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Infinite temperature limit of meson spectral functions calculated on the lattice
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We analyze the cutoff dependence of mesonic spectral functions calculated at finite temperature on Euclid-
ean lattices with a finite temporal extent. In the infinite temperature limit we present analytic results for lattice
spectral functions calculated with standard Wilson fermions as well as a truncated perfect action. We explicitly
determine the influence of “Wilson doublers” on the high momentum structure of the mesonic spectral func-
tions and show that this cutoff effect is strongly suppressed when using an improved fermion action.
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[. INTRODUCTION for studies performed at finite temperature. In the latter case
the high energy part of, e.g., the vector spectral function is
The thermal modification of the basic properties of had-directly related to physically observable dilepton cross sec-
rons, e.g., their masses and decay widths, is one of the ceHions and has been studied in much detailresumed per-
tral issues in the discussion of experimental signals that cafi/rPative calculationg14]. Moreover, in the plasma phase of
emerge from the dense partonic systems created in heavy iGgCP duasiparticle excitations are heavy and typically wil
collisions. Lattice calculations can, in principle, provide this ave masses that rse proportionally to the temperature. At
. o R ' . igh temperature this is expected to lead to broad resonan-
information through the analysis of the thermal properties o

. . . . celike structures in spectral functions. In lattice calculations,
Euclidean correlation functions of suitably chosen operators pi-h at present have all been performed with Wilson type
carrying hadronic quantum numbers. These correlation fun

. in all th inf ) h Sfermion formulations, it is in general difficult to distinguish
tions contain all the necessary information on the eMPeray, o, effects from contributions arising from so-called heavy
ture dependence of hadronic spectral functions. In order Qvilson doublers. On a more technical level it is also impor-

make S.UCh stugjies qL_Jantitative and to b? gble to re”abh{ant for the MEM analysis to include information on the
extdract mfgrmhatlon valid ('jn th_le ﬁontmu#n; I|m|t,dwe havfe 10 short distance behavior of correlation functions in the default
understand, however, in detail the cutoif dependence of Speg;,jg| Thjs requires information on lattice cutoff effects in

tral func_tions calculateq on the Ia_ttice at finit_e temperature,, spectral function as well as possible modifications of the
We provide here a detailed analysis of mesonic spectral funcihtegration kernel
tions in the infinite temperature limit and discuss their cutoff o0 are appérently plenty of reasons to get control over

dependence. This provides a basis for discussions of the CYgse |attice cutoff effects in numerical calculations of spectral
off dependence of spectral functions at finite temperature an nctions. We will analyze these in the infinite temperature

is similar inlspirit to studies.of the cutqff dependence _of thelimit of QCD by explicitly calculating hadronic spectral
QCD equation of state which were first performed in thefunctions on lattices with finite temporal extedt. We will

|de|alfgas(|?f|n|te teﬂr:wpvre]rzztur)e!lmlt [1]t. _ tracted in | tpresent results for spectral functions calculated on isotropic
" n 0r|ma|1 'E_)n onf € tﬁ ronic SE[’_eC rume|s lec)j( rac$ N 1at3s well as anisotropic lattices and discuss their quark mass
Icé calculations from the prop€rties ot Euciidean Ume COryenangence. Moreover, we will present results for stan-

relation functions of suitably chosen hadronic currents. Adard Wilson fermions as well as for a truncated perfect
recent suggestio2] is to apply the maximum entropy action[15,16]

method(MEM), a well known statistical tool for the analysis ~ 1o paper is organized as follows. In Sec. Il we summa-
O.f noisy data[_3], to the analysis .Of. _these Co”e'?‘“on fun_c- ize known results for free quark-antiquark spectral functions
tions als.o. This opene_d the p055|b|I|ty_of extracting detailed;,0,1ated in the continuum. In Sec. Ill we perform the cor-
|nform|:|;1t|onf'op hadronic spectral_rl‘rl:nc;Floniw,(j'lj), atf ZEro responding calculation for Wilson fermions on the lattice.
as well as finite temperatuid,5]. The first studies of spec- gqction v is devoted to a discussion of these lattice spectral

tral functions based on the MEM approdd-13| have in-  ¢,0tions, in particular, their quark mass and anisotropy de-

deed been enpouraging. These first studies, hoyvever, .al fndence. In Sec. V we present results from a calculation
showed that It Is necessary to get contr_ol over typical Ia_tt|c ith an improved Wilson fermion action, a truncated perfect
problems like finite cutoff effects or the influence of fermion action. Finally, we give our conclusions in Sec. VI. Some

doublers on the energy_dependena&) of Spec”‘"?" functions. Fetails of our calculations are presented in two Appendixes.
Cutoff effects show up in the large energy regime of spectra

functions and one generally may not be too much worried Il. THERMAL QUARK-ANTIQUARK SPECTRAL

about them when one is interested in extracting information FUNCTIONS

about the low energy part of the spectral functions. This,

however, is different for the ana|ysis of properties of heavy Thermal quark-antiquark correlation functions in coordi-
quark bound states and they are also of particular importanaeate spaceGy(7,x), are defined as
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o) — N1t 6 TABLE I. Coefficientsay, by, andfy for free spectral func-
Gr(7.%)={In(7.%)J4(0,0)), 21 tions in different mesonic quantum number chaniélEqg. (2.6)].

where(- - -) denotes the thermal average. The local sourced he last two columns give coefficients appearing in the definition of
for currents with different mesonic quantum numbergre ~ the corresponding correlation functions on the latiiEe. (3.5].

. - = = - . . Th tum-d dent functidris defined in Eq(3.7).
given byJy(7,X)=q(7,xX)I'yq(7,x), andI'y is an appropri- e momentum-dependent functidris defined in Eq(3.7

ate combination ofy matrices; i.e.I'y=1,y5,7,,7,7s for ay by f, clat glat
scalar, pseudoscalar, vector, and pseudovector channels, s 1 0 0 1 0
spectively. From these we obtain the mixed correlation func-S 1 1 0 _d d-1
tions at fixed momenturp which are commonly considered /. 0 0 -1 0 -1
in lattice calculations, $3V, 2 1 1 3—d d
) o v=33_.V, 2 1 0 3-d d—1
GH(r,p):f d3xGy(7,x)e*P. 22 A, 0 0 1 1-d d
=3 A -2 3 -1 -2d 2d-3
These two-point functions have a spectral representation, AEEf’FOAM -2 3 0 1-3d 3(d—1)
Gu(7.p)= fo dooy(w,p,TK(w,7), (2.3 yanishing energy appears in E@.6). At nonzero tempera-

ture this gives rise to a constantindependent term in the
where oy (w,p,T) denotes the temperature-dependent specEuclidean correlation function defined in Eq.3. For

tral function andK (w, 7) is the integration kernel which car- massless quarks, also at nonvanishing momerpismv/?, a
ries the entire dependence on Euclidean tired 0,1/T), rather compact form for the spectral function is obtained,

coshw(7—1/2T)]
K(©, )= g wr2T)

- N 2T

24 on(w,p,T)= —C(wz—pz)aH[(@(wz—pz)—
872 p

It is easy to convince oneself that the spectral function ap-
pearing in Eq(2.3) is indeed the Minkowski space spectral M
function (see, e.g.[17]): cosh (w—p)/4T]

1 ~En(P)/T —olT [E —cosr[(p+w)/4T] e 2.7
zma & Tame p " costi(p-w)aT] p|| &
Due to the asymptotic freedom of QCD the free field limit
X 8(w+En(p) — Em(P)IN|In(0)|m)?, is approached at infinite temperature. In order to discuss the
2.5 infinite temperature or free field limit of spectral functions
' and correlation functions it is appropriate to rescale all vari-
whereZ(T) is the partition function and- - -) denotes here ables with nontrivial dimension by appropriate powers of the
the matrix element of the hadronic curreh(0) taken be- temperature, e.gw=w/T. For fixedm=m/T the rescaled
tween energy eigenstates at fixed momenfum correlation function&,(7,p) =Gy (7T, p/T)/T2 then have a
The correlation functions can be evaluated using the mog,q defined infinite temperature limit,
mentum space representation of the quark propagator and its

+0(p*~w?)

on(w,p,T)=

spectral representatiga7]. In the following, we will mainly o o o~
be concerned with the zero momentum spectral functions GH(T.p)=fO dwoy(w,p, T)K(w,7), (2.8
ony(w,T)=0y(w,p=0,T), which take on a rather simple
form [17,18, - ~ o~
where o denotes the rescaled spectral density(w,p,T)
— - 2
UH(w,T)=%@(w2—4m2)w2tanl‘(%) on(w,p.T)/T", and

K(w,7)=cosh w(7—1/2)]/sinh( w/2).

2m\? 2m\?
X\1- "o ayt "o by Eventually, we are interested in obtaining information on
the temperature dependence of the physical spectrum and we
¢ T? thus want to determine the Minkowski space spectral func-
+§ ?wa5(w)- (2.6)  tion as introduced in Ed2.5). In the continuum the spectral

function is connected to the temporal Euclidean correlation
HereN, denotes the number of colors, e§,=3. For some function via Eq.(2.3). The analyticity properties required to
selected mesonic quantum number chanmgld¢he coeffi- make that connection, however, in general exist only in the
cientsay, by, andfy are given in Table I. We note that in continuum. Therefore, extracting a spectral function from
some cases a contribution proportional tosd&unction at  lattice data on Euclidean correlation functions via E2}3)
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will suffer from lattice artifacts and it is only in the con- \yhere the dimensionless quark masss expressed in units

tinuum limit that a direct relation to the spectral properties alof the spatial lattice spacingy=ma. The generic choice of

finite temperature can be established. This will become cleg} . \viison action is =r =1 [’20] We will discuss here only
. .

in the fo'llowmg section, where we d|scu.ss the §pectral "Pthe case =1 as this avoids the occurrence of a second pole
resentation of mesonic correlation functions using the stan-

. . . . . - In the fermion propagator which would give rise to an un-
d_a.rd Wilson fermion formulation on Euclidean lattices with physical timelike doubler mass. We will, however, consider
finite temporal extenN,, .

the spacelike Wilsom parameter € (0,1] as an additional

free parameter of the fermion action. Even on anisotropic

. LATTICE SPECTRAL FUNCTIONS WITH WILSON lattices with¢>1 the generic choice for the parameter is
FERMIONS r=1. Yet, by choosing = 1/¢, discretization errors of order

In the following, the dimensionless representation of hadMacan be completely eliminated at leading order from me-
ronic two-point correlation functions and the correspondingSon correlators with improved Wilsoftlover fermions on
rescaled spectral functions given in E@.8) will be ana-  anisotropic lattice$21], e.g., in studies of heavy quark sys-
lyzed for their cutoff dependence. The situation here is simif€ms. As this choice has, in fact, been used in recent studies
lar to the discussion of the cutoff dependence of bulk ther®f heavy quark spectral functio$3], we also will explore
modynamic variables, e.g., the rescaled pressrg*  the dependence of spectral functions on the choice of
[1,19]. In that case, on isotropic lattices, deviations from the Analytic results for the free field limit of hadronic corre-
continuum result can be expressed in terms of the latticéation functions on isotropic lattices of sid¢, XN, have
spacing given in units of the temperat&® which is noth- ~ been presented in the past using free Wilson ferm[@2$
ing else but the inverse of the temporal extent of the latticeWith r =1. It is straightforward to extend these calculations
aT=1/N,. For bulk thermodynamic observables the tem-t0 the case of anisotropic lattices ane-1. The starting
perature is in general the odlyguantity with nontrivial di-  point for the calculation of hadronic correlation functions is
mension that can set the scale for the cutoff dependence. e momentum space representation of the free Wilson fer-
the case of spectral functions, however, the energy provideg®ion propagator,
another scale, and we can expect to find an additional depen-
dence of the spectral functions am=w/N,. However, we sk —iyesinkg—iK+[(1—coskg) + M] 3.2
will show explicitly in the following that onlyw/N . deter- T 2 _ 2 .
mines the cutoff dependence and a sole dependence\gn 1/ sirPko+ K%+ [ (1~ cosko) + M]
does not appear in the spectral functions. On anisotropic lat-
tices cutoff effects are, in addition, controlled by the rafio ith
=ala, of spatial(a) and temporal 4,) lattice spacings. In
this case, temperature and energy(spatia) lattice units
also depend on this ratio asT=¢/N, and aw=Z)§/NT, K=
respectively.

We will discuss here the cutoff dependence of spectral
functions calculated within a generalization of Wilson’s fer-
mion discretization schemf20] on anisotropic lattices. In
the free field limit the fermion action is diagonal in the color M= ri 1
degrees of freedorBe == | 23_, Q4 with the fermion (3.4)
matrix

3
__21 yisink; , (3.3

|

Mw

(1—cosk;)+mj|.

|

3r+m 1 . On a finite lattice of siz&\3x N, the momenta take on dis-
al & Sk~ 5[(r7_ Y0) G491 crete valuesky=(27/N,)(ng+1/2) with ny=0, =1,...,
*(N/2-1), NJ2 and ki=(2w/Ny,)n; with n;=0,

r

Qk1=

13 +1,...+(N,/2—1), N/2 fori=1,2,3.
+(r+7v0) 6k-0,1— 2¢ 241 [(r=) 8 Following Ref.[22] one finds for the temporal zero mo-
mentum free quark-antiquark correlation functions with me-
+(r+ i) k=11, (3.1)  sonic quantum numbetd,

|
cl{(k)cosH2E(K)N (7— 1/2) 1+ d(k)
K (1+ M)2cosH[E(K)N,/2]

(3.5

This is correct in the limit of vanishing as well as infinite quark masses.
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which is defined on the discrete set of Euclidean times N addition there are also tweindependent integrals related
=n/N., with n=0,1,... N,—1, accessible on a lattice to the sums involving the terrdj' appearing in Eq(3.5).
with temporal extenN_. The energyEEE(lZ) is given by These constants contribute to tiefunctions at vanishing
the location of the pole of the denominator of the Wilsonrreqléency- S” Einite Iattirc]:es all guangjm”number channels

. e isted in Table I(except the pseudoscalaxill receive non-
fermion propagatofEq. (3.2)] atiko=E(k), i.e., vanishing contributions!®,

N,\3 [ dd(k) 1
il
lat

K (1+M)? cosR[E(K)N,/2]

; lat P
The functionscy anoldH appearing In Eq(3.5) depend on The integrals given in Eq.3.8) are the starting point for
the three-momenturk through the function our discussion of the cutoff dependence of mesonic spectral
functions. So far we have achieved a representation of the

(3.7 correlation functionsG,(7) in terms of three-dimensional
momentum integrals. Our goal is to find, for finiké,, a

Note thatd approaches 1 in the continuum limit. For some spectral representation defined through the one-dimensional

quantum number channels explicit expressions are given iftedral given in Eq(2.3). This can be achieved by introduc-
Table I. ing the energy in units of the temperatuses 2EN, as one
Equations(3.5—(3.7) can be used to analyze the infinite Of the integration variables. In Appendix A we show explic-
temperature limit of mesonic correlation functions on anyitly for the caser =1 the sequence of variable transforma-
finite lattice of sizeN>X N .. In the following, we will take ~ tions required to obtain an integral representation which is in
the thermodynamic limft(N,—o) and concentrate on the Complete analogy to the continuum relation E8), i.e., we
cutoff dependence of these correlation functions which arise§an write the integrand of this integral as a product of a
from N, being finite. In the thermodynamic limit the mo- 7-independentattice spectral functiorexpressed in units of
menta are COﬂtinuous'y distributed in the inter[[a.{ 77,77] T2 and a’T'dependent kernel which is identical with the con-
and the energy consequently becomes a continuous functiofinuum kernelK defined in Eq(2.4),
This allows for an integral representation of Euclidean cor- o ~
Gi(T):J

hE=1 S 3.6
coshe= +m. (3.6 fE;I:N

(3.9

C

relation functions in complete analogy to the continuum rep- MY wo(0,N)K(@,7), i=1,2. (3.10
resentation given in Eq2.3). In particular, we will show

that on lattices with finite temporal exteht, also the inte- Lo~ o~ o
gration kernel is identical to the continuum kernel, E34). 1€ spectral functionsri(w,N,) explicitly depend on the

Cutoff effects that are responsible for the deviation of the|~attice cutoff, which is reflected in the explicit dependence on
lattice correlation functions from the corresponding con-o/N,=wa.,

@min

tinuum correlation functions thus show up only in the lattice N. N2 % %
spectral functions. o o(o,N,) = _‘:3 —;tan}( —) sinb"( )
In the thermodynamic limit, the momentum sum appear- 2 4 4N,

ing in Eq. (3.5 gets replaced by a three-dimensional integral ~
; o oer o ~
over the lattice Brillouin zone, ><sinr( - )Il(w/NT,f),

> fz : fffﬂdsk Ne N2 (&) sintP(w/aN,)
NER PR IEE I To(@,N)=—2—= r(ﬁ)&
S k (2m) oa(w,N,) 273 §3tan 4] sinhw/2N,)

It is obvious from Eq(3.5) and Table | that there will appear -
only two types ofr-dependent integrals which result from X1a(w/N,,§). (3.1
the two terms appearing in the definition dﬁt, i.e.,, 1 and

d(IZ), respectively, The two-dimensional integrals(w/N,,£) are worked out in

Appendix A for the case=1. They can, however, also be
defined for arbitrary values af

3 N (o
(;l(}):NC(&) f L COSWZE(k)Nj(T 1/2)], The integration limits in Eq(3.10 depend on the quark
§ K(1+M)2  cosR[E(k)N,/2] mass, the anisotropy, and the Wilsbparameter. For =1
R o the maximal energy is determined by the largest quark three-
= ~ N3 d(k) cosh2E(K)N (7—1/2)] momentum possible k= (7,7, w), and we find from
Go(m)=Ne| | |. > 5 : Eq. (3.6
&) Jk(1+M) cosH[E(k)N./2] g. (3.
(3.9 Omin=2NIN(1+M/&), Dma= 2N IN[1+(6+m)/&].
(3.12
2In general we found that the dependence on the spatial extefftor r<<1, however, the maximal energy generally corre-
becomes weak foéN, /N, =3. sponds to a momentum in the interior of the first Brillouin
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012 3 N

_di i i i 2.50
zone. The corners of the three-dimensional Brillouin zone?® 7w Py
0.10

are local minima of the dispersion relation, which are inter- 20
preted as doubler masses proportional to the Witsparam- 5,
eter, i.e., they become lighter with decreasind\s we will oo o
see, thls leads to rather complicated spectral properties eve

in the free quark, infinite temperature limit. _ .
We also note that the lattice spectral functiansare di- ~ ** 0.00 RS-

0.08

0.06

0.04

0.02

r I r ri n I h m | r I f n | n in h 00 05 1.0 15 .2.0 2.5 3.0 .3.5 4.0 0. 20 40 60 80 . 100 .
ecty P optzt 0 fzto t ~e assless spectra u_ CFO s In the FIG. 1. Ratio of lattice and continuum spectral functions with
continuum[ oy~ w“tanh@/4)]. In the massless limit the de- ,=¢ and&=1 and for different quantum number chann@it).

viations from the continuum results thus arise only throu‘ElhThe figure on the right hand side shows the pseudoscalar lattice
the ratiow/N,=wa.., which is the energy expressed in units spectral functions calculated for lattices with temporal exfént

of the temporal lattice spacing. Equatid8.11) explicitly =16, 24, and 32. The solid line corresponds to the continuum spec-
reflects a well known feature of the lattice formulation, i.e.,tral function given in Eq(2.6).

cutoff effects depend on the energy scale. Of course, an ex-

plicit dependence on the lattice spacingsa,) never ap-
pears in the lattice formulation. It is, however, remarkable
that no explicit dependence onNL~=a,T appears in the

at w,a=2 In5 betweerw,;a and w,,@, which corresponds

to the second corner of the Brillouin zorke=(7-r 7,0).
spectral functions either. th_e continuum I|m_|t the lattice artlfa(_:ts shift to hlgher ener-
Finallv. we want to reconstruct from the spectral func- gies and the lattice spectral functions approach the con-
inaily, we i p tinuum resultFig. 1 (right)].3

tions in fixed quantum number channels. In particular, we In the interacting case ald6], a peaklike structure has
will consider spectral functions in the pseudoscalar, scalabeen observed at similar values of the energy, i.e. far

vector, and axial-vector channels, which are given by =1.7 in the pseudoscalar areh=2 in the vector spectral

~lat _~ Slat_ 7 “lat_g> functiqn. It has been shown the}t thgse peaks shift to larger
ps—%1 Us 2r TV 1 Y2 energies when the lattice spacing is decreased. They have
~lat_ thus been identified as lattice artifacts, which do not corre-
on= 3‘72 (3.13 spond to physical states in the continuum lirf@]. It is
] ) -~ ) ) likely that these peaks are remnants of the cutoff effects seen
We ignore here a term proportional id(w) Wh'Ch{ as dis-  nhere in the free spectral functions. To establish this relation
cussed above, arises from théndependent partfly) of the  in more detail it would certainly be interesting to analyze
correlation functions. For the above quantum number chanspectral functions in the scalar and axial-vector channels
nels the coefficients of thé functions will vanish in the also. At least in the free case, the peaks that show up in the
continuum limit and we have checked that they are indeegyseudoscalar and vector spectral functions are absent in the

already small on lattices with temporal extéi~ 10. scalar and axial-vector channels.
In Ref. [6] it was suggested that the cutoff-dependent
IV. CUTOFF EFFECTS ON ISOTROPIC peaks in the spectral functions are related to bound states
AND ANISOTROPIC LATTICES involving heavy quark doublers with masses®@fl/a). In

view of the free spectral function we would, however, prefer
not to speak of states at all. Rather, the distortion of the
spectral function and the characteristic structures seen in the
free case are due to the lattice dispersion relation and to the
sudden restriction of available momentum space that occurs

_ _ _ when one of the fermion momenta reaches one of the corners
A. Massless quarks on isotropic lattices£=1, m=0 of the first Brillouin zone.

Let us first discuss the lattice size dependence of the spec- We also note that all four spectral functions coincide up to
tral functions for the case of vanishing quark masses ( @a=1.5, where they differ by less than 15% from the con-
=0) and on isotropic latticest& 1). In Fig. Xleft) we show  tinuum result. This agreement of different quantum number
the ratios of the lattice and the corresponding continuunthannels is reminiscent of the chiral symmetry of the free
Spectra| functions. We note that this ratio is a function offermlon action. In the lattice formulation with Wilson fermi-

E/NTE wa only. The spectral functions vanish fob ons, chlra_l symmetry is, of course, _epr|C|tIy broken, which
~ ~ . . leads to different spectral functions in the scalar and pseudo-
= wmax, Where o /N,=wmn,2=2In7 is obtained from

. . scalar sectors. As can be seen from Fig. 1, this explicit break-
Eq. (3.6) as the largest energy possible for a mesonic stat

most strongly influences the large ener art of the
constructed from two independent massless Wilson fermmngsectrum ie. gpys deviates stronglygfrom— 3;/ f%r wa

with momentumk=(,,). In the pseudoscalar and vec- =15 The same holds true in the vector and axial-vector
tor channels we observe a pronounced peak which occurs

when the momenta of both Wilson fermions correspond to———

the first corner of the Brillouin zonk=(,0,0). The corre-  3Note that in the scalar and axial cases we always plot the positive
sponding energy i®,a=2 In3. Finally, we observe a cusp functions—ogand—op.

We will analyze here in detail the lattice spectral functions
derived in the previous section for some choices of param-
eters ¢,&,m) which have been used in recent studies of me-
son spectral functions at finite temperature.
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FIG. 2. Ratio of lattice and continuum spectral functions for FIG. 3. Pseudoscalar lattice spectral function for massless
m=0 and¢{=4. quarks calculated on a lattice with temporal extBht=96 on an

anisotropic lattice witht=4 and Wilsonr parameter = 1/¢ (solid

. .. ﬁ:urve). The dot-dashed curve shows the sum of contributions from
channels. Also note that for large energies the finite cuto ) .
continuum spectral functions for one massless pseudoscalar and a

effects can lead to a negative lattice spectral function in th(?mmber of massive pseudoscalars constructed from free quarks with

axial-vector channel. masses corresponding to the doubler masses obtained from the
quark dispersion relation of this action. The horizontal lines indicate
B. Massless quarks on anisotropic lattices§>1, m=0 the locations of doubler masses in three distinct corners of the first

When reducing the temporal relative to the spatial latticePriouin zone.

spacing €=a/a,>1), one has to increase the number ofation is similar for the vector and axial-vector spectral
grid points in the temporal direction if one wants to keep thefunctions.

temperature constant,#N_a,. In the interacting case it

requires a fine-tuning of spatial and temporal couplifigp- r=¢

ping parametgrto maintain rotational symmetry at zero tem-  \When one uses the particular chotce 1/¢ [13], the dou-
perature and, of course, it will also increase the computapler masses become light for largeand can influence the
tional effort. Nonetheless, it may be of advantage in thespectral properties at lower energies than is the case for
analysis of mesonic correlation functions at high temperature=-1. As the quark dispersion relation no longer leads to
because one can make use of information on the correlatiomaxima in the corners of the Brillouin zone, the energy

functions at a larger number of Euclidean time steps. range in which the spectral functions are nonzero shrinks
compared to the=1 case. FOE=1/r =4 one finds from the
r=1 quark dispersion relationw,,,2=3.45, which is even

ghtly smaller than the corresponding value feré=1.

Let us first discuss the structure of free spectral functioné:'Ii . i ! ] .
P The nonmonotonic behavior of the dispersion relation

on anisotropic lattices for the case 1. As can be seen from . . ) :
Eq. (3.12, for a fixed ratiog/N.=Ta the support for the also makes it more complicated to find a closed analytic
q o T . . representation for the spectral functions in terms of two-
spectral function increases with increasing amsgtropy. Folimensional integrals, as we did for the casel. Although
(N;,§)— it reaches a finite limit, i.e.wn,—2m and in principle it is possible to generalize the approach de-
wma— 12N, /£+2m. By increasing the temporal lattice size scribed in Appendix A for =1, in the case <1 we have
and the anisotropy simultaneously, the upper limit, aboveised the simpler numerical binning approach to calculate
which the spectral functions vanish, can thus be increased pectral functions. This is also introduced in Appendix A.
about a factor of 3 relative to the case of isotropic lattices.Ihe resulting pseudoscalar spectral function is shown in Fig.
For a moderate anisotropy factog=£4), typically used in 3 for .massless quarks aer 1/r =4. In this case the mass of
numerical calculationgy .., (and thus alsa,,a) is about a the lightest, threefold degenerate doublerniga=0.471,

factor of 2 larger than in the isotropic case. Lattice artifactsWhich gives rise to the first threshold g =2N,m; a/¢ seen
however, set in earlier; fof=4 the peak in the pseudoscalar in this figure. The other structures seen in this figure result

and vector spectral functions is shifted only by a factor of 1.4rom contributions of the doublers in the other corners of the
(see Fig. 2 Brillouin zone as well as the maxima of the quark dispersion

In Fig. 2 we show the same spectral functions as in Fig. Ielation, which now do not reside in the corners of the Bril-
but now calculated with an anisotrogy=4, a choice of the louin zone.
anisotropy parameter which has been used in recent studies We note that this action does reproduce the continuum
of spectral function§12,13. As can be seen from this figure spectral function well up to the point where the first doubler
the energy interval in which the pseudoscalar and vectotarts contributingwa=1. The energy range in which a
spectral functions are only slightly affected by cutoff effectsgood agreement with the continuum spectral function can be
is about twice as large as on the isotropic lattices. The scal@chieved is thus compatible with the isotropic case.
and pseudoscalar correlation functions, however, are affected
differently. As a consequence the degeneracy of both spectral
functions, a precursor of chiral symmetry restoration, is The modification of heavy quark bound states and, in par-
lifted at smaller energies than on isotropic lattices. The situticular, their dissolution in a quark-gluon plasma is consid-

C. Massive quarks
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FIG. 4. Free pseudoscalar spectral functions for fixgéd cal- FIG. 5. The physical E}) and unphysical E5) poles of the

culated on isotropic lattices with different temporal extents andquark propagator obtained from the truncated perfect action as
quark masses. Also shown is the result obtained on an anisotropignctions of the spatial momentu The straight line shows the
lattice with §=1/r=4. In this case the spectral function deviates c,ninyum dispersion relation and the dash-dotted curve gives the
strongly from the continuum result fes=30 (see also Fig. BFor  dispersion relation for the standard Wilson fermion acti@¥)

better visibility we have cut out this part here and replaced it by a

wavy line. discussion of the massless case on isotropic lattices. The ac-

tion can be written as
ered to be an important signature for the formation of dense 3

matter in heavy ion collisions. It thus is of interest to analyze N

spectral functions for heavy quark bound states also in lattice S= Xzy Y(x) ,;0 VP u(X=Y) TAX=Y) (h(y),
calculations. The first attempts to do so followed the strate- (5.
gies discussed in the previous sections, i.e., calculations have

been performed with Wilson or clover fermions on isotropicW'th

[11] and anisotropi¢13] lattices. In the latter case the for-

mulation withr = 1/¢ was used. PuX=Y)=p1(8y i = Oy i)+ 2 P2 Syxspss
The analysis presented in the previous sections for mass- vEp
less quarks also carries over to the case of massive quarks.
The structure of the cutoff dependence discussed for the vari- — Sy x—p+) T E P3Oy x+ it v+p
ous types of actions follows patterns similar to those seen in PEM,
the massless case. In the large energy region the cutoff ef- i
fects dominate and a nonvanishing quark mass has little in-
fluence on the location of the pronounced peaks observed for — Sy i)t 2 Pa(Syxipiiipis
r=1 or the additional thresholds arising for= 1/£. This is ’;:fi;’;
shown in Fig. 4, where we present results for quark masses
m/T=4.8. Aside from the low energy threshold, which is = Oy x—ptvipra)s (5.2
now shifted tow=2m/T, the spectral functions are similar
to those shown in Figs. 1 and 3. R(X—y)z)\05y’x+% Ni(Oy xipt Sy x—7)
V. LATTICE SPECTRAL FUNCTIONS WITH IMPROVED
WILSON FERMIONS + 2 NSy e st Sy ns)
vF
In the previous sections we have seen that spectral func- :
tions obtained from calculations with the standard Wilson D NSyt Sy i)
action reproduce the continuum spectral functions at low en- oy YXTRT R YR
ergies,wa=<1.5. Deviations from the continuum dispersion P v
relation, however, lead to strong modifications of the spectral
functions at larger energies. Moreover, the violation of chiral + Z Na(Oy st vrpt ot Oyxept v pro)-
symmetry becomes visible in spectral functions at these en- vEu
ergies. This motivates us to analyze the cutoff effects of had- pFEVTFp
ron correlation functions computed with improved fermion (5.3

actions, which have better chiral properties and lead to an n o~ n - ) .
improved dispersion relation. Much progress has been maddere, #,v,p, and ¢ denote unit vectors along positive as
in constructing such actiod®3]. As a first step in this direc- well as(except foru) negative directions in the hypercubic
tion we want to analyze here a simple truncated version of &ttice. Numerical values for the set of nine couplings
fixed point action15,16|. This action is constructed from a {p;};—,, {\i}i_, are given in Table 1 of16] for m=0.

small set of couplings which connect sites in an elementary Taking the Fourier transform of the action E§.1), it is
hypercube of the lattice and can be handled in close analogstraightforward to write down the propagator in momentum
to the case of the Wilson action. We restrict ourselves tspace:
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—ivygdsinky—iK;—iK,c0sKg+ k1t k,C0SKg

k)= , (5.9
S (K34 K2+ 6%) + 2cosko( K1 Ko+ k1k,) + COSKo(K 5+ k5— 62)
|

with In the limit N,—oc the quark propagator is then given by

3 3

Klz;l Yiai, /Cz=i21 YiBi- (5.5 R 1
- R S.(7.k)= [(k1=1Ky)+ (k2= 1K)
2\P?—QRsinhE

Explicit expressions for the momentum-dependent functions Q !
a;i=a;(K), Bi=Bi(K),5=8(K), k1=rkq(K), and k,= (k) X COShE; + v, sgn(7)sinhE;Je” 1"
are given in Appendix B. (—1)®C-Q

For the analysis of meson correlation functions and their — [(k1—iK1) sgMQ)
spectral representation, one has to calculate the quark propa- 2\P2—QRsinhE,

gator in the mixed (-,Iz) representation. The calculational
steps are completely analogous to those for the standard Wil-
son action presented in R¢R2]. However, the quark propa- (5.9
gator now has two polesk,=E; . This is similar to the case
of the Wilson action withr .<1. The two poles are deter-

+ (ky—iK,)COShE,+ v, sgrn( 7)sinhE, e E27,

The first term describes the propagation of a physical state

mined from _ _ _ _ A .
with energy (dispersion relation E;(k), while the second
—P—J(P’-QR) corresponds to an unphysical state, the analogue of the time
coshE; = o , (5.60  doubler in the case of the Wilson action with<1. In Fig.
5 we showE; andE, as functions ok.
_ —P+J(P*-QR) As one can see from the figurg, (k) is very close to the
sgr(Q)coshE,= Q ' (5.7 continuum result for small and moderate momenta Bpds

. N ) much larger tharE;. Only for momentdk|>2.5 is the gap
with additional functions betweenE, andE; getting small. This has important conse-
s - o 2 quences for the meson correlators which will be discussed
P(K) =Kot kK, QK) =K+ K= &% below. Following exactly the same procedure as for the Wil-

R s son action, the meson correlators for finite can be written
R(K) =K+ ki+ 62, (5.8  as

CE"P(K)costi 2E4(KIN.(7— 1/2)]+ 5 (K)
(P2~ QR)cosH[E; (k)N /2]

3
éHG,pEo)=NC(%) Ek +AGE(7). (5.10

The functionsc',i‘"p(IZ) and dﬁtvp(ﬁ) are given in Table Il in 6. The good chiral properties and agreement with the con-

> : > tinuum result over a wide range of energiasa(~5) are
terms of (k) and a new functiom(k), _ o )
(k) (k) self-evident. The contribution of the physical poE}} has

. (Ky+K,coshE;)? also been calculated analytically, which can be done in com-
dP=dP(k)= —e : (5.1)  plete analogy to the case of the Wilson action. This contri-
SIniTE, bution alone is, as expected, indistinguishable from the com-

plete result up tawa~5 (Fig. 6).

The termAGEZ(NT) in Eq.(5.10 contains a contribution from
the second pol&,, and an explicit expression for it is given
in Appendix B. As the energids, are large, it turns out that VI. CONCLUSIONS

this part leads to negllglble contributions to the correlation We have presented an exp”cit calculation of mesonic
functions except for very short distances<0,1N.). Using  spectral functions in the infinite temperature limit of lattice
the binning approach discussed in Appendix A, we have calQCD. We analyzed the cutoff dependence of spectral func-
culated the spectral functions numerically in different quan-ions in different quantum number channels for the Wilson
tum number channels. Results fdr=24 are shown in Fig. fermion action on isotropic as well as anisotropic lattices. We
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TABLE II. The coefficientsci2"? and di®" appearing in Eq. r=1

5.10. The functionsd® and § defined in Eqg5.1 d(B7), . . .

iesp%ctiveely_unc lonsd® and ¢ are defined in Eq<5.11) and (B7) We start from Eq(3.8) by performing the obvious vari-
able transformatiotk— x= (sirP(ky/2), sirf(k,/2), sirf(k/2)).

H cgP digtP We then define
PS 8 0 K2+ M?
S —dP dP— 82 C=IAFM) (A1)
VO 0 752
Eilei 35°—dP d? and rewrite Eq(3.6) asE=2 In(yJa+ Y1+ a). Using these
2 —oVu 35;2—(1" dP—¢&° expressions we can perform a second variable transforma-
A o5 —dP d? tion, X— (®,25,23) = (2N,E, X,/ @, X3/ ). This leads to the
=2 A —2dP 2dP—362 . . =

= , 5 representation of the correlation functio®s [Eq. (3.10)]
3 _A 5%—3dP 3(dP— &?) , .

n=0"n where the integral;(y,£) [Eq. (3.11)] are given by
find that the cutoff effects are of similar magnitude in both |i(y,§)=f fﬂ(y)dzdeSA(Z)B(Z)Ci(z)a (A2)

cases. The introduction of a Wilsanparameter less than
unity, in particular the choice=1/¢£, does not seem to lead
to a significant reduction of cutoff effects.

Furthermore, we analyzed the spectral representation of sy
mesonic correlation functions using a truncated perfect ac- , _ £ = (2p+25)(1- 262+ M) + ém—mPlaz— 222223

with Zz(z,zz,zg,) andz(y) =sintf(y/4). We further define

tion. As expected, this does lead to a drastic improvement of 1+422(2,+25) + M—2¢z

the spectral functions; cutoff effects are shifted to the high (A3)
energy regime and chiral symmetry is preserved in the low

energy part of the spectral functions up to energies=5. With this, the functions appearing in the integrand o€an

be written as

ACKNOWLEDGMENT . E+22(X+2,+23)+Mm
A(z)=¢ ~ ; (A4)
The work was supported by the DFG under grant FOR 1+22(z;+23) + m—2&z
339/2-1 and by the U.S. Department of Energy under Con- R A
tract DE-AC02-98CH10886. B(2)=[1+2& 'z(x+2zy,+25)+& 'm] 2, (A5)
Ci(2)=[x225(1-2X)(1-22,)(1~22)] (A6)

APPENDIX A: FREE MESONIC LATTICE SPECTRAL

FUNCTIONS 4 X(1—-zX)+25(1—22)+25(1—22)

We derive here the explicit form of the representation of Ca(2)= 5 &2 [x2,25(1— 2%)(1—22,)(1— 22 )]1/2
the free mesonic lattice spectral functions given in Eq. 273 2 8 (A7)
(3.11). In particular, we give closed analytic expressions for
the integrald;(y, §) appearing in these equations for the caseThe houndary of the two-dimensional integration region,
r=1 and discuss a representation in terms of finite Riemang) (y), is given by
sums, which is more convenient for dealing with the case
<1 or spectral functions resulting from more complicated Q(y)={2,,25|0<xy=<1; 0<z,y<1; O<zzy<1}.

actions, like the truncated perfect action analyzed in Sec. V. (A8)
0.20 [58@)/0? . V[% ----- 012 P Arbitrary r
i -l 010 . X i
0.15 o o I In general we can also determine the spectral function in a
0.10 T 0'06 given quantum number channel directly from the representa-
0.05 ) tion of the correlation functions in E¢3.5. We can divide
0.04 . . - . e -
0.00 A 002 the interval of nonvanishing energies=2N_E(k), into n
005 L - N bins. Denoting byw; the central values of these bins and
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 introducing the bin lengthe= (@ max— ®@min)/N, We can ap-

roximate Eq.(3.5 b
FIG. 6. Free spectral functions on isotropic lattices calculatec!3 a(3.5 by

with a truncated perfect action fon=0. The left figure shows the n
complete result, the right one the contribution from the physical Gu(7,p=0)=2 es
pole (E}) alone. i=1

cosr[Z)iG— 1/2)]
sinh( ;/2)

. (A9)
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TABLE lIl. The explicit form of the functiong>*P appearing in (k) =25 20 (Brt Ca) Apati
Eq. (B13). The functionsd?3(k) and dB3(k) are defined in Egs. 2(K) =282(pat2p2(C1+ Ca) + 4p3CiCa), (B2)
(B14) and (B15).
H glae a3(K)=253(py +2p,(C1+ Cp) +4p3CiCy), .
B
PS dp3+dp?
S —dP3+d5® Ao A A ~
03, 13 B1(K)=4s:[ po+2p3(Co+C3) +4p4CyCs],
=3V dP3+3d53
33 oV, 2dP3+4db3 I A . n
A dP3—qps Ba(K)=4sy[ po+2p3(Cy+C3) +4psciCsl,
SPA dp3—3dg° (B5)
3% oA, 2d93—44d5° . . L
B3(K)=4s3[ po+2p3(C1+C2) +4psCiCs],
(B6)
wheres; receives contributions from all terms in the momen-
tum sum that lead to energiesN2E(K) in theith bin, S(K)=2p1+4p,(Cy+Cy+Cs)
3 A A A nan
. . +8p3(C1Cr+CyC3+C1C3) +16p4C CoC3, (B7
Si:Nc(gN E ®@2N,E(K)—(n—1)e) p3(C1C2+CaC3+C1C3) +16p4C1CoC3, (BT)
ol ok
N N k1(K)=Ng+2N1(Cr+CptC
X@(n o E(IZ)\ Cﬁt(k)SInf[NTE(k)] 1( ) 0 Al(,\l A2A 33 ) o
o "(1+ M)%cosR[E(K)N /2] +4N5(C1Co+CoC3+C1C3) +8N3C1CoC3, (BY)

(A10) . .
Kz(k):2)\1+ 4)\2(C1+ C2+ C3)

In the limit of large spatial volumes\,— <) and small bin o o

sizes €—0), this gives the spectral functions in a given +8N3(C1Ca+ CaC3+C1C3) + 16N 4C1C,C3,
guantum number channel. We have used this approach to (B9)
calculate spectral functions in the casel and also in the

case of the truncated perfect action. Typically, we ulgd  \yhere we introduced the shorthand notatigr cosk; and

~1000 andn=1000. s;=sink.

Furthermore, we give the explicit expression for the term
in the meson correlatakGEZG) coming from contributions
In this appendix we give explicit expressions for the aux-of the second pol&,. It can be written as
iliary functions that appear in calculations with the truncated
perfect action, in particular in the quark propagator given in AGE ) =Gun(7) + G 7 B10
Eq. (5.4). H(T) H2(7) H1A 7), ( )

The explicit forms of the functionsxi(k), Bi(k), i \yhereGy,,(7) contains contributions from the second pole

=1,2,3, ands(k), «1(k), and (k) are given below: iko=E, only and therefore can be written down in close

A o o analogy with the term containing only the contribution from
a1(K)=25;(p1+2ps(Co+C3) +4psCyCs),  (B1)  the first poleE;:

APPENDIX B: TRUNCATED PERFECT ACTION

NT) 3E C||_E|1t,p2<|2)cosr[2E2( E)NT(’;_ 1/2)] + dlljait’pz( lz) . (Bll)

GHZ(TvaO):NC(N_ = (P2~ QR)cosH[E,(k)N /2]

g

The functionsP,Q,R have been defined in E¢5.8); di2"P? andcl2"P? have exactly the same structuresd&sP andcf2™" listed
in Table 1l with dP being replaced by

[Cy + Kosgr(Q) coshE, |2

dP2=dP2(k)=
) sint?E,

(B12)

The second ternGy1,(7) contains contributions from both the first and second poles and can be written as
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(_ 1)@)(—Q)7’+1

~ N\° ety - L
=Ng| _ _ 3Pk (KN (7— - K)N .
Gh1A7) NC<N0) % (Pz—QR)cosk[El(k)NJZ]COSF[EZ(k)NJZ][gH (K){cosHES(K)N(7—1/2)] — cosHE4(K)N (7
—1/2) 1} + 8%(k){cosH E4(K)N.(7— 1/2) ]+ cosH E4(K)N.(7— 1/2)]}], (B13)
lat,p

whereEs=E;+E,, E4=E;—E,. An additional functiong (k) has been introduced, which depends on

_ K3sgr(Q)+ K 5coshE coshE,+ Ky Ko COShE, +5g( Q) coshE ]

p3 B14
di sinhE;sinhE, ’ (B14)
e Kfsgr(Q) + KgcoshElcoshEer K1k, COShE,+sgnQ)coshE, ] B1E
2 sinhE;sinhE, ' (B19
The explicit form ofg:i’,“’p for different quantum numbers is given in Table III.
[1] J. Engels, F. Karsch, and H. Satz, Nucl. Php205 239 hep-lat/0209059.

(1982. [11] S. Datta, F. Karsch, P. Petreczky, and I. Wetzorke,
[2] Y. Nakahara, M. Asakawa, and T. Hatsuda, Phys. Re&0D hep-lat/0208012.

091503(1999. [12] M. Asakawa, T. Hatsuda, and Y. Nakahara, hep-lat/0208059.
[3] R.K. Bryan, Eur. Biophys. J18, 165 (1990. [13] T. Umeda, K. Nomura, and H. Matsufuru, hep-lat/0211003.
[4] M. Asakawa, T. Hatsuda, and Y. Nakahara, Prog. Part. Nucl[14] E. Braaten, R. Pisarski, and T. Yuan, Phys. Rev. 16112242

Phys.46, 459(2001). (1990.

[5] F. Karsch and I. Wetzorke, iRroceedings of the International [15] W. Bietenholz and U.J. Wiese, Nucl. Phy&464, 319(1996.
Workshop on Strong and Electroweak Matter 2080ited by ~ [16] W. Bietenholz, R. Brower, S. Chandrasekharan, and U.J.

C.P. Korthals-Altes (World Scientific, Singapore, 2001 Wiese, Nucl. Phys. BProc. Supp). 53, 921(1997).

hep-lat/0008008. [17] M. Le Bellac, Thermal Field Theory(Cambridge University
[6] CP-PACS Collaboration, T. Yamazaét al, Phys. Rev. D65, Press, Cambridge, England, 1996

014501(2002. [18] F. Karsch, M.H. Mustafa, and M.H. Thoma, Phys. Lett4%7,
[7] 1. Wetzorke et al, Nucl. Phys. B(Proc. Supp). 106 510 249 (2009).

(2002; P. Petreczkyet al, ibid. 106, 513(2002. [19] B. Beinlich, F. Karsch, and E. Laermann, Nucl. Phg62,
[8] F. Karsch, E. Laermann, P. Petreczky, S. Stickan, and I. Wet-  415(1996.

zorke, Phys. Lett. B530, 147 (2002. [20] K. Wilson, Phys. Rep23, 331(1976.

[9] C.R Allton et al, Phys. Rev. D66, 094511(2002; J. Clowser  [21] J. Haradeet al, Phys. Rev. D64, 074501(2001).
and C.G. Strouthos, Nucl. Phys. @roc. Supp). 106, 489 [22] D.B. Carpenter and C.F. Baillie, Nucl. Phya260, 103(1985.
(2002. [23] C. Gattringer, hep-lat/0208056; C. Gattringeet al,
[10] S. Sasaki, K. Sasaki, T. Hatsuda, and M. Asakawa, hep-1at/0209099, and references therein.

014504-11



