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Renormalization-group-improved action on anisotropic lattices
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We study a block spin transformation in the SU~3! lattice gauge theory on anisotropic lattices to obtain
Iwasaki’s renormalization-group-improved action for anisotropic cases. For the class of actions with plaquette
and 132 rectangular terms, we determine the improvement parameters as functions of the anisotropyj
5as /at . We find that the program of improvement works well also on anisotropic lattices. From a study of an
indicator which estimates the distance to the renormalized trajectory, we show that, for the range of the
anisotropyj'1 –4, the coupling parameters previously determined for isotropic lattices improve the theory
considerably.
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I. INTRODUCTION

Improvement and anisotropy are two key ingredients
the recent developments in lattice QCD. In QCD with d
namical quarks, the improvement of the lattice theory is
sential to perform a continuum extrapolation of light hadr
spectra within the computer power currently available@1,2#.
At finite temperatures, the expected O~4! scaling around the
two-flavor chiral transition point is reproduced on the latti
only with improved Wilson-type quarks@3,4#. Improved ac-
tions are applied also for staggered-type quarks to red
lattice artifacts@5,6#. However, in order to perform a con
tinuum extrapolation of thermodynamic quantities, we ne
to further increase the temporal lattice sizeNt @7,8#. This
requires quite large spatial lattice sizes to keep the sys
close to the thermodynamic limit, and the task slightly e
ceeds the current limit of the computer power for QCD w
dynamical quarks@9#.

Recently, we proposed to apply anisotropic lattices
reducing the computational demand in thermal QCD@10#.
Because the dominant part of the lattice artifacts in the eq
tion of state~EOS! is due to the finite temporal cutoff, a
anisotropic lattice with a larger temporal cutoff will provid
us with an efficient way to calculate thermodynamic quan
ties. We tested the idea for the case of the SU~3! gauge
theory with the standard one-plaquette action. From a se
of simulations atNt /j54, 5, and 6 with anisotropyj
[as /at52, whereas and at are the spatial and tempora
lattice spacings, we find that the lattice artifacts in the E
are much smaller than those on the corresponding isotr
lattice, and the leading scaling relation is satisfied from
coarsest lattice. This enabled us to perform a well-contro
continuum extrapolation of the EOS in QCD. Anisotrop
lattices have been employed also to study transport co
cients and temporal correlation functions in finite tempe
ture QCD @11–13#. In these studies, anisotropy was intr
duced to obtain more data points for temporal correlat
functions. At zero temperature, anisotropic lattices have b
employed to study charmonium states@14–16#, heavy hy-
0556-2821/2003/68~1!/014502~11!/$20.00 68 0145
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brids @17#, glueballs@18#, and also the pion scattering leng
@19#.

A combination of the ideas of improvement and anis
ropy is not straightforward, however. The main difficulty
the large number of coupling parameters in improved acti
on anisotropic lattices. Even in the simplest case of
renormalization-group-~RG-! improved gauge action by
Iwasaki@20#, which contains plaquette and 132 rectangular
terms only, we have five parameters on anisotropic lattic
instead of two for the isotropic case. We have to fix them
functions of two parameters: the gauge couplingb which
controls the overall scale and the anisotropyj. Because the
redundant parameters have no physical effects in the c
tinuum limit, they have to be determined through a requi
ment of improvement—i.e., minimizing lattice artifacts
physical observables away from the continuum limit.

A concrete form of the dependence on the scale and
isotropy in the coupling parameters is important for a cal
lation of thermodynamic quantities@21–25#. In a Symanzik-
type improvement program, it is easy to see that, at the
level of perturbation theory, the coupling parameters are
dependent ofj. Accordingly, studies of finite temperatur
Symanzik-type improved actions on anisotropic lattices h
been done assuming isotropic improvement parameters@26–
28#. When we improve the theory beyond the tree level,
have to take into account thej dependences in the couplin
parameters. Isotropic parameters have been adopted also
study of the RG-improved action on anisotropic lattices@11#,
however, without justifying the choice.

In this paper, we study the anisotropic improvement p
rameters for the RG improved gauge action. Followi
Iwasaki’s program of RG improvement using a block sp
transformation, we determine the values of coupling para
eters which minimize the lattice discretization errors. Afte
brief explanation of the RG-improved action in Sec. II, t
anisotropic gauge action we study is defined in Sec. III.
then study Wilson loops under a block spin transformation
Sec. IV. In Sec. V, RG-improved actions on anisotropic l
tices are determined and a practical choice of the impro
action for numerical simulations is discussed. We conclu
in Sec. VI.
©2003 The American Physical Society02-1
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II. PROGRAM FOR RG-IMPROVED ACTION

Various lattice actions are expected to belong to a co
mon universality class having the same continuum limit. F
the SU~3! gauge theory, a lattice action may contain, f
example, 132 rectangular loops, 232 squares, etc., in ad
dition to the conventional plaquettes. One combinationb
52Nc /g2 of the coupling parameters is the relevant para
eter which reflects the freedom of the lattice spacing, wh
other coupling parameters are redundant in the continu
limit. The objective of improvement is to find the values
redundant parameters for which physical observables fro
coarse lattice are closest to their continuum values.

In order to discuss the improvement of a lattice action,
consider RG flows of a block spin transformation as sho
in Fig. 1. The block spin transformation halves the corre
tion length in lattice units but does not change the long-ra
properties of the system. Then, the coupling param
moves toward smallerb corresponding to the correlatio
length becoming shorter. In this figure,c1 , c2, etc., denote
the redundant coupling parameters, and the points on theb
axis correspond to the standard one-plaquette actions.
hyperplane atb5` (g50), on which the correlation length
diverges and the continuum limit can be taken, is called
critical surface. In this surface, the coupling parameter d
not go out of the surface ofb5` under the block spin trans
formation, since the correlation length after the block s
transformation is also infinity, which means that an RG flo
aroundb5` runs parallel to the critical surface, except
the vicinity of a fixed point~FP!, at which a coupling param
eter does not change under the block spin transformat
Therefore, an RG flow can connect only at FP to the criti
surface.

Moreover, because RG flows can be regarded as line
constant physics, the distance between each RG flow
comes wider asb increases corresponding to physical qua
tities becoming more insensitive to the redundant coup
parameters,c1 , c2, etc., as the continuum limit is ap
proached, and only one RG flow which has properties in
continuum limit, called the renormalized trajectory~RT!, can
connect to the critical surface at FP by infinite block sp
transformations.

The actions on the RT are ‘‘perfect actions’’ which repr

FIG. 1. RG flow and the renormalized trajectory for the SU~3!
gauge theory in infinite dimensional coupling parameter space.
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duce continuum properties from the shortest distances on
lattice @29#. If an infinite number of coupling parameters a
admitted, a perfect action is a goal of improvement. In re
ity, we are forced to keep the interactions as simple as p
sible in numerical simulations. Hence to find the near
point to RT in the restricted coupling parameter space is
problem in practice. Iwasaki applied the program of im
provement to the SU(Nc) gauge theory in the weak couplin
limit for the case of the action with plaquette and 132 rect-
angular terms@20#. He found the nearest point to the fixe
point in the coupling parameter subspace by calculating W
son loops perturbatively on the lattice consisting of block
link valuables after block spin transformations. Another a
proach of an RG-improved action is the classical perfect
tion approach in@29#, which is suitable for increasing th
coupling parameters. See@30# for a trial to include quantum
corrections. A classically perfect action on anisotropic l
tices was studied in@31#.

III. GAUGE THEORY ON ANISOTROPIC LATTICE

On isotropic lattices, the RG-improved gauge action
Iwasaki @20#, which consists of plaquettesW(131) and 1
32 rectangular loopsW(132), is defined by

Simp52bH (
x,m.n

c0Wmn
(131)~x!1 (

x,mÞn
c1Wmn

(132)~x!J ,

~1!

where c018c151 for normalization and c1520.331
(20.293) to optimize the action after one~two! block spin
transformation~s! ~see below for details!. This action has
been shown to lead to better rotation symmetry of hea
quark potential than the standard one plaquette action@2,32#
and to suppress lattice artifacts associated with Wilson-t
quarks at finite temperature@3#. This action was also reporte
to be efficient in suppressing chiral violations in domain-w
quarks @33#. In two-flavor full QCD with clover-improved
Wilson quarks, the first systematic studies of the light had
spectrum@1# and the finite temperature equation of state w
Wilson-type quarks@4,8# have been carried out.

The generalization of Iwasaki’s action to an anisotrop
lattice is given by

S52bsH (
x,i . j

c0
sWi j

(131)~x!1 (
x,iÞ j

c1
sWi j

(132)~x!J
2b tH(

x,k
c0

t Wk4
(131)~x!1(

x,k
@c1

t Wk4
(231)~x!

1c2
t Wk4

(132)~x!#J , ~2!

where we setc0
s18c1

s51 andc0
t 14c1

t 14c2
t 51 for normal-

ization. This form of the tree-level Symanzik-improved a
2-2
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tion with mean field improvement was studied in@26–28#.
Here, we study the RG transformation of this action to obt
an RG-improved action.1

Let us denote the lattice spacing in them direction asam
and the lattice size asNm . We consider the casea15a2
5a3[as , a4[at andN15N25N3[Ns , N4[Nt with suf-
ficiently large Ns and Nt . Identifying the gauge field by
Um(x)5exp@igamAm(x)#, the conventional gauge action is r
covered in the classical continuum limit when

bs5
2Nc

g2j
, b t5

2Ncj

g2
, ~3!

wherej5as /at .
We perform the Fourier transformation ofAm(x) by

Am~x!5E
k
eikx1 ikmam/2Ãm~k!, ~4!

where*k[(1/ANs
3Nt))m51

4 (km
, km52p j m /Nmam , and j m

is integer. Then, the action reads

S5
1

2
as

3at )
m51

4

(
km

H (
i , j ,a

$12c1
sas

2~ k̂i
21 k̂ j

2!% f̃ i j
a ~k! f̃ i j

a ~2k!

1(
i ,a

~12c1
t as

2k̂i
22c2

t at
2k̂4

2! f̃ i4
a ~k! f̃ i4

a ~2k!J 1O@Ã3#,

~5!

with k̂m5(2/am)sin(kmam/2) and f̃ mn(k)5 i @ k̂mÃn(k)
2 k̂nÃm(k)#. We adopt the lattice Lorentz gauge by addi
the gauge fixing term:

Sgf5as
3at(

x
trF(

m
DmAm~x!G2

, ~6!

Dm f ~x!5$ f ~x!2Um
† f ~x2amm̂!Um~x2amm̂!%/am .

~7!

In order to simplify the notation, we redefine lattice m
menta and the gauge field absorbing the lattice spacing
kmam→km , k̂mam→ k̂m , and Ãmam→Ãm , in the following.
Then, the lattice propagator,̂ Ãm

a (k)Ãn
b(k8)&5da,bd(k

1k8)Dmn(k), is given by

1Because our action contains couplings extending over two t
slices, unphysical higher-lying states may contaminate correla
functions at short distances comparable to the extent of the ac
as observed, e.g., in a study of glueball spectrum using a Syma
improved gauge action@34#. Although these unphysical states d
not affect physical properties at long distances, caution is requ
when we have to study short distance correlators to extract phy
quantities.
01450
n

as

Di j
21~k!5(

l 51

3
1

j
qli ~k!k̂l

2d i j 1jq4i~k!k̂4
2d i j

2
1

j
„qi j ~k!21…k̂i k̂ j ,

Di4
21~k!52j„qi4~k!21…k̂i k̂4 ,

D4i
21~k!52j„q4i~k!21…k̂4k̂i ,

D44
21~k!5(

l 51

3

jql4~k!k̂l
21j3k̂4

2 , ~8!

where

qi j ~k!512c1
s~ k̂i

21 k̂ j
2! for iÞ j ~51,2,3!,

qi4~k!5q4i~k!512c1
t k̂i

22c2
t k̂4

2 , ~9!

with qmm(k)50.
We consider the following Wilson loops:

Wmn~131!5~1/Nc!tr@Um~x!Un~x1m̂ !

3Um
† ~x1 n̂ !Un

†~x!#, ~10!

Wmn~231!5~1/Nc!tr@Um~x!Um~x1m̂ !Un~x12m̂ !

3Um
† ~x1m̂1 n̂ !Um

† ~x1 n̂ !Un
†~x!#, ~11!

Wmnr~chair!5~1/Nc!tr@Um~x!Un~x1m̂ !Ur~x1m̂1 n̂ !

3Um
† ~x1 n̂1 r̂ !Ur

†~x1 n̂ !Un
†~x!#, ~12!

Wmnr~3 dim!5~1/Nc!tr@Um~x!Un~x1m̂ !Ur~x1m̂1 n̂ !

3Um
† ~x1 n̂1 r̂ !Un

†~x1 r̂ !Ur
†~x!#. ~13!

To the leading order of perturbation theory, we get@20,35#

^W~C!&[12g2
Nc

221

4Nc
F~C!, ~14!

Fmn~ I 3J!5~Ns
3Nt!

21)
r51

4

(
kr

S sin~ Ikm/2!

sin~km/2!

sin~Jkn/2!

sin~kn/2! D 2

3Dmn,mn~k!, ~15!

Fmnr~chair!5~Ns
3Nt!

21 )
s51

4

(
ks

FDmn,mn~k!1Dmr,mr~k!

2
1

2
@ k̂m

2 k̂nk̂rDnr~k!1 k̂n
2k̂r

2Dmm~k!

2 k̂mk̂n
2k̂rDmr~k!2 k̂mk̂nk̂r

2Dmn~k!#G , ~16!

e
n
n,

zik

d
al
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Fmnr~3 dim!5~Ns
3Nt!

21 )
s51

4

(
ks

@~12 k̂r
2/4!Dmn,mn~k!

1~12 k̂m
2 /4!Dnr,nr~k!

1~12 k̂n
2/4!Drm,rm~k!#, ~17!

for SU(Nc) gauge theory, whereDmn,mn(k)5 k̂m
2 Dnn(k)

2 k̂mk̂nDnm(k)2 k̂nk̂mDmn(k)1 k̂n
2Dmm(k).

IV. BLOCK SPIN TRANSFORMATION

The purpose of this study is to find a fixed point at whi
the parameters in the action do not change. As seen in
previous section,F(C) are functions of the redundant pa
rametersci

s/t ; hence, if a block spin transformation is pe
formed in the vicinity of the fixed point, the values ofF(C)
should not change. In this section, we calculate Wilson lo
on the blocked lattice after block spin transformations in
g→0 limit and discuss the fixed point.

Following Iwasaki@20#, we consider a simple block spi
transformation fromNBSth to (NBS11)th blocking of the
form

Am
(NBS11)

~n8!5
1

8 (
nPn8

Am
(NBS)

~n!, ~18!

where we block 24 links at the sitesn52n81(memm̂, (em
50,1) to 1 link at n8 on the blocked lattice. The lattic
spacings change fromam to 2am by this transformation,
while the anisotropy remains the same. Note that the s
factor 2 is multiplied on the right-hand side of Eq.~18! to
scale back to the original lattice spacings, so that the rele
couplingg remains constant.

Link variables on the blocked lattice are defined
Um

(NBS)(n)5exp@igamAm
(NBS)(n)#. Wilson loops consisting of

blocked links are given by@20#

^W(NBS)~C!&[12g2
Nc

221

4Nc
F (NBS)~C!, ~19!

Fmn
(NBS)

~ I 3J!5~Ns
3Nt!

21

3 )
r51

4

(
kr

S sin~ Ikm
(NBS)/2!

sin~km
(NBS)/2!

sin~Jkn
(NBS)/2!

sin~kn
(NBS)/2!

D 2

3Dmn,mn
(NBS)

~k!H (NBS)~k!, ~20!

Fmnr
(NBS)

~chair!5~Ns
3Nt!

21 )
s51

4

(
ks

FDmn,mn
(NBS)

~k!1Dmr,mr
(NBS)

~k!

2
1

2
@~ k̂m

(NBS)
!2k̂n

(NBS)k̂r
(NBS)Dnr

(NBS)
~k!

1~ k̂n
(NBS)k̂r

(NBS)
!2Dmm

(NBS)
~k!
01450
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2 k̂m
(NBS)

~ k̂n
(NBS)

!2k̂r
(NBS)Dmr

(NBS)
~k!

2 k̂m
(NBS)k̂n

(NBS)
~ k̂r

(NBS)
!2Dmn

(NBS)
~k!#G

3H (NBS)~k!, ~21!

Fmnr
(NBS)

~3 dim!5~Ns
3Nt!

21 )
s51

4

(
ks

F S 12
~ k̂r

(NBS)
!2

4
D

3Dmn,mn
(NBS)

~k!1S 12
~ k̂m

(NBS)
!2

4
D Dnr,nr

(NBS)
~k!

1S 12
~ k̂n

(NBS)
!2

4
D Drm,rm

(NBS)
~k!GH (NBS)~k!,

~22!

to leading order, where

km
(NBS)

52NBSkm , k̂m
(NBS)

52 sin~km
(NBS)/2!, ~23!

H (NBS)~k!5 )
M50

NBS21
1

4 )
m51

4

@11cos~2Mkm!#,

TABLE I. Blocked Wilson loops and those in theNBS→` limit.
Fs andFt are for spatial and space-time Wilson loops, respectiv
Ns

33Nt512833(128j).

j51
NBS F(131) F(132) F(232)

0 0.500000 0.862251 1.369312
1 0.288104 0.517653 0.879783
2 0.216234 0.403513 0.720860
3 0.194450 0.369800 0.674938
4 0.188403 0.360256 0.660681
` 0.186476 0.357678 0.658761

j52
NBS Fs(131) Fs(132) Fs(231) Fs(232)

0 0.673095 1.128029 1.128029 1.728563
1 0.402015 0.701155 0.701155 1.145925
2 0.307103 0.555452 0.555452 0.952321
3 0.277085 0.510586 0.510586 0.894124
4 0.268545 0.497689 0.497689 0.876158
` 0.265709 0.493899 0.493899 0.872921

NBS Ft(132) Ft(134) Ft(232) Ft(234)

0 0.556383 0.920967 0.995852 1.510346
1 0.348216 0.572014 0.655826 1.005403
2 0.274425 0.454023 0.537939 0.837727
3 0.251345 0.418526 0.501772 0.788069
4 0.244845 0.408394 0.491385 0.772639
` 0.242740 0.405580 0.488471 0.770227
2-4
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Dmn,mn
(NBS)

~k!5~ k̂m
(NBS)

!2Dnn~k!1~ k̂n
(NBS)

!2Dmm~k!

22k̂m
(NBS)k̂n

(NBS)cos@~2NBS2121/2!km#

3cos@~2NBS2121/2!kn#Dmn~k!. ~24!

The derivation of Eqs.~20!, ~21! and ~22! is given in the
Appendix.

In Table I, we list the numerical results ofF (NBS) for the
case of the standard one plaquette action. We find that
values ofF (NBS) approach to specific values in theNBS→`
limit.

Wilson loops in the limit of infiniteNBS can be evaluated
as follows. At long distances, the gauge propagator sho
behave like

^Am
a ~x!An

b~0!&5
1

4p2

dmnda,b

x1
21x2

21x3
21x4

2
1O~1/x4! ~25!
01450
he

ld

in physical unit. In lattice units, it reads

^Am
a ~n!An

b~0!&5dmnda,bf m~n!1O~1/n4!,

f i~n!5
1

4p2

1

n1
21n2

21n3
21j22n4

2
,

f 4~n!5
1

4p2

1

j2n1
21j2n2

21j2n3
21n4

2
. ~26!

The nonleading term of the right-hand side of Eq.~26! does
not contribute to the expectation value in theNBS→` limit
@20#. Hence we can neglect the higher-order terms. Then
resulting Wilson loops do not depend on the improvem
parametersci

s/t in the original action, since the leading ter
does not depend on them.

Now, the (I 3J) rectangular Wilson loops in the limi
NBS→` are given by
Fmn
(`)~ I 3J!5 lim

NBS→`
S 1

8NBS
D 2

(
m,n

F2I f m~m2n!12J fn~m2n!14(
k51

I 21

~ I 2k! f m~2NBSkm̂1m2n!

14(
k51

J21

~J2k! f n~2NBSkn̂1m2n!22I f m~2NBSJn̂1m2n!22J fn~2NBSI m̂1m2n!

24(
k51

I 21

~ I 2k! f m„2
NBS~km̂1Jn̂ !1m2n…24(

k51

J21

~J2k! f n„2
NBS~kn̂1I m̂ !1m2n…G ~27!

52)
r51

4 E
0

1

dxr~12xr!F I f̃ m~0!1J f̃n~0!12(
k51

I 21

~ I 2k! f̃ m~km̂ !12(
k51

J21

~J2k! f̃ n~kn̂ !2I f̃ m~Jn̂ !

2J f̃n~ I m̂ !22(
k51

I 21

~ I 2k! f̃ m~km̂1Jn̂ !22(
k51

J21

~J2k! f̃ n~kn̂1I m̂ !G , ~28!

where

f̃ i 51,2,3~n!5
1

4p2 )m51

4

(
em5$21,1%

1

~n12e1x1!21~n22e2x2!21~n32e3x3!21j22~n42e4x4!2
, ~29!

f̃ 4~n!5
1

4p2 )m51

4

(
em5$21,1%

1

j2@~n12e1x1!21~n22e2x2!21~n32e3x3!2#1~n42e4x4!2
. ~30!

Here, we have used limN→`(n51
2N

f (n/2N)5*0
1dx f(x) and a relation*0

1dx*0
1dy f(x2y)5*0

1dx(12x)@ f (x)1 f (2x)#. Simi-
larly, we obtain

Fmnr
(`) ~chair!52)

s51

4 E
0

1

dxs~12xs!@ f̃ m~0!1 f̃ n~0!1 f̃ r~0!2 f̃ n~m̂ !2 f̃ r~m̂ !2 f̃ m~ n̂1 r̂ !#, ~31!

Fmnr
(`) ~3 dim!52)

s51

4 E
0

1

dxs~12xs!@ f̃ m~0!1 f̃ n~0!1 f̃ r~0!2 f̃ m~ n̂1 r̂ !2 f̃ n~ r̂1m̂ !2 f̃ r~m̂1 n̂ !#. ~32!
2-5
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We also denoteF (`) in Table I.
From the behavior thatF(C)(NBS) converges monotoni

cally to F(C)(`) which is independent of the coupling pa
rametersci

s/t in the original action—i.e., the starting point o
RG flow—if a block spin transformation is performed fro
the point at whichF(C)(NBS) is alreadyF(C)(`), we expect
that the value ofF(C)(NBS) does not change anymore, whic
is the property at a fixed point. Therefore we can identify
fixed point by how close the value ofF(C)(NBS) is to
F(C)(`).

Notice that the property ofF(C)(NBS) also suggests that a
RG flow from every point in the critical surface flows int
one RG flow ~RT! in finite b, on which F(C)(NBS) is
F(C)(`), as shown in Fig. 1, since the starting pointci

s/t of
the infinite block spin transformations forF(C)(`) must be
in b5` (g50).

V. ANISOTROPIC RG-IMPROVED ACTION

We search for an action which reproduces the values
Wilson loops in theNBS→` limit as much as possible within
the restricted coupling parameter space of the action, Eq.~2!.
For this purpose, Iwasaki considered the average relative
viation of Wilson loops,

R(NBS)5A(
C

S F (NBS)~C!2F (`)~C!

F (`)~C!
D 2

w~C!, ~33!

where(C is over four-loop shapes up to length 6—plaque
~10!, 132 rectangular loop~11!, chair ~12!, and three-
dimensional loop~13!—with a uniform weightw(C)51/4.
Equation~33! means that, whenR(NBS)50.01, for example,
the deviation of small Wilson loops from their values in t
NBS→` limit is about 1% afterNBS block spin transforma-
tions.

On anisotropic lattices, we generalize Eq.~33! by subdi-
viding each loop shape into orientations and adopt a unifo
weight for each orientation. Namely, because we have th
spatial and three temporal plaquette orientations, we g
w(spatial plaquette)5w(temporal plaquette)51/8. For 1
32 rectangular loops, we have six orientations of spa
loops, three orientations ofWk4

(231) , and three orientations o
Wk4

(132) . Therefore, we give 1/8, 1/16, and 1/16 for the
weights. Similarly, we subdivide 12 chair and 4 thre
dimensional loop orientations.

Here, we should emphasize that we are trying to rep
duce the values ofF (`)(C) for ten different Wilson loops by
controlling three coupling parameters forjÞ1 ~four Wilson
loops by one parameter forj51) at the same time, which i
a quite nontrivial trial, and the value ofR(NBS) indicates that
F (NBS)(C) does not change within the accuracy ofR(NBS)

under block spin transformations, sinceF (NBS)(C) ap-
proaches toF (`)(C) as NBS increases and the change
F (NBS)(C) is smaller than the difference. Therefore, by me
suring the indicatorR(NBS), we can check indirectly how
‘‘slowly’’ the coupling parameters flow—i.e., how the nea
est point which we find in the restricted parameter spac
close to the real fixed point in the weak coupling limit.
01450
e

of

e-

m
e
e
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In Fig. 2, we show theNBS dependence ofR(NBS) for j
51 and 2. The results from the plaquette action~open and
solid squares! show exponential decrease withNBS. ~Results
from RG-improved actions will be discussed later.!

We search for the minimum point ofR(NBS) in the param-
eter space (c1

s ,c1
t ,c2

t ) for each value ofj. Figure 3 shows
the behavior ofR(1) for j52 in the subspacesc1

t 5c2
t and

c1
s520.31. Figure 3~b! suggests that the region of sma

R(NBS) spreads in the direction of constantc1
t 1c2

t , which we
confirm also for other cases.

To find the minimum ofR(NBS), we solve the equations

]~R(NBS)!2

]ci
5(

C
2

]F (NBS)~C!

]ci

F (NBS)~C!2F (`)~C!

@F (`)~C!#2
w~C!

50, ~34!

FIG. 2. R(NBS) vs NBS at j51 and 2 for various actions. Ope
symbols are forj51 and solid symbols are forj52. Results from
the standard one-plaquette action are shown by squares. RGopt(n) is
the RG-improved action which minimizesR(n) on the lattice with
the anisotropyj. RGfixed(n) is an approximate RG-improved actio
using the values ofci

s/t for j51.
2-6
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FIG. 3. R(1) for j52 ~a! in the subspacec1
t

5c2
t as a function of (c1

s ,c1
t 5c2

t ), ~b! in the sub-
spacec1

s520.31 as a function of (c1
t ,c2

t ).
i-
e

ize
or

,
rre-
with ci5$c1
s ,c1

t , c2
t %. We iteratively solve Eq.~34! using

linear approximations

(
C S ]F (NBS)~C!

]ci
U

(c
10
s ,c

10
t ,c

20
t )
D 2 w~C!

@F (`)~C!#2
~ci2ci0!

5(
C

]F (NBS)~C!

]ci
U

(c
10
s ,c

10
t ,c

20
t )

3
F (`)~C!2F (NBS)~C!u(c

10
s ,c

10
t ,c

20
t )

@F (`)~C!#2
w~C!, ~35!

around (c10
s ,c10

t ,c20
t ), where]F (NBS)(C)/]ci can be calcu-

lated by
01450
]Dmn

]ci
52Dmn

]Dmn
21

]ci
Dmn , ~36!

with Dmn
21 given by Eq.~8!. We solve the equations numer

cally on a 1284 lattice. We checked that the finite volum
effects are sufficiently small for the Wilson loops in Eq.~33!.

Results for the improvement parameters which minim
R(NBS) are summarized in Table II and Figs. 4 and 5 f
NBS51 and 2. We also show the results forNBS50 in Fig. 6.
In these figures,c1

s , c1
t , andc2

t are shown by solid, dashed
and dot-dashed lines. In the followings we denote the co
sponding action as RGopt(NBS) @the RG-improved action with

the j-dependent optimum values of (c1
s ,c1

t ,c2
t ) to minimize

R(NBS)]. At j51, we reproduce Iwasaki’s results@20# c1
s

5ci
t5c2

t 520.331 (20.293) forNBS51~2!.
Figure 7 shows the values ofR(NBS) from RGopt(NBS) for
2-7
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NBS50, 1, and 2@dashed~short!, dashed~long!, and dot-
dashed lines, respectively#. We find that the values ofR(NBS)

remain small in a wide range ofj, indicating that a similar
quality of improvement is achieved by the program of R
improvement even atjÞ1.

Here, it is worth noting that reducing the number of ind
pendent coupling parameters has a practical benefit in
merical simulations. In particular, because a nontrivialj de-
pendence in coupling parameters makes the calculatio
thermodynamic quantities complicated, it is attractive
adoptj-independent improvement parameters.

Therefore, we studyR(NBS) at jÞ1 with the improved
parameters fixed to the optimum value atj51, c1

s5c1
t

TABLE II. The improvement parameters (c1
s ,c1

t ,c2
t ) andR(NBS)

of the RG-improved action RGopt(NBS) for NBS51 and 2 at various
j.

NBS j c1
s c1

t c2
t R(NBS)

1 0.20 20.349 20.359 20.073 5.4031023

1 0.25 20.357 20.356 20.097 5.3331023

1 0.50 20.363 20.345 20.204 6.1031023

1 0.70 20.350 20.338 20.271 7.1431023

1 0.90 20.337 20.333 20.316 7.6731023

1 1.00 20.331 20.331 20.331 7.7331023

1 1.10 20.326 20.329 20.341 7.6831023

1 1.50 20.313 20.324 20.356 7.0731023

1 2.00 20.307 20.316 20.350 6.5231023

1 2.50 20.307 20.302 20.340 6.5831023

1 3.00 20.308 20.286 20.331 6.9631023

1 3.50 20.311 20.270 20.325 7.3931023

1 4.00 20.314 20.255 20.320 7.7731023

1 4.50 20.317 20.241 20.316 8.0731023

1 5.00 20.320 20.229 20.312 8.3031023

1 6.00 20.327 20.208 20.306 8.5931023

1 7.00 20.333 20.192 20.302 8.7331023

1 8.00 20.339 20.178 20.298 8.7731023

2 0.20 20.360 20.282 20.122 1.3431023

2 0.25 20.358 20.282 20.142 1.3731023

2 0.50 20.328 20.284 20.225 1.8731023

2 0.70 20.309 20.287 20.265 2.2531023

2 0.90 20.297 20.291 20.287 2.4231023

2 1.00 20.293 20.293 20.293 2.4331023

2 1.10 20.290 20.294 20.297 2.4231023

2 1.50 20.284 20.299 20.303 2.2031023

2 2.00 20.283 20.299 20.304 1.9131023

2 2.50 20.284 20.295 20.303 1.8231023

2 3.00 20.287 20.287 20.304 1.9131023

2 3.50 20.290 20.277 20.305 2.0931023

2 4.00 20.294 20.268 20.306 2.3031023

2 4.50 20.298 20.258 20.308 2.5031023

2 5.00 20.302 20.249 20.309 2.6831023

2 6.00 20.311 20.232 20.310 2.9831023

2 7.00 20.320 20.218 20.310 3.2031023

2 8.00 20.330 20.205 20.309 3.3631023
01450
-
u-

of

5c2
t (520.331 forNBS51). We denote this action a

RGfixed(NBS) ~an RG-improved action withc1
s , c1

t , and c2
t

fixed to the Iwasaki’s value minimizingR(NBS) on thej51
lattice!. The result ofR(1) for NBS51 is plotted by the solid
line in Fig. 7. We also study the casec1

s5c1
t 5c2

t [c1(j)
wherec1 is varied to minimizeR(NBS) at eachj. The results
for the minimum value ofR(1) and the corresponding opti
mum value of the parameterc1 are shown by dotted lines in
Figs. 7 and 4, respectively. For both cases,R(1) becomes
larger asj deviates from 1. It means that one cannot keep
same quality of improvement in the whole range ofj with
the RGfixed(NBS) action or the action with the constraintc1

s

5c1
t 5c2

t 5c1(j).

FIG. 4. Improvement parameters (c1
s ,c1

t ,c2
t ) for the RG-

improved action RGopt(1) which minimizesR(1) at eachj. The dot-
ted line is the solution which minimizesR(1) when a constraintc1

s

5c1
t 5c2

t is required.

FIG. 5. Improvement parameters (c1
s ,c1

t ,c2
t ) for the RG-

improved action RGopt(2) which minimizesR(2) at eachj.
2-8
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In most simulations, however, we are interested in
cases ofj'1 –4, where the values ofR(1) remainO(1022).
In the determination of an RG-improved action, the diffe
ence between Fig. 4 forNBS51 and Fig. 5 forNBS52 is a
matter of taste: Both actions are equally qualified w
R(NBS)<O(1022) and the difference in the values of im
provement parameters should be regarded as a freedo
the choice. In this respect, we find that the variations
improvement parameters as functions ofj are small forj
'1 –4.

In Fig. 8, we showR(1) for various actions including the
standard plaquette action and the Symanzik improved
tions. For RG-improved actions, results are shown
RGopt(1) and RGfixed(1) . Similar results are obtained for othe

FIG. 6. The same as Fig. 5, but for the RGopt(0) which mini-
mizesR(0).

FIG. 7. R(NBS) as functions ofj from the RG-improved actions
RGopt(NBS) for NBS50, 1 and 2. Also plotted are the results forR(1)

determined from RGfixed(1) ~solid line!, and the minimumR(1) ob-
tained with the constraintc1

s5c1
t 5c2

t ~dotted line!.
01450
e
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f
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values ofNBS, too. We find that, although a stable improv
ment is achieved with the RGopt(1) action for a wide range of
j, when we restrict ourselves to the rangej'1 –4, all RG-
improved actions lead to quite small values ofR(1)

&O(1022); i.e., the average deviation of small Wilson loop
from theNBS5` limit is less than about 1% after one block
ing. On the other hand, for the standard plaquette and
manzik actions, typical values ofR(1) are 0.4–0.5 and 0.25–
0.3, respectively. We conclude that the RGfixed(NBS) action, in
which the improvement parameters are fixed to Iwasa
value forj51, improves the theory well atj'1 –4.

VI. CONCLUSIONS

We studied RG-improved actions for the SU~3! gauge
theory on anisotropic lattices, following Iwasaki’s progra
of improvement. We determined the improvement para
eters as functions of the anisotropyj for the action with
plaquette and 132 rectangular terms. We found that the pr
gram of improvement works well even on anisotropic lattic
without losing the quality of improvement if we adjust thre
improvement parameters (c1

s ,c1
t ,c2

t ) as functions ofj.
Moreover, we discussed a practical choice of improv

action for numerical simulations on anisotropic lattice
From a calculation of an indicator which estimates the d
tance to the renormalized trajectory near the fixed point,
found that keeping the improvement parameters to the va
at j51 leads to the distance comparable to the minim
distance at the optimum (c1

s ,c1
t ,c2

t ), for the range of the
anisotropyj'1 –4. This means that, for the rangej'1 –4
where anisotropic lattices are expected to be efficient in
culating thermodynamic quantities@10#, the choice of Iwasa-
ki’s value for improvement parameters is acceptable also
jÞ1, as adopted in a previous work@11#.

As the next step, it is necessary to confirm whether go
properties of the RG-improved action atj51 maintain also
at jÞ1 in practical simulations, but we showed that t
Iwasaki’s program of an RG-improved action can be gen
alized forjÞ1.

FIG. 8. R(1) for various actions as functions ofj.
2-9



an
k
-

S
an

en

EJIRI et al. PHYSICAL REVIEW D 68, 014502 ~2003!
ACKNOWLEDGMENTS

We thank the members of the CP-PACS Collaboration
S. Hands for helpful comments and discussions. This wor
supported in part by Grants-in-Aid of the Ministry of Edu
cation, Culture, Sports, Science and Technology, Japan~No.
13640260!. S.E. is supported by PPARC grant PPA/G/
1999/00026. T.U. is supported by the public research org
zations at Center for Computational Physics~CCP!, Univer-
sity of Tsukuba.

APPENDIX: DERIVATION OF THE WILSON LOOP
AFTER BLOCK SPIN TRANSFORMATION

We derive Eqs.~20!, ~21!, and~22! following Appendix B
of Ref. @20#. Let us introduce the Fourier transformation

Am
(NBS)

~x!5E
k
ei2NBS(kx1km/2)Ãm

(NBS)
~k!, ~A1!

where the lattice spacing forAm
(NBS)(x) is 2NBSa. From Eqs.

~4!, ~18!, and~A1!, we obtain

Ãm
(NBS)

~k!5e2 i (2NBS2121/2)kmH̃ (NBS)~k!Ãm
(0)~k!, ~A2!

where

H̃ (NBS)~k!5 )
M50

NBS21
1

8)
n51

4

~ei2Mkn11!. ~A3!
s

s

ru

01450
d
is

/
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We define the free propagatorDmn
(NBS) for the field Ã(NBS) by

^Ãm
a(NBS)

~k!Ãn
b(NBS)

~k8!&5da,bd~k1k8!Dmn
(NBS)

~k!.
~A4!

We obtain

Dmn
(NBS)

~k!

5e2 i (2NBS2121/2)kmei (2NBS2121/2)knH (NBS)~k!Dmn~k!,

~A5!

whereH (NBS)(k) is given by Eq.~24!.
The expectation value of Wilson loops that can be writt

as

W~C!5(
m,n

cmn~k!Dmn~k! ~A6!

for the original lattice is obtained for theNBSth blocked lat-
tice by

W(NBS)~C!5(
m,n

cmn~2NBSk!Dmn
(NBS)

~k!. ~A7!

To derive Eq.~24!, we used the fact thatDmn(k) is odd inkm
andkn whenmÞn.
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