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Event shape–energy flow correlations
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We introduce a set of correlations between energy flow and event shapes that are sensitive to the flow of
color at short distances in jet events. These correlations are formulated for a general set of event shapes, which
includes jet broadening and thrust as special cases. We illustrate the method fore1e2 dijet events, and
calculate the correlation at leading logarithm in the energy flow and at next-to-leading-logarithm in the event
shape.
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I. INTRODUCTION

The agreement of theoretical predictions with experim
for jet cross sections is often impressive. This is especially
for inclusive jet cross sections at highpT , using fixed-order
factorized perturbation theory and parton distribution fun
tions@1#. A good deal is also known about the substructure
jets, through the theoretical and experimental study of m
tiplicity distributions and fragmentation functions@2#, and of
event shapes@3–5#. Event shape distributions@6–8# in par-
ticular offer a bridge between the perturbative, short-dista
and the nonperturbative, long-distance dynamics of QCD@9#.

Energy flow@10# into angular regions between energe
jets gives information that is in some ways complementary
what we learn from event shapes. In perturbation theory,
distribution of particles in the final state reflects interferen
between radiation from different jets@2#, and there is ample
evidence for perturbative antenna patterns in interjet ra
tion at bothe1e2 @11# and hadron colliders@12,13#. Energy
flow between jets must also encode the mechanisms that
tralize color in the hadronization process, and the transi
of QCD from weak to strong coupling. Knowledge of th
interplay between energy and color flows@14,15# may help
identify the underlying event in hadron collisions@16#, to
distinguish QCD bremsstrahlung from signals of new ph
ics. Nevertheless, the systematic computation of energy
into interjet regions has turned out to be subtle@17# for rea-
sons that we will review below, and requires a careful co
struction of the class of jet events. It is the purpose of t
work to provide such a construction, using event shapes
tool.

In this paper, we introduce correlations between ev
shapes and energy flow, ‘‘shape-flow correlations,’’ that
sensitive primarily to radiation from the highest-energy je
So long as the observed energy is not too small, in a man
to be quantified below, we may control logarithms of t
ratio of energy flow to jet energy@15,18#.

The energy flow observables that we discuss below
distributions associated with radiation into a chosen inte
angular region,V. Within V we identify a kinematic quan
tity QV[«Q, at center-of-mass~c.m.! energy Q, with «
!1. QV may be the sum of energies, transverse energie
related observables for the particles emitted intoV. Let us
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denote byV̄ the complement ofV. We are interested in the
distribution ofQV for events with a fixed number of jets i
V̄. This set of events may be represented schematically

A1B→ jets1XV̄1RV~QV!. ~1!

HereXV̄ stands for radiation into the regions betweenV and
the jet axes, andRV for radiation intoV.

The subtlety associated with the computation of ene
flow concerns the origin of logarithms, and is illustrate
by Fig. 1. Gluon 1 in Fig. 1 is an example of a prima
gluon, emitted directly from the hard partons near a jet a
Phase space integrals for primary emissions contrib
single logarithms per loop: (1/QV)as

nlnn21(Q/QV)
5(1/«Q)as

nlnn21(1/«), n>1, and these logarithms expone
tiate in a straightforward fashion@15#. At fixed QV for Eq.
~1!, however, there is another source of potentially lar
logarithmic corrections inQV . These are illustrated by gluo
2 in the figure, an example of secondary radiation inV,
originating a parton emitted by one of the leading jets t
define the event into intermediate regionV̄. As observed by
Dasgupta and Salam@17#, emissions intoV from such sec-
ondary partons can also result in logarithmic corrections
the form (1/QV)as

nlnn21(Q̄V̄ /QV), n>2, whereQ̄V̄ is the

maximum energy emitted intoV̄. These logarithms arise

FIG. 1. Sources of global and nonglobal logarithms in di
events. Configuration 1, a primary emission, is the source of glo
logarithms. Configuration 2 can give nonglobal logarithms.
©2003 The American Physical Society12-1
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from strong ordering in the energies of the primary and s
ondary radiation because real and virtual enhancements
sociated with secondary emissions do not cancel each o
fully at fixed QV .

If the cross section is fully inclusive outside ofV, so that

no restriction is placed on the radiation intoV̄, Q̄V̄ can
approachQ, and the secondary logarithms can become
important as the primary logarithms. Such a cross section
which only radiation into a fixed portion of phase space (V)
is specified, was termed ‘‘nonglobal’’ by Dasgupta a
Salam, and the associated logarithms are also called non
bal @17,19,20#.

In effect, a nonglobal definition of energy flow is not r
strictive enough to limit final states to a specific set of je
and nonglobal logarithms are produced by jets of interme
ate energy, emitted in directions between regionV and the
leading jets. Thus, interjet energy flow does not always or
nate directly from the leading jets, in the absence of a s
tematic criterion for suppressing intermediate radiation. C
respondingly, nonglobal logarithms reflect color flow at
scales, and do not exponentiate in a simple manner. Our
in this paper is to formulate a set of observables for inte
radiation in which nonglobal logarithms are replaced by c
culable corrections, and which reflect the flow of color
short distances. By restricting the sizes of event shapes
will limit radiation in region V̄, while retaining the chosen
jet structure.

An important observation that we will employ below
that nonglobal logarithms are not produced by second
emissions that are very close to a jet direction, because
of parallel-moving particles emits soft radiation coheren
By fixing the value of an event shape near the limit of n
row jets, we avoid final states with large energies inV̄ away
from the jet axes. At the same time, we will identify limits
which nonglobal logarithms reemerge as leading correctio
and where the methods introduced to study nongobal eff
in Refs.@17,19,20# provide important insights.

To formalize these observations, we study below cor
lated observables fore1e2 annihilation into two jets.@In Eq.
~1! A andB denote positron and electron.# In e1e2 annihi-
lation dijet events, the underlying color flow pattern
simple, which enables us to concentrate on the energy
within the event. We will introduce a class of event shap
f̄ (a) suitable for measuring energy flow into only part
phase space, witha an adjustable parameter. To avoid lar
nonglobal logarithmic corrections we weight events
exp@2n f̄#, with n the Laplace transform conjugate variabl

For the restricted set of events with narrow jets, ene
flow is proportional to the lowest-order cross section
gluon radiation into the selected region. The resummed c
section, however, remains sensitive to color flow at sh
distances through anomalous dimensions associated with
herent interjet soft emission. In a sense, our results show
an appropriate selection of jet events automatically s
presses nonglobal logarithms, and confirms the observa
of coherence in interjet radiation@2,12#.

In the next section, we introduce the event shapes tha
will correlate with energy flow, and describe their relation
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the thrust and jet broadening. Section III contains the det
of the factorization procedure that characterizes the cr
section in the two-jet limit. This is followed in Sec. IV by
derivation of the resummation of logarithms of the eve
shape and energy flow, following the method introduced
Collins and Soper@21#. We then go on in Sec. V to exhibi
analytic results at leading logarithmic accuracy inQV /Q and
next-to-leading logarithm in the event shape. Section VI c
tains representative numerical results. We conclude wit
summary and a brief outlook on further applications.

II. SHAPE-FLOW CORRELATIONS

A. Weights and energy flow in dijet events

In the notation of Eq.~1!, we will study an event shape
distribution for the process

e11e2→J1~pJ1
!1J2~pJ2

!1XV̄~ f̄ !1RV~QV!, ~2!

at c.m. energyQ@QV@LQCD. Two jets with momenta
pJc

, c51,2 emit soft radiation~only! at wide angles. Again,

V is a region between the jets to be specified below, wh
the total energy or the transverse energyQV of the soft ra-
diation is measured, andV̄ denotes the remaining phas
space~see Fig. 1!. Radiation intoV̄ is constrained by even
shapef̄ . We refer to cross sections at fixed values~or trans-
forms! of f̄ andQV as shape/flow correlations.

To impose the two-jet condition on the states of Eq.~2!
we choose weights that suppress states with substantia
diation into V̄ away from the jet axes. We now introduce
class of event shapesf̄ , related to the thrust, that enforce th
two-jet condition in a natural way.

These event shapes interpolate between and extend
familiar thrust @4# and jet broadening@7,8#, through an ad-
justable parametera. For each stateN that defines proces
~2!, we separateV̄ into two regions,V̄c , c51,2, containing
jet axes,n̂c(N). To be specific, we letV̄1 and V̄2 be two
hemispheres that cover the entire space except for thei
tersections with regionV. RegionV̄1 is centered onn̂1, and
V̄2 is the opposite hemisphere. We will specify the meth
that determines the jet axesn̂1 andn̂2 momentarily. To iden-
tify a meaningful jet, of course, the total energy withinV̄1
should be a large fraction of the available energy, of
order ofQ/2 in dijet events. Ine1e2 annihilation, if there is
a well-collimated jet inV̄1 with nearly half the total energy
there will automatically be one inV̄2.

We are now ready to define the contribution from partic
in regionV̄c to thea-dependent event shape,

f̄ V̄c
~N,a!5

1

As
(

n̂iPV̄c

ki ,'
a v i

12a~12n̂i•n̂c!
12a, ~3!

where a is any real number less than two, and whereAs
5Q is the c.m. energy. The sum is over those particles
stateN with direction n̂i that flow into V̄c , and their trans-
verse momentaki ,' are measured relative ton̂c . The jet axis
2-2
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EVENT SHAPE–ENERGY FLOW CORRELATIONS PHYSICAL REVIEW D68, 014012 ~2003!
n̂1 for jet 1 is identified as that axis that minimizes the sp
cific thrust-related quantityf̄ V̄1

(N,a50). WhenV̄c in Eq.

~3! is extended to all of phase space, the casea50 is then
essentially 12T, with T the thrust, whilea51 is related to
the jet broadening.

Any choice a,2 in Eq. ~3! specifies an infrared saf
event shape variable, because the contribution of any par
i to the event shape behaves asu i

22a in the collinear limit,

u i5cos21(n̂i•n̂c)→0. Negative values ofa are clearly permis-
sible, and the limita→2` corresponds to the total cros
section. At the other limit, the factorization and resummat
techniques that we discuss below will apply only toa,1.
For a.1, contributions to the event shape~3! from energetic
particles near the jet axis are generically larger than con
butions from soft, wide-angle radiation, or equal fora51.
When this is the case, the analysis that we present be
must be modified, at least beyond the level of leading lo
rithm @8#.

In summary, oncen̂1 is fixed, we have divided the phas
space into three regions:
ss

e
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c
os
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RegionV, in which we measure, for example, the ener
flow.

RegionV̄1, the entire hemisphere centered onn̂1, that is,
around jet 1, except its intersection withV.

RegionV̄2, the complementary hemisphere, except its
tersection withV.

In these terms, we define the complete event shape v
able f̄ (N,a) by

f̄ ~N,a!5 f̄ V̄1
~N,a!1 f̄ V̄2

~N,a!, ~4!

with f̄ V̄c
, c51,2 given by Eq.~3! in terms of the axesn̂1 of

jet 1 andn̂2 of jet 2. We will study the correlations of this se
of event shapes with the energy flow intoV, denoted as

f ~N!5
1

As
(

n̂iPV

v i . ~5!

The differential cross section for such dijet events at fix
values of f̄ and f is now
g
r

ds̄~«,«̄,s,a!

d«d«̄dn̂1

5
1

2s (
N

uM ~N!u2~2p!4d4~pI2pN!d„«2 f ~N!…d„«̄2 f̄ ~N,a!…d2
„n̂12n̂~N!…, ~6!

where we sum over all final statesN that contribute to the weighted event, and whereM (N) denotes the correspondin
amplitude fore1e2→N. The total momentum ispI , with pI

25s[Q2. As mentioned in the Introduction, for much of ou
analysis, we will work with the Laplace transform of Eq.~6!:

ds~«,n,s,a!

d«dn̂1

5E
0

`

d«̄e2n«̄
ds̄~«,«̄,s,a!

d«d«̄dn̂1

5
1

2s (
N

uM ~N!u2e2n f̄ (N,a)~2p!4d4~pI2pN!d„«2 f ~N!…d2
„n̂12n̂~N!…. ~7!
s,

us
trol

s-
Singularities of the form (1/«̄)lnn(1/«̄) in the cross section
~6! give rise to logarithms lnn11n in the transform~7!.

Since we are investigating energy flow in two-jet cro
sections, we fix the constants« and «̄ to be both much less
than unity:

0,«,«̄!1. ~8!

We refer to this as the elastic limit for the two jets. In th
elastic limit, the dependence of the directions of the jet a
on soft radiation is weak. We will return to this dependen
below. Independent of soft radiation, we can always cho
our coordinate system such that the transverse momentu
jet 1 is zero,

pJ1 ,'50, ~9!

with pW J1
in the x3 direction. In the limit«̄,«→0, and in the

overall c.m.,pJ1
andpJ2

then approach light-like vectors i
the plus and minus directions:
s
e
e
of

pJ1

m →SAs

2
,02,0'D

pJ2

m →S 01,As

2
,0'D . ~10!

As usual, it is convenient to work in light-cone coordinate
pm5(p1,p2,p'), which we normalize asp65(1/A2)(p0

6p3). For small« and «̄, the cross section~6! has correc-
tions in ln(1/«) and ln(1/«̄), which we will organize in the
following.

B. Weight functions and jet shapes

In Eq. ~3!, a is a parameter that allows us to study vario
event shapes within the same formalism; it helps to con
the approach to the two-jet limit. As noted above,a,2 for
infrared safety, although the factorization that we will di
2-3
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cuss below applies beyond leading logarithm only to 1.a
.2`. A similar weight function with a noninteger powe
has been discussed in a related context for 2.a.1 in @22#.
To see how the parametera affects the shape of the jets, le
us reexpress the weight function for jet 1 as

f̄ V̄1
~N,a!5

1

As
(

n̂iPV̄1

v isinau i~12cosu i !
12a, ~11!

whereu i is the angle of the momentum of final state partic
i with respect to jet axisn̂1. As a→2 the weight vanishes
only very slowly foru i→0, and at fixedf̄ V̄1

, the jet becomes

very narrow. On the other hand, asa→2`, the event shape
vanishes more and more rapidly in the forward direction, a
the cross section at fixedf̄ V̄1

becomes more and more inclu

sive in the radiation intoV̄1.
In this paper, as in Ref.@15#, we seek to control correc

tions in the single-logarithmic variableas(Q)ln(1/«), with
«5QV /Q. Such a resummation is most relevant when

as~Q!lnS 1

« D>1→«<expS 21

as~Q! D . ~12!

Let us compare these logarithms to nonglobal effects
shape-flow correlations. Atn50 and fora→2`, the cross
section becomes inclusive outsideV. As we show below, the
nonglobal logarithms discussed in Refs.@15,17# appear in
shape-flow correlations as logarithms of the fo
as(Q)ln@1/(«n)#, with n the moment variable conjugate t
the event shape. To treat these logarithms as subleadin
small « and ~relatively! largen, we require that

as~Q!lnS 1

«n D,1→«.
1

n
expS 21

as~Q! D . ~13!

For largen, there is a substantial range of« in which both
Eqs.~12! and~13! can hold. Whenn is large, moments of the
correlation are dominated precisely by events with stron
two-jet energy flows, which is the natural set of events
which to study the influence of color flow on interjet radi
tion. @The peak of the thrust cross section is at (12T) of
order one-tenth at LEP energies, corresponding ton of order
ten, so the requirement of largen is not overly restrictive.# In
the next subsection, we show how the logarithms of («n)21

emerge in a low order example. This analysis also assu
thata is not large in absolute value. The event shape at fi
angle decreases exponentially witha, and we shall see tha
higher-order corrections can be proportional toa. We always
treat lnn as much larger thanuau.

C. Low order example

In this section, we check the general ideas develo
above with the concrete example of a two-loop cross sec
for the process~2!. This is the lowest order in which a non
global logarithm occurs, as observed in@17#. We normalize
01401
d

n

for

y

es
d

d
n

this cross section to the Born cross section for inclusive d
production. A similar analysis for the same geometry h
been carried out in@17# and @23#.

The kinematic configuration we consider is shown in F

2. Two fast partons, of velocitiesbW 1 and bW 2, are treated in
eikonal approximation. In addition, gluons are emitted in
the final state. A soft gluon with momentumk is radiated into
regionV and an energetic gluon with momentuml is emitted

into the regionV̄. We consider the cross section at fixe
energy,vk[«As. As indicated above, nonglobal logarithm
arise from strong ordering of the energies of the gluo
which we choose asv l@vk . In this region, the gluonl plays
the role of a ‘‘primary’’ emission, whilek is a ‘‘secondary’’
emission.

For our calculation, we take the angular regionV to be a
‘‘slice’’ or ‘‘ring’’ in polar angle of width 2d, or equivalently,
~pseudo! rapidity interval (2h,h), with

Dh52h5 lnS 11sind

12sind D . ~14!

The lowest-order diagrams for this process are those sh
in Fig. 3, including distinguishable diagrams in which th
momentak and l are interchanged.

The diagrams of Fig. 3 give rise to color structuresCF
2

andCFCA , but terms proportional toCF
2 may be associated

with a factorized contribution to the cross section, in whi
the gluonk is emitted coherently by the combinations of th
gluon l and the eikonals. To generate theCFCA part, on the
other hand, gluonk must ‘‘resolve’’ gluonl from the eikonal
lines, giving a result that depends on the angles betweelW
and the eikonal directions.

The computation of the diagrams is outlined in Append
A; here we quote the results. We adopt the notationcl

[cosul , sl[sinul , with u l the angle of momentumlW mea-
sured relative tobW 1, and similarly fork. We take, as indi-
cated above, a Laplace transform with respect to the sh
variable, and identify the logarithm in the conjugate variab
n. We find that the logarithmicCFCA-dependence of Fig. 3
may be written as a dimensionless eikonal cross sectio
terms of one energy and two polar angular integrals as

FIG. 2. A kinematic configuration that gives rise to the nong
bal logarithms. A soft gluon with momentumk is radiated into the
regionV, and an energetic gluon with momentuml is radiated into

V̄. Four-vectorsb1 andb2, define the directions of jet 1 and jet 2
respectively.
2-4
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dseik

d«
5CFCAS as

p D 2 1

«E2sin d

sin d
dckE

sin d

1

dclE
«As

As dv l

v l
e2nv l (12cl )

12asl
a/QF 1

ck1cl

1

11ck
S 1

11cl
1

1

12ck
D2

1

sk
2

1

11cl
G . ~15!

FIG. 3. The relevant two-loop cut diagram
corresponding to the emission of two real gluo
in the final state contributing to the eikonal cro
section. The dashed line represents the final st
with contributions to the amplitude to the lef
and to the complex conjugate amplitude to t
right.
he
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In this form, the absence of collinear singularities in t
CFCA term at cosul511 is manifest, independent ofn. Col-
linear singularities in thel integral completely factorize from
the k integral, and are proportional toCF

2 . The logarithmic
dependence on« for n.1 is readily found to be

dseik

d«
5CFCAS as

p D 2 1

«
lnS 1

«n DC~Dh!, ~16!

whereC(Dh) is a finite function of the angled, given ex-
plicitly in Appendix A.

We can contrast this result to what happens whenn50,
that is, for an inclusive, nonglobal cross section. In this ca
recalling that«5QV /Q, we find in place of Eq.~16! the
nonglobal logarithm

dseik

d«
5CFCAS as

p D 2 1

«
lnS Q

QV
DC~Dh!. ~17!

As anticipated, the effect of the transform is to replace
nonglobal logarithm inQ/QV , by a logarithm of 1/(«n). We
are now ready to generalize this result, starting from
factorization properties of the cross section near the two
limit.

III. FACTORIZATION OF THE CROSS SECTION

In this section we study the factorization of the corre
tions ~6!. The analysis is based on a general approach
begins with the all-orders treatment of singularities in pert
bative cross sections@24,25#, and derives factorization from
the analyticity and gauge properties of high energy Gr
functions and cross sections@26#. The functions that appea
in factorized cross sections are expressible in terms of Q
matrix elements@27#, and the matrix elements that we wi
01401
e,

e

e
et
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n

D

encounter are familiar from related analyses for heavy qu
and jet production@28#. We refer in several places below t
standard arguments discussed in more detail in@25,26#. The
aim of this section, and the reason why a careful analysi
necessary, is to identify the specific dimensionless comb
tions of kinematic variables on which the factorized mat
elements may depend. We will use these dependences i
following section, when we discuss the resummation prop
ties of our correlations.

A. Leading regions near the two-jet limit

In order to resum logarithms of« and «̄ ~or equivalently

n, the Laplace conjugate of«̄) we have first to identify their

origin in momentum space when«,«̄→0. Following the pro-
cedure and terminology of@24#, we identify ‘‘leading re-
gions’’ in the momentum integrals of cut diagrams, whi
can give rise to logarithmic enhancements of the cross
tion associated with lines approaching the mass shell. Wi
these regions, the lines of a cut diagram fall into the follo
ing subdiagrams:

A hard-scattering, or ‘‘short-distance’’ subdiagramH,
where all components of line momenta are far off-shell,
orderQ.

Jet subdiagrams,J1 andJ2, where energies are fixed an
momenta are collinear to the outgoing primary partons a
the jet directions that emerge from the hard scattering.~For
«5 «̄50, the sum of all energies in each jet is one-half t
total energy.! To characterize the momenta of the lines with
the jets, we introduce a scaling variable,l!1. Within jet 1,
momenta, scale as (,1;Q,,2;lQ,,';l1/2Q).

A soft subdiagram,S connecting the jet functionsJ1 and
J2, in which the components of momentak are small com-
2-5



i-

f

l-
d
a

the
d
ion:

ate,
tor-
one
ents
sed
o-
lta
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pared to Q in all components, scaling as (k6;lQ,k'

;lQ).
An arbitrary final stateN is the union of substates assoc

ated with these subdiagrams:

N5Ns% NJ1
% NJ2

. ~18!

As a result, the event shapef̄ can also be written as a sum o
contributions from the soft and jet subdiagrams:

f̄ ~N,a!5 f̄ N~Ns ,a!1 f̄ V̄1

N
~NJ1

,a!1 f̄ V̄1

N
~NJ2

,a!. ~19!

The superscriptN reminds us that the contributions of fina
state particles associated with the soft and jet functions
pend implicitly on the full final state, through the determin
of

n

so
e
t
ll

a
es
rd

ns
fe
s

b

01401
e-
-

tion of the jet axes, as discussed in Sec. II. In contrast,
energy flow weight,f (N), depends only on particles emitte
at wide angles, and is hence insensitive to collinear radiat

f ~N!5 f ~Ns!. ~20!

When we sum over all diagrams that have a fixed final st
the contributions from these leading regions may be fac
ized into a set of functions, each of which corresponds to
of the generic hard, soft and jet subdiagrams. The argum
for this factorization at leading power have been discus
extensively@21,26,29#. The cross section becomes a conv
lution in «̄, with the sums over states linked by the de
function which fixesn̂1, and by momentum conservation,
ds̄~«,«̄,s,a!

d«d«̄dn̂1

5
ds0

dn̂1

H~s,n̂1! (
Ns ,NJc

E d«̄s S~Ns!d„«2 f ~Ns!…d„«̄s2 f̄ N~Ns ,a!…)
c51

2 E d«̄Jc
Jc~NJc

!

3d„«̄Jc
2 f̄ V̄c

N
~NJc

,a!…~2p!4d4
„pI2p~NJ2

!2p~NJ1
!2p~Ns!…d

2
„n̂12n̂~N!…d~«̄2 «̄J1

2 «̄J2
2 «̄s!

5
ds0

dn̂1

d~«!d~ «̄ !1O~as!. ~21!
in
y
is to
in

s

on,

xed
d

he
n

t

re-
Eq.
Hereds0 /dn̂1 is the Born cross section for the production
a single particle~quark or antiquark! in direction n̂1, while
the short-distance functionH(s,n̂1)511O(as), which de-
scribes corrections to the hard scattering, is an expansio
as with finite coefficients. The functionsJc(NJc

), S(Ns) de-
scribe the internal dynamics of the jets and wide-angle
radiation, respectively. We will specify these functions b
low. We have suppressed their dependence on a factoriza
scale. Radiation at wide angles from the jets will be we
described by our soft functionsS(Ns), while we will con-
struct the jet functionsJc(NJc

) to be independent of«, as in
Eq. ~21!.

So far, we have specified our sums over states in Eq.~21!
only when all lines inNs are soft, and all lines inNJc

have

momenta that are collinear, or nearly collinear topJc
. As «

and «̄ vanish, these are the only final-state momenta that
kinematically possible. Were we to restrict ourselves to th
configurations only, however, it would not be straightforwa
to make the individual sums overNs andNJc

infrared safe.

Thus, it is necessary to include soft partons inNs that are
emitted near the jet directions, and soft partons in theNJc

at
wide angles. We will show below how to define the functio
Jc(NJc

), S(Ns) so that they generate factoring, infrared sa
functions that avoid double counting. We know on the ba
of the arguments of Refs.@21,26,29# that corrections to the
factorization of soft from jet functions are suppressed
powers of the weight functions« and/or«̄.
in

ft
-
ion
-

re
e

is

y

B. The factorization in convolution form

Although formally factorized, the jet and soft functions
Eq. ~21! are still linked in a potentially complicated wa
through their dependence on the jet axes. Our strategy
simplify this complex dependence to a simple convolution
contributions to«̄, accurate to leading power in« and «̄.

First, we note that the cross section of Eq.~21! is singular
for vanishing« and «̄, but is a smooth function ofs andn̂1.
We may therefore make any approximation that changes
and/orn̂1 by an amount that vanishes as a power of« and «̄
in the leading regions.

Correspondingly, the amplitudes for jetc are singular in
«̄Jc

, but depend smoothly on the jet energy and directi

while the soft function is singular in both« and «̄s , but
depends smoothly on the jet directions. As a result, at fi
values of« and«̄ we may approximate the jet directions an
energies by their values at«5 «̄50 in the soft and jet func-
tions.

Finally, we may make any approximation that affects t
value of « and/or «̄Jc

by amounts that vanish faster tha

linearly for «̄→0. It is at this stage that we will require tha
a,1.

With these observations in mind, we enumerate the
placements and approximations by which we reduce
~21!, while retaining leading-power accuracy.

~1! To simplify the definitions of the jets in Eq.~21!, we
make the replacementsf̄ V̄

N (NJc
,a)→ f̄ c(NJc

,a) with

c

2-6
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f̄ c~NJc
,a![

1

As
(

all n̂iPNJc

ki ,'
a v i

12a~12n̂i•n̂c!
12a.

~22!

The jet weight functionf̄ c(NJc
,a) now depends only on par

ticles associated withNJc
. The contribution to f̄ c(NJc

,a)

from particles within regionV̄c , is exactly the same here a
in the weight~3!, but we now include particles in all othe
directions. In this way, the independent sums over final st
of the jet amplitudes will be naturally infrared safe. Th
value of f̄ c(NJc

,a) differs from the value off̄ V̄c

N (NJc
,a),

however, due to radiation outsideV̄c , as indicated by the
new subscript. This radiation is hence at wide angles to
jet axis. In the elastic limit~8!, it is also constrained to be
soft. Double counting in contributions to the total eve
shape,f̄ (N,a), will be avoided by an appropriate definitio
of the soft function below. The sums over states are still
yet fully independent, however, because the jet directionsn̂c
still depend on the full final stateN.

~2! Next, we turn our attention to the condition that fix
the jet directionn̂1. Up to corrections in the orientation ofn̂1

that vanish as powers of« and«̄, we may neglect the depen
dence ofn̂1 on Ns andNJ2

:

f

f

01401
es

e

t

t

d„n̂12n̂~N!…→d„n̂12n̂~NJ1
!…. ~23!

In Appendix B, we show that this replacement also leaves
value of«̄ unchanged, up to corrections that vanish as«̄22a.
Thus, fora,1, Eq.~23! is acceptable to leading power. Fo
a,1, we can therefore identify the direction of jet 1 wit
n̂1. These approximations simplify Eq.~21! by eliminating
the implicit dependence of the jet and soft weights on the
final state. We may now treatn̂1 as an independent vector.

~3! In the leading regions, particles that make up ea
final-state jet are associated with statesNJc

, while Ns con-
sists of soft particles only. In the momentum conservat
delta function, we can neglect the four-momenta of lines
Ns , whose energies all vanish as«,«̄→0:

d4
„pI2p~NJ2

!2p~NJ1
!2p~Ns!…→d4~pI2pJ2

2pJ1
!.
~24!

~4! Because the cross section is a smooth function of
jet energies and directions, we may also neglect the ma
of the jets within the momentum conservation delta functio
as in Eq.~10!. In this approximation, we derive in the c.m
d4~pI2pJ2
2pJ1

!→d„As2v~NJ1
!2v~NJ2

!…d~ upW J1
u2upW J2

u!
1

upW J1
u2

d2~ n̂11n̂2!

→ 2

s
dSAs

2
2v~NJ1

! D dSAs

2
2v~NJ2

! D d2~ n̂11n̂2!. ~25!
nd
re
r

ns
es
Our jets are now back-to-back:

n̂2→2n̂1 . ~26!

Implementing these replacements and approximations
a,1, we rewrite the cross section Eq.~21! as

ds̄~«,«̄,s,a!

d«d«̄dn̂1

5
ds0

dn̂1

H~s,n̂1 ,m!E d«̄sS̄~«,«̄s,a,m!

3)
c51

2 E d«̄Jc
J̄c~ «̄Jc

,a,m!

3d~«̄2 «̄J1
2 «̄J2

2 «̄s!, ~27!

with ~as above! H511O(as). Referring to the notation o
Eqs.~21! and ~22!, the functionsS̄ and J̄c are
or

S̄~«,«̄s ,a,m!5(
Ns

S~Ns ,m!d„«2 f ~Ns!…d„«̄s2 f̄ ~Ns ,a!…

~28!

J̄c~ «̄Jc
,a,m!5

2

s
~2p!6(

NJc

Jc~NJc
,m!

3d„«̄Jc
2 f̄ c~NJc

,a!…dSAs

2
2v~NJc

! D
3d2

„n̂16n̂~NJc
!…, ~29!

with the plus sign in the angular delta function for jet 2, a
the minus for jet 1. The weight functions for the jets a
given by Eq.~22! and induce dependence on the parametea.
We have introduced the factorization scalem, which we set
equal to the renormalization scale.

We note that we must construct the soft functio
S̄(Ns ,m) to cancel the contributions of final-state particl
2-7
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from each of theJ̄c(NJc
,m) to the weight«, as well as the

contributions of the jet functions to«̄ from soft radiation
outside their respective regionsV̄c . Similarly, the jet ampli-
tudes must be constructed to include collinear enhancem
only in their respective jet directions. Explicit constructio
that satisfy these requirements will be specified in the
lowing subsections.

To disentangle the convolution in Eq.~27!, we take
Laplace moments with respect to«̄,

ds~«,n,s,a!

d«dn̂1

5E
0

`

d«̄e2n«̄
ds̄~«,«̄,a!

d«d«̄dn̂1

5
ds0

dn̂1

H~s,n̂1 ,m!S~«,n,a,m!

3)
c51

2

Jc~n,a,m!. ~30!

Here and below unbarred quantities are the transforms i«̄,
and barred quantities denote untransformed functions,

S~«,n,a,m!5E
0

`

d«̄se
2n«̄sS̄~«,«̄s ,a,m!, ~31!

and similarly for the jet functions.
In the following subsections, we give explicit constru

tions for the functions participating in the factorization fo
mula ~27!, which satisfy the requirement of infrared safe
and avoid double counting. An illustration of the cross s
tion factorized into these functions is shown in Fig. 4.
discussed above, nonglobal logarithms will emerge when«n
becomes small enough.

C. The short-distance function

The power counting described in@24# shows that in Feyn-
man gauge the subdiagrams of Fig. 4 that contribute toH in
Eq. ~27! at leading power in« and«̄ are connected to each o
the two jet subdiagrams by a single on-shell quark line, alo
with a possible set of on-shell, collinear gluon lines th

FIG. 4. Factorized cross section~27! after the application of
Ward identities. The vertical line denotes the final state cut.
01401
nts

l-

-

g
t

carry scalar polarizations. The hard subdiagram is not c
nected directly to the soft subdiagram in any leading regi

The couplings of the scalar-polarized gluons that conn
the jets with short-distance subdiagrams may be simpli
with the help of Ward identities~see, e.g.@26#!. At each order
of perturbation theory, the coupling of scalar-polarized g
ons from either jet to the short-distance function is equi
lent to their coupling to a path-ordered exponential of t
gauge field, oriented in any direction that is not collinear
the jet. Corrections are infrared safe, and can be abso
into the short-distance function. Leth(pJc

,n̂1 ,A) represent
the set of all short-distance contributions to diagrams t
couple any number of scalar-polarized gluons to the jets
the amplitude for the production of any final state. The arg
mentA stands for the fields that create the scalar-polari
gluons linking the short-distance function to the jets. On
diagram-by-diagram basis,h depends on the momentum o
each of the scalar-polarized gluons. After the sum over
diagrams, however, we can make the replacement

h~pJc
,n̂1 ,A(q,q̄)!→Fj2

(q̄)~0,2`;0!h2~pJc
,n̂1 ,jc!

3Fj1

(q)~0,2`;0!, ~32!

whereh2 is a short-distance function that depends only
the total momentapJ1

andpJ2
. It also depends on vectorsjc

that characterize the path-ordered exponentialsF(0,
2`;0),

Fjc

(f)~0,2`;0!5Pe2 ig*2`
0 dljc•A(f) (ljc), ~33!

where the superscript (f) indicates that the vector poten
takes values in representation f, in our case the represe
tion of a quark or antiquark. These operators will be asso
ated with gauge-invariant definitions of the jet functions b
low. To avoid spurious collinear singularities, we choose
vectorsjc , c51,2, off the light cone. In the full cross sec
tion ~30! the jc-dependence cancels, of course.

The dimensionless short-distance functionH5uh2u2 in
Eq. ~27! depends onAs andpJc

•jc , but not on any variable

that vanishes with« and «̄:

H~pJc
,jc ,n̂1 ,m!5HS As

m
,
pJc

• ĵc

m
,n̂1 ,as~m!D , ~34!

where

ĵc[jc /Aujc
2u. ~35!

Here we have observed that each diagram is independe
the overall scale of the eikonal vectorjc

m .
2-8
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D. The jet functions

The jet functions and the soft functions in Eq.~27! can be
defined in terms of specific matrix elements, which abs
the relevant contributions to leading regions in the cross s
tion, and which are infrared safe. Their perturbative exp
sions specify the functionsS andJc of Eq. ~29!. We begin
-

iz

o-

-
,

ian

01401
b
c-
-

with our definition of the jet functions.
The jet functions, which absorb enhancements collinea

the two outgoing particles produced in the primary hard sc
tering, can be defined in terms of matrix elements in a m
ner reminiscent of parton distribution or decay functio
@27#. To be specific, we consider the quark jet function,
J̄8c
m~ «̄Jc

,a,m!5
2

s

~2p!6

NC
(
NJc

Tr@gm^0uFjc

(q) †~0,2`;0!q~0!uNJc
&^NJc

uq̄~0!Fjc

(q)~0,2`;0!u0&#d„«̄Jc
2 f̄ c~NJc

,a!…

3dSAs

2
2v~NJc

! D d2
„n̂c2n̂~NJc

!…, ~36!
nts

ke
r

st-
whereNC is the number of colors, and wheren̂c denotes the
direction of the momentum of jetc, Eq. ~29!, with n̂25

2n̂1 . q is the quark field,Fjc

(q)(0,2`;0) a path-ordered ex

ponential in the notation of Eq.~33!, and the trace is taken
over color and Dirac indices. We have chosen the normal
tion so that the jet functionsJ̄8 m in ~36! are dimensionless
and begin at lowest order with

J̄8c
m (0)~ «̄Jc

,a,m!5bc
md~ «̄Jc

!, ~37!

with bc
m the lightlike velocities corresponding to the jet m

menta in Eq.~10!:

b1
m5dm1 , b2

m5dm2 . ~38!

The scalar jet functions of Eq.~29! are now obtained by
projecting out the component ofJc8

m in the jet direction:

J̄c~ «̄Jc
,a,m!5b̄c• J̄8c~ «̄Jc

,a,m!5d~«̄Jc
!1O~as!,

~39!

whereb̄15b2 , b̄25b1 are the lightlike vectors in the direc
tions opposite tob1 and b2, respectively. By construction
the J̄c are linear inb̄c .

To resum the jet functions in the variables«̄Jc
, it is con-

venient to reexpress the weight functions~22! in combina-
tions of light-cone momentum components that are invar
under boosts in thex3 direction,
a-

t

f̄ 1~NJ1
,a!5

1

s12a/2 (
n̂iPNJ1

ki ,'
a ~2pJ1

1 ki
2!12a,

f̄ 2~NJ2
,a!5

1

s12a/2 (
n̂iPNJ2

ki ,'
a ~2pJ2

2 ki
1!12a. ~40!

Here we have used the relationAs/25vJc
, valid for both jets

in the c.m. At the same time, we make the identification

1

s
dSAs

2
2v~NJc

! D d2
„n̂c2n̂~NJc

!…

5
1

4
d3
„pW Jc

2pW ~NJc
!…, ~41!

which again holds in the c.m. frame. The spatial compone
of eachpJc

are thus fixed. Given that we are at small«̄Jc
, the

jet functions may be thought of as functions of the light-li
jet momentapJc

m of Eq. ~10! and of «̄Jc
. Because the vecto

jet function is constructed to be dimensionless,J̄8c
m in Eq.

~36! is proportional tobc rather thanpJc
. Otherwise, it is

free of explicitbc-dependence.
The jet functions can now be written in terms of boo

invariant arguments, homogeneous of degree zero injc :
J̄c~ «̄Jc
,a,m!5b̄c mFbc

mJ̄c
(1)XpJc

• ĵc

m
,«̄Jc

As

m S As

2pJc
• ĵc

D 12a

,a,as~m!C
1

2jc
mbc•jc

ujcu2
J̄c

(2)XpJc
• ĵc

m
,«̄Jc

As

m S As

2pJc
• ĵc

D 12a

,a,as~m!CG , ~42!
2-9
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whereJ̄(1) andJ̄(2) are independent functions, and where w
have suppressed possible dependence onĵc,' . For jetc, the
weight «̄Jc

is fixed by d„«̄Jc
2 f̄ c(NJc

,a)…, where on the
right-hand side of the expression for the weight~40!, the sum
over each particle’s momentum involves the overall fac
(2pJc

6 /As)12a. After integration over final states at fixed«̄Jc
,

the jet can thus depend on the vectorpJc

m . At the same time,

it is easy to see from the definition of the weight thatpJc

m can

only appear in the combination (1/«̄Jc
As)1/(12a)(2pJc

m /As).

This vector can combine withjc to form an invariant, and al
jc-dependence comes about in this way.

Expression~42! can be further simplified by noting that

2b̄c•jcbc•jc5jc
21jc,'

2 . ~43!

Choosingjc,'50, we find a single combination,

J̄c~ «̄Jc
,a,m!5 J̄cS pJc

• ĵc

m
,«̄Jc

As

m
~zc!

12a,a,as~m!D ,

~44!

where, in the notation of Eq.~42!, J̄c5 J̄c
(1)1 J̄c

(2) , and we
have defined

zc[
As

2pJc

• ĵc. ~45!

In these terms, the Laplace moments of the jet function
herit dependence on the moment variablen through

Jc~n,a,m!5E
0

`

d«̄Jc
e2n«̄JcJ̄c~ «̄Jc

,a,m! ~46!
io

es
a

01401
r

-

[JcS pJc
• ĵc

m
,
As

mn
~zc!

12a,a,as~m!D ,

where the unbarred and barred quantities denote transfor
and untransformed functions, respectively. We have c
structed the jet functions to be independent of«, since the
radiation intoV is at wide angles from the jet axes and c
therefore be completely factored from the collinear radiati
This radiation at wide angles is contained in the soft fun
tion, which will be defined below in a manner that avoi
double counting in the cross section.

E. The soft function

Given the definitions for the jet functions in the previo
subsection, and the factorization~27!, we may in principle
calculate the soft functionS order by order in perturbation
theory. We can derive a more explicit definition of the so
function, however, by relating it to an eikonal analog
Eq. ~27!.

As reviewed in Refs.@15,26#, soft radiation at wide angles
from the jets decouples from the collinear lines within t
jet. As a result, to compute amplitudes for wide-angle rad
tion, the jets may be replaced by non-Abelian phases
Wilson lines. We therefore construct a dimensionless qu
tity, s (eik), in which gluons are radiated by path-ordered e
ponentials F, which mimic the color flow of outgoing
quarks,

Fbc

(f)~`,0;x!5Pe2 ig*0
`dlbc•A(f) (lbc1x), ~47!

with bc a light-like velocity in either of the jet directions
For the two-jet cross section at measured« and «̄eik , we
define
s̄ (eik)~«,«̄eik ,a,m![
1

NC
(
Neik

^0uFb2

(q̄) †~`,0;0!Fb1

(q) †~`,0;0!uNeik&^NeikuFb1

(q)~`,0;0!Fb2

(q̄)~`,0;0!u0&

3d„«2 f ~Neik!…d„«̄eik2 f̄ ~Neik,a!…

5d~«!d~ «̄eik!1O~as!. ~48!
col-
nto

tely
er
The sum is over all final statesNeik in the eikonal cross
section. The renormalization scale in this cross sect
which will also serve as a factorization scale, is denotedm.
Here the event shape function«̄eik is defined byf̄ (Neik ,a) as
in Eqs. ~3! and ~4!, distinguishing between the hemispher
around the jets. As usual,NC is the number of colors, and
trace over color is understood.
n,
The eikonal cross section~48! models the soft radiation

away from the jets, including the radiation intoV, accu-
rately. It also contains enhancements for configurations
linear to the jets, which, however, are already taken i
account by the partonic jet functions in Eq.~27!. Indeed, Eq.
~48! does not reproduce the partonic cross section accura
for collinear radiation. It is also easy to verify at lowest ord
2-10
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that even at fixed«̄eik the eikonal cross section~48! is ultra-
violet divergent in dimensional regularization, unless we a
impose a cutoff on the energy of real gluon emission col
ear tob1 or b2.

The construction of the soft functionS from s̄ (eik) is nev-
ertheless possible because the eikonal cross section~48! fac-
torizes in the same manner as the cross section itself,
a
n

t

l
e
ei
n-

gh
i-
a

ik
te
rs
e-
e

n,

01401
o
-

to

eikonal jet functions and a soft function. The essential po
@14# is that the soft function in the factorized eikonal cro
section is the same as in the original cross section~27!. The
eikonal jets organize all collinear enhancements in Eq.~48!,
including the spurious ultraviolet divergences. These eiko
jet functions are defined analogously to their partonic co
terparts, Eq.~36!, but now with ordered exponentials repla
ing the quark fields,
e, by Eq.
J̄c
(eik)~ «̄c ,a,m![

1

NC
(

Nc
(eik)

^0uFjc

(fc) †~0,2`;0!Fbc

(fc) †~`,0;0!uNc
(eik)&^Nc

(eik)uFbc

(fc)
~`,0;0!Fjc

(fc)
~0,2`;0!u0&

3d„«̄c2 f̄ c~Nc
(eik) ,a!…

5d~«̄c!1O~as!, ~49!

where fc is a quark or antiquark, and where the trace over color is understood. The weight functions are given as abov
~22!, with the sum over particles in all directions.

In terms of the eikonal jets, the eikonal cross section~48! factorizes as

s̄ (eik)~«,«̄eik ,a,m![E d«̄sS̄~«,«̄s ,a,m!)
c51

2 E d«̄cJ̄c
(eik)~ «̄c ,a,m!d~«̄eik2 «̄s2 «̄12 «̄2!, ~50!
t a

t

es.
he

rs

par-

r-
as

by

ve,
t

where we pick the factorization scale equal to the renorm
ization scalem. As for the full cross section, the convolutio
in Eq. ~50! is simplified by a Laplace transformation~46!

with respect to«̄eik , which allows us to solve for the sof
function as

S~«,n,a,m!5
s (eik)~«,n,a,m!

)
c51

2

Jc
(eik)~n,a,m!

5d~«!1O~as!. ~51!

In this ratio, collinear logarithms inn and the unphysica
ultraviolet divergences and their associated cutoff dep
dence cancel between the eikonal cross section and the
nal jets, leaving a soft function that is entirely free of colli
ear enhancements. The soft function retainsn-dependence
through soft emission, which is also restricted by the wei
function «. In addition, because soft radiation within the e
konal jets can be factored from its collinear radiation, just
in the partonic jets, all logarithms inn associated with wide-
angle radiation are identical between the partonic and e
nal jets, and factor from logarithmic corrections associa
with collinear radiation in both cases. As a result, the inve
eikonal jet functions cancel contributions from the wid
angle soft radiation of the partonic jets in the transform
cross section~30!.

Given the definition of the energy flow weight functionf,
Eq. ~5!, the soft function is not boost invariant. In additio
l-

n-
ko-

t

s

o-
d
e

d

because it is free of collinear logs, it can have at mos
single logarithm per loop. Its dependence on« is therefore
only through ratios of the dimensional quantities«As with
the renormalization~factorization! scale.

As in the case of the partonic jets, Eq.~46!, we need to
identify the variable through whichn appears in the sof
function. We note that dependence on the velocity vectorsbc
and the factorization vectorsjc must be scale invariant in
each, since they arise only from eikonal lines and vertic
The eikonal jet functions cannot depend explicitly on t
scale-less, lightlike eikonal velocitiesbc , ands (eik) is inde-
pendent of thejc . Dependence on the factorization vecto
jc enters only through the weight functions, Eq.~40! for the
eikonal jets, in a manner analogous to the case of the
tonic jets. This results in a dependence on (zc)

12a, as above,
with zc defined in Eq.~45!. In summary, we may characte
ize the arguments of the soft function in transform space

S~«,n,a,m!5SS «As

m
,«n,

As

mn
~zc!

12a,a,as~m! D . ~52!

IV. RESUMMATION

We may summarize the results of the previous section
rewriting the transform of the factorized cross section~30! in
terms of the hard, jet and soft functions identified abo
which depend on the kinematic variables and the momenn
2-11
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according to Eqs.~34!, ~46! and ~52! respectively,

ds~«,n,s,a!

d«dn̂1

5
ds0

dn̂1

HS As

m
,
pJc

• ĵc

m
,n̂1 ,as~m!D

3)
c51

2

JcS pJc
• ĵc

m
,
As

mn
~zc!

12a,a,as~m!D
3SS «As

m
,«n,

As

mn
~zc!

12a,a,as~m! D .

~53!

The natural scale for the strong coupling in the short-dista
function H is As/2. Settingm5As/2, however, introduces
large logarithms of« in the soft function and large loga
rithms ofn in both the soft and jet functions. The purpose
this section is to control these logarithms by the identifi
tion and solution of renormalization group and evoluti
equations.

The information necessary to perform the resummati
is already present in the factorization~53!. The cross section
itself is independent of the factorization scale

m
d

dm

ds~«,n,s,a!

d«dn̂1

50, ~54!

and of the choice of the eikonal directions,ĵc , used in the
factorization,

]

] ln~pJc
• ĵc!

ds~«,n,s,a!

d«dn̂1

50. ~55!

The arguments of this section closely follow the analysis
Ref. @30#. We will see that the dependence of jet and s
01401
e

f
-

s

f
t

functions on the parametera that characterizes the even
shapes~3! is reflected in the resummed correlations, so t
the relationship between correlations with different values
a is both calculable and nontrivial.

A. Energy flow

As a first step, we use the renormalization group equa
~54! to organize dependence on the energy flow variable«.
Applying Eq. ~54! to the factorized correlation~53!, we de-
rive the following consistency conditions, which are them
selves renormalization group equations:

m
d

dm
ln SS «As

m
,«n,

As

mn
~zc!

12a,a,as~m! D 52gs„as~m!…,

~56!

m
d

dm
ln JcS pJc

• ĵc

m
,
As

mn
~zc!

12a,a,as~m!D 52gJc
„as~m!…,

~57!

m
d

dm
ln HS As

m
,
pJc

• ĵc

m
,n̂1 ,as~m!D 5gs„as~m!…

1 (
c51

2

gJc
„as~m!…. ~58!

The anomalous dimensionsgd , d5s, Jc can depend only on
variables held in common between at least two of the fu
tions. Because each function is infrared safe, while ultrav
let divergences are present only in virtual diagrams,
anomalous dimensions cannot depend on the parametersn, «
or a. This leaves as arguments of thegd only the coupling
as(m), which we exhibit, andzc , which we suppress for
now.

Solving Eqs.~56! and ~57! we find
SS «As

m
,«n,

As

mn
~zc!

12a,a,as~m! D 5SS «As

m0
,«n,

As

m0n
~zc!

12a,a,as~m0! D e2*m0

m (dl/l)gs„as(l)…, ~59!

JcS pJc
• ĵc

m
,
As

mn
~zc!

12a,a,as~m!D 5JcS pJc
• ĵc

m̃0

,
As

m̃0n
~zc!

12a,a,as~m̃0!D e2*
m̃0

m
(dl/l)gJc

„as(l)…, ~60!

for the soft and jet functions. As suggested above, we will eventually pickm;As to avoid large logs inH. Using these
expressions in Eq.~53! we can avoid logarithms of« or n in the soft function, by evolving fromm05«As to the factorization
scalem;As. No choice ofm̃0, however, controls all logarithms ofn in the jet functions. Leavingm̃0 free, we find for the cross
section~53! the intermediate result

ds~«,n,s,a!

d«dn̂1

5
ds0

dn̂1

HS As

m
,
pJc

• ĵc

m
,n̂1 ,as~m!D S„1,«n,~zc!

12a,a,as~«As!…

3expH 2E
«As

m dl

l
gs„as~l!…J JcS pJc

• ĵc

m̃0

,
As

m̃0n
~zc!

12a,a,as~m̃0!D expH 2E
m̃0

m dl

l
gJc

„as~l!…J . ~61!
2-12
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We have avoided introducing logarithms of« into the jet
functions, which originally only depend onn, by evolving
the soft and the jet functions independently. The choice
m05«As or As/n for the soft function is to some extent
matter of convenience, since the two choices differ by lo
rithms of«n. In general, if we choosem05As/n, logarithms
of «n will appear multiplied by coefficients that reflect th
size of regionV. An example is Eq.~15! above. WhenV has
a small angular size,m05As/n is generally the more natura
choice, since then logarithms in«n will enter with small
weights. In contrast, whenV grows to cover most angula
directions, as in the study of rapidity gaps@32#, it is more
natural to choosem05«As.

B. Event shape transform

The remaining unorganized ‘‘large’’ logarithms in Eq
~61! are in the jet functions, which we will resum by usin
the consistency equation~55!. The requirement that the cros
section be independent ofpJc

• ĵc implies that the jet, soft and
hard functions obey equations analogous to Eqs.~56!–~58!,
again in terms of the variables that they hold in comm
@30#. The same results may be derived following the meth
of Collins and Soper@21#, by defining the jets in an axia
gauge, and then studying their variations under boosts.

For our purposes, only the equation satisfied by the
functions@21,30# is necessary,

]

] ln~pJc
• ĵc!

ln JcS pJc
• ĵc

m
,
As

mn
~zc!

12a,a,as~m!D
5KcS As

mn
~zc!

12a,a,as~m! D 1GcS pJc
• ĵc

m
,as~m!D .

~62!

The functionsKc andGc compensate thejc-dependence o
the soft and hard functions, respectively, which determi
the kinematic variables upon which they may depend.
particular, notice the combination ofn- and jc-dependence
required by the arguments of the jet function, Eq.~46!.

Since the definition of our jet functions~36! is gauge in-
variant, we can derive the kernelsKc andGc by an explicit
computation of]Jc /] ln(pJc

•ĵc) in any gauge. The multipli-
cative renormalizability of the jet function, Eq.~57!, with an
anomalous dimension that is independent ofpJc

• ĵc ensures
that the right-hand side of Eq.~62! is a renormalization-
group invariant. Thus,Kc1Gc are renormalized additively
and satisfy@21#

m
d

dm
KcS As

mn
~zc!

12a,a,as~m! D 52gKc
„as~m!…, ~63!

m
d

dm
GcS pJc

• ĵc

m
,as~m!D 5gKc

„as~m!….
01401
f

-

n
d

t

s
n

Since Gc and hencegKc
, may be computed from virtua

diagrams, they do not depend ona, andgKc
is the universal

Sudakov anomalous dimension@21,33#.
With the help of these evolution equations, the termsKc

andGc in Eq. ~62! can be reexpressed as@34#

KcS As

mn
~zc!

12a,a,as~m! D 1GcS pJc
• ĵc

m
,as~m!D

5KcX 1

c1
,a,asS c1

As

n
~zc!

12aD C1GcS 1

c2
,as~c2pJc

• ĵc! D
2E

c1As(zc)12a/n

c2pJc
• ĵc dl8

l8
gKc

„as~l8!…

52Bc8„c1 ,c2 ,a,as~c2pJc
• ĵc!…

22E
c1As(zc)12a/n

c2pJc
• ĵc dl8

l8
Ac8„c1 ,a,as~l8!…, ~64!

where in the second equality we have shifted the argumen
the running coupling inKc , and have introduced the notatio

Bc8„c1 ,c2 ,a,as~m!…[2KcS 1

c1
,a,as~m! D2GcS 1

c2
,as~m! D ,

2Ac8„c1 ,a,as~m!…[gKc
„as~m!…

1b„g~m!…
]

]g~m!
KcS 1

c1
,a,as~m! D .

~65!

The primes on the functionsAc8 and Bc8 are to distinguish
these anomalous dimensions from their somewhat more
miliar versions given below.

The solution to Eq.~62! with m5m̃0 is

JcS pJc
• ĵc

m̃0

,
As

m̃0n
~zc!

12a,a,as~m̃0!D

5JcS As

2z0m̃0

,
As

m̃0n
~z0!12a,a,as~m̃0!D ~66!
2-13
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3expH 2E
As/(2z0)

pJc
• ĵc dl

l FBc8„c1 ,c2 ,a,as~c2l!…

12E
c1[s12a/2/n(2l)12a]

c2l dl8

l8
Ac8„c1 ,a,as~l8!…G J ,

where we evolve fromAs/(2z0) to pJc
• ĵc5As/(2zc) @see

Eq. ~45!# with

z05S n

2D 1/(22a)

. ~67!

After combining Eqs. ~60! and ~66!, the choice m̃0

5As/(2z0)5(As/n)(z0)12a allows us to control all large
logarithms in the jet functions simultaneously:1
01401
JcS pJc
• ĵc

m
,
As

mn
~zc!

12a,a,as~m!D
5JcX1,1,a,asS As

2z0
D C expH 2E

As/(2z0)

m dl

l
gJc

~as~l!!J
3expH 2E

As/(2z0)

pJc
• ĵc dl

l FBc8„c1 ,c2 ,a,as~c2l!…

12E
c1[s12a/2/n(2l)12a]

c2l dl8

l8
Ac8„c1 ,a,as~l8!…G J . ~68!

As observed above, we treata as a fixed parameter, withuau
small compared to ln(1/«) and lnn.

C. The resummed correlation

Using Eq.~68! in Eq. ~61!, and settingm5As/2, we find
a fully resummed form for the correlation,
,

itzer and
f

ds~«,n,s,a!

d«dn̂1

5
ds0

dn̂1

HX2pJc
• ĵc

As
,n̂1 ,asSAs

2 D CS„1,«n,~zc!
12a,a,as~«As!…expH 2E

«As

As/2dl

l
gs„as~l!…J

3)
c51

2

JcX1,1,a,asS As

2z0
D CexpH 2E

As/(2z0)

As/2 dl

l
gJc

„as~l!…J expH 2E
As/(2z0)

pJc
• ĵc dl

l FBc8„c1 ,c2 ,a,as~c2l!…

12E
c1[s12a/2/n(2l)12a]

c2l dl8

l8
Ac8„c1 ,a,as~l8!…G J . ~69!

Alternatively, we can combine all jet-related exponents in Eq.~69! in the correlation. As we will verify below in Sec. V B
the cross section is independent of the choice ofjc . As a result, we can choose

pJc
• ĵc5

As

2
. ~70!

This choice allows us to combinegJc
andBc8 in Eq. ~69!,

ds~«,n,s,a!

d«dn̂1

5
ds0

dn̂1

HX1,n̂1 ,asSAs

2 D CS~1,«n,1,a,as~«As!!expH 2E
«As

As/2 dl

l
gs„as~l!…J

3)
c51

2

JcX1,1,a,asS As

2z0
D CexpH 2E

As/(2z0)

As/2 dl

l FgJc
„as~l!…1Bc8„c1 ,c2 ,a,as~c2l!…

12E
c1[s12a/2/n(2l)12a]

c2l dl8

l8
Ac8„c1 ,a,as~l8!…G J , ~71!

1After this paper was submitted for publication, a related analysis of event shape and energy flow correlations was given by Doksh
Marchesini@31#, who identify the same factorization of soft radiation described here and in@18#, and who study the leading logarithms o
«n for «!1/n, using the methods of@20#.
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with z0 given by Eq.~67!.
In Eqs. ~69! and ~71!, the energy flow« appears at the

level of one logarithm per loop, inS, in the first exponent.
Leading logarithms of« are therefore resummed by know
edge ofgs

(1) , the one-loop soft anomalous dimension, whe
we employ the standard notation,

gs~as!5 (
n50

`

gs
(n)S as

p D n

~72!

for any expansion inas . At the same time,n appears in up
to two logarithms per loop, characteristic of convention
Sudakov resummation. To controln-dependence at the sam
level as «-dependence, it is natural to work to next-t
leading logarithm inn, by which we mean the levelas

klnkn
in the exponent. As usual, this requires one loop inBc8 and
gJc

, and two loops in the Sudakov anomalous dimensionAc8 ,
Eq. ~65!. These functions are straightforward to calcula
from their definitions given in the previous sections. On
the soft functionS in Eqs.~69! and~71! contains information
on the geometry ofV. The exponents are partially proces
dependent, but geometry-independent. In Sec. V, we will
l

n
e

ib

he
in

01401
e

l

-

rive explicit expressions for these quantities, suitable for
summation to leading logarithm in« and next-to-leading
logarithm inn.

D. The inclusive event shape

It is also of interest to consider the cross section
e1e2-annihilation into two jets without fixing the energy o
radiation intoV, but with the final state radiation into all o
phase space weighted according to Eq.~4!, schematically

e11e2→J1~pJ1
, f̄ V̄1

!1J2~pJ2
, f̄ V̄2

!, ~73!

whereV̄1 andV̄2 cover the entire sphere. This cross secti
can be factorized and resummed in a completely analog
manner. The final state is a convolution in the contributio
of the jet and soft functions to«̄ as in Eq.~27!, but with no
separate restriction on energy flow intoV. All particles con-
tribute to the event shape. We obtain an expression v
analogous to Eq.~69! for this inclusive event shape in trans
form space, which can be written in terms of the same
functions as before, and a new functionSincl for soft radiation
as
ds incl~n,s,a!

dn̂1

5
ds0

dn̂1

HS 2pJc
• ĵc

As
,n̂1 ,as~As/2!D SinclX~zc!

12a,a,asSAs

n D C
3expH 2E

As/n

As/2 dl

l
gs„as~l!…J )

c51

2

JcX1,1,a,asS As

2z0
D CexpH 2E

As/(2z0)

As/2 dl

l
gJc

„as~l!…J
3expH 2E

As/(2z0)

pJc
• ĵc dl

l FBc8„c1 ,c2 ,a,as~c2l!…12E
c1[s12a/2/n(2l)12a]

c2l dl8

l8
Ac8„c1 ,a,as~l8!…G J . ~74!
cu-
ia-

ith
om

g

Here the soft function Sincl511O(as). The double-
logarithmic dependence of the shape transform is identica
our resummed correlation, Eq.~69!. We will show below, in
Sec. V C, that Eq.~74! coincides at NLL with the known
result for the thrust@6# when we choosea50.

V. RESULTS AT NLL

A. Lowest order functions and anomalous dimensions

In this section, we describe the low-order calculations a
results that provide explicit expressions for the resumm
shape-flow correlations and inclusive event shape distr
tions at next-to-leading logarithm inn and leading logarithm
in « ~we refer to this level collectively as NLL below!. We
go on to verify that for the casea50 we rederive the known
result for the resummed thrust at NLL, and we exhibit t
expressions for the correlation that we will evaluate
Sec. VI.
to

d
d
u-

1. The soft function

The one-loop soft anomalous dimension is readily cal
lated in Feynman gauge from the combination of virtual d
grams ins (eik), Eq.~48!, andJ(eik), Eq.~49!, in Eq.~51!. The
calculation and the result are equivalent to those of Ref.@14#,
where the soft function was formulated in axial gauge,

gs
(1)522CFF (

c51

2

ln~bc• ĵc!2 lnS b1•b2

2 D21G . ~75!

The first, jc-dependent logarithmic term is associated w
the eikonal jets, while the second is a finite remainder fr
the combination ofs (eik) and J(eik) in Eq. ~51!. Whenever
jc,'50, the logarithmic terms cancel identically, leavin
only the final term, which comes from theĵc eikonal self-
energy diagrams in the eikonal jet functions.

The soft function is normalized toS(0)(«)5d(«) as can
be seen from Eq.~51!. For nonzero«, ds/d« is given at
lowest order by
2-15
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S(1)~«Þ0,V!5CF

1

«EV
dPS2

1

2p

b1•b2

b1• k̂b2• k̂
, ~76!

where PS2 denotes the two-dimensional angular phase sp
to be integrated over regionV, andk̂[k/vk . We emphasize
again that the soft function contains the only geomet
dependence of the cross section. Also,S(1) for «Þ0 is inde-
pendent ofn anda.

As an example, consider a cone with opening angled,
centered at anglea from jet 1. In this case, the lowest-orde
soft function is given by

S(1)~«Þ0,a,d!5CF

1

«
lnS 12cos2a

cos2a2cos2d
D . ~77!

Similarly, we may chooseV as a ring extending angled1 to
the right andd2 to the left of the plane perpendicular to th
jet directions in the center-of-mass. In this case, we obta

S(1)~«Þ0,d1 ,d2!

5CF

1

«
lnS ~11sind1!

~12sind1!

~11sind2!

~12sind2! D5CF

2

«
Dh,

~78!

with Dh the rapidity spanned by the ring. For a ring center
around the center-of-mass (d15d25d) the angular integra
reduces to the form that we encountered in the exampl
Sec. II C, and that we will use in our numerical examples
Sec. VI, withDh given by Eq.~14!.

2. The jet functions

Recall from Eq.~39! that the lowest-order jet function i
given byJc

(0)51.
The anomalous dimensions of the jet functions are fou

to be

gJc

(1)52
3

2
CF , ~79!

the same for each of the jets. The jet anomalous dimens
are process-independent, but of course flavor-dependent
same anomalous dimensions for final-state quark jets ap
in three- and higher-jet cross sections.

3. The K-G-decomposition

The anomalous dimension for theK-G-decomposition is,
as noted above, the Sudakov anomalous dimension,

gKc

(1)52CF , ~80!

gKc

(2)5KCF , ~81!

also independent of the jet-direction. The well-known co
ficient K ~not to be confused with the functionsKc) is given
by @35#
01401
ce

-

d

of
f

d
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K5S 67

18
2

p2

6 DCA2
10

9
TFNf , ~82!

with the normalizationTF51/2 andNf the number of quark
flavors.

Kc and Gc , the functions that describe the evolution
the jet functions in Eq.~62!, are given at one loop by

Kc
(1)S s12a/2

mn
~2pJc

• ĵc!
a21,aD

52CFlnS e2gE2(12a)
m2n2

s22a
~2pJc

• ĵc!
2(12a)D , ~83!

Gc
(1)S pJc

• ĵc

m
D 52CFlnS e21

~2pJc
• ĵc!

2

m2 D . ~84!

Evolving them to the values ofm with which they appear in
the functionsAc8 andBc8 , Eq. ~65!, they become

Kc
(1)S 1

c1
,aD52CFln~e2gE2(12a)c1

2!, ~85!

Gc
(1)S 1

c2
D52CFlnS e21

4

c2
2D . ~86!

Recall thatGc is computed from virtual diagrams only, an
thus does not depend on the weight function. It theref
agrees with the result found in@21#. The soft-gluon contri-
bution, Kc , which involves real gluon diagrams, does d
pend on the cross section being resummed.

With the definitions~65! of Ac8 andBc8 we obtain

Ac8
(1)5CF , ~87!

Ac8
(2)~c1 ,a!5

1

2
CFFK1

b0

2
ln~e2gE211ac1

2!G , ~88!

Bc8
(1)~c1 ,c2 ,a!52CFlnS egE211a/2

2c1

c2
D . ~89!

Here b0 is the one-loop coefficient of the QCD beta
function, b05 1

3 (11NC24TFNf) @b(g)52g(as/4p)b0
1O(g5)#.

4. The hard scattering, and the Born cross section

At NLL only the lowest-order hard scattering functio
contributes, which is normalized to

H (0)@as~As/2!#51. ~90!

At this order the hard function is independent of the eiko
vectorsjc , although it acquiresjc-dependence at higher or
2-16
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der through the factorization described in Sec. III C. F
completeness, we also give the electromagnetic Born c
sectionds0 /dn̂1, at fixed polar and azimuthal angle:

ds0

dn̂1

5NCS (
f

Qf
2Daem

2

4s
~11cos2u!, ~91!

whereu is the c.m. polar angle ofn̂1 , eQf is the charge of
quark flavor f, andaem5e2/(4p) is the fine structure con
stant.

B. Checking the jc-dependence

It is instructive to verify how dependence on the eikon
vectorsjc cancels in the exponents of the resummed cr
section~69! at the accuracy at which we work, single log
rithms of «, and single and double logarithms ofn. In these
exponents,jc-dependence enters only through the combi
tions (bc• ĵc) and (pJc

• ĵc).
Let us introduce the following notation for the exponen

in Eq. ~69!, to which we will return below:

E1[2E
«As

As/2 dl

l
gs„as~l!…2 (

c51

2 E
As/(2z0)

As/2 dl

l
gJc

„as~l!…,

~92!

E2[2 (
c51

2 E
As/(2z0)

pJc
• ĵc dl

l FBc8„c1 ,c2 ,a,as~c2l!…

12E
c1[s12a/2/n(2l)12a]

c2l dl8

l8
Ac8„c1 ,a,as~l8!…G .

~93!
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At NLL, explicit jc dependence is found only ings , Eq.
~75!, for E1, and in the upper limit of thel integral ofE2.
We then find that

]

] ln bc• ĵc

~E11E2!52CFE
«As

As/2 dl

l

as~l!

p

22CFE
c1[s12a/2/n(2pJc

• ĵc)12a]

c2pJc
• ĵc dl8

l8

as~l8!

p

1NNLL. ~94!

Here the second term stems entirely fromA8(1), Eq. ~87!;
other contributions ofE2 are subleading. Thejc-dependence
in the exponents begins only at the level that we do
resum, atasln(1/«n), which is compensated by correction
in S(«n,as). The remaining contributions are of NNLL or
der, that is, proportional toas

k(As)lnk21(nbc•ĵc), as may be
verified by expanding the running couplings. Thus, as
quired by the factorization procedure, the releva
jc-dependence cancels between the resummed soft an
functions, which give rise to the first and second integra
respectively, in Eq.~94!.

C. The inclusive event shape at NLL

We can simplify the differential event shape, Eq.~74!, by
absorbing the soft anomalous dimensiongs into the remain-
ing terms. We will find a form that can be compared direc
to the classic NLL resummation for the thrust (a50). This
is done by rewriting the integral over the soft anomalo
dimension as
E
As/n

As/2 dl

l
gs„as~l!…5E

As/[2(n/2)1/(22a)]

As/2 dl

l
gs„as~l!…1E

As/n

As/[2(n/2)1/(22a)] dl

l
gs„as~l!…

5E
As/[2(n/2)1/(22a)]

As/2 dl

l
gs„as~l!…1~12a!E

As/[2(n/2)1/(22a)]

As/2 dl

l
gsXasS s12a/2

n~2l!12aD C

5~22a!E
As/[2(n/2)1/(22a)]

As/2 dl

l
gs„as~l!…2~12a!E

As/[2(n/2)1/(22a)]

As/2 dl

l

3E
s12a/2/[n(2l)12a]

l dl8

l8
b„g~l8!…

]

]g
gs„as~l8!…. ~95!
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In the first equality we split thel integral so that the limits of
the first term match those of theBc8 integral of Eq.~74!. In
the second equality we have changed variables in the se
term according to

l→S s12(a/2)

212anl
D 1/(12a)

, ~96!

so that the limits of the second integral also match. In
third equality of Eq.~95!, we have reexpressed the runnin
coupling at the old scalel in terms of the new scale. This i
a generalization of the procedure of Ref.@36#, applied origi-
nally to the threshold-resummed Drell-Yan cross sect
@37#.

Using Eq. ~95!, and identifyingpJc
• ĵc with As/2 @Eq.

~70!# in the inclusive event shape distribution, Eq.~74!, we
can rewrite this distribution at NLL as

ds incl~n,s,a!

dn̂1

5
ds0

dn̂1
)
c51

2

expH 2E
As/[2(n/2)1/(22a)]

As/2 dl

l

3FBc„c1 ,c2 ,a,as~l!…

12E
c1[s12a/2/n(2l)12a]

c2l dl8

l8

3Ac„c1 ,a,as~l8!…G J , ~97!

where we have rearranged the contribution ofgs as

Ac„c1 ,a,as~m!…[Ac8„c1 ,a,as~m!…

2
1

4
~12a!b„g~m!…

]

]g
gs„as~m!…,

Bc„c1 ,c2 ,a,as~m!…[gJc
„as~m!…1S 12

a

2Dgs„as~m!…

1Bc8„c1 ,c2 ,a,as~m!…. ~98!

Next, we replace the lower limit of thel8-integral by an
explicit u-function. Then we exchange orders of integratio
and change variables in the term containingA from the di-
mensionful variablel to the dimensionless combination

u5
2ll8

s
. ~99!

We find
01401
nd

e

n

,

ds incl~n,s,a!

dn̂1

5
ds0

dn̂1
)
c51

2

expH 2E
As/[2(n/2)1/(22a)]

As/2 dl

l

3Bc„c1 ,c2 ,a,as~l!…J
3)

c51

2

expH 22E
0

Asdl8

l8
E

l82/s

l8/As du

u

3uS c1
21n

l8 au12a

sa/2
21D

3Ac„c1 ,a,as~l8!…J . ~100!

Here, theu-function vanishes for smalll8, and the remain-
ing effects of replacing the lower boundary of thel8 integral
by 0 are next-to-next-to-leading logarithmic.

A further change of variables allows us to write the NL
resummed event shapes in a form familiar from the N
resummed thrust. In the first line of Eq.~100!, we replace
l2→us/4. In the second line we relabell8→Aq2, and ex-
change orders of integration. Finally, choosing

c15e2gE,

c252, ~101!

we find, at NLL,

ds incl~n,s,a!

dn̂1

5
ds0

dn̂1
)
c51

2

expH E
0

1du

u F E
u2s

us dq2

q2
Ac„as~q2!…

3~e2u12an(q2/s)a/2
21!1

1

2
Bc„as~us/4!…

3~e2u(n/2)2/(22a)e2gE21!G J , ~102!

and reproduce the well-known coefficients

Ac
(1)5CF , ~103!

Ac
(2)5

1

2
CFK, ~104!

Bc
(1)52

3

2
CF , ~105!

independent ofa. In Eq. ~102!, we have made use of th
relation

e2x/y21'2u~x2ye2gE!, ~106!
2-18
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which is valid at NLL in the logarithmic integrals. With thes
choices, whena50 we reproduce the NLL resummed thru
cross section@6#.

The choices of theci in Eq. ~101! cancel all purely soft
NLL components (gs andKc). The remaining double loga
rithms stem from simultaneously soft and collinear radiati
and single logarithms arise from collinear configuratio
only. At NLL, the cross section is determined by the anom
lous dimensionAc , which is the coefficient of the singula
1/@12x#1 term in the nonsinglet evolution kernel@38#, and
the quark anomalous dimension. All radiation in dijet eve
thus appears to be emitted coherently by the two jets@6#.
01401
,
s
-

s

This, however, is not necessarily true beyond next-to-lead
logarithmic accuracy for dijets, and is certainly not the ca
for multijet events@14#. Similar considerations apply to th
resummed correlation, Eq.~69!.

D. Closed expressions

Given the explicit results above, the integrals in the exp
nents of the resummed correlation, Eq.~69!, may be easily
performed in closed form. We give the analytic results for t
exponents of Eq.~69!, as defined in Eqs.~92! and~93!. As in
Eq. ~70!, we identify pJc

• ĵc with As/2:
s

eE1(a)5S as~As/2!

as~«As!
D 4CF /b0S asS As

2z0
D

as~As/2!
D 6CF /b0

, ~107!

eE2(a)5S as~c2As/2!

asS c2As

2z0
D D

(4CF /b0)k1(a)S asS c1As

2z0
D

asS c1As

n
D D

[1/(a21)](4CF /b0)k2(a)

S as~c2As/2!

asS c1As

2z0
D D

[1/(22a)](8CF /b0)ln(n/2)

,

~108!

with

k1~a!5 lnS 4

c2
2e

D 1
4p

b0
FasS c2As

2z0
D G21

2
2K

b0
2

b1

2b0
2

lnF S b0

4peD 2

asS c2As

2 DasS c2As

2z0
D G , ~109!

k2~a!5~12a22gE!1
4p

b0
FasSAs

n D G21

2
2K

b0
2

b1

2b0
2

lnF S b0

4peD 2

asS c1As

n DasS c1As

2z0
D G . ~110!

We have used the two-loop running coupling, when appropriate, to derive Eqs.~107!–~110!. The results are expressed in term
of the one-loop running coupling

as~m!5
2p

b0

1

lnS m

LQCD
D , ~111!

and the first two coefficients in the expansion of the QCD beta-function,b0 and

b15
34

3
CA

22S 20

3
CA14CFDTFNf . ~112!
2-19
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Combining the expressions for the exponents, Eqs.~107! and ~108!, for the Born cross section, Eq.~91!, and for the soft
function, Eq.~76!, in Eq. ~69!, the complete differential cross section, at LL in« and at NLL inn, is given by

ds~«,n,s,a!

d«dn̂1

5NCS (
f

Qf
2Dpaem

2

2s
~11cos2u!CF

as~«As!

p

1

«
E

V
dPS2

1

2p

b1•b2

b1• k̂b2• k̂
S asS As

2
D

as~«As!

D 4CF /b0

3S asS As

2z0
D

asS As

2
D D

6CF /b0S asS c2

As

2
D

asS c2As

2z0
D D

(4CF /b0)k1(a)S asS c1As

2z0
D

asS c1As

n
D D

[1/(a21)](4CF /b0)k2(a)

3S asS c2

As

2
D

asS c1As

2z0
D D

[1/(22a)](8CF /b0)ln(n/2)

. ~113!

These are the expressions that we will evaluate in the next section. We note that this is not the only possible closed
the resummed correlation at this level of accuracy. When a full next-to-leading order calculation for this set of event s
given, the matching procedure of@6# may be more convenient.
ric
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VI. NUMERICAL RESULTS

Here we show some representative examples of nume
results for the correlation, Eq.~113!. We pick the constantsci
as in Eq.~101!, unless stated otherwise. The effect of diffe
ent choices is nonleading, and is numerically small, as
will see below. In the following we choose the regionV to
be a ring between the jets, centered in their center-of-m
with a width of Dh52, or equivalently, opening angled
'50 degrees@see Eq.~14!#. The analogous cross section f
a cone centered at 90 degrees from the jets@Eq. ~77!# has a
similar behavior. In the following, the center-of-mass ene
Q5As is chosen to be 100 GeV.
01401
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y

Figure 5 shows the dependence of the differential cr
section ~69!, multiplied by « and normalized by the Born
cross section,@«ds/(d«dn̂1)#/(ds0 /dn̂1), on the measured
energy« and on the parametera, at fixedn. In Fig. 5~a!, we
plot @«ds/(d«dn̂1)#/(ds0 /dn̂1) for n510, in Fig. 5~b! for
n550. Asn increases, the radiation into the complementa
regionV̄ is more restricted, as illustrated by the comparis
of Figs. 5~a! and 5~b!. Similarly, asa approaches 1, the cros
section falls, because the jets are restricted to be very nar
On the other hand, asa assumes more and more negati
values at fixed«, the correlations~69! approach a constan
value. Fora large and negative, however, nonglobal depe
FIG. 5. Differential cross section@«ds/(d«dn̂1)#/(ds0 /dn̂1), normalized by the Born cross section, atQ5100 GeV, as a function of
« anda at fixedn: ~a! n510, ~b! n550. V is a ring ~slice! centered around the jets, with a width ofDh52.
2-20
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EVENT SHAPE–ENERGY FLOW CORRELATIONS PHYSICAL REVIEW D68, 014012 ~2003!
dence on ln« and uau will emerge from higher order correc
tions in the soft function, which we do not include in E
~113!.

In Fig. 6 we investigate the sensitivity of the resumm
correlation, Eq.~113!, to our choice of the constantsci . The
effect of these constants is of next-to-next-to-leading lo
rithmic order in the event shape. We plot the different
cross section «@«ds/(d«dn̂1)#/(ds0 /dn̂1), at Q
5100 GeV, for fixed«50.05 andn520, as a function ofa.
The effects of changes in theci are of the order of a few
percent for moderate values ofa.

Finally, we illustrate the sensitivity of these results to t
flavor of the primary partons. For this purpose we study
corresponding ratio of the shape/flow correlation to the cr
section for gluon jets produced by a hypothetical color s
glet source. Figure 7 displays the ratio of the different

FIG. 6. Differential cross section@«ds/(d«dn̂1)#/(ds0 /dn̂1),
normalized by the Born cross section, atQ5100 GeV, as a func-
tion of a at fixedn520 and«50.05.V is chosen as in Fig. 5. Solid
line: c15e2gE, c252, as in Eq.~101!, dashed line:c15c251,
dotted line:c15c252.
01401
-
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cross sectiondsq(«,a)/(d«dn̂1), Eq. ~113!, normalized by
the lowest-order cross section, to the analogous quantity w
gluons as primary partons in the outgoing jets, again aQ
5100 GeV. This ratio is multiplied byCA /CF in the figure
to compensate for the difference in the normalizations of
lowest-order soft functions. Gluon jets have wider angu
extent, and hence are suppressed relative to quark jets
increasingn or a, as can be seen by comparing Figs. 7~a! and
7~b!. Figure 7~a! shows the ratio atn510, and Fig. 7~b! at
n550. These results suggest sensitivity to the more comp
color and flavor flow characteristic of hadronic scatteri
@14,15#.

VII. SUMMARY AND OUTLOOK

We have introduced a general class of inclusive ev
shapes ine1e2 dijet events which reduce to the thrust an
the jet broadening distributions as special cases. We h
derived analytic expressions in transform space, and h
shown the equivalence of our formalism at NLL with th
well-known result for the thrust@6#. Separate studies of thi
class of event shapes in the untransformed space, at hi
orders, and for nonperturbative effects@9# are certainly of
interest. We reserve these studies for future work.

We have introduced a set of correlations of interjet ene
flow for the general class of event shapes, and have sh
that for these quantities it is possible to control the influen
of secondary radiation and nonglobal logarithms. These
relations are sensitive mainly to radiation emitted direc
from the primary hard scattering, through transforms in
weight functions that suppress secondary, or nonglobal,
diation. We have presented analytic and numerical studie
these shape/flow correlations at leading logarithmic orde
the flow variable and at next-to-leading-logarithmic order
the event shape. The application of our formalism to mult
events and to scattering with initial state hadrons is certa
possible, and may shed light on the relationship betw
FIG. 7. Ratios of differential cross sections for quark to gluon jets

CA

CF
S«dsq/~d«dn̂1!

ds0
q/dn̂1

DS«dsg/~d«dn̂1!

ds0
g/dn̂1

D21

at Q5100 GeV as a function of« anda at fixedn: ~a! n510, ~b! n550. V as in Fig. 5,c1 andc2 as in Eq.~101!.
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color and energy flow in hard scattering processes with n
trivial color exchange.
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APPENDIX A: EIKONAL EXAMPLE

In this appendix, we give details of the calculation of t
logarithmic behavior in the diagrams of Fig. 3. We choo
the reference frame such that the momenta of the final s
particles are given by

b15~1,0,0,1!,

b25~1,0,0,21!,

l 5v l~1,sl ,0,cl !,

k5vk~1,skcosf,sksinf,ck!. ~A1!

Here we definesl ,k[sinul,k andcl ,k[cosul,k . u l is the angle
between the vectorslW and bW 1, uk is the angle between th
vectorskW andbW 1 andf is the azimuthal angle of the gluo
with momentumk relative to the plane defined byb1 , b2
and l. The available phase space in polar angle for the ra
ated gluons is ukP(p/22d,p/21d) and u lP(0,p/2
2d)ø(p/21d,p).

Using the diagrammatic rules for eikonal lines and ve
ces, as listed for example in@26#, we can write down the
expressions corresponding to each diagram separately.
example, diagram 3~a! gives

~a!1~k↔ l !5@ f abcTr~ tatbtc!#~2 igs
4b1

ab2
bb1

g!Vabg~k1 l ,

2k,2 l !
1

b1•~k1 l !

1

2k• l

1

b1• l

1

b2•k

1~k↔ l !. ~A2!

Vabg(k 1 l , 2k, 2 l ) 5 @(2k 1 l )ggab 1 ( l 2 k)agbg2(2l
1k)bgag# is the momentum-dependent part of the thr
gluon vertex. Using the color identityf abcTr(tatbtc)
5 iCFNCCA/2, and the approximationb j• l @b j•k for j
51,2, which is valid due to the strong ordering of the fin
state gluon energies, we arrive at

~a!1~k↔ l !5
1

4
CFNCCAgs

4b1•b2

k• l S 1

b1•kb2• l

1
2

b1• lb2•kD . ~A3!

We proceed in a similar manner for the rest of the diagra
The results are
01401
n-

l
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~b!1~k↔ l !5
1

4
CFNCCAgs

4 b1•b2

k• l S 2

b1•kb2• l

1
1

b1• lb2•kD ,

~c!5
1

4
CFNCCAgs

4b1•b2

k• l

1

b1• l

1

b2•k
,

~d!5
1

4
CFNCCAgs

4b1•b2

k• l

1

b1•k

1

b2• l
,

~e!5CFNC~CF2CA/2!

3gs
4~b1•b2!2

b1• lb2• l

1

b1•kb2•k
,

~ f !1~k↔ l !5CFNC~CF2CA/2!

3gs
4 ~b1•b2!2

b1• lb2• l

2

b1•kb2•k
. ~A4!

The color factors in the last two equations of Eqs.~A4! are
obtained from the identity Tr(tatbtatb)5CFNC(CF2CA/2).
Combining the terms proportional to the color fact
CFNCCA , and including the complex conjugate diagram
we find for the squared amplitude

uM u252gs
4CFNCCAb1•b2S 1

k• lb1•kb2• l
1

1

k• lb1• lb2•k

2
b1•b2

b1• lb2• lb1•kb2•kD . ~A5!

Having determined the amplitude, we need to integrateuM u2
over the phase space corresponding to the geometry give
Fig. 2. Specifically, we have to evaluate

I[
1

NC
E d«̄e2n«̄E

V

d3k

~2p!32vk
E

V̄

d3l

~2p!32v l

3d~«2vk /As!d~ «̄2 f̄ ~ l ,a!!uM u2, ~A6!

where the weight functionf̄ ( l ,a) is given, as in Eqs.~4! and
~11!, by

f̄ ~ l ,a!55
v l

As
~12cl !

12asl
a : u lP~0,p/22d!

v l

As
~11cl !

12asl
a : u lP~p/21d,p!,

~A7!

with a,1.
Using the equalitiesb1•b252, b1• l 5v l(12cl), b2• l

5v l(11cl), b1•k5vk(12ck), b2•k5vk(11ck) andk• l
5vkv l(12ckcl2skslcosf) in Eq. ~A5!, performing the in-
tegration overf, and changing the integration variablecl
2-22
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→2cl in the angular regionu lP(p/21d,p), we easily ar-
rive at the following three-dimensional integral:

I 5CFCAS as

p D 21

«E2sin d

sin d
dckE

sin d

1

dcl

3E
«As

As dv l

v l
e2nv l (12cl )

12asl
a/AsF 1

ck1cl

1

11ck
S 1

11cl

1
1

12ck
D2

1

sk
2

1

11cl
G . ~A8!

We are interested in the (1/«)ln(1/«) behavior ofI. This is
obtained after performing thev l integral with the replace-

ment e2nv l (12cl )
12asl

a/As→u(12nv l(12cl)
12asl

a/As). Re-
mainders do not contain terms proportional to ln«. In this
approximation, thecl integration can be carried out, and w
obtain the integral representation for the term contain
(1/«)ln(1/«):

I 52CFCAS as

p D 21

«
lnS 1

«n D F E
0

sin d dck

sk
2

lnS sk
2

sk
22cos2d

D
2 lnS 2

11sind D lnS 11sind

12sind D G . ~A9!

The potential nonglobal logarithm of« is replaced by ln(«n).
The angular integral overck can be expressed in terms
dilogarithmic functions. The final expression for the ter
proportional to ln(«n)/« takes the form

I 5CFCAS as

p D 21

«
lnS 1

«n D Fp2

6

1 lnS cotd~11sind!

4 D lnS 11sind

12sind D1Li2S 12sind

2 D
2Li2S 11sind

2 D2Li2S 2
2sind

12sind D2Li2S 12sind

11sind D G .
~A10!

Equivalently, we can express our results in terms of the
pidity width of the regionV, Eq. ~14!, and we obtain

I 5CFCAS as

p D 21

«
lnS 1

«n D Fp2

6
1DhS Dh

2
2 ln@2 sinh~Dh!# D

1Li2S e2Dh/2

2 cosh~Dh/2! D2Li2S eDh/2

2 cosh~Dh/2! D
2Li2@22 sinh~Dh/2!eDh/2#2Li2~e2Dh!G . ~A11!

The coefficient

C~Dh![2S p

as
D 2 «I

CFCAln~«n!
~A12!
01401
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as a function ofDh is shown in Fig. 8. Naturally,C is a
monotonically increasing function ofDh. For Dh→0,

C;O~Dh ln Dh!, ~A13!

and the cross section vanishes, as expected. On the
hand, as the size of regionV increases,C rapidly saturates
and reaches its limiting value@17#

lim
Dh→`

C5
p2

6
. ~A14!

APPENDIX B: RECOIL

In this appendix, we return to the justification of the tec
nical step represented by Eq.~23!. According to this approxi-
mation, we may compute the jet functions by identifyin
axes that depend only upon particles in the final statesNJc

associated with those functions, rather than the full final s
N. Intuitively, this is a reasonable estimate, given that the
axis should be determined by a set of energetic, nearly
linear particles. When we make this replacement, howe
the contributions to the event shape from energetic parti
near the jet axis may change. This change is neglecte
going from the original factorization, Eq.~21!, to the factor-
ization in convolution form, Eq.~27!, which is the starting
point for the resummation techniques that we employ in t
paper. The weight functionsf̄ N(Ni ,a) in Eq. ~21! are defined
relative to the unit vectorn̂1 corresponding toa50, the
thrust-like event shape. The factorization of Eq.~21! applies
to any a,2, but as indicated by the superscript, individu
contributions tof̄ N(Ni ,a) on the right-hand side continue t
depend on the full final stateN, through the identification of
the jet axis.

To derive the factorization of Eq.~27! in a simple convo-
lution form, we must be able to treat the thrust axis,n̂1, as a

FIG. 8. C(Dh), as defined in Eq.~A12!, as a function of rapid-
ity width Dh of the regionV. The dashed line is its limiting value
C(Dh→`)5p2/6.
2-23
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fixed vector for each of the statesNs , NJc
. This is possible if

we can neglect the effects of recoil from soft, wide-ang
radiation on the direction of the axis. Specifically, we mu
be able to make the replacement

f̄ V̄c

N
~NJc

,a!→ f̄ c~NJc
,a!, ~B1!

where f̄ c(NJc
,a) is the event shape variable for jetc, in

which the axisn̂c is specified by stateNJc
only. Of course,

this replacement changes the value of the weight,«̄,
f̄ V̄c

N (NJc
,a)Þ f̄ c(NJc

,a). As we now show, the error induce

by this replacement is suppressed by a power of«̄ so long as
a,1. In general, the error is non-negligible fora>1. The
importance of recoil for jet broadening, ata51, was pointed
out in @8#. We now discuss how the neglect of such radiat
affects the jet axis~always determined froma50) and hence
the value of the event shape for arbitrarya,2.

The jet axis is found by minimizingf̄ (a50) in each state.
The largest influence on the axisn̂c for jet c is, of course, the
set of fast, collinear particles within the stateNJc

associated
with the jet function in Eq.~21!. Soft, wide-angle radiation
however, does affect the precise direction of the axis. Thi
what we mean by ‘‘recoil.’’

Let us denote byvs the energy of the soft wide-angl
radiation that is neglected in the factorization~27!. Neglect-
ing this soft radiation in the determination of the jet axis w
result in an axisn̂1(NJc

), which differs from the axisn̂1(N)
determined from the complete final state~N! by an angle
Dsf:

]„n̂1~N!,n̂1~NJc
!…[Dsf;

vs

Q
. ~B2!

At the same time, the soft, wide-angle radiation also cont
utes to the total event shapef̄ (N,a);(1/Q)k'

a (k2)12a at the
level of

«̄s;
vs

Q
, ~B3!

because for such wide-angle radiation, we may takeks
2

;ks,';vs . In summary, the neglect of wide-angle soft r
diation rotates the jet axis by an angle that is of the orde
the contribution of the same soft radiation to the event sha
m
43
ion

o-

01401
t

n

is

-

f
e.

In the factorization~27!, the contribution of each final-
state particle is taken into account, just as in Eq.~21!. The
question we must answer is how the rotation of the jet a
affects these contributions, and hence the value of the e
shape.

For a wide-angle particle, the rotation of the jet axis by
angle of orderDsf in Eq. ~B2! leads to a negligible chang
in its contributions to the event shape, because its angl
the axis is a number of order unity, and the jet axis is rota
only by an angle of order«̄s . Contributions from soft radia-
tion are therefore stable under the approximation~23!. The
only source of large corrections is then associated with e
getic jet radiation, because these particles are nearly collin
to the jet axis.

It is easy to see from the form of the shape function
terms of angles, Eq.~11!, that for any value of parametera,
a particle of energyv i at a small angleu i to the jet axis
n̂1(N) contributes to the event shape at the level

«̄ i;
v i

Q
u i

22a. ~B4!

The rotation of the jet axis by the angleDsf due to neglect
of soft radiation may be as large as, or larger than,u i . As-
suming the latter, we find a shift in the«̄ i of order

d«̄ i[«̄ i@ n̂1~N!#2 «̄ i@ n̂1~NJc
!#;

v i

Q
~Dsf!22a

;
v i

Q S vs

Q D 22a

;
v i

Q
«̄s

22a. ~B5!

The change in«̄ i is thus suppressed by at least a factor«̄s
12a

compared to«̄s , which is the contribution of the wide-angl
soft radiation to the event shape. The contributions of nea
collinear, energetic radiation to the event shape thus cha
significantly under the replacement~23!, but so long asa
,1, these contributions are power-suppressed in the valu
the event shape, both before and after the approximation
leads to a rotation of the axis. For this reason, whena,1
~and only whena,1), the value of the event shape is stab
whether or not we include soft radiation in the determinat
of the jet axes, up to corrections that are suppressed b
power of the event shape. In this case, the transition from
~21! to Eq. ~27! is justified.
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