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Infinite temperature limit of meson spectral functions calculated on the lattice
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We analyze the cutoff dependence of mesonic spectral functions calculated at finite temperature on Euclid-
ean lattices with a finite temporal extent. In the infinite temperature limit we present analytic results for lattice
spectral functions calculated with standard Wilson fermions as well as a truncated perfect action. We explicitly
determine the influence of ‘‘Wilson doublers’’ on the high momentum structure of the mesonic spectral func-
tions and show that this cutoff effect is strongly suppressed when using an improved fermion action.
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I. INTRODUCTION

The thermal modification of the basic properties of ha
rons, e.g., their masses and decay widths, is one of the
tral issues in the discussion of experimental signals that
emerge from the dense partonic systems created in heav
collisions. Lattice calculations can, in principle, provide th
information through the analysis of the thermal properties
Euclidean correlation functions of suitably chosen opera
carrying hadronic quantum numbers. These correlation fu
tions contain all the necessary information on the tempe
ture dependence of hadronic spectral functions. In orde
make such studies quantitative and to be able to relia
extract information valid in the continuum limit, we have
understand, however, in detail the cutoff dependence of s
tral functions calculated on the lattice at finite temperatu
We provide here a detailed analysis of mesonic spectral fu
tions in the infinite temperature limit and discuss their cut
dependence. This provides a basis for discussions of the
off dependence of spectral functions at finite temperature
is similar in spirit to studies of the cutoff dependence of t
QCD equation of state which were first performed in t
ideal gas~infinite temperature! limit @1#.

Information on the hadronic spectrum is extracted in l
tice calculations from the properties of Euclidean time c
relation functions of suitably chosen hadronic currents
recent suggestion@2# is to apply the maximum entrop
method~MEM!, a well known statistical tool for the analys
of noisy data@3#, to the analysis of these correlation fun
tions also. This opened the possibility of extracting detai
information on hadronic spectral functionss(v,T), at zero
as well as finite temperature@4,5#. The first studies of spec
tral functions based on the MEM approach@6–13# have in-
deed been encouraging. These first studies, however,
showed that it is necessary to get control over typical lat
problems like finite cutoff effects or the influence of fermio
doublers on the energy dependence (v) of spectral functions.
Cutoff effects show up in the large energy regime of spec
functions and one generally may not be too much worr
about them when one is interested in extracting informat
about the low energy part of the spectral functions. Th
however, is different for the analysis of properties of hea
quark bound states and they are also of particular importa
0556-2821/2003/68~1!/014504~11!/$20.00 68 0145
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for studies performed at finite temperature. In the latter c
the high energy part of, e.g., the vector spectral function
directly related to physically observable dilepton cross s
tions and has been studied in much detail in~resumed! per-
turbative calculations@14#. Moreover, in the plasma phase o
QCD quasiparticle excitations are heavy and typically w
have masses that rise proportionally to the temperature
high temperature this is expected to lead to broad reson
celike structures in spectral functions. In lattice calculatio
which at present have all been performed with Wilson ty
fermion formulations, it is in general difficult to distinguis
such effects from contributions arising from so-called hea
Wilson doublers. On a more technical level it is also imp
tant for the MEM analysis to include information on th
short distance behavior of correlation functions in the defa
model. This requires information on lattice cutoff effects
the spectral function as well as possible modifications of
integration kernel.

There are apparently plenty of reasons to get control o
the lattice cutoff effects in numerical calculations of spect
functions. We will analyze these in the infinite temperatu
limit of QCD by explicitly calculating hadronic spectra
functions on lattices with finite temporal extentNt . We will
present results for spectral functions calculated on isotro
as well as anisotropic lattices and discuss their quark m
dependence. Moreover, we will present results for st
dard Wilson fermions as well as for a truncated perf
action @15,16#.

The paper is organized as follows. In Sec. II we summ
rize known results for free quark-antiquark spectral functio
calculated in the continuum. In Sec. III we perform the co
responding calculation for Wilson fermions on the lattic
Section IV is devoted to a discussion of these lattice spec
functions, in particular, their quark mass and anisotropy
pendence. In Sec. V we present results from a calcula
with an improved Wilson fermion action, a truncated perfe
action. Finally, we give our conclusions in Sec. VI. Som
details of our calculations are presented in two Appendix

II. THERMAL QUARK-ANTIQUARK SPECTRAL
FUNCTIONS

Thermal quark-antiquark correlation functions in coord
nate space,GH(t,xW ), are defined as
©2003 The American Physical Society04-1
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KARSCH et al. PHYSICAL REVIEW D 68, 014504 ~2003!
GH~t,xW !5^JH~t,xW !JH
† ~0,0W !&, ~2.1!

where^•••& denotes the thermal average. The local sour
for currents with different mesonic quantum numbersH are
given byJH(t,xW )5q̄(t,xW )GHq(t,xW ), andGH is an appropri-
ate combination ofg matrices; i.e.,GH51,g5 ,gm ,gmg5 for
scalar, pseudoscalar, vector, and pseudovector channel
spectively. From these we obtain the mixed correlation fu
tions at fixed momentumpW which are commonly considere
in lattice calculations,

GH~t,pW !5E d3xGH~t,xW !eixWpW . ~2.2!

These two-point functions have a spectral representation

GH~t,pW !5E
0

`

dvsH~v,pW ,T!K~v,t!, ~2.3!

wheresH(v,pW ,T) denotes the temperature-dependent sp
tral function andK(v,t) is the integration kernel which car
ries the entire dependence on Euclidean timetP@0,1/T),

K~v,t!5
cosh@v~t21/2T!#

sinh~v/2T!
. ~2.4!

It is easy to convince oneself that the spectral function
pearing in Eq.~2.3! is indeed the Minkowski space spectr
function ~see, e.g.,@17#!:

sH~v,pW ,T!5
1

Z~T!(n,m
e2En(pW )/T~12e2v/T!

3d„v1En~pW !2Em~pW !…z^nuJH~0!um& z2,

~2.5!

whereZ(T) is the partition function and̂•••& denotes here
the matrix element of the hadronic currentJH(0) taken be-
tween energy eigenstates at fixed momentumpW .

The correlation functions can be evaluated using the m
mentum space representation of the quark propagator an
spectral representation@17#. In the following, we will mainly
be concerned with the zero momentum spectral functi
sH(v,T)[sH(v,pW 50W ,T), which take on a rather simpl
form @17,18#,

sH~v,T!5
Nc

8p2
Q~v224m2!v2tanhS v

4TD
3A12S 2m

v D 2FaH1S 2m

v D 2

bHG
1

Nc

3

T2

2
f Hvd~v!. ~2.6!

HereNc denotes the number of colors, e.g.,Nc53. For some
selected mesonic quantum number channelsH, the coeffi-
cientsaH , bH , and f H are given in Table I. We note that i
some cases a contribution proportional to ad function at
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vanishing energy appears in Eq.~2.6!. At nonzero tempera-
ture this gives rise to a constant,t-independent term in the
Euclidean correlation function defined in Eq.~2.3!. For

massless quarks, also at nonvanishing momentump5ApW 2, a
rather compact form for the spectral function is obtained

sH~v,pW ,T!5
Nc

8p2
~v22p2!aHH Q~v22p2!

2T

p

3 ln
cosh@~v1p!/4T#

cosh@~v2p!/4T#
1Q~p22v2!

3F2T

p
ln

cosh@~p1v!/4T#

cosh@~p2v!/4T#
2

v

p G J . ~2.7!

Due to the asymptotic freedom of QCD the free field lim
is approached at infinite temperature. In order to discuss
infinite temperature or free field limit of spectral function
and correlation functions it is appropriate to rescale all va
ables with nontrivial dimension by appropriate powers of t
temperature, e.g.,ṽ5v/T. For fixed m̃[m/T the rescaled

correlation functionsG̃H( t̃,pW̃ )[GH(tT,pW /T)/T3 then have a
well defined infinite temperature limit,

G̃H~ t̃,p̃!5E
0

`

dṽs̃H~ṽ,pW̃ ,T!K̃~ṽ,t̃ !, ~2.8!

where s̃ denotes the rescaled spectral density,s̃H(ṽ,pW̃ ,T)
5sH(v,pW ,T)/T2, and

K̃~ṽ,t̃ !5cosh@ṽ~ t̃21/2!#/sinh~ṽ/2!.

Eventually, we are interested in obtaining information
the temperature dependence of the physical spectrum an
thus want to determine the Minkowski space spectral fu
tion as introduced in Eq.~2.5!. In the continuum the spectra
function is connected to the temporal Euclidean correlat
function via Eq.~2.3!. The analyticity properties required t
make that connection, however, in general exist only in
continuum. Therefore, extracting a spectral function fro
lattice data on Euclidean correlation functions via Eq.~2.3!

TABLE I. CoefficientsaH , bH , and f H for free spectral func-
tions in different mesonic quantum number channelsH @Eq. ~2.6!#.
The last two columns give coefficients appearing in the definition
the corresponding correlation functions on the lattice@Eq. ~3.5!#.
The momentum-dependent functiond is defined in Eq.~3.7!.

H aH bH f H cH
lat dH

lat

PS 1 0 0 1 0
S 21 1 0 2d d21
V0 0 0 21 0 21
( i 51

3 Vi 2 1 1 32d d
V[(m50

3 Vm 2 1 0 32d d21
A0 0 0 1 12d d
( i 51

3 Ai 22 3 21 22d 2d23
A[(m50

3 Am 22 3 0 123d 3(d21)
4-2
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INFINITE TEMPERATURE LIMIT OF MESON . . . PHYSICAL REVIEW D68, 014504 ~2003!
will suffer from lattice artifacts and it is only in the con
tinuum limit that a direct relation to the spectral properties
finite temperature can be established. This will become c
in the following section, where we discuss the spectral r
resentation of mesonic correlation functions using the s
dard Wilson fermion formulation on Euclidean lattices wi
finite temporal extentNt .

III. LATTICE SPECTRAL FUNCTIONS WITH WILSON
FERMIONS

In the following, the dimensionless representation of h
ronic two-point correlation functions and the correspond
rescaled spectral functions given in Eq.~2.8! will be ana-
lyzed for their cutoff dependence. The situation here is si
lar to the discussion of the cutoff dependence of bulk th
modynamic variables, e.g., the rescaled pressureP/T4

@1,19#. In that case, on isotropic lattices, deviations from t
continuum result can be expressed in terms of the lat
spacing given in units of the temperatureaT, which is noth-
ing else but the inverse of the temporal extent of the latt
aT51/Nt . For bulk thermodynamic observables the te
perature is in general the only1 quantity with nontrivial di-
mension that can set the scale for the cutoff dependenc
the case of spectral functions, however, the energy prov
another scale, and we can expect to find an additional de
dence of the spectral functions onav5ṽ/Nt . However, we
will show explicitly in the following that onlyṽ/Nt deter-
mines the cutoff dependence and a sole dependence onNt
does not appear in the spectral functions. On anisotropic
tices cutoff effects are, in addition, controlled by the ratioj
5a/at of spatial ~a! and temporal (at) lattice spacings. In
this case, temperature and energy in~spatial! lattice units
also depend on this ratio asaT5j/Nt and av5ṽj/Nt ,
respectively.

We will discuss here the cutoff dependence of spec
functions calculated within a generalization of Wilson’s fe
mion discretization scheme@20# on anisotropic lattices. In
the free field limit the fermion action is diagonal in the col
degrees of freedomSF5(k,l(c51

3 c̄k
cQk,lc l

c with the fermion
matrix

Qk,l5F r t1
3r 1m̂

j
Gdk,l2

1

2
@~r t2g0!dk10̂,l

1~r t1g0!dk20̂,l #2
1

2j (
i 51

3

@~r 2g i !dk1 î ,l

1~r 1g i !dk2 î ,l #, ~3.1!
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where the dimensionless quark massm̂ is expressed in units
of the spatial lattice spacing,m̂5ma. The generic choice of
the Wilson action isr 5r t51 @20#. We will discuss here only
the caser t51 as this avoids the occurrence of a second p
in the fermion propagator which would give rise to an u
physical timelike doubler mass. We will, however, consid
the spacelike Wilsonr parameterr P(0,1# as an additional
free parameter of the fermion action. Even on anisotro
lattices withj.1 the generic choice for ther parameter is
r 51. Yet, by choosingr 51/j, discretization errors of orde
ma can be completely eliminated at leading order from m
son correlators with improved Wilson~clover! fermions on
anisotropic lattices@21#, e.g., in studies of heavy quark sy
tems. As this choice has, in fact, been used in recent stu
of heavy quark spectral functions@13#, we also will explore
the dependence of spectral functions on the choice ofr.

Analytic results for the free field limit of hadronic corre
lation functions on isotropic lattices of sizeNs

33Nt have
been presented in the past using free Wilson fermions@22#
with r 51. It is straightforward to extend these calculatio
to the case of anisotropic lattices andrÞ1. The starting
point for the calculation of hadronic correlation functions
the momentum space representation of the free Wilson
mion propagator,

S~k!5
2 ig0sink02 iK1@~12cosk0!1M#

sin2k01K 21@~12cosk0!1M#2
~3.2!

with

K5
1

j (
i 51

3

g isinki , ~3.3!

M5
1

j F r(
i 51

3

~12coski !1m̂G .

~3.4!

On a finite lattice of sizeNs
33Nt the momenta take on dis

crete values,k05(2p/Nt)(n011/2) with n050, 61, . . . ,
6(Nt/221), Nt/2 and ki5(2p/Ns)ni with ni50,
61, . . . ,6(Ns/221), Ns/2 for i 51,2,3.

Following Ref. @22# one finds for the temporal zero mo
mentum free quark-antiquark correlation functions with m
sonic quantum numbersH,
G̃H~ t̃,p̃[0!5NcS Nt

jNs
D 3

(
kW

cH
lat~kW !cosh@2E~kW !Nt~ t̃21/2!#1dH

lat~kW !

~11M!2cosh2@E~kW !Nt/2#
, ~3.5!

1This is correct in the limit of vanishing as well as infinite quark masses.
4-3
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which is defined on the discrete set of Euclidean timet̃
5n/Nt , with n50, 1, . . . ,Nt21, accessible on a lattic
with temporal extentNt . The energyE[E(kW ) is given by
the location of the pole of the denominator of the Wils
fermion propagator@Eq. ~3.2!# at ik05E(kW ), i.e.,

coshE511
K 21M 2

2~11M!
. ~3.6!

The functionscH
lat anddH

lat appearing in Eq.~3.5! depend on

the three-momentumkW through the function

d[d~kW !5
K 2

sinh2E
. ~3.7!

Note thatd approaches 1 in the continuum limit. For som
quantum number channels explicit expressions are give
Table I.

Equations~3.5!–~3.7! can be used to analyze the infini
temperature limit of mesonic correlation functions on a
finite lattice of sizeNs

33Nt . In the following, we will take
the thermodynamic limit2 (Ns→`) and concentrate on th
cutoff dependence of these correlation functions which ar
from Nt being finite. In the thermodynamic limit the mo
menta are continuously distributed in the interval@2p,p#
and the energy consequently becomes a continuous func
This allows for an integral representation of Euclidean c
relation functions in complete analogy to the continuum r
resentation given in Eq.~2.3!. In particular, we will show
that on lattices with finite temporal extentNt also the inte-
gration kernel is identical to the continuum kernel, Eq.~2.4!.
Cutoff effects that are responsible for the deviation of
lattice correlation functions from the corresponding co
tinuum correlation functions thus show up only in the latti
spectral functions.

In the thermodynamic limit, the momentum sum appe
ing in Eq.~3.5! gets replaced by a three-dimensional integ
over the lattice Brillouin zone,

1

Ns
3 (

kW
→E

kW
[

1

~2p!3E E E
2p

p

d3k.

It is obvious from Eq.~3.5! and Table I that there will appea
only two types oft-dependent integrals which result fro
the two terms appearing in the definition ofcH

lat , i.e., 1 and

d(kW ), respectively,

G̃1~ t̃ !5NcS Nt

j D 3E
kW

1

~11M!2

cosh@2E~kW !Nt~ t̃21/2!#

cosh2@E~kW !Nt/2#
,

G̃2~ t̃ !5NcS Nt

j D 3E
kW

d~kW !

~11M!2

cosh@2E~kW !Nt~ t̃21/2!#

cosh2@E~kW !Nt/2#
.

~3.8!

2In general we found that the dependence on the spatial ex
becomes weak forjNs /Nt*3.
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In addition there are also twot-independent integrals relate
to the sums involving the termdH

lat appearing in Eq.~3.5!.
These constants contribute to thed functions at vanishing
frequency. On finite lattices all quantum number chann
listed in Table I~except the pseudoscalar! will receive non-
vanishing contributionsf H

lat ,

f H
lat5NcS Nt

j D 3E
kW

dH
lat~kW !

~11M!2

1

cosh2@E~kW !Nt/2#
. ~3.9!

The integrals given in Eq.~3.8! are the starting point for
our discussion of the cutoff dependence of mesonic spec
functions. So far we have achieved a representation of
correlation functionsG̃H( t̃) in terms of three-dimensiona
momentum integrals. Our goal is to find, for finiteNt , a
spectral representation defined through the one-dimensi
integral given in Eq.~2.3!. This can be achieved by introduc
ing the energy in units of the temperature,ṽ52ENt , as one
of the integration variables. In Appendix A we show expli
itly for the caser 51 the sequence of variable transform
tions required to obtain an integral representation which is
complete analogy to the continuum relation Eq.~2.8!, i.e., we
can write the integrand of this integral as a product o
t-independentlattice spectral functionexpressed in units o
T2 and at-dependent kernel which is identical with the co
tinuum kernelK̃ defined in Eq.~2.4!,

G̃i~ t̃ !5E
ṽmin

ṽmax
dṽs̃ i~ṽ,Nt!K̃~ṽ,t̃ !, i 51,2. ~3.10!

The spectral functionss̃ i(ṽ,Nt) explicitly depend on the
lattice cutoff, which is reflected in the explicit dependence
ṽ/Nt5vat ,

s̃1~ṽ,Nt!5
Nc

2p3

Nt
2

j3
tanhS ṽ

4
D sinhS ṽ

4Nt
D

3sinhS ṽ

2Nt
D I 1~ṽ/Nt ,j!,

s̃2~ṽ,Nt!5
Nc

2p3

Nt
2

j3
tanhS ṽ

4
D sinh3~ṽ/4Nt!

sinh~ṽ/2Nt!

3I 2~ṽ/Nt ,j!. ~3.11!

The two-dimensional integralsI i(ṽ/Nt ,j) are worked out in
Appendix A for the caser 51. They can, however, also b
defined for arbitrary values ofr.

The integration limits in Eq.~3.10! depend on the quark
mass, the anisotropy, and the Wilsonr parameter. Forr 51
the maximal energy is determined by the largest quark th
momentum possible,kW5(p,p,p), and we find from
Eq. ~3.6!

ṽmin52Ntln~11m̂/j!, ṽmax52Ntln@11~61m̂!/j#.

~3.12!

For r ,1, however, the maximal energy generally corr
sponds to a momentum in the interior of the first Brillou
nt
4-4
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INFINITE TEMPERATURE LIMIT OF MESON . . . PHYSICAL REVIEW D68, 014504 ~2003!
zone. The corners of the three-dimensional Brillouin zo
are local minima of the dispersion relation, which are int
preted as doubler masses proportional to the Wilsonr param-
eter, i.e., they become lighter with decreasingr. As we will
see, this leads to rather complicated spectral properties
in the free quark, infinite temperature limit.

We also note that the lattice spectral functionss̃ i are di-
rectly proportional to the massless spectral functions in
continuum@s̃H;ṽ2tanh(ṽ/4)#. In the massless limit the de
viations from the continuum results thus arise only throu
the ratioṽ/Nt[vat , which is the energy expressed in un
of the temporal lattice spacing. Equation~3.11! explicitly
reflects a well known feature of the lattice formulation, i.
cutoff effects depend on the energy scale. Of course, an
plicit dependence on the lattice spacings (a,at) never ap-
pears in the lattice formulation. It is, however, remarka
that no explicit dependence on 1/Nt[atT appears in the
spectral functions either.

Finally, we want to reconstruct froms̃ i the spectral func-
tions in fixed quantum number channels. In particular,
will consider spectral functions in the pseudoscalar, sca
vector, and axial-vector channels, which are given by

s̃PS
lat 5s̃1 , s̃S

lat52s̃2 , s̃V
lat53s̃12s̃2 ,

s̃A
lat5s̃123s̃2 . ~3.13!

We ignore here a term proportional toṽd(ṽ) which, as dis-
cussed above, arises from thet-independent part (f H

lat) of the
correlation functions. For the above quantum number ch
nels the coefficients of thed functions will vanish in the
continuum limit and we have checked that they are ind
already small on lattices with temporal extentNt;10.

IV. CUTOFF EFFECTS ON ISOTROPIC
AND ANISOTROPIC LATTICES

We will analyze here in detail the lattice spectral functio
derived in the previous section for some choices of para
eters (r ,j,m) which have been used in recent studies of m
son spectral functions at finite temperature.

A. Massless quarks on isotropic lattices:jÄ1, mÄ0

Let us first discuss the lattice size dependence of the s
tral functions for the case of vanishing quark massesm
50) and on isotropic lattices (j51). In Fig. 1~left! we show
the ratios of the lattice and the corresponding continu
spectral functions. We note that this ratio is a function
ṽ/Nt[va only. The spectral functions vanish forṽ
>ṽmax, where ṽmax/Nt[vmaxa52 ln 7 is obtained from
Eq. ~3.6! as the largest energy possible for a mesonic s
constructed from two independent massless Wilson ferm
with momentumkW5(p,p,p). In the pseudoscalar and ve
tor channels we observe a pronounced peak which oc
when the momenta of both Wilson fermions correspond
the first corner of the Brillouin zonekW5(p,0,0). The corre-
sponding energy isv1a52 ln 3. Finally, we observe a cus
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at v2a52 ln 5 betweenv1a andvmaxa, which corresponds
to the second corner of the Brillouin zonekW5(p,p,0). In
the continuum limit the lattice artifacts shift to higher ene
gies and the lattice spectral functions approach the c
tinuum result@Fig. 1 ~right!#.3

In the interacting case also@6#, a peaklike structure ha
been observed at similar values of the energy, i.e., forva
.1.7 in the pseudoscalar andva.2 in the vector spectra
function. It has been shown that these peaks shift to la
energies when the lattice spacing is decreased. They h
thus been identified as lattice artifacts, which do not cor
spond to physical states in the continuum limit@6#. It is
likely that these peaks are remnants of the cutoff effects s
here in the free spectral functions. To establish this relat
in more detail it would certainly be interesting to analy
spectral functions in the scalar and axial-vector chann
also. At least in the free case, the peaks that show up in
pseudoscalar and vector spectral functions are absent in
scalar and axial-vector channels.

In Ref. @6# it was suggested that the cutoff-depende
peaks in the spectral functions are related to bound st
involving heavy quark doublers with masses ofO(1/a). In
view of the free spectral function we would, however, pre
not to speak of states at all. Rather, the distortion of
spectral function and the characteristic structures seen in
free case are due to the lattice dispersion relation and to
sudden restriction of available momentum space that oc
when one of the fermion momenta reaches one of the cor
of the first Brillouin zone.

We also note that all four spectral functions coincide up
va.1.5, where they differ by less than 15% from the co
tinuum result. This agreement of different quantum num
channels is reminiscent of the chiral symmetry of the fr
fermion action. In the lattice formulation with Wilson ferm
ons, chiral symmetry is, of course, explicitly broken, whi
leads to different spectral functions in the scalar and pseu
scalar sectors. As can be seen from Fig. 1, this explicit bre
ing most strongly influences the large energy part of
spectrum, i.e.,sPS deviates strongly from2sS for va
*1.5. The same holds true in the vector and axial-vec

3Note that in the scalar and axial cases we always plot the pos
functions2sS and2sA .

FIG. 1. Ratio of lattice and continuum spectral functions w
m50 andj51 and for different quantum number channels~left!.
The figure on the right hand side shows the pseudoscalar la
spectral functions calculated for lattices with temporal extentNt

516, 24, and 32. The solid line corresponds to the continuum sp
tral function given in Eq.~2.6!.
4-5
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channels. Also note that for large energies the finite cu
effects can lead to a negative lattice spectral function in
axial-vector channel.

B. Massless quarks on anisotropic lattices:jÌ1, mÄ0

When reducing the temporal relative to the spatial latt
spacing (j5a/at.1), one has to increase the number
grid points in the temporal direction if one wants to keep
temperature constant, 1/T5Ntat . In the interacting case i
requires a fine-tuning of spatial and temporal couplings~hop-
ping parameter! to maintain rotational symmetry at zero tem
perature and, of course, it will also increase the compu
tional effort. Nonetheless, it may be of advantage in
analysis of mesonic correlation functions at high tempera
because one can make use of information on the correla
functions at a larger number of Euclidean time steps.

rÄ1

Let us first discuss the structure of free spectral functi
on anisotropic lattices for the caser 51. As can be seen from
Eq. ~3.12!, for a fixed ratioj/Nt[Ta the support for the
spectral function increases with increasing anisotropy.
(Nt ,j)→` it reaches a finite limit, i.e.,ṽmin→2m̃ and
ṽmax→12Nt /j12m̃. By increasing the temporal lattice siz
and the anisotropy simultaneously, the upper limit, abo
which the spectral functions vanish, can thus be increase
about a factor of 3 relative to the case of isotropic lattic
For a moderate anisotropy factor (j.4), typically used in
numerical calculations,ṽmax ~and thus alsovmaxa) is about a
factor of 2 larger than in the isotropic case. Lattice artifac
however, set in earlier; forj54 the peak in the pseudoscal
and vector spectral functions is shifted only by a factor of
~see Fig. 2!.

In Fig. 2 we show the same spectral functions as in Fig
but now calculated with an anisotropyj54, a choice of the
anisotropy parameter which has been used in recent stu
of spectral functions@12,13#. As can be seen from this figur
the energy interval in which the pseudoscalar and ve
spectral functions are only slightly affected by cutoff effec
is about twice as large as on the isotropic lattices. The sc
and pseudoscalar correlation functions, however, are affe
differently. As a consequence the degeneracy of both spe
functions, a precursor of chiral symmetry restoration,
lifted at smaller energies than on isotropic lattices. The s

FIG. 2. Ratio of lattice and continuum spectral functions
m50 andj54.
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ation is similar for the vector and axial-vector spect
functions.

rÄ1Õj

When one uses the particular choicer 51/j @13#, the dou-
bler masses become light for largej and can influence the
spectral properties at lower energies than is the case fr
51. As the quark dispersion relation no longer leads
maxima in the corners of the Brillouin zone, the ener
range in which the spectral functions are nonzero shri
compared to ther 51 case. Forj51/r 54 one finds from the
quark dispersion relationvmaxa53.45, which is even
slightly smaller than the corresponding value forr 5j51.

The nonmonotonic behavior of the dispersion relati
also makes it more complicated to find a closed analy
representation for the spectral functions in terms of tw
dimensional integrals, as we did for the caser 51. Although
in principle it is possible to generalize the approach d
scribed in Appendix A forr 51, in the caser ,1 we have
used the simpler numerical binning approach to calcu
spectral functions. This is also introduced in Appendix
The resulting pseudoscalar spectral function is shown in F
3 for massless quarks andj51/r 54. In this case the mass o
the lightest, threefold degenerate doubler ism1a50.471,
which gives rise to the first threshold atṽ152Ntm1a/j seen
in this figure. The other structures seen in this figure res
from contributions of the doublers in the other corners of
Brillouin zone as well as the maxima of the quark dispers
relation, which now do not reside in the corners of the Br
louin zone.

We note that this action does reproduce the continu
spectral function well up to the point where the first doub
starts contributing,va.1. The energy range in which
good agreement with the continuum spectral function can
achieved is thus compatible with the isotropic case.

C. Massive quarks

The modification of heavy quark bound states and, in p
ticular, their dissolution in a quark-gluon plasma is cons

FIG. 3. Pseudoscalar lattice spectral function for mass
quarks calculated on a lattice with temporal extentNt596 on an
anisotropic lattice withj54 and Wilsonr parameterr 51/j ~solid
curve!. The dot-dashed curve shows the sum of contributions fr
continuum spectral functions for one massless pseudoscalar a
number of massive pseudoscalars constructed from free quarks
masses corresponding to the doubler masses obtained from
quark dispersion relation of this action. The horizontal lines indic
the locations of doubler masses in three distinct corners of the
Brillouin zone.
4-6
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ered to be an important signature for the formation of de
matter in heavy ion collisions. It thus is of interest to analy
spectral functions for heavy quark bound states also in lat
calculations. The first attempts to do so followed the stra
gies discussed in the previous sections, i.e., calculations
been performed with Wilson or clover fermions on isotrop
@11# and anisotropic@13# lattices. In the latter case the fo
mulation with r 51/j was used.

The analysis presented in the previous sections for m
less quarks also carries over to the case of massive qu
The structure of the cutoff dependence discussed for the v
ous types of actions follows patterns similar to those see
the massless case. In the large energy region the cutof
fects dominate and a nonvanishing quark mass has little
fluence on the location of the pronounced peaks observed
r 51 or the additional thresholds arising forr 51/j. This is
shown in Fig. 4, where we present results for quark mas
m/T54.8. Aside from the low energy threshold, which
now shifted toṽ.2m/T, the spectral functions are simila
to those shown in Figs. 1 and 3.

V. LATTICE SPECTRAL FUNCTIONS WITH IMPROVED
WILSON FERMIONS

In the previous sections we have seen that spectral fu
tions obtained from calculations with the standard Wils
action reproduce the continuum spectral functions at low
ergies,va&1.5. Deviations from the continuum dispersio
relation, however, lead to strong modifications of the spec
functions at larger energies. Moreover, the violation of ch
symmetry becomes visible in spectral functions at these
ergies. This motivates us to analyze the cutoff effects of h
ron correlation functions computed with improved fermi
actions, which have better chiral properties and lead to
improved dispersion relation. Much progress has been m
in constructing such actions@23#. As a first step in this direc-
tion we want to analyze here a simple truncated version
fixed point action@15,16#. This action is constructed from
small set of couplings which connect sites in an elemen
hypercube of the lattice and can be handled in close ana
to the case of the Wilson action. We restrict ourselves

FIG. 4. Free pseudoscalar spectral functions for fixedm/T cal-
culated on isotropic lattices with different temporal extents a
quark masses. Also shown is the result obtained on an anisotr
lattice with j51/r 54. In this case the spectral function deviat

strongly from the continuum result forṽ*30 ~see also Fig. 3!. For
better visibility we have cut out this part here and replaced it b
wavy line.
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discussion of the massless case on isotropic lattices. The
tion can be written as

S5(
x,y

c̄~x!H (
m50

3

gmrm~x2y!1l~x2y!J c~y!,

~5.1!

with

rm~x2y!5r1~dy,x1m̂2dy,x2m̂!1 (
n̂Þm̂

r2~dy,x1m̂1 n̂

2dy,x2m̂1 n̂ !1 (
n̂Þm̂

r̂Þm̂,n̂

r3~dy,x1m̂1 n̂1 r̂

2dy,x2m̂1 n̂1 r̂ !1 (
n̂Þm̂

r̂Þn̂,ŝÞr̂

r4~dy,x1m̂1 n̂1 r̂1ŝ

2dy,x2m̂1 n̂1 r̂1ŝ!, ~5.2!

l~x2y!5l0dy,x1(
m

l1~dy,x1m̂1dy,x2m̂!

1 (
n̂Þm̂

l2~dy,x1m̂1 n̂1dy,x2m̂1 n̂ !

1 (
n̂Þm̂

r̂Þm̂,n̂

l3~dy,x1m̂1 n̂1 r̂1dy,x2m̂1 n̂1 r̂ !

1 (
n̂Þm̂

r̂Þn̂,ŝÞr̂

l4~dy,x1m̂1 n̂1 r̂1ŝ1dy,x2m̂1 n̂1 r̂1ŝ!.

~5.3!

Here, m̂,n̂,r̂, and ŝ denote unit vectors along positive a
well as ~except form̂) negative directions in the hypercub
lattice. Numerical values for the set of nine couplin
$r i% i 51

4 , $l i% i 50
4 are given in Table 1 of@16# for m50.

Taking the Fourier transform of the action Eq.~5.1!, it is
straightforward to write down the propagator in momentu
space:

FIG. 5. The physical (E1
p) and unphysical (E2

p) poles of the
quark propagator obtained from the truncated perfect action

functions of the spatial momentumkW . The straight line shows the
continuum dispersion relation and the dash-dotted curve gives
dispersion relation for the standard Wilson fermion action (Ew).

d
ic

a
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S~k!5
2 ig0d sink02 iK12 iK2cosk01k11k2cosk0

~K 1
21k1

21d2!12cosk0~K1K21k1k2!1cos2k0~K 2
21k2

22d2!
, ~5.4!
on

e
o
al
W
-

-
tate

time

e-
sed
il-
with

K15(
i 51

3

g ia i , K25(
i 51

3

g ib i . ~5.5!

Explicit expressions for the momentum-dependent functi
a i5a i(kW ), b i5b i(kW ),d5d(kW ), k15k1(kW ), andk25k2(kW )
are given in Appendix B.

For the analysis of meson correlation functions and th
spectral representation, one has to calculate the quark pr
gator in the mixed (t,kW ) representation. The calculation
steps are completely analogous to those for the standard
son action presented in Ref.@22#. However, the quark propa
gator now has two poles,ik05Ei . This is similar to the case
of the Wilson action withr t,1. The two poles are deter
mined from

coshE15
2P2A~P22QR!

Q
, ~5.6!

sgn~Q!coshE25
2P1A~P22QR!

Q
, ~5.7!

with additional functions

P~kW !5K1K21k1k2 , Q~kW !5K 2
21k2

22d2,

R~kW !5K 1
21k1

21d2. ~5.8!
n
t
ion

ca
n

01450
s

ir
pa-

il-

In the limit Nt→` the quark propagator is then given by

S`~t,kW !5
1

2AP22QRsinhE1

@~k12 iK1!1~k22 iK2!

3coshE11g4d sgn~t!sinhE1#e2E1t

2
~21!tQ(2Q)

2AP22QRsinhE2

@~k12 iK1! sgn~Q!

1~k22 iK2!coshE21g4d sgn~t!sinhE2#e2E2t.

~5.9!

The first term describes the propagation of a physical s
with energy ~dispersion relation! E1(kW ), while the second
corresponds to an unphysical state, the analogue of the
doubler in the case of the Wilson action withr t,1. In Fig.
5 we showE1 andE2 as functions ofkW .

As one can see from the figure,E1(kW ) is very close to the
continuum result for small and moderate momenta andE2 is
much larger thanE1. Only for momentaukW u.2.5 is the gap
betweenE2 andE1 getting small. This has important cons
quences for the meson correlators which will be discus
below. Following exactly the same procedure as for the W
son action, the meson correlators for finiteNt can be written
as
G̃H~ t̃,p[0!5NcS Nt

Ns
D 3

(
kW

cH
lat,p~kW !cosh@2E1~kW !Nt~ t̃21/2!#1dH

lat,p~kW !

~P22QR!cosh2@E1~kW !Nt/2#
1DGH

E2~ t̃ !. ~5.10!
on-

m-
tri-
m-

nic
e
nc-
on
We
The functionscH
lat,p(kW ) anddH

lat,p(kW ) are given in Table II in

terms ofd(kW ) and a new functiondp(kW ),

dp[dp~kW !5
~K11K2coshE1!2

sinh2E1

. ~5.11!

The termDGH
E2( t̃) in Eq. ~5.10! contains a contribution from

the second poleE2, and an explicit expression for it is give
in Appendix B. As the energiesE2 are large, it turns out tha
this part leads to negligible contributions to the correlat
functions except for very short distances (t̃50,1/Nt). Using
the binning approach discussed in Appendix A, we have
culated the spectral functions numerically in different qua
tum number channels. Results forNt524 are shown in Fig.
l-
-

6. The good chiral properties and agreement with the c
tinuum result over a wide range of energies (va;5) are
self-evident. The contribution of the physical pole (E1

p) has
also been calculated analytically, which can be done in co
plete analogy to the case of the Wilson action. This con
bution alone is, as expected, indistinguishable from the co
plete result up tova;5 ~Fig. 6!.

VI. CONCLUSIONS

We have presented an explicit calculation of meso
spectral functions in the infinite temperature limit of lattic
QCD. We analyzed the cutoff dependence of spectral fu
tions in different quantum number channels for the Wils
fermion action on isotropic as well as anisotropic lattices.
4-8
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find that the cutoff effects are of similar magnitude in bo
cases. The introduction of a Wilsonr parameter less tha
unity, in particular the choicer 51/j, does not seem to lea
to a significant reduction of cutoff effects.

Furthermore, we analyzed the spectral representatio
mesonic correlation functions using a truncated perfect
tion. As expected, this does lead to a drastic improvemen
the spectral functions; cutoff effects are shifted to the h
energy regime and chiral symmetry is preserved in the
energy part of the spectral functions up to energiesva.5.
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APPENDIX A: FREE MESONIC LATTICE SPECTRAL
FUNCTIONS

We derive here the explicit form of the representation
the free mesonic lattice spectral functions given in E
~3.11!. In particular, we give closed analytic expressions
the integralsI i(y,j) appearing in these equations for the ca
r 51 and discuss a representation in terms of finite Riem
sums, which is more convenient for dealing with the casr
,1 or spectral functions resulting from more complicat
actions, like the truncated perfect action analyzed in Sec

TABLE II. The coefficientscH
lat,p and dH

lat,p appearing in Eq.
~5.10!. The functionsdp andd are defined in Eqs.~5.11! and~B7!,
respectively.

H cH
lat,p dH

lat,p

PS d2 0
S 2dp dp2d2

V0 0 2d2

( i 51
3 Vi 3d22dp dp

(m50
3 Vm 3d22dp dp2d2

A0 d22dp dp

( i 51
3 Ai 22dp 2dp23d2

(m50
3 Am d223dp 3(dp2d2)

FIG. 6. Free spectral functions on isotropic lattices calcula
with a truncated perfect action form50. The left figure shows the
complete result, the right one the contribution from the physi
pole (E1

p) alone.
01450
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rÄ1

We start from Eq.~3.8! by performing the obvious vari-
able transformationkW→xW5„sin2(k1/2),sin2(k2/2),sin2(k3/2)….
We then define

a5
K 21M 2

4~11M!
~A1!

and rewrite Eq.~3.6! asE52 ln(Aa1A11a). Using these
expressions we can perform a second variable transfor
tion, xW→(ṽ,z2 ,z3)5(2NtE,x2 /a,x3 /a). This leads to the
representation of the correlation functionsG̃i @Eq. ~3.10!#
where the integralsI i(y,j) @Eq. ~3.11!# are given by

I i~y,j!5E E
V(y)

dz2dz3A~zW !B~zW !Ci~zW !, ~A2!

with zW5(z,z2 ,z3) andz(y)5sinh2(y/4). We further define

x5
j22~z21z3!~122jz1m̂!1jm̂2m̂2/4z22zz2z3

112z~z21z3!1m̂22jz
.

~A3!

With this, the functions appearing in the integrand ofI i can
be written as

A~zW !5j
j12z~x1z21z3!1m̂

112z~z21z3!1m̂22jz
, ~A4!

B~zW !5@112j21z~x1z21z3!1j21m̂#22, ~A5!

C1~zW !5@xz2z3~12zx!~12zz2!~12zz3!#21/2, ~A6!

C2~zW !5
4

j2

x~12zx!1z2~12zz2!1z3~12zz3!

@xz2z3~12zx!~12zz2!~12zz3!#1/2
.

~A7!

The boundary of the two-dimensional integration regio
V(y), is given by

V~y!5$z2 ,z3u0<xy<1; 0<z2y<1; 0<z3y<1%.
~A8!

Arbitrary r

In general we can also determine the spectral function
given quantum number channel directly from the represe
tion of the correlation functions in Eq.~3.5!. We can divide
the interval of nonvanishing energies,ṽ52NtE(kW ), into n
bins. Denoting byv i the central values of these bins an
introducing the bin lengthe5(ṽmax2ṽmin)/n, we can ap-
proximate Eq.~3.5! by

G̃H~ t̃,p̃[0!.(
i 51

n

esi

cosh@ṽ i~ t̃21/2!#

sinh~ṽ i /2!
, ~A9!

d

l
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wheresi receives contributions from all terms in the mome
tum sum that lead to energies 2NtE(kW ) in the i th bin,

si5NcS Nt

jNs
D 3

(
kW

Q„2NtE~kW !2~n21!e…

3Q„ne22NtE~kW !…
cH

lat~kW !sinh@NtE~kW !#

~11M!2cosh2@E~kW !Nt/2#
.

~A10!

In the limit of large spatial volumes (Ns→`) and small bin
sizes (e→0), this gives the spectral functions in a give
quantum number channel. We have used this approac
calculate spectral functions in the caser ,1 and also in the
case of the truncated perfect action. Typically, we usedNs

;1000 andn51000.

APPENDIX B: TRUNCATED PERFECT ACTION

In this appendix we give explicit expressions for the au
iliary functions that appear in calculations with the trunca
perfect action, in particular in the quark propagator given
Eq. ~5.4!.

The explicit forms of the functionsa i(kW ), b i(kW ), i

51,2,3, andd(kW ), k1(kW ), andk2(kW ) are given below:

a1~kW !52ŝ1~r112r2~ ĉ21 ĉ3!14r3ĉ2ĉ3!, ~B1!

TABLE III. The explicit form of the functionsgH
lat,p appearing in

Eq. ~B13!. The functionsd1
p3(kW ) and d2

p3(kW ) are defined in Eqs.
~B14! and ~B15!.

H gH
lat,p

PS d1
p31d2

p3

S 2d1
p31d2

p3

V0 d1
p31d2

p3

( i 51
3 Vi d1

p313d2
p3

(m50
3 Vm 2d1

p314d2
p3

A0 d1
p32d2

p3

( i 51
3 Ai d1

p323d2
p3

(m50
3 Am 2d1

p324d2
p3
01450
-

to

-
d
n

a2~kW !52ŝ2~r112r2~ ĉ11 ĉ3!14r3ĉ1ĉ3!,
~B2!

a3~kW !52ŝ3~r112r2~ ĉ11 ĉ2!14r3ĉ1ĉ2!,
~B3!

b1~kW !54ŝ1@r212r3~ ĉ21 ĉ3!14r4ĉ2ĉ3#,
~B4!

b2~kW !54ŝ2@r212r3~ ĉ11 ĉ3!14r4ĉ1ĉ3#,
~B5!

b3~kW !54ŝ3@r212r3~ ĉ11 ĉ2!14r4ĉ1ĉ2#,
~B6!

d~kW !52r114r2~ ĉ11 ĉ21 ĉ3!

18r3~ ĉ1ĉ21 ĉ2ĉ31 ĉ1ĉ3!116r4ĉ1ĉ2ĉ3 , ~B7!

k1~kW !5l012l1~ ĉ11 ĉ21 ĉ3!

14l2~ ĉ1ĉ21 ĉ2ĉ31 ĉ1ĉ3!18l3ĉ1ĉ2ĉ3 , ~B8!

k2~kW !52l114l2~ ĉ11 ĉ21 ĉ3!

18l3~ ĉ1ĉ21 ĉ2ĉ31 ĉ1ĉ3!116l4ĉ1ĉ2ĉ3 ,

~B9!

where we introduced the shorthand notationĉi5coski and
ŝi5sinki .

Furthermore, we give the explicit expression for the te
in the meson correlatorDGH

E2( t̃) coming from contributions
of the second poleE2. It can be written as

DGH
E2~ t̃ !5GH2~ t̃ !1GH12~ t̃ !, ~B10!

whereGH2( t̃) contains contributions from the second po
ik05E2 only and therefore can be written down in clo
analogy with the term containing only the contribution fro
the first poleE1:
G̃H2~ t̃,p̃[0!5NcS Nt

Ns
D 3

(
kW

cH
lat,p2~kW !cosh@2E2~kW !Nt~ t̃21/2!#1dH

lat,p2~kW !

~P22QR!cosh2@E2~kW !Nt/2#
. ~B11!

The functionsP,Q,R have been defined in Eq.~5.8!; dH
lat,p2 andcH

lat,p2 have exactly the same structures asdH
lat,p andcH

lat,p listed
in Table II with dp being replaced by

dp2[dp2~kW !5
@K11K2sgn~Q!coshE2#2

sinh2E2

. ~B12!

The second termGH12( t̃) contains contributions from both the first and second poles and can be written as
4-10
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GH12~ t̃ !5NcS Nt

Ns
D 3

(
kW

~21!Q(2Q)t11

~P22QR!cosh@E1~kW !Nt/2#cosh@E2~kW !Nt/2#
@gH

lat,p~kW !$cosh@Es~kW !Nt~ t̃21/2!#2cosh@Ed~kW !Nt~ t̃

21/2!#%1d2~kW !$cosh@Es~kW !Nt~ t̃21/2!#1cosh@Ed~kW !Nt~ t̃21/2!#%#, ~B13!

whereEs5E11E2 , Ed5E12E2. An additional functiongH
lat,p(kW ) has been introduced, which depends on

d1
p35

K 1
2sgn~Q!1K 2

2coshE1coshE21K1K2@coshE21sgn~Q!coshE1#

sinhE1sinhE2
, ~B14!

d2
p35

k1
2sgn~Q!1k2

2coshE1coshE21k1k2@coshE21sgn~Q!coshE1#

sinhE1sinhE2
. ~B15!

The explicit form ofgH
lat,p for different quantum numbers is given in Table III.
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