ix
From here we can proceed as[28] by first subtracting the F(E_ 5) 1 ix 1 ix
T=0, u=0 part(which contains the ultraviolet divergenges n——— =" _ 5’(0,— — _) —¢'loz+ _)_ (A17)
and then evaluating the remaining integral. The final result is r £+ 5) 2 2 2 2
22 (1 2 2 2
sunset ~ < 2 ;+2 In—2—4ln477+2
64m T Thus the mathematical properties of the non-polynomial part
1 ip in u/T of all the required integrals are given by the general-
. F(— R ized zeta function.
L et 2 2mt LO(e).  (A13) The asymptotic behavior of the integrals at the limits
167° r £+ i wlT—0 andT/u—0 is of interest. The smal limit is a
2 24T straightforward Taylor expansion and is not given here ex-

plicitly. The largew limit for the required functions is most
We were unable to find whether this integral had been caleasily obtained from Stirling’s approximation for the gamma
culated at finitew previously. function:
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1 ix and that{(0,q) = 1/2—q. Low temperature expansion of the
57 ix N i 1 integrals(A4), (A5) and (A13) is now straightforward. We
— = Z|In=-2|-= - et
InF 1+ix 2(In4 2) 6X+(9 x3)' g
2y . u? 2 72 72 T2\ w2
(A18) ll:_ﬁ 1+?;+E 1+?F In;
Thus 5
1 ix +3-2In2+0| —| || +O(€?)
. IN'=-—= w?
)R 1 ix i dI 2 2
{ﬂi_? _Id_xn 1 ix 1 [1 ) 2 12 4
5+ 0 M T T
2 2 I>= —+In—-2In2+——+0| —
16772 € MZ 3 MZ ,U«4
2
NS S +0(e)
4 3x? x*
. 2 -2 271_2 T2
1 ix X[ x? 1 laneee — ——| = +In= —4n2+6- 2 —
ZR%?(—].,E 5) =—§(Inz—l)—2—4lnx2 sunset 644 € w? 3 u?
+0(x9). T
00 (A19) +0| — || +0ce. (A21)
)73

The last expansion can be derived with the help of (B4.7)

after noting that the zeta function satisfies the relation ] ]
Thus, although separate terms of the integrals diverge loga-

J ., _ o rithmically at T/u—0, the integrals themselves are conver-
aqg (z@)=-dz+la)-20(z+14q) (A20) gent in that limit, as they should.
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