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Event shape-energy flow correlations
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We introduce a set of correlations between energy flow and event shapes that are sensitive to the flow of
color at short distances in jet events. These correlations are formulated for a general set of event shapes, which
includes jet broadening and thrust as special cases. We illustrate the methedefordijet events, and
calculate the correlation at leading logarithm in the energy flow and at next-to-leading-logarithm in the event
shape.
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. INTRODUCTION denote by() the complement of). We are interested in the

distribution of Q( for events with a fixed number of jets in

The agreement of theoretical predictions with experimenty This set of events may be represented schematically as
for jet cross sections is often impressive. This is especially so

for inglusive jet cross sections at higly, using fi.xed.—order A+B—jetst Xg+Ro(Qq). 1)
factorized perturbation theory and parton distribution func-
Flons[l]. Agood deal is a!so known abqut the substructure OfHereX5 stands for radiation into the regions betweerand
jets, through the theoretical and experimental study of mul

A ! . the jet axes, an®,, for radiation into().
tiplicity distributions and fragmentation functioh], and of The subtlety associated with the computation of energy
event shapeg3-5|. Event shape distributiorj€—8] in par-

. ) . X flow concerns the origin of logarithms, and is illustrated
ticular offer a bridge between the perturbative, short-dlstancgy Fig. 1. Gluon 1 in Fig. 1 is an example of a primary

and the nonperturbative, long-distance dynamics of Q&D  gluon, emitted directly from the hard partons near a jet axis.
Energy flow[10] into angular regions between energetic phase space integrals for primary emissions contribute
jets gives information that is in some ways complementary tingle  logarithms per  loop: (@) 2PN HQ/Qq)
what we learn from event shapes. In perturbation theory, th%(l/sQ)agln”‘l(lls), n=1, and these logarithms exponen-
distribution of particles in the final state reflects interferencejate in a straightforward fashiofi5]. At fixed Q,, for Eq.
between radiation from different jef], and there is ample (1) however, there is another source of potentially large
evidence for perturbative antenna patterns in interjet radiapgarithmic corrections i, . These are illustrated by gluon

tion at bothe®e™ [11] and hadron colliderf12,13. Energy 2 in the figure, an example of secondary radiation(ip
flow between jets must also encode the mechanisms that negriginating a parton emitted by one of the leading jets that

tralize color in the hadronization process, and the transitioRyefine the event into intermediate regifin As observed by

of QCD from weak to strong coupling. Knowledge of the pasqupta and Salafii7], emissions intd) from such sec-
interplay between energy and color flojdst,13 may help  ondary partons can also result in logarithmic corrections, of
|o!er_1t|fy _the underlying event in hadron_ collision6], to the form (lQQ)agln“_l(aﬁlQQ), n=2, Whereaﬁ is the
distinguish QCD bremsstrahlung from signals of new phys- . . L= : .
ics. Nevertheless, the systematic computation of energy floy aximum: energy emitted inté). These logarithms arise
into interjet regions has turned out to be subpil@] for rea-
sons that we will review below, and requires a careful con-
struction of the class of jet events. It is the purpose of this
work to provide such a construction, using event shapes as a
tool.

In this paper, we introduce correlations between event
shapes and energy flow, “shape-flow correlations,” that are
sensitive primarily to radiation from the highest-energy jets.
So long as the observed energy is not too small, in a manner
to be quantified below, we may control logarithms of the
ratio of energy flow to jet energhl5,18§. Q

The energy flow observables that we discuss below are
distributions associated with radiation into a chosen interjet
angular region{). Within Q we identify a kinematic quan-
tity Qo=eQ, at center-of-masgc.m) energy Q, with & FIG. 1. Sources of global and nonglobal logarithms in dijet
<1. Qqu may be the sum of energies, transverse energies @vents. Configuration 1, a primary emission, is the source of global
related observables for the particles emitted if#oLet us  logarithms. Configuration 2 can give nonglobal logarithms.

Jet 2
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from strong ordering in the energies of the primary and secthe thrust and jet broadening. Section Il contains the details
ondary radiation because real and virtual enhancements asf the factorization procedure that characterizes the cross
sociated with secondary emissions do not cancel each othgection in the two-jet limit. This is followed in Sec. IV by a
fully at fixed Qq, . derivation of the resummation of logarithms of the event
If the cross section is fully inclusive outside &f, so that ~Shape and energy flow, following the method introduced by
no restriction is placed on the radiation infd, Qg can Collins and Sopef21]. We then go on in Sec. V to exhibit

approachQ, and the secondary logarithms can become aémalytic resglts at Iealding'logarithmic accurac;Q'n/_Q and
important as the primary logarithms. Such a cross section, jfjext-to-leading logarithm in the event shape. Section VI con-
which only radiation into a fixed portion of phase spas ( tains representatlv_e numerical results. We (_:onplude with a
is specified, was termed *nonglobal” by Dasgupta andSummary and a brief outlook on further applications.
Salam, and the associated logarithms are also called nonglo-
bal [17,19,20. Il. SHAPE-FLOW CORRELATIONS

In effect, a nonglobal definition of energy flow is not re- A. Weights and energy flow in dijet events
strictive enough to limit final states to a specific set of jets, . .
and nonglobal logarithms are produced by jets of intermedi- . !N the notation of Eq(1), we will study an event shape
ate energy, emitted in directions between regibrand the  distribution for the process
leading jets. Thus, interjet energy flow does not always origi- A 0
nate directly from the leading jets, in the absence of a sys- e re _)Jl(pleJZ(pJZHXQ(fHRQ(QQ)’ @
tematic criterion for suppressing intermediate radiation. Corat c.m. energyQ>Qq>Aqcp. Two jets with momenta
respondingly, nonglobal logarithms reflect color flow at all p; | ¢=1,2 emit soft radiatiorfonly) at wide angles. Again,

Arthms el P,
scales, and do not exponentiate in a simple manner. Our aify i 5 region between the jets to be specified below, where

the total energy or the transverse enefy of the soft ra-
radiation in which nonglobal logarithms are replaced by cal- 9y — Qy

culable corrections, and which reflect the flow of color atd'at'On is measured, anf denotes the remaining phase
short distances. By restricting the sizes of event shapes, waace(see Fig. 1. Radiation into() is constrained by event
will limit radiation in region ), while retaining the chosen shapef. We refer to cross sections at fixed valies trans-
jet structure. forms) of f andQ(, as shape/flow correlations.

An important observation that we will employ below is  To impose the two-jet condition on the states of E).
that nonglobal logarithms are not produced by secondarywe choose weights that suppress states with substantial ra-

emissions that are very close to a jet direction, because a jgfation into ) away from the jet axes. We now introduce a

(éf p:c_ar_alle;]movurg pa}mcles e":'tShSOﬂ radlailr?n Ipo_rt'erfnﬂy‘class of event shapé_s related to the thrust, that enforce the
y fixing the value of an event shape near the limit o nar'two-jet condition in a natural way.

row jets, we avoid final states with large energieslimway These event shapes interpolate between and extend the
from the Jet axes. At the same time, we will |dent|fy limits in familiar thrust[4] and Jet broadening7,8], through an ad-
which nonglobal logarithms reemerge as leading correctiongystable parametea. For each statd that defines process
and where the methods introduced to study nongobal eﬁect@), we separaté into two regions{Y., c=1,2, containing

in Refs.[17,19,2Q provide important insights. . - o = ~
! [ Q provide imp nsig jet axes,n.(N). To be specific, we lef); and (), be two

To formalize these observations, we study below correh - h h ; for their i
lated observables fa™ e~ annihilation into two jets[In Eq. emispheres that cover the entire space except for their in-

(1) A and B denote positron and electrdrin e*e~ annihi-  tersections with regiof. Region(), is centered om,, and
lation dijet events, the underlying color flow pattern is Q, is the opposite hemisphere. We will specify the method
Slmple, which enables us to concentrate on the energy ﬂo%at determines the Jet axé§ andﬁ2 momentar”y_ To iden-

within the event. We will !ntroduce a class- of event shapesmy a meaningful jet, of course, the total energy withiny
f(a) suitable for measuring energy flow into only part of should be a large fraction of the available energy, of the
phase space, with an adjustable parameter. To avoid large order ofQ/2 in dijet events. Ire*e~ annihilation, if there is

nonglobal logarithmic corrections we weight events by, \ye_collimated jet in2, with nearly half the total energy,
exd —vf], with v the Laplace transform conjugate variable. there will automatically be one i,
2.

Fo.r the restr_|cted set of events with narrow IetS, energy v are now ready to define the contribution from particles
flow is proportional to the lowest-order cross section for, L=
g region{) to thea-dependent event shape,

gluon radiation into the selected region. The resummed cros

section, however, remains sensitive to color flow at short o 1
distances through anomalous dimensions associated with co- g (N,a)=—= >, k? ol 31-n;-ny)'"2, (3
herent interjet soft emission. In a sense, our results show that ¢ \/5 nieQe

an appropriate selection of jet events automatically sup-

presses nonglobal logarithms, and confirms the observatioWher.ea is any real number less t'han two, and th’@
of coherence in interjet radiatidi2, 17]. =Q is the c.m. energy. The sum is over those particles of

In the next section, we introduce the event shapes that watateN with directionn; that flow into€)., and their trans-
will correlate with energy flow, and describe their relation toverse momentl; , are measured relative tg.. The jet axis
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n, for jet 1 is identified as that axis that minimizes the spe- Region{, in which we measure, for example, the energy
cific thrust-related quantity (N,a=0). WhenQ; in Eq. flow. _ _ . _
(3) is extended to all of phase space, the casd is then Reglqnﬂl, the ent_lre.hemlsph.ere c_enteredm_m that is,
essentially & T, with T the thrust, whilea=1 is related to around.]et_l, except its intersection W@' o
the jet broadening. Region(},, the complementary hemisphere, except its in-
Any choice a<2 in Eq. (3) specifies an infrared safe tersection with(). _ _
event shape variable, because the contribution of any particle In these terms, we define the complete event shape vari-
i to the event shape behaves &s @ in the collinear limit, ~ablef(N,a) by

0,= COS_l(ﬁi'ﬁc)*)o. Negative values dd are clearly permis-
sible, and the limita— —« corresponds to the total cross
section. At the other limit, the factorization and resummation ., — . . ~
techniques that we discuss below will apply onlyaecl. with fﬂc'ACI 1,2 given by Eq(3) in terms of the axes, of
Fora>1, contributions to the event sha(® from energetic  jet 1 andn, of jet 2. We will study the correlations of this set
particles near the jet axis are generically larger than contrief event shapes with the energy flow infly denoted as
butions from soft, wide-angle radiation, or equal for1.

f(N,a)=fg,(N,a)+fg,(N,a), @

When this is the case, the analysis that we present below F(N)= 1 S o ®)
must be modified, at least beyond the level of leading loga- N
rithm [8]. '
In summary, onca, is fixed, we have divided the phase The differential cross section for such dijet events at fixed
space into three regions: values off andf is now
do(e,e,s,a) 1 _ .
=== [M(N)|2(2m)*5*(p;— pn) 8(e — F(N))8(= — F(N,a)) 8% (N~ N(N)), (6)
dededn, 2SN

where we sum over all final stat@¢ that contribute to the weighted event, and wh&téN) denotes the corresponding
amplitude fore*e”—N. The total momentum ip,, with p|2=SEQ2. As mentioned in the Introduction, for much of our
analysis, we will work with the Laplace transform of E):

— Ve

do(e,v,s,a) ® —d;(s:,s_,s,a)
dote,.58)_ f doere ST12:2:58)

dedn, 0 dededn,
1 - ~ A
= 55 2 IM(N)[Ze™"M(2m)*5%(py — py) (e — F(N) (M1 =A(N)). (7)
|
Singularities of the form (&)In"(1/e) in the cross section . s
(6) give rise to logarithms R v in the transform(7). Py~ V20 .0
Since we are investigating energy flow in two-jet cross
sections, we fix the constantgsande to be both much less u N \f
than unity: Py, —| 07 V30 (10)

0<e,e<1. (8) o ) o )
We refer to this as the elastic limit for the two jets. In the Ai_usufl’ It Is convenient to work " I'ght'cfie coordlng\tes,
elastic limit, the dependence of the directions of the jet axe® =(P".p7.p1), Wh'Ch_W€ normalize ap” = (1/\2)(p
on soft radiation is weak. We will return to this dependence™ p%). For smalls and e, the cross sectiof6) has correc-
below. Independent of soft radiation, we can always chooséons in In(1£) and In(1£), which we will organize in the
our coordinate system such that the transverse momentum &gllowing.
jet 1 is zero,

Py, =0, 9) B. Weight functions and jet shapes
th 5. in th N he limite. in th In Eq. (3), ais a parameter that allows us to study various
with p,, in the x; direction. In the limite,e—0, and in the o ent shapes within the same formalism: it helps to control

overall c.m.,p;, andp;, then approach light-like vectors in the approach to the two-jet limit. As noted abowes 2 for
the plus and minus directions: infrared safety, although the factorization that we will dis-
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cuss below applies beyond leading logarithm only tedl
> —oo, A similar weight function with a noninteger power
has been discussed in a related context fora2>1 in [22].
To see how the parametaraffects the shape of the jets, let
us reexpress the weight function for jet 1 as

— 1 _ .
fo,(N.a)= T AE, w;sinftg;(1—cosh,)* 2, (11
Sniey FIG. 2. A kinematic configuration that gives rise to the nonglo-
bal logarithms. A soft gluon with momentuhnis radiated into the
where, is the angle of the momentum of final state particleregion{, and an energetic gluon with momentuiis radiated into

i with respect to jet axi®;. As a—2 the weight vanishes €. Four-vectors3; and3,, define the directions of jet 1 and jet 2,
only very slowly forg,— 0, and at fixeo‘ﬁl, the jet becomes respectively.

very narrow. On the other hand, as- —, the event shape ) ) . ) -

the cross section at fixeid; becomes more and more inclu- Production. A similar analysis for the same geometry has
1 been carried out ifl17] and[23].

sive in the radiation intd),. The kinematic configuration we consider is shown in Fig.

In this paper, as in Refl5], we seek to control correc- Lz ~ .
fons i e sholedogarifimic vrale, QL) with 2,14 %5 PAne, o vlocieds anaf e teaea
=Qq/Q. Such a resummation is most relevant when ) ‘ : ’ . . .
#=QalQ the final state. A soft gluon with momentukns radiated into
1 region() and an energetic gluon with momentuis emitted
&

-1
as(Q)In( )Blﬂsgex%m)- (120 into the regionQ). We consider the cross section at fixed
s energy,w,=¢+/s. As indicated above, nonglobal logarithms
Let us compare these logarithms to nonglobal effects inari§e from strong ordering of Fhe energies of the gluons,
shape-flow correlations. At=0 and fora— —«, the cross which we cho‘f)s.e 8> wy . In this region, the“gluohplays:,
section becomes inclusive outsiffe As we show below, the the_ ro!e of a “primary” emission, while is a “secondary
nonglobal logarithms discussed in Ref&5,17 appear in emission. .
shape-flow correlations as logarithms of the form, .FO[ OUI palfglatlon, we take th_e angular reg@to be a
a(Q)In[1/(ev)], with » the moment variable conjugate to slice” or fing m_polar angle of W'dt.h 25, or equivalently,
the event shape. To treat these logarithms as subleading fgfS€Ud0 rapidity interval ¢, 7), with
small e and(relatively) large v, we require that

1+siné
). (14

A77:277:|r](1—sin5

ag(Q)

1
. (13
€

as(Q)ln(—V

1
<l—e>—ex
v

For largev, there is a substantial range ofin which botn ~ The lowest-order diagrams for this process are those shown
Egs.(12) and(13) can hold. Wherv is large, moments of the in Fig. 3, including distinguishable diagrams in which the
correlation are dominated precisely by events with stronglynomentak andl are interchanged.

two-jet energy flows, which is the natural set of events in The diagrams of Fig. 3 give rise to color structu@g
which to study the influence of color flow on interjet radia- and C-C,, but terms proportional t€Z may be associated
tion. [The peak of the thrust cross section is at-() of  with a factorized contribution to the cross section, in which
order one-tenth at LEP energies, corresponding ¢ order  the gluonk is emitted coherently by the combinations of the
ten, so the requirement of larges not overly restrictive.In gluonl and the eikonals. To generate t@gC, part, on the
the next subsection, we show how the logarithmseof)(*  other hand, gluok must “resolve” gluonl from the eikonal
emerge in a low order example. This analysis also assumeges, giving a result that depends on the angles between
thata is not large in absolute value. The event shape at fixedind the eikonal directions.

angle decreases exponentially wahand we shall see that ~ The computation of the diagrams is outlined in Appendix
higher-order corrections can be proportionaatdVe always  A: here we quote the results. We adopt the notatipn

treat Inv as much larger thafa). =cos6, S=sing, with 6, the angle of momenturh mea-

sured relative tqél, and similarly fork. We take, as indi-

cated above, a Laplace transform with respect to the shape
In this section, we check the general ideas developedariable, and identify the logarithm in the conjugate variable

above with the concrete example of a two-loop cross sectior. We find that the logarithmi€C,-dependence of Fig. 3

for the proces$2). This is the lowest order in which a non- may be written as a dimensionless eikonal cross section in

global logarithm occurs, as observed[it7]. We normalize terms of one energy and two polar angular integrals as

C. Low order example
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FIG. 3. The relevant two-loop cut diagrams
corresponding to the emission of two real gluons
in the final state contributing to the eikonal cross
section. The dashed line represents the final state,
with contributions to the amplitude to the left,
and to the complex conjugate amplitude to the
right.

11(1 1)11
<2

2 siné 1 /s
%) Ef def dclf\S%e"‘”l(lq)l_asla’Q + -
m) &)-sins Jsns Jes o Cterl+ellte  1-cf gfl+g

de  “F7A . (15)

In this form, the absence of collinear singularities in theencounter are familiar from related analyses for heavy quark
CrC, term at cog=+1 is manifest, independent of Col-  and jet productiori28]. We refer in several places below to
linear singularities in théintegral completely factorize from standard arguments discussed in more detdi2$26. The

the k integral, and are proportional 1@%. The logarithmic  aim of this section, and the reason why a careful analysis is

dependence on for v>1 is readily found to be necessary, is to identify the specific dimensionless combina-
5 tions of kinematic variables on which the factorized matrix
d‘Teik: c ﬁ) Em(i) C(A7) (16) elements may depend. We will use these dependences in the
de FeA\m) e v e following section, when we discuss the resummation proper-

. . . i ties of our correlations.
whereC(A ») is a finite function of the anglé, given ex-

plicitly in Appendix A.

We can contrast this result to what happens whet0, A. Leading regions near the two-jet limit
that is, for an inclusive, nonglobal cross section. In this case, o

recalling thate=Qg/Q, we find in place of Eq(16) the In order to resum logarithms af ande (or equivalently
nonglobal logarithm v, the Laplace conjugate @f) we have first to identify their
) 2 origin in momentum space whene — 0. Following the pro-

doeix @ Q
d—:'= £Ca ?S) gln(Q—>C(A 7). (17) cedure and terminology df24], we identify “leading re-

Q

gions” in the momentum integrals of cut diagrams, which

As anticipated, the effect of the transform is to replace thecan give rise to logarithmic enhancements of the cross sec-

nonglobal logarithm irQ/Qq , by a logarithm of 1/¢v). We :'r?n assoglatedthW|t? lines fpprotac(j:hlng thef rnass Strr:e”f' \ﬂmhm
are now ready to generalize this result, starting from thepgsseugij?;%r::ms? ines of a cut diagram tafl info the foflow-
factorization properties of the cross section near the two-je A hard-scattering, or “short-distance” subdiagrak,

limit. .
where all components of line momenta are far off-shell, by
orderQ.
lll. FACTORIZATION OF THE CROSS SECTION Jet subdiagramsl;, andJ,, where energies are fixed and

In this section we study the factorization of the correla-momenta are collinear to the outgoing primary partons and
tions (6). The analysis is based on a general approach thdhe jet directions that emerge from the hard scatteriRgr
begins with the all-orders treatment of singularities in pertur<=¢=0, the sum of all energies in each jet is one-half the
bative cross sectior{24,25, and derives factorization from total energy. To characterize the momenta of the lines within
the analyticity and gauge properties of high energy Greeithe jets, we introduce a scaling variableg1. Within jet 1,
functions and cross sectioh6]. The functions that appear momenta¢ scale as{ " ~Q,{ ~\Q,¢, ~\VQ).
in factorized cross sections are expressible in terms of QCD A soft subdiagramS connecting the jet function3; and
matrix elementg27], and the matrix elements that we will J,, in which the components of momeriaare small com-
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pared to Q in all components, scaling askt~\Q,k, tion of the jet axes, as discussed in Sec. Il. In contrast, the
~\Q). energy flow weightf(N), depends only on particles emitted

An arbitrary final stateéN is the union of substates associ- at wide angles, and is hence insensitive to collinear radiation:
ated with these subdiagrams:

N=Ng®N; ®Nj,. (18) F(N)=F(Ny). (20)

¢ When we sum over all diagrams that have a fixed final state,
the contributions from these leading regions may be factor-
ized into a set of functions, each of which corresponds to one
F(N,a)=fN(N,,a) +7% (N,.,a) +T% (N,,a). (19  of the generic hard, soft and jet subdiagrams. The arguments
o o2 for this factorization at leading power have been discussed

The superscripN reminds us that the contributions of final- extensively[21,26,29. The cross section becomes a convo-

state particles associated with the soft and jet functions ddution in e, with the sums over states linked by the delta
pend implicitly on the full final state, through the determina-function which fixesn;, and by momentum conservation,

As a result, the event shaﬁe:an also be written as a sum o
contributions from the soft and jet subdiagrams:

do(e,e,s, d . _ o 2 _
dotee.52)_ 9% chy S fdssS<Ns>5(s—f(NS>)5(ss—fN<Ns,a>)H fdeJ TNy
dededn, an; Ns.Nj, c=1 c c

X 823, T (N3, @)(2m)*8*(pi = P(N;,) ~ P(N3,) — P(N) 8 (M1~ A(N) 58 — &, — 85, &)

dO'O —
= —=—6(&)d(e)+O(as). (21)
dn;
|
Hereda,/dn; is the Born cross section for the production of B. The factorization in convolution form
a single particle(quark or antiquarkin directionn,, while Although formally factorized, the jet and soft functions in

the short-distance functioH (s,n;) =1+ O(ay), which de- Eq. (21) are still linked in a potentially complicated way
scribes corrections to the hard scattering, is an expansion frough their dependence on the jet axes. Our strategy is to
5 with finite coefficients. The functiong;(N; ), S(N) de-  Simplify this complex dependence to a simple convolution in
scribe the internal dynamics of the jets and wide-angle soffontributions toe, accurate to leading power mande.
radiation, respectively. We will specify these functions be- First, we note that the cross section of E2{)) is smgLAJIar

low. We have suppressed their dependence on a factorizatid@l vanishinge ande, but is a smooth function af andn;.
scale. Radiation at wide angles from the jets will be well-WWe may therefore make any approximation that charges

described by our soft functionS(Ng), while we will con-  and/orn; by an amount that vanishes as a powee @inde

struct the jet functiong7,(N; ) to be independent of, asin  in the leading regions.
Eq. (21). ¢ Correspondingly, the amplitudes for jetare singular in

So far, we have specified our sums over states if(El. 5, but depend smoothly on the jet energy and direction,
only when all lines inNs are soft, and all lines itN; have  \hile the soft function is singular in both and &g, but
momenta that are collinear, or nearly collinearptg. As ¢ depends smoothly on the jet directions. As a result, at fixed
ande vanish, these are the only final-state momenta that argalues ofe ande we may approximate the jet directions and
kinematically possible. Were we to restrict ourselves to thesenergies by their values at=¢=0 in the soft and jet func-
configurations only, however, it would not be straightforwardtions.
to make the individual sums ovéts andN;_infrared safe. Finally, we may make any approximation that affects the
Thus, it is necessary to include soft partonsNpthat are  value of ¢ and/ore 3, by amounts that vanish faster than

emitted near the jet directions, and soft partons inNGeat jineary for s 0. It is at this stage that we will require that
wide angles. We will show below how to define the functionsz <1 .

Je(N;), S(Ns) so that they generate factoring, infrared safe jth these observations in mind, we enumerate the re-
functions that avoid double counting. We know on the basiplacements and approximations by which we reduce Eq.
of the arguments of Ref$21,26,29 that corrections to the (21), while retaining leading-power accuracy.

factorization of soft from jet functions are suppressed by (1) To simplify the definitions of the jets in E¢21), we

powers of the weight functions and/ore. make the replacemen?% (NJC,a)—>f_C(NJC,a) with
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TN, )= 1 R T CETrR 8(n;—n(N))— 8(n; —n(N,)). (23)
c\iNg = L

\/g all n ieNy,

(22 In Appendix B, we show that this replacement also leaves the

The jet weight func“orfC(NJ ,a) now depends only on par- Value ofs unchanged, up to corrections that vanish:4s2.
Thus, fora<1, Eq.(23) is acceptable to leading power. For

a<l1, we can therefore identify the direction of jet 1 with

from partlcles within reglorﬂc, is exactly the same here as nl These approx|mat|0ns S|mp||fy qul) by ehmmatmg

ldr}rth?ic\)/\r/]ilglwiﬁ?s Svlg Vﬁ;%ﬁé”gﬁﬁgﬂfgﬁ:‘ﬁfzv‘gr?i|r|1 gltg'?art the implicit dependence of the jet and soft weights on the full
ec )

of the Jet amplltudei will be F?laturally infrared safe. Th eﬁn?;)stliteth\év?er;;%gn?\évgfgiitl gzrigl(Iar;dtehpaetng]earlz[evigtoerach

value of fo(N,_a) differs from the value OfoC(NJCya)v final-state jet are associated with stabés, while Ny con-

however, due to radiation outsicﬁc, as indicated by the sists of soft particles only. In the momentum conservation
new subscript. This radiation is hence at wide angles to th@elta function, we can neglect the four-momenta of lines in
jet axis. In the elastic limi(8), it is also constrained to be N, whose energies all vanish ase —0:

soft. Double counting in contributions to the total event

shape,f(N,a), will be avoided by an appropriate definition

of the soft function below. The sums over states are still not 8" (P1=P(N3,) = P(N; ) = p(Ns)— 8*(p,—py,~ Py,)-

yet fully independent, however, because the jet directions (24)

still depend on the full final stath!.

(2) Next, we turn our attention to the condition that fixes L .
oA . . ) .o (4) Because the cross section is a smooth function of the
the jet directiom,. Up to corrections in the orientation of jet energies and directions, we may also neglect the masses
that vanish as powers efande, we may neglect the depen- of the jets within the momentum conservation delta function,
dence ofnl on Ng and N, as in Eq.(10). In this approximation, we derive in the c.m.,

ticles associated WltrNJ The contribution tofC(NJ ,a)

1
8*(pi—py,—Ps)— (5= w(N; ) — w(N; ) (|p; |- |pJ2|)5 82 (ny+ny)

|pa,|?

2 \/g \/g 2/ A ~
=28 V5 0Ny | 8| \J5=0(Ny,) | 2(Ry+hy). (25)

Our jets are now back-to-back: _ _
S(s,ss,a,u)=§ S(Ns,p) (e — f(Ng))8(es— f(Ns, @)

- - 28
Implementing these replacements and approximations for 2
a<1, we rewrite the cross section E@1) as Jc(ch,a,M)Zg(Zﬁ)GNE Je(N; )
JC
do(e,e,5a) d X 8(ey —fo(N a(\F N )
o(e,e,S, T - — , R
TZ—OH(S nl,,u)fdssS(s,ss,a,,u) (8‘]‘3 ol Je a)) 2 o JC)
deSdnl d l R R
X 8*(ny=n(N,)), (29

2
X dey Jo(e; ,a,
(:1:[1 e ol e #) with the plus sign in the angular delta function for jet 2, and

- the minus for jet 1. The weight functions for the jets are
X S(e—ey —e5,~€s), (27)  given by Eq.(22) and induce dependence on the parameter
We have introduced the factorization scale which we set
equal to the renormalization scale.
with (as aboveH=1+O(as). Referring to the notation of We note that we must construct the soft functions

Egs.(21) and(22), the functionsS andJ, are S(Ng,u) to cancel the contributions of final-state particles
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carry scalar polarizations. The hard subdiagram is not con-
nected directly to the soft subdiagram in any leading region.
The couplings of the scalar-polarized gluons that connect

% the jets with short-distance subdiagrams may be simplified
@ >@W with the help of Ward identitietsee, e.g[26]). At each order

1

=

=y
> s |
ol T

0 P &
M@g ) of perturbation theory, the coupling of scalar-polarized glu-
52\ ons from either jet to the short-distance function is equiva-
lent to their coupling to a path-ordered exponential of the
gauge field, oriented in any direction that is not collinear to

L the jet. Corrections are infrared safe, and can be absorbed

FIG. 4. Factorized cross sectid@7) after the application of iNto the short-distance function. Lé{p;_,n;,A) represent

Ward identities. The vertical line denotes the final state cut. the set of all short-distance contributions to diagrams that
couple any number of scalar-polarized gluons to the jets, in
from each of theTc(NJCu“) to the weighte, as well as the the amplitude for the prpduction of any final state. The argu-
contributions of the jet functions te from soft radiation ment.A gtapds for the f|eI(_:is that create the scala_r-polanzed
) ) ) g o ) ~ gluons linking the short-distance function to the jets. On a

outside their respective regloﬁ_)sc. S|m|larl_y, the jet ampli- diagram-by-diagram basig, depends on the momentum of
tudes must be constructed to include collinear enhancements,ch of the scalar-polarized gluons. After the sum over all

only in their respective jet directions. Explicit constructions giagrams, however, we can make the replacement
that satisfy these requirements will be specified in the fol-

lowing subsections. R _ — R
To disentangle the convolution in Eq27), we take h(ch,nl,A(q"ﬁ)—mb(gg)(o,—oo;O)hz(pJC,nl,gc)

Laplace moments with respectE

XPD(0,~:0), (32
do(e,vs,8)_ food;ef do(.2.2) whereh, is a short-distance function that depends only on
dedn, 0 dededn, the total momentp,; andp,,. It also depends on vectogs

that characterize the path-ordered exponentidg0,
—;0),
dO'O A
= ——H(s,ny,u)S(e,v,a,u)
dn;
5 O (0,~;0)=Pe 9/ A0 (33
Xcljl Jo(v,a,p). (30

where the superscript (f) indicates that the vector potential
takes values in representation f, in our case the representa-
tion of a quark or antiquark. These operators will be associ-
ated with gauge-invariant definitions of the jet functions be-
low. To avoid spurious collinear singularities, we choose the
° - vectors¢é., c=1,2, off the light cone. In the full cross sec-
S(S,V,a,,u):J dese” "*sS(e,e5,a,u1), (3D tion (30) the £-dependence cancels, of course.
0 The dimensionless short-distance functibin=|h,|? in
and similarly for the jet functions. Eq. (27) depends on/s and Py, Ee but not on any variable

In the following subsections, we give explicit construc- that vanishes with: ande:
tions for the functions participating in the factorization for-
mula (27), which satisfy the requirement of infrared safety,

Here and below unbarred quantities are the transfornas in
and barred quantities denote untransformed functions,

and avoid double counting. An illustration of the cross sec- Js Ps Ny
tion factorized into these functions is shown in Fig. 4. As H(py, & Ny, pu)=H| — — C,ﬁl,as(ﬂ) . (34
discussed above, nonglobal logarithms will emerge when ¢ ©

becomes small enough.

where
C. The short-distance function
The power counting described ig4] shows that in Feyn- N
man gauge the subdiagrams of Fig. 4 that contribute to E=¢& | & (35

Eq.(27) at leading power iz ande are connected to each of
the two jet subdiagrams by a single on-shell quark line, alondlere we have observed that each diagram is independent of
with a possible set of on-shell, collinear gluon lines thatthe overall scale of the eikonal vectéf .
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D. The jet functions with our definition of the jet functions.

The jet functions and the soft functions in E87) can be The jet fungtions, v_vhich absorb enhancements collinear to
defined in terms of specific matrix elements, which absorihe two outgoing particles produced in the primary hard scat-
the relevant contributions to leading regions in the cross sedefing, can be defined in terms of matrix elements in a man-
tion, and which are infrared safe. Their perturbative expanher reminiscent of parton distribution or decay functions
sions specify the functions and 7. of Eq. (29). We begin  [27]. To be specific, we consider the quark jet function,

Ja(e. 2 (2m° (@t 0)D(@ e —1.
clesapu)=¢ A NE Tr (0| @ "(0,—;0)q(0)[N; )(N; |a(0)@(0,—;0)[0)]5(e 5 — fc(N, @)
JC
s or o
X8| 5= (Ny) | 8 (ne=n(N,)), (36)
|

where; is the number of colors, and whemg denotes the _ 1 o
direction of the momentum of jet, Eq. (29), with ﬁzz fl(NJl’a)zsl—a/Z S ki,L(Zleki )
—ny. qis the quark field®{?(0,~=;0) a path-ordered ex- T
ponential in the notation of Eq33), and the trace is taken
over color and Dirac indices. We have chosen the normaliza-  — 1 a L +\1-a
tion so that the jet functiond’ » in (36) are dimensionless faNo, )= ﬁ_;h KL (2Poki )™ 49
and begin at lowest order with Lo

IO gy a,u)=B48(¢,), (37)  Here we have used the relatiqis/2= , , valid for both jets

in the c.m. At the same time, we make the identification
with B the lightlike velocities corresponding to the jet mo-

menta in Eq(10): 1 \f
=6l \/=—w(N;y)|8(ne—n(N
18?:5”,-%—1 ,121,:5M_ ) (38) s ( 2 w( ‘]c)> ( [ n( ‘]c))
The scalar jet functions of Eq29) are now obtained by _ } > -
projecting out the component df* in the jet direction: 4 5%(Pa, = P(N3)), (1)

Jeleg,a,m)=Be- I c(e5,8,1)=8(e;) + Olas), which again holds in the c.m. frame. The spatial components
(39 of eachp 5, are thus fixed. Given that we are at smﬂ,lcl, the
Whereﬁfﬁz, 52:’31 are the lightlike vectors in the direc- J:et functions may be thought of as_functions of the light-like
tions opposite tg3; and B3,, respectively. By construction, jet momentapj of Eq. (10) and ofe, . Because the vector
the J. are linear ing. B jet function is constructed to be dimensionled§* in Eq.
To resum the jet functions in the variableg;c, itis con-  (36) is proportional toB. rather thaanC. Otherwise, it is

venient to reexpress the weight functiof®2) in combina-  free of explicit 3.-dependence.
tions of light-cone momentum components that are invariant The jet functions can now be written in terms of boost-
under boosts in th&; direction, invariant arguments, homogeneous of degree zei in

_ _ poc& s[5 \*?
‘]C(SJciavﬂ):BCM|: ngl(tl)(T’sJCF( Zp‘]c. %C> iavaS(M))

: (42

26 o oy [Po e — V5[ s |\
J ’ - ~ 4, g
Fer S\ Tk tu g, g AW
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whereJ® andJ@ are independent functions, and where we P; .gc \/5
have suppressed possible_depgndencécgn For jetc, the Je . ,ﬁ(ic)lfa,a,as(,u) ,
weight e;_is fixed by 6(e; —fc(N;_a)), where on the

right-hand side of the expression for the weigd), the sum »
oger each particle’s mo?nentum involves tr?:m Lverall factopvhere the unbarred and barred quantities denote transformed

+ 1-a . . ! L — and untransformed functions, respectively. We have con-
(Zch/ Vs)' 7% After integration over final states at f'Xeqc' structed the jet functions to be independentzofsince the

the jet can thus depend on the vecpdr. At the same time,  radiation into() is at wide angles from the jet axes and can
it is easy to see from the definition of the weight tp4t can therefore be completely factored from the collinear radiation.
Cc

. L= _ This radiation at wide angles is contained in the soft func-
only appear in the combination (Sljc‘/g)ll(l a)(Zpﬁtc/‘/g)' tion, which will be defined below in a manner that avoids

This vector can combine wité; to form an invariant, and all  double counting in the cross section.
é.-dependence comes about in this way.
Expression42) can be further simplified by noting that

E. The soft function

Given the definitions for the jet functions in the previous
subsection, and the factorizati@@7), we may in principle
calculate the soft functiois order by order in perturbation
theory. We can derive a more explicit definition of the soft
function, however, by relating it to an eikonal analog of

2B EcPe E=E2+EL . (43)

Choosingé. , =0, we find a single combination,

—_ — pJC'%c — \/g Eq. (2. . . o -
Je(eg am)=J; ,sJC—(gc)l‘a,a,as(M) ) As reviewed in Refd15,2€|, soft radiation at wide angles
M (44) from the jets decouples from the collinear lines within the

jet. As a result, to compute amplitudes for wide-angle radia-
where, in the notation of Eq42), J_C=jf:1)+j£2), and we tiqn, the_ jets may be replaced by non-AbeIia_n phases, or
have defined Wilson lines. We therefore construct a dimensionless quan-
tity, o®™, in which gluons are radiated by path-ordered ex-
ponentials®, which mimic the color flow of outgoing

A uarks,
LY (45

. L (M ) — P a—igfadh B AD(NB+x)
In these terms, the Laplace moments of the jet function in- P (0,0:x) = Pe 180T < (47)

herit dependence on the moment variabléhrough

with 8. a light-like velocity in either of the jet directions.

Jc(V,ayM)=f d;J e VZJJC(S—J a, ) (46) For' the two-jet cross section at measukednd e, we
0 c ¢ define
—_ . — 1 — _
a<e'k>(s,eeik,a,m5/70 NE (0] *(e2,0;0) DV *(o2,0;0) N (Neid P 5(2,0;0) P (2,0, 0)| 0)
eik

X 8( — f(Nei)) (& ic— F(Nei @)

=8() 8(£ei) + O ay). (48)

The sum is over all final stateNg; in the eikonal cross The eikonal cross sectiof#8) models the soft radiation
section. The renormalization scale in this cross sectionaway from the jets, including the radiation info, accu-
which will also serve as a factorization scale, is dengied rately. It also contains enhancements for configurations col-
Here the event shape functiep, is defined byf(Ngy,a) as linear to the jets, which, however, are already taken into
in Egs.(3) and (4), distinguishing between the hemispheresaccount by the partonic jet functions in E&7). Indeed, Eq.
around the jets. As usual is the number of colors, and a (48) does not reproduce the partonic cross section accurately
trace over color is understood. for collinear radiation. It is also easy to verify at lowest order
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that even at ﬁxe(;eik the eikonal cross sectio@8) is ultra- eikonal jet functions and a soft function. The essential point

violet divergent in dimensional regularization, unless we alscgld'].'S that the soft function in the factorized eikonal cross

) o . 'section is the same as in the original cross sedi. The

impose a cutoff on the energy of real gluon emission collln-eikonal jets organize all collinear enhancements in (@8)

ear tof3, or S». _ _ . including the spurious ultraviolet divergences. These eikonal
The construction of the soft functidfrom o(®® is nev-  jet functions are defined analogously to their partonic coun-

ertheless possible because the eikonal cross se@fac-  terparts, Eq(36), but now with ordered exponentials replac-

torizes in the same manner as the cross section itself, intmg the quark fields,

1 . _
T 2 (010 T(0,~0;0) D (50,0,0) [NENNEW| D) (o2,0,0) (0, 0;0)|0)

jS:Eik)("::_c ,a,/.L)E NC el
Ne

X 8(e.— T(NEW @)

=8(ec)+O(ay), (49

where { is a quark or antiquark, and where the trace over color is understood. The weight functions are given as above, by Eq.
(22), with the sum over particles in all directions.
In terms of the eikonal jets, the eikonal cross sectié®) factorizes as

2
;(eik)(s,;eik,a,,u)fj d;sg(sys_s,a,ﬂ)cﬂl decd®™ (e, a, 1) S(eek—es— 81— £2), (50)

where we pick the factorization scale equal to the renormalbecause it is free of collinear logs, it can have at most a
ization scalew. As for the full cross section, the convolution single logarithm per loop. Its dependence ©ris therefore

in Eq. (50) is simplified by a Laplace transformatid46)  only through ratios of the dimensional quantities's with
with respect toe;, which allows us to solve for the soft the renormalizatiorifactorization scale.

function as As in the case of the partonic jets, Ed6), we need to
identify the variable through whichy appears in the soft
@ (e v,a,u) function. We note that dependence on the velocity veggers
S(e,v,a,u)= 75— =3(e)+0(as). (51) and the factorization vectorg, must be scale invariant in
H J((:eik)(v,a’M) each, since they arise only from eikonal lines and vertices.
c=1 The eikonal jet functions cannot depend explicitly on the

scale-less, lightlike eikonal velocitigs,, ando®™® is inde-

In this ratio, collinear logarithms in and the unphysical pendent of thet;. Dependence on the factorization vectors
ultraviolet divergences and their associated cutoff depen¢, enters only through the weight functions, E40) for the
dence cancel between the eikonal cross section and the eikeikonal jets, in a manner analogous to the case of the par-
nal jets, leaving a soft function that is entirely free of collin- tonic jets. This results in a dependence ¢g)t 2, as above,
ear enhancements. The soft function retaindependence with /. defined in Eq.(45). In summary, we may character-
through soft emission, which is also restricted by the weighize the arguments of the soft function in transform space as
functione. In addition, because soft radiation within the ei-
konal jets can be factored from its collinear radiation, just as s Js
in the partonic jets, all logarithms in associated with wide- S(e,v,a,pu)=S| —,ev,— (L)} 3 a,au)|. (52
angle radiation are identical between the partonic and eiko- m MV
nal jets, and factor from logarithmic corrections associated
with collinear radiation in both cases. As a result, the inverse
eikonal jet functions cancel contributions from the wide-
angle soft radiation of the partonic jets in the transformed We may summarize the results of the previous section by
cross sectior{30). rewriting the transform of the factorized cross sectig0) in

Given the definition of the energy flow weight functign  terms of the hard, jet and soft functions identified above,
Eq. (5), the soft function is not boost invariant. In addition, which depend on the kinematic variables and the moment

IV. RESUMMATION
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according to Eqs(34), (46) and (52) respectively, functions on the parametex that characterizes the event
shapeq3) is reflected in the resummed correlations, so that

do(e,v,s5,a) doy Js Ps. %C . the relationship between correlations with different values of
————=—H|—, Ny, as(u) ais both calculable and nontrivial.
dsdnl dnl M
2 A. Energy flow
e s . o .
H —({c)l‘ a,aq( ) As a first step, we use the renormalization group equation
c=1 (54) to organize dependence on the energy flow variable
Applying Eq. (54) to the factorized correlatiof63), we de-
s f . : : e ;
XS — ey, — (gc)l 3 a,aq(p)|. rive the following consistency conditions, which are them-
M selves renormalization group equations:
53
(53) @ s G
The natural scale for the strong coupling in the short-distance* §,, du InS| —— e, ﬁ(gc) A, as(p) | == yslas(n),
function H is /s/2. Settingu=+/s/2, however, introduces (56)

large logarithms ofs in the soft function and large loga-
rithms of v in both the soft and jet functions. The purpose of 4 gc Js
this section is to control these logarithms by the identifica- u —1In J —(g“c)1 da,ag(u) | =
tion and solution of renormalization group and evolution K 5
equations. (57
The information necessary to perform the resummations \/—
o

=~y (s ),

is already present in the factorizati@d3). The cross section

—|
itself is independent of the factorization scale M nH nl as(w) | = vslas(u))
d do(e,v,s,a
p L dotersa) (5 S nem) (58)
du  dedn; .

The anomalous dimensiong, d=s, J. can depend only on
variables held in common between at least two of the func-
tions. Because each function is infrared safe, while ultravio-
let divergences are present only in virtual diagrams, the
_ ! =0. (55  anomalous dimensions cannot depend on the parameters
aln(pjcfc) dedn, or a. This leaves as arguments of thg only the coupling

as(u), which we exhibit, and., which we suppress for
The arguments of this section closely follow the analysis ofnow.

Ref. [30]. We will see that the dependence of jet and soft Solving Egs.(56) and (57) we find

and of the choice of the eikonal directiorf,, used in the
factorization,

J do(e,v,s,a)

s\s Vs 1-a s\/s Vs 1-a ) Z P AN yelas(N)
S e et |8 e G et o 4, 59
'%C §C ~ M
Je £(a)l da,aq(p) | = s = (L)' %, aq( o) | € Tud M Yal2s0), (60)
e Mo MoV

for the soft and jet functions. As suggested above, we will eventually p'rek\/E to avoid large logs irH. Using these
expressions in Eq53) we can avoid logarithms of or v in the soft function, by evolving fronuy=¢ Js to the factorization

scalex~ \/s. No choice ofwy, however, controls all logarithms ofin the jet functions. Leaving, free, we find for the cross
section(53) the intermediate result

do(e,v,s,a) B dcrOH
dedn, dn,

xexp[ .L\s N Ys(as(N)) 1 J

\/g ch'%c ~ ( )
-, N1,
“ “ 1, s\

S(Lev,(L)' % a,aqes)

—!ﬁ(gc)lia!avas(;l@)
Mo MoV

di
exp{ - f T%c(as(?\))]- (61)
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We have avoided introducing logarithms efinto the jet
functions, which originally only depend om, by evolving

the soft and the jet functions independently. The choice o

wo=€+/s or \/s/v for the soft function is to some extent a

matter of convenience, since the two choices differ by loga-

rithms ofe ». In general, if we choosgo= s/ v, logarithms
of ev will appear multiplied by coefficients that reflect the
size of region(). An example is Eq(15) above. Wherf) has

a small angular sizey,= \/s/v is generally the more natural
choice, since then logarithms igw will enter with small
weights. In contrast, whef) grows to cover most angular
directions, as in the study of rapidity gaf32], it is more
natural to choosg.y= ¢ /.

B. Event shape transform

The remaining unorganized “large” logarithms in Eq.
(61) are in the jet functions, which we will resum by using
the consistency equatidb5). The requirement that the cross

section be independent pf,c~ Ec implies that the jet, soft and
hard functions obey equations analogous to E§6)—(58),

PHYSICAL REVIEW B8, 014012 (2003

Since G, and henceyK , may be computed from virtual
diagrams, they do not depend anand YK, is the universal

gudakov anomalous dimensip21,33.
With the help of these evolution equations, the teiys
andG. in Eq. (62) can be reexpressed E34]

S c
Kc(ﬁ(gc)l_a:au ag(pn) | +G; “ yag(pm)
1 S A
=K ( a,a| C 1%(&’)1—&1 )+Gc as(cszc'gc))

c, -AC d\’
- [ S )

c1Vs(Z) ¥ N

=—B¢(c1,¢ ,a,as(02ch' &)

again in terms of the variables that they hold in common

[30]. The same results may be derived following the method

of Collins and Sopef21], by defining the jets in an axial
gauge, and then studying their variations under boosts.

‘chz'i%‘& Y L(cy,a,as(N")),
Cl\““S({c)

64
oy’ (64)

For our purposes, only the equation satisfied by the jet

functions[21,3( is necessary,

9 §c Vs 1-a
r9|n(pjc~éc) In c “ My(gc) a,as( )
= c(ﬂ_\/i(gc)lavaaas(ﬂ) +G, Cva's(:“) .
(62

The functionsK, and G, compensate thé.-dependence of

the soft and hard functions, respectively, which determines
the kinematic variables upon which they may depend. In

particular, notice the combination of and ¢.-dependence
required by the arguments of the jet function, E4f).

Since the definition of our jet function86) is gauge in-
variant, we can derive the kerndfs. and G, by an explicit
computation ofJc/dIn(ps &) in any gauge. The multipli-
cative renormalizability of the jet function, E¢7), with an
anomalous dimension that is independenp@cf- EC ensures
that the right-hand side of Eq62) is a renormalization-
group invariant. ThuskK.+ G, are renormalized additively,
and satisfy[21]

d
MﬁKc(M_\/:S/(gc)l_aaavas(M)):_'YKC(O‘S(M)): (63)
d éc
MMG vas(p) | =y (as(w)).

where in the second equality we have shifted the argument of
the running coupling ik, and have introduced the notation

1 1
Bi(C1.02,a,a5(w))= K| ., asw) (Cz,asuo),
2A(’I(Cl’a7as(M))E yKC(as(M))
B(g(m)&g( ) as(,u)).
(65)

The primes on the functiond, and B, are to distinguish
these anomalous dimensions from their somewhat more fa-
miliar versions given below.

The solution to Eq(62) with w= g is

fc -
‘]C \/g (gc) ,a,a’s(/.l/())
,U«o MOV
= \/: ,~\/— (Lo)* 2 a,as( o) (66)
“\ 2Lomo oy
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Py - éc dx gc \/—
xXexp — B.(Cq,Cp,a,ag(CoN - 1-a
P{ f\s/(zgo))\ (€1,€2,a,a5(Co\N)) JC ,u. Mv(gc) a,ag( )
CoN dn’ \/g )) jl’« dn
=J11a,a4l 5| | exp — - N
+2Jc1[ 182y, 201 )\, Al(cy,a,ag(N")) ] c( a as( 28, S2eg N ‘YJC(aS( )
X ex —f = B(ccaa(cx))
where we evolve fromys/(24,) to p; - &= /s/(2¢c) [see B N 12, @Tsih2
Eq. (45)] with
02)\ 4
+2J AL(ci,a,as(N'))|;. (68
1U(2—a) st A O o
e
bo= ( 2) 60 As observed above, we treaias a fixed parameter, witfa|
small compared to In(z) and Inv.
After combining Egs. (60) and (66), the choice C. The resummed correlation
=s/(2¢0)=(\sIv) (L)t 2 allows us to control all large Using Eq.(68) in Eq. (61), and settingu= /s/2, we find
logarithms in the jet functions simultaneously: a fully resummed form for the correlation,

do(e,v,s,a) dog (Zch'gc R <\/—
———=—H Ny, as =
dedn, dn, Js 2

))S(l eV, (éc)l 4,a, ag(e \/_))GX% j \ 75(“5()\))]

2

S Jsi2 dA da
XH J (1 1a, as< \/_>)ex —f ° — 3 (as(N)) | ex —f §C
c=1 2¢o B2 N TTC Sz N

CoN d\’
+2f —Al(cy,a,aq(\"))

cqls sl- a/2/V(2>\)1 a] )\/

B (CZL!CZIa a’s(CZ)\))

} (69

Alternatively, we can combine all jet-related exponents in &§) in the correlation. As we will verify below in Sec. V B,
the cross section is independent of the choicg0fAs a result, we can choose

RS (70)

This choice allows us to combiszC andB( in Eq. (69),

do(e,v,s,a) % (\/_))
—dsdﬁl dan(l ny,aq S(lev,1a, as(s ))ex f N 'ys(as()\))

\/—)) Bl dA
XH J (1 1a,a5(2§ ex —fy(zgo) .

oA d\’
+2f —Al(cy,a,ag(\’ ))H (72

cq[s sl— aJZ/V(z)\)l a] )\l

3 (as(N)+Bi(C1,C2,a,a4(CoN))

IAfter this paper was submitted for publication, a related analysis of event shape and energy flow correlations was given by Dokshitzer and

Marchesini[31], who identify the same factorization of soft radiation described here afitBinand who study the leading logarithms of
ev for e<1/v, using the methods ¢R0].
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with {4 given by Eq.(67). rive explicit expressions for these quantities, suitable for re-
In Egs. (69 and (71), the energy flowe appears at the summation to leading logarithm ie and next-to-leading

level of one logarithm per loop, i, in the first exponent. logarithm inwv.

Leading logarithms ot are therefore resummed by knowl-

edge ofygl), the one-loop soft anomalous dimension, where
we employ the standard notation,

S | %"
75(“5)220 Vs =

D. The inclusive event shape

It is also of interest to consider the cross section for
e’ e -annihilation into two jets without fixing the energy of
radiation into(), but with the final state radiation into all of

72
(72 phase space weighted according to &, schematically

w

for any expansion inxg. At the same timey appears in up
to two logarithms per loop, characteristic of conventional
Sudakov resummation. To contretdependence at the same here(); andQ), cover the entire sphere. This cross section
level as e-dependence, it is natural to work to next-to- can be factorized and resummed in a completely analogous
leading logarithm inv, by which we mean the levet§in"s  manner. The final state is a convolution in the contributions
in the exponent. As usual, this requires one looBjnand  f the jet and soft functions te as in Eq.(27), but with no

¥1,» and two loops in the Sudakov anomalous dimen#ipn  separate restriction on energy flow irfiln All particles con-

Eqg. (65). These functions are straightforward to calculatetribute to the event shape. We obtain an expression very
from their definitions given in the previous sections. Only analogous to Eq69) for this inclusive event shape in trans-
the soft functionSin Egs.(69) and(71) contains information form space, which can be written in terms of the same jet
on the geometry of). The exponents are partially process- functions as before, and a new functi®f' for soft radiation
dependent, but geometry-independent. In Sec. V, we will deas

e"+e —Ji(py,fa) +32(ps, fa,), (73)

do™(v,5,8) doy (ZPJC%CA ) m( . ﬁ))
Pl e Ny ag(Vs/2) [ S (L)t 2 e —

V&2 dX 2 \/5)) 52 dh
Xexp{ - fﬁ/v T?’s(as(R))}CHl Jc(l,lﬁ,as(z—go exp{ - f\a(zgo)TWc(‘IS()\))]

3. dh
Xexp| — fp% e
VsI(2¢0) N

Coh dan’

Bl(cq,Cy,a,as(CoN +2J —A/(cq,a,as(\’
¢(C1,¢; s(C2\)) eufst 2 uan) 8 N (€1 s(A")

] . (79

Here the soft functionS"™=1+0(as). The double- 1. The soft function
logarithmic dependence of the shape transform is identical to Tpe one-loop soft anomalous dimension is readily calcu-

our resummed correlation, E9). We will show below, in
Sec. V C, that Eq(74) coincides at NLL with the known
result for the thrusf6] when we choosa=0.

V. RESULTS AT NLL

A. Lowest order functions and anomalous dimensions

lated in Feynman gauge from the combination of virtual dia-
grams inc(®®, Eq.(48), andJ®¥), Eq.(49), in Eq.(51). The
calculation and the result are equivalent to those of Féf,
where the soft function was formulated in axial gauge,

B1 B2
2

=1]. (75

2
Y= —chLEl In(B- &) —In

In this section, we describe the low-order calculations and'he first, £.-dependent logarithmic term is associated with
results that provide explicit expressions for the resummedhe eikonal jets, Wh|le_kthe secoq(d is a finite remainder from
shape-flow correlations and inclusive event shape distributhe combination ofe®® and J®% in Eq. (51). Whenever

tions at next-to-leading logarithm im and leading logarithm
in & (we refer to this level collectively as NLL belgwWe

é...=0, the logarithmic terms cancel identically, leaving
only the final term, which comes from th& eikonal self-

go on to verify that for the case=0 we rederive the known energy diagrams in the eikonal jet functions.
result for the resummed thrust at NLL, and we exhibit the The soft function is normalized t68(® ()= 8(¢) as can
expressions for the correlation that we will evaluate inbe seen from Eq(51). For nonzeroe, do/de is given at

Sec. VI.

lowest order by
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SW(£0,0)= ch SQZWB 152” (76)
1°

67 w2 10
=18~ 5 /A" g TeNr (82

where P$ denotes the two-dimensional angular phase spac#ith the normalizationl e = 1/2 andN¢ the number of quark

flavors.

to be integrated over regidd, andk=k/w, . We emphasize . . .
again that the soft function contains the only geometry- K. and G;, the functions that describe the evolution of
dependence of the cross section. AISg) for £ #0 is inde- the Jet functions in Eq(62), are given at one loop by
pendent ofv anda. 1—a2

As an example, consider a cone with opening angle 2 K(1)<5 (2p; -&)* La
centered at angle from jet 1. In this case, the lowest-order ¢ Jo 5¢ '
soft function is given by

2.2

14 ~
=—ca%e”E“-@§_J2m;aﬂﬂaﬂ, (83

S(6#0,0,8) = Cr L in| 2 ) 77
e a,0)= —In| ————|.
Fe | co2a—cods
- . . Py, & (2py - &)?
Similarly, we may choos€) as a ring extending anglg, to G| ——|=—Cgln e—1—2 (84)
the right andé, to the left of the plane perpendicular to the 2

jet directions in the center-of-mass. In this case, we obtain
Evolving them to the values gi with which they appear in

S(l)(8¢0,51,52) the functionsA, andB/, Eq. (65), they become
(1+S|n51) (1+S|n52) 1
=Cr— Ce-An, W= - 2ye—(1-a) <2
(1 sind;) (1-sind,)] Fe Ks o2 Celn(e c?), (85
1
(78)
with A » the rapidity spanned by the ring. For a ring centered G(l)(i) =—Ccln efli (86)
around the center-of-mas$,(= 8,= 8) the angular integral ¢ F c3)

reduces to the form that we encountered in the example of

Sec. II C, and that we will use in our numerical examples ofRgcall thatG, is computed from virtual diagrams only, and
Sec. VI, withA 5 given by Eq.(14). thus does not depend on the weight function. It therefore
agrees with the result found ii21]. The soft-gluon contri-
bution, K., which involves real gluon diagrams, does de-
Recall from Eq.(39) that the lowest-order jet function is pend on the cross section being resummed.

2. The jet functions

given byJ("=1. With the definitions(65) of A, andB/ we obtain
The anomalous dimensions of the jet functions are found
to be AlM=cg, (87)
w__3¢c (79 Bo
[ AP(cy,a)= —CF + o In(e?e ) | (88)

the same for each of the jets. The jet anomalous dimensions )

i . Cq
are process mdepe_ndent,_ but of course flavor depe_:ndent. T}E’(”(cl,cz,a) 2C,In| eve~t+az=t (89)
same anomalous dimensions for final-state quark jets appear® C,

in three- and higher-jet cross sections.

N Here B, is the one-loop coefficient of the QCD beta-
3. The K-G-decomposition function, Bo=3(1INc—4TeNy) [B(9)=—9g(addm) B,
The anomalous dimension for tieG-decomposition is, +0(g%)1.

as noted above, the Sudakov anomalous dimension,
4. The hard scattering, and the Born cross section

(1) — . .
VKC_ZCF' (80) At NLL only the lowest-order hard scattering function

contributes, which is normalized to
7 =KCr, (81)
HOLag(\s/2)]=1. (90)
also independent of the jet-direction. The well-known coef-
ficientK (not to be confused with the functiol&,) is given At this order the hard function is independent of the eikonal
by [35] vectorsé., although it acquireg.-dependence at higher or-
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der through the factorization described in Sec. Il C. ForAt NLL, explicit &, dependence is found only igs, EQ.
completeness, we also give the electromagnetic Born crosg5), for E;, and in the upper limit of tha integral of E,.

sectiondo,/dn;, at fixed polar and azimuthal angle: We then find that
00 _ | S @ %n 1 ¢ o o1
an, Vel g Qi (IFrcosh). (9D &2 A\ ag\)
— (E1+Ey)=2C¢ _——
aIn Be- & e& AT
where ¢ is the c.m. polar angle af;, eQ; is the charge of
quark flavor f, andae=€?/(4w) is the fine structure con- ac J'CZpJ & d\" ag(\')
stant. F culst ¥ w(2py £ N T
B. Checking the &.-dependence
+NNLL. (94)

It is instructive to verify how dependence on the eikonal
vectors&, cancels in the exponents of the resummed cross
section(69) at the accuracy at which we work, single loga- ) 1)
rithms of &, and single and double logarithms of In these ~ Here the second term stems entirely fram') Eq. (87);

exponentsé.-dependence enters only through the combina®ther contributions o, are subleading. Thé-dependence
tions (8 %) and (o %) in the exponents begins only at the level that we do not
¢’ Sc J. sc/-

; , . resum, ataIn(1/ev), which is compensated by corrections
Let us introduce the following notation for the exponents;p, S(ev,as). The remaining contributions are of NNLL or-

in Eq. (69), to which we will return below: der, that is, proportional WE( J5)INY(uB,-2), as may be

verified by expanding the running couplings. Thus, as re-

Jsi2 d\ 2 S22 da quired by the factorization procedure, the relevant
ElE_j = vslas(M)— 2—:1 o0r ~ Y3 las(V), ¢.-dependence cancels between the resummed soft and jet
o o=t sz functions, which give rise to the first and second integrals,
(92 X .
respectively, in Eq(94).
2 ~
_ pJ 'gc d)\ ’ . .
E,=— z c ~ Bi(C1,Co,a,a5(CoN)) C. The inclusive event shape at NLL
c=1 Js/(2
(260 We can simplify the differential event shape, E@4), by
absorbing the soft anomalous dimensigninto the remain-
o2: dx’ ing terms. We will find a form that can be compared directl
+2f —AL(cy,a,a\"))|. 9 - VA _ P ectly
cylst@2uanyt-a N © to the classic NLL resummation for the thrust=0). This
is done by rewriting the integral over the soft anomalous
(93 dimension as
|
f\@/z dx \ _I\E/z d\ \ +f\§,[2(,,,2)1/(2—a>]d)\ \
& N Ys(as(N))= 202t N Ys(as(N)) & N Ys(as(N))
f\@/z d\ (@) (1—a) 52 d\ st-a2
= — vsla +(1l—a —Ys| @s| —————
El[2(vi2)V22)) N yeladl ( SI[2(v2)Y2= ) N 75| % v(2n)t2
) f 512 dx (@) (1 512 dn
=(2—-a — ys(a —(1-a —
( ) Sl[2(vi2) 22 N vslas(M) = ) sl[2(v2)V2-a) N
<], D B )yl ) 95
— — o .
Sl*a/Z/[V(Z)\)l*a] )\’ B g ag’ys s
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In the first equality we split th& integral so that the limits of do(1,s,a)
the first term match those of tH®, integral of Eq.(74). In —_—=
the second equality we have changed variables in the second dny

term according to

sl—(a2) U(1-a)
) . (96)

A—
(Zlav)\

so that the limits of the second integral also match. In the
third equality of Eq.(95), we have reexpressed the running
coupling at the old scalk in terms of the new scale. This is
a generalization of the procedure of REg6], applied origi-
nally to the threshold-resummed Drell-Yan cross section
[37].

Using Eq.(95), and identifyingp, - & with \s/2 [Eq.
(70)] in the inclusive event shape distribution, E@4), we
can rewrite this distribution at NLL as

Here, thef-function vanishes for smal’,
ing effects of replacing the lower boundary of theintegral
by 0 are next-to-next-to-leading logarithmic.

PHYSICAL REVIEW D68, 014012 (2003

dool—[ exp{ f 512 d_)\

dngc=1 Gl2(vi2)HE-a) A

X Bc(Cl ,C2 ,a,as(k))]

2 / du
NG
x ] ex f f )
c=1 0 25

. N aul—a
sa/2 -1

xAC(cl,a,as()\’))] . (100

and the remain-

dO'O
H

A further change of variables allows us to write the NLL
resummed event shapes in a form familiar from the NLL
resummed thrust. In the first line of EGLO0), we replace

jv§/2 dx
EI[2(vi2)V2-a) N

BC(Cl 1C2 !avas()\))

dn1C 1

A2—ug/4. In the second line we relabkl — /g%, and ex-
change orders of integration. Finally, choosing

Cl:eny,
12 f 2! a’ cr=2, (101
cals @220t N
we find, at NLL,
XAC(Clraias()\,)) ]! (97) X 2
do"(v,s,a) doy 1du| (us dg? 5
————=—]] ex f— f — Aclas(q))
dn, dnsc=1 o u u?s q

where we have rearranged the contributionygfas

X(e”

Ac(Cl a, a’s(ﬂ))EAé(Cl a, as(ﬂ))

1 d
- 2 (1= @)BE(w) 75 rslas(w)

X(e”

ul~ aV(qZ/S)aIZ

1)+ %BC(aS(USM))

u(vi2)2(2- e 7e_ 1)

] , (102

and reproduce the well-known coefficients

BC(Cl ,C2 YaYaS(Iu’))E ch(as(M))+ 1- g) YS(aS(M))

AM=C, (103
+ B(,:(Cl !CZ 'a’as(l’(’))' (98)
AR = Ec K (104)
Next, we replace the lower limit of tha’-integral by an ¢ 27
explicit #-function. Then we exchange orders of integration,
and change variables in the term containtkhgrom the di-
mensionful variablen to the dimensionless combination BW=_ §C (105
C 2 F
U= 2N\ (99) independent ofa. In Eq. (102, we have made use of the
s relation

We find
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which is valid at NLL in the logarithmic integrals. With these This, however, is not necessarily true beyond next-to-leading
choices, wherm=0 we reproduce the NLL resummed thrust logarithmic accuracy for dijets, and is certainly not the case
cross sectio6]. for multijet events[14]. Similar considerations apply to the
The choices of the; in Eq. (101) cancel all purely soft resummed correlation, E¢69).
NLL components s andK;). The remaining double loga-
rithms stem from simultaneously soft and collinear radiation,
and single logarithms arise from collinear configurations
only. At NLL, the cross section is determined by the anoma- Given the explicit results above, the integrals in the expo-
lous dimensiom., which is the coefficient of the singular Nents of the resummed correlation, §9), may be easily
1[1—x], term in the nonsinglet evolution kerngd8], and performed in closed form. We give the analytic results f_or the
the quark anomalous dimension. All radiation in dijet eventséxponents of Eq69), as defined in Eqg92) and(93). As in
thus appears to be emitted coherently by the two s  Eq. (70), we identify Py, &c with Js/2:

D. Closed expressions

\/g 6Ck /B
eEl(a):(L\/g/z)>4CF/ﬁo @ (107
ag(e\s) ag(\s/2)
Cl\/; [1/(a—1)1(4CE / Bg) k()
o aS(CZ\/;/Z) (4CgIBo)ri(a) | Xs 200 as(Cg\/;/Z) [1/(2—a)](8Cg / Bp)In(v/2)
e=2@) = — [ — R — ,
( Cz\/;) ( Cl\/g> ( Cl\/g)
| 24, T | 24
(108
with
(4 am] (eS|t 2k By [[ B )2 (Cz\/g) (Cz\/g)
Kl(a)—m(@) +E aS(Z_g“o> _E_Z_Bgln[(‘l’ﬂe ag 2 ag 2§0 ) (109)
4w Vs|| 7t 2k By Bo |2 (Cl\/g) (Cl\/g)
Kz(a)=(1—a—2yE)+B—0 as(7> —E—Z—ﬁg (4#8) ag ” ag 2§0 . (110)

We have used the two-loop running coupling, when appropriate, to derivé Bxfs-—(110). The results are expressed in terms
of the one-loop running coupling

S — 111)
as(um) Bo ln( “ ) (111
AQCD
and the first two coefficients in the expansion of the QCD beta-funcgrand
34 , (20
,81=§CA— §CA+4CF TeN;. (112
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Combining the expressions for the exponents, E§j87) and (108), for the Born cross section, E¢Q1), and for the soft
function, Eq.(76), in Eqg. (69), the complete differential cross section, at LLdrand at NLL inv, is given by

Js| | “crifo

adl —
do(e,v,5,a) | T ag(e\s) 1 1 BB | |2
— =M\ E Qs (1+00520)C|:——f dPS,— —
dedn; f 2s ™ &Jo 27 B, -kB,-k a’s(8\/g)
Js 6Ck /8o Js (4Ck 18g) x1(a) Cl\/g [1/(a—1)](4Ck / Bo) x(a)
RS C —
. dg Zo Ag 22 ag 204
\/; Cz\/g Cl\/g
as| — as 2 as| —
Js [1/(2—2)](8C / Bg)In(v/2)
aS(CZ?
X| ————— . (113
Cl\/g
Ag
2o

These are the expressions that we will evaluate in the next section. We note that this is not the only possible closed form for
the resummed correlation at this level of accuracy. When a full next-to-leading order calculation for this set of event shapes is
given, the matching procedure [@] may be more convenient.

VI. NUMERICAL RESULTS Figure 5 shows the dependence of the differential cross

Here we show some re . . SFction(69), multiplied by ¢ and normalized by the Born
presentative examples of numerica . . -

results for the correlation, E¢L13). We pick the constanig ~ €70SS sectionieda/(dedn,)]/(dao/dny), on the measured

as in Eq.(101), unless stated otherwise. The effect of differ- €N€rgye and on the parametex at fixed. In Fig. 5a), we

ent choices is nonleading, and is numerically small, as welot [edo/(dedn,)]/(dog/dn,) for »=10, in Fig. %b) for

will see below. In the following we choose the regitnto v=50. Asv increases, the radiation into the complementary

be a ring between the jets, centered in their center-of-massgegion() is more restricted, as illustrated by the comparison

with a width of A»=2, or equivalently, opening anglé  of Figs. 5a) and §b). Similarly, asa approaches 1, the cross

~50 degreegsee Eq(14)]. The analogous cross section for section falls, because the jets are restricted to be very narrow.

a cone centered at 90 degrees from the[[Ets (77)] has a On the other hand, as assumes more and more negative

similar behavior. In the following, the center-of-mass energwalues at fixede, the correlationg69) approach a constant

Q= /s is chosen to be 100 GeV. value. Fora large and negative, however, nonglobal depen-

FIG. 5. Differential cross sectiofeda/(dedn,)]/(day/dn,), normalized by the Born cross section,Gt 100 GeV, as a function of
e anda at fixedv: (@) »=10, (b) »=>50. Q) is a ring(slice) centered around the jets, with a width dfy=2.
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035— ---c¢=1,0,=1 ci=e cy=2 cross sectiordod(e,a)/(dedn,), Eq. (113, normalized by
the lowest-order cross section, to the analogous quantity with
gluons as primary partons in the outgoing jets, agai®@at
S 0% =100 GeV. This ratio is multiplied b ,/Cg in the figure
1l to compensate for the difference in the normalizations of the
u?). 0.25 lowest-order soft functions. Gluon jets have wider angular
Q extent, and hence are suppressed relative to quark jets with
? 0.20 increasingy or a, as can be seen by comparing Fig®) and
< 7 7(b). Figure Ta) shows the ratio av=10, and Fig. tb) at
.go r=>50. These results suggest sensitivity to the more complex
:9 0.15 color and flavor flow characteristic of hadronic scattering
w [14,15.
0.10 — L + L + . + L + L +
1.2 -0.8 -2.4 0.0 0.4 0.8

VIl. SUMMARY AND OUTLOOK

FIG. 6. Differential cross sectiofedo/(dedn;)]/(dog/dn,),

normalized by the Born cross section,@t 100 GeV, as a func- . . .
tion of a at fixedv= 20 ande = 0.05.() is chosen as in Fig. 5. Solid shapes ire”e” dijet events which reduce to the thrust and

line: c,=e %, c,=2, as in Eq.(101), dashed linexc;=c,=1, the.jet broade.ning distriputions as special cases. We have
dotted line:c,=c,=2. derived analyth expressions in transform space, qnd have
shown the equivalence of our formalism at NLL with the
_ _ well-known result for the thrudi6]. Separate studies of this
dence on I and|a| will emerge from higher order correc- ¢jass of event shapes in the untransformed space, at higher
(113. _ . o interest. We reserve these studies for future work.

In Fig. 6 we investigate the sensitivity of the resummed  \ye have introduced a set of correlations of interjet energy
correlation, Eq(113), to our choice of the constants. The  flow for the general class of event shapes, and have shown
effect of these constants is of next-to-next-to-leading logathat for these quantities it is possible to control the influence
rithmic order in the event shape. We plot the differential of secondary radiation and nonglobal logarithms. These cor-
cross section eg[edo/(dedn;)]/(dog/dn;), at Q relations are sensitive mainly to radiation emitted directly
=100 GeV, for fixeds =0.05 andv=20, as a function od.  from the primary hard scattering, through transforms in the
The effects of changes in the are of the order of a few weight functions that suppress secondary, or nonglobal, ra-
percent for moderate values af diation. We have presented analytic and numerical studies of

Finally, we illustrate the sensitivity of these results to thethese shape/flow correlations at leading logarithmic order in
flavor of the primary partons. For this purpose we study thehe flow variable and at next-to-leading-logarithmic order in
corresponding ratio of the shape/flow correlation to the crosshe event shape. The application of our formalism to multijet
section for gluon jets produced by a hypothetical color sin-events and to scattering with initial state hadrons is certainly
glet source. Figure 7 displays the ratio of the differentialpossible, and may shed light on the relationship between

We have introduced a general class of inclusive event

FIG. 7. Ratios of differential cross sections for quark to gluon jets

Ca (sdo-q/(dadﬁl))(sdog/(dsdﬁl))_l

Cel  do¥dn, dod/dn,
at Q=100 GeV as a function of anda at fixedv: (a) »=10, (b) v=50. Q) as in Fig. 5,c; andc, as in Eq.(101).
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color and energy flow in hard scattering processes with non- 1 JB1 B2 2
trivial color exchange. (b)+ (k=)= 7 CeNcCals—, B, KB, |
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APPENDIX A: EIKONAL EXAMPLE (d)= ZCFNCCAgi T KA
In this appendix, we give details of the calculation of the
logarithmic behavior in the diagrams of Fig. 3. We choose €)=CeN(Ce—Ca/2
the reference frame such that the momenta of the final state (€)=CrNc(CrmCai2)
particles are given by " ABiB) 1
958,18,1 B1-KBo K’
8,=(1.0,0.2, B1-1B2-1 B1-KB,
f)+ (ke 1)=CpNc(Cg—Cal2
B,=(1.0,0~1), (F)+ (k1) =CeNo(Ce—Cal2)
(B1-B2)* 2
4
= 0i(15.08), “O 18, Brkpk AV
k= w,(1,5,0S¢},5Sinp,Cy). (A1)  The color factors in the last two equations of EG&4) are

obtained from the identity Tt{tyt,t,) = CENc(Cr—Ca/2).
Here we defines (=sin g, andc, ,=cosé . 6, is the angle Combining the terms proportional to the color factor
between the vectork and 8;, 6, is the angle between the CrNcCa, and including the complex conjugate diagrams,

vectorsk and 3, and ¢ is the azimuthal angle of the gluon W€ find for the squared amplitude
with momentumk relative to the plane defined hg,, B,

. . . 1
andl. The available phase space in polar angle for the rad|—||\/||2=294c NeCaBi1- B ( +
ated gluons is 6ye(w/2— 6, 7/2+5) and 6, e (0,m/2 STRTCEARL PR KB kBl k181185
Using the diagrammatic rules for eikonal lines and verti- - ) (A5)
ces, as listed for example i126], we can write down the Bi-1B2-1B1-kB,-k

expressions corresponding to each diagram separately. For . . : .
example, diagram (@) gives Having determined the amplitude, we need to integjist§

over the phase space corresponding to the geometry given in
(a)+(kH|)=[fabch(tatbtc)](—iggﬁfﬂgﬂZ)Vaﬁy(kH, Fig. 2. Specifically, we have to evaluate
1 1 1 1

|=if d_ﬂ;f d®k f dl
B1-(k+1) 2k-1 BT B,k "N e 2mR2eda (2m2e,
+(kel). (A2) X 8(s — w /\3)8(s — F(1,a)) M2, (AB)

Vs K+ 1, =k, =) =[(2k+ 1),09,5+ (I —Kk),95,— (2l . L — S .
af af adp
+k)yﬁgm] is the mo entum-deypendent part ofythe threeWhere the weight functiom(l,a) is given, as in Eqs4) and

gluon vertex. Using the color identityf,, Tr(tatpte) (11), by
=iCeNcCa/2, and the approximatiors;-1>g;-k for j

—k,—1)

=1,2, which is valid due to _the strong ordering of the final ﬂ(l_cl)l—asia © 9,e(0,m/2— )
state gluon energies, we arrive at _ Js
f(l,a)= (A7)
1 ,31'132 1 ﬂ l-acad -
(2)+ (k)= 7 CeNeCAI T | e ] VAU 0 (ml2+6,m),
2 .
n ) (A3) with g<1. N - -
B1-1B2-k Using the equalities3,- B>=2, B1-1=w(1—c)), B,-I

=w(1+c), B1-k=wy(1-cy), Ba-k=w(1+cy) andk-|
We proceed in a similar manner for the rest of the diagrams= w,w;(1—c,c,—SSc0s¢) in Eq. (A5), performing the in-
The results are tegration over¢, and changing the integration varialig
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——¢ in the angular regiord, e (w/2+ 6,7), we easily ar-
rive at the following three-dimensional integral:

ag 2]_ siné§ 1
|:C|:CA —f de dC|

o

€J—sins siné
XJ‘\E%e—Vq(l—q)laS?/\g 1 1 1
£S5 W] Ck+C 1+Ck 1+C|
+ ! t 1 A8
1_Ck sE 1+C| ' ( )

We are interested in the ()In(1/e) behavior ofl. This is
obtained after performing the, integral with the replace-
ment e~ "= ST E L 91—y (1—c;) L3 s). Re-
mainders do not contain terms proportional tceIrin this

approximation, thee, integration can be carried out, and we
obtain the integral representation for the term containing

(1/s)In(Lle):

| = ZCFCA

ag\?1 [ 1| (siné dc, st
m) e \ev/]|Jo s |sf—cogs

_m( 2

1+siné)‘)In ' (A9)

1+sinéd
1-siné

The potential nonglobal logarithm efis replaced by Ir{v).

PHYSICAL REVIEW B8, 014012 (2003

1.8
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An

FIG. 8. C(A ), as defined in EqA12), as a function of rapid-

ity width A » of the region(). The dashed line is its limiting value,
C(A p—»)=72/6.

as a function ofA » is shown in Fig. 8. NaturallyC is a
monotonically increasing function & #. For A »—0,
C~0O(AninAp), (A13)

and the cross section vanishes, as expected. On the other
hand, as the size of regidi increasesC rapidly saturates

The angular integral over, can be expressed in terms of @nd reaches its limiting value 7]

dilogarithmic functions. The final expression for the term

proportional to In§v)/e takes the form
as>21 ( 1
i _|n -
a & EV

(cot5(1+sin6))
3 n

71_2

| :CFCA 6

1+siné L 1-siné
1-sins) 2l 72
2siné 1-siné
1-sins| 1+sind) |
(A10)

Li,

—Li,

1+sinéd )
72N

2

) ar
lim C=—.

5 (A14)

Anp—oo

APPENDIX B: RECOIL

In this appendix, we return to the justification of the tech-
nical step represented by E@23). According to this approxi-
mation, we may compute the jet functions by identifying
axes that depend only upon particles in the final stales
associated with those functions, rather than the full final state
N. Intuitively, this is a reasonable estimate, given that the jet
axis should be determined by a set of energetic, nearly col-

Equivalently, we can express our results in terms of the rafinear particles. When we make this replacement, however,

pidity width of the region(2, Eqg.(14), and we obtain

as\?1 1\[ w2 Ap .
|=CgCa = g'l’] o —+Ay 7—In[25|nr(A77)]

6

e—An/Z eAﬂ/Z
L1z ZcosmAnIZ))_le 2 coshAn/2)>
—Li,[— 2 sinh A /2)e® 7] — Li,(e A7) |. (A11)
The coefficient
coam=—|T)2 A12
(Am==\5 ] CCan(ev) (AL2)

the contributions to the event shape from energetic particles
near the jet axis may change. This change is neglected in
going from the original factorization, E@21), to the factor-
ization in convolution form, Eq(27), which is the starting
point for the resummation techniques that we employ in this
paper. The weight function8'(N; ,a) in Eq.(21) are defined
relative to the unit vecton, corresponding tca=0, the
thrust-like event shape. The factorization of E2{l) applies
to anya<2, but as indicated by the superscript, individual
contributions tof N(N; ,a) on the right-hand side continue to
depend on the full final statd, through the identification of
the jet axis.

To derive the factorization of E¢27) in a simple convo-
lution form, we must be able to treat the thrust axig, as a
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fixed vector for each of the statd, N, . This is possible if In the factorization(27), the contribution of each final-

we can neglect the effects of recoil from soft, wide-angleState particle is taken into account, just as in E2f). The
radiation on the direction of the axis. Specifically, we mustduestion we must answer is how the rotation of the jet axis

be able to make the replacement affects these contributions, and hence the value of the event
shape.
TN (N; ,a) Hf_(N a) (B1) For a wide-angle particle, the rotation of the jet axis by an
O’C ‘JC’ Cc JCI ]

angle of orderA¢¢ in Eq. (B2) leads to a negligible change
in its contributions to the event shape, because its angle to
_ L - the axis is a number of order unity, and the jet axis is rotated
which the axisn, is specified by statél; only. Of COUTSE,  only by an angle of ordes. Contributions from soft radia-
this replacement changes the value of the weight, tion are therefore stable under Fhe approximgﬂba). The
?% (N, ,a) 7’:f—c(NJ ,a). As we now show, the error induced only s_,ource'of' large corrections is thep associated with ener-

c ¢ ¢ _ getic jet radiation, because these patrticles are nearly collinear
by this replacement is suppressed by a power 86 long as  to the jet axis.
a<1. In general, the error is non-negligible fa=1. The It is easy to see from the form of the shape function in
importance of rec0|l_for jet broadening, at 1, was pomt_ed_ terms of angles, Eq11), that for any value of parametar
out in[8]. We now discuss how the neglect of such radiationa particle of energyw; at a small angles; to the jet axis
affects the jet axisalways determined frorma=0) and hence n,(N) contributes to the event shape at the level
the value of the event shape for arbitrary 2.

The jet axis is found by minimizin§(a=0) in each state. P

. A . . ~— —a

The largest influence on the axis for jet cis, of course, the &i Q ;=" (B4)
set of fast, collinear particles within the statg_ associated

with the jet function in Eq(21). Soft, wide-angle radiation, The rotation of the jet axis by the angle,¢ due to neglect
however, does affect the prECise direction of the axis. This I%f soft radiation may be as |arge as, or |arger tf‘@n,AS_

what we mean by “recoil.” ; - e
suming the latter, we find a shift in the of order
Let us denote bywg the energy of the soft wide-angle g e

radiation that is neglected in the factorizati(#y). Neglect-

Wheref_c(NJC,a) is the event shape variable for jet in

Wi

ing thL_c, soft raFiiAation in the_dete_rmination of the je_:tA axis will 58—iES_i[ﬁl(N)]_;i[ﬁl(NJC)]~ o (Ag)2 2
result in an axml(NJC), which differs from the axi;(N)
determined from the complete final stafd) by an angle w; [ wg) 22 Wi—,_ o
Asop: “ola] Tof% ¢ (BS)
-~ -~ w _ —
% (N1 (N),ny(N; ))=As¢p~ 65 (B2)  The change im; is thus suppressed by at least a faetgr

compared ta: 5, which is the contribution of the wide-angle
At the same time, the soft, wide-angle radiation also contribsoft radiation to the event shape. The contributions of nearly

utes to the total event shapéN,a)~ (1/Q)k?(k")!"2atthe  collinear, energetic radiation to the event shape thus change

level of significantly under the replaceme(®3), but so long asa
<1, these contributions are power-suppressed in the value of
— WOs the event shape, both before and after the approximation that

SSNE' (B3) leads to a rotation of the axis. For this reason, whenl

(and only whera<<1), the value of the event shape is stable
because for such wide-angle radiation, we may téake whether or not we include soft radiation in the determination
~Ks | ~ws. In summary, the neglect of wide-angle soft ra- of the jet axes, up to corrections that are suppressed by a
diation rotates the jet axis by an angle that is of the order opower of the event shape. In this case, the transition from Eqg.
the contribution of the same soft radiation to the event shapd21) to Eq. (27) is justified.
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