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Perturbative determination of O(a) boundary improvement coefficients for the Schralinger
functional coupling at 1 loop with improved gauge actions
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We determinéd(a) boundary improvement coefficients up to the 1-loop level for the Stthger functional
coupling with improved gauge actions including plaquette and rectangle loops. These coefficients are required
to implement 1-loopO(a) improvement in full QCD simulations for the coupling with the improved gauge
actions. To this order, lattice artifacts of the step scaling function for each improved gauge action are also
investigated. In addition, passing through the Sdinger functional scheme, we estimate more accurately the
ratio of the A parameters between the improved gauge actions and the plaquette action.
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[. INTRODUCTION provement coefficients at 1-loop, which can be used for dy-
namical quark simulations in the future.

The modified minimal subtractiorl\TS) scheme has now The rest of this paper is organized as follows. In Sec. Il,
become the standard renormalization scheme for the definffter a brief reminder of the Schimger functional scheme
tion of the strong coupling constant. The measured couplingnd its extension to improved gauge actions, we specify the
constanta in some experiments at relatively high energy is@ction used for later calculations and discuss (¢a)

converted toags at some representative scale by perturba-boundary counterterm. In Sec. Il the Sctirger functional

tion theory. The current world average of such estimate%?liﬁgng (;(;nt?;i?\t dlzir;lei:Tl?pergvaerr]'gefr?trTgéifsic];g;ge';ergmé?\?;r?n
gives ags(mz=91.19 GeV)~0.11. Lattice QCD calcula- The 1-loop computation is outlined in Sec. IV, and the results

tions, on the other hand, have the potential ability to deter- . -
mine the strong coupling constant from experimental input a f the O(a) boundary improvement coefficients are summa-
9 piing P P ized in Sec. V. Our conclusion is given in the last section,

a_Iow (hadronig energy scale. In order to compare the C_OU'together with a discussion of a lattice artifact of the step
pling constant obtained at low energy t_)_y lattice calculatlons,sca"ng function.
with as obtained at high energy, the Schioger functional

scheme has been proposed by the ALPHA Collabordtign

and the scheme has been shown to be successful. At present,

the results on the running coupling constant of two massless A. Schradinger functional

fla\l/or r?CD r|1ave lzeﬁn reportéﬁﬁ]. liah K CD si It has been shown by the ALPHA Collaboration that the
In the real world there are three light quarks. Q s'mu'Schr"cdinger functional(SFH scheme is a powerful tool to
Iat|'ons including three dynamical quark effects are _thus resrobe the energy evolutions of some physical quantities and
qlullred to unld_erstand .the low fenergy 9CD dy”am'cf- Ou o0 compute improvement coefficients as well as renormaliza-
ultimate goa IIS t% estimateys ron; Ny=3 QCD”S'E]U @ tion constants. In the SF scheme, the theory is defined on a
tions. Recently, the CP-PACS and JLQCD Collaborations;nje pox of sizel 3x T with periodic boundary conditions in
have started ahl;=3 QCD simulation employing an exact o gpatial directions and Dirichlet boundary conditions in
fermion algorithm developed for an odd number of quarkthe time direction. In the pure $B) gauge theory with Wil-

flavors[4—6). In particular, noteworthy results were reported son plaquette actioS[U], the partition function in the SF
in [5]: There exist strong lattice artifacts associated with thescheme(in the case thaT,= L) is given by

phase transition in thBl;=3 QCD simulation with a combi-
nation of the plaquette gauge action a¢h) improved Wil-
son quark action, while such lattice artifacts are absent for Z:f D[UJe SV, 2.9
the renormalization grougRG) improved gauge action.
Hence, the collaborations have decided to adopt the combiyhere the link variable$) (u,x) for the gauge fields satisfy
nation of the RG improved gauge action (i) improved  the boundary conditions
Wilson quark action for théN;=3 QCD simulations to ob-
tain ays. U(x,k)|x0:0=exp{ac}, U(x,k)|XO:L=exp{aC’}.

As a first step of our program, we study the Schinger (2.2
functional coupling with improved gauge actions in pertur-
bation theory. In particular, we perturbatively calculate theHerea is the lattice spacing, and,C’ are diagonal traceless
O(a) boundary improvement coefficients at the 1-loop levelmatrices, which depend on the background field parameters
with improved gauge actions for the pure @V gauge # andv [8]. It has been showfl] that the minimum of
theory. Combining these with the 1-loop results for the fer-§ U] is given by the lattice background fielth(x,u)
mionic sector[7], we determine theD(a) boundary im- =V(x,u), where

Il. PRELIMINARIES
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V(x,00=1, V(x,k)=V(xg), (2.3
with
V(xq)=exp{ab(xg)}, (2.9
1
b(Xo)=E[(L—Xo)C+XoC’]- (2.9

This background field represents a constant electric field.

An extension of the SF scheme to improved gauge actions

was first considered by Klass€@]. The transfer matrix con-

PHYSICAL REVIEW D 68, 014505 (2003

B. Gauge action

Our improved action includes plaquette and rectangle
loops and is given by

1
SmlUl== > Wo(C.05)2£L(C)
gO CESO

1
+— 2 Wi(C,09)2£(C),
gO CeSy

(2.6

struction[10] was adopted in the discussion. In this formu- .
lation, each boundary consists of two time slices, to achieved

the tree-levelO(a?) improvement.

In this paper, however, we adopt the formulation proposed

by Aoki, Frezzotti, and WeisZ11], where each boundary
consists of only one time slice and the tree-le@€h) im-

L(C)=ReT{I-U(C)], 2.7

provement is achieved. The dynamical variables to be intewhereU(C) is the ordered product of the link variables along
grated over are independent of the form of the actionJoop C contained in the sefy(plaquettg or Si(rectangular.
whether plaquette or improved, and are given by the spatia$, andS; consist of all loops of the given shape that can be

link variablesU(k,x) with xo=a, ... ,L—a and temporal
link variablesU(0x) with x,=0,...L—a on a cylinder
with volume L3x L. This formulation is implemented more
easily in numerical simulations.

The background field in Eq.2.3) gives the local mini-
mum of the theory in both cas€gd] and[11]. It has not been
theoretically proved, however, that E@.3) is the absolute

drawn on the cylindrical lattice with volum&3x L. The
loops involve only the “dynamical links” in the sense speci-
fied above, and spatial links on the boundariegyat 0 and
Xo=L. In particular, rectangles protruding from the bound-
ary of the cylinder are not included.

One has to choose appropriate boundary weights to
achieve 1-loop leveD(a) improvement for observables in-

minimum for the improved gauge actions. This has beervolving a derivative with respect to the boundary. Among

checked only numericallj9].

various choices to achieve this, ours is given as follows:

( cs(gg) for Ce Pg: set of plaquettes that lie on one of
the boundaries,
WO(C,gg)=< cocf(gg) for Ce P;: set of plaquettes that just touch one (2.9
of the boundaries,
L Co for CePgoper: Otherwise,
(0 for Ce Rg: set of rectangles that lie completely
on one of the boundaries,
W;(C,gd)={ cicfi(gy) for CeR?: setof rectangles that have exactly two (2.9
links on a boundary,
L C1 for CeRypher: Otherwise,

with
coCf (95)=col 1+ ¢ Mgd+0(gd) ], (2.10

(2.11

where the coefficients, and ¢, of the improved gauge ac-
tion are normalized such thap+8c,=1. We callc/(g3)

c1cf(g3) = ca[ 3/2+cfMg3+0(gg)1,

the 1-loop coefficients{™™ and cR*) are independent of
each other. The weight factowi(C,gg), which include the
loop corrections, become choice B[dfl] in the weak cou-
pling limit. Choice B achieves the tree-lev®(a) improve-
ment and, at the same time, the lattice background Y
Eqg. (2.9 satisfies the equation of motion obtained by the
variation of dynamical links.

Incidentally, we discuss th®(a) boundary counterterm

andctR(gS) O(a) boundary improvement coefficients. So far, from a different point of view. Here, it is assumed that the
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plaquette loops and rectangle loops which lie completely on
the cylinderL®X L are included in the action, and that each
boundary consists of one time slice only. As explainefli

PHYSICAL REVIEW D68, 014505 (2003

U(X, 1) = xp{goad, (X)}V(X, ). (3.2

where g, are quantum fields. The SF coupling is defined

at ordera in the pure gauge theory, there are two possiblethrough the free energly in Eq. (3.1):

boundary countertermsa® Tr{FoFot and a* Tr{FF},

each of which is summed over thg=0 or x,=L hyper-
plane. Since the latter boundary term vanishes in the case of
an Abelian constant boundary field, in the following, we con-

sider only the former. In this case, we have three candidates, o e

for O(a) boundary counterterms that respect lattice symme
tries,

(1) the spatial sum of timelike plaquette loops that just touch
one of the boundaries,

(2) the spatial sum of rectangle loops that have exactly two
links on a boundary,

(3) the spatial sum of rectangle loops that have exactly one
link on a boundary,

to satisfy one condition, th®(a) improvement condition.
Therefore, for simplicity, we can take a trivial weight for the
term 3, and we still have one degree of freedom for the
choice of the boundary terms. At the tree level, however, the
background field given in Eq2.3) must satisfy the equation
of motion! so that one has to take{ =1 and c{=3/2
(choice B. Since no such extra constraint exists for the
1-loop boundary terms, we can freely set the relation be-
tweencP™ andcR™®, which will be given in the next sec-
tion.

with

Ill. SF COUPLING AND O(a) BOUNDARY
IMPROVEMENT COEFFICIENTS

The SF with the improved gauge action is given by

z:effzf D[UJe SV, (3.2

where§ U]= S, [U]. We require the same boundary con-
dition Eq. (2.2) for the link variables as in the case of the
Wilson plaquette action. In perturbative calculations, there
are two main concerns to note: one is whether the back-
ground field given by Eq(2.3) corresponds to the absolute
minimum of the action, and the other is the gauge fixing. For
the latter, we used the covariant gauge fixing procedure out-
lined in[1]. The former statement is positively proved[id

I'g

- , 3.3

n=v=0

g3HL)

is the derivative with respect tg. I is @ normal-

ization constant

r':i 23[\/]
0 077790 -
g0:

a
= %[Coggsplac{vﬂggzo-i- clggsrec{\/”gg:oL

(3.9

J 2
7 905viad V]

J
=5]{c1’<g%>; 2L(C)

93=0

+> 2£(C)}

Pother

2_
%= y-v

2
(sin2y+sinvy)

L
-1 ;
a

=F6°°m+0(a4), (35)

T G2Sed V]
aﬁgosrec 2o an
0

d
= —[c?(g%)Ez 2L(C)
Rt

+ > 2[,(0)}

Rother

2_
%0 yy

2
(sin 4y+sin 2y)

:12.4<_
a

=8I'y*"+ 0(a%), (3.6

for the Wilson plaquette action. Unfortunately, the statementvhere y is given in the Appendix and';*"=127 (if 7
has not been proved yet in the case of improved gauge ac=0), normalization in the continuum theory.

tions, since the proof ifil] is not applicable to these cases.

Let us discuss the perturbative expansion of the SF cou-

In [9], however, it was numerically checked that the back-pling. Making use of the facts that

ground field given in Eq(2.3) corresponds to the minimum
for a large class of improved actions; hence we assume this
in our perturbative calculations.

In a neighborhood of the background fiel] any link
variablesU can be parametrized by

The equation of motion for the plaquette action is trivially satis-
fied.
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: (3.7)

93=0

2a 5
= T gosplac{V]

U=V

> 2L(C)
R2
t u=v

a 2
:Egosrec{v] , (3-8)

9,=0

one finds that



TAKEDA, AOKI, AND IDE PHYSICAL REVIEW D 68, 014505 (2003

IV. CALCULATION OF THE ONE-LOOP COEFFICIENT

2a
93 VI=To+ 05| Cocl ™ (hSpiad V1l g2-0)

In the following, we choose lattice unitse.,a=1). Ac-
cording to the unpublished nofd2], we have used? (a
+0(gd). =1,2,...,8) as thdasis of the Lie algebra of SB) in the

presence of the background field. Their explicit form can be
(3.9  found in[13]. Decomposing in the basls,

1
+ Eclcf(l)(g(z)srec{vﬂg(zfo)

Then perturbative expansion Eﬁ,:(L) is given by qu(x)zz ai(x)m, (4.1
a

2 _ 2 (1) 4 6
9se(L)=go*+m;"(L/a)go+O(go), (3.10 the quantum fieldg),, are Fourier transformed with respect

to spatial momenta as

with

- 1 .

12a4 q5(x)=— > ePGg(p.xo), (4.2
mit(L/a)=— = T~ | cocl A7 Spad Vloz-o) o

Iy 7
- 1 N
+ %clcf“”(gésrec[v]lgg=o) +m{?(L/a), W)= % elPre!lPit dalol gl p,xo),
(4.3

(3.11
where the phasé,(xg) is given in the Appendix. In terms of

wherem{®)(L/a) is the 1-loop correction to the SF coupling F2(x), the quadratic part of the improved gauge action Eq.
_ O G2(x), the g p proved gaug q
calculated with the tree-leveD(a) boundary coefficients, (2.6) takes the form
t

and the details of the calculation will be given in the nex

section. Here, if we require thaf™ andcR™® satisfy (this 1 L-1 =

is possible by using the last degree of freedom as mentioned anng—s PRI q5(—P.X0)KE,(PiX0,Y0)
at the end of the previous sectjon L® ' x0.y0=0 2

CRD= P (3.12 X03(P.Yo), (4.9
with the condition

and introducec(”

~a — _

9= 0P+ 4 = P (313 k(P Xo)|x,=0=0 for k=1,2,3. (4.5
The explicit form of the inverse propagatif, , is given in

then we findm{*)(L/a) in a very simple form: [11], and also in the Appendix. .

As in the case of the Wilson plaquette actiph], the

2a 1-loop correctiorm{®)(L) in the case of an improved action
(1) —_ " e® (0) 1
mi~’(L/a) 3 ci’/+mi’(L/a). (3.149 is given by
If we do not require Eq(3.12), but use another choice, then ©)/ 1\ _ 1 91
we find mj (L)__F_(')% Eln DetK—1In DetAO R

=yp=

0
(4.9

2a
(1) —_ 1@ 4 (0)
mi~’(L/a)= 3 [ci”+0(@Y)]+my7(L/a), (319 \yhere the determinant for the quantum field sectoe first

term in the right hand side of the equatios taken with

wherem{”)(L/a) is the same as in E¢3.14) and there is an respect to the spatial momentum the time xo, the Lie
O(a* contribution coming from boundary terms at the tree@/gébra sectoa, and the Lorentz index. The second term
level. The differences between the choice E8.12 and in the right hand of Eq(4.6) represents a contribution from
other choices otf(l) ,ctR(l) reflect just theO(a®) contribu- fthe _ghost sector. The differential operator for the ghost sector
tion in m{(L/a). Therefore, the differences between their 'S 9\V€N by
scaling violations are tiny at 1-loop order. In the following, Ag=—d*d 4.7
we take the choice Eq3.12. '

The value of the 1-loop coefficient") is determined by where d is a linear operator and defined asw) ,(x)
the condition that the dominant part of the scaling violation= Dﬂw(x) for proper w(x), the generators of the gauge
of m{Y(L/a) should be proportional toa(L)?, and then transformation satisfying nontrivial boundary conditidis
cP@® and ¢k are uniquely given by Eq(3.12 and Eq. d* is defined as the negative adjoint df Here we will
(3.13. exclusively consider the quantum field sector, since the con-
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TABLE I. One-loop coefficienm{>(L) for improved actions.

L Iwasaki action LW action DBW?2 action

6 0.0865021015584032 0.3843092560841445 —0.2542597063902088
7 0.1026697312426737 0.4061279685078025 —0.2517151449619943
8 0.1171638577366678 0.4249279311929165 —0.2462340808659547
9 0.1303628849788211 0.4414718008748639 —0.2394316692834335
10 0.1424404981803593 0.4562496675217995 —0.2322864496797361
11 0.1535565273026473 0.4696045216347286 —0.2251762317750280
12 0.1638489264935022 0.4817875167578513 —0.2182314272034601
13 0.1734301653189940 0.4929883879248706 —0.2114993870451222
14 0.1823916642888328 0.5033540747374835 —0.2049961094379959
15 0.1908085280119190 0.5130007428050310 —0.1987234947986162
16 0.1987431354745856 0.5220218429952182 —0.1926766886112917
17 0.2062478088988484 0.5304936855855431 —0.1868475754585161
18 0.2133668331494581 0.5384793988419066 —0.1812265016307355
19 0.2201380038925787 0.5460318047790646 —0.1758031806343642
20 0.2265938267004754 0.5531955499144914 —0.1705672082184823
21 0.2327624550322364 0.5600087116401930 —0.1655083693982648
22 0.2386684311658198 0.5665040280450621 —0.1606168213494539
23 0.2443332770354413 0.5727098525006191 —0.1558831969805698
24 0.2497759696349747 0.5786509038428871 —0.1512986565129531
25 0.2550133267993803 0.5843488625662739 —0.1468549050440217
26 0.2600603227656853 0.5898228494962823 —0.1425441882890768
27 0.2649303482326239 0.5950898137064368 —0.1383592748238773
28 0.2696354261875951 0.6001648495876492 —0.1342934304660328
29 0.2741863922040979 0.6050614580595203 —0.1303403885609065
30 0.2785930459882241 0.6097917633368525 —0.1264943186395051
31 0.2828642794964034 0.6143666940320125 —0.1227497950252100
32 0.2870081858351735 0.6187961354134090 —0.1191017663623826
33 0.2910321522986861 0.6230890581649763 —0.1155455266354859
34 0.2949429402366960 0.6272536278701680 —0.1120766879801252
35 0.2987467539279429 0.6312972985837565 —0.1086911554135926
36 0.3024493002264770 0.6352268931891717 —0.1053851035018207
37 0.3060558404258739 0.6390486727199947 —0.1021549549113093
38 0.3095712355291510 0.6427683964162490 —0.0989973607544213
39 0.3129999859059953 0.6463913739632261 —0.0959091826148500
40 0.3163462661525911 0.6499225111032890 —0.0928874761305482
41 0.3196139558344332 0.6533663496047807 —0.0899294760096131
42 0.3228066666825220 0.6567271024057376 —0.0870325823576189
43 0.3259277667231945 0.6600086846150990 —0.0841943482007244
44 0.3289804017476282 0.6632147409439818 —0.0814124680962679
45 0.3319675144656546 0.6663486700493243 —0.0786847677306482
46 0.3348918616375112 0.6694136461978401 —0.0760091944125418
47 0.3377560294345988 0.6724126385966856 —0.0733838083775785
48 0.3405624472446620 0.6753484286860957 —0.0708067748282852

tribution from the ghost sector to the 1-loop correction isand the DBW?2 actiond;= —1.40686,c,=c3=0) [16] in

same as in the case of the Wilson plaquette action. Outhe rangeL =6, . ..,48. The results are shown in Table I.

boundary condition for the temporal componeptis differ- ~ The computations have been performed by usingTRAN

ent from that in[1], so that the “non-uniform” contribution  with extended precision. As a check of our calculation, we

in the gauge fixing term remains in the inverse propagiitor confirmed the independence of the gauge fixing parameter

(see the Appendix and the expected symmetries before reducing the amount of
We evaluated the 1-loop correction{®’(L) numerically  calculation[17]. We also checked that our code &t=0

for the Iwasaki action ¢;=—0.331, c,=c3=0) [14], the  reproduces the known results for the Wilson plaquette action

Luscher-Weisz(LW) action (;=—1/12, c,=c3=0) [15],  [18]. Furthermore, two codes written independently by the
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TABLE II. The coefficients of asymptotic expansiéyg,A; for various gauge actions. The values for the
plaquette action are taken frd8,18]. Since the error oAg® for the DBW?2 action is not giversee footnote
2), the quoted digits are of little significance.

Plaquette action Iwasaki action LW action DBW?2 action
Ao 0.3682821613) —0.204901%4) 0.13615056(®) —0.627768)
AP —0.199924) 0.1362126) —0.62
A —0.1780010) 0.3036026) —0.0059402) 0.89645)
two authors produced identical results up to about 30 digits c=A§—Ag, (5.4
in the rangeL =6, . ..,32. Beyond this range, we used the
faster code only. where Ay or Aj is the expected\, of the schemeX or Y,

respectively. We then find
V. ANALYSIS AND RESULTS

: A

In this section we extract the orderLlterm from the Alc;np:Aglaq_ 2bgln Alrlnj- (5.9
1-loop correctionm{®)(L) to determine theD(a) boundary P
improvement coefficientc(*). According to Symanzik's Using A§#%=0.36828215(13)8,18] and the ratio of the\
analysis of the cutoff dependence of Feynman diagrams oparameters
the lattice, one expects that the 1-loop coefficient has the

asymptotic expansion A 59.05+ 1.0 for the Iwasaki actioﬁZl],
mP_{ 5.29+0.01 for the LW actiori22],
L—o % plag .
mgo)(l_) ~ E (An+ Bn In L)/Ln (51) 13X 102 for the DBW?2 aCt|0r[23],
n=0 (5.6
Using the blocking method ¢L.9], we extracted the first few we obtain the values o™ for each action that is shown in
coefficientsA,, By, A, B, and estimated their errors. Table Il (Ag™"). We observed consistency Ay between pre-

Some of these coefficients are known or related to othevious known results and our calculations.
quantities. For example, thi,’s of two different actions are With this confidence in our computation, we obtain the
related to the ratio of th& parameters of the two actions. If main result of our paper, the one-lo@a) boundary im-
the ultraviolet divergence in the SF is removed by the stanprovement coefficient Eq3.14), which is given by
dard renormalization of the coupling constamly=2b, (D) P()
wherebo=11/(4m)? is the 1-loop coefficient of th@ func- ci=cp T =A2, (5.7
tion in pure SU3) gauge theory. If the tree-levé(a) im-
provement is implemented®,=0 must hold. Our main re-
sult comes fromA;: Eq. (3.14 givesc!Y=A,/2.

We first verified that our extraction &, andB; is con-
sistent with the above expectations. We confirmed Bt
=2b, up to seven digit§glwasaki, nine digits(LW), or four A A JA 1
digits (DBW2), while B;<10™* (Iwasaki, <107 (LW), or ﬂ=M=exp{—[A8'aq—A0]]
<102 (DBW?2). Since our data give the expected values of Apiag Apiag/ Asr 2bo

61.20643) for the lwasaki action,

whereA; is also found in Table II.

Finally, using our results foA, in Table Il, we can esti-
mate the ratio of the\ parameters between the improved
action and the plaquette action more accurately:

By andB, we fix Bo=2by andB,;=0 by hand in the block-
ing procedure to extradh, and A;, whose results for each

action are shown in Table Il where we have added the result =1 5.2921045) forthe LW action,
of the plaquette actiof8,18] for later reference. 1273.48)  for the DBW2 action.
As a further check, we extract th,’s from the ratio of (5.9
the A parameters between two scheméand Y, which is
given by VI. CONCLUSIONS AND DISCUSSION
&ze*C’ZbO, (5.2 . Combining our r(_asult foc§l) for }he improved gauge ac-
Ay tions and the previous result fa®) for the clover quark
action[7], we obtain
where
2 _ 2 A 2 I i
gv(m) =gx(p) +egy(pm)+- . (5.3 We take the value for the DBW?2 action from a private n@8|,
where the error of the value was not given; therefore the quoted
The purely numerical numberhere is given by digits are of little significance.
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TABLE lll. The deviations for various gauge actions.

Plaquette action Iwasaki action LW action DBW?2 action
L PR s PR P 80 s 50 P

6 0.01089 —0.00394 —0.01922 0.00608 0.000911 0.000417 —0.061 0.014
7 0.01004 —0.00268 —0.01684 0.00484 0.000659 0.000236 —0.050 0.014
8 0.00918 —0.00194 —0.01499 0.00399 0.000527 0.000156 —0.043 0.013
9 0.00841 —0.00148 —0.01356 0.00330 0.000441 0.000111 —0.038 0.011
10 0.00773 —0.00117 —0.01241 0.00277 0.000379 0.000082 —0.035 0.010
11 0.00714 —0.00095 —0.01146 0.00235 0.000333 0.000063 —0.032 0.009
12 0.00663 —0.00079 —0.01064 0.00201 0.000296 0.000049 —0.030 0.008
13 0.00618 —0.00066 —0.00994 0.00174 0.000268 0.000039 —0.028 0.007
14 0.00579 —0.00057 —0.00932 0.00152 0.000244 0.000032 —0.026 0.006
15 0.00544 —0.00049 —0.00878 0.00134 0.000224 0.000026 —0.024 0.006
16 0.00513 —0.00043 —0.00830 0.00119 0.000207 0.000022 —0.023 0.005
17 0.00486 —0.00038 —0.00787 0.00106 0.000193 0.000018 —0.022 0.005
18 0.00461 —0.00034 —0.00748 0.00095 0.000181 0.000016 —0.021 0.004
19 0.00438 —0.00030 —0.00713 0.00086 0.000170 0.000013 —0.020 0.004
20 0.00418 —0.00027 —0.00681 0.00078 0.000160 0.000012 —0.019 0.004
21 0.00399 —0.00025 —0.00652 0.00071 0.000151 0.000010 —0.018 0.003
22 0.00382 —0.00022 —0.00625 0.00065 0.000144 0.000009 —0.017 0.003
23 0.00367 —0.00020 —0.00601 0.00059 0.000137 0.000008 —0.017 0.003
24 0.00352 —0.00019 —0.00578 0.00054 0.000131 0.000007 —0.016 0.003

cPW=cRW2=A,/2+nicF® (6.1) o(s,u)=u+2bgIn(s)u?+0(ud). (6.3

) F(1)_ This SSFo(s,u) in the continuum theory is obtained from
for ne-flavor QCD, wherec, 0.01914101). the continuum limit of the lattice SSE(s,u,1/L)

As a final remark, let us discuss the lattice artifact of the
step scaling functiofSSH [20] for various gauge actions. o(s,u)= lim 3(s,u,1L). (6.4)
The SSFo(s,u) describes the evolution of a renormalized 1L -0
coupling under a finite rescaling facter(says=2)

Therefore we can estimate the lattice artifact of the SSF in
(6.2 our perturbative calculation. We define the relative deviation

s,U)=0%(sL)|y_m2(L) s
o(s,u)=g%(sL)|u=g2() 5(s,u,1L) and expand it as

and it has the perturbative expansion S (2,u,10)— o(2,u)
8(2,u,1/L)= =5{(2,1L)u+0(u?),
0.02 . . . . . . . . a(2,u)
(6.9
0.01 | pooao @ o o} a
. 00 @ O L . where we have set=2, and&{¥(2,11) is the 1-loop coef-
S ficient. Herek denotes the degree of improvement for the
001 F o0 o o . T boundary coefficient: the tre€l-loop) value is used foik
_ 002} %"%% ° ° A =0 (k=1).
% ol oo, | The manifest form of{"(2,1L) is given by
oot T ] 92,10 =m(2L) —m{(L)— 2bo In(2),  (6.6)
bl plaquete aclon @ ’ 1 and the results, including data for the plaquette adi&h8]
-0.06 [ wasakd action 0 o for comparisort are given in Table IlI for each gauge action.
007 DBW2action o | , , , , Figure 1(Fig. 2) shows that the 1-loop deviations with the

0 002 004 006 008 01 012 014 o016 018 tree-level(1-loop leve) O(a) improved boundary coefficient
b vanish roughly linearlyquadratically in 1/L as expected. As
FIG. 1. The relative deviations of the lattice SSF from the con-
tinuum one at 1 loop for various gauge actions with the tree-level
O(a) improved boundary term. One can see that&ﬁ?éfor vari- 3We have added data for the plaquette action in the range
ous gauge actions vanish roughly linearly ih. 1/ =17,...,24.
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0016 plaquleﬂe action 5 ' ' ' Kg):](-))a(p;x01y0)0kk: 5x0,y0[1+(wdbc_ 1)(5X0,0+ é\XO,L—ZI.)]
| | Iwasaki action © ® s
0.014 LW action &
DBW2 action ¢ ©
pote . T X AR5, sin $a(Xo) + Pl
0.01 ° . m
0.008 | o ‘ : X sin ¢a(Xo+ 1) +pml, (AB)
S 0.006 o° ° 4
o ©
0.004 F & ° e
& o 1 .
0.002 | 4 000 ® @ . Kgo)a(p,XO,YO)ow: Rg; {5x0,y0[(1_ 5)(0,L—1)Sﬁ1(p’x0)
o N
0 iR £
wose b Oog g o ° o i Xsﬁq(p,xo+2)+(l—5xoyo)
o]
R 1 L 1 L 1 = a _ a
0.004 0 0.005 0.01 0.015 0.02 0.025 0.03 X Sm( P:Xo l)Sm( PXo+1)]
an?

+ 8¢y 1y,Sm(P: X0~ 1)Sq(P,Xo+ 1)
FIG. 2. The same quantities as in Fig. 1, but with the 1-loop

level O(a) improved boundary term. One can see that&fii'é for + 5x0+ 1,yOS?n(p1y0_ 1)3%(paYO+ 1},

various gauge actions vanish roughly quadratically in. 1/ (A7)

is evident from Fig. 1 and Fig. 2, at the 1-loop level, the
lattice artifact for the renormalization group improved action K{3(:X0,Yo) okk= IR32¢2(p,Xo) [ 8

1+ (Wgpe—1
(Iwasaki or DBW32 is comparable to or larger than that for oot 1 (Wape™ 1)

the plaquette action, while the LW action is the least affected X 8y | _1vsiM da(Xo+ 1)+ pi]

by the lattice cutoff. However, one cannot conclude that the o

LW action is the best choice for numerical simulations, — Oxy— 1yt 1+ (Wape—1) 6x 1}

where lattice artifacts of higher orders inor a may not be

negligible. Xsin ¢a(Yo) + Pill, (A8)
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APPENDIX: INVERSE PROPAGATOR XLL= 84,0 Bx-1y, T =2y, 1}
Here, we give the explicit form of the inverse propagator. (A9)
We choose lattice unit§.e.,a=1) and sefT=L:
K=COK(O)+C1K(1)+7\OK(90. (A1) Kg}()a(p;XOaYO): _K(k%)a(p;Yvao)a (A10)
1. Plaquette K(k})a(P;Xo.yo)Okk: SICR(P.X0)CR(P,Yo)
K8 (PiXo,Y0) =R28y 4, S(P.X0) - (P, X0+ 1), (A2) X[2C30¢ .y, ~ Ra( gt 155+ Oy 1y)]

+ (dec_ 1) 6kI5x0 ,yocékl(pyxo)
X [8y, L C5eR(P,Xo) —iS3SR(P,Xo0) ]
+ 8y, .L-1L C3ck(P.Xo)

+iS3sR(p.%o) 11, (A1)

K(Q2(Pi%0,Y0) = iR 8,y SR(P. X0+ 1)

— Sxo-1y,Sc(P.Yo) ], (A3)
K&R2(p3X0,Y0) = —K{Q*(P:Yo.%o), (Ad)
K{D2(piX0,Y0) = 8y y [ S (P.Xo)?

= S(P,X0)SP(P,X0) ]+ 8[ 2C? 5,

0-Yo
TABLE IV. C? andS? for SU(3).

0Yo
a c? 2
- Ra( 5x0+ l,y0+ 5x07 1,y0)] . (AS)
1,4 (cos Z+cosvy)/2 —i(sin 2y+siny)/2
2. Rectangle 3.6 cosy 0
8 (2 cos 2+cosy)/3 0

Wqp= 3/2 for the choice H11]:
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TABLE V. ¢4(Xo) andR? for SU(3). TABLE VI. R}, C§ andS] for SU(3).
a $a(Xo) R a R c3 S
1 —3yXo+ (LIL) (5[ 3/12— v]—7/3) cos(/2) 1,4 cosy R cos 3y —iR$sin 3y
4 —3yXo+ (L) ([ 3/12+ v]—27I3) cos(/2) 3,6 cos & RS 0
3 0 cosy 8 (2 cos 4y+cos 2)/3 RS 0
6 (L) (2yv—m/3) cosy
8 0 (2 cos ¥+cosy)/3

K{"2(piX0,Y0) = 8y, y,Sk(P.X0) S (P, Xo) . (AL6)

4. Coefficients
K(k]I-)a(p;XO'YO)others: 5x0|y0 5k|% Sﬁ](p,xo)z

, , Sk(P.Xo) = 2 SiM[ P+ ha(X0) 112}, (A17)
X [Cr(p,Xo)“+ Cr(P.X0) “]— Sk(P,Xo) A
Ci(P.Xo) =2 cog[ p+ ¢al(X0)1/2}, (A18)
a a 2 a 2
XS (P xolleidpxo) 6P xo)’] Bl X0) =~ balX0), (A19)
+ é\kl[(z_ 5x0,1_ 5XO,L—1)025X0,y0 ca= Cg, P=— Sg, R2= Rg, (AZO)
—R3(8xy+ 2, F Fxy-29,)]- (A12) Ci=C3, Si=-S, RI=R3, (A21)
3. Gauge fixing term Xa=Xa=(0,0,1,0,0,0,0.1 (A22)
(LY. - _ _ 1
K00 (anOyyO) - 25x0,y0 5xo+l,yo 5x071,y0 v= F( 77+ g) , (A23)
- 5x0,y0[ 5x0,0(1_)(a5p,0)+ 5XO,L—1]1 o . o
(A13) wherg =2, 4=5, 6=7, and vice versa. For the diagonal
part, 3=3, 8=8.
K@ 2(piX0.Y0) = —iSg(P,X0)[ x, v, ~ Ox— 1y, ). (A14)
<0 0070 KT DoYe Bom Yo 5. Lists of coefficients
K&%(pix0,Y0) = — K& (p:Yo.%o0)., (A15) The coefficients are given in Tables IV-VI.
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