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Lattice study of the two-dimensional Wess-Zumino model
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We present results from a numerical simulation of the two-dimensional Euclidean Wess-Zumino model. In
the continuum the theory possessés 1 supersymmetry. The lattice model we employ was analyzed by
Golterman and Petcher, who gave a perturbative proof that the continuum supersymmetric Ward identities are
recovered without fine-tuning in the limit of vanishing lattice spacing. Our simulations demonstrate the exis-
tence of important non-perturbative effects in finite volumes which modify these conclusions. It appears that in
certain regions of parameter space the vacuum state can contain solitons corresponding to field configurations
which interpolate between different classical vacua. In the background of these solitons supersymmetry is
partially broken and a light fermion mode is observed. At fixed coupling the critical mass separating phases of
broken and unbroken supersymmetry appears to be volume dependent. We discuss the implications of our
results for continuum supersymmetry breaking.
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[. INTRODUCTION Petchef1]. The model has also been studied using a Hamil-
tonian formulation in[6] and [7]. Unlike the Hamiltonian

Supersymmetry has often been invoked as a necessafgrmulations, the Euclidean lattice theory does not retain
ingredient for any particle physics theory that attempts teexact supersymmetry. Nevertheless, Golterman and Petcher
bridge the gap between the scale of electroweak symmetrgrove that the discrete analogues of the continuum super-
breaking and the much larger scale associated with unificssymmetric Ward identities are satisfied exactly in the limit of
tion of the low energy gauge interactions. The basic idea iganishing lattice spacing without the necessity of additional
that while generic field theories involving scalars are un-fine-tuning. The proof is perturbative and our goal in these
stable to large radiative corrections which mix scales, theseimulations was to check whether the model allows for su-
radiative effects can be made much smaller if the scalapersymmetry breaking via non-perturbative effects. We find
theory is embedded inside some supersymmetric theory. TH&at indeed the lattice model shows evidence of supersym-
dynamical breaking of supersymmetry through non-metry breaking for small values of the lattice mass param-
perturbative effects can then occur at scales which are exp@ter. Furthermore, this breaking is correlated with the onset
nentially suppressed relative to the grand unified scale. Thisf field configurations which sample both the classical vacua
symmetry breaking can, in turn, then trigger electroweakof the model. In this limit we also observe a light fermion
breaking. state which we speculate may play the role of a Goldstino

Thus the non-perturbative structure of supersymmetri@ssociated with spontaneous supersymmetry breaking.
theories is a subject of great interest. The only tool for a We have developed and tested a Fourier accelerated ver-
systematic investigation of non-perturbative effects is the latsion of the so-calle® algorithm([8] to handle the fermionic
tice and so a lot of effort has gone into formulating latticeintegrations. For details of this Fourier acceleration tech-
supersymmetric theoriegl,2]. Typically it is difficult to  nique in the context of the hybrid Monte Carlo algorithm we
write down lattice actions which can be shown to flow to arefer the reader tf8]. We have employed an exact algorithm
supersymmetric fixed point without fine-tuning, as the latticeto calculate the sign of the Pfaffian resulting from the inte-
spacing is reduced. gration over the fermion fields. These issues are discussed in

The model we examine in this paper—the two dimen-detail in Sec. Il. We present our evidence for symmetry
sional Wess-Zumino model—appears to provide an excepdreaking together with numerical results on the spectrum and
tion to this rule. This theory involves the interactions of sca-Ward identities in Sec. Ill. In Sec. IV we summarize our
lars and fermion fields and exhibits &1 supersymmetry findings and discuss their implications for supersymmetry
in the continuum. A version of this model defined on com-breaking in the continuum in finite and infinite volume.
plex fields and possessitg=2 supersymmetry was the sub-
ject of a recent numerical study i8] and was also examined Il. LATTICE MODEL
in a variety of earlier papergt]. The N=2 model actually
possesses an exact lattice supersymmetry which can be s
to result from its proximity to a continuum topological field

o We consider the on-shell two-dimensional Wess-Zumino
Hodel represented by the following continuum action in Eu-
clidean spacél]:

theory[5].
We have chosen to study a particular Euclidean lattice , 1 . — )
formulation of the N=1 model due to Golterman and So=f d XE[(ﬂ,L(ﬁ) +4(0+P' (d)y+PAd)] (D)

where ¢ and ¢ are a real scalar field and a two component
*Corresponding author. Email address: smc@physics.syr.edu Majorana spinor respectively. The construction of Euclidean
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Majorana spinors is described by Nicolai[it0]. The expres-

sion Q(¢)=4+P’'(¢) will be referred to as the fermion
matrix. The potentiaP(¢) we considefactually the deriva-

tive of the superpotentiatakes the following form depend-
ing on a masM and a coupling constai@:

M, G=0,

PIO)=1 Gp2—m2aG, G=o.

Notice that this potential is slightly different from the one
considered in1] but may be derived from it by a simple

shift in the scalar field. It has the advantage that the total

action now depends only oM? which allows us to restrict
our simulations to positivi. Notice also that the interacting
theory has two classical vacua ét=+M/2G. The action
(1) is invariant under the following supersymmetry transfor-
mation:

Sp=s, Sy=[ld—P($)]e.

The simplest supersymmetric Ward identity following from
this invariance takes the form

(Ithy) +{[bd—P(h)1xy)=0. 2
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wherer,r' are two-dimensional vectors enumerating the lat-
tice sites ane,, is a unit vector in theu directionu=1,2. In
terms of this difference operator the fermion matrix on the
lattice can be represented as

Q=Q

wherea, 8 are spinor indices. We have employed the follow-
ing representations of the Dirac matrices:

ol )

The matrixC is given explicitly as

ol

It is convenient to define an operata, ,:
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Integrating out fermion variables in the path integral leads to

the following form of the partition functioi11] [see the
Pfaffian definition(Al) in the Appendix:

ZZJ DqSsze*So:f D¢ Sgr{Pf(CQ)]etf[m(QTQ)]M*Sb

whereC is a Euclidean representation of the charge conju-

gation matrix andS, stands for the bosonic part of the ac-
tion:

1
S [ @G 1(5,6)7+ 7o),

In practice we simulate the system without regard to the sig
of the Pfaffian using the following actio®&

S

1 1
- SHINQTQI+ [ d((7,6)7+ P (@)

In terms of the operatoE?,, the lattice potential and its

derivative can be represented as follows:

.

!

'

me,— 0 12, 9=0,
gpi—mPlag—0% /2, 9#0,

|

where the term witrDrlr, is the Wilson mass operator, which

serves to eliminate problems due to doubling of the lattice
fermion modes and vanishes in the continuum limit. The

1
Ot s2,

29,6, — 07

'’

m(sn-/_ g:o,

12, 9#0,

P,
Iebys

"Yimensionless lattice couplingsand m are related to their

continuum counterparts through the relatigns Ga andm
=Ma with a the lattice spacing.

Finally the lattice representation of the continuum action
(3) can be viewed as the sum of the following boson and
fermion components:

The expectation values of physical observables are then ob-

tained by reweighting with the measured sign of the Pfaffian

in the usual manner:

_(OsgiPICQ))s
(sgTPICQ)])s

We now turn to the lattice model. First, we replace the

(O)s, 4

continuum derivative operator by the symmetric difference

matrix Dﬁ, where the latter is defined as

Mo
m’

1
D 5[5r+eﬂ,r’_5r—eﬂ,r’]

1
Sy= 51— O b+ PP,

1 T 1 T aa
Si=—7tTI(QTQ)]=—Z[IN(Q"Q)J5*.

Ill. SIMULATION DETAILS

To simulate the systenfB) we use an importance sam-
pling technique based on a classical evolution of the fields in
some auxiliary time. To implement this it is necessary to
introduce a Hamiltonian
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1 Pt o= Pe+ (Fet+Fips) 0U/2,
H= Eprpr"'S

associated with this auxiliary time varialand correspond- WhereF is the force associated with the classical evolution.
ing momentum fielcp conjugate to the fields. On integra- The _ergod|C|ty of the simulation is prov]ded py perlpdlcally
tion over the auxiliary momentum it is trivial to show that ~drawing new moment@ from a Gaussian distribution. In
the classical partition function associated wiireproduces ~Order to decrease the autocorrelation time associated with
the quantum partition function associated with the originalthis dynamics we have utilized acceleration techniques simi-
actionS The advantage of this Hamiltonian formulation is 1&r to those explored if9]. Specifically, the discrete time
that it admits a classical dynamics, which can be used t&pdate of the fields corresponding to the Hamiltonian evolu-

generate global moves of the fiedtl tion is carried out in momentum space with a momentum
We evolve the system governed Byaccording to a finite dependent time step which is tuned so as_to evolve _Iow mo-
time step leapfrog algorithm in the usual manner: mentum components of the_f_leld more rapidly Fhan high mo-
mentum components. Specifically we used a time step of the

Prr 1= byt PeSt+F(81)%12, form

Mycot 4
&(n) =€ acc
2 2 2

> sif(2mn, /L) +| Muec+2 >, sirf(amn, /L)
n=1 n=1

where the lattice momenta are integer vectors with com- The algorithm proceeds by replacing the exact inverse matrix
ponents ranging from-9:-L—1 for anL X L lattice. The pa- (Q'Q) ! by a stochastic estimator given by the following
rameterm, . is typically set to the input lattice mass which expression:
is close to optimal in these simulations.
The total force can be represented as a sum of boson and [(QTQ)_l]f’,’f~<Xf“Xf,>N (5)
fermion contributions:
where the vectoX is defined through a random Gaussian

F=FP+FI. vectorR; as
The evaluation of the boson force is straightforward: QX=Ry
S, and the averaging in E¢5) is accomplished oveN different

b__ _ 2 ’ -
Fr=- 3_br =0 o =PoPr. random noise vectorgy .
The larger the numbeX of noise vectors used the more
In order to evaluate the fermion force we first evaluate theiccurate is the evaluation of the inverted matrix in £,

following expression involving the fermion matrix: but the longer computational time the evaluation takes. It is
clear that the optimal value dN is given by that which
AQTQ)*  s2p,, 92P., minimizes the error in the inverse matrix for fixed computa-
T > 4Qh— = tional time T. Defining the norm of a matrifA|| as
dbs dbyabg =T Srﬁbrrﬁbs

=29(5:Q7+ Q548,19 1A=~/ > AZ.
1

The fermion force then is . .
The relative error is then

f (?Sf 1 aﬂé(Q Q)r’r N 5 A
Fs bs 4[(Q Q)fl]rr,—bs é”‘ ‘” _ \[[ ” |]
N

1Al 1A
=g[(Q"Q) 115¥Qsf.
where{ §||A|l/|All}x is the relative error produced by a single
The computation of the fermion force appears to be probapplication of anR algorithm with averaging oveN noise
lematic as it appears to require the repeated inversion of theectors. Hence the relative error obtained over tir@an be
fermion matrix, which is prohibitively expensive. In order to characterized by the algorithm efficienEywhich we define
resolve this problem we use the so-callRdalgorithm [8]. as
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5.76 . simulation of the systen@). Then the average valu®)s,

of any physical observabl® in the systen{1) can beevalu-
atedusing Eq.(4) as

5.75 b

Oy O N,—O_N_ 6
< >_ N+ —N_ ( )
w 574 - | whereO.. are average values @ obtained in configuration

subsets with positive and negative €f0). This averaging
procedure reveals two statistical problems. The first problem
is that if N, ~N_ (that is, the probabilities to find the system
573 ] with either sign of the Pfaffian are approximately the same
then the error of the evaluatiai®) experiences an amplifi-
cation by a large factorN, +N_)/(N,.—N_). In this case
it is possible for the error to swamp the signal in the mea-
5.72 ‘ : ‘ ‘ : sured value(O). Although acquiring more measurements
0 20 40 60 80 100 ; . N "
N will decrease the fluctuations it might not solve the amplifi-

cation problem if
FIG. 1. Algorithm efficiency as a function of the number of

noise vectors. lim Ny 1. 7
N, +N,—»°CN*
= dlAl - - i
E=VN TAT | A second problem is that the expressi@ provides a good
N

evaluation of(O)s; only if (O) is uniquely defined in the
) . o limit N, +N_—o0, which is not necessarily the case. If Eq.
Our tests showed that this algorithm efficiency does not dem takes place ther{O) is well defined only if (O, )
peno] strongly on the choice d)t (Flg. 1. Furthermore, we —(0_), which is not guaranteed to be true.
monitored the average bosonic acti®,) and observed no |, yractice we find that many of our observables suffer
systematic drift withN. Consequently we chodé=1 in all  |5rge and difficult to quantify errors for small values of the
our runs. In this limit the corresponding fermion force t€rm |atice mass where we observe oscillations in the sign of the
yields Pfaffian. This precludes making strong quantitative state-
ments in that region.
1 ,dQ'Qf
Fe~ foxﬁa—bs” = gQ;ﬁ (XSXP+XEXT). IV. RESULTS
We obtained data for lattice sizés=8 andL =16 for a
Finally let us turn to the issue of the sign of the Pfaffianfixed lattice couplingg=0.125 while varying the lattice bare
which results from integrating out the Majorana fields. As wemassm. The classical vacua of the lattice theory correspond
have stressed the simulation action discussed above utilizég vanishing fermion field and boson fielti= +m/2g. For
the absolute value of this Pfaffian and observables must blargem, field configurations which interpolate between these
re-weighted by the sign of the Pfaffian in order to computetwo vacua are associated with large values of the action and
physical expectation values. We have chosen to use an exadte hence expected to be highly suppressed. We thus expect
algorithm to compute this sign. Since we are in two dimen-the boson field to be confined in the neighborhood of one of
sions and need only do this when making measurements thibe classical vacua for sufficiently large mass. In the con-
turns out to be quite manageable in a practical sense. Odinuum the action is invariant undef— — ¢ implying that
procedure was outlined irl2] and for completeness we list these two vacuum states are equivalent. This is no longer
the proof and details of the algorithm in the Appendix. Intrue on the lattice due to the presence of the Wilson term
essence the original antisymmetric matrix can be transtactually the sign of the Pfaffian may also change under this
formed to a special block diagonal form via a similarity symmetry. Indeed our simulations reveal that only the state
transformation built from a triangular matrix. The determi- with ()~ —m/2g survives at largen. As m decreases we
nant of the latter can be shown to yield the Pfaffian. We therexpect that tunneling to the other vacuum state may occur
fold the sign of the Pfaffian in with measurements of observ-and this is indeed seen in our simulations. Figures 2 and 3
ables according to Ed4). This reweighting procedure is an show plots of(Pf(CQ)) and({¢)/m versusm for L =8,16.
effective way to measure expectation values of a variety oBelow some criticalm=m¢(L) the sign of the Pfaffian,
observables. However, in certain conditions this techniguevhich is negative at large mass starts to fluctuate. Addi-
may fail. The following arguments highlight the problems tionally, in this region we can see that the average field
that may be encountered in this type of situation. (#)/m also undergoes large fluctuations which are the direct
Let N, and N_ be the numbers of configurations with result of the Pfaffian sign changes. Indeed, at small mass we
positive and negative values of EfQ) obtained from the observe that for each configuration in our ensemble the sign
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FIG. 2. Average field and average Q) for L=8. The field FIG. 4. Evolution of PfCQ) and() in auxiliary timet for L
values are rescaled fon<0.46 by a factor of 1/200. =8, m=0.125.

of the Pfaffian is very accurately correlated with the sign of We have also measured tkeero momentumboson and
the mean boson field. Figure 4 shows a time series of botfermion correlation functions over the same range of lattice
quantities atm=0.125 andL =8 which illustrates this be- bare masses. Figures 5 and 6 show typical bosonic and fer-
havior very well. Actually it is easy to see why this is so. mionic two point functions computed on ensembles corre-
Imagine expanding the Pfaffian as a power series in the basponding toL =16 with m=0.5. These are fitted by hyper-
son field¢. For sufficiently smalimwe expect that only the bolic cosh and mixed hyperbolic sinh and cosh functions to
leading term is important and by translational symmetry thisextract the corresponding boson and fermion masses. These
can depend only on the field summed over all lattice sites: (lattice) masses are shown in Figs. 7 and 8 for8 andL
=16 respectively. The statistical errors we show neglect the
effects of correlation between observables at different time
PRCQ)~ >, ¢r+0( Z' (;Srqﬁrr). slices. Consider the data far=8. Notice that the boson and
' fermion masses are equal within statistical errors at large
bare input mass but deviate substantially at small mass—the
As we discussed in the previous section this sign oscillatiomliagonal spinor components of the fermion correlator being
renders accurate measurement$@f and its error very dif- dominated by a light state. Contrast this with the off-diagonall
ficult in this region. components of the fermion correlator for small bare mass
which yield a much heavier mass degenerate with the boson

4 T T T T T T T
380 T T T
5 | =—a <Pf(CQ)> |
A—aA <dp>/m
0 - -
370 i
2L § &
<
\2
-4 | 360 - 7
-6 | i
_8 . 1 . 1 . 1 N 1 \ 1 \ 1 \ 1 L L L L
0 01 02 03 04 05 06 07 08 8505 5 10 15
X
FIG. 3. Average field and average BiQ) for L=16. The field
values are rescaled fon<0.29 by a factor of 1/8. FIG. 5. Bosonic correlation function fdr=16, m=0.5.
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FIG. 6. Fermionic correlation function far=16, m=0.5.

mass within statistical errors. A light fermion state is also
visible in theL=16 data at small mass. The mass of this
light fermionic state appears to decrease with increasing bafd!
input lattice massn. It is tempting to conclude from these
observations that for small enough mass supersymmet
breaks as a result of mixing between the two classic

PHYSICAL REVIEW D 68, 014503 (2003
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FIG. 8. Mass gaps foL =16.

Thus we see that a vanishing partition function would require
equal numbers of positive and negative sign Pfaffians in our
semble. Table | shows the numbers of posite and
negativeN_ Pfaffians for three different runs at the same

easurements. While the relative errors of on the order of

,%arameter valuels=8 andm=0.25 each containing 100 000

vacua—this being signaled by the appearance of a Goldstind€n percent it should be clear that the data are consistent with

Another line of evidence in favor of this derives from the
partition function itself. On a finite lattice equipped with pe-
riodic boundary conditions, such as employed in our simula
tions, the partition function can be thought of as yielding a
representation of the Witten index. Vanishing Witten index is
a necessary condition for supersymmetry breaking.ZBzdn

a vanishing Witten index.

To investigate this symmetry breaking further we have
looked at the simplest supersymmetric Ward identity involv-
ing two point functiong2). Figures 9—12 show the bosonic
and fermionic diagonal and off-diagonal spinor contributions

to this Ward identity together with their sum for two different

also be related to the expectation value of the sign of th&@lués of the bare mass=0.125 andm=0.5 on a lattice

Pfaffian in our simulation ensemble

Zs,=(sgi P(CQ)])s.

15
—amy.
mfermi(oo)
mlerml(01)
i1} |
%
£
05 | N
0 ! !
0 0.2 0.4

FIG. 7. Mass gaps foL =8. Mass gaps from bosonic correla-
tors are shown fom<0.46 without error bars.

m

0.6

with L=16. Clearly for large mass this relation is satisfied
within errors for all spinor channels but it is clearly violated
at small mass for the channel involving the diagonal spinor
correlations. The latter channel is precisely the one in which
the light fermion was seen and support the idea that breaking
of supersymmetry is associated with the appearance of a
Goldstino. Notice that the off-diagonal components of the
Ward identity arestill accurately satisfied even at small mass.
We will argue in the next section that this is exactly what we
might expect for a partial breaking of supersymmetry asso-
ciated with the appearance of a finite volume vacuum state
composed of solitons.

V. CONCLUSIONS

We have studied a lattice regularized version of the two-
dimensional Wess-Zumino model which possegsesl su-

TABLE I. Numbers of positive and negative Pfaffians for
=8 andm=0.25.

N, N_
40968 59032
43814 56186
52252 47748
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FIG. 11. Contributions to the diagonal components of Ward

FIG. 9. Contributions to the diagonal components of Ward iden-, )
identity for m=0.5.

tity for m=0.125.

tunneling between different vacua in auxiliary time. The ap-
persymmetry in the naive continuum limit. This model waspearance of states which interpolate between different pertur-
first analyzed i 1] where it was shown perturbatively that bative vacua is of course entirely a non-perturbative effect.
the supersymmetric Ward identities are recovered withouAssociated with these tunneling states we see oscillations in
fine-tuning in the limit of vanishing lattice spacing. The goal the Pfaffian of the fermion operator and the appearance of a
of our simulations was to check these conclusions at théght fermion visible in the diagonal components of the fer-
non-perturbative level and to specifically to address the immion correlator. In such a phase it appears that supersymme-
portant issue of supersymmetry breaking. We have considry is at least partially broken.
ered the model for fixed lattice couplirgg=0.125 and vary- It is possible to get some further understanding of this
ing lattice massn for two lattice sized. =8 andL=16. For  phenomenon within the context of the semi-classical ap-
large m our results favor a supersymmetric phase in whichproximation. Consider first the continuum model. It is clear
boson states pair with equal mass fermion states and theatin a finite volumecorresponding to a box of sidgy,s,
supersymmetric Ward identities are satisfied. In this region oin addition to the supersymmetric vacge= = M/2G, there
parameter space correspondingfte —m/2g the boson field are additional local minima of the actiq) corresponding
suffers small fluctuations around a single vacuum state. to domain wall solutions which interpolate between these

As the mass is lowered however this picture changes andacua:

below some critical masm (L) we see configurations in

which the mean boson field varies in sign corresponding to X—,
H(X)—
—A, X——oo,
0.6 T T ' 0.28
—a Bosopic'oomponent =——=a Bosonic component
0.4 | +—— Fermionic component b 0.18 | +—— Fermionic component 1
Ao—a4 Ward sum | 4o—4 Ward sum
5 021 ] o 008 1
b 2
: 3
<]
© of ] © _p02 | .
02| q -012 i
-0.4 : ' ' -0.22 : ‘ ‘
0 5 10 15 0 5 10 15
X X

FIG. 10. Contributions to the off-diagonal components of Ward  FIG. 12. Contributions to the off-diagonal components of Ward
identity for m=0.125. identity form=0.5.
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whereA =M/2G andx corresponds to one of the coordinate where i is the mass scale associated with the renormaliza-
directions. Indeed, in the continuum, these solutions take théon point andC is a numerical constant. Along such an
form renormalization group trajectory the valNe= m/2g can then

be related to its constaftontinuum value A 5 via the rela-
d(x)=A tanf M (x—xq)/2]. tion

While the mass of such a soliton state is non-zero it is pos-
sible to show that it is nevertheless annihilated by a single
component of the Majorana supercharge and hence such a
state preserves one half of the original supersymniétgy.
This is the origin of our observation that certain component
of the Ward identities appear to be satisfied at all values o
the parameters. The action of such a soliton is easily eval
atedSp\y = f;‘,GLphyS/\3 and being proportional to the integral

AZ~\?

A2 L

n finite volume the renormalization point in units of the IR
cutoff ul pnys Should be held constant. There are then three
imiting behaviors possible for the system. For small enough

of a total derivative term is topological in character. Thel‘the logarithm is large and positive corresponding to a nega-

corresponding free energy associated with such domain wallve value oszﬁ and a non-zero vacuum energy. or L.
solutions then varies as z,uLphySe*A the logarithmic term is small\ z is now posi-
tive but the free energy of a soliton configuration is negative
and hence the vacuum energy will still be non-zero. Thus for
+Spw any value of the bare parameters and any renormalization
point supersymmetry breaking will occur for small enough
where the logarithmic variation with linear size arises fromlattice size. Conversely for large enougtthe log term will
the number of ways the domain wall can be introduced intgdominate and lead to an infinite soliton actionlas: for
the finite volume. Notice that to do this counting we have toany value of the bare parameters. In this limit the solitons
introduce a short distance cut-aifwhich will naturally be ~ should disappear and supersymmetry should be restored.
interpreted as a lattice spacing in the discretized modelThese conclusions are in agreement with the reasoning pre-
These arguments lead one to conclude that these nomsented in14].
supersymmetric vacua will dominate over the supersymmet- While this work was in preparation we received a report
ric vacua if [15] in which the same model is studied in a Hamiltonian
framework. The conclusions of this study are broadly in
agreement with ours.

Lphys

FDW

SDW_ M3 (ln(LphyS/a) . (8)

I-phys_ 6G2 L

phys
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thatme~0.3 forL=8 andg=0.125, which is quite close to APPENDIX: THE ALGORITHM EOR DETERMINING

the continuum estimat# ca=0.46 for L, =8a. Accord- THE PFAFFIAN OF AN ANTISYMMETRIC MATRIX
ing to our observations this critical mass shifts to smaller

values as the lattice size increases which is also in agreement In this appendix we describe the algorithm for determin-
with these analytic arguments. Furthermore, in the vicinity ofing the Pfaffian of an arbitrary antisymmetritNZ 2N ma-
such a domain wall the fermion is approximately massleséix M, which is defined as follows:

and so can play the role of a Goldstino associated with su-
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persymmetry breaking. Notice that these argumealis on 1

the constraint ofinite volume. The action of such a soliton is PM = ——NE€ay. By ay ByMay B, - May .y
unbounded in infinite volume and hence we would naively N!2

expect solitons to be completely suppressed in such a limit. (A1)

Of course we would like to know whether this finite vol-
ume supersymmetry breaking scenario persists in the corFhe algorithm utilizes the following theorem.

tinuum limit. In general, infinite physical volumeV = Lghyv _ Theoremlf P is a matrix such that an antisymmetric ma-
the continuum limita=L /L —0 should be approached trix M can be represented asi=P'JP where J
by fixing (in this casgtwo renormalized physical parameters =diag(iys,iys, .. ..iy3) is a block-diagonal matrix then

which may be taken as the malsk:L ,, and coupling con- PfM =detP (her_eC=_i v3 is the_ Euclidean representation of

stantGgL yny—expressed in units of the physical lengtf, . the charge conjugation matrix for a two-dimensional sys-

Perturbation theory allows us to relate these renormalizetem.

dimensionless quantities to their bare lattice counterparts ~ The theorem can be proved using the representation of the
Pfaffian in terms of an integral over a Grassmah\zctor

GrLpny~gL, MZLg,~m’L?~Cg’L?In(ua) 6. Definingd=P 6 we have

014503-8
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Notice that the matri® is not orthogonal PT+ P~ 1); hence
it is not associated with any basis transformation in

2N-dimensional vector space. . . .
. . The following algorithm by construction leads to such a ma-
The above theorem can be given an alternative formula;

(A2iM 1) = —(dzj-1MQz) = 6; -

tion. DefiningQ="P ! leads to the following statement: if trleﬁ.e algorithm
T — — -1 i N i -
Q MQ=J then PM—(detQ) . This formulation is used (1) Establish a unary Hx2N matix Q
in the algorithm we describe below. The purpose of the al- . _
=diag{1,1,...,3={e}, where unary vectorg, are col-

gorithm is to represent a given antisymmetric matvixin
terms of a triangular matriQ so that the de and hence the
PfM can be found easily.

The algorithm task.Given an arbitrary antisymmetric
2NX2N matrix M find a triangular matrixQ such that
Q'™™MQ=1J, J=diag(iy3,i ¥z, - - - i ¥3)-

The triangular matrixQ={q;} represented in terms of its
columnsg; will satisfy the relation abové and only if its
columns satisfy the following conditions:

(d2i-1M0z-1)=0, (d2MQy) =0,

umns ofQ,i=1,2,...,A.
(2) For odd values=1,3,...,2N—1 repeat the follow-
ing steps:
(a) Leaveg, as is.
(b) Redefineg;,;—ej,1 /(€ +1Mg)).
(c) For k=i+2ji+3,... N
—ei(e+1Me) +ei.i(eMey).

redefine  e—ey

Notice that in Zc) the vectore,, 4 is used after it is redefined
in 2(b).
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