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Lattice study of the two-dimensional Wess-Zumino model

Simon Catterall* and Sergey Karamov
Physics Department, Syracuse University, Syracuse, New York 13244, USA

~Received 2 May 2003; published 8 July 2003!

We present results from a numerical simulation of the two-dimensional Euclidean Wess-Zumino model. In
the continuum the theory possessesN51 supersymmetry. The lattice model we employ was analyzed by
Golterman and Petcher, who gave a perturbative proof that the continuum supersymmetric Ward identities are
recovered without fine-tuning in the limit of vanishing lattice spacing. Our simulations demonstrate the exis-
tence of important non-perturbative effects in finite volumes which modify these conclusions. It appears that in
certain regions of parameter space the vacuum state can contain solitons corresponding to field configurations
which interpolate between different classical vacua. In the background of these solitons supersymmetry is
partially broken and a light fermion mode is observed. At fixed coupling the critical mass separating phases of
broken and unbroken supersymmetry appears to be volume dependent. We discuss the implications of our
results for continuum supersymmetry breaking.
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I. INTRODUCTION

Supersymmetry has often been invoked as a neces
ingredient for any particle physics theory that attempts
bridge the gap between the scale of electroweak symm
breaking and the much larger scale associated with unifi
tion of the low energy gauge interactions. The basic ide
that while generic field theories involving scalars are u
stable to large radiative corrections which mix scales, th
radiative effects can be made much smaller if the sc
theory is embedded inside some supersymmetric theory.
dynamical breaking of supersymmetry through no
perturbative effects can then occur at scales which are e
nentially suppressed relative to the grand unified scale. T
symmetry breaking can, in turn, then trigger electrowe
breaking.

Thus the non-perturbative structure of supersymme
theories is a subject of great interest. The only tool fo
systematic investigation of non-perturbative effects is the
tice and so a lot of effort has gone into formulating latti
supersymmetric theories@1,2#. Typically it is difficult to
write down lattice actions which can be shown to flow to
supersymmetric fixed point without fine-tuning, as the latt
spacing is reduced.

The model we examine in this paper—the two dime
sional Wess-Zumino model—appears to provide an exc
tion to this rule. This theory involves the interactions of sc
lars and fermion fields and exhibits anN51 supersymmetry
in the continuum. A version of this model defined on co
plex fields and possessingN52 supersymmetry was the sub
ject of a recent numerical study in@3# and was also examine
in a variety of earlier papers@4#. The N52 model actually
possesses an exact lattice supersymmetry which can be
to result from its proximity to a continuum topological fie
theory @5#.

We have chosen to study a particular Euclidean lat
formulation of the N51 model due to Golterman an

*Corresponding author. Email address: smc@physics.syr.edu
0556-2821/2003/68~1!/014503~9!/$20.00 68 0145
ry
o
ry
a-
is
-
e
r

he
-
o-
is
k

ic
a
t-

e

-
p-
-

-

een

e

Petcher@1#. The model has also been studied using a Ham
tonian formulation in@6# and @7#. Unlike the Hamiltonian
formulations, the Euclidean lattice theory does not retainany
exact supersymmetry. Nevertheless, Golterman and Pet
prove that the discrete analogues of the continuum su
symmetric Ward identities are satisfied exactly in the limit
vanishing lattice spacing without the necessity of additio
fine-tuning. The proof is perturbative and our goal in the
simulations was to check whether the model allows for
persymmetry breaking via non-perturbative effects. We fi
that indeed the lattice model shows evidence of supers
metry breaking for small values of the lattice mass para
eter. Furthermore, this breaking is correlated with the on
of field configurations which sample both the classical vac
of the model. In this limit we also observe a light fermio
state which we speculate may play the role of a Goldst
associated with spontaneous supersymmetry breaking.

We have developed and tested a Fourier accelerated
sion of the so-calledR algorithm@8# to handle the fermionic
integrations. For details of this Fourier acceleration te
nique in the context of the hybrid Monte Carlo algorithm w
refer the reader to@9#. We have employed an exact algorith
to calculate the sign of the Pfaffian resulting from the in
gration over the fermion fields. These issues are discusse
detail in Sec. II. We present our evidence for symme
breaking together with numerical results on the spectrum
Ward identities in Sec. III. In Sec. IV we summarize o
findings and discuss their implications for supersymme
breaking in the continuum in finite and infinite volume.

II. LATTICE MODEL

We consider the on-shell two-dimensional Wess-Zum
model represented by the following continuum action in E
clidean space@1#:

S05E d2x
1

2
@~]mf!21c̄„]”1P8~f!…c1P2~f!# ~1!

wheref andc are a real scalar field and a two compone
Majorana spinor respectively. The construction of Euclide
©2003 The American Physical Society03-1
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Majorana spinors is described by Nicolai in@10#. The expres-
sion Q(f)5]”1P8(f) will be referred to as the fermion
matrix. The potentialP(f) we consider~actually the deriva-
tive of the superpotential! takes the following form depend
ing on a massM and a coupling constantG:

P~f!5H Mf,

Gf22M2/4G,

G50,

GÞ0.

Notice that this potential is slightly different from the on
considered in@1# but may be derived from it by a simpl
shift in the scalar field. It has the advantage that the to
action now depends only onM2 which allows us to restrict
our simulations to positiveM. Notice also that the interactin
theory has two classical vacua atf56M /2G. The action
~1! is invariant under the following supersymmetry transfo
mation:

df5 «̄c, dc5@]/f2P~f!#«.

The simplest supersymmetric Ward identity following fro
this invariance takes the form

^cxc̄y&1^@]”f2P~f!#xfy&50. ~2!

Integrating out fermion variables in the path integral leads
the following form of the partition function@11# @see the
Pfaffian definition~A1! in the Appendix#:

Z5E DfDce2S05E Df sgn@Pf~CQ!#etr[ ln(QTQ)]/42Sb

whereC is a Euclidean representation of the charge con
gation matrix andSb stands for the bosonic part of the a
tion:

Sb5E d2x
1

2
@~]mf!21P2~f!#.

In practice we simulate the system without regard to the s
of the Pfaffian using the following actionS:

S52
1

4
tr@ ln~QTQ!#1E d2x

1

2
@~]mf!21P2~f!#. ~3!

The expectation values of physical observables are then
tained by reweighting with the measured sign of the Pfaffi
in the usual manner:

^O&S0
5

^O sgn@Pf~CQ!#&S

^sgn@Pf~CQ!#&S
. ~4!

We now turn to the lattice model. First, we replace t
continuum derivative operator by the symmetric differen
matrix D rr 8

m where the latter is defined as

D rr 8
m

5
1

2
@d r1em ,r82d r2em ,r8#
01450
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wherer ,r 8 are two-dimensional vectors enumerating the l
tice sites andem is a unit vector in them directionm51,2. In
terms of this difference operator the fermion matrix on t
lattice can be represented as

Q[Qrr 8
ab

5gab
m D rr 8

m
1dabPrr 8

8

wherea,b are spinor indices. We have employed the follo
ing representations of the Dirac matrices:

g15S 1 0

0 21D , g25S 0 21

21 0 D .

The matrixC is given explicitly as

C5S 0 21

1 0 D .

It is convenient to define an operatorh rr 8
n :

h rr 8
n

5
1

2 (
m

@d r1nem ,r81d r2nem ,r822d r,r 8#.

In particular,

h rr 8
2

5~DmDm!rr 8 .

In terms of the operatorh rr 8
n the lattice potential and its

derivative can be represented as follows:

Pr5H mf r2h rr 8
1 f r8/2,

gf r
22m2/4g2h rr 8

1 f r8/2,

g50,

g5” 0,

Prr 8
8 [

]Pr

]f r8

5H md rr 82h rr 8
1 /2,

2gf rd rr 82h rr 8
1 /2,

g50,

g5” 0,

where the term withh rr 8
1 is the Wilson mass operator, whic

serves to eliminate problems due to doubling of the latt
fermion modes and vanishes in the continuum limit. T
dimensionless lattice couplingsg and m are related to their
continuum counterparts through the relationsg5Ga andm
5Ma with a the lattice spacing.

Finally the lattice representation of the continuum acti
~3! can be viewed as the sum of the following boson a
fermion components:

Sb5
1

2
$2f rh rr 8

2 f r81PrPr%,

Sf52
1

4
tr@ ln~QTQ!#[2

1

4
@ ln~QTQ!# rr

aa .

III. SIMULATION DETAILS

To simulate the system~3! we use an importance sam
pling technique based on a classical evolution of the field
some auxiliary time. To implement this it is necessary
introduce a Hamiltonian
3-2
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H5
1

2
prpr1S

associated with this auxiliary time variablet and correspond-
ing momentum fieldp conjugate to the fieldf. On integra-
tion over the auxiliary momentump it is trivial to show that
the classical partition function associated withH reproduces
the quantum partition function associated with the origi
action S. The advantage of this Hamiltonian formulation
that it admits a classical dynamics, which can be used
generate global moves of the fieldf.

We evolve the system governed byH according to a finite
time step leapfrog algorithm in the usual manner:

f t1dt5f t1ptdt1Ft~dt !2/2,
-

h

a

th

ob
t

to

01450
l

to

pt1dt5pt1~Ft1Ft1dt!dt/2,

whereF is the force associated with the classical evolutio
The ergodicity of the simulation is provided by periodical
drawing new momentap from a Gaussian distribution. In
order to decrease the autocorrelation time associated
this dynamics we have utilized acceleration techniques s
lar to those explored in@9#. Specifically, the discrete time
update of the fields corresponding to the Hamiltonian evo
tion is carried out in momentum space with a moment
dependent time step which is tuned so as to evolve low m
mentum components of the field more rapidly than high m
mentum components. Specifically we used a time step of
form
dt~n!5e
macc14

A(
m51

2

sin2~2pnm /L !1S macc12 (
m51

2

sin2~pnm /L !D 2
trix
g

an

e

t is

ta-

le
where the lattice momentan are integer vectors with com
ponents ranging from 0→L21 for anL3L lattice. The pa-
rametermacc is typically set to the input lattice mass whic
is close to optimal in these simulations.

The total force can be represented as a sum of boson
fermion contributions:

F r5F r
b1F r

f .

The evaluation of the boson force is straightforward:

F r
b52

]Sb

]br
5h rr 8

2 f r82Pr8Pr8r
8 .

In order to evaluate the fermion force we first evaluate
following expression involving the fermion matrix:

]~QTQ!rr 8
ab

]bs
5

]2Ps8
]br]bs

Qs8r8
ab

1Qs8r
ba ]2Ps8

]br8]bs

52g~d rsQrr 8
ab

1Qr8r
bad r8s!.

The fermion force then is

Fs
f52

]Sf

]bs
5

1

4
@~QTQ!21# rr 8

ab
]~QTQ!r8r

ba

]bs

5g@~QTQ!21#sr
abQsr

ab .

The computation of the fermion force appears to be pr
lematic as it appears to require the repeated inversion of
fermion matrix, which is prohibitively expensive. In order
resolve this problem we use the so-calledR algorithm @8#.
nd

e

-
he

The algorithm proceeds by replacing the exact inverse ma
(QTQ)21 by a stochastic estimator given by the followin
expression:

@~QTQ!21# rr 8
ab'^Xr

aXr8
b &N ~5!

where the vectorX is defined through a random Gaussi
vectorRg as

QX5Rg

and the averaging in Eq.~5! is accomplished overN different
random noise vectorsRg .

The larger the numberN of noise vectors used the mor
accurate is the evaluation of the inverted matrix in Eq.~5!,
but the longer computational time the evaluation takes. I
clear that the optimal value ofN is given by that which
minimizes the error in the inverse matrix for fixed compu
tional timeT. Defining the norm of a matrixiAi as

iAi5A(
i j

Ai j
2 .

The relative error is then

diAi
iAi 5AN

TH diAi
iAi J

N

where$diAi /iAi%N is the relative error produced by a sing
application of anR algorithm with averaging overN noise
vectors. Hence the relative error obtained over timeT can be
characterized by the algorithm efficiencyE which we define
as
3-3
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E5ANH diAi
iAi J

N

.

Our tests showed that this algorithm efficiency does not
pend strongly on the choice ofN ~Fig. 1!. Furthermore, we
monitored the average bosonic action^Sb& and observed no
systematic drift withN. Consequently we choseN51 in all
our runs. In this limit the corresponding fermion force ter
yields

Fs
f'

1

4
Xr

aXr8
b

]~QTQ!r8r
ba

]bs
5

g

2
Qsr

ab~Xs
aXr

b1Xs
bXr

a!.

Finally let us turn to the issue of the sign of the Pfaffi
which results from integrating out the Majorana fields. As
have stressed the simulation action discussed above uti
the absolute value of this Pfaffian and observables mus
re-weighted by the sign of the Pfaffian in order to comp
physical expectation values. We have chosen to use an e
algorithm to compute this sign. Since we are in two dime
sions and need only do this when making measurements
turns out to be quite manageable in a practical sense.
procedure was outlined in@12# and for completeness we lis
the proof and details of the algorithm in the Appendix.
essence the original antisymmetric matrix can be tra
formed to a special block diagonal form via a similari
transformation built from a triangular matrix. The determ
nant of the latter can be shown to yield the Pfaffian. We th
fold the sign of the Pfaffian in with measurements of obse
ables according to Eq.~4!. This reweighting procedure is a
effective way to measure expectation values of a variety
observables. However, in certain conditions this techni
may fail. The following arguments highlight the problem
that may be encountered in this type of situation.

Let N1 and N2 be the numbers of configurations wit
positive and negative values of Pf(CQ) obtained from the

FIG. 1. Algorithm efficiency as a function of the number
noise vectors.
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simulation of the system~3!. Then the average valuêO&S0

of any physical observableO in the system~1! can beevalu-
atedusing Eq.~4! as

^O&5
O1N12O2N2

N12N2
~6!

whereO6 are average values ofO obtained in configuration
subsets with positive and negative Pf(CQ). This averaging
procedure reveals two statistical problems. The first prob
is that if N1'N2 ~that is, the probabilities to find the syste
with either sign of the Pfaffian are approximately the sam!
then the error of the evaluation~6! experiences an amplifi
cation by a large factor (N11N2)/(N12N2). In this case
it is possible for the error to swamp the signal in the me
sured value^O&. Although acquiring more measuremen
will decrease the fluctuations it might not solve the ampl
cation problem if

lim
N11N2→`

N1

N2
;1. ~7!

A second problem is that the expression~6! provides a good
evaluation of^O&S0

only if ^O& is uniquely defined in the

limit N11N2→`, which is not necessarily the case. If E
~7! takes place then̂ O& is well defined only if ^O1&
5^O2&, which is not guaranteed to be true.

In practice we find that many of our observables suf
large and difficult to quantify errors for small values of th
lattice mass where we observe oscillations in the sign of
Pfaffian. This precludes making strong quantitative sta
ments in that region.

IV. RESULTS

We obtained data for lattice sizesL58 andL516 for a
fixed lattice couplingg50.125 while varying the lattice bare
massm. The classical vacua of the lattice theory correspo
to vanishing fermion field and boson fieldf56m/2g. For
largem, field configurations which interpolate between the
two vacua are associated with large values of the action
are hence expected to be highly suppressed. We thus ex
the boson field to be confined in the neighborhood of one
the classical vacua for sufficiently large mass. In the c
tinuum the action is invariant underf→2f implying that
these two vacuum states are equivalent. This is no lon
true on the lattice due to the presence of the Wilson te
~actually the sign of the Pfaffian may also change under
symmetry!. Indeed our simulations reveal that only the sta
with ^f&;2m/2g survives at largem. As m decreases we
expect that tunneling to the other vacuum state may oc
and this is indeed seen in our simulations. Figures 2 an
show plots of^Pf(CQ)& and ^f&/m versusm for L58,16.
Below some criticalm5mc(L) the sign of the Pfaffian,
which is negative at large massm, starts to fluctuate. Addi-
tionally, in this region we can see that the average fi
^f&/m also undergoes large fluctuations which are the dir
result of the Pfaffian sign changes. Indeed, at small mass
observe that for each configuration in our ensemble the s
3-4
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of the Pfaffian is very accurately correlated with the sign
the mean boson field. Figure 4 shows a time series of b
quantities atm50.125 andL58 which illustrates this be-
havior very well. Actually it is easy to see why this is s
Imagine expanding the Pfaffian as a power series in the
son fieldf. For sufficiently smallm we expect that only the
leading term is important and by translational symmetry t
can depend only on the field summed over all lattice site

Pf~CQ!;(
r

f r1OS ( 8
rr

f rf r8D .

As we discussed in the previous section this sign oscilla
renders accurate measurements of^f& and its error very dif-
ficult in this region.

FIG. 2. Average field and average Pf(CQ) for L58. The field
values are rescaled form,0.46 by a factor of 1/200.

FIG. 3. Average field and average Pf(CQ) for L516. The field
values are rescaled form,0.29 by a factor of 1/8.
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We have also measured the~zero momentum! boson and
fermion correlation functions over the same range of latt
bare masses. Figures 5 and 6 show typical bosonic and
mionic two point functions computed on ensembles cor
sponding toL516 with m50.5. These are fitted by hyper
bolic cosh and mixed hyperbolic sinh and cosh functions
extract the corresponding boson and fermion masses. T
~lattice! masses are shown in Figs. 7 and 8 forL58 andL
516 respectively. The statistical errors we show neglect
effects of correlation between observables at different ti
slices. Consider the data forL58. Notice that the boson an
fermion masses are equal within statistical errors at la
bare input mass but deviate substantially at small mass—
diagonal spinor components of the fermion correlator be
dominated by a light state. Contrast this with the off-diago
components of the fermion correlator for small bare m
which yield a much heavier mass degenerate with the bo

FIG. 4. Evolution of Pf(CQ) and ^f& in auxiliary time t for L
58, m50.125.

FIG. 5. Bosonic correlation function forL516, m50.5.
3-5
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mass within statistical errors. A light fermion state is al
visible in the L516 data at small mass. The mass of th
light fermionic state appears to decrease with increasing
input lattice massm. It is tempting to conclude from thes
observations that for small enough mass supersymm
breaks as a result of mixing between the two class
vacua—this being signaled by the appearance of a Golds

Another line of evidence in favor of this derives from th
partition function itself. On a finite lattice equipped with p
riodic boundary conditions, such as employed in our simu
tions, the partition function can be thought of as yielding
representation of the Witten index. Vanishing Witten index
a necessary condition for supersymmetry breaking. ButZ can
also be related to the expectation value of the sign of
Pfaffian in our simulation ensemble

ZS0
5^sgn@Pf~CQ!#&S .

FIG. 6. Fermionic correlation function forL516, m50.5.

FIG. 7. Mass gaps forL58. Mass gaps from bosonic correla
tors are shown form,0.46 without error bars.
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Thus we see that a vanishing partition function would requ
equal numbers of positive and negative sign Pfaffians in
ensemble. Table I shows the numbers of positiveN1 and
negativeN2 Pfaffians for three different runs at the sam
parameter valuesL58 andm50.25 each containing 100 00
measurements. While the relative errors of on the orde
ten percent it should be clear that the data are consistent
a vanishing Witten index.

To investigate this symmetry breaking further we ha
looked at the simplest supersymmetric Ward identity invo
ing two point functions~2!. Figures 9–12 show the boson
and fermionic diagonal and off-diagonal spinor contributio
to this Ward identity together with their sum for two differe
values of the bare massm50.125 andm50.5 on a lattice
with L516. Clearly for large mass this relation is satisfi
within errors for all spinor channels but it is clearly violate
at small mass for the channel involving the diagonal spi
correlations. The latter channel is precisely the one in wh
the light fermion was seen and support the idea that brea
of supersymmetry is associated with the appearance
Goldstino. Notice that the off-diagonal components of t
Ward identity arestill accurately satisfied even at small mas
We will argue in the next section that this is exactly what w
might expect for a partial breaking of supersymmetry as
ciated with the appearance of a finite volume vacuum s
composed of solitons.

V. CONCLUSIONS

We have studied a lattice regularized version of the tw
dimensional Wess-Zumino model which possessesN51 su-

FIG. 8. Mass gaps forL516.

TABLE I. Numbers of positive and negative Pfaffians forL
58 andm50.25.

N1 N2

40968 59032
43814 56186
52252 47748
3-6
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persymmetry in the naive continuum limit. This model w
first analyzed in@1# where it was shown perturbatively tha
the supersymmetric Ward identities are recovered with
fine-tuning in the limit of vanishing lattice spacing. The go
of our simulations was to check these conclusions at
non-perturbative level and to specifically to address the
portant issue of supersymmetry breaking. We have con
ered the model for fixed lattice couplingg50.125 and vary-
ing lattice massm for two lattice sizesL58 andL516. For
large m our results favor a supersymmetric phase in wh
boson states pair with equal mass fermion states and
supersymmetric Ward identities are satisfied. In this region
parameter space corresponding tof;2m/2g the boson field
suffers small fluctuations around a single vacuum state.

As the mass is lowered however this picture changes
below some critical massmc(L) we see configurations in
which the mean boson field varies in sign corresponding

FIG. 9. Contributions to the diagonal components of Ward id
tity for m50.125.

FIG. 10. Contributions to the off-diagonal components of Wa
identity for m50.125.
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tunneling between different vacua in auxiliary time. The a
pearance of states which interpolate between different pe
bative vacua is of course entirely a non-perturbative effe
Associated with these tunneling states we see oscillation
the Pfaffian of the fermion operator and the appearance
light fermion visible in the diagonal components of the fe
mion correlator. In such a phase it appears that supersym
try is at least partially broken.

It is possible to get some further understanding of t
phenomenon within the context of the semi-classical
proximation. Consider first the continuum model. It is cle
that in a finite volumecorresponding to a box of sizeLphys,
in addition to the supersymmetric vacuaf56M /2G, there
are additional local minima of the action~1! corresponding
to domain wall solutions which interpolate between the
vacua:

f~x!→H L, x→`,

2L, x→2`,

- FIG. 11. Contributions to the diagonal components of Wa
identity for m50.5.

FIG. 12. Contributions to the off-diagonal components of Wa
identity for m50.5.
3-7
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whereL5M /2G andx corresponds to one of the coordina
directions. Indeed, in the continuum, these solutions take
form

f~x!5L tanh@M ~x2x0!/2#.

While the mass of such a soliton state is non-zero it is p
sible to show that it is nevertheless annihilated by a sin
component of the Majorana supercharge and hence su
state preserves one half of the original supersymmetry@13#.
This is the origin of our observation that certain compone
of the Ward identities appear to be satisfied at all values
the parameters. The action of such a soliton is easily ev
atedSDW5 4

3 GLphysL
3 and being proportional to the integra

of a total derivative term is topological in character. T
corresponding free energy associated with such domain
solutions then varies as

FDW;2 lnS Lphys

a D1SDW

where the logarithmic variation with linear size arises fro
the number of ways the domain wall can be introduced i
the finite volume. Notice that to do this counting we have
introduce a short distance cut-offa which will naturally be
interpreted as a lattice spacing in the discretized mo
These arguments lead one to conclude that these
supersymmetric vacua will dominate over the supersymm
ric vacua if

SDW

Lphys
5

M3

6G2
,S ln~Lphys/a!

Lphys
D . ~8!

At fixed G this result is in qualitative agreement with o
lattice results since it predicts a critical massMC(Lphys) be-
low which supersymmetry would be broken. Translating t
result naively into lattice variables leads to the predict
thatmC;0.3 for L58 andg50.125, which is quite close to
the continuum estimateMCa50.46 for Lphys58a. Accord-
ing to our observations this critical mass shifts to sma
values as the lattice size increases which is also in agree
with these analytic arguments. Furthermore, in the vicinity
such a domain wall the fermion is approximately massl
and so can play the role of a Goldstino associated with
persymmetry breaking. Notice that these argumentsrely on
the constraint offinite volume. The action of such a soliton
unbounded in infinite volume and hence we would naiv
expect solitons to be completely suppressed in such a li

Of course we would like to know whether this finite vo
ume supersymmetry breaking scenario persists in the
tinuum limit. In general, infinite physical volumeV5Lphy

2 ,
the continuum limita5Lphys/L→0 should be approache
by fixing ~in this case! two renormalized physical paramete
which may be taken as the massMRLphy and coupling con-
stantGRLphy—expressed in units of the physical lengthLphy.
Perturbation theory allows us to relate these renormali
dimensionless quantities to their bare lattice counterparts

GRLphy;gL, MR
2Lphy

2 ;m2L22Cg2L2ln~ma!
01450
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s-
le
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s
f
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all
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t-

s

r
ent
f
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y
it.

n-

d

wherem is the mass scale associated with the renormal
tion point andC is a numerical constant. Along such a
renormalization group trajectory the valuel5m/2g can then
be related to its constant~continuum! valueLR via the rela-
tion

LR
2;l2F12

C

l2
lnS mLphys

L D G .

In finite volume the renormalization point in units of the I
cutoff mLphys should be held constant. There are then th
limiting behaviors possible for the system. For small enou
L the logarithm is large and positive corresponding to a ne
tive value ofLR

2 and a non-zero vacuum energy. ForL;Lc

5mLphyse
2l2

the logarithmic term is small,LR is now posi-
tive but the free energy of a soliton configuration is negat
and hence the vacuum energy will still be non-zero. Thus
any value of the bare parameters and any renormaliza
point supersymmetry breaking will occur for small enou
lattice size. Conversely for large enoughL the log term will
dominate and lead to an infinite soliton action asL→` for
any value of the bare parameters. In this limit the solito
should disappear and supersymmetry should be resto
These conclusions are in agreement with the reasoning
sented in@14#.

While this work was in preparation we received a rep
@15# in which the same model is studied in a Hamiltoni
framework. The conclusions of this study are broadly
agreement with ours.
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APPENDIX: THE ALGORITHM FOR DETERMINING
THE PFAFFIAN OF AN ANTISYMMETRIC MATRIX

In this appendix we describe the algorithm for determ
ing the Pfaffian of an arbitrary antisymmetric 2N32N ma-
trix M, which is defined as follows:

PfM5
1

N!2N
«a1 ,b1 , . . . ,aN ,bN

Ma1 ,b1
. . . MaN ,bN

.

~A1!

The algorithm utilizes the following theorem.
Theorem.If P is a matrix such that an antisymmetric m

trix M can be represented asM5PTJP where J
5diag(ig3 ,ig3 , . . . ,ig3) is a block-diagonal matrix then
PfM5detP ~hereC5 ig3 is the Euclidean representation o
the charge conjugation matrix for a two-dimensional s
tem!.

The theorem can be proved using the representation o
Pfaffian in terms of an integral over a Grassmann 2N vector
u. Defining ũ5Pu we have
3-8
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PfM[E due2uTMu/25E due2uTPTJPu/25E due2 ũTJũ/25E du
1

N!
@ ũ2n21ũ2n#N5E du

1

N!
@P2n21,auaP2n,bub#N

5E duP1,a1
ua1

P2,b1
ub1

•••P2N21,aN
uaN

P2N,bN
ubN

5«a1 ,b1 , . . . ,aN ,bN
P1,a1

P2,b1
•••P2N21,aN

P2N,bN
5detP.
in

ula
if

a

c

s

a-
Notice that the matrixP is not orthogonal (PTÞP21); hence
it is not associated with any basis transformation
2N-dimensional vector space.

The above theorem can be given an alternative form
tion. Defining Q5P21 leads to the following statement:
QTMQ5J then PfM5(detQ)21. This formulation is used
in the algorithm we describe below. The purpose of the
gorithm is to represent a given antisymmetric matrixM in
terms of a triangular matrixQ so that the detQ and hence the
PfM can be found easily.

The algorithm task.Given an arbitrary antisymmetri
2N32N matrix M find a triangular matrixQ such that
QTMQ5J, J5diag(ig3 ,ig3 , . . . ,ig3).

The triangular matrixQ5$qi% represented in terms of it
columnsqi will satisfy the relation aboveif and only if its
columns satisfy the following conditions:

~q2i 21Mq2 j 21!50, ~q2iMq2 j !50,
ys

s.
D

ld

01450
-

l-

~q2iMq2 j 21!52~q2 j 21Mq2i !5d i j .

The following algorithm by construction leads to such a m
trix Q.

The algorithm.
~1! Establish a unary 2N32N matrix Q

5diag$1,1, . . . ,1%5$ei%, where unary vectorsei are col-
umns ofQ, i 51,2, . . . ,2N.

~2! For odd valuesi 51,3, . . . ,2N21 repeat the follow-
ing steps:

~a! Leaveei as is.
~b! Redefineei 11→ei 11 /(ei 11Mei).
~c! For k5 i 12,i 13, . . . ,2N redefine ek→ek

2ei(ei 11Mek)1ei 11(eiMek).

Notice that in 2~c! the vectorei 11 is used after it is redefined
in 2~b!.
n
l,’’
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