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Equation of state for two flavor QCD at nonzero chemical potential
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We present results of a simulation of QCD on &%@ lattice with 2 continuum flavors of p4-improved
staggered fermion with mass/T=0.4. Derivatives of the thermodynamic grand potenflaWith respect to
the quark chemical potential, up to fourth order are calculated, enabling estimates of the pressure, quark
number density and associated susceptibilities as functiops, ofa Taylor series expansion. Discretization
effects associated with various staggered fermion formulations are discussed in some detail. In addition it is
possible to estimate the radius of convergence of the expansion as a function of temperature. We also discuss
the calculation of energy and entropy densities which are defined via mixed derivatesitf respect to the
bare couplings and quark masses.
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[. INTRODUCTION Direct simulation using standard Monte Carlo importance
sampling is hampered because the QCD path integral mea-
Nonperturbative studies of QCD thermodynamics with asure defM, whereM(u,) is the Euclidean space fermion
small but nonzero baryon charge density by numerical simukinetic operator, is complex oncg,#0. In the studies
lation of lattice gauge theory have recently made encouragwhich have appeared to date, two fundamentally distinct ap-
ing progresg1-4]. In particular, it has proved possible to proaches to this problem have emerged. In rdweeighting
trace out the pseudocritical liriE(u,) separating hadronic method results from simulations at,=0 are reweighted on
and quark-gluon plasm@GP phases in thes,,T) plane a configuration-by-configuration basis with the correction
out to uq=0(100) MeV [2-4], where the quark chemical factor[detM(,uq)/detM(0)]Nf yielding formally exact esti-
potential uq is the appropriate thermodynamic control vari- mates for expectation values. Indeed, it is found that if re-
able in the description of systems with a varying particleweighting is performed simultaneously in two or more pa-
number using the grand canonical ensemble. In addition, theameters, convergence of this method on moderately sized
first estimate has been made of the location along this line afystems is considerably enhandédl This method has been
the critical end point expected fot;= 2 light quark flavors, used on lattice sizes up to ¥24 with N;=2+1 to map out
where the crossover between hadron and QGP phases Wbe pseudocritical line and estimate the location of the criti-
comes a true first order phase transiti@h As well as being cal end point arug”‘:240 MeV, T¢"'=160 MeV[2]. More
of intrinsic theoretical interest, such studies are directly aprecently the equation of state in the entire region to the left of
plicable to the regime under current experimental investigathe end point has been calculated this W&}y However, it
tion at the BNL Relativistic Heavy lon Collide(RHIC), remains unclear whether the thermodynamic limit can be
where corrections to quantities evaluatedugt=0 are both  reached using this technique.
small and calculable. In this respect it is worth reminding the  Analytic approaches use data from regions where direct
reader that in a relativistic heavy ion collision of a durationsimulation is possible, either by calculating derivatives with
of ~10 22 s, thermal equilibration is possible only for pro- respect touy (or more properly with respect to the dimen-
cesses mediated by the strong interaction, rather than the fudlonless combinatiop,/T) to construct a Taylor expansion
electroweak equilibrium achievable, say, in the core of a neufor quantities of interest1,3,8,9, or more radically by ana-
tron star. This means that each quark flavor is a conservelgtically continuing results from simulations with imaginary
charge, and conditions at RHIC are thus approximately de;uq (for which the integration measure remains yeal real
scribed by tq- The second technique has been used to Tép) for
QCD with bothN¢=2 [4] andN;=4 [10], in the latter case
o= Mg=HKq; m=2(pmy— g =0; us=0, (1)  finding evidence that the line is first order in nature. Fortu-
nately, the pseudocritical line found [d] is in reasonable
with uq=15 MeV [5] when we relate the quark and baryon agreement with that found by reweighting; moreover the ra-
number chemical potentials viag=3u,. In this paper we dius of convergence within which analytic continuation from
will present numerical results for the equation of state, i.eimaginary u, is valid corresponds tg.,/T</3 [11]. The
pressurep(uq,T) and quark number density,(uq,T), 0b-  leading nontrivial term of quadratic order in the Taylor ex-
tained from a lattice QCD simulation with¢=2, which  pansion appears to provide a good approximation throughout
should give a qualitatively correct description of RHIC phys-this region. In general though, while analytic approaches
ics, and provide a useful warm-up exercise for the physicahave no problem approaching the thermodynamic limit, it is
case of 21 flavors with realistic light and strange quark not yet clear if and how they can be extended into the region
masses. around the critical end poirfbut see[12]), and to observ-
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ables that vary strongly witp, such as, e.g., the pressure or Monte Carlo methods at,=0, we proceed by making a

energy density. Taylor expansion about this point in powers of the dimen-
In our previous papef3] we used a hybrid of the two sionless quantity.q/T:

techniques, by making a Taylor series estimate of the re-

weighting factor[detM(,ugq)/detM(O)]Nf to O(,ug). Since

this is considerably cheaper than a calculation of the full A(B(M ))Eﬁ b

determinant, we are able to explore a larget>18 system, T4 T Ta T4 To

and also exploit an improved action in both gauge and fer- o '

mion [14] sectors, thus dramatically reducing discretization 1 ,ug PplThH 1 M;‘ oM (plTH

artifacts on what aff;(u,=0)=170 MeV is still a coarse BT TN s AT . A Y
! cliq - 20 T2 d(ug/T)e 41T d(uglT)

lattice. Our results yield a curvature of the phase transition

line TC(dZTC/dM§)|MqZO:—0.14(6), consistent with the +---

other approaches. Although our simulation employs quark % b

massesn/T=0.4,0.8, not yet realistically light, the results - 2 c (T)(ﬂ) 3)

also suggest that any dependence on quark mass is weak. In p=1 " T

the current paper we extend the Taylor series to the next
orderO(,u;‘) but this time remain entirely within the analytic
framework, using derivatives calculatedai=0 to evaluate
nonzero density corrections to the pressuead quark num-
ber susceptibilityx,=dnq/duy, as well as the quark num-
ber densityn, itself. In fact, since the correctioAp can be
evaluated at fixed temperature, it turns out to be considerabl
easier to calculate than the equation of stateugt=0
[15,16. Since we now have the first two nontrivial terms in
the Taylor expansion, we are also able to estimate its radi
of convergence as a function ®f and confirm that close to
Tc(uq=0) the results of our previous study for the critica
line curvature can be trusted out@{100 MeV), whereas at
higher temperatures a considerably larger radius of convef!
gence is likely to be found. Finally we consider mixed de-
rivatives with respect to botjr, and the other bare param-
etersB andm, which are required to estimate energynd
entropys densities. Due to the presence of a critical singu-
larity, these latter quantities appear considerably harder to sz DU(detM)Nf’4exp1(—Sg), 4
calculate in the critical region using this approach.

Section Il outlines the formalism used in the calculation

and specifies which derivatives are required. In Sec. lll wgyith U eSU(3) denoting the gauge field variableg,[ U]
present a cglculanon of the cutoff depen.dence (_)f the terms ithe link action andMI[U; u,] the kinetic operator describing
the expansion for standard, and for Naik- gmrimproved 3 single staggered fermion, equivalentNe=4 continuum

staggered lattice fermions, showing that both improvement§,ors. On a lattice of siz&®x N_ with physical lattice

result in a dramatic reduction of discretization effects. Ourspacinga, so thatT=(aN,)"!, we define a dimensionless

numerical results are presented in Sec. IV, and a brief disCU$;¢tice chemical potential variable.=u.a. Equation (3)
sion in Sec. V. Two Appendixes contain further details on thethen becomes -

calculation of the required derivatives and the cutoff depen-
dence.

where derivatives are taken at=0. Note that calculating
A(p/T#) is considerably easier than(T, uy=0) itself, be-
cause whereas & must be estimated by integrating along a
trajectory in the bare parameter pldi®,16], its derivatives
n be related to observables which are directly simulable at

Ixed (B,m), whereg is the gauge coupling parameter and
the bare quark mass. Only even powers appear in(8q.
Lgecause as shown [13], odd derivatives of the free energy
with respect tqu, vanish at this point. Note also that we will
IWork throughout with fixed bare mass, implying that our
computation ofA (p/T#) is strictly valid along a line of fixed
/T.

For QCD with staggered fermions the partition function
may be written

p\ 1IN} #nz 1N} inz
==z Fu'——+= Fu*——7+---. 5
T
Il. FORMULATION
In the grand canonical ensemble pressure is given in
terms of the grand partition functiof(T,V,uq) by The derivatives may be expressed as expectation values
evaluated au=0:

p 1
.|T4= Wln Z. (2)

fmz_<

¢ 9°(In detM)>
~ =

N

4 ap?
N a(IndetM) 2

4 I '

Ip
Note that we have been careful to express both sides of this
relation in dimensionless quantities. Since the free energy n
and its derivatives can only be calculated using conventional

(6)
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)

7*(In detM)
2

dInZ [Ny #*(IndetM) 4 (Nf>2(93(lndetM)a(lndetM) 3 (Nf)z
z?,uA S\ 4 0,u4 4 au® I

4
2 (Nf a(lndetM))4
+ 4 au

2

Ip

4 ap? u

N¢ #2(In detM) (Nf a(In detM))2
4 g AR

6< (M) 352(In detM) (a(ln detM)

()

All expectation values are calculated using the meastiré(u=0)DU (detM[ «=0])N"*e~Ss and in deriving Eqs(6) and
(7) we used the fact tha®"(In detM)/dn")=0 for n odd. To evaluate these expressions we need the following explicit forms:

a(lndetM)_t MflﬁM 8
T WM ®
d%(IndetM) LM (MM
—=tr M — |-t M —M " — 9
ap? au? o p
#3(IndetM) M MM MM oM
—=trff M — | -3t M — M — | 2t M —M T —M T — (10
au® au® Ip Iu? Iu I I
d*(IndetM) . 0*M M M L PM9*M
———=tr{ M '—| -4ty M M t—|-3t{ M t—Mt—
c?,u,4 c?,u,4 I &,u.s (9,LL2 c?,u,z
Y 9*M M M M Y
+12tf M 1—M"1 11— —6tr(M1—M1—M1— e (11)
d p au? p o p o
|
The traces can be estimated using the stochastic method re- 1 9 J _
. . . . XI Ny—Ng
viewed in[3]. Sinced"M/ou" is a local operator, expres- == Z(& T 5 a T ) T (15
sions containingp powers ofM ~* require p operations of T (pulT) (mal D) T
matrix inversion on a vector.
Next Wg dis_cus;s the (E]ua&( numIkIJer Ide_nsr;i&yand its fluc- Xc_ z I E J 2n,— Nq 19
tuations. Starting from the Maxwell relation T2 \39(mg/T) 3 dmglT)) 3T
2
Ng=— al :a_Nq: &_p (12 Quark and baryon number susceptibilities are relateg by
Nipug N duq =dng/dug=3"2x,. Any difference between, and 4y, is

here O — | is the th d , q - due to correlated fluctuations in the individual densitiesi of
where =—-TIn Z is the thermo ynamic gran potentla and d quarkS. With the ChOiC&Lu:/,Ld:,U«q:,lLail, m,

EL”qu ”l‘(e nett?uacrik number, \1ve can write an equation for_ , “\yhich approximates the physical conditions at RHIC,
the quark number density, analogous to Eq(S): Xq can then be expanded in terms of quantities already used
in the calculation op andny:

ng N2 #nz 1 NZ SALE 13
TN o T N aut ' Xa| _1ng N, #nZ
_ _ _ o _ T? M:O_T2 dug NI g2’
It is also possible to interpret derivativesmivith respect to a
iq in terms of the various susceptibilities giving information
on number density fluctuatiof8,17]. We define quark num- P*(xqlT?) 1 d'nzZ L
ber (q), isospin(l) and charg€C) susceptibilities as follows: 0(%/1—)2 TNNE aut (17)
1g=0 7
Xa_ J + J n“+nd’ (14)  Whereas the expansion gf is determined by the following
T2 (ol T)  pg/T)) T3 expectation values:
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N, /2 #*(IndetM
$% TANG\ 4 (a 2 )>’ (19
/Lq:O (o M
72(x,IT?) 1 2&4(IndetM) s (2)263(IndetM)6(lndetM) N (Z)Z(az(lndetM) 2
07(,u,q/T)2 =0 4N oN, du’ 4 au’ I 4 du?
q

< (2)3&2(In detM) (a(m detM))2>
+ —_ —
4 (9,LL2 I

2 az(|ndetM)> +<(g (I detM))2>

<_

4

2 #*(IndetM)
4 3,“2

z?,uz 4 I

(19

where we have explicitly sétl=2. Charge fluctuations are where we have allowed for the dependence of the lattice

then given by the relation

lxq, x, 1 a(ny/T%)
I pulT)

a(ng/T3)
gl T)

Xc_ Xt
T2 36 T2 T2 6

) (20

where the third term vanishes for,= g, m,=my.
Finally we discuss the energy densigy most conve-
niently extracted using the conformal anomaly relation

e—3p 1

IECAE

B dinZ
A9a B

omdlnZ
a_
Jda Jdm

(21)

whereB andm are the bare coupling and quark mass respec-
tively. In fact, for u#0 the derivation of this expression

needs careful discussion. Start from the defining relation

Q=E-TS—pugNg=—pV=—-TIn Z, (22
where S is entropy. For a Euclidean actids= S(8,m, u)
defined on an isotropic lattice of spaciagve have the iden-

tity

dS—3V oS T&S 23
a3y TaT @3
It follows that
VaQ—VT s = \% 24
N VT oy P (24)
Tm—ﬂ T? S TS=Q—E+ ugN 2
T ot =" ThaNg (29
implying
T/ 9S
e—3p—,uqnq=v a£
T a,B&InZ amdlnZ
~TV|%a g Jda Jm
du dlnZ
a£ o (26)

action on all bare parameters. Since howeweruqa, and a
parameter multiplying a conserved charge experiences no
renormalization, the third terms on each side cancel leaving
the relation(21).

Taylor expansion of Eq(21) about ©=0 leads to the
expression

-3
A(E P)_
T4

(93In Z
2" pan? IBIu>

a/s N3[1
2a N3

1 0’15InZ+
4“ oBou*

1 a3|nz
L IMau?

&m N3
aa NG

5
1 4aInZ

+ Yl —&m&,u4+ (27)

The beta functiora(dB/da) may be estimated by measure-
ments of observables aT (u,) =(0,0); the factom(dm/Ja)

is poorly constrained by current lattice data but vanishes in
the chiral limit, so is frequently neglected. In order to assess
the magnitude of the resulting error, it is nonetheless useful
to calculate all the derivative terms. They may be estimated
using the formulas

O Sy
04 Fol 3
HO) [0 Nt d(IndetM)
a—m:<a—m>+<ozf—am >

(0 ><N”;('n:—ritw> (29

The derivativedS, /3 is, of course, simply the combination
of plaquettes comprising the gauge action itself, and deriva-
tives with respect tan can be evaluated using

" Y(IndetM)

amau”

M(trM 1)

n

(30
I
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The implementation of the second square bracket ifEq.  with the fugacity z=exp{u,/T} and the relativistic single

in terms of lattice operators is straightforward but unwieldy;particle energies: (k) = Vk?+m2. For massless quarks one
for reference the nonvanishing terms are listed in AppendiXinds from an evaluation of the integral the pressure as a

A. finite polynomial inuq/T:
Ill. ANALYZING THE CUTOFF DEPENDENCE

In this section we discuss the influence of a nonzero %
chemical potential, on the cutoff effects present in calcu- T
lations of bulk thermodynamic observables on a lattice with
finite temporal extenN,. For u,=0 this issue has been
discussed extensively for both gluonic and fermionic sector
of QCD. In particular, it has been shown that the use of

:7Nf772+&(:“q)2+ﬁ<MQ)4
T 41° .

60 2 (32

©

gor m nonzero the pressure is a series in the fugacity:

improved actions is mandatory if one wants to ensure that P m\2 3N, =
discretization errors in the calculation of quantities like the == —) —zf > (—nitte2
pressurep or energy density are below the 10% level on T T/ =2 &=

moderately sized latticdd < (8— 10) [14]. We now want to
extend these considerations to the cage- 0, which affects
the quark sector only. Followind.4] we will concentrate on

an evaluation of the pressure. As we will be evaluating therWhereKz is a Bessel function. Of course, E@3) can also

modynamic quantities using a Taylor expansiondfyy T we o reorganized as a power seriesuig/T.

want to understand the cutoff dependencep6i.,) and its It is well known that the straightforward lattice represen-

expansion coefficients in terms pf /T. _ tation of the QCD partition function in terms of the standard
In the limit of high temperature or density, due 1o \wjison gauge and staggered fermion actions leads to a sys-

asymptotic freedom thermodynamic observables fik&r € tematicO(a?) cutoff dependence of physical observables. In

are expected to approach their free gas, ie., Stefanne nfinite temperature limit this gives rise ©[(aT)?
Boltzmann(SB) values. In this limit cutoff effects become — 1/N2] deviations of the pressure from the SB valG);
most significant as the relevant momenta of partons contrib- T '

uting to the thermodynamics af@(T) and thus of similar

magnitude to the UV cutofa 1. Short distance properties P
thus dominate ideal gas behavior and cutoff effects are con- T4
trolled by the lattice spacing expressed in units of the tem-

perature,Ta=1/N,,.

In the continuum the pressure of an ideal gas of quarkéJSing improved discretization schemes it is possible to en-
and antiquarks is given by sure that cutoff effects only start to contribute @(N;“)

[13], or to considerably reduce the magnitude of the coeffi-
cientd relative to the standard discretization scheme for stag-

XK,(€mIT)(ZE+279), (33

p

d
—| +—+O(N Y. (34)
T4 N2 T

o) T

NT

p|  3Nf (= gered fermiong14].
F _w2T3f0 dkicin((1+zexp(—(K)/T}] For u,=0 the pressure of free staggered fermions on lat-
” tices with infinite spatial volumeN, =) but finite tempo-
X[1+z texp{—e(k)/T}]) (31) ral extentN, is given by
|
p 3 4 1 JZW N 3 1 27
—| ==N;N d3p| N> In[w?(p)+ 413 ——f dpsn[0?(p)+4f3(p)]|. 35
| TeNNT ), RN 2, In[w(p)+4T4P)] = 5| - dpdn[w?(p) +413(p)] (35

In the first term the surﬁp4 runs over all discrete Matsubara 1

modes, i.ep,e{(2n+1)7/N,|n=0, ... N,—1}, whereas fu(p)=7sinp, (standard staggered actjon (36)
in the second term we have an integral opgrwhich gives
the vacuum contribution. For quarks of masghe function
w?(p) is given byw?(p)=4=5_,f2(p)+ N *(m/T)% Here o
we have introduced functiorfs,(p) to describe the momen- — 2 winn i , . .

tum dependence of the propagator for the standard, [N&ik fu(P) 165mp" 483m3p“ (Naik actior)
andp4 staggered fermion actiof4: (37)
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25 T T T T T T T T T T T T T T T T
C./C standard action, C, —a—
p / pSB p./T=OO, m/T=0.0 — 1 n n,SB standard aCtiOn, Cg ]
\ WT=1.0,m/T=0.0 —¥— | 25 r standard action, C;, —e— A
wT=0.0, mT=1.0 —O— | naik action, C; —a— 1
WIT=1.0, m/T=1.0 —— naik action, Cy —v—
20 naik action, C4
20
1.5 15 |
1.0 ST—
1.0 3?’:
4 _
0.5 8
N, ]
o 5 1 1 1 1 1 1 1 1
2 4 & 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

(@) (b)

FIG. 1. The pressure calculated on lattices with temporal edeim units of the continuum ideal Fermi gas val@&. shows results for
the standard, Naik anpg4 actions at f/T,m/T)=(0,0), (0,1, (1,0 and (1,1);(b) the coefficienty,C,,C, of the uy/T expansion of
p(m/T=0) divided by the corresponding SB constant as a functioN af

3 2 _ guish from the continuum result bM_=10. We note that
f,(p)=sinp,+ —sinp, >, cos2p, (p4 action. lines for differentu, /T values but the same quark mass fall
8 48 b=l q
38 almost on top of each other. Cutoff effects are thus almost
(38) independent of., . The effect ofu,# 0 on the cutoff depen-

. . . - . dence of the pressure is even smaller than the effect of quark
The introduction of a nonzero chemical potential is easily535em+0.

achieved by substituting every temporal momentpmby As can be seen from Eq32) for moderate values of
Pa—iu=ps—iN;*(uqe/T). The integrals in Eq(35) have g/ T the u dependence of the continuum ideal gas pressure
been evaluated numerically for differeNt.. Results for dif-  is dominated by the Ieadin@[(,uq/T)z] contribution. In
ferent values ofu,/T andm/T are shown for the different order to control the cutoff dependence of the various expan-
fermion actions in Fig. 1. sion terms we have expanded the integrand of(B§). up to

For the standard action cutoff effects remzii0% out to orderO[(,uq/T)G]. For the standard action the series starts
N,~16, whereas both improved actions are hard to distinwith

. () 2i cosp,sinp, [ p —1+4Dcosaa4+cos4p4(,u 2
2 B | _ T oA Mar A 74
In| w?(p) + sir?| py NTT” InD DN, (T) 107N T
i (—1+4D?+6D cos2p,+ cos 4p,)sin2) 8 4
il N 44)SiN2p4 [ pg Lol [*a)| (39
6D3N? T T

Here we use the shorthand notatiBn=4EfL=lfi(p). The  factor sinip,) which always appears. To be more precise,
remaining orders as well as the series for Naik @ddac- this factor always forms the pattern sipg)cos(p,) which
tions are given in Appendix B. A common feature of thesecan be shown to vanish, either after summation over the
expansions is that the odd terms are pure imaginary and thdiscrete set op, values, or integration from 0 to+2, for
integral and sum ovep, of those terms vanish due to a n,meN. Performing the momentum integration and the
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3X10-3 T T T T 400 T T T T T T T T
r 2 i A 3 rC./C standard action, m/T=0.4 ——
G standard aﬁ'ﬁiﬂ %33 —o— _) [766S8 naik action, m/T=0.4 —e—
2x1073 | | s800r
! 200
1x107° | [
100
0 I
ol
-1x107 - [ ]
-100 C ]
ox102 | [ ]
2x10 i 200 ]
I N2 ] ! N
-3x1078 1 1 1 1 i -300 I 1 1 ] ] ] 1 1 L
0 0.002 0.004 0.006 0.008 0.0 2 4 6 8 10 12 14 16 18 20
(a) (b)

FIG. 2. (a) The coefficient€s in the massless case, multiplied wmi as a function oN;2 (results for standard staggered fermions are
divided by 10 and (b) the ratioCs(N,)/Cg(>°) at m/T=0.4 for the standard, Naik ari4 actions.

summation over Matsubara modes we obtain the coefficienterm will approach zero lik&\N_ 2 in the largeN, limit. In

of the uq/T expansion of the pressure; order to define the numerical factor, we pigN? overN_ 2.
" _ A fit yields Cg~ —0.015N 2 for the standard action. This is
P N 2 c (@)' (40) at least an order of magnitude larger than for e im-
T4 fey ™ T)° proved action, for which the dominant cutoff dependence
N, N seems to b@(N;“) as for the Naik action.

In the case of massive quarks the expansidf) no
longer terminates aO(ug). After expanding Eq.(31) in
terms of uy/T and performing a numerical integration we
find for the expansion coefficientg(m/T) up toi=6 the

We checked numerically that with increasiihg the coeffi-
cientsCy, C, andC, do indeed converge to their correspond-
ing SB values,

5 1 values given in Table I.
lim Co=i; lim C,==; lim C,=—. (41 The mass valuen/T=0.4 is the value we use in our nu-
N—w o 807 N ot 27 e 4m? merical calculations, corresponding k=4 andam=0.1.

We note that the coefficiei® no longer vanishes. As shown
Figure Xb) showsC,, C, and(, for the standard, Naik and in Fig. 2(b), for N, finite there are large deviations from the
p4 actions with massless quarks, normalized to the correcontinuum value. Even alN,=4, however, the absolute

sponding SB value. value of this coefficient is still a factor of about 1bsmaller
We see here again that the cutoff dependence of the prethan the leading terr@,. The deviations thus do not show up
sure atu# 0 is qualitatively the same as at=0. in the calculation of the complete expression for the pressure

For massless quarks the coeffici€gtshould vanish with  shown in Fig. 1a). These terms, however, become more im-
increasing\ ., as checked in Fig.(3). It is expected that this portant in higher derivatives of the pressure such as the quark

TABLE I. Continuum values for the coefficient of the u,/T expansion of the pressure of a massive
gas of quarks for the mass valuegT=0.4 andm/T=1.0.

m/T=0.4 m/T=1.0
i C(mIT) C.(m/T)/¢;(0) C(m/T) C,(m/T)/C,(0)
0 1.113632 0.967 9.52816310 * 0.827
2 4.88045% 10 * 0.976 4313914101 0.863
4 2.53110K 10 2 0.999 2.47139% 102 0.976
6 1.87765% 10 © 5.036816<10°°
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2 SB limit
- . 0.25

0.2

0.15

0.1

0.05

0.8 1 1.2 1.4 1.6 1.8 2
(a) T/T (b)

FIG. 3. Coefficients ofa) (uq/T)? and(b) (uq/T)* in the Taylor expansion o (p/T*) as functions ofT/T,.

number susceptibilityyq. In summary, for a gas Qj free where a=R(B)/R(8), R being the two-loop perturbative
quarks we find that the. /T expansion up t®[ (uq/T)"]is  scaling function appropriate for two light flavors. Using

deviation from the full expression over this range is smaller arameters corresponding to a referer,t_ée3 70 are
than 0.01%. On the lattice, however, cutoff effects lead td’ P 9 ' 92

deviations of approximately 10% on coar$e & 4) lattices. :.0'669(208)’94: —0.08221088 [15]. We find that our
simulations span a temperature rangél,e[0.76,1.98,

whereT) is the critical temperature at,=0.

In Fig. 3 we show the first two coefficient®) c, and(b)

We applied the formalism outlined in Sec. Il to numerical ¢4, of the Taylor expansion af (p/T*) introduced in Eq(3)
simulations of QCD withN;=2 quark flavors on a <4 as functions ofT/T,. Also shown are the corresponding SB
lattice, using both Symanzik improved gauge apd- limits: (@) N;C,(N,) and (b) N;C,(N,), where the coeffi-
improved staggered fermion actions. The simulation methodientsc; are defined in Eq(40), with values relevant for both
is exactly as presented {i8]." The bare quark mass was the lattice used,=4) and the continuum limitN,= )
ma=0.1 for which the pseudocritical point for zero chemical piotted. Bothc, andc, vary sharply in the critical region,
potential is estimated to b =3.6492). In order to cover pyt except in the immediate vicinity of the transition the
a range of temperatures on either side of the critical point W adratic term dominates the quartic. This is consistent with
examined 16 values in the range=[3.52,4.9. The simula-  yhe resyits of 7] where data at varying. obtained by re-
tion employed a hybrid molecular dynamic “R-algorithm  qiqhing were found to lie on an almost universal curve
with discrete time ste@r=0.025, and measurements were  nen plotted as a fraction of the SB prediction. The

performed on equilibrated configurations separated by as :
T . . ymptotic value of, appears to be approached from above.
=5. In general for eaci$, 500 to 800 configurations were A notable feature is that in the highdimit our data lie

anz;lyzzeg,Gwitg 1000h useg in .the (t):riticalh regioﬁ .__closer to the continuum SB prediction rather than their val-
[3.52,3.6§. On eac con iguration 5 stoc "’}St'(.: NOISE )ag Ci(N,=4) corrected for lattice artifacts;, assuming
vectors were used to estimate the required fermionic operﬁ?% of the continuum value foF/Ty=2 whereas, is al-

tors. For each noise vector, 7 matrix inversions are require . S .
. . ’ ost coincident with its continuum value. By contrast recent
to estimate the required operatdgs-11) and (A3—A5). y

Following the procedure used for the equation of state
n=0 [15], we translate to physical units using the followin
scalingAnsatz[ 18]:

IV. NUMERICAL RESULTS

calculations with unimproved staggered fermidis9] find
hat the hight limit of the data lies close to the lattice-
9 corrected SB value. This situation can be modelled by mak-
ing the coefficiend of the O(N;Z) correction appearing in
a5 ~a Eq. (34) temperature dependent. In thermodynamic calcula-
ﬁ:a 1+923%(f) +9427(B) (42) tions performed with pure unimproved &) lattice gauge
a(p) 1+95+04 theory[19], where extrapolations to the continuum limit are
currently practicable, it is found thal(T)=0.5d(T==) for
T~3T,, becoming even smaller closer Tg. The behavior
The coefficient’ of the knight's move hopping term was incor- 0f ¢, andc, we have observed using# fermions is broadly
rectly reported to be 1/96 if8]; its correct value is 1/48. consistent with this behavior.
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05 (W) ]
% 0.2 0.4 0.6 0.8 1 Hq/ To
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(u/T) 0
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4 ; 2 ; _
FIG. 4. A(p/T") as a function of f,/T)* for various tempera FIG. 5. Estimates for the radius of convergendgq . T).

tures, increasing upwards from the lowest curve Wit ,=0.812
to the highest withl/T,=1.980.

figure we deducsug”‘z(l—l.Z)To, not inconsistent with
In Fig. 4 we plotA (p/T*#) defined in Eq(3) as a function  the result of[2]. The new results aO(x*) are important
of (,uq/T)2 for various temperatures. In most casgs<c, because they justify in retrospect our neglect of fourth order
and the relation is thus almost linear. The strongest depareweighting factors in our earlier calculation of the critical
tures from linearity are fof=T,, but even here the qua- line T.(u) [3]. Indeed, simulations with imaginagy sug-
dratic term is dominant for;(q/T)ZSOA, corresponding to gest that neglect of these terms in the analytic continuation to
=100 MeV. Given enough terms of the Taylor expansionphysicalu, is justified for u,<170 MeV[4].
in uq/T, one could determine its radius of convergepce Figure 6 plots the dimensionless correctitiip/T#) to
via® the equation of state as a function of bath/T and . In
the latter case the correction rises steeply across the transi-
i tion and peaks foll=1.1T,, before rapidly approaching a
_ _ I ¢, form A(p/T*) =T~ 2 characteristic of the SB limit, with the
p=lim p,= lim (43 coefficienta having 82% of the continuum SB value. Com-
parison with the equation of state resultugt=0 from Ref.
[15] suggests that the correction will give a significant cor-
rection to the pressure for 69T/ To=<1.3, uq/Tc=0.5, but
will decrease in importance &asrises further. The curves of
Fig. 6(b) are in good qualitative agreement with those of
Refs.[7,9], although we consider any quantitative agreement
to be somewhat accidental as the numerical data obtained in
[7,9] with unimproved actions have large discretization er-
rors which have been corrected for by renormalizing the raw

N N Ch+2
Data from the pressure at,=0 [15] and the current study
enable us to plot the first two estimatpg and p, on the
(mq,T) plane along with the estimated pseudocritical line
Te(mg) found in[3] in Fig. 5. Also shown are the corre-
sponding values from the SB lim(82). For T>T, one finds
that p,, increases markedly asincreases from 0 to 2; if the
SB limit is a good predictor for the QGP phase we might

expectcs to be very small, and the next estimaig corre- data with the known discretization errors in the infinite tem-

spondingly very large in this regime. Close to the tranSItlonperature limit. Experience gained in calculations of thermo-

line, however, the thermodynamic singularities appear to ret . T
strict p~O(1); this in turn gives an approximate lower dynamic quantities in the pure $8) gauge theory suggests

. e : that in the temperature range of a few timEgthis proce-
bound for the position of the critical end point. From the dure overestimates the importance of cutoff effects by a fac-

tor two or so[19].

2The argument of4] that p< /3 due to the presence of a phase Figure 2 shows the quark number density evaluated
pP=T . . .
transition as imaginary chemical potential is increased beyond thiusmg Eq.(13). As Hq INCTEASESMG NSES steeply as the QGP

value[20] does not hold for calculations with real; in this case f)hase is entered, for reference, if the quark number density

the pressur@, corresponding to the unit element of thé3zsector 1N Nuclear matter is denoted,, then the rationq/Tg
is always the maximum and hence dominates the partition functior=0.75. Our results are numerically very similar to those ob-
in the thermodynamic limit—hence the issue concerns the analytitained using exact reweighting ifv], where a massna
propertieswithin this physical unit sector. ~0.1 for the light quark flavors was used. Note that a sig-
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FIG. 6. The equation of state correctiar{p/T*) vs. T/T, for (a) variousuq /T, and(b) variousuq /T.

nificant quark mass dependence frwas observed ifi3],

The relation(44) approximates the “true” equation of

and indeed is present even in the SB limit as described istate in terms of physically measurable quantities; we have
Sec. Ill; however analysis of the SB limit suggests that theplotted the resultingA (p/T*) against (,/T%)? up to the

difference between the chiral limit and/T=0.4 is about
4%. In Fig. 1b) we show the result of eliminating,, in
favor of Ng via

Ap_l ng\? 3cg (ng\*
T4 " 4c, | T3 16c2\ TR

—

(a) TIT

point where the ratio of the magnitude of the second term of
Eq. (44) to that of the first is 40%: the poinh,/T?

= \/2023/304 where the ratio is 50% marks a mechanical in-
stability dp/dng=0, which is an artifact due to the trunca-
tion of the series. Stability of the equilibrium state under
local fluctuationson, requiresdp/dn,>0, an example of Le
Chaelier’s principle. AsT/T, increases through unity, the
equation of state changes from a form resembling the Tow-
SB limit p=ng® to the stiffer p<nj characteristic of the

q
high-T SB limit. Interestingly enough, to the order we have

02 I i ' ! .z 7 T T
ApIT /'/
[ |— TT,=0.96 , SB T Small -
— TIT.=1.00| ,*
- 0 /7
- TIT=1.02 |,

— DT=107
T/T,=1.23
0.1k |— TT,=181

0.05

| I | 1 | 1
0 0.1 0.2 0.3 0.4 0.5

(b) (nq/73)2

FIG. 7. (& nq/T3 as a function ofT/T, for various uq/T,, and(b) the “true” equation of stateA (p/T4) vs (nq/T3)2 for various
temperatures. The continuum SB formisr?/N) *3(n, /T%)** (low T) and (2N;) ~*(n,/T%)? (high T) are also shown as functions T,.
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2 B I T /7'_2 T | T T I T ISB I( ) I I T I T T I T I T | T |
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1 —
0.5 2
0 oL &
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FIG. 8. Susceptibilitiesa) x; /T2|ﬂq20, and(b) x; /g q-0 @S functions off/To.
calculated the instability artifact sets in a,/T=1.4 for T In Fig. 9 the relation(17) and data of Fig. 3 have been

large, but atu,/T=0.4 for T=T,, thus providing an inde- used to plot the Qimensionless ququ number susceptibility
pendent, and more stringent, limit to the physical validity oqu/_T2 as a function ofT/T, for various u,/T. The peak
our approach, and reflecting the importance of contributiond’hich develops iny, as 4 increases is a sign that fluctua-
from higher orders in the Taylor expansion closeTtgy,). t|ons in the baryon densﬂy are growing as the _crmcal e.nd
Next, in Fig. 8 we plot the expansion coefficients corre-Point in the (,T) plane is approached. Physically, this
sponding to the various susceptibilities defined in E#j8)— shows tﬁat at the critical point, as well as strong fluctuations
(16). For T<T, there is a significant difference between in the () bilinear expected at a chiral phase transition
Xq(#q=0) and 4y (nq=0), implying anticorrelated fluc- there are also fluctuations insfy,y) since Lorentz symme-
tuations ofn, and ng which rapidly decrease in magnitude try is explicitly broken by the background baryon charge
aboveT, and vanish a3 approaches the infinite temperature density. For quantities such ag and x, defined as higher
SB limit.> In the same limit the charge susceptibilige ap-  derivatives of the free energy with respeciug, the relative
proaches the valug x,. The critical singularity in 4, and  importance of the higher order terms in the Taylor series
Xc is weaker than that of,, which can be traced back to the expansion is increased; for example, a&T, and gl T
differing coefficients of((¢°In detM/dx?)?), the dominant =1 the quadratic contribution tg,(x,) is about 3 times
term in the vicinity of T, in the definitiong7) and(19). The
dimensionless quantityf yc/s, wheres=(e+p—uqng)/T T 1. T T T~ T T T T T
is the entropy density, can be related to event-by-event fluc- X /72 —— R/T=10
tuations in charged particle multiplicities in RHIC collisions, 4 q 7]

and has been proposed as a signal for QGP form&fibh o uq/T_O'g
Event-by-event fluctuations in baryon number have also re- | — =05 4
cently been discussed [26]. 5L K/T=04
—_— uq/T=0.2
L - uq/T=0.0 J
3There has recently been a discussion whether the difference 3

(4)(,—)((1)/T2 is exactly zero in the high temperature phase, as |-
suggested by some lattice calculatig2g], or just small but non- AN

zero, as found in perturbative calculatiof2]. We find that the
difference stays nonzero but decreases by one order of magnitude
betweenT=T, and T=1.5T,. At T=1.36T, we find a value of
0.006628) for this difference calculated in 2-flavor QCD which
clearly disagrees with the quenched result-@ x 10~ ¢ presented

in [21] as well as the recent 2-flavor results of this gr¢@p Our
results are, however, in agreement with the findings of Rdf]. At
T=2T, the numerical value of this difference drops below our
current error level of about:210 3. In the high temperature limit

this error is thus not yet small enough to discuss numerical effects
at the level of 10* as suggested in the discussion present¢&3h FIG. 9. )(q/T2 as a function off/T, for variousuq/T.

1.6 1.8 2
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0.8 1 1.2 1.4 1.6 1.8 2
(b) 1T

FIG. 10. Derivatives (8 (2VT®) %N Z/9Bd(uq/T)? (circles and —(2VT®) 13%In Z/oma(uy/T)? (diamonds; (b)
(2aVT3) ~15%In 219Bd(pq/T)* (circles and —(24VT3) ~16°In Z/9md(uq/T)* (diamonds.

that of the leading order term. For this reason we do nofunction of T/T, away from the chiral limit even in the ab-

expect the data of Fig. 9 to be quantitatively accurate in thesence of quantitative information aboa#m/da.

critical region. Note, however, that at each temperature the Consider however ignoring mass derivatives and focusing

expansions fomp, n, and x4 all have thesameradius of on those performed with respect to coupling. In this case all

convergence. derivatives are consistent with zero fo=1.2T,; i.e. the
Finally we turn to a discussion of the derivatives necesifferenceA ((e—3p)/T#) is to a good approximation inde-

sary for calculating the response of the energy density  pendent ofuq for these high temperatures. This observation

increasingu. The Taylor expansion of the energy density is consistent with the results obtained by using exact re-

involves derivatives of the expansion coefficiegf¢T) used  weighting in[7]. Consider now temperatures close Tg.

to calculate the pressure, The beta function at the critical3. has the value

a lda/dB=—2.08(43) [15]; substituting the derivatives

from Fig. 10 in Eq.(27) we find atT,

e-3p| < |, _ [mg\”
Al —]=2 cp(T)(—q) , (45) 2
T p=1 T E_3p Mq
with c")(T):T[dcp(T)/dT]|#q=0. It is apparent from the g
temperature dependence of the expansion coefficei(T) —(5x4)X ?q +ee (46)

and c,(T) shown in Fig. 3 that the coefficients,(T) can

become large in the vicinity of . On the other hand that Taking the central values of the coefficients in this expansion
figure also shows that,,(T) will be small, i.e. close to zero, gne may conclude that the ratiry/c, is comparable with

at high temperature as expected in the ideal gas limit. A, /¢, At present the large error on the coefficient of the
comparison with Eq(27) shows that the numerical evalua- (Mq/T)4 term, however, does not allow a firm conclusion on
tion of cy(T) requires the knowledge of lattice beta- the convergence radius of the expansioreef3p. We also
functions and a calculation of mixed derivatives ofiwith  note that the coefficient;, will change sign fofT ~T,. This
respect tou as well asp andm. In Fig. 10 we plot these suggests that large cancellations can occur fof/T
derivative terms; the signals in this case are much noisier O(1) and indicates that higher order terms are needed to
than for3"In Z/gp", although we have been able to check getermine this difference reliably. In any event, it would ap-
that the numerical values for’ln Z/dBdu” are consistent pear that extending our current analysis to determine energy

with the slope of the curve in Fig.(8. Itis clear firstly that  anq entropy densitiese(s) in the critical region will be far
with the exception 0B°In Z/omap? the signal only differs  more demanding.

significantly from zero in the immediate neighborhood of the
transition, and secondly that derivatives with respechtare
strongly anticorrelated with those with respect o The
latter suggests it might be possible to learn something from We have presented the first Monte Carlo calculation of the
Eq. (27) about the shape of th&a((e—3p)/T*) curve as a QCD equation of state at nonzero quark chemical potential

V. SUMMARY
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within the analytic framework; no reweighting has been per+ium state everywhere within the domain of convergence. We
formed. As in our previous work, we have exploited the rela-are currently investigating the feasibility of including the rel-
tive simplicity of the method to explore larger physical vol- evantO(u8) terms in our calculation.
umes than those used in comparable studié®]. In Other quantities of phenomenological importance such as
addition, the compatibility of our method with the use of anthe energye and entropys densities, which require mixed
improved lattice fermion action has meant that our resultslerivatives with respect to the other bare paramegeend
suffer from relatively mild discretization artifacts, our data m, appear more difficult to calculate with quantitative accu-
for the pressure correctioAp(u,) achieving 80% of the racy with this approach. It remains an open question whether
Stefan-Boltzmann value by=2T,,. the radius of convergence for these quantities is the same as

Our results forAp and its u-derivativesn, and the vari-  that for quantities defined by series diQ/du".
ous susceptibilitiey; are in good qualitative agreement with  Finally, it is necessary to stress the importance of refining
those of[7,9]. Since higher derivatives suffer from larger the current calculation, firstly by simulating systems with
discretization artifacts, and are inherently noisier when estiN_ =6 so that a reliable extrapolation to the continuum can
mated by Monte Carlo simulation, the results for, sayare  be performed, and secondly by repeating it with a realistic
less quantitatively reliable than those fop; nonetheless the spectrum of 2-1 fermion flavors.
singularity developing inyq asuq is increased, seen in Fig.
9, is evidence for the presence of a critical end point in the ACKNOWLEDGMENTS
(mq,T) plane, and for the importance of quark number fluc-
tuations in its vicinity.
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APPENDIX A: DERIVATIVES NEEDED TO CALCULATE
ENERGY DENSITY
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={— +2( [ — +{ | ————trm 1t
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+<<Z) ( ) > 7 —(MZ +<(4 o > <4trM > (A1)
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4 4 (9,41,2 4 I
N¢| 26%(In detM) N¢\ 3/ d(IndetM)\2 N #%(In detM)
o ] 2 o ) g o) - )
N; d(In detM) N %(In detM) N (IndetM) ) ?
<(Z Iy ) > < e > <Z o’ >+<(Z Ip ) >l A2)

As explained above, all terms involving the expectation value of an odd number of derivations with regpéeivio been set
to zero. Evaluation of EqgA1) and (A2) requires the following expressions for the derivatives bf tr:

gtrM 1 M
=—trf M 1—M (A3)
I
o%trm 1 L PM MM
=—tr{ M t—M | +2tf M 1—M1—M"1 (A4)
c?/.LZ c?,uz du I
a3trm 1 LM LM (M M PM
s = M —3M +3tr| M~ —M M +3trf M —M ™~ —M
e m au? I I au?
M oM oM
—6tr<M‘1—M‘1—M‘1—M‘1) (A5)
au au au
otrm L LY L FPM M PM M
=—t Mt — M4t M — M M et M M — M
8,u4 (9,u z?,us I (9/1,2 z?,uz
MM LM M M
+4trl M —M "~ —M -12tfM - —M " —M —M
I au au? I I
M 9*M M M Y M
—12tr(M‘1—M‘1—M‘1—M‘1 —LtMT =M M M
I Iu? p o p Iu?
M M M oM
+ 24t M‘l—M‘l—M‘l—M‘l—M‘l). (AB)
au u au au
APPENDIX B: THE PRESSURE OF FREE STAGGERED FERMIONS
Expanding the quantitp/T* as discussed in Sec. Ill one finds
% i * 3-i i 4
p (M)' 3 [\ fzw &5 (M) N> fzn 4
—| =N G —=| ==N ci(p)||l=| — d*pce(p) |- (B1)
=i 2 | 1573 |2 PE DTIHE 2mt)o 4RGP
Here only the even expansion coefficients give nonvanishing contributions. Introducing the abbreviation,
— 2
D—4§ f2(p), (B2)
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with f,(p) as given in Eq(38), the even expansion coefficients for the standard action are given by

Cozln(D) (BS)
1

Co= E[1—4Dcos(2p4)—cos{4p4)] o

C4= gogal ~ 9+ 8D?~8D(~3+4D%)cog2p,) +(12-56D)cos 4p,) ~ 24Dcos 6p,) ~ 3c0%8ps)] .

Ce= [150— 180D2+ 32D*— 8D (45— 60D 2+ 16D*)cog 2p,) + ( — 225+ 960D?— 992D *)cog 4p,)

288M°
+540Dcog6p,) — 144M3cog 6p,) + 90co%8p,) — 780D 2cog 8p,) — 180D cog 10p,) — 15c0$12p,)]. (B6)

For the Naik action we introduce an additional function,

dfa(p,pa—ip) 9 3
u(p)= —1 T TP ggo0s 3 ®7)
The even expansion coefficients can then be written as

co=In(D) (B8)

-2
Cy= E[—GDfi<p>+6Dg§<p)—48fi<p)gi(p)+Df4<p>sir(3p4)] (B9)
C4= 36D4(48{—768fz‘<p>gi<p)+D%fi(p)—gi(p)]—1923fi<p>gi<p>[fi<p>—gi(p)]

+D?[ —6f4(p)+445(p)g;(p) —694(p) 1} — 24D D —8f5(p)194(p)cod 3p,)

—32Df,(p)[D2—3Df5(p)+9Dg;(p) — 48f5(p)g3(p)1sin(3p,) + D D —8f5(p)Isir?(3p,)) (B10)
Co= [—720D2g,(p){D>+ 768 4(p)g;(p) + D?[ — 26f5(p) + 6g5(p) 1+ 96D[ f4(p) — 2f5(p)g(P) 1}

162M°
X cog3p,) —45D[ D —8f3(p)]cos’(3p,) — 96D f4(p){8D*+ 46080 3(p)gs(p) — 75D f5(p) — 394(p)]
+60D2[3f7(p) —50f3(p)g;(p) + 15g2(p) ]+ 288D [ 3f4(p)gi(p) — 5f4(p)ga(p) 1}

X Sin(3p,) + 15D%{5D %+ 4608 ;(p)g3(p) + D[ — 76f3(p) + 36g5(p) 1+ 192D[ f4(p) — 64(p)gZ(p) I}

X SiM(3py) +10D°f 4(p)[ 3D — 16f5(p) Isin(3py) + 72(4{ 245760 4(p)°g§(p) + D[ f5(p) —gi(p)]
+9216Mf4(p)gs(p)[f4(p) —gi(p)]—2D[154(p) — 94f3(p)g3(p) + 1503(p)]

+120D% f§(p) — 23 4(p)g;(p) +235(p)g4(p) — 95(p) ]+ 960D 9F §(p) gi(p)

—34f4(p)ga(p) +9f3(p)g3(p) ]} —5Df4(p)[3D — 16f5(p)19a(P)SIN(6p4))]. (B11)

To simplify the expressions for thp4 action we define the expansion coefficients recursively and thus also list the odd
expansion coefficients. However, after integration over the momenta also in this case only even powéreaitribute to
the expansion of the pressure. Introducing further abbreviations,

S,= 2 siri(p,) and c,=—icy, (B12)

vFE L

the expansion coefficients for thp} action can be written as
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co=In(D) (B13

Ci=— 6'—D[ —S,—S,— S5+ 6S5+ 5,009 2p;) + S,c08 2p,) + S3¢08 2p3) ]Sin(2p,) (B14)

1
Cy= @(9D3§+ B[ 35— S1SiIMP(p1) — S,SiM(P2) — SsSINP(Pa) 1SINP(P4) — 2€0S(p4){9S; + SinP(p1)[ — 3S, + Sinf(p,) ]

+SirP(p2)[ — 3S;+ Sin(p4) ]+ Sir’(ps)[ — 3Ss + sinf(pa) 1}) (B195)

i _
C3= @(31301(8_ 6Cy) —[ — 3+ cog2p;) + cog 2p,) + cog 2p3) ]cOS (P,4) SiN(Pa)

— 208 Pg) SIN(P4){ 1255+ Sin?(py)[ — 4Sy+ Sin(pa) ]+ Sir(p2)[ — 4S,+ SiP(pa) 1+ SiP(pa)[ — 4S5+ sir?(p4) 1})
(B16)

Cy= 21163_(6c0§(p4)[8in2(p1) +SirB(py) + sir(ps) ] — 3{3D (¢ — 12c%c,+ 1262 — 24c, C5)

+8[ —3S+ S;Sin(py) + S,SirP(py) + SysirP(pa) IsirP(ps) +[ — 3+ cog 2p;) +cog 2p,) +Ccog 2ps) Isint(pa) }
—4c08(p,){18S; +siM(py)[ — 6Sy + 11sirf(py) ]+ SirP(p,)[ — 6S,+ 11sirf(p,) ]+ Sir(ps)[ — 6S;+ 11sirf(p3) 1})
(B17)
L
360D
X COSY(4)SiN(P4) +8CO% P4)SiNn(pa){12S] +sin?(py)[ — 4Sy +5Sirt(p,) ]+ SirP(p2)[ — 4S,+ 5sir(py) ]+ Sirf(ps)
X[ —4S;+5sif(p,)]}) (B18)

Cs= (3D[c3—20c3c,— 60c2c;+ 120c,C5+ 60c,(C2+2¢,) ]+ 20 — 3+ cog 2p;) + cog 2p,) + cog 2p3) ]

Co= {6—9Dc8+270Dclc,— 162 c3c2+108Mc3+ 108 cic, — 648D ¢, c c3— 324D cs— 324Mc3e,

648D
+648MDC,C,— 648D C,Cs—2c0%2p;) —2c0%2p,) — 2c0$2p3) +31c0$2(p;—2p.)]

+31c0$2(p2—2p4) ] +31c0$2(p3—2p,) |+ 245,004 2(p1— Pa) ] +24S5,€04 2(p2— Pa) ] +24S;c09 2(p3— py) ]
—48S,c092p,) —48S,c092p,) —485;c092p,) + 28$§co$2p4) —186c0%$4p,) +24S,c08 2(p1+Pa)]

+24S,c04 2(p,+ Pg) |+ 245;c094 2(p3+ pa) |+ 31c0$2(py+2p4) ]+ 31c0$2(po+2p,) |+ 31c0$2(p3+2p4) 1}
(B19)

Note that we have defined here the coefficientaithout N, factors, which can be found in front of the integrals in Egl).
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