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Perturbative determination of O„a… boundary improvement coefficients for the Schro¨dinger
functional coupling at 1 loop with improved gauge actions

Shinji Takeda, Sinya Aoki, and Kiyotomo Ide
Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan

~Received 22 April 2003; published 10 July 2003!

We determineO(a) boundary improvement coefficients up to the 1-loop level for the Schro¨dinger functional
coupling with improved gauge actions including plaquette and rectangle loops. These coefficients are required
to implement 1-loopO(a) improvement in full QCD simulations for the coupling with the improved gauge
actions. To this order, lattice artifacts of the step scaling function for each improved gauge action are also
investigated. In addition, passing through the Schro¨dinger functional scheme, we estimate more accurately the
ratio of theL parameters between the improved gauge actions and the plaquette action.
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I. INTRODUCTION

The modified minimal subtraction (MS) scheme has now
become the standard renormalization scheme for the de
tion of the strong coupling constant. The measured coup
constantas in some experiments at relatively high energy
converted toaMS at some representative scale by pertur
tion theory. The current world average of such estima
gives aMS(mZ591.19 GeV)'0.11. Lattice QCD calcula-
tions, on the other hand, have the potential ability to de
mine the strong coupling constant from experimental inpu
a low ~hadronic! energy scale. In order to compare the co
pling constant obtained at low energy by lattice calculatio
with aMS obtained at high energy, the Schro¨dinger functional
scheme has been proposed by the ALPHA Collaboration@1#,
and the scheme has been shown to be successful. At pre
the results on the running coupling constant of two mass
flavor QCD have been reported@2,3#.

In the real world there are three light quarks. QCD sim
lations including three dynamical quark effects are thus
quired to understand the low energy QCD dynamics. O
ultimate goal is to estimateaMS from Nf53 QCD simula-
tions. Recently, the CP-PACS and JLQCD Collaboratio
have started anNf53 QCD simulation employing an exac
fermion algorithm developed for an odd number of qua
flavors@4–6#. In particular, noteworthy results were report
in @5#: There exist strong lattice artifacts associated with
phase transition in theNf53 QCD simulation with a combi-
nation of the plaquette gauge action andO(a) improved Wil-
son quark action, while such lattice artifacts are absent
the renormalization group~RG! improved gauge action
Hence, the collaborations have decided to adopt the com
nation of the RG improved gauge action andO(a) improved
Wilson quark action for theNf53 QCD simulations to ob-
tain aMS.

As a first step of our program, we study the Schro¨dinger
functional coupling with improved gauge actions in pertu
bation theory. In particular, we perturbatively calculate t
O(a) boundary improvement coefficients at the 1-loop le
with improved gauge actions for the pure SU~3! gauge
theory. Combining these with the 1-loop results for the f
mionic sector@7#, we determine theO(a) boundary im-
0556-2821/2003/68~1!/014505~9!/$20.00 68 0145
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provement coefficients at 1-loop, which can be used for
namical quark simulations in the future.

The rest of this paper is organized as follows. In Sec.
after a brief reminder of the Schro¨dinger functional scheme
and its extension to improved gauge actions, we specify
action used for later calculations and discuss theO(a)
boundary counterterm. In Sec. III the Schro¨dinger functional
coupling constant is defined and formulas for determinat
of the O(a) boundary improvement coefficients are give
The 1-loop computation is outlined in Sec. IV, and the resu
of the O(a) boundary improvement coefficients are summ
rized in Sec. V. Our conclusion is given in the last sectio
together with a discussion of a lattice artifact of the st
scaling function.

II. PRELIMINARIES

A. Schrödinger functional

It has been shown by the ALPHA Collaboration that t
Schrödinger functional~SF! scheme is a powerful tool to
probe the energy evolutions of some physical quantities
to compute improvement coefficients as well as renormal
tion constants. In the SF scheme, the theory is defined o
finite box of sizeL33T with periodic boundary conditions in
the spatial directions and Dirichlet boundary conditions
the time direction. In the pure SU~3! gauge theory with Wil-
son plaquette actionS@U#, the partition function in the SF
scheme~in the case thatT5L) is given by

Z5E D@U#e2S[U] , ~2.1!

where the link variablesU(m,x) for the gauge fields satisfy
the boundary conditions

U~x,k!ux0505exp$aC%, U~x,k!ux05L5exp$aC8%.
~2.2!

Herea is the lattice spacing, andC,C8 are diagonal traceles
matrices, which depend on the background field parame
h and n @8#. It has been shown@1# that the minimum of
S@U# is given by the lattice background fieldU(x,m)
5V(x,m), where
©2003 The American Physical Society05-1
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V~x,0!51, V~x,k!5V~x0!, ~2.3!

with

V~x0!5exp$ab~x0!%, ~2.4!

b~x0!5
1

L
@~L2x0!C1x0C8#. ~2.5!

This background field represents a constant electric field
An extension of the SF scheme to improved gauge act

was first considered by Klassen@9#. The transfer matrix con-
struction@10# was adopted in the discussion. In this form
lation, each boundary consists of two time slices, to achie
the tree-levelO(a2) improvement.

In this paper, however, we adopt the formulation propo
by Aoki, Frezzotti, and Weisz@11#, where each boundar
consists of only one time slice and the tree-levelO(a) im-
provement is achieved. The dynamical variables to be in
grated over are independent of the form of the acti
whether plaquette or improved, and are given by the spa
link variablesU(k,x) with x05a, . . . ,L2a and temporal
link variablesU(0,x) with x050, . . . ,L2a on a cylinder
with volumeL33L. This formulation is implemented mor
easily in numerical simulations.

The background field in Eq.~2.3! gives the local mini-
mum of the theory in both cases@9# and@11#. It has not been
theoretically proved, however, that Eq.~2.3! is the absolute
minimum for the improved gauge actions. This has be
checked only numerically@9#.
-
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B. Gauge action

Our improved action includes plaquette and rectan
loops and is given by

Simp@U#5
1

g0
2 (CPS0

W0~C,g0
2!2L~C!

1
1

g0
2 (CPS1

W1~C,g0
2!2L~C!, ~2.6!

with

L~C!5Re Tr@ I 2U~C!#, ~2.7!

whereU(C) is the ordered product of the link variables alon
loop C contained in the setS0~plaquette! or S1~rectangular!.
S0 andS1 consist of all loops of the given shape that can
drawn on the cylindrical lattice with volumeL33L. The
loops involve only the ‘‘dynamical links’’ in the sense spec
fied above, and spatial links on the boundaries atx050 and
x05L. In particular, rectangles protruding from the boun
ary of the cylinder are not included.

One has to choose appropriate boundary weights
achieve 1-loop levelO(a) improvement for observables in
volving a derivative with respect to the boundary. Amo
various choices to achieve this, ours is given as follows:
W0~C,g0
2!55

cs~g0
2! for CPPs: set of plaquettes that lie on one of

the boundaries,

c0ct
P~g0

2! for CPPt : set of plaquettes that just touch one

of the boundaries,

c0 for CPPother: otherwise,

~2.8!

W1~C,g0
2!55

0 for CPRs: set of rectangles that lie completely

on one of the boundaries,

c1ct
R~g0

2! for CPRt
2 : set of rectangles that have exactly two

links on a boundary,

c1 for CPRother: otherwise,

~2.9!
f

he

he
with

c0ct
P~g0

2!5c0@11ct
P(1)g0

21O~g0
4!#, ~2.10!

c1ct
R~g0

2!5c1@3/21ct
R(1)g0

21O~g0
4!#, ~2.11!

where the coefficientsc0 andc1 of the improved gauge ac
tion are normalized such thatc018c151. We call ct

P(g0
2)

andct
R(g0

2) O(a) boundary improvement coefficients. So fa
the 1-loop coefficientsct
P(1) and ct

R(1) are independent o
each other. The weight factorsWi(C,g0

2), which include the
loop corrections, become choice B of@11# in the weak cou-
pling limit. Choice B achieves the tree-levelO(a) improve-
ment and, at the same time, the lattice background fieldV in
Eq. ~2.3! satisfies the equation of motion obtained by t
variation of dynamical links.

Incidentally, we discuss theO(a) boundary counterterm
from a different point of view. Here, it is assumed that t
5-2
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PERTURBATIVE DETERMINATION OFO(a) BOUNDARY . . . PHYSICAL REVIEW D68, 014505 ~2003!
plaquette loops and rectangle loops which lie completely
the cylinderL33L are included in the action, and that ea
boundary consists of one time slice only. As explained in@1#,
at ordera in the pure gauge theory, there are two possi
boundary counterterms,a4 Tr$F0kF0k% and a4 Tr$FklFkl%,
each of which is summed over thex050 or x05L hyper-
plane. Since the latter boundary term vanishes in the cas
an Abelian constant boundary field, in the following, we co
sider only the former. In this case, we have three candid
for O(a) boundary counterterms that respect lattice symm
tries,

~1! the spatial sum of timelike plaquette loops that just tou
one of the boundaries,

~2! the spatial sum of rectangle loops that have exactly
links on a boundary,

~3! the spatial sum of rectangle loops that have exactly
link on a boundary,

to satisfy one condition, theO(a) improvement condition.
Therefore, for simplicity, we can take a trivial weight for th
term 3, and we still have one degree of freedom for
choice of the boundary terms. At the tree level, however,
background field given in Eq.~2.3! must satisfy the equation
of motion,1 so that one has to takect

P51 and ct
R53/2

~choice B!. Since no such extra constraint exists for t
1-loop boundary terms, we can freely set the relation
tweenct

P(1) andct
R(1) , which will be given in the next sec

tion.

III. SF COUPLING AND O„a… BOUNDARY
IMPROVEMENT COEFFICIENTS

The SF with the improved gauge action is given by

Z5e2G5E D@U#e2S[U] , ~3.1!

whereS@U#5Simp@U#. We require the same boundary co
dition Eq. ~2.2! for the link variables as in the case of th
Wilson plaquette action. In perturbative calculations, th
are two main concerns to note: one is whether the ba
ground field given by Eq.~2.3! corresponds to the absolu
minimum of the action, and the other is the gauge fixing. F
the latter, we used the covariant gauge fixing procedure
lined in @1#. The former statement is positively proved in@1#
for the Wilson plaquette action. Unfortunately, the statem
has not been proved yet in the case of improved gauge
tions, since the proof in@1# is not applicable to these case
In @9#, however, it was numerically checked that the ba
ground field given in Eq.~2.3! corresponds to the minimum
for a large class of improved actions; hence we assume
in our perturbative calculations.

In a neighborhood of the background fieldV, any link
variablesU can be parametrized by

1The equation of motion for the plaquette action is trivially sat
fied.
01450
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U~x,m!5exp$g0aqm~x!%V~x,m!, ~3.2!

where qm are quantum fields. The SF coupling is defin
through the free energyG in Eq. ~3.1!:

ḡSF
2 ~L !5

G08

G8
U

h5n50

, ~3.3!

whereG8 is the derivative with respect toh. G08 is a normal-
ization constant

G085
]

]h
g0

2S@V#U
g

0
250

5
]

]h
[c0g0

2Splaq@V#ug
0
2501c1g0

2Srect@V#ug
0
250],

~3.4!

with

]

]h
g0

2Splaq@V#U
g

0
250

5
]

]h F ct
P~g0

2!(
Pt

2L~C!

1 (
Pother

2L~C!GU
g

0
250

U
U5V

512S L

aD 2

~sin 2g1sing!

5G08
cont1O~a4!, ~3.5!

]

]h
g0

2Srect@V#U
g

0
250

5
]

]h F ct
R~g0

2!(
Rt

2
2L~C!

1 (
Rother

2L~C!GU
g

0
250
U

U5V

512•4S L

aD 2

~sin 4g1sin 2g!

58G08
cont1O~a4!, ~3.6!

where g is given in the Appendix andG08
cont512p ~if h

50), normalization in the continuum theory.
Let us discuss the perturbative expansion of the SF c

pling. Making use of the facts that

(
Pt

2L~C!U
U5V

5
2a

L
g0

2Splaq@V#U
g

0
250

, ~3.7!

(
Rt

2
2L~C!U

U5V

5
a

L
g0

2Srect@V#U
g

0
250

, ~3.8!

one finds that
-

5-3
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g0
2S@V#5G01g0

2 2a

L Fc0ct
P(1)~g0

2Splaq@V#ug
0
250!

1
1

2
c1ct

R(1)~g0
2Srect@V#ug

0
250!G1O~g0

4!.

~3.9!

Then perturbative expansion ofḡSF
2 (L) is given by

ḡSF
2 ~L !5g0

21m1
(1)~L/a!g0

41O~g0
6!, ~3.10!

with

m1
(1)~L/a!52

1

G08

2a

L

]

]h Fc0ct
P(1)~g0

2Splaq@V#ug
0
250!

1
1

2
c1ct

R(1)~g0
2Srect@V#ug

0
250!G1m1

(0)~L/a!,

~3.11!

wherem1
(0)(L/a) is the 1-loop correction to the SF couplin

calculated with the tree-levelO(a) boundary coefficients
and the details of the calculation will be given in the ne
section. Here, if we require thatct

P(1) andct
R(1) satisfy ~this

is possible by using the last degree of freedom as mentio
at the end of the previous section!

ct
R(1)52ct

P(1) , ~3.12!

and introducect
(1)

ct
(1)5c0ct

P(1)14c1ct
R(1)5ct

P(1) , ~3.13!

then we findm1
(1)(L/a) in a very simple form:

m1
(1)~L/a!52

2a

L
ct

(1)1m1
(0)~L/a!. ~3.14!

If we do not require Eq.~3.12!, but use another choice, the
we find

m1
(1)~L/a!52

2a

L
@ct

(1)1O~a4!#1m1
(0)~L/a!, ~3.15!

wherem1
(0)(L/a) is the same as in Eq.~3.14! and there is an

O(a4) contribution coming from boundary terms at the tr
level. The differences between the choice Eq.~3.12! and
other choices ofct

P(1) ,ct
R(1) reflect just theO(a5) contribu-

tion in m1
(1)(L/a). Therefore, the differences between th

scaling violations are tiny at 1-loop order. In the followin
we take the choice Eq.~3.12!.

The value of the 1-loop coefficientct
(1) is determined by

the condition that the dominant part of the scaling violati
of m1

(1)(L/a) should be proportional to (a/L)2, and then
ct

P(1) and ct
R(1) are uniquely given by Eq.~3.12! and Eq.

~3.13!.
01450
t

ed

IV. CALCULATION OF THE ONE-LOOP COEFFICIENT

In the following, we choose lattice units~i.e., a51). Ac-
cording to the unpublished note@12#, we have usedI a (a
51,2, . . . ,8) as thebasis of the Lie algebra of SU~3! in the
presence of the background field. Their explicit form can
found in @13#. Decomposing in the basisI a,

qm~x!5(
a

q̃m
a ~x!I a, ~4.1!

the quantum fieldsqm are Fourier transformed with respe
to spatial momenta as

q̃0
a~x!5

1

L3 (
p

eipxq̃0
a~p,x0!, ~4.2!

q̃k
a~x!5

1

L3 (
p

eipxei [ pk1fa(x0)]/2q̃k
a~p,x0!,

~4.3!

where the phasefa(x0) is given in the Appendix. In terms o
q̃m

a (x), the quadratic part of the improved gauge action E
~2.6! takes the form

Simp
(0) 5

1

L3 (
p

(
x0 ,y050

L21

(
a

q̃m
ā ~2p,x0!Kmn

a ~p;x0 ,y0!

3q̃n
a~p,y0!, ~4.4!

with the condition

q̃k
a~p,x0!ux05050 for k51,2,3. ~4.5!

The explicit form of the inverse propagatorKmn
a is given in

@11#, and also in the Appendix.
As in the case of the Wilson plaquette action@1#, the

1-loop correctionm1
(0)(L) in the case of an improved actio

is given by

m1
(0)~L !52

1

G08

]

]h F1

2
ln DetK2 ln DetD0GU

h5n50

,

~4.6!

where the determinant for the quantum field sector~the first
term in the right hand side of the equation! is taken with
respect to the spatial momentump, the time x0, the Lie
algebra sectora, and the Lorentz indexm. The second term
in the right hand of Eq.~4.6! represents a contribution from
the ghost sector. The differential operator for the ghost se
is given by

D052d* d, ~4.7!

where d is a linear operator and defined as (dw)m(x)
5Dmw(x) for proper w(x), the generators of the gaug
transformation satisfying nontrivial boundary conditions@1#.
d* is defined as the negative adjoint ofd. Here we will
exclusively consider the quantum field sector, since the c
5-4
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TABLE I. One-loop coefficientm1
(0)(L) for improved actions.

L Iwasaki action LW action DBW2 action

6 0.0865021015584032 0.3843092560841445 20.2542597063902088
7 0.1026697312426737 0.4061279685078025 20.2517151449619943
8 0.1171638577366678 0.4249279311929165 20.2462340808659547
9 0.1303628849788211 0.4414718008748639 20.2394316692834335
10 0.1424404981803593 0.4562496675217995 20.2322864496797361
11 0.1535565273026473 0.4696045216347286 20.2251762317750280
12 0.1638489264935022 0.4817875167578513 20.2182314272034601
13 0.1734301653189940 0.4929883879248706 20.2114993870451222
14 0.1823916642888328 0.5033540747374835 20.2049961094379959
15 0.1908085280119190 0.5130007428050310 20.1987234947986162
16 0.1987431354745856 0.5220218429952182 20.1926766886112917
17 0.2062478088988484 0.5304936855855431 20.1868475754585161
18 0.2133668331494581 0.5384793988419066 20.1812265016307355
19 0.2201380038925787 0.5460318047790646 20.1758031806343642
20 0.2265938267004754 0.5531955499144914 20.1705672082184823
21 0.2327624550322364 0.5600087116401930 20.1655083693982648
22 0.2386684311658198 0.5665040280450621 20.1606168213494539
23 0.2443332770354413 0.5727098525006191 20.1558831969805698
24 0.2497759696349747 0.5786509038428871 20.1512986565129531
25 0.2550133267993803 0.5843488625662739 20.1468549050440217
26 0.2600603227656853 0.5898228494962823 20.1425441882890768
27 0.2649303482326239 0.5950898137064368 20.1383592748238773
28 0.2696354261875951 0.6001648495876492 20.1342934304660328
29 0.2741863922040979 0.6050614580595203 20.1303403885609065
30 0.2785930459882241 0.6097917633368525 20.1264943186395051
31 0.2828642794964034 0.6143666940320125 20.1227497950252100
32 0.2870081858351735 0.6187961354134090 20.1191017663623826
33 0.2910321522986861 0.6230890581649763 20.1155455266354859
34 0.2949429402366960 0.6272536278701680 20.1120766879801252
35 0.2987467539279429 0.6312972985837565 20.1086911554135926
36 0.3024493002264770 0.6352268931891717 20.1053851035018207
37 0.3060558404258739 0.6390486727199947 20.1021549549113093
38 0.3095712355291510 0.6427683964162490 20.0989973607544213
39 0.3129999859059953 0.6463913739632261 20.0959091826148500
40 0.3163462661525911 0.6499225111032890 20.0928874761305482
41 0.3196139558344332 0.6533663496047807 20.0899294760096131
42 0.3228066666825220 0.6567271024057376 20.0870325823576189
43 0.3259277667231945 0.6600086846150990 20.0841943482007244
44 0.3289804017476282 0.6632147409439818 20.0814124680962679
45 0.3319675144656546 0.6663486700493243 20.0786847677306482
46 0.3348918616375112 0.6694136461978401 20.0760091944125418
47 0.3377560294345988 0.6724126385966856 20.0733838083775785
48 0.3405624472446620 0.6753484286860957 20.0708067748282852
is
O

r

I.

we
eter
t of

tion
he
tribution from the ghost sector to the 1-loop correction
same as in the case of the Wilson plaquette action.
boundary condition for the temporal componentq0 is differ-
ent from that in@1#, so that the ‘‘non-uniform’’ contribution
in the gauge fixing term remains in the inverse propagatoK
~see the Appendix!.

We evaluated the 1-loop correctionm1
(0)(L) numerically

for the Iwasaki action (c1520.331, c25c350) @14#, the
Lüscher-Weisz~LW! action (c1521/12, c25c350) @15#,
01450
ur
and the DBW2 action (c1521.40686,c25c350) @16# in
the rangeL56, . . .,48. The results are shown in Table
The computations have been performed by usingFORTRAN

with extended precision. As a check of our calculation,
confirmed the independence of the gauge fixing param
and the expected symmetries before reducing the amoun
calculation @17#. We also checked that our code atc150
reproduces the known results for the Wilson plaquette ac
@18#. Furthermore, two codes written independently by t
5-5
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TABLE II. The coefficients of asymptotic expansionA0 ,A1 for various gauge actions. The values for th
plaquette action are taken from@8,18#. Since the error ofA0

exp for the DBW2 action is not given~see footnote
2!, the quoted digits are of little significance.

Plaquette action Iwasaki action LW action DBW2 action

A0 0.36828215~13! 20.2049015~4! 0.136150567~6! 20.62776~8!

A0
exp 20.1999~24! 0.13621~26! 20.62

A1 20.17800~10! 0.30360~26! 20.005940~2! 0.896~45!
gi
e

o
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he

If
an
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su

he

d
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ted
two authors produced identical results up to about 30 di
in the rangeL56, . . .,32. Beyond this range, we used th
faster code only.

V. ANALYSIS AND RESULTS

In this section we extract the order 1/L term from the
1-loop correctionm1

(0)(L) to determine theO(a) boundary
improvement coefficientct

(1) . According to Symanzik’s
analysis of the cutoff dependence of Feynman diagrams
the lattice, one expects that the 1-loop coefficient has
asymptotic expansion

m1
(0)~L ! ;

L→`

(
n50

`

~An1Bn ln L !/Ln. ~5.1!

Using the blocking method of@19#, we extracted the first few
coefficientsA0 , B0 , A1 , B1, and estimated their errors.

Some of these coefficients are known or related to ot
quantities. For example, theA0’s of two different actions are
related to the ratio of theL parameters of the two actions.
the ultraviolet divergence in the SF is removed by the st
dard renormalization of the coupling constant,B052b0,
whereb0511/(4p)2 is the 1-loop coefficient of theb func-
tion in pure SU~3! gauge theory. If the tree-levelO(a) im-
provement is implemented,B150 must hold. Our main re-
sult comes fromA1: Eq. ~3.14! givesct

(1)5A1/2.
We first verified that our extraction ofB0 andB1 is con-

sistent with the above expectations. We confirmed thatB0
52b0 up to seven digits~Iwasaki!, nine digits~LW!, or four
digits ~DBW2!, while B1,1024 ~Iwasaki!, ,1027 ~LW!, or
,1022 ~DBW2!. Since our data give the expected values
B0 andB1, we fix B052b0 andB150 by hand in the block-
ing procedure to extractA0 and A1, whose results for each
action are shown in Table II where we have added the re
of the plaquette action@8,18# for later reference.

As a further check, we extract theA0’s from the ratio of
the L parameters between two schemesX and Y, which is
given by

LX

LY
5e2c/2b0, ~5.2!

where

ḡY
2~m!5ḡX

2~m!1cḡX
4~m!1•••. ~5.3!

The purely numerical numberc here is given by
01450
ts

n
e

r

-

f

lt

c5A0
X2A0

Y , ~5.4!

whereA0
X or A0

Y is the expectedA0 of the schemeX or Y,
respectively. We then find

A0
imp5A0

plaq22b0 lnF L imp

Lplaq
G . ~5.5!

Using A0
plaq50.36828215(13)@8,18# and the ratio of theL

parameters2

L imp

Lplaq
5H 59.0561.0 for the Iwasaki action@21#,

5.2960.01 for the LW action@22#,

133102 for the DBW2 action@23#,
~5.6!

we obtain the values ofA0
imp for each action that is shown in

Table II (A0
exp). We observed consistency inA0 between pre-

vious known results and our calculations.
With this confidence in our computation, we obtain t

main result of our paper, the one-loopO(a) boundary im-
provement coefficient Eq.~3.14!, which is given by

ct
(1)5ct

P(1)5A1/2, ~5.7!

whereA1 is also found in Table II.
Finally, using our results forA0 in Table II, we can esti-

mate the ratio of theL parameters between the improve
action and the plaquette action more accurately:

L imp

Lplaq
5

L imp /LSF

Lplaq/LSF
5expH 1

2b0
@A0

plaq2A0#J
5H 61.2064~3! for the Iwasaki action,

5.292104~5! for the LW action,

1273.4~8! for the DBW2 action.
~5.8!

VI. CONCLUSIONS AND DISCUSSION

Combining our result forct
(1) for the improved gauge ac

tions and the previous result forct
(1) for the clover quark

action @7#, we obtain

2We take the value for the DBW2 action from a private note@23#,
where the error of the value was not given; therefore the quo
digits are of little significance.
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TABLE III. The deviations for various gauge actions.

Plaquette action Iwasaki action LW action DBW2 action

L d1
(0) d1

(1) d1
(0) d1

(1) d1
(0) d1

(1) d1
(0) d1

(1)

6 0.01089 20.00394 20.01922 0.00608 0.000911 0.000417 20.061 0.014
7 0.01004 20.00268 20.01684 0.00484 0.000659 0.000236 20.050 0.014
8 0.00918 20.00194 20.01499 0.00399 0.000527 0.000156 20.043 0.013
9 0.00841 20.00148 20.01356 0.00330 0.000441 0.000111 20.038 0.011
10 0.00773 20.00117 20.01241 0.00277 0.000379 0.000082 20.035 0.010
11 0.00714 20.00095 20.01146 0.00235 0.000333 0.000063 20.032 0.009
12 0.00663 20.00079 20.01064 0.00201 0.000296 0.000049 20.030 0.008
13 0.00618 20.00066 20.00994 0.00174 0.000268 0.000039 20.028 0.007
14 0.00579 20.00057 20.00932 0.00152 0.000244 0.000032 20.026 0.006
15 0.00544 20.00049 20.00878 0.00134 0.000224 0.000026 20.024 0.006
16 0.00513 20.00043 20.00830 0.00119 0.000207 0.000022 20.023 0.005
17 0.00486 20.00038 20.00787 0.00106 0.000193 0.000018 20.022 0.005
18 0.00461 20.00034 20.00748 0.00095 0.000181 0.000016 20.021 0.004
19 0.00438 20.00030 20.00713 0.00086 0.000170 0.000013 20.020 0.004
20 0.00418 20.00027 20.00681 0.00078 0.000160 0.000012 20.019 0.004
21 0.00399 20.00025 20.00652 0.00071 0.000151 0.000010 20.018 0.003
22 0.00382 20.00022 20.00625 0.00065 0.000144 0.000009 20.017 0.003
23 0.00367 20.00020 20.00601 0.00059 0.000137 0.000008 20.017 0.003
24 0.00352 20.00019 20.00578 0.00054 0.000131 0.000007 20.016 0.003
h
.
d

in
ion

he

n.
e
t

e

n
ve
ct
P(1)5ct

R(1)/25A1/21nfct
F(1) ~6.1!

for nf-flavor QCD, wherect
F(1)50.0191410(1).

As a final remark, let us discuss the lattice artifact of t
step scaling function~SSF! @20# for various gauge actions
The SSFs(s,u) describes the evolution of a renormalize
coupling under a finite rescaling factors ~says52)

s~s,u!5ḡ2~sL!uu5ḡ2(L) , ~6.2!

and it has the perturbative expansion

FIG. 1. The relative deviations of the lattice SSF from the co
tinuum one at 1 loop for various gauge actions with the tree-le
O(a) improved boundary term. One can see that thed1

(0) for vari-
ous gauge actions vanish roughly linearly in 1/L.
01450
e

s~s,u!5u12b0 ln~s!u21O~u3!. ~6.3!

This SSFs(s,u) in the continuum theory is obtained from
the continuum limit of the lattice SSFS(s,u,1/L)

s~s,u!5 lim
1/L→0

S~s,u,1/L !. ~6.4!

Therefore we can estimate the lattice artifact of the SSF
our perturbative calculation. We define the relative deviat
d(s,u,1/L) and expand it as

d~2,u,1/L !5
S~2,u,1/L !2s~2,u!

s~2,u!
5d1

(k)~2,1/L !u1O~u2!,

~6.5!

where we have sets52, andd1
(k)(2,1/L) is the 1-loop coef-

ficient. Herek denotes the degree of improvement for t
boundary coefficient: the tree~1-loop! value is used fork
50 (k51).

The manifest form ofd1
(k)(2,1/L) is given by

d1
(k)~2,1/L !5m1

(k)~2L !2m1
(k)~L !22b0 ln~2!, ~6.6!

and the results, including data for the plaquette action@8,18#
for comparison,3 are given in Table III for each gauge actio
Figure 1 ~Fig. 2! shows that the 1-loop deviations with th
tree-level~1-loop level! O(a) improved boundary coefficien
vanish roughly linearly~quadratically! in 1/L as expected. As

3We have added data for the plaquette action in the rangL
517, . . .,24.

-
l
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is evident from Fig. 1 and Fig. 2, at the 1-loop level, t
lattice artifact for the renormalization group improved acti
~Iwasaki or DBW2! is comparable to or larger than that fo
the plaquette action, while the LW action is the least affec
by the lattice cutoff. However, one cannot conclude that
LW action is the best choice for numerical simulation
where lattice artifacts of higher orders inu or a may not be
negligible.
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APPENDIX: INVERSE PROPAGATOR

Here, we give the explicit form of the inverse propagat
We choose lattice units~i.e., a51) and setT5L:

K5c0K (0)1c1K (1)1l0K (gf). ~A1!

1. Plaquette

K00
(0)a~p;x0 ,y0!5Radx0 ,y0

sa~p,x0!•sa~p,x011!, ~A2!

Kk0
(0)a~p;x0 ,y0!5 iRa@dx0 ,y0

sk
a~p,x011!

2dx021,y0
sk

a~p,y0!#, ~A3!

K0k
(0)a~p;x0 ,y0!52Kk0

(0)a~p;y0 ,x0!, ~A4!

Kkl
(0)a~p;x0 ,y0!5dx0 ,y0

@dkls
a~p,x0!2

2sk
a~p,x0!sl

a~p,x0!#1dkl@2Cadx0 ,y0

2Ra~dx011,y0
1dx021,y0

!#. ~A5!

2. Rectangle

wdbc53/2 for the choice B@11#:

FIG. 2. The same quantities as in Fig. 1, but with the 1-lo
level O(a) improved boundary term. One can see that thed1

(1) for
various gauge actions vanish roughly quadratically in 1/L.
01450
d
e
,

.

K00
(1)a~p;x0 ,y0!0kk5dx0 ,y0

@11~wdbc21!~dx0,01dx0 ,L21!#

34R2
a(

m
sin@fa~x0!1pm#

3sin@fa~x011!1pm#, ~A6!

K00
(1)a~p;x0 ,y0!00k5R2

a(
m

$dx0 ,y0
@~12dx0 ,L21!sm

a ~p,x0!

3sm
a ~p,x012!1~12dx0,0!

3sm
a ~p,x021!sm

a ~p,x011!#

1dx021,y0
sm

a ~p,x021!sm
a ~p,x011!

1dx011,y0
sm

a ~p,y021!sm
a ~p,y011!%,

~A7!

Kk0
(1)a~p;x0 ,y0!0kk5 iR2

a2ck
a~p,x0!†dx0 ,y0

$11~wdbc21!

3dx0 ,L21%sin@fa~x011!1pk#

2dx021,y0
$11~wdbc21!dx0,1%

3sin@fa~y0!1pk#‡, ~A8!

Kk0
(1)a~p;x0 ,y0!00k5 iR2

a$sk
a~p,x012!@~12dx0 ,L21!

3dx0 ,y0
1dx011,y0

#2sk
a~p,x022!

3@~12dx0,1!dx021,y0
1dx022,y0

#%,

~A9!

K0k
(1)a~p;x0 ,y0!52Kk0

(1)a~p;y0 ,x0!, ~A10!

Kkl
(1)a~p;x0 ,y0!0kk5dklck

a~p,x0!ck
a~p,y0!

3@2C2
adx0 ,y0

2R2
a~dx011,y0

1dx021,y0
!#

1~wdbc21!dkldx0 ,y0
ck

a~p,x0!

3†dx0,1@C2
ack

a~p,x0!2 iS2
ask

a~p,x0!#

1dx0 ,L21@C2
ack

a~p,x0!

1 iS2
ask

a~p,x0!#‡, ~A11!

TABLE IV. Ca andSa for SU~3!.

a Ca Sa

1,4 (cos 2g1cosg)/2 2 i (sin 2g1sing)/2
3,6 cosg 0
8 (2 cos 2g1cosg)/3 0
5-8
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Kkl
(1)a~p;x0 ,y0!others5dx0 ,y0Fdkl(

m
sm

a ~p,x0!2

3@ck
a~p,x0!21cm

a ~p,x0!2#2sk
a~p,x0!

3sl
a~p,x0!@ck

a~p,x0!21cl
a~p,x0!2#G

1dkl@~22dx0,12dx0 ,L21!C2
adx0 ,y0

2R2
a~dx012,y0

1dx022,y0
!#. ~A12!

3. Gauge fixing term

K00
(gf)a~p;x0 ,y0!52dx0 ,y0

2dx011,y0
2dx021,y0

2dx0 ,y0
@dx0,0~12xadp,0!1dx0 ,L21#,

~A13!

Kk0
(gf)a~p;x0 ,y0!52 isk

a~p,x0!@dx0 ,y0
2dx021,y0

#, ~A14!

K0k
(gf)a~p;x0 ,y0!52Kk0

(gf)a~p;y0 ,x0!, ~A15!

TABLE V. fa(x0) andRa for SU~3!.

a fa(x0) Ra

1 23gx01(1/L)(h@3/22n#2p/3) cos(g/2)
4 23gx01(1/L)(h@3/21n#22p/3) cos(g/2)
3 0 cosg
6 (1/L)(2hn2p/3) cosg
8 0 (2 cos 2g1cosg)/3
ys

s

01450
Kkl
(gf)a~p;x0 ,y0!5dx0 ,y0

sk
a~p,x0!sl

a~p,x0!. ~A16!

4. Coefficients

sk
a~p,x0!52 sin$@pk1fa~x0!#/2%, ~A17!

ck
a~p,x0!52 cos$@pk1fa~x0!#/2%, ~A18!

fa~x0!52f ā~x0!, ~A19!

Ca5Cā, Sa52Sā, Ra5Rā, ~A20!

C2
a5C2

ā , S2
a52S2

ā , R2
a5R2

ā , ~A21!

xa5x ā5~0,0,1,0,0,0,0,1!, ~A22!

g5
1

L2 S h1
p

3 D , ~A23!

where 1̄52, 4̄55, 6̄57, and vice versa. For the diagon
part, 3̄53, 8̄58.

5. Lists of coefficients

The coefficients are given in Tables IV–VI.

TABLE VI. R2
a , C2

a andS2
a for SU~3!.

a R2
a C2

a S2
a

1,4 cosg R2
a cos 3g 2 iR2

a sin 3g
3,6 cos 2g R2

a 0
8 (2 cos 4g1cos 2g)/3 R2

a 0
1.
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