$\mathrm{SU}(3)$ relations and the $\boldsymbol{C P}$ asymmetries in \boldsymbol{B} decays to $\boldsymbol{\eta}^{\prime} \boldsymbol{K}_{S}, \phi \boldsymbol{K}_{S}$, and $\boldsymbol{K}^{+} K^{-} \boldsymbol{K}_{S}$

Yuval Grossman, ${ }^{1, *}$ Zoltan Ligetii, ${ }^{2, \dagger}$ Yosef Nir, ${ }^{3, *}$ and Helen Quinn ${ }^{4,8}$
${ }^{1}$ Department of Physics, Technion-Israel Institute of Technology, Technion City, 32000 Haifa, Israel
${ }^{2}$ Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
${ }^{3}$ Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel
${ }^{4}$ Stanford Linear Accelerator Center, Stanford University, Menlo Park, California 94025, USA

(Received 25 March 2003; published 16 July 2003)

Abstract

We consider $C P$ asymmetries in neutral B meson decays to $\eta^{\prime} K_{S}, \phi K_{S}$, and $K^{+} K^{-} K_{S}$. We use $\operatorname{SU}(3)$ relations to estimate or bound the contributions to these amplitudes proportional to $V_{u b}^{*} V_{u s}$. Such contributions induce a deviation of the S_{f} terms measured in these time dependent $C P$ asymmetries from that measured for ψK_{S}. For the $K^{+} K^{-} K_{S}$ mode, we estimate the deviation to be of order 0.1 . For the $\eta^{\prime} K_{S}$ mode, we obtain an upper bound on this deviation of order 0.3 . For the ϕK_{S} mode, we have to add a mild dynamical assumption to the $\operatorname{SU}(3)$ analysis due to insufficient available data, yielding an upper bound of order 0.25 . These bounds may improve significantly with future data. While they are large at present compared to the usually assumed standard model contribution, they are obtained with minimal assumptions and hence provide more rigorous tests for new physics. If measurements yield $\left|S_{f}-S_{\psi K}\right|$ that are much larger than our bounds, it would make a convincing case for new physics.

DOI: 10.1103/PhysRevD.68.015004
PACS number(s): 12.10.Dm, 12.10.Kt, 98.80.Cq

I. INTRODUCTION

Recent measurements of $C P$ asymmetries in neutral B meson decays into final $C P$ eigenstates test the KobayashiMaskawa mechanism and probe new sources of $C P$ violation. The time dependent asymmetries depend on two parameters S_{f} and C_{f} (f denotes here a final $C P$ eigenstate):

$$
\begin{align*}
\mathcal{A}_{f}(t) & \equiv \frac{\Gamma\left(\bar{B}_{\mathrm{phys}}^{0}(t) \rightarrow f\right)-\Gamma\left(B_{\mathrm{phys}}^{0}(t) \rightarrow f\right)}{\Gamma\left(\bar{B}_{\mathrm{phys}}^{0}(t) \rightarrow f\right)+\Gamma\left(B_{\mathrm{phys}}^{0}(t) \rightarrow f\right)} \\
& =-C_{f} \cos \left(\Delta m_{B} t\right)+S_{f} \sin \left(\Delta m_{B} t\right) \tag{1}
\end{align*}
$$

$C P$ violation in decay induces C_{f}, while $C P$ violation in the interference of decays with and without mixing induces S_{f}. (The contribution from $C P$ violation in mixing is at or below the percent level and can be safely neglected with the present experimental accuracy.)

If the decay is dominated by a single weak phase, C_{f} ≈ 0 and the value of S_{f} can be cleanly interpreted in terms of $C P$ violating parameters of the Lagrangian. This is the case for decays which are dominated by the tree $b \rightarrow c \bar{c} s$ transition or by the gluonic penguin $b \rightarrow s \bar{s} s$ transition. If one neglects the subdominant amplitudes with a different weak phase, the $C P$ asymmetries in these two classes of decays are given by $S_{f}=-\eta_{f} \sin 2 \beta$, where $\eta_{f}=+1(-1)$ for final $C P-$ even (-odd) states and β is one of the angles of the unitarity triangle. In particular, in this approximation, the $C P$ asymmetries in the two classes are equal to each other, for ex-

[^0]ample, $S_{\psi K}=S_{\phi K}$. A strong violation of such a relation would indicate new physics [1].

Our aim in this paper is to quantify this statement with minimal assumptions for three modes of interest: ϕK_{S}, $\eta^{\prime} K_{S}$ and $K^{+} K^{-} K_{S}$. We would like to estimate or to find bounds on the deviations of the corresponding asymmetries from $S_{\psi K_{S}}$ that are (hadronic-)model independent. The ingredients of our analysis are $\operatorname{SU}(3)$ relations and experimental information on related modes. We will be able to carry out this program to the end for $S_{\eta^{\prime} K_{S}}$. As concerns $S_{\phi K_{S}}$, we derive $\mathrm{SU}(3)$ relations that can, in principle, lead to model independent bounds. In practice, however, some experimental information is still missing. Nevertheless, by using a mild dynamical assumption, we obtain a bound for this mode too. The situation is more complicated for $S_{K K K}$, where we point out some subtleties in the interpretation of the experimental results. For this mode, however, we are able to estimate (rather than just bound) the deviation of the extracted asymmetry from $\sin 2 \beta$ in the standard model by using U-spin relations and experimental data.

II. EXPERIMENTAL AND THEORETICAL BACKGROUND

The $C P$ asymmetry in $B \rightarrow \psi K_{S}$ decays (and other, related, modes that proceed via $b \rightarrow c \bar{c} s$) has been measured, with a world average [2] of

$$
\begin{align*}
& S_{\psi K_{S}}=+0.734 \pm 0.054 \quad[3,4], \\
& C_{\psi K_{S}}=+0.05 \pm 0.04 \quad[3,4] . \tag{2}
\end{align*}
$$

The value of $S_{\psi K_{S}}$ is consistent with predictions made on the basis of other measurements of the Cabibbo-KobayashiMaskawa (CKM) parameters $\left(\Delta m_{B}, \Delta m_{B_{s}}, \varepsilon_{K}\right.$ and tree level decays).
$C P$ asymmetries have also been searched for in three modes that are dominated by $b \rightarrow s \bar{s} s$ gluonic penguin transitions:

$$
\begin{array}{cc}
S_{\eta^{\prime} K_{S}}=+0.33 \pm 0.34 & {[5,6],} \\
C_{\eta^{\prime} K_{S}}=-0.08 \pm 0.18 & {[5,6],} \\
S_{\phi K_{S}}=-0.39 \pm 0.41 & {[5,7],} \\
C_{\phi K_{S}}=+0.56 \pm 0.44 \\
-S_{K^{+} K^{-} K_{S}}=+0.49 \pm 0.44_{-0.00}^{+0.33} \\
C_{K^{+} K^{-} K_{S}} & {[5]} \tag{5}\\
& \\
\text { a }
\end{array}
$$

The standard model predicts that in these modes $-\eta_{f} S_{f}$ $=S_{\psi K_{S}}$ and $C_{f}=0$ to a good approximation. The statistical errors in Eqs. (3)-(5) are too large to make any firm conclusions. It is clear, however, that there is still much room left for deviations from the standard model generated by possible new physics in $b \rightarrow s$ transitions.

The standard model amplitude for these three decay modes can be written as follows:

$$
\begin{equation*}
A_{f} \equiv A\left(B^{0} \rightarrow f\right)=V_{c b}^{*} V_{c s} a_{f}^{c}+V_{u b}^{*} V_{u s} a_{f}^{u} \tag{6}
\end{equation*}
$$

The second term is CKM-suppressed compared to the first one since

$$
\begin{equation*}
\mathcal{I} m\left(\frac{V_{u b}^{*} V_{u s}}{V_{c b}^{*} V_{c s}}\right)=\left|\frac{V_{u b}^{*} V_{u s}}{V_{c b}^{*} V_{c s}}\right| \sin \gamma=\mathcal{O}\left(\lambda^{2}\right), \tag{7}
\end{equation*}
$$

where $\lambda=0.22$ is the Wolfenstein parameter. It is convenient to define

$$
\begin{equation*}
\xi_{f} \equiv \frac{V_{u b}^{*} V_{u s} a_{f}^{u}}{V_{c b}^{*} V_{c s} a_{f}^{c}}, \tag{8}
\end{equation*}
$$

and thus rewrite the amplitude of Eq. (6),

$$
\begin{equation*}
A_{f}=V_{c b}^{*} V_{c s} a_{f}^{c}\left(1+\xi_{f}\right) \tag{9}
\end{equation*}
$$

The $\operatorname{SU}(3)$ analysis we carry out allows us to bound $\left|\xi_{f}\right|$. To first order in this quantity, the deviation of the asymmetry from $\sin 2 \beta$ is given by [8,9]

$$
\begin{equation*}
-\eta_{f} S_{f}-\sin 2 \beta=2 \cos 2 \beta \sin \gamma \cos \delta_{f}\left|\xi_{f}\right| \tag{10}
\end{equation*}
$$

where $\delta_{f}=\arg \left(a_{f}^{u} / a_{f}^{c}\right)$. The ξ_{f} parameter characterizes also the size of C_{f} :

$$
\begin{equation*}
C_{f}=-2 \sin \gamma \sin \delta_{f}\left|\xi_{f}\right| \tag{11}
\end{equation*}
$$

Note that δ_{f} can be determined from $\tan \delta_{f}=\left(\eta_{f} S_{f}\right.$ $+\sin 2 \beta) /\left(C_{f} \cos 2 \beta\right)$, while the following (δ_{f}-independent) relation between S_{f}, C_{f} and $\left|\xi_{f}\right|$ may become useful in the future:

$$
\begin{equation*}
C_{f}^{2}+\left[\left(\eta_{f} S_{f}+\sin 2 \beta\right) / \cos 2 \beta\right]^{2}=4 \sin ^{2} \gamma\left|\xi_{f}\right|^{2} \tag{12}
\end{equation*}
$$

The crucial question, when thinking of the deviation of $-\eta_{f} S_{f}$ from $\sin 2 \beta$, is the size of a_{f}^{u} / a_{f}^{c}. While a_{f}^{c} is dominated by the contribution of $b \rightarrow s \bar{s} s$ gluonic penguin diagrams, a_{f}^{u} gets contributions from both penguin diagrams and $b \rightarrow u \bar{u} s$ tree diagrams. For the penguin contributions, it is clear that $\left|a_{f}^{u} / a_{f}^{c}\right| \sim 1$. (The a_{f}^{c} term comes from the charm penguin minus the top penguin, while the up penguin minus the top penguin contributes to a_{f}^{u}.) Thus our main concern is the possibility that the tree contributions might yield $\left|a_{f}^{u} / a_{f}^{c}\right|$ significantly larger than one.

For final states with zero strangeness, f^{\prime}, we write the amplitudes as

$$
\begin{equation*}
A_{f^{\prime}} \equiv A\left(B^{0} \rightarrow f^{\prime}\right)=V_{c b}^{*} V_{c d} b_{f^{\prime}}^{c}+V_{u b}^{*} V_{u d} b_{f^{\prime}}^{u} \tag{13}
\end{equation*}
$$

Here neither term is CKM suppressed compared to the other. We use $\mathrm{SU}(3)$ flavor symmetry to relate the $a_{f}^{u, c}$ amplitudes to sums of $b_{f^{\prime}}^{u, c}$. While similar $\mathrm{SU}(3)$ relationships have been explored elsewhere [10-14], most of our results and applications are new.

The $\operatorname{SU}(3)$ relations, together with the measurements or upper bounds on the rates for the nonstrange channels plus the measured rate for the channel of interest yield an upper bound on $\left|\xi_{f}\right|$. Let us first provide an intuitive explanation of this. The decays to final strange states, f, are dominated by the a_{f}^{c} terms. Those to final states with zero strangeness, f^{\prime}, are dominated by the $b_{f^{\prime}}^{u}$ terms. Thus we can estimate $\left|a_{f}^{c}\right|$ and $\left|b_{f^{\prime}}^{u}\right|$ from the measured branching ratios (or the upper bounds on them). Then the $\mathrm{SU}(3)$ relations give upper bounds on certain sums of the $b_{f^{\prime}}^{c}$ and a_{f}^{u} amplitudes from the extracted values of a_{f}^{c} and $b_{f^{\prime}}^{u}$, respectively. This then gives a bound on $\left|a_{f}^{u} / a_{f}^{c}\right|$, and consequently on $\left|\xi_{f}\right|$. We can also check the self-consistency of the analysis, namely that $\left|a_{f}^{u}\right|<\left|A_{f}\right| /\left|V_{u b} V_{u s}\right|$ and $\left|b_{f^{\prime}}^{c}\right|<\left|A_{f^{\prime}}\right| /\left|V_{c b} V_{c d}\right|$. However, as we show below, the assumptions made in this paragraph can be avoided entirely.

The $\mathrm{SU}(3)$ relations actually provide an upper bound on $\left|V_{c b}^{*} V_{c d} a_{f}^{c}+V_{u b}^{*} V_{u d} a_{f}^{u}\right|$, in terms of the measured branching ratios of some zero strangeness final states (or limits on them). Therefore, without any approximations, we can bound

$$
\begin{align*}
\hat{\xi}_{f} & \equiv\left|\frac{V_{u s}}{V_{u d}} \times \frac{V_{c b}^{*} V_{c d} a_{f}^{c}+V_{u b}^{*} V_{u d} a_{f}^{u}}{V_{c b}^{*} V_{c s} a_{f}^{c}+V_{u b}^{*} V_{u s} a_{f}^{u}}\right| \\
& =\left|\frac{\xi_{f}+\left(V_{u s} V_{c d}\right) /\left(V_{u d} V_{c s}\right)}{1+\xi_{f}}\right| \tag{14}
\end{align*}
$$

If the bound on $\hat{\xi}_{f}$ is less than unity, then it gives a bound on $\left|\xi_{f}\right|$. We work to first order in ξ_{f}, since the naive expectation is $\xi_{f}=\mathcal{O}\left(\lambda^{2}\right)$. At the present state of the data the bounds we obtain on $\hat{\xi}_{f}$ are significantly larger than λ^{2}, so we also work in the approximation $\lambda^{2} \ll \hat{\xi}_{f}<1$. This is appropriate because we want to constrain the possibility $\left|a_{f}^{u} / a_{f}^{c}\right| \gg 1$. Therefore,
we take $\left|\xi_{f}\right| \approx \hat{\xi}_{f}$ in what follows (although this approximation should not be made once the bounds on $\hat{\xi}_{f}$ are of order λ^{2}).

The $\mathrm{SU}(3)$ decomposition of a_{f}^{u} and $b_{f^{\prime}}^{u}$, is identical with that of a_{f}^{c} and $b_{f^{\prime}}^{c}$ although the values of the reduced matrix elements are independent for the u - and the c-terms. The $\mathrm{SU}(3)$ decomposition is given in Appendix A for the channels discussed in this paper. We use the notation $a(f) \equiv a_{f}^{u, c}$ and $b\left(f^{\prime}\right) \equiv b_{f^{\prime}}^{u, c}$ for equations that apply for both cases, with either all u or all c upper indices. Our normalization of the various amplitudes is the same as that of Ref. [11]. It corresponds to $\Gamma=|A|^{2}$ independent of whether the final particles are identical or not.

The contributions to a_{f}^{c} and $b_{f^{\prime}}^{c}$ come from penguin diagrams or the tree $b \rightarrow c \bar{c} q$ transition plus some form of rescattering (such as D-exchange) to replace the $c \bar{c}$ with lighter quark flavors. Aside from small electroweak penguin contributions, there is only an $\operatorname{SU}(3)$ triplet term in the Hamiltonian for these amplitudes. Neglecting electroweak penguins would result in additional $\mathrm{SU}(3)$ relations between the a_{f}^{c} and $b_{f^{\prime}}^{c}$, terms. We do not make such an approximation in our analysis, but it might be useful for other purposes.

III. THE $\boldsymbol{C P}$ ASYMMETRY IN $\boldsymbol{B} \rightarrow \boldsymbol{\eta}^{\prime} \boldsymbol{K}_{S}$

A. $\mathrm{SU}(3)$ relations

The $C P$ asymmetry in $B \rightarrow \eta^{\prime} K_{S}$ is expected to yield a less accurate measurement of $\sin 2 \beta$ than the ψK_{S} mode. The reason is that, while this decay is dominated by gluonic penguins, there are CKM-suppressed tree contributions that induce a deviation from the leading result. Nevertheless, it was argued in Ref. [15] that this deviation is below the two percent level. The argument was based on relating the tree contributions in $B \rightarrow \eta^{\prime} K$ and $B \rightarrow \pi \pi$ decays. While this may be a reasonable hypothesis, it is based on neither approximate symmetry nor obvious dynamical assumptions. In this section we derive a more rigorous (though weaker) bound on the "problematic" subleading contribution.

The results of Appendix A imply the following amplitude relations:

$$
\begin{align*}
a\left(\eta_{1} K^{0}\right)= & -\frac{1}{\sqrt{2}} b\left(\eta_{1} \pi^{0}\right)+\sqrt{\frac{3}{2}} b\left(\eta_{1} \eta_{8}\right) \\
a\left(\eta_{8} K^{0}\right)= & \frac{1}{2 \sqrt{2}} b\left(\eta_{8} \pi^{0}\right) \\
& -\sqrt{\frac{3}{4}}\left[b\left(\pi^{0} \pi^{0}\right)-b\left(\eta_{8} \eta_{8}\right)\right] \tag{15}
\end{align*}
$$

The states η_{1} and η_{8} transform as a singlet and an octet of $\mathrm{SU}(3)$, respectively. They are related to the physical η^{\prime} and η states through an orthogonal rotation:

$$
\begin{equation*}
\eta^{\prime}=c \eta_{1}-s \eta_{8}, \quad \eta=s \eta_{1}+c \eta_{8} \tag{16}
\end{equation*}
$$

where $s \equiv \sin \theta_{\eta \eta^{\prime}}$ and $c \equiv \cos \theta_{\eta \eta^{\prime}}$. Most extractions of the mixing angle, $\theta_{\eta \eta^{\prime}}$, vary in the $10-20^{\circ}$ range, and we will use $\theta_{\eta \eta^{\prime}}=20^{\circ}$ in our numerical calculations [16].

In terms of physical states, we obtain from Eq. (15) the relation

$$
\begin{align*}
a\left(\eta^{\prime} K^{0}\right)= & \frac{s^{2}-2 c^{2}}{2 \sqrt{2}} b\left(\eta^{\prime} \pi^{0}\right)-\frac{3 c s}{2 \sqrt{2}} b\left(\eta \pi^{0}\right) \\
& +\frac{\sqrt{3} s}{4} b\left(\pi^{0} \pi^{0}\right)-\frac{\sqrt{3} s\left(s^{2}+4 c^{2}\right)}{4} b\left(\eta^{\prime} \eta^{\prime}\right) \\
& +\frac{3 \sqrt{3} s c^{2}}{4} b(\eta \eta)+\frac{\sqrt{3} c\left(2 c^{2}-s^{2}\right)}{2 \sqrt{2}} b\left(\eta \eta^{\prime}\right) . \tag{17}
\end{align*}
$$

The $\mathrm{SU}(3)$ analysis gives many more relations, involving both charged and neutral B decay amplitudes. The most general such relation, involving up to thirteen amplitudes on the right hand side, is given in Appendix B. With current data, Eq. (17) gives the strongest bound:

$$
\begin{align*}
\left|\xi_{\eta^{\prime} K_{S}}\right|< & \left|\frac{V_{u s}}{V_{u d} \mid}\right|\left[0.59 \sqrt{\frac{\mathcal{B}\left(\eta^{\prime} \pi^{0}\right)}{\mathcal{B}\left(\eta^{\prime} K^{0}\right)}}+0.33 \sqrt{\frac{\mathcal{B}\left(\eta \pi^{0}\right)}{\mathcal{B}\left(\eta^{\prime} K^{0}\right)}}\right. \\
& +0.14 \sqrt{\frac{\mathcal{B}\left(\pi^{0} \pi^{0}\right)}{\mathcal{B}\left(\eta^{\prime} K^{0}\right)}}+0.53 \sqrt{\frac{\mathcal{B}\left(\eta^{\prime} \eta^{\prime}\right)}{\mathcal{B}\left(\eta^{\prime} K^{0}\right)}} \\
& \left.+0.38 \sqrt{\frac{\mathcal{B}(\eta \eta)}{\mathcal{B}\left(\eta^{\prime} K^{0}\right)}}+0.96 \sqrt{\frac{\mathcal{B}\left(\eta \eta^{\prime}\right)}{\mathcal{B}\left(\eta^{\prime} K^{0}\right)}}\right] \tag{18}
\end{align*}
$$

This bound is obtained from Eq. (17) by taking all amplitudes to interfere constructively, and using $\theta_{\eta \eta^{\prime}}=20^{\circ}$. The experimental upper bounds on the relevant branching ratios are collected in Appendix C. Using these values, we obtain

$$
\begin{equation*}
\left|\xi_{\eta^{\prime} K_{S}}\right|<0.36 \tag{19}
\end{equation*}
$$

So far only upper limits are available for many of the rates that enter in Eq. (18). Hence this bound is probably a significant overestimate and will improve with further data. At the present state of the data, we do not consider it necessary to be concerned about $\mathrm{SU}(3)$ breaking corrections. Eventually, there may be sufficient data to fix all the amplitudes $a_{f}^{u, c}$, including their relative phases. At that point a much stronger bound can be expected, and allowance for $\mathrm{SU}(3)$ breaking corrections will need to be made.

Using the known CKM dependence, the bound of Eq. (19) can be translated into a bound on the hadronic parameters,

$$
\begin{equation*}
\left|\frac{a_{\eta^{\prime} K^{0}}^{u}}{a_{\eta^{\prime} K^{0}}^{c}}\right|<18 \tag{20}
\end{equation*}
$$

This bound is much weaker than most theoretical estimates. Since the amplitudes involved in Eq. (17) carry different strong phases, we do not expect that they all add up coherently, as assumed in Eq. (18). A more plausible (though less rigorous) estimate would be that the left hand side of Eq. (18) is unlikely to be larger than the largest term on the right hand side. This estimate would give $\left|\xi_{\eta^{\prime} K_{S}}\right|<0.14$ instead of 0.36 . Clearly, more data could significantly improve these bounds.

The same set of $\mathrm{SU}(3)$ relationships can be used to carry out a similar analysis for a number of other modes. The relevant general relationship for ηK_{S} is given in Appendix B. Once experimental data on the asymmetry in this mode are available, it will be interesting to use this relationship to obtain a similar constraint on $\xi_{\eta K_{S}}$.

B. Using charged modes and a dynamical assumption

One can obtain a similar bound on the ratio a_{f}^{u} / a_{f}^{c} for the charged mode, $f=\eta^{\prime} K^{+}$. The experimental situation is such that this bound is significantly stronger than the one in the neutral mode. The $\mathrm{SU}(3)$ relations for the decompositions of a_{f}^{u} and $b_{f^{\prime}}^{u}$ in $B^{+} \rightarrow P P$ decays are also given in Appendix A. They lead to the following relations:

$$
\begin{align*}
& a\left(\eta_{1} K^{+}\right)=b\left(\eta_{1} \pi^{+}\right) \\
& a\left(\eta_{8} K^{+}\right)=\frac{1}{\sqrt{3}} b\left(\pi^{+} \pi^{0}\right)-\frac{1}{\sqrt{6}} b\left(\overline{K^{0}} K^{+}\right) \tag{21}
\end{align*}
$$

and

$$
\begin{equation*}
\sqrt{6} b\left(\eta_{8} \pi^{+}\right)=\sqrt{2} b\left(\pi^{+} \pi^{0}\right)+2 b\left(\overline{K^{0}} K^{+}\right) \tag{22}
\end{equation*}
$$

This last equation allows us to bound $\xi_{\eta^{\prime} K^{+}}$by many different combinations of decay modes. The most general relationship that involves only B^{+}decay modes is

$$
\begin{align*}
a\left(\eta^{\prime} K^{+}\right)= & \frac{(3-x) c s}{2} b\left(\eta \pi^{+}\right) \\
& +\frac{(x-1) s^{2}+2 c^{2}}{2} b\left(\eta^{\prime} \pi^{+}\right) \\
& +\frac{(x-3) s}{2 \sqrt{3}} b\left(\pi^{+} \pi^{0}\right)+\frac{x s}{\sqrt{6}} b\left(\overline{K^{0}} K^{+}\right) \tag{23}
\end{align*}
$$

where, as before, c and s parametrize $\eta-\eta^{\prime}$ mixing. The parameter x is free: it allows us to choose, based on the state of the data, the optimal (that is, the most constraining) combination of amplitudes. With the branching ratios collected in Appendix C, we find that at present $x=3$ in Eq. (23) gives the strongest constraint,

$$
\begin{equation*}
\left|\xi_{\eta^{\prime} K^{+}}\right|<0.09 \tag{24}
\end{equation*}
$$

While the a_{f}^{c} amplitudes for the charged and neutral $\eta^{\prime} K$ modes are the same, the a_{f}^{u} are not. The nontriplet contributions coming from the tree $b \rightarrow u \bar{u} d$ terms in the Hamiltonian
cause the differences. [This can be seen in the $\mathrm{SU}(3)$ relations in Table II of Appendix A.] If we examine the quark diagrams for these two channels we find that $a_{\eta^{\prime} K^{+}}^{u}$ has a color-allowed tree diagram contribution, while $a_{\eta^{\prime} K_{S}}^{u}$ only arises from a color-suppressed tree diagram or penguins. Our dynamical assumption is that the color-suppressed $a_{\eta^{\prime} K_{S}}^{u}$ is not bigger than the color-allowed $a_{\eta^{\prime} K^{+}}^{u}$. This could only be violated by an accidental cancellation between two terms that are formally different orders in $1 / N_{c}$. By making this mild assumption, we improve the bound on $\xi_{\eta^{\prime} K_{S}}$ by more than a factor of three over that given by the pure $\mathrm{SU}(3)$ analysis.

There are experimental tests that could indicate that $a_{\eta^{\prime} K^{+}}^{u}$ is small compared to $a_{\eta^{\prime} K_{S}}^{u}$. First, if direct $C P$ violation in the neutral mode were established to be large, $\left|C_{\eta^{\prime} K_{S}}\right| \nless 1$, it would place a lower bound on $\left|a_{\eta^{\prime} K_{S}}^{u}\right| a_{\eta^{\prime} K_{S}}^{c} \mid$. Second, if the difference of the neutral and charged B $\rightarrow \eta^{\prime} K$ rates were sizable, given our strong bound on $\left|a_{\eta^{\prime} K^{+}}^{u} / a_{\eta^{\prime} K^{+}}^{c}\right|$, it would imply a large $\left|a_{\eta^{\prime} K_{S}}^{u} / a_{\eta^{\prime} K_{S}}^{c}\right|$ with a relative strong phase that is not close to $\pi / 2$. If either of these measurements violate the upper bound on $\left|a_{\eta^{\prime} K^{+}}^{u} / a_{\eta^{\prime} K^{+}}^{c}\right|$, it would suggest either an accidental cancellation in the charged mode, or, more interestingly, possible new physics. This would make it important to improve the direct neutral mode test for new physics.

Equation (3) shows that $C_{\eta^{\prime} K_{S}}$ is consistent with zero and the data in Appendix C show that the ratio of charged and neutral rates is not necessarily much different from one. However, this does not validate our assumption. For example, a small strong phase, $\delta_{\eta^{\prime} K} \approx 0$, and a large weak phase, $\gamma \approx \pi / 2$, would make direct $C P$ violation small and induce approximately equal rates, independently of the size of $a_{\eta^{\prime} K^{+}}^{u} / a_{\eta^{\prime} K_{S}}^{u}$.

IV. THE $\boldsymbol{C P}$ ASYMMETRY IN $\boldsymbol{B} \rightarrow \boldsymbol{\phi} \boldsymbol{K}_{S}$

A. $\mathrm{SU}(3)$ relations

A similar analysis can also be applied to $B \rightarrow \phi K_{S}$. Again, the existence of CKM-suppressed contributions induces a deviation from the leading result, and our goal is to constrain that effect using $\mathrm{SU}(3)$ related modes. Here it is usually assumed that these corrections are not large, since the b $\rightarrow u \bar{u} s$ tree diagram can only contribute via rescattering to the ϕ final state which is pure $s \bar{s}$. Thus it was generally argued that the deviation of $S_{\phi K_{S}}$ from $\sin 2 \beta$ is likely to be no larger than $\mathcal{O}\left(\lambda^{2}\right)$. Reference [12] proposed an $\mathrm{SU}(3)$ based relation that can potentially bound this deviation, however, it involves an implicit dynamical assumption. In this subsection we present exact $\mathrm{SU}(3)$ relations that can, in principle, give a model independent bound. In the next subsection, we explain the dynamical assumption that leads to the bound of Ref. [12] and update it with current data.

The $\mathrm{SU}(3)$ decomposition of a_{f}^{u} and $b_{f^{\prime}}^{u}$ for final states composed of a vector and a pseudoscalar meson is given in

Appendix A. These results imply the following relations:

$$
\begin{align*}
a\left(\phi_{1} K^{0}\right)= & -\frac{1}{\sqrt{2}} b\left(\phi_{1} \pi^{0}\right)+\sqrt{\frac{3}{2}} b\left(\phi_{1} \eta_{8}\right), \\
a\left(\phi_{8} K^{0}\right)= & \frac{1}{4 \sqrt{2}}\left[3 b\left(\rho^{0} \eta_{8}\right)-b\left(\phi_{8} \pi^{0}\right)\right] \\
& +\frac{1}{4} \sqrt{\frac{3}{2}}\left[b\left(\phi_{8} \eta_{8}\right)-b\left(\rho^{0} \pi^{0}\right)\right] \\
& +\frac{1}{2} \sqrt{\frac{3}{2}}\left[b\left(K^{* 0} \overline{K^{0}}\right)-b\left(\overline{K^{* 0}} K^{0}\right)\right] . \tag{25}
\end{align*}
$$

The states ϕ_{1} and ϕ_{8} transform as a singlet and an octet of $\operatorname{SU}(3)$, respectively. They are related to the physical ϕ and ω through an orthogonal rotation:

$$
\begin{equation*}
\phi=\sqrt{\frac{1}{3}} \phi_{1}-\sqrt{\frac{2}{3}} \phi_{8}, \quad \omega=\sqrt{\frac{2}{3}} \phi_{1}+\sqrt{\frac{1}{3}} \phi_{8}, \tag{26}
\end{equation*}
$$

which defines the ϕ as a pure $s \bar{s}$ state. Thus, in terms of physical states, we obtain

$$
\begin{align*}
a\left(\phi K^{0}\right)= & \frac{1}{2}\left[b\left(\overline{K^{* 0}} K^{0}\right)-b\left(K^{* 0} \overline{K^{0}}\right)\right] \\
& +\frac{1}{2} \sqrt{\frac{3}{2}}\left[c b(\phi \eta)-s b\left(\phi \eta^{\prime}\right)\right] \\
& +\frac{\sqrt{3}}{4}\left[c b(\omega \eta)-s b\left(\omega \eta^{\prime}\right)\right] \\
& -\frac{\sqrt{3}}{4}\left[c b\left(\rho^{0} \eta\right)-s b\left(\rho^{0} \eta^{\prime}\right)\right] \\
& +\frac{1}{4} b\left(\rho^{0} \pi^{0}\right)-\frac{1}{4} b\left(\omega \pi^{0}\right)-\frac{1}{2 \sqrt{2}} b\left(\phi \pi^{0}\right) \tag{27}
\end{align*}
$$

This relation could give a bound on $\xi_{\phi K_{S}}$ in a similar fashion as Eq. (18) in Sec. III A. However, a survey of the experimental data shows that currently no useful bound can be obtained from Eq. (27). While it is possible, using $\mathrm{SU}(3)$ relations, to replace some modes that occur on the right-hand side of Eq. (27) with a combination of others, there is no relation that yields a bound on $\hat{\xi}_{\phi K_{S}}$ below unity at present.

We conclude that, while in the future it will be possible to use relations such as Eq. (27) to constrain $a_{\phi K^{0}}^{u} / a_{\phi K^{0}}^{c}$ in a model independent way, it is impossible to do so with current data.

B. Using charged modes and a dynamical assumption

For the charged mode $f=\phi K^{+}$, one can similarly obtain a bound on the ratio $\xi_{\phi K^{+}}$based purely on $\mathrm{SU}(3)$. The $\mathrm{SU}(3)$
relations for $B^{+} \rightarrow V P$ decays are given in Appendix A. They lead to the following relations:

$$
\begin{align*}
& a\left(\phi_{1} K^{+}\right)=b\left(\phi_{1} \pi^{+}\right) \\
& a\left(\phi_{8} K^{+}\right)=b\left(\phi_{8} \pi^{+}\right)-\sqrt{\frac{3}{2}} b\left(\overline{K^{* 0}} K^{+}\right) \tag{28}
\end{align*}
$$

In terms of physical states we thus obtain

$$
\begin{equation*}
a\left(\phi K^{+}\right)=b\left(\phi \pi^{+}\right)+b\left(\overline{K^{* 0}} K^{+}\right) \tag{29}
\end{equation*}
$$

Using the experimental upper limits on rates collected in Appendix C, we obtain

$$
\begin{equation*}
\left|\xi_{\phi K^{+}}\right|<0.25 \tag{30}
\end{equation*}
$$

Once again there is no immediate relationship between the $a_{\phi K^{+}}^{u}$ and $a_{\phi K_{S}}^{u}$. They differ by nontriplet Hamiltonian contributions arising from the tree-type $b \rightarrow u \bar{u} s$ transition (and a small but similar effect from electroweak penguins). To use the above result as a bound on $\xi_{\phi K_{S}}$ requires an additional assumption that $a_{\phi K_{S}}^{u}$ is not much larger than $a_{\phi K^{+}}^{u}$. Here we cannot readily justify this assumption, although we know of no reason why it should not hold. Because the ϕ is a pure $s \bar{s}$ state, there is no order N_{c}^{2} tree contribution to $a_{\phi K^{+}}^{u}$, as there was in the case of $a_{\eta K^{+}}^{u}$. The tree $b \rightarrow u \bar{u} s$ contribution must undergo a rescattering in order to contribute. This brings it to be an order N_{c} term, at the same level as the penguin contributions. Traditional analyses of this channel assume that the rescattering contribution is negligible compared to the $b \rightarrow s \bar{s} s$ penguin terms, in which case the charged and neutral $a_{\phi K}^{u}$ would be approximately equal. Indeed, only an accidental cancellation could make $\left|a_{\phi K^{+}}^{u}\right|$ much smaller than $\left|a_{\phi K_{S}}^{u}\right|$.

With this assumption, the bound for the charged mode also applies for the neutral mode. In this case, there is presently no pure $\operatorname{SU}(3)$-based bound, and so this assumption is necessary to obtain any result. The bound in Eq. (30) was applied to the neutral mode in Ref. [12]. We have shown here that implicit in this bound is the assumption that there is no accidental cancellation of the two contributions to the charged mode.

As in the $\eta^{\prime} K$ modes, here too there is no evidence either for large $C_{\phi K_{S}}$ or for a large difference between $\mathcal{B}\left(\phi K^{0}\right)$ and $\mathcal{B}\left(\phi K^{+}\right)$. If such evidence existed, it would indicate that $\left|a_{\phi K^{+}}^{u}\right|$ is small compared to $\left|a_{\phi K_{S}}^{u}\right|$. This could indicate that there is indeed a cancellation between two independent contributions to $a_{\phi K^{+}}^{u}$, or a harbinger of new physics effects. Data on the nonstrange neutral modes would then be desirable, as they could distinguish these two possibilities.

V. THE $\boldsymbol{C P}$ ASYMMETRY IN $\boldsymbol{B} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{K}_{S}$

The $B \rightarrow K^{+} K^{-} K_{S}$ decay is different from the other decay modes discussed in one, very important, aspect: since the final state is three-body, it does not have a definite $C P$. Thus,
the $C P$ asymmetry is diluted with respect to $\sin 2 \beta$. To extract the value of $\sin 2 \beta$ from this measurement, one has to know the relative fractions of $C P$-even and $C P$-odd final states. The BELLE Collaboration employed a beautiful isospin analysis for this purpose [17]. The accuracy of the isospin analysis affects the accuracy with which the true $S_{K K K}$ (that is, $S_{K K K}$ for a final $K K K$ state with a definite $C P$) is determined. Consequently, the relation between the experimental value, $S_{K K K}^{\exp }$, and $\sin 2 \beta$ is more complicated. We will first analyze the accuracy of determining $S_{K K K}$ from $S_{K K K}^{\exp }$ and then the deviation of $S_{K K K}$ from $\sin 2 \beta .{ }^{1}$

A. Isospin analysis

The $B \rightarrow K^{I} K^{J} K^{L}$ decays (where $I, J, L=\{+,-, 0, S\}$ specify the kaon states) involve an initial $I=1 / 2$ state and final $I=1 / 2$ and $3 / 2$ states. There are five independent isospin amplitudes, $A_{1}^{2}, A_{1}^{2^{\prime}}, A_{3}^{2}, A_{3}^{2^{\prime}}$ and A_{3}^{4}, where the lower index denotes the isospin representation of the Hamiltonian and the upper index gives that of the final state. (We follow the notation of the previous sections, instead of using isospin labels.) For the isospin-doublet final states, the representation 2 denotes where the two $S=-1$ mesons are in an isospinsinglet state, while 2^{\prime} denotes where they are in an isospintriplet. Defining

$$
\begin{equation*}
A_{I J L}\left(p_{1}, p_{2}, p_{3}\right) \equiv A\left[B \rightarrow K^{I}\left(p_{1}\right) \bar{K}^{J}\left(p_{2}\right) K^{L}\left(p_{3}\right)\right], \tag{31}
\end{equation*}
$$

we obtain the isospin decompositions given in Appendix D.
Let us start by neglecting the tree contributions, as was done in the BELLE analysis. This corresponds to $A_{3}^{2}=A_{3}^{2^{\prime}}$ $=A_{3}^{4}=0$. Then, the following amplitude relations arise:

$$
\begin{equation*}
A_{00+}=A_{+-0}, \quad A_{+00}=A_{0-+}, \quad A_{000}=A_{+-+} . \tag{32}
\end{equation*}
$$

When integrating over phase space, the contribution from the interference between A_{1}^{2} and $A_{1}^{2^{\prime}}$ vanishes. (Thus, although $A_{I J L}$ is not invariant under $I \leftrightarrow L$, the rates $\Gamma_{I J L}$ and the branching ratios $\mathcal{B}_{I J L}$ are.) Consequently, the equalities of the following rates are predicted:

$$
\begin{equation*}
\Gamma_{+-0}=\Gamma_{+00}, \quad \Gamma_{+-+}=\Gamma_{000} . \tag{33}
\end{equation*}
$$

Branching ratios of four $B \rightarrow K K K$ decays have been measured [17]:

$$
\begin{align*}
\mathcal{B}_{+-+} & =(3.30 \pm 0.18 \pm 0.32) \times 10^{-5} \\
\mathcal{B}_{+-0} & =(2.93 \pm 0.34 \pm 0.41) \times 10^{-5}, \\
\mathcal{B}_{+S S} & =(1.34 \pm 0.19 \pm 0.15) \times 10^{-5}, \\
\mathcal{B}_{S S S} & =\left(0.43_{-0.14}^{+0.16} \pm 0.75\right) \times 10^{-5} \tag{34}
\end{align*}
$$

[^1]Thus the approximation in Eq. (32) that led to Eq. (33) has not yet been tested (in particular, isospin symmetry implies no relation between \mathcal{B}_{+-+}and \mathcal{B}_{+-0}). Because $\Gamma_{I 00}$ include both $C P$-odd and even states for the pair of neutral kaons, the measured rates in Eq. (34) are not sufficient to test the relations in Eq. (33). For example, the first relation in Eq. (33) becomes

$$
\begin{equation*}
\Gamma_{+-S}=\frac{1}{2} \Gamma_{+S L}+\Gamma_{+S S} . \tag{35}
\end{equation*}
$$

We now focus on the $K^{+} K^{-} K^{0}$ and $K^{0} \overline{K^{0}} K^{+}$modes. One can write down the effective Hamiltonian in terms of the meson fields. The two $I=0$ terms are of the form $\left(B^{i} K_{i}\right)\left(K^{j} K_{j}\right)$ where i and j are isospin indices. We can decompose the Hamiltonian into components where the $K^{j} K_{j}$ pair is either in an $l=$ even or in an $l=$ odd angular momentum state:

$$
\begin{equation*}
H_{\mathrm{eff}} \propto\left(B^{i} K_{i}\right)\left[x\left(K^{j} K_{j}\right)_{l=\text { even }}+\sqrt{1-x^{2}}\left(K^{j} K_{j}\right)_{l=\mathrm{odd}}\right] . \tag{36}
\end{equation*}
$$

The equality of the amplitudes in Eq. (32) guarantees that x is equal for the two decay modes, and allows the extraction of the $C P$ even/odd fractions in the $B^{0} \rightarrow K_{S} K^{+} K^{-}$decay from measurements of the $B^{+} \rightarrow K^{+} K_{S} K_{S}$ decay as follows [17].

Consider the $K^{+} K^{-}$subsystem in the $B^{0} \rightarrow K^{+} K^{-} K^{0}$ decay. Charge conjugation exchanges K^{+}and K^{-}, and parity exchanges them again (in the center of mass frame). Thus the $K^{+} K^{-}$system has $C P=+1$. Then, the $K^{+} K^{-} K_{S}$ system has $C P=(-1)^{l}$, where l is the relative angular momentum between K_{S} and ($K^{+} K^{-}$). (It also equals the relative angular momentum between K^{+}and K^{-}.) There is then a one-to-one correspondence between angular momentum and $C P$. In particular, x^{2} in Eq. (36) gives the $C P$-even fraction in the B $\rightarrow K^{+} K^{-} K_{S}$ decay.

Next consider the $\overline{K^{0}} K^{0}$ subsystem in the B^{+} $\rightarrow K^{+} \overline{K^{0}} K^{0}$ decay. Bose symmetry implies that $l=$ even corresponds to a final $K_{S} K_{S}+K_{L} K_{L}$ state, while $l=$ odd corresponds to a $K_{S} K_{L}$ state. Thus, $x^{2}=2 \Gamma_{+S S} / \Gamma_{+00}$. Since \mathcal{B}_{+00} has not been measured, one can use again Eq. (33) to arrive at the following relation [17]:

$$
\begin{equation*}
x^{2}=2 \frac{\Gamma_{+S S}}{\Gamma_{+-0}}=0.97 \pm 0.15 \pm 0.07 \tag{37}
\end{equation*}
$$

We learn that the $K^{+} K^{-} K_{S}$ final state is dominantly $C P$ even.

From a measured value of the $C P$ asymmetry, $S_{K K K}^{\exp }$, we can deduce the value of the $C P$ asymmetry for the $C P$-even component, $S_{K K K}$, according to $S_{K K K}=S_{K K K}^{\exp } /\left(2 x^{2}-1\right)$. We learn that in the limit that $I=1$ contributions to the Hamiltonian are neglected, we have

$$
\begin{equation*}
S_{K K K}=\frac{S_{K K K}^{\exp }}{4 \Gamma_{+S S} / \Gamma_{+-0}-1} \tag{38}
\end{equation*}
$$

When the higher isospin contributions are taken into account, the three amplitude equalities of Eq. (32) and the two rate equalities of Eq. (33) no longer hold. There remains a single amplitude relation:

$$
\begin{equation*}
A_{000}+A_{+-+}+A_{+00}+A_{00+}+A_{+-0}+A_{0-+}=0 \tag{39}
\end{equation*}
$$

The angular momentum analysis is modified by the three A_{3} terms. In particular, both the relation $\Gamma_{+-S}(l=$ even $) / \Gamma_{+-S}$ $=\Gamma_{+00}(l=$ even $) / \Gamma_{+00}$ and the relation $\Gamma_{+00}=\Gamma_{+-0}$ are corrected by terms of $\mathcal{O}\left[\left(A_{3}^{2}+\sqrt{2} A_{3}^{4}\right) /\left(\sqrt{3} A_{1}^{2}\right)\right]$ and of $\mathcal{O}\left[A_{3}^{2^{\prime}} /\left(\sqrt{3} A_{1}^{2^{\prime}}\right)\right]$. At present there is no experimental information on the size of these corrections.

One might worry about isospin violation in the $\phi \rightarrow K K$ decays, since $\mathcal{B}\left(\phi \rightarrow K^{+} K^{-}\right) \approx 49 \%$ and $\mathcal{B}\left(\phi \rightarrow K_{S} K_{L}\right)$ $\approx 34 \%$ should be equal in the isospin limit. (This large violation can be understood as arising chiefly from the phase space difference for the two channels.) Since $\mathcal{B}(B \rightarrow \phi K) \times \mathcal{B}\left(\phi \rightarrow K^{+} K^{-}\right)$is between $10-15 \%$ of \mathcal{B}_{+-0}, this could give an additional error of up to $\sim 4 \%$ on x^{2}, not a very large effect.

Note that even if the A_{3} amplitudes were negligibly small and thus the isospin analysis to find the $C P$-even fraction in the $K K K$ state very precise, it would not imply that the extracted $C P$ asymmetry is equal to $\sin 2 \beta$ to the same precision. The $b \rightarrow u \bar{u} s$ tree contribution also has an isosinglet component, which would not affect the isospin analysis but would shift $S_{K K K}$ from $\sin 2 \beta$. In the next subsection we estimate the overall effect of that contribution.

B. \boldsymbol{U}-spin analysis

In the previous subsection, we used isospin symmetry to estimate the $C P$-even fraction in the $K^{+} K^{-} K_{S}$ final state. Isospin symmetry relates the $B^{0} \rightarrow K^{+} K^{-} K^{0}$ mode to the $B^{+} \rightarrow K^{+} K^{0} \overline{K^{0}}$ mode. In this subsection we use U-spin symmetry to estimate the overall effect of contributions to B $\rightarrow K^{+} K^{-} K^{+}$that are proportional to $V_{u b}^{*} V_{u s} . U$-spin relates certain $B^{+} \rightarrow h_{i}^{+} h_{j}^{-} h_{k}^{+}$modes to each other, where $h_{i, j, k}$ $=K$ or π. [Since U-spin is a subgroup of $\mathrm{SU}(3)$, this analysis is just a simplified form of the analysis that we have given for the other channels in this paper.]

Under U-spin, B^{+}is a singlet, while $M_{i}=\left(K^{+}, \pi^{+}\right)$is a doublet. A crucial point in our discussion is the U-spin transformation properties of the Hamiltonian. Both the penguin amplitudes, $b \rightarrow(\bar{u} u+\bar{d} d+\bar{s} s) q$, and the tree contributions $b \rightarrow u \bar{u} q$ (with $q=d, s$) are $\Delta U=1 / 2$. Consequently, there are two U-spin amplitudes for the charged B decays into three charged kaons or pions. The decomposition of the various decay amplitudes in terms of these two U-spin amplitudes is given in Table IV. We find the following relation:

$$
\begin{equation*}
a\left(K^{+} K^{-} K^{+}\right)=b\left(\pi^{+} \pi^{-} \pi^{+}\right) \tag{40}
\end{equation*}
$$

The experimental data are $[17,19]$

$$
\begin{gather*}
\mathcal{B}_{K K K} \equiv \mathcal{B}\left(B^{+} \rightarrow K^{+} K^{-} K^{+}\right)=(3.1 \pm 0.2) \times 10^{-5}, \\
\mathcal{B}_{\pi K K} \equiv \mathcal{B}\left(B^{+} \rightarrow \pi^{+} K^{-} K^{+}\right)=(6.6 \pm 3.4) \times 10^{-6}, \\
\mathcal{B}_{K \pi \pi} \equiv \mathcal{B}\left(B^{+} \rightarrow K^{+} \pi^{-} \pi^{+}\right)=(5.7 \pm 0.4) \times 10^{-5}, \\
\mathcal{B}_{\pi \pi \pi} \equiv \mathcal{B}\left(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)=(1.1 \pm 0.4) \times 10^{-5} \tag{41}
\end{gather*}
$$

To relate the two pairs of rates in a useful way, we make our usual approximation: we take the $K K K$ rate to be dominated by the $a_{K K K}^{c}$ term, and the $\pi \pi \pi$ rate to be dominated by the $a_{\pi \pi \pi}^{u}$ term. Then we obtain

$$
\begin{equation*}
\left|\xi_{K K K}\right|=\left|\frac{V_{u s}}{V_{u d}}\right| \sqrt{\frac{\mathcal{B}\left(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)}{\mathcal{B}\left(B^{+} \rightarrow K^{+} K^{-} K^{+}\right)}} \approx 0.13 . \tag{42}
\end{equation*}
$$

Given the size of U-spin breaking effects and the crudeness of our approximations, we estimate that the corrections to $-S_{K K K}=\sin 2 \beta$ is of the following size:

$$
\begin{equation*}
\xi_{K^{+} K^{-} K_{S}}=0.13 \pm 0.06 \tag{43}
\end{equation*}
$$

Additional constraint on $\left|\xi_{K K K}\right|$ can be derived from $\mathcal{B}_{\pi K K}$. Our amplitude relations imply that, in the U-spin limit, $\mathcal{B}_{\pi K K} \geqslant \mathcal{B}_{\pi \pi \pi} / 2$. Consequently,

$$
\begin{equation*}
\left|\xi_{K K K}\right| \leqslant\left|\frac{V_{u s}}{V_{u d}}\right| \sqrt{\frac{2 \mathcal{B}\left(B^{+} \rightarrow \pi^{+} K^{-} K^{+}\right)}{\mathcal{B}\left(B^{+} \rightarrow K^{+} K^{-} K^{+}\right)}} \approx 0.14 \tag{44}
\end{equation*}
$$

The above analysis does not distinguish between quasi-two-body and true three-body contributions to the eventual three-body rate. Indeed it includes all three-body final states, whether or not reached by a resonant contribution. We used here the $\mathrm{SU}(3)$ relationship only for the total rates, integrated over the entire Dalitz plots. Comparisons of more restricted regions of the Dalitz plots would be much more subject to $\mathrm{SU}(3)$ breaking corrections.

VI. CONCLUSIONS

Within the standard model, the $C P$ asymmetries S_{f} in neutral B decays to the final $C P$ eigenstates $\phi K_{S}, \eta^{\prime} K_{S}$ and $\left(K^{+} K^{-} K_{S}\right)_{C P=-1}$ are equal to the CKM parameter $\sin 2 \beta$ measured in $B \rightarrow \psi K_{S}$, to a good approximation. Furthermore, the direct $C P$ asymmetries C_{f} in these modes are expected to be small. The goodness of this approximation is different between the various modes and its estimate suffers, in general, from hadronic uncertainties. We used $\mathrm{SU}(3)$ relations and experimental data (and, in some cases, a mild dynamical assumption) to estimate or to derive upper bounds on the deviation of the S_{f} from $\sin 2 \beta$ and on the size of C_{f}. We obtained

$$
\begin{align*}
& \left|\xi_{\eta^{\prime} K_{S}}\right|< \begin{cases}0.36 & \mathrm{SU}(3), \\
0.09 & \mathrm{SU}(3)+\text { leading } N_{c} \text { assumption, }\end{cases} \\
& \left|\xi_{\phi K_{S}}\right|<0.25 \quad \mathrm{SU}(3)+\text { noncancellation assumption, } \\
& \left|\xi_{K^{+} K^{-} K_{S}}\right| \sim 0.13 \quad U \text {-spin }, \tag{45}
\end{align*}
$$

where ξ_{f} is defined in Eq. (8). The approximations and assumptions that lead to these results are spelled out in the corresponding sections. While our bounds for the first two modes are considerably weaker than estimates based on explicit calculations of the hadronic amplitudes, they have the advantage that they are model independent. Although $\operatorname{SU}(3)$ breaking effects could be significant, our bounds for the twobody modes are probably still conservative because they arise from a sum over several complex amplitudes that we assumed to interfere constructively. Furthermore only experimental upper bounds are available for many of the rates that enter these bounds. As data improve, these bounds could become significantly stronger. Certainly, if deviations from $\sin 2 \beta$ are established that are larger than the $\mathrm{SU}(3)$ bounds, the case for new physics would be convincing. Since our bounds apply more generally to minimal flavor violation models, the new physics would have to be beyond this framework. Even where our results require additional assumptions, the situation here is better than the usual, in that we are making assumptions about nonleading corrections to the a_{f}^{u} amplitudes, rather than about the full a_{f}^{u} terms.

ACKNOWLEDGMENTS

We thank Adam Falk and Adam Schwimmer for helpful discussions, and the CERN and SLAC theory groups for hospitality while parts of this work were completed. The work of Y.G., Z.L. and H.Q. was supported in part by the United States-Israel Binational Science Foundation through Grant No. 2000133. The research of Y.G. and Y.N. is supported by a Grant from the G.I.F., the German-Israeli Foundation for Scientific Research and Development, and by the Einstein Minerva Center for Theoretical Physics. Y.G. was supported in part by the Israel Science Foundation under Grant No. 237/01. Z.L. was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of High Energy Physics, of the U.S. Department of Energy under Contract DE-AC03-76SF00098 and by the DOE Outstanding Junior Investigator program. Y.N. is supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities and by EEC RTN contract HPRN-CT-00292-2002. The work of H.Q. was supported by the Department of Energy, contract DE-AC03-76SF00515.

APPENDIX A: SU(3) DECOMPOSITION FOR $\left\langle\boldsymbol{f}^{(\prime)}\right|(\bar{b} \boldsymbol{u})(\bar{u} \boldsymbol{q})|\boldsymbol{B}\rangle$ AMPLITUDES

In this appendix we give the $\mathrm{SU}(3)$ decomposition of matrix elements that are relevant to our analysis. The operator

TABLE I. $\operatorname{SU}(3)$ decomposition of $a(f)$ and $b\left(f^{\prime}\right)$ for $f^{(\prime)}$ $=\eta_{1} P_{8}$.

$f^{(\prime)}$	S_{15}^{8}	$S_{\overline{6}}^{8}$	S_{3}^{8}
$\eta_{1} K^{0}$	-1	-1	1
$\eta_{1} K^{+}$	3	1	1
$\eta_{1} \pi^{0}$	$5 / \sqrt{2}$	$-1 / \sqrt{2}$	$-1 / \sqrt{2}$
$\eta_{1} \eta_{8}$	$\sqrt{3 / 2}$	$-\sqrt{3 / 2}$	$1 / \sqrt{6}$
$\eta_{1} \pi^{+}$	3	1	1

that creates a B meson containing a \bar{b} quark transforms as a $\overline{3}$ of $\operatorname{SU}(3)$. The $\Delta B=+1$ Hamiltonian, which has the flavor structure $\left(\bar{b} q_{i}\right)\left(\bar{q}_{j} q_{k}\right)$, transforms as $3 \times 3 \times \overline{3}=15+\overline{6}+3$ +3 . Our calculations follow closely that in Ref. [20], the only difference being the decomposition of the Hamiltonian that can be read off from Ref. [10].

For final states composed of an $\mathrm{SU}(3)$ singlet and an octet, there are three reduced matrix elements. The reason is that there is a unique way of making a singlet from an octet plus any one of the three representations of the Hamiltonian and the B operator. In Table I we give the decomposition of $a(f) \equiv a_{f}^{u, c}$ and $b\left(f^{\prime}\right) \equiv b_{f^{\prime}}^{u, c}$ for $f^{(\prime)}=\eta_{1} P_{8}$, where η_{1} is the $\mathrm{SU}(3)$-singlet pseudoscalar, and P_{8} is the $\mathrm{SU}(3)$-octet pseudoscalar. The matrix elements S_{α}^{β} that occur in the decomposition of a_{f}^{u} and $b_{f^{\prime}}^{u}$ are independent of those for a_{f}^{c} and $b_{f^{\prime}}^{c}$. In our notation, the lower index of the reduced matrix elements denotes the $\mathrm{SU}(3)$ representation of the Hamiltonian and the upper index is that of the final state. (If electroweak penguin contributions were neglected, the decomposition of a_{f}^{c} and $b_{f^{\prime}}^{c}$ is given by the last column, corresponding to H in a triplet.) The decomposition for $f^{(\prime)}=\phi_{1} P_{8}$, where ϕ_{1} is the $\mathrm{SU}(3)$-singlet vector-meson, is the same as that for $f^{(\prime)}$ $=\eta_{1} P_{8}$, with different values of the reduced matrix ele-

TABLE II. $\mathrm{SU}(3)$ decomposition of $a(f)$ and $b\left(f^{\prime}\right)$ for $f^{(\prime)}$ $=P_{8} P_{8}$.

$f^{(\prime)}$	A_{15}^{27}	A_{15}^{8}	$A_{\overline{6}}^{8}$	A_{3}^{8}	A_{3}^{1}
$\eta_{8} K^{0}$	$4 \sqrt{6} / 5$	$1 / \sqrt{6}$	$-1 / \sqrt{6}$	$-1 / \sqrt{6}$	0
$K^{0} \pi^{0}$	$12 \sqrt{2} / 5$	$1 / \sqrt{2}$	$-1 / \sqrt{2}$	$-1 / \sqrt{2}$	0
$K^{+} \pi^{-}$	$16 / 5$	-1	1	1	0
$\eta_{8} K^{+}$	$8 \sqrt{6} / 5$	$-\sqrt{3 / 2}$	$1 / \sqrt{6}$	$-1 / \sqrt{6}$	0
$K^{+} \pi^{0}$	$16 \sqrt{2} / 5$	$3 / \sqrt{2}$	$-1 / \sqrt{2}$	$1 / \sqrt{2}$	0
$K^{0} \pi^{+}$	$-8 / 5$	3	-1	1	0
$\eta_{8} \pi^{0}$	0	$5 / \sqrt{3}$	$1 / \sqrt{3}$	$-1 / \sqrt{3}$	0
$\pi^{0} \pi^{0}$	$-13 \sqrt{2} / 5$	$1 / \sqrt{2}$	$1 / \sqrt{2}$	$1 /(3 \sqrt{2})$	$\sqrt{2}$
$\eta_{8} \eta_{8}$	$3 \sqrt{2} / 5$	$-1 / \sqrt{2}$	$-1 / \sqrt{2}$	$-1 /(3 \sqrt{2})$	$\sqrt{2}$
$\pi^{-} \pi^{+}$	$14 / 5$	1	1	$1 / 3$	2
$K^{-} K^{+}$	$-2 / 5$	2	0	$-2 / 3$	2
$K^{0} \frac{K^{0}}{}$	$-2 / 5$	-3	-1	$1 / 3$	2
$\eta_{8} \pi^{+}$	$4 \sqrt{6} / 5$	$\sqrt{6}$	$-\sqrt{2 / 3}$	$\sqrt{2 / 3}$	0
$\pi^{+} \pi^{0}$	$4 \sqrt{2}$	0	0	0	0
$K^{+} K^{0}$	$-8 / 5$	3	-1	1	0

TABLE III. SU(3) decomposition of $a(f)$ and $b\left(f^{\prime}\right)$ for $f^{(\prime)}=V_{8} P_{8}$.

$f^{(\prime)}$	B_{15}^{27}	$B_{15}^{8 S_{S}}$	$B_{\overline{6}}^{8}$	$B_{3}^{8 S}$	B_{3}^{1}	B_{15}^{10}	$B_{\overline{6}}^{\overline{10}}$	$B_{15}^{8_{A}}$	$B_{\overline{6}}^{8_{A}}$	$B_{3}^{8}{ }^{\text {A }}$
$\phi_{8} K^{0}$	$2 \sqrt{6} / 5$	$1 /(2 \sqrt{6})$	$-1 /(2 \sqrt{6})$	$-1 /(2 \sqrt{6})$	0	$-4 \sqrt{2 / 3}$	0	$\sqrt{3 / 2} / 2$	$-\sqrt{3 / 2} / 2$	$-\sqrt{3 / 2} / 2$
$K^{* 0} \eta_{8}$	$2 \sqrt{6} / 5$	$1 /(2 \sqrt{6})$	$-1 /(2 \sqrt{6})$	$-1 /(2 \sqrt{6})$	0	$4 \sqrt{2 / 3}$	0	$-\sqrt{3 / 2} / 2$	$\sqrt{3 / 2} / 2$	$\sqrt{3 / 2} / 2$
$K^{* 0} \pi^{0}$	$6 \sqrt{2} / 5$	$1 /(2 \sqrt{2})$	$-1 /(2 \sqrt{2})$	$-1 /(2 \sqrt{2})$	0	$4 \sqrt{2} / 3$	$4 \sqrt{2} / 3$	1/(2 2)	$-1 /(2 \sqrt{2})$	$-1 /(2 \sqrt{2})$
$\rho^{0} K^{0}$	$6 \sqrt{2} / 5$	$1 /(2 \sqrt{2})$	$-1 /(2 \sqrt{2})$	$-1 /(2 \sqrt{2})$	0	$-4 \sqrt{2} / 3$	$-4 \sqrt{2} / 3$	$-1 /(2 \sqrt{2})$	$1 /(2 \sqrt{2})$	$1 /(2 \sqrt{2})$
$K^{*+} \pi^{-}$	$8 / 5$	$-1 / 2$	1/2	1/2	0	$-8 / 3$	4/3	$-1 / 2$	1/2	1/2
$\rho^{-} K^{+}$	8/5	-1/2	1/2	1/2	0	8/3	$-4 / 3$	1/2	$-1 / 2$	$-1 / 2$
$\phi_{8} K^{+}$	$4 \sqrt{6} / 5$	$-\sqrt{3 / 2} / 2$	$1 /(2 \sqrt{6})$	$-1 /(2 \sqrt{6})$	0	0	0	$-3 \sqrt{3 / 2} / 2$	$\sqrt{3 / 2} / 2$	$-\sqrt{3 / 2} / 2$
$K^{*+} \eta_{8}$	$4 \sqrt{6} / 5$	$-\sqrt{3 / 2} / 2$	$1 /(2 \sqrt{6})$	$-1 /(2 \sqrt{6})$	0	0	0	$3 \sqrt{3 / 2} / 2$	$-\sqrt{3 / 2} / 2$	$\sqrt{3 / 2} / 2$
$K^{*+} \pi^{0}$	$8 \sqrt{2} / 5$	$3 /(2 \sqrt{2})$	$-1 /(2 \sqrt{2})$	$1 /(2 \sqrt{2})$	0	0	$4 \sqrt{2} / 3$	$3 /(2 \sqrt{2})$	$-1 /(2 \sqrt{2})$	$1 /(2 \sqrt{2})$
$\rho^{0} K^{+}$	$8 \sqrt{2} / 5$	$3 /(2 \sqrt{2})$	$-1 /(2 \sqrt{2})$	$1 /(2 \sqrt{2})$	0	0	$-4 \sqrt{2} / 3$	$-3 /(2 \sqrt{2})$	$1 /(2 \sqrt{2})$	$-1 /(2 \sqrt{2})$
$K^{* 0} \pi^{+}$	-4/5	3/2	-1/2	1/2	0	0	-4/3	3/2	-1/2	1/2
$\rho^{+} K^{0}$	-4/5	$3 / 2$	-1/2	1/2	0	0	4/3	$-3 / 2$	1/2	-1/2
$\phi_{8} \pi^{0}$	0	$5 /(2 \sqrt{3})$	$1 /(2 \sqrt{3})$	$-1 /(2 \sqrt{3})$	0	4/ $\sqrt{3}$	$2 / \sqrt{3}$	0	0	0
$\rho^{0} \eta_{8}$	0	$5 /(2 \sqrt{3})$	$1 /(2 \sqrt{3})$	$-1 /(2 \sqrt{3})$	0	$-4 / \sqrt{3}$	$-2 / \sqrt{3}$	0	0	0
$\rho^{0} \pi^{0}$	-13/5	1/2	1/2	1/6	1	0	0	0	0	0
$\phi_{8} \eta_{8}$	3/5	$-1 / 2$	$-1 / 2$	-1/6	1	0	0	0	0	0
$\rho^{-} \pi^{+}$	$7 / 5$	1/2	1/2	1/6	1	4/3	$-2 / 3$	5/2	1/2	-1/2
$\rho^{+} \pi^{-}$	$7 / 5$	1/2	1/2	1/6	1	$-4 / 3$	2/3	-5/2	-1/2	1/2
$K^{*-} K^{+}$	-1/5	1	0	-1/3	1	-4/3	$2 / 3$	2	1	0
$K^{*+} K^{-}$	$-1 / 5$	1	0	-1/3	1	4/3	$-2 / 3$	-2	-1	0
$K^{* 0} \overline{K^{0}}$	-1/5	-3/2	$-1 / 2$	1/6	1	$-4 / 3$	2/3	1/2	-1/2	-1/2
$\overline{K^{* 0}} K^{0}$	$-1 / 5$	-3/2	-1/2	1/6	1	4/3	$-2 / 3$	-1/2	1/2	1/2
$\phi_{8} \pi^{+}$	$2 \sqrt{6} / 5$	$\sqrt{3 / 2}$	$-1 / \sqrt{6}$	$1 / \sqrt{6}$	0	0	$-2 \sqrt{2 / 3}$	0	0	0
$\rho^{+} \eta_{8}$	$2 \sqrt{6} / 5$	$\sqrt{3 / 2}$	$-1 / \sqrt{6}$	$1 / \sqrt{6}$	0	0	$2 \sqrt{2 / 3}$	0	0	0
$\rho^{+} \pi^{0}$	$2 \sqrt{2}$	0	0	0	0	0	$2 \sqrt{2} / 3$	$3 / \sqrt{2}$	$-1 / \sqrt{2}$	$1 / \sqrt{2}$
$\rho^{0} \pi^{+}$	$2 \sqrt{2}$	0	0	0	0	0	$-2 \sqrt{2} / 3$	$-3 / \sqrt{2}$	$1 / \sqrt{2}$	$-1 / \sqrt{2}$
$\overline{K^{* 0}} K^{+}$	$-4 / 5$	3/2	$-1 / 2$	1/2	0	0	$-4 / 3$	3/2	$-1 / 2$	1/2
$K^{*+} \overline{K^{0}}$	$-4 / 5$	3/2	$-1 / 2$	1/2	0	0	4/3	-3/2	1/2	$-1 / 2$

ments, S_{α}^{β}, and the replacement $\eta_{1} \rightarrow \phi_{1}$.
Final states containing two $\mathrm{SU}(3)$ octets can be decomposed as $8 \times 8=27+10+\overline{10}+8_{S}+8_{A}+1$. The final state composed of $P_{8} P_{8}$ is symmetric, and so it transforms as an element of the symmetric part, $(8 \times 8)_{S}=27+8+1$. In Table II we give the decomposition of $a(f)$ and $b(f)$ for $f^{(\prime)}$ $=P_{8} P_{8}$; it contains five reduced matrix elements. When the final mesons are different, such as $f^{(\prime)}=P_{8} V_{8}$, where V_{8} is the $\mathrm{SU}(3)$-octet vector-meson, all six representations appear. In Table III we give the decomposition of $a(f)$ and $b\left(f^{\prime}\right)$ for $f^{(\prime)}=P_{8} V_{8}$, which contains ten reduced matrix elements. Again, the matrix elements A_{α}^{β} and B_{α}^{β} that occur in the decomposition of a_{f}^{u} and $b_{f^{\prime}}^{u}$ are independent of those for a_{f}^{c} and $b_{f^{\prime}}^{c}$. (If electroweak penguins are neglected, the decomposition of a_{f}^{c} and b_{f}^{c}, is given by the columns corresponding to H in a triplet, $A_{3}^{8}, A_{3}^{1}, B_{3}^{8_{S}}, B_{3}^{8_{A}}$, and B_{3}^{1}.)

Related tables have been presented in Ref. [10], however, the $(\bar{b} u)(\bar{u} s)$ contributions to strangeness changing decays were neglected. Furthermore, in that paper, when there are several independent amplitudes with the Hamiltonian in a given $\mathrm{SU}(3)$ representation, these contributions are not decomposed according to the $\mathrm{SU}(3)$ representation of the final state. Reference [11] gives the $\mathrm{SU}(3)$ decomposition for $f^{(1)}=P_{8} P_{8}$ in a somewhat different notation from ours. They do not discuss the applications we investigate here. In Ref. [14] a nonet $[\mathrm{U}(3)]$ symmetry is assumed (which can be justified in the large N_{c} limit). It relates matrix elements involving ϕ_{1} and ϕ_{8} (and, similarly, η_{1} and η_{8}) that are independent of one another based only on $\mathrm{SU}(3)$. Thus, in Ref. [14], eleven amplitudes describe $B \rightarrow V P$ decays (with V in a singlet or octet and P in an octet), while we need thirteen. The use of the fewer number of matrix elements amounts to a dynamical assumption beyond $\mathrm{SU}(3)$.

APPENDIX B: SU(3) RELATIONS FOR $B^{0} \rightarrow \boldsymbol{\eta}^{\prime} K^{\mathbf{0}}$ AND $B^{0} \rightarrow \boldsymbol{\eta} K^{0}$

The most general $\mathrm{SU}(3)$ relation between the $a\left(\eta^{\prime} K^{0}\right)$ and $b\left(f^{\prime}\right)$'s of charged and neutral B decays can be written as follows:

$$
\begin{align*}
a\left(\eta^{\prime} K^{0}\right)= & {\left[\frac{s^{2}-2 c^{2}}{2 \sqrt{2}}-\frac{\sqrt{3} s^{2}\left(x_{1}-x_{2}\right)}{2}\right] b\left(\eta^{\prime} \pi^{0}\right)-\left[\frac{3 s c}{2 \sqrt{2}}-\frac{\sqrt{3} s c\left(x_{1}-x_{2}\right)}{2}\right] b\left(\eta \pi^{0}\right)+\left[\frac{\sqrt{3} s}{4}+\frac{s\left(x_{1}+x_{2}+4 x_{3}\right)}{2 \sqrt{2}}\right] b\left(\pi^{0} \pi^{0}\right) } \\
& -\left[\frac{\sqrt{3} s\left(s^{2}+4 c^{2}\right)}{4}-\frac{3 s^{3}\left(x_{1}+x_{2}\right)}{2 \sqrt{2}}\right] b\left(\eta^{\prime} \eta^{\prime}\right)+\left[\frac{3 \sqrt{3} s c^{2}}{4}+\frac{3 s c^{2}\left(x_{1}+x_{2}\right)}{2 \sqrt{2}}\right] b(\eta \eta) \\
& +\left[\frac{\sqrt{6} c\left(2 c^{2}-s^{2}\right)}{4}-\frac{3 c s^{2}\left(x_{1}+x_{2}\right)}{2}\right] b\left(\eta \eta^{\prime}\right)-s x_{3} b\left(\pi^{+} \pi^{-}\right)-s x_{1} b\left(K^{+} K^{-}\right)-s x_{2} b\left(K^{0} \overline{K^{0}}\right)-s x_{4} b\left(\overline{K^{0}} K^{+}\right) \\
& +\sqrt{\frac{3}{2}} s c x_{4} b\left(\eta \pi^{+}\right)-\sqrt{\frac{3}{2}} s^{2} x_{4} b\left(\eta^{\prime} \pi^{+}\right)+\left(\sqrt{2} s x_{3}-\frac{s x_{4}}{\sqrt{2}}\right) b\left(\pi^{0} \pi^{+}\right) . \tag{B1}
\end{align*}
$$

Here, x_{1}, x_{2}, x_{3} and x_{4} are free parameters that allow us to choose between various combinations of amplitudes on the right hand side of this relation. In particular, given a set of experimental measurements of (or bounds on) the corresponding branching ratios, we can vary the x_{i} parameters so that we get the strongest constraint. With current data, the optimal choice is $x_{1}=x_{2}=x_{3}=x_{4}=0$, which yields Eq. (17).

The analogous relation that will allow to bound the deviation of the $C P$ asymmetry in $B \rightarrow \eta K_{S}$ decay (once it is measured) from $\sin 2 \beta$ is

$$
\begin{align*}
a\left(\eta K^{0}\right)= & -\frac{s c}{2}\left(\sqrt{3} x_{1}+\frac{3}{\sqrt{2}}\right) b\left(\eta^{\prime} \pi^{0}\right)-\left[\frac{s^{2}}{\sqrt{2}}-\frac{c^{2}}{2}\left(\sqrt{3} x_{1}+\frac{1}{\sqrt{2}}\right)\right] b\left(\eta \pi^{0}\right)+\sqrt{\frac{3}{2}} s c x_{2} b\left(\eta^{\prime} \pi^{+}\right)-\sqrt{\frac{3}{2}} c^{2} x_{2} b\left(\eta \pi^{+}\right) \\
& +\frac{s}{2}\left(c^{2}\left(\sqrt{\frac{3}{2}}+3 x_{3}\right)-s^{2} \sqrt{6}\right) b\left(\eta^{\prime} \eta\right)-\frac{3 s^{2} c}{4}\left(\sqrt{3}+\sqrt{2} x_{3}\right) b\left(\eta^{\prime} \eta^{\prime}\right) \\
& +c\left[\frac{c^{2}}{4}\left(\sqrt{3}-3 \sqrt{2} x_{3}\right)+s^{2} \sqrt{3}\right] b(\eta \eta)-\frac{c}{4}\left(\sqrt{3}+\sqrt{2}\left(4 x_{4}+x_{3}\right)\right) b\left(\pi^{0} \pi^{0}\right)+c x_{4} b\left(\pi^{+} \pi^{-}\right) \\
& +\frac{c}{\sqrt{2}}\left(x_{2}-2 x_{4}\right) b\left(\pi^{0} \pi^{+}\right)+\frac{c}{2}\left(x_{3}-x_{1}\right) b\left(K^{+} K^{-}\right)+\frac{c}{2}\left(x_{3}+x_{1}\right) b\left(K^{0} \overline{K^{0}}\right)+c x_{2} b\left(\overline{K^{0}} K^{+}\right) \tag{B2}
\end{align*}
$$

We have also derived the most general $\mathrm{SU}(3)$ relation between the $a\left(\phi_{8} K^{0}\right)$ and the (sixteen) $b_{f^{\prime}}^{u}$'s of charged and neutral B decays. The relation is quite complicated and it does not seem likely that it will become useful in the near future, so we do not present it explicitly here.

APPENDIX C: RELEVANT BRANCHING RATIOS

$$
\mathcal{B}\left(\eta^{\prime} K^{0}\right)=\left(5.8_{-1.3}^{+1.4}\right) \times 10^{-5}
$$

$$
\mathcal{B}\left(\eta^{\prime} K^{+}\right)=(7.5 \pm 0.7) \times 10^{-5}
$$

$$
\mathcal{B}\left(\pi^{+} \pi^{-}\right)=(4.4 \pm 0.9) \times 10^{-6}
$$

$$
\mathcal{B}\left(K^{+} K^{-}\right)<1.9 \times 10^{-6}
$$

$$
\begin{array}{r}
\mathcal{B}\left(\overline{K^{0}} K^{+}\right)<2.4 \times 10^{-6}, \\
\mathcal{B}\left(\eta \pi^{0}\right)<2.9 \times 10^{-6}, \\
\mathcal{B}\left(\pi^{0} \pi^{0}\right)<5.7 \times 10^{-6}, \\
\mathcal{B}\left(\eta \pi^{+}\right)<5.7 \times 10^{-6}, \\
\mathcal{B}\left(\eta^{\prime} \pi^{0}\right)<5.7 \times 10^{-6}, \\
\mathcal{B}\left(\eta^{\prime} \pi^{+}\right)<7.0 \times 10^{-6},
\end{array}
$$

$$
\begin{array}{r}
\mathcal{B}\left(\pi^{0} \pi^{+}\right)<9.6 \times 10^{-6}, \\
\mathcal{B}\left(K^{0} \overline{K^{0}}\right)<1.7 \times 10^{-5}, \\
\mathcal{B}(\eta \eta)<1.8 \times 10^{-5}, \\
\mathcal{B}\left(\eta \eta^{\prime}\right)<2.7 \times 10^{-5} \\
\mathcal{B}\left(\eta^{\prime} \eta^{\prime}\right)<4.7 \times 10^{-5} \tag{C1}
\end{array}
$$

while for vector-pseudoscalar modes:

$$
\begin{align*}
& \mathcal{B}\left(\phi K^{0}\right)=\left(8.1_{-2.6}^{+3.2}\right) \times 10^{-6}, \\
& \mathcal{B}\left(\phi K^{+}\right)=\left(7.9_{-1.8}^{+2.0}\right) \times 10^{-6}, \tag{C2}
\end{align*}
$$

$$
\begin{aligned}
& \mathcal{B}(\eta \omega)<1.2 \times 10^{-5}, \\
& \mathcal{B}\left(\eta^{\prime} \omega\right)<6.0 \times 10^{-5}, \\
& \mathcal{B}(\eta \phi)<0.9 \times 10^{-5}, \\
& \mathcal{B}\left(\eta^{\prime} \phi\right)<3.1 \times 10^{-5}, \\
& \mathcal{B}\left(\eta \rho^{0}\right)<1.0 \times 10^{-5}, \\
& \mathcal{B}\left(\eta^{\prime} \rho^{0}\right)<1.2 \times 10^{-5}, \\
& \mathcal{B}\left(\rho^{0} \pi^{0}\right)<5.5 \times 10^{-6}, \\
& \mathcal{B}\left(\omega \pi^{0}\right)<3.0 \times 10^{-6}, \\
& \mathcal{B}\left(K^{+} \overline{K^{* 0}}\right)<5.3 \times 10^{-6}, \\
& \mathcal{B}\left(\phi \pi^{+}\right)<1.4 \times 10^{-6} .
\end{aligned}
$$

TABLE IV. Top half: Isospin decomposition of $A_{I J L}=A\left[B \rightarrow K^{I}\left(p_{1}\right) \bar{K}^{J}\left(p_{2}\right) K^{L}\left(p_{3}\right)\right]$. Bottom half: U-spin decomposition of $A_{h_{i} h_{j} h_{l}}=A\left[B \rightarrow h_{i}^{+}\left(p_{1}\right) h_{j}^{-}\left(p_{2}\right) h_{l}^{+}\left(p_{3}\right)\right]$.

$A_{I J L}$	A_{1}^{2}	$A_{1}^{2^{\prime}}$	A_{3}^{2}	$A_{3}^{2^{\prime}}$	A_{3}^{4}
A_{+00}	$\frac{1}{2 \sqrt{3}}$	$-\frac{1}{2}$	$\frac{1}{6}$	$-\frac{1}{2 \sqrt{3}}$	$\frac{1}{3 \sqrt{2}}$
A_{00+}	$\frac{1}{2 \sqrt{3}}$	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{2 \sqrt{3}}$	$\frac{1}{3 \sqrt{2}}$
A_{+-0}	$\frac{1}{2 \sqrt{3}}$	$\frac{1}{2}$	$-\frac{1}{6}$	$-\frac{1}{2 \sqrt{3}}$	$-\frac{1}{3 \sqrt{2}}$
A_{0-+}	$\frac{1}{2 \sqrt{3}}$	$-\frac{1}{2}$	$-\frac{1}{6}$	$\frac{1}{2 \sqrt{3}}$	$-\frac{1}{3 \sqrt{2}}$
A_{000}	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{3}$	0	$-\frac{1}{3 \sqrt{2}}$
A_{+-+}	$-\frac{1}{\sqrt{3}}$	0	$-\frac{1}{3}$	$\frac{1}{3 \sqrt{2}}$	
$A_{h_{i} h_{l} h_{j}}$	X_{1}^{2}	$X_{1}^{2^{\prime}}$			
$A_{K \pi \pi}$	$\frac{1}{2 \sqrt{3}}$	$-\frac{1}{2}$			
$A_{\pi \pi K}$	$\frac{1}{2 \sqrt{3}}$	$\frac{1}{2}$			
$A_{K K \pi}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{3}$		
$A_{\pi \pi K \pi}$	$\frac{1}{2 \sqrt{3}}$	0			
$A_{K K K}$					

APPENDIX D: SU(2) DECOMPOSITION FOR $\langle K K K|(\bar{b} u)(\bar{u} s)|B\rangle$ AMPLITUDES

In this appendix we give the isospin decomposition of matrix elements that are relevant to our analysis. The operator that creates a B meson containing a \bar{b} quark transforms as a 2 of isospin- $\mathrm{SU}(2)$. The $\Delta B=+1$ Hamiltonian, which has
the flavor structure $(\bar{b} s)\left(\bar{q}_{i} q_{i}\right)$, transforms as either 2×2 $=1+3$ for $q_{i}=u, d$ or 1 for $q_{i}=s$. For final isospin-doublet states, the nonprimed (primed) isospin amplitudes correspond to the $K^{I} K^{L}$ subsystem being in an isospin-singlet (-triplet) state. A similar form of decomposition holds for the U-spin amplitudes in $B^{+} \rightarrow h_{i}^{+}\left(p_{1}\right) h_{j}^{-}\left(p_{2}\right) h_{l}^{+}\left(p_{3}\right)$ decays (where $h_{i, l}^{+}=K^{+}, \pi^{+}$and $h_{j}^{-}=\pi^{-}, K^{-}$). They are given in Table IV.
[1] Y. Grossman and M.P. Worah, Phys. Lett. B 395, 241 (1997).
[2] Y. Nir, Nucl. Phys. B (Proc. Suppl.) 117, 111 (2003).
[3] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 201802 (2002).
[4] BELLE Collaboration, K. Abe et al., Phys. Rev. D 66, 071102(R) (2002).
[5] BELLE Collaboration, K. Abe et al., Phys. Rev. D 67, 031102(R) (2003).
[6] BABAR Collaboration, B. Aubert et al., hep-ex/0303046.
[7] BABAR Collaboration, B. Aubert et al., hep-ex/0207070.
[8] M. Gronau, Phys. Rev. Lett. 63, 1451 (1989).
[9] Y. Grossman, A.L. Kagan, and Z. Ligeti, Phys. Lett. B 538, 327 (2002).
[10] M.J. Savage and M.B. Wise, Phys. Rev. D 39, 3346 (1989); 40, 3127(E) (1989).
[11] B. Grinstein and R.F. Lebed, Phys. Rev. D 53, 6344 (1996).
[12] Y. Grossman, G. Isidori, and M.P. Worah, Phys. Rev. D 58, 057504 (1998).
[13] A.S. Dighe, M. Gronau, and J.L. Rosner, Phys. Rev. D 57, 1783 (1998); A.S. Dighe, ibid. 54, 2067 (1996).
[14] N.G. Deshpande, X.G. He, and J.Q. Shi, Phys. Rev. D 62, 034018 (2000).
[15] D. London and A. Soni, Phys. Lett. B 407, 61 (1997).
[16] Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).
[17] BELLE Collaboration, K. Abe et al., hep-ex/0208030.
[18] M. Gronau and J.L. Rosner, hep-ph/0304178.
[19] BABAR Collaboration, B. Aubert et al., hep-ex/0304006.
[20] A.F. Falk, Y. Grossman, Z. Ligeti, and A.A. Petrov, Phys. Rev. D 65, 054034 (2002).

[^0]: *Electronic address: yuvalg @physics.technion.ac.il
 ${ }^{\dagger}$ Electronic address: zligeti@lbl.gov
 ${ }^{\dagger}$ Electronic address: yosef.nir@weizmann.ac.il
 ${ }^{\text {§ }}$ Electronic address: quinn@slac.stanford.edu

[^1]: ${ }^{1}$ In the original version of this section, there were errors in the isospin and U-spin decompositions of the relevant amplitudes, which were pointed out in Ref. [18]. We agree with their results.

