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Renormalization-group-improved action on anisotropic lattices
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We study a block spin transformation in the @Wlattice gauge theory on anisotropic lattices to obtain
Iwasaki’s renormalization-group-improved action for anisotropic cases. For the class of actions with plaquette
and 1X2 rectangular terms, we determine the improvement parameters as functions of the anigotropy
=as/a;. We find that the program of improvement works well also on anisotropic lattices. From a study of an
indicator which estimates the distance to the renormalized trajectory, we show that, for the range of the
anisotropyé~1-4, the coupling parameters previously determined for isotropic lattices improve the theory
considerably.
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I. INTRODUCTION brids[17], glueballs[18], and also the pion scattering length
[19].

Improvement and anisotropy are two key ingredients of A combination of the ideas of improvement and anisot-
the recent developments in lattice QCD. In QCD with dy-fOPY IS not straightforward, however. The main difficulty is
namical quarks, the improvement of the lattice theory is esthe large number of coupling parameters in improved actions
sential to perform a continuum extrapolation of light hadron® anisotropic lattices. Bven in the simplest case of the

D ] renormalization-group-RG-) improved gauge action by
spectra within the computer power currently availadi¢?]. Iwasaki[20], which contains plaquette andx® rectangular

At finite temperatures, the expected4Dscaling around the  ormg only we have five parameters on anisotropic lattices,
two-flavor chiral transition point is reproduced on the latticejnstead of two for the isotropic case. We have to fix them as
only with improved Wilson-type quarkis3,4]. Improved ac-  functions of two parameters: the gauge couplifigvhich
tions are applied also for staggered-type quarks to reduceontrols the overall scale and the anisotra@pyBecause the
lattice artifacts[5,6]. However, in order to perform a con- redundant parameters have no physical effects in the con-
tinuum extrapolation of thermodynamic gquantities, we needinuum limit, they have to be determined through a require-
to further increase the temporal lattice sie [7,8]. This ~ ment of improvement—i.e., minimizing lattice artifacts in
requires quite large spatial lattice sizes to keep the systefhysical observables away from the continuum limit.

close to the thermodynamic limit, and the task slightly ex-, A concrete form of the dependence on the scale and an-

o - isotropy in the coupling parameters is important for a calcu-
gsﬁgfng;; Cqﬂ;?;ég]m't of the computer power for QCD with lation of thermodynamic quantitid®1—25. In a Symanzik-

. . . type improvement program, it is easy to see that, at the tree
Repently, we propoged to apply gnlsotroplc lattices forIeveI of perturbation theory, the coupling parameters are in-
reducing the com_putatlonal demand_ n thgrmal _QDJD]' dependent of¢. Accordingly, studies of finite temperature
Because the dominant part of the lattice artifacts in the equagymanzik-type improved actions on anisotropic lattices have
tion of state(EOS is due to the finite temporal cutoff, an peen done assuming isotropic improvement paramg2érs
anisotropic lattice with a larger temporal cutoff will provide 2g] \when we improve the theory beyond the tree level, we
us with an efficient way to calculate thermodynamic quanti-haye to take into account tiedependences in the coupling
ties. We tested the idea for the case of the(BWauge parameters. Isotropic parameters have been adopted also in a
theory with the standard one-plaquette action. From a seriestudy of the RG-improved action on anisotropic lattif&s),
of simulations atN;/é=4, 5, and 6 with anisotropy¢ however, without justifying the choice.
=as/a;=2, whereag and a; are the spatial and temporal  In this paper, we study the anisotropic improvement pa-
lattice spacings, we find that the lattice artifacts in the EOSameters for the RG improved gauge action. Following
are much smaller than those on the corresponding isotropivasaki's program of RG improvement using a block spin
lattice, and the leading scaling relation is satisfied from theransformation, we determine the values of coupling param-
coarsest lattice. This enabled us to perform a well-controlleeters which minimize the lattice discretization errors. After a
continuum extrapolation of the EOS in QCD. Anisotropic brief explanation of the RG-improved action in Sec. Il, the
lattices have been employed also to study transport coeffanisotropic gauge action we study is defined in Sec. Ill. We
cients and temporal correlation functions in finite temperathen study Wilson loops under a block spin transformation in
ture QCD[11-13. In these studies, anisotropy was intro- Sec. IV. In Sec. V, RG-improved actions on anisotropic lat-
duced to obtain more data points for temporal correlatiortices are determined and a practical choice of the improved
functions. At zero temperature, anisotropic lattices have beeaction for numerical simulations is discussed. We conclude
employed to study charmonium statelst—16, heavy hy- in Sec. VI.
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duce continuum properties from the shortest distances on the
a lattice[29]. If an infinite number of coupling parameters are
admitted, a perfect action is a goal of improvement. In real-

ity, we are forced to keep the interactions as simple as pos-

RT sible in numerical simulations. Hence to find the nearest

: point to RT in the restricted coupling parameter space is the
- \ problem in practice. lwasaki applied the program of im-
provement to the SU\;) gauge theory in the weak coupling

limit for the case of the action with plaquette ans 2 rect-

1/B angular termg20]. He found the nearest point to the fixed

point in the coupling parameter subspace by calculating Wil-

G etc. son loops perturbatively on the lattice consisting of blocked
link valuables after block spin transformations. Another ap-
proach of an RG-improved action is the classical perfect ac-
tion approach in29], which is suitable for increasing the
coupling parameters. S¢80] for a trial to include quantum
corrections. A classically perfect action on anisotropic lat-
tices was studied ih31].

Various lattice actions are expected to belong to a com-
mon universality class having the same continuum limit. For
the SU3) gauge theory, a lattice action may contain, for  !ll. GAUGE THEORY ON ANISOTROPIC LATTICE

example, 2 rectangular loops, 22 squares, etc., in ad- o jsotropic lattices, the RG-improved gauge action by
dition to the conventional plaquettes. One combinat®n |, 5saki [20], which consists of plaquetted/**}) and 1
=2N,/g? of the coupling parameters is the relevant param-. 5 rectangular loopsV(**?), is defined by
eter which reflects the freedom of the lattice spacing, while ’
other coupling parameters are redundant in the continuum
limit. The objective of improvement is to find the values of (1x1) (1x2)
redundant parameters for which physical observables from a Simp=—8 > CoWy,, (X) + > CaW,,, (%) 1,
coarse lattice are closest to their continuum values. o oty (1)

In order to discuss the improvement of a lattice action, we
consider RG flows of a block spin transformation as shown
in Fig. 1. The block spin transformation halves the correla-where c,+8c,;=1 for normalization andc,=—0.331
tion length in lattice units but does not change the long-rang¢—0.293) to optimize the action after orivo) block spin
properties of the system. Then, the coupling parametetransformatiofs) (see below for detai)s This action has
moves toward smallep corresponding to the correlation peen shown to lead to better rotation symmetry of heavy
length becoming shorter. In this figure;, c,, etc., denote quark potential than the standard one plaquette a¢f8?]
the redundant coupling parameters, and the points on fhe 1/and to suppress lattice artifacts associated with Wilson-type
axis correspond to the standard one-plaquette actions. Thgiarks at finite temperatuf8]. This action was also reported
hyperplane ap=c« (g=0), on which the correlation length to be efficient in suppressing chiral violations in domain-wall
diverges and the continuum limit can be taken, is called theyuarks[33]. In two-flavor full QCD with clover-improved
critical surface. In this surface, the coupling parameter doeWVilson quarks, the first systematic studies of the light hadron
not go out of the surface g#=o under the block spin trans- spectruni1] and the finite temperature equation of state with
formation, since the correlation length after the block spinwilson-type quark$4,8] have been carried out.
transformation is also infinity, which means that an RG flow The generalization of Iwasaki’'s action to an anisotropic
aroundB=o runs parallel to the critical surface, except in lattice is given by
the vicinity of a fixed poin{FP), at which a coupling param-
eter does not change under the block spin transformation.
Therefore, an RG flow can connect only at FP to the critical S= _Bs{ XiZj ng(lxl)(X)JrX%j Civvi(j1><2)(x)

\g
!

soepIns [ORLO

FIG. 1. RG flow and the renormalized trajectory for the(SU
gauge theory in infinite dimensional coupling parameter space.

Il. PROGRAM FOR RG-IMPROVED ACTION

surface. ij
Moreover, because RG flows can be regarded as lines of

constant physics, the distance between each RG flow be- tan(1X1 taa(2X1

comes wider ag increases corresponding to physical quan- _Bt[ ;( CoWia )(XHXZk [esWE 00

tities becoming more insensitive to the redundant coupling

parameters.c,, C,, etc., as the continuum limit is ap- +Ctvv(1X2)(X)] 2

proached, and only one RG flow which has properties in the 27 k4 '

continuum limit, called the renormalized trajectdBT), can

connect to the critical surface at FP by infinite block spin

transformations. where we setj+8c5=1 andc)+ 4c]+4c,=1 for normal-
The actions on the RT are “perfect actions” which repro- ization. This form of the tree-level Symanzik-improved ac-
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tion with mean field improvement was studied[26—28.

Here, we study the RG transformation of this action to obtain

an RG-improved actioh.

Let us denote the lattice spacing in thedirection asa,,
and the lattice size abl,. We consider the casa;=a,
=az=a,, a,=a; andN;=N,=Nz=Ng, N,=N; with suf-

ficiently large Ng and N;. Identifying the gauge field by
U, (x)=exdiga,A,(X)], the conventional gauge action is re-

covered in the classical continuum limit when

poNe g 2Nt 3
Tgk T g2

whereé=ag/a;.
We perform the Fourier transformation &f,(x) by

AM(X): fkékx+ik#aM/ZAM(k)’ (4)

Wheresz(ll\/ngNt)HiﬂEkM, k,=2mj,/N,a,, andj,
is integer. Then, the action reads

S= %agat;ﬁl kZ# {;La {1-cSa(k2+kA)Ta (kTa(—k)
+ 2 (1-chagk? - chatkf (kT (— k)| + O[A%],

)

and T,,(k)=i[k,A,(K)

with  k,=(2/a,)sink,a,/2)

—k,A,(K)]. We adopt the lattice Lorentz gauge by adding

the gauge fixing term:
2

(6)

Sy= agat; tr[% A LA (X)

A fO0={f(x)-Ulf(x—a,m)U, (x—a,u)}/a,. .
.

In order to simplify the notation, we redefine lattice mo-
menta and the gauge field absorbing the lattice spacings as

k,a,—k,, k,a,—k,, andﬂ#aﬂjﬂM,~in the following.
Then, the lattice propagator(Ai(k)AB(k’)):5a,b5(k
+k")D,,(K), is given by

!Because our action contains couplings extending over two time F uup(chain = (NgNt)le 2
slices, unphysical higher-lying states may contaminate correlation o=t
functions at short distances comparable to the extent of the action,
as observed, e.g., in a study of glueball spectrum using a Symanzik
improved gauge actiof34]. Although these unphysical states do
not affect physical properties at long distances, caution is required
when we have to study short distance correlators to extract physical

quantities.
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1 “ ~
Dﬁl(k)zlgl qui(k)klzfsij + &04i(K)K3 5,

1 A
- E(Qij(k)_l)kikj :
D;,1(K) = — £(@ia(k) — Dkiky,

D it (K) = — £(0i(k) — Dkgk; ,
3
D;:(k):gl £q1a(K) kP + £33, ®)
where
qij(k)=1-c3(k?+k) for i#j(=12,9),
ia(K) =g (k) =1— cik?—cik3, (9)

with q,,,(k)=0.
We consider the following Wilson loops:

W,,,(1X1)=(UNJtTU ,(x)U (X + )

X UL (x+ ) UT(x)], (10)

W, ,(2X 1) = (IUNJIU ,(X)U ,(x+ w)U ,(x+21)

XUL(x+p+ UL x+ U001, (1)

W,,,,(chain = (LIN)tTU ,(x)U (x+ @)U ,(x+ p+ )

xUl(x+v+p)Ul(x+ 1)Ul (12

W,,,,,(3 dim) = (LN U ,(x)U ,(x+ ©)U (X + u+ )
XUl (x+v+p)Ul(x+p)Ul (0] (13

To the leading order of perturbation theory, we [#@,35

2_

c—1
N, F(C), (14

(W(C)=1-g7—

4 i i 2
3 s — sin(1k ,/2) sin(Jk,/2)
F o (1x3)=(N3N,) 1pljlk2p (sin(kM/Z) S

XDy, unl(K), (15

4
D v, un(K) +D i p(K)

o
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4

. R _R(NBS)(R(NBS))ZR(NBS)D(NBS)(k)
F (3 dlm)=(N§Nt)‘1£[l kE [(1-K2/4)D,, ,.(K) peooN P T

. _’R(NBS)&(NBS)(R(NBS))ZD(NBS)(k)]}
+(1-k2/4)D,, (k) e P e

- (N
+(1-RJA)D,,,,. (K], a” xR, @y
. 4 (k(Nedy2
forA §U(NC) gauge theory, szhereDMW(k)szDw(k) FL’\:}E)S)(3 dim)=(N§Nt)*llZ[1 ; 1— PT
—k,k,D,,(K)—k,k,D,,(K)+kiD,.(K). v 7
k(Nes)y2
IV. BLOCK SPIN TRANSFORMATION X DLNVB,SBV(")“L 1— MT) DS;';I)BVS!))(k)
The purpose of this study is to find a fixed point at which <N
the parameters in the action do not change. As seen in the (k BS))2
: i i +|1- =2 DpMed (k) |[HMeI (k)
previous sectionF(C) are functions of the redundant pa- 4 e ,
rameterscis“; hence, if a block spin transformation is per-
formed in the vicinity of the fixed point, the values B{C) (22)
should not change. In this section, we calculate Wilson loops )
on the blocked lattice after block spin transformations in thel® 1€ading order, where
g—0 limit and discuss the fixed point. (Ned) AN < (Ne (N9
Following Iwasaki[20], we consider a simple block spin k,°¥=2"8sk,, k, *¥=2sink *°/2), (23
transformation fromNggth to (Ngst+ 1)th blocking of the
form Ngs—1 4 4
HMNe9) (k) = “}'_[o ZHl [1+cog2"k,)],
1 (N o
(Nps+1), 1y _ B
A n)=< A n), 18
» (") 8 nz' po (M) (18 TABLE I. Blocked Wilson loops and those in th#S— o limit.

F andF, are for spatial and space-time Wilson loops, respectively.

R N3X N,=128x (128¢).
where we block 2 links at the sitem=2n"+3 €, u, (€, ot (128)

=0,1) to 1 link atn’ on the blocked lattice. The lattice £=1
spacings change from, to 2a, by this transformation,  \ss F(1x1) F(1x2) F(2x2)
while the anisotropy remains the same. Note that the scale
factor 2 is multiplied on the right-hand side of Ed.8) to 0 0.500000 0.862251 1.369312
scale back to the original lattice spacings, so that the relevant 1 0.288104 0.517653 0.879783
couplingg remains constant. 2 0.216234 0.403513 0.720860

3

4

0

Link variables on the blocked lattice are defined by 0.194450 0.369800 0.674938
UELNBSJ(n)=eXQigaMALNBS)(n)]. Wilson loops consisting of 0.188403 0.360256 0.660681
blocked links are given bj20] 0.186476 0.357678 0.658761

NZ—-1 £=2

(WHed(C))=1-g* Zg—F™3(C), (19 NBS R (1x1)  F(1x2)  F(2X1)  F(2x2)

0.673095 1.128029 1.128029 1.728563
0.402015 0.701155 0.701155 1.145925

0
(N — (N3N V-1
FOB9 (15 3) = (N3Ny) 1
2 2 0307103 0555452 0555452  0.952321
) 3
4
0

4 . N . N
IS sinIk,"*9/2) sin(3K;"e/2 0277085  0.510586  0.510586  0.894124
=1 % | sin(k{®972) sin(k{"®912) 0.268545  0.497689  0.497689  0.876158
0265709  0.493899  0.493899  0.872921

x DN (k)H™Ns9 (k), (20)

NEBS Fi(1X2) Fi(1x4) Fi(2%2) Fi(2x4)

4
FNe9(chain= (N3N [ >
o=1 Kk,

urp

0.556383 0.920967 0.995852 1.510346
0.348216 0.572014 0.655826 1.005403

p(Ne9 (k)+D(NBs) (k) 0
1
2 0.274425 0.454023 0.537939 0.837727
3
4
0

v, pv KPP

0.251345 0.418526 0.501772 0.788069
0.244845 0.408394 0.491385 0.772639
0.242740 0.405580 0.488471 0.770227

1
_ (N9 21 (N[ (Ngg) ~ (NBs)
5 [(K('e9) 2k e Nedp (e 1

+ (R(NBS)R(NBS))ZD(NBS)(k)
v P nu
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p(Nes (k):(RLNBs))ZDW(k)+(RE}NBS))2D,MM(|() in physical unit. In lattice units, it reads

UV, v
a b _ 4
_ZRELNBS)RS/NBS)COS{(stsfl_l/z)klu] <AM(n)Av(o)>_5,4/,v53,bf,u(n)+o(1/n )1

x cog (2es™1—1/2)k, 1D ,,,(K). (24) ()= L

4w ni+n3+nj+ ¢ 2nd
The derivation of Eqs(20), (21) and (22) is given in the ™ Nyt N gt e TN
Appendix.

. . 1
In Table I, we list the numerical results &(Nes) for the f.(n)=—— _ 26
. . 4(N) 2 2024 ¢202 £202 2 (26)
case of the standard one plaquette action. We find that the 4= £°n1+E°ns+ 73+ ng
(NBS) .pe .
?ﬁit:es ofF approach to specific values in ths— The nonleading term of the right-hand side of E2f) does

not contribute to the expectation value in tRgs— o limit
BZO]. Hence we can neglect the higher-order terms. Then the

resulting Wilson loops do not depend on the improvement
s/t

Wilson loops in the limit of infiniteNgg can be evaluated
as follows. At long distances, the gauge propagator shoul
behave like

parameterg;”" in the original action, since the leading term
8,,0a0 does not depend on them.
(Ai(x)AB(O)):—2 I a’2 5 +O(1x*") (25) Now, the (xJ) rectangular Wilson loops in the limit
Ame X1+ X+ X3+ X Ngs— are given by
1 2 -1
FE(1x3)= lim (T) > {Zlfﬂ(m—n)+2\]fv(m—n)+42 (I1=k)f ,(2Neskze+m—n)
Npg—o 8BS/ m,n k=1
J-1
+4% (I-K)f,(2Neskp+m—n)—2If ,(2NesIy+m—n)—2Jf,(2Nesl u+m—n)
k=1
-1 J-1
—4% (I-K)f, @ es(kp+Iv)+m—n)—4 >, (I-Kk)f,(2"ss(kv+14)+m—n) 27)
k=1 k=1
4 1 -1 J-1
=2J1 | dx,(1—x,)|1T,(0)+JIF,(0)+2> (1=K, (kp)+2> (I-KT,(kv)—IT,(Iv)
p=1Jo k=1 k=1
-1 J-1
It (1w -2 (1-Kf,(ka+In) -2 A-KT,(kv+lg)], (28)
k=1 k=1
where
4
~ 1 1
fioqm=—I] > : (29
o 4mu=1 €, =11 (N1— €1X1)+ (N~ €X0) >+ (N3~ €3X3) *+ € 2(Ny— €4X4)?
4
~ 1 1
fan)=-— > (30)

4121 6, ST18 E(Ny— €1X1) 3+ (Ny— €2X2) 2+ (N3 — €3Xa) 2]+ (Ny— €4%,) 2

Here, we have used lign,..S2" ,f(n/2%) = [3dxf(x) and a relationf3dx 3y f(x—y) = f2dx(1—x)[ f(x) +f(—X)]. Simi-
larly, we obtain

4
l ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Fiopchain =211 | ax,(1=x)[Tu(0)+T.(0)+T,(0)=Tu(m) =T () -Tu(v+ )], (31
4 1 - - - _ A A — A A _ A A
FS‘QP(BJdim):Z];[l 0dXU(l—XU)[fM(O)'f'fV(0)+fp(O)—qu(V‘f‘p)—fV(p'f‘,LL)—fp(,LL'i‘V)]. (32
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We also denoté& () in Table . 2.0 . - . . . -

From the behavior thaF(C)MNe9 converges monotoni- O Plaguette (¢=1)
cally to F(C)™) which is independent of the coupling pa- m Plaguette (£=2)
rameterss?’" in the original action—i.e., the starting point of . 228:“‘" %j;;

RG flow—if a block spin transformation is performed from ST " )
the point at whichF(C)(Ne9 is alreadyF(C)(*), we expect o

that the value of (C)(Ne9 does not change anymore, which

is the property at a fixed point. Therefore we can identify the g 44 | i
fixed point by how close the value df(C)Nes is to é;:

F(C)™,

Notice that the property df(C)(Ne9 also suggests that an ]
RG flow from every point in the critical surface flows into 05 a 1
one RG flow (RT) in finite B, on which F(C)(Ned s
F(C)™), as shown in Fig. 1, since the starting paiiit of
the infinite block spin transformations f&(C)(*) must be e .
in B== (g=0). W

(a) Nas
V. ANISOTROPIC RG-IMPROVED ACTION 10 . . . . . .

We search for an action which reproduces the values of O Plaquette (§=1)
Wilson loops in theNgg— o limit as much as possible within , i ;qu“e‘t?&gf)
the restricted coupling parameter space of the action(Zg. 100 ¢ ORG ) (E2) ]
For this purpose, lwasaki considered the average relative de . 2::)@:2)
viation of Wilson loops, » .

10" L@ ]
R(Nss) \/E (F(NBS)(C)_F(OO)(C) 2 C), (33 2 ]

c F)(C) w(e). (9 T 102 | 5 | ? . 3
whereZ is over four-loop shapes up to length 6—plaquette 2 s
(10), 1X2 rectangular loop(11), chair (12), and three- 10° ¢ 2 3
dimensional loop(13)—with a uniform weightw(C) = 1/4.
Equation(33) means that, wheR(Ne9=0.01, for example,
the deviation of small Wilson loops from their values in the 107 0 P > 3 4 5
Ngs— < limit is about 1% afteNgg block spin transforma- () Ngg
tions.

On anisotropic lattices, we generalize Eg83) by subdi- FIG. 2. RMs9) vs Ngg at é=1 and 2 for various actions. Open

viding each loop shape into orientations and adopt a uniforngymbols are fog=1 and solid symbols are fagr=2. Results from
weight for each orientation. Namely, because we have thre#e standard one-plaguette action are shown by squaresgfRG
spatial and three temporal plaguette orientations, we givéhe RG-improved action which minimizé&™ on the lattice with
w(spatial plaquettey w(temporal plaquette; 1/8. For 1 the_ anisotropy. RGQ,Xtedm) is an approximate RG-improved action
X2 rectangular loops, we have six orientations of spatial'Sing the values of™ for £=1.

loops, three orientations &3, and three orientations of

W2 | Therefore, we give 1/8, 1/16, and 1/16 for their

weights. Similarly, we subdivide 12 chair and 4 three—Solid squaresshow exponential decrease witys. (Reslts

dimensional loop orientations. from RG-improved actions will be discussed later
Here, we should emphasize that we are tryin repro- § . . ) '
ere, we should emphasize that we are trying to repro We search for the minimum point &"Nes) in the param-

duce the values df(*)(C) for ten different Wilson loops by . t ol g h val Ei 3 <h
controlling three coupling parameters f&# 1 (four Wilson eter space i ,cy,C,) for each value of. Figure 3 shows

loops by one parameter fgr=1) at the same time, which is ﬂle behavior QR“) for £=2 in the SUbSpaceG;:Ctz and

a quite nontrivial trial, and the value &™e9 indicates that C1= —0.31. Figure &) suggests that the region of small
F(Ne9(C) does not change within the accuracy Rf¥e9  R(Mes spreads in the direction of constanjt+ ¢}, which we
under block spin transformations, sindeNed(C) ap-  confirm also for other cases.

proaches toF*)(C) as Ngs increases and the change of 1o find the minimum ofR™es), we solve the equations
F(Ned(C) is smaller than the difference. Therefore, by mea-

suring the indicatorR™e9, we can check indirectly how (9(R(NBS))2_E 2(7F(NBS)(C) FNed(C)—F*)(C)

In Fig. 2, we show théNgg dependence oR(Nes for &
=1 and 2. The results from the plaquette actiopen and

“slowly” the coupling parameters flow—i.e., how the near- ac; e ac; [F)(C)]? w(C)
est point which we find in the restricted parameter space is
close to the real fixed point in the weak coupling limit. =0, (34
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0.03

0.02

(b) ’ 53-04

with ¢;={c3,c}, c5}. We iteratively solve Eq(34) using
linear approximations

2 w(C)
(c3 cto,ctzo) [F(x)(c)]z

101

(Ci—Cio)

gF(Ned(C)
% ( dcC;

< dFMNeI(C)
_Ecj = =

JcC;

s bt
(€10+€10:%20)

() — E(Ngy) s
F (C) Fe (C)|(clo,ctlo,ct20)

w(C), (35

[F(C)P?

around €5,¢}0.Chy), wheregF(Ned(C)/dc; can be calcu-
lated by

PHYSICAL REVIEW 68, 014502 (2003

FIG. 3. R® for £=2 (a) in the subspace!
=c}, as a function of ¢§,ci=c}), (b) in the sub-
spacecS=—0.31 as a function ofd},cb).

cf =-0.31 fixed

-0.2

oD oDt
MY 2%
aCi __DMV (9Ci DM‘” (36)

with D;Vl given by Eq.(8). We solve the equations numeri-
cally on a 128 lattice. We checked that the finite volume
effects are sufficiently small for the Wilson loops in Eg§3).
Results for the improvement parameters which minimize
R(Nes' are summarized in Table Il and Figs. 4 and 5 for
Ngs=1 and 2. We also show the results fdgs= 0 in Fig. 6.
In these figuresg$, ¢}, andc), are shown by solid, dashed,
and dot-dashed lines. In the followings we denote the corre-
sponding action as Rﬁ('\'sg [the RG-improved action with

the £-dependent optimum values of(,c},c) to minimize
R(Nes)]. At £€=1, we reproduce Iwasaki’s resulfg0] c3
=cl=cLb=-0.331 (- 0.293) forNgs=1(2).

Figure 7 shows the values &™es from RGypy,g for
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TABLE II. The improvement parametersy,c},c5) andRNe9
of the RG-improved action RéNge for Ngs=1 and 2 at various

I3
Ngs 3 ci cy ch R(Nad)
1 020 -0.349 -0.359 -0.073 5.40103
1 025 -0.357 -0.356 —0.097 5.3%103
1 050 -0.363 —0.345 —0.204 6.1k10°3
1 070 -0.350 -—0.338 -0.271 7.1&10°%
1 090 -0.337 -0.333 -0.316 7.6k10°°3
1 1.00 -0.331 -0.331 -0.331 7.7%10°°
1 110 -0.326 -0.329 -—0.341 7.6%10°°
1 150 -0.313 -0.324 -0.356 7.0Kx10°°
1 2.00 -0.307 -0.316 -0.350 6.5%103
1 250 -0.307 -0.302 -—0.340 6.5&10 3
1 3.00 -0.308 -0.286 —0.331 6.9610 3
1 350 -0.311 -0.270 -0.325 7.3%10°3
1 400 -0314 -0.255 -0.320 7.7k10°°
1 450 -0.317 -0.241 -0.316 8.0x10°°
1 500 -0.320 -0.229 -0.312 8.3x10°3
1 6.00 -0.327 -0.208 -0.306 8.5%10 3
1 7.00 -0.333 -0.192 -0.302 8.7%10°3
1 8.00 -0.339 -0.178 -0.298 8.7kx103
2 020 -0.360 -—0.282 -0.122 1.3%10°3
2 025 -0.358 -0.282 -0.142 1.3%10°3
2 050 -0.328 —0.284 —0.225 1.8%10°
2 0.70 —0.309 -0.287 -—0.265 2.2510° 3
2 090 -0.297 -0.291 —0.287 24X%10°
2 1.00 -0.293 -0.293 —0.293 2.4%10°°
2 110 -0.290 -0.294 —0.297 2.4X%10°°
2 150 -0.284 -0.299 -0.303 2.2x10°°
2 2.00 -0.283 -0.299 -0.304 1.9K10°3
2 250 -0.284 -—0.295 -0.303 1.8%x10°3
2 3.00 -0.287 -0.287 -0.304 1.9K10°3
2 350 -0.290 -0.277 -0.305 2.0%10°3
2 400 -—0294 -—0.268 —0.306 2.3x10°
2 450 —0.298 —0.258 —0.308 2510 °
2 500 -0.302 -0.249 -0.309 2.6&10°3
2 6.00 -0.311 -0.232 -0.310 2.9%10°3
2 7.00 -0.320 -0.218 -0.310 3.2x10°3
2 8.00 -0.330 -0.205 -0.309 3.36¢10°3

Ngs=0, 1, and 2[dashed(shory, dashed(long), and dot-
dashed lines, respectivélye find that the values d®@(Nes
remain small in a wide range @f, indicating that a similar

guality of improvement is achieved by the program of RG
improvement even af+ 1.
Here, it is worth noting that reducing the number of inde-

pendent coupling parameters has a practical benefit in nu

merical simulations. In particular, because a nontri¢iale-

pendence in coupling parameters makes the calculation 0-0.4 0 ; ' . ; : : :

thermodynamic quantities complicated, it is attractive to
adopté-independent improvement parameters.

Therefore, we studyRNes) at £#1 with the improved
parameters fixed to the optimum value &t1, cj=c}

PHYSICAL REVIEW D 68, 014502 (2003

FIG. 4. Improvement parametersci(c},ch) for the RG-
improved action RGy;) which minimizesR™) at each¢. The dot-
ted line is the solution which minimizeR™® when a constraint;
=cl=c} is required.

=c,(=—0.331 forNgs=1). We denote this action as
RGiyed(ngg (@n RG-improved action witle, ¢}, andc;
fixed to the lwasaki’s value minimizing(Nes on theé=1
lattice). The result ofR™Y) for Ngs=1 is plotted by the solid
line in Fig. 7. We also study the cas§=c|=cb=c,(¢)
wherec, is varied to minimizeR(Nes at each¢. The results
for the minimum value oR™® and the corresponding opti-
mum value of the parametey, are shown by dotted lines in
Figs. 7 and 4, respectively. For both casBS? becomes
larger ast deviates from 1. It means that one cannot keep the
same quality of improvement in the whole rangeéoWith
the RGixed(ng 9 action or the action with the constrain§

=cy=ch=c4(é).

0 T T T T T T T

-03 r

FIG. 5. Improvement parametersci(c},ch) for the RG-
improved action RGy ) which minimizesR®) at eaché.

014502-8



RENORMALIZATION-GROUP-IMPROVED ACTION ON . .. PHYSICAL REVIEW 68, 014502 (2003

0-0 \ T T T T T T T 0.6 T
\ s -~ Plaquette
\ ___ 1‘ ——- Symanzik
-0.1 - \‘ ¢ 7 0.5 - — RGjq)
\ - cz‘ - opt.(1)

— 1
—
—
—
-

....................

FIG. 8. R® for various actions as functions gf
FIG. 6. The same as Fig. 5, but for the Rz, which mini-
mizesR(©. values ofNgg, too. We find that, although a stable improve-
ment is achieved with the Rgg,) action for a wide range of
In most simulations, however, we are interested in thef, when we restrict ourselves to the rangje1-4, all RG-
cases off~1—-4, where the values &*) remainO(102). improved actions lead to quite small values &%
In the determination of an RG-improved action, the differ-=O(10?); i.e., the average deviation of small Wilson loops
ence between Fig. 4 fdigs=1 and Fig. 5 forNgg=2 is a  from theNgg= limit is less than about 1% after one block-
matter of taste: Both actions are equally qualified withing. On the other hand, for the standard plaquette and Sy-
RNed<O(1072) and the difference in the values of im- manzik actions, typical values &) are 0.4—0.5 and 0.25—
provement parameters should be regarded as a freedom @3, respectively. We conclude that the R, action, in
the choice. In this respect, we find that the variations ofwhich the improvement parameters are fixed to Iwasaki's
improvement parameters as functionséfre small foré  value foré=1, improves the theory well at~1-4.
~1-4.
In Fig. 8, we showR(™® for various actions including the V1. CONCLUSIONS
standard plaquette action and the Symanzik improved ac- ) ) }
tions. For RG-improved actions, results are shown for We studied RG-improved actions for the &V gauge

RGopi(1) nd RGieq(1)- Similar results are obtained for other theory on anisotropic lattices, following Iwasaki's program
of improvement. We determined the improvement param-

eters as functions of the anisotrogyfor the action with
] plaguette and X 2 rectangular terms. We found that the pro-
— Ngge=1, ¢, fixed : : ; :
____________ Noeet, 6 mc, =, gram of |mprovement vyorks _vveII even on e_mlsotroplc lattices
0.05 | N 1 without losing the quality of improvement if we adjust three
improvement parametersj,c,c5) as functions of.
Moreover, we discussed a practical choice of improved
action for numerical simulations on anisotropic lattices.
From a calculation of an indicator which estimates the dis-

0.06 T T T \ \ \

0.04

2 003 tance to the renormalized trajectory near the fixed point, we
™ found that keeping the improvement parameters to the values
0.02 at £&=1 leads to the distance comparable to the minimum
distance at the optimumc{,c},c}), for the range of the
001 anisotropyé~1-4. This means that, for the range-1-4

where anisotropic lattices are expected to be efficient in cal-
culating thermodynamic quantiti€s0], the choice of lwasa-
ki's value for improvement parameters is acceptable also for
£+ 1, as adopted in a previous waolrkl].

As the next step, it is necessary to confirm whether good
FIG. 7. RNed as functions of from the RG-improved actions properties of the RG-improved action &t 1 maintain also
RGypingg fOr Nes=0, 1 and 2. Also plotted are the results R at £&#1 in practical simulations, but we showed that the
determined from R@eq(1) (solid ling), and the minimunR® ob- Iwasaki’'s program of an RG-improved action can be gener-

tained with the constraintS=c}=c}, (dotted ling. alized foré#1.
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APPENDIX: DERIVATION OF THE WILSON LOOP
AFTER BLOCK SPIN TRANSFORMATION

We derive Eqs(20), (21), and(22) following Appendix B
of Ref.[20]. Let us introduce the Fourier transformation

ALY ()= f g2tk AMed () (A1)
k

where the lattice spacing f(A;NBS)(x) is 2Nesa. From Egs.
(4), (18), and(Al), we obtain

A3 ()= g (2% 12K Ned RO (), (A2)

where
Ngs—1 4

ANe9) (k) = 1\}_:[0 §V1;Il (624 1), (A3)

(Nps)
D v (k)
(212, g 2N - 2y (e k) D, K,
(AS)

whereHNe9 (k) is given by Eq.(24).

The expectation value of Wilson loops that can be written

as

W(C)=2, ¢,,(K)D,,,(K) (A6)
M, v

for the original lattice is obtained for theégsth blocked lat-
tice by

WNeI(C) =3, ¢, (2Yesk)DTPV(k). (A7)
787

To derive Eq/(24), we used the fact th@ , (k) is odd ink,,
andk, when u# v.
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