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QCD phase diagram at nonzero temperature, baryon, and isospin chemical potentials
in random matrix theory
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We introduce a random matrix model with the symmetries of QCD at finite temperature and chemical
potentials for baryon number and isospin. We analyze the phase diagram of this model in the chemical potential
plane for different temperatures and quark masses. We find a rich phase structure with five different phases
separated by both first and second order lines. The phases are characterized by the pion condensate and the
chiral condensate foreachof the flavors. In agreement with lattice simulations, we find that in the phase with
zero pion condensate the critical temperature depends in the same way on the baryon number chemical
potential and on the isospin chemical potential. At nonzero quark mass, we find, remarkably, that the critical
end point at nonzero temperature and baryon chemical potential is split in two by an arbitrarily small isospin
chemical potential. As a consequence, there aretwo crossovers that separate the hadronic phase from the
quark-gluon plasma phase at high temperature. Detailed analytical results are obtained at zero temperature and
in the chiral limit.
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I. INTRODUCTION

Currently, there is strong interest in exploring the pha
diagram of QCD at finite baryon density. A large number
possible phases have been suggested for QCD at fi
baryon density~see @1,2# for a review!. However, at this
moment, the existence of none of these phases has been
firmed either by first principles calculations or by the ph
nomenology of heavy ion collisions and neutron stars. B
cause of the phase of the fermion determinant, stand
Monte Carlo simulations are possible only for small valu
of the chemical potential@3–9#. Neutron stars are probabl
the most likely candidates for high baryon density physi
but they are hard to observe and only a few parameters
be measured accurately. Relativistic heavy ion collisions
plore the region of low baryon density and high temperat
but give a complex picture of QCD at finite density. How
ever, an experimental observation of a tricritical point mig
be within the realm of possibilities. Such a tricritical poi
was predicted on the basis of effective potentials@10# and
simplified models such as random matrix models@11# and
Nambu-type models@12#. Furthermore, in both neutron sta
and relativistic heavy ion collisions, the isospin density
different from zero. It is therefore important both pheno
enologically and theoretically to study the influence of is
spin on the phase diagram of QCD at nonzero baryon che
cal potential.

Our main goal is to study the phase diagram of QCD
nonzero temperature and chemical potentials for bar
number and for isospin. The phase diagram of QCD with a
of these external parameters equal to zero has already
studied in a variety of ways. In particular, because latt
0556-2821/2003/68~1!/014009~13!/$20.00 68 0140
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simulations are possible at nonzero isospin chemical po
tial @13,14#, the plane of zero baryon chemical potential h
been understood best. At zero temperature, we expect a
ond order phase transition to a phase of condensed pion
an isospin chemical potential equal to half the pion ma
This type of transition occurs in any QCD-like theory with
chemical potential for the charge of a Goldstone boson@15–
26#. This prediction from effective Lagrangians has be
confirmed by numerous lattice QCD simulations@14,27–34#.
From lattice simulations@14,34# and a one-loop analysis o
the effective Lagrangian@23,25#, it also follows that the sec-
ond order line changes into a first order line at a tricritic
point with critical chemical potential and temperature on t
scale of the pion mass. At nonzero baryon chemical pot
tial, analytical results have been obtained for asymptotica
large values of the chemical potential, where QCD can
analyzed perturbatively@35,36#. Lattice QCD simulations are
reliable only for small values of the chemical potent
@6,4,3#. This leaves us with the bulk of themB-T plane,
which could be analyzed only in simplified models such
Nambu–Jona-Lasinio models@12,37,56#, instanton liquid
models@38#, and random matrix models@11#.

Random matrix models were introduced in the context
QCD to describe the correlations of the low-lying eigenv
ues of the QCD Dirac operator@39,40#. It was shown that
these models are equivalent to the mass term of a suit
chosen chiral Lagrangian, which is determined uniquely
the symmetries of the underlying microscopic theory@41–
44#. Therefore, in the chiral limit, chiral random matrix theo
ries provide an exact analytical description of the low-lyi
Dirac spectrum.

In this article we use random matrix theory as a schem
©2003 The American Physical Society09-1
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model for phase transitions in QCD at nonzero tempera
and chemical potentials. Such a model was first introduce
@45# to describe the chiral phase transition in QCD at no
zero temperature. Even more successful was the applica
of random matrix theory to QCD at nonzero baryon chemi
potential. First, the failure of the quenched approximat
was explained analytically@46#. Second, a tricritical point
was found in a model at nonzero baryon chemical poten
and temperature@11#. Third, algorithms for QCD at finite
density could be investigated in detail@47,48#. Fourth, the
static part of the effective Lagrangians for QCD with
chemical potential for the charge of Goldstone bosons ca
derived from a chiral random matrix model@17#. In spite of
the schematic nature of the random matrix model, we h
that it will teach us more about the plethora of possi
phases that may occur in QCD.

The organization of this paper is as follows. In Sec. II, w
deduce from general arguments the expected features o
QCD phase diagram for nonzero temperature and baryon
isospin chemical potentials. In Sec. III, we introduce o
random matrix model. In Sec. IV, we derive an effecti
partition function in terms of the meson fields and reprodu
the mean field results obtained from a chiral Lagrangian. T
phase diagram resulting from the random matrix mode
obtained in Sec. V. Concluding remarks are made in Sec.

II. QCD AT NONZERO CHEMICAL POTENTIALS
AND TEMPERATURE

The QCD partition function at nonzero temperature an
chemical potential for each quark flavor is given by

K )
f 51

Nf

det~D1mf1m fg0!L ~2.1!

where the Euclidean Dirac operator is given byD5gm(]m
1 iAm) with gm the Euclideang matrices, andAm is an
SU(Nc) valued gauge potential. The quark masses are
noted bymf , andm f is the chemical potential for each fla
vor. The average is over the Euclidean Yang-Mills actio
Below we mainly focus on QCD with two flavors and no
zero baryon number and isospin chemical potential. In t
case, the baryon number and isospin chemical potentia
defined by

mB5 1
2 ~m11m2!, ~2.2!

m I5
1
2 ~m12m2!. ~2.3!

Before discussing the possible phases of random ma
models with the symmetries of the QCD partition functio
we first make some general remarks on its phase diagra
nonzero temperature, isospin, and baryon chemical po
tials.

The case ofmB50 andmp , T!LQCD can be described in
terms of a chiral Lagrangian. This Lagrangian has been a
lyzed to one-loop order@23,25#. At low T, a second order
phase transition to a pion condensation phase was foun
m I5mp/2 where mp is the physical pion mass. Form I
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.mp/2 the chiral condensates rotate into a pion condens
denoted byr, and approach zero form I@mp/2. Since a
baryon chemical potential excites states only formB larger
than the nucleon mass, we expect this second order lin
persist in them I-mB plane and to be parallel to themB axis.

The m I50 plane was discussed in detail in@11#. We ex-
pect a region with broken chiral symmetry~with chiral con-
densateŝ ūu& and ^d̄d& both nonzero! separated from the
region of unbroken chiral symmetry by a first order curv
denoted bymc(T), from the tricritical point to theT50 axis
and, in the chiral limit, a second order curve from the tr
ritical point to themB50 axis.

For m I and mB both nonzero, there are eight possib
phases with either of the chiral condensates,^ūu& or ^d̄d&, or
the pion condensater5 1

2 (^ūg5d&2^d̄g5u&) equal to zero or
not. Since the chemical potentials for the two flavors a
different, there is no reason to expect that^ūu&5^d̄d&.

In the limit m1@LQCD, one flavor decouples and we a
in a situation with only one flavor at nonzero chemical p
tential. In this case, we expect that^ūu&50 and^d̄d&Þ0 for
m2,mc(T) but vanishes across the first order transiti
curve form2.mc(T).

For mB50, we have thatm252m1. Using that

det~D1m2m1g0!5det* ~D1m1m1g0!, ~2.4!

we find that for equal quark masses the partition funct
~2.1! is the phase quenched partition function for two flavo
@13,18#.

III. RANDOM MATRIX MODEL

In this article we study a random matrix model for QC
at nonzero chemical potentials and temperature. The ide
to replace the matrix elements of the Dirac operator
Gaussian random variables subject only to the global s
metries of the QCD partition function. The dependence
the temperature and chemical potentials enters through e
nal fields structured according to these symmetries.

Our guiding principle for constructing a random matr
model is to respect the global symmetries of the QCD pa
tion function. At zero temperature and chemical potent
this amounts to replacing the matrix elements of the Di
operator by Gaussian random variables subject to these
bal symmetries. The external fieldV(m f ,T) representing
temperature and chemical potentials is introduced accord
to the following criteria.

~i! The chemical potential breaks the global flavor sy
metry in the same way as in the QCD partition function.

~ii ! The temperature field does not break global flav
symmetries.

~iii ! For an anti-Hermitian Dirac operator, the temperatu
field is anti-Hermitian, whereas the chemical potential fie
is Hermitian.

~iv! The eigenvalues of the external field arem f6 inT. In
this article we consider only the casen51.

For two flavors, the Dirac operator of the random mat
model is given by
9-2



S m1 l W1v~T!1m1 0

2l m2 0 W1v~T!1m2

2W†2v~T!†1m1 0 m1 2l D . ~3.1!
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We have also included a pion condensate source term, w
in QCD is given by

ilc̄g5t2c, ~3.2!

where the Pauli matrixt2 acts in flavor space. The matri
elements of then3n matrix W are complex with probability
distribution given by

P~W!5exp~2nG2Tr WW†!. ~3.3!

The temperature field given by the matrix

v~T!5S iT 0

0 2 iT D ~3.4!

includes only the two lowest Matsubara frequencies. At z
chemical potentials, this temperature dependence will re
in a second order phase transition along the temperature
@45#. If we write the determinant as a Grassmann integral,
partition function of our model is given by

Z5E DW)
f

dc fdc̄ f P~W!exp~2c̄Dc!, ~3.5!

whereD is the Dirac matrix given in Eq.~3.1!. In the ther-
modynamic limit the partition function is a function ofm1 ,
m2 , l, m I , mB , andT, but for brevity we will not display its
arguments.

Other types of random matrix models have also been c
sidered@49–52#. However, none of these models have be
studied at nonzero isospin chemical potential. We men
models with a random gauge potential. In that case, the
trix W has the spin and color structure of the usual Di
operator,

W→ isntkAn
k , sn5~2 i ,sk!, ~3.6!
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but with Am
k a Gaussiann3n random matrix. Such types o

Dirac operators have the same spectral properties@53# as the
Dirac operator in Eq.~3.5! and lead to a similar phase dia
gram.

IV. EFFECTIVE PARTITION FUNCTION

Because of the unitary invariance of the random ma
models, the partition function can be rewritten in terms
invariant degrees of freedom only. Below we rewrite the p
tition function introduced in Sec. III in terms of these effe
tive degrees of freedom.

We consider the random matrix model for QCD at no
zero temperature and baryon and isospin chemical poten
given in Eq.~3.5!. The Gaussian integration over the matr
elements ofW can be performed trivially. The resulting fou
fermion interaction is decoupled by means of a Hubba
Stratonovich transformation at the expense of introduc
mesonic degrees of freedom. After performing the Gra
mann integrations, the partition function~3.5! can thus be
written as

Z5E DA exp@2L~A,A†!#, ~4.1!

where

L5nG2Tr~A2M†!~A†2M !2
n

2
Tr logQ8

5nG2Tr~A2M†!~A†2M !2
n

2
Tr logQ†Q,

~4.2!

andA is an arbitrary complexNf3Nf matrix. The determi-
nant of the 4Nf34Nf matrix Q8, given by
U A 0 iT1mB1m I I 3 0

0 A 0 2 iT1mB1m I I 3

iT1mB1m I I 3 0 A† 0

0 2 iT1mB1m I I 3 0 A†

U , ~4.3!
9-3
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with I 35diag(1,21), factors into the determinant of

Q5S A iT1mB1m I I 3

iT1mB1m I I 3 A† D ~4.4!

and its Hermitian conjugate. The mass matrix is given by

M5S m1 2l

l m2
D . ~4.5!

By shifting A, we have absorbed the dependence onM into
the quadratic term.

At zero temperature and chemical potentials, the ch
random matrix partition function is equivalent to the ze
momentum part of the QCD chiral Lagrangian. We will no
show that this is also the case for the chiral Lagrangian
can be derived from Eq.~4.1!. To derive this result, we us
the power counting scheme that is used in the constructio
the chiral Lagrangian:m I , mp;Am, andAl are of the same
order @16#. We thus expand the random matrix theory effe
tive Lagrangian to first order inm andl and second order in
m I about the saddle point obtained form I5m5l50. The
saddle point equation given by

G2@~AA†1T22mB
2 !214mB

2T2#A5~AA†1T22mB
2 !A

~4.6!

has two solutions,

A50, ~4.7!

or the solution of

G2@~AA†1T22mB
2 !214mB

2T2#5~AA†1T22mB
2 !.

~4.8!

For m I50 it is a natural assumption that the flavor symme
is not spontaneously broken. We can parametrizeA in the
broken phase as

A5
1

G
s̄~mB ,T!S, ~4.9!

whereS is a unitary matrix and

s̄~mB ,T!5S 1

2
1

1

2
A12~4G2mBT!22T2G21mB

2G2D 1/2

~4.10!

is a solution of the saddle point equation~4.8!. Using the
ansatz~4.9!, the inverse of the matrixQ for m I50 is given
by

Q215
1

s̄2/G22~mB1 iT !2 S A† 2mB2 iT

2mB2 iT A D .

~4.11!

Inserting this result and the parameterization~4.9! in the chi-
ral expansion of the Lagrangian~4.2!, one easily derives
01400
l

at

of

-

L5c0~mB ,m I ,T!2nGs̄~mB ,T!Tr~MS†1M†S!

1nm I
2G2s̄2~mB ,T!c2~mB ,T!Tr~S†I 3SI 3!, ~4.12!

wherec0(mB ,m I ,T) is independent ofS and

c2~mB ,T!5S 12
~4G2mBT!2

4@s̄2~mB ,T!2G2~mB
22T2!#2D .

~4.13!

This effective Lagrangian coincides with the zero mome
tum part of the leading-order chiral Lagrangian at zero te
perature and baryon chemical potential derived in@17,18#
based on the symmetries of QCD. A transition to a pi
condensation phase takes place at m I ,c

2

5m/@2Gs̄(mB ,T)c2(mB ,T)#. The pion condensate van
ishes form I,m I ,c . For m I.m I ,c the chiral condensate ro
tates into a pion condensate but the sum of the squares o
chiral condensate and the pion condensate remains con
as a function ofm I . The temperature and the baryon chem
cal potential affect both the magnitude and the orientation
the condensates.

V. PHASE DIAGRAM

As was argued in@15,16#, the free energy~4.12! is com-
pletely determined by the transformation properties of
QCD partition function. Since the random matrix model h
the same global transformation properties as the QCD p
tion function, we thus find the same low-energy limit. In th
section we analyze the random matrix partition function b
yond this universal domain. In our model we will be able
study the partition function to all orders in the mass, chem
cal potential, and temperature. We will show that the inc
sion of such nonperturbative contributions alters the nat
of the phase transition.

A. Observables

We consider three different observables, the chiral c
densates ^ūu& and ^d̄d&, and the pion condensat
1
2 (^ūg5d&2^d̄g5u&). They can be expressed in terms of d
rivatives of the partition function,

^ūu&5
1

2n
]m1

logZeff

5G2S 1

2
^A11* 1A11&2m1D ,

~5.1!

^d̄d&5
1

2n
]m2

logZeff

5G2S 1

2
^A22* 1A22&2m2D ,

~5.2!
9-4



f
o

-
d

o
en
en
a

iv

-

s
on
e

th
th
t

e

it

n
ark

rce,

ly.
the
fore,
The

of

se

u-
y a
is

by

ith
ntial
l

QCD PHASE DIAGRAM AT NONZERO TEMPERATURE, . . . PHYSICAL REVIEW D 68, 014009 ~2003!
1

2
~^ūg5d&2^d̄g5u&!5

1

4n
]llogZeff

5G2S 1

4
^A121A12* 2A212A21* &2l D .

~5.3!

The expectation values of the diagonal matrix elements oA
can be interpreted as the chiral condensates, whereas its
diagonal elements represent the pion condensate.

B. Effective potential

In the large-n limit, the partition function can be calcu
lated by a saddle point approximation. To solve the sad
point equations, we make an ansatz for the matrixA. Since
we have two independent chemical potentials, the chiral c
densates are not necessarily equal, whereas for a suffici
large isospin chemical potential we expect a pion cond
sate. Based on the expressions for the chiral condensate
the pion condensate, we make the following ansatz forA

A5S s1 r

2r s2
D . ~5.4!

In this parameterization, the different condensates are g
by ^ūu&5G2(s12m1), ^d̄d&5G2(s22m2), and
1
2 (^ūg5d&2^d̄g5u&)5G2(r2l). Using this ansatz, we ob
tain the effective potential

1

n
L5G2@~s12m1!21~s22m2!212~r2l!2#

2
1

2 (
6

log„$@s11~m16 iT !#@s22~m26 iT !#1r2%

3$@s12~m16 iT !#@s21~m26 iT !#1r2%…. ~5.5!

From here on, we setm15m25m. For r50 this effective
potential is a function ofm f

2 . In particular, this means that it
dependence onm I at mB50 is the same as its dependence
mB at m I50. This implies that for the critical temperatur
we have the relation@5,14#

Tc~m I !umB505Tc~mB!um I50 for r50. ~5.6!

The fermion determinant of the theory withmB50 and equal
quark masses is equal to the fermion determinant of
phase quenched partition function. We thus expect that
phase quenched approximation works in the phase where
pion condensate vanishes.

To find the phase structure of our partition function, w
have to solve the saddle point equations

]L
]s1

50,
]L
]s2

50,
]L
]r

50. ~5.7!

We will treat the following cases analytically: the chiral lim
(m50) at zeroT and at finiteT, and the casemÞ0 at T
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50. We will calculate the phase diagram forTÞ0 and m
Þ0 by numerically minimizing the effective potential. I
addition, some analytical results are obtained for large qu
massm.

C. Chiral limit at TÄ0

In the case of vanishing quark mass, zero diquark sou
and zero temperature, the effective potential simplifies to

1

n
L5G2~s1

21s2
212r2!2

1

2
log@~s11m1!~s22m2!1r2#2

2
1

2
log@~s12m1!~s21m2!1r2#2. ~5.8!

In the chiral limit, chiral symmetry is broken spontaneous
As soon as the isospin chemical potential is switched on,
chiral condensate rotates into a pion condensate. There
no phase exists where both condensates are nonzero.
saddle point equation forr has two possible solutions:r
50 andrÞ0. We first consider the caser50.

For r50, the effective potential separates into the sum
free energies fors1 ands2,

1

n
L5 (

f 51,2
G2s f

22
1

2
log~s f

22m f
2!2. ~5.9!

The saddle point equations given by

s f@G2~s f
22m f

2!21#50, f 51,2, ~5.10!

have the solutions

s f50, f 51,2, ~5.11!

s f
25

1

G2
1m f

2 , f 51,2. ~5.12!

The contribution to the free energy from one flavor for the
solutions is given by

V f52 logm f
2 , ~5.13!

V f511 logG21m f
2G2, ~5.14!

respectively. The full free energy is a sum over the contrib
tions from both flavors. The two solutions are separated b
first order phase transition line where their free energy
equal,

11m f
2G21 log~m f

2G2!50. ~5.15!

The solution of this transcendental equation is given
m fG5mcG'0.527697@46#. At this point a first order phase
transition to a phase withs f50 takes place. In them1-m2
plane, we can thus distinguish four different phases w
nonzero condensates in strips along the chemical pote
axes. On the linem15m2 in the center region, both chira
condensates are nonzero and equal,s15s2Þ0.
9-5
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At zero quark mass, the Goldstone bosons are mass
and the critical value of the chemical potential for pion co
densation ism I50. Form I.0, the chiral condensates rota
completely into a pion condensate, so thats15s250. The
effective potential forr is given by

1

n
L52G2r22 log~r22m1m2!2. ~5.16!

The saddle point equation given by

r@G2~r22m1m2!21#50 ~5.17!

has again two solutions,

r50,

r25
1

G2
1m1m2 . ~5.18!

A second order transition line is given by the hyperbolar2

50 in the quadrants wherem1m2,0. The free energy of this
phase is given by

Vr52~11 logG21m1m2G2!. ~5.19!

Finally, for m15m2, the saddle point equations allow a s
lution with rÞ0 ands15s2Þ0. However, the free energ
of this solution is higher than that of the solution withs1
5s2Þ0 andr50. Physically this is clear, since the pio
condensate is expected to vanish for zero isospin chem
potential.

Comparing the free energy of the pion condensation ph
to those of the chiral condensation phases and the chira
stored phase, we can determine the remaining first o
phase transition lines. The resulting phase diagram is sh
in Fig. 1. We find a region of pion condensation in the cen
of the phase diagram. It is bounded by first order phase t
sitions toward phases with nonzero chiral condensate for
flavor, and by second order transition lines toward the ch
restored phase. Form15m2, we are in a phase withs1
5s2Þ0 andr50. The chiral condensation phases form t
arms of a cross along the chemical potential axes. Sinces1 is
independent ofm2, it is nonzero in a strip along them2 axis,
and the same applies for the other flavor. The first order li
intersect in the two points (m1G,m2G)'(60.527697,
60.527697). The intersection points of the second or
lines with the first order transitions between the pion a
chiral condensation phases are at (m1G,m2G)
'(60.527697,71.895025), and at the two points obtain
by interchanging the values form1 andm2.

D. Chiral limit at TÅ0

At nonzero temperature, we analyze the phase structu
the same way as we did forT50, and, initially, we also find
the same phases.

In a phase with vanishing pion condensate, the effec
potential again separates into a sum over contributions
two different flavors,
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n
L5 (

f 51,2
G2s f

22
1

2
log@~s f

22m f
21T2!214m f

2T2#.

~5.20!

This free energy was studied in@11# for the case of zero
isospin chemical potential. For each of the two flavorsf
51,2), the saddle point equation

s fFs f
422S 1

2G2
1m f

22T2D s f
21

m f
22T2

G2
1~m f

21T2!2G50

~5.21!

has the solutions

s f50,
~5.22!

s f
25

1

2G2
1m f

22T26
1

2G2
A12~4G2m fT!2.

The free energy for each flavor of these solutions is equa

V f52 log~m f
21T2!, ~5.23!

V f5
1

2
1 logG21G2~m f

22T2!6
1

2
A12~4G2m fT!2

2
1

2
logS 1

2
6

1

2
A12~4G2m fT!2D , ~5.24!

respectively. For (4G2m fT)2,1, the solution with the nega
tive branch of the square root will be discarded, since it d
not minimize the free energy. The second order phase t
sition line is given by the condition that the two solution
coincide. One easily derives

FIG. 1. Phase diagram of the random matrix theory~RMT!
model for three colors in the chiral limit (m50) at zero tempera-
ture. Solid ~dashed! lines are lines of first~second! order phase
transitions. Except for the four corner regions, the different pha
are marked by the nonvanishing condensate. In the four corne
gions we have thatr5s15s250.
9-6
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FIG. 2. Phase diagram of th
RMT model in the chiral limit for
different temperatures. Solid
~dashed! lines are lines of first
~second! order transitions. The
values for the temperature ar
given in the figures. Except for the
four corner regions, the phases a
marked by condensates that do n
vanish in the chiral limit. In the
four corner regions we have tha
r5s15s250. For m15m2 in
the center region~solid line!, we
have that s15s2Þ0 and r50.
For TG50.6, the phase withs1

Þ0, s2Þ0 has emerged. Fo
TG50.8, the chiral restoration
transitions have become secon
order transitions. The region in th
center where both chiral conden
sation phases overlap and the ch
ral condensates for both flavor
are nonzero can be seen clear
All condensates vanish atTG
51.
t

rs
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~m f
22T2!1G2~m f

21T2!250. ~5.25!

Since there is always the solutions f50, there can be a firs
order transition when the coefficient ofs f

3 in the saddle point
equation~5.21! becomes negative. A tricritical point occu
where both the coefficient ofs f ands f

3 in Eq. ~5.21! vanish.
This results in the equations

1

2G2
1m f

22T250,

m f
22T21G2~m f

21T2!250, ~5.26!

with solution given by

m f ,3
2 G25

A221

4
, f 51,2,

T3
2G25

A211

4
. ~5.27!

Numerically,T3G'0.776887,m f ,3G'0.321797, which was
also obtained in@11#.

In Fig. 2, we show the phase diagram for fixed tempe
ture in them1-m2 chemical potential plane. The transitio
lines for each flavor are straight and constant in the chem
potential for the other flavor. In this plane, the phase tran
01400
-

al
i-

tion lines change in their entirety from first to second ord
when we pass the tricritical temperature~5.27! from below.
The critical chemical potential of the transition becom
smaller with increasing temperature. A baryon chemical
tential that is large enough will destroy the pion condensa

Since the two chiral condensates are independent of
another and depend only on the chemical potential for
respective flavor, we again have four phases. A phase w
chiral symmetry is restored (s15s250), and phases wher
either one or both of the chiral condensates are nonzero.
free energies are simply given by the sum of the one-fla
free energies.

At nonzero isospin chemical potential, we expect that
the limit of massless quarks the chiral condensates are c
pletely rotated into a pion condensate. The effective poten
for vanishings f and nonzero pion condensater becomes

1

n
L52G2r22 log@~r22m1m21T2!21T2~m11m2!2#.

~5.28!

The saddle point equation reads

G2rFr422S 1

2G2
1m1m22T2D r21

1

G2
~m1m22T2!

1~m1m22T2!21T2~m11m2!2G50. ~5.29!
9-7
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It has the solutions

r50,
~5.30!

r25
1

2G2
1m1m22T26

1

2G2
A12~2G2~m11m2!T!2.

Again the solution with the negative branch of the squ
root has a larger free energy. A line of second order ph
transitions is determined by the condition that the two so
tions coincide:

~m1m22T2!1G2~m1m22T2!21G2T2~m11m2!250.

~5.31!

A first order phase transition may occur when the coeffici
of r3 in Eq. ~5.29! vanishes. However, we will see belo
that this happens in a region where solutions with nonz
chiral condensate have a lower free energy.

In Fig. 2 we show the phase diagram in them1-m2 plane
for zero quark mass and temperatures equal toTG50.3,
TG50.5, TG50.6, andTG50.8. The first order lines in the
phase diagram are obtained by combining the results for
free energies of the phases discussed above.

The phase diagram atT50 has been described in th
previous section. With increasing temperature, the second
der transition between the pion condensation phase and
chiral restored phase moves toward the origin. The effec
the temperature term on the phase diagram is a shrinkin
the condensate phases. The critical chemical potential for
chiral restoration transition decreases with increasing t
perature, so that the transition lines move toward the axe
well.

At lower temperatures, the phase where both chiral c
densates are nonzero simultaneously is always higher in
ergy than the pion condensation phase, and consequently
not realized. At a temperature ofTG'0.548047, a first orde
transition between the pion condensation phase and
phase withs1Þ0, s2Þ0, andr50 emerges, and it appea
at the intersection points of the first order transitions,m1G
5m2G'0.413485, around the linem15m2. The upper
boundaries of this phase are always the transition lines w
either of the two chiral condensates vanish.

The position of the tricritical point in them f-T plane for
any of the two chiral condensatess f is unaffected by the
presence of the second chemical potential. Therefore, we

that at a temperatureT3G5 1
2
AA211'0.776887, the phas

transition lines between the chiral condensed phases an
chiral restored phase in the chemical potential plane bec
second order transition lines in their entirety.

Above this temperature, the regions with nonzero ch
condensates along them1 andm2 axes are bounded by se
ond order transition lines to the chiral restored phase. We
observe the region where both phases with chiral conde
tion overlap. The pion condensation phase in the cente
separated from the chiral condensation phases by first o
transition lines, and from the chiral restored phase by a s
ond order transition line.
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All condensation phases vanish at the same tempera
TG51.

E. Zero temperature limit at nonzero quark mass

Away from the chiral limit, we can only solve the sadd
point equation analytically forT50. The results of this par-
ticular case will be discussed in this section. The phase
gram at nonzero quark mass is qualitatively different fro
the phase diagram in the chiral limit. First, the chiral co
densates,s1 and s2, are no longer good order paramete
and, second, we expect a phase transition to a phase
nonzero pion condensate form I5mp/2. However, in this
case the chiral condensates are nonvanishing in the p
with rÞ0.

The effective potential is given by

1

n
L5G2@~s12m!21~s22m!212r2#2

1

2
log@~s11m1!

3~s22m2!1r2#22
1

2
log@~s12m1!~s21m2!1r2#2.

~5.32!

Obviously, it is symmetric under a simultaneous interchan
of the chiral condensatess1 and s2 and the two chemica
potentialsm1 andm2. The saddle point equations are give
by

2G2~s12m!5
s22m2

~s11m1!~s22m2!1r2

1
s21m2

~s12m1!~s21m2!1r2
, ~5.33!

2G2~s22m!5
s11m1

~s11m1!~s22m2!1r2

1
s12m1

~s12m1!~s21m2!1r2
, ~5.34!

2G2r5
r

~s11m1!~s22m2!1r2

1
r

~s12m1!~s21m2!1r2
. ~5.35!

As we see from the last equation in~5.35!, there is always a
solution with r50. We expect that this is the actual min
mum of the free energy below the critical chemical isosp
potential for pion condensation. In this case, as form50, the
saddle point equations for the two chiral condensates
couple and are given by

G2~s f2m!~s f
22m f

2!2s f50. ~5.36!
9-8
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Although this third order equation can be solved analytica
it is more instructive to expand it in powers ofm. To first
order inm, we find fors f , f 51,2,

s f56
1

G S A11m f
2G21

mG

2~11m f
2G2!

1O~m2G2!D
56

1

G S 11
1

2
m f

2G21
1

2
mG1O~m2G2,m f

4G4! D ,

~5.37!

s f5
m f

2G2

11m f
2G2

m1O~m3G2!. ~5.38!

The free energy of these solutions is given by

V f511 logG21m f
2G222mG1O~m2G2!, ~5.39!

V f52 log~m f
2!2O~m2G2!, ~5.40!

respectively. The solutions~5.37! minimize the free energy
for small values of the chemical potential, and the solut
~5.38! minimizes the free energy for large values of t
chemical potential. As in the chiral limit, we once again ha
four phases, where either chiral symmetry is broken spo
neously and the chiral order parametersGs f are ofO(1), or
where it is broken only explicitly and the chiral order para
eters are of the order of the quark mass,O(m). The free
energies in these cases are given by the sum of the
energies for each flavor. In contrast to the case of the ch
limit m50, the phase withs1Þ0, s2Þ0 appears at the
center of the phase diagram.

By matching the free energies for the phases with la
and small values of the chiral condensates, we obtain
correction to the critical chemical potential due to the fin
quark massm. The critical chemical potential shifts to

m f ,c8 G5mcGS 11
mG

11mc
2G2

1O~m2G2!D , ~5.41!

wheremcG is the result for the chiral limit, obtained in Eq
~5.15!.

For mÞ0, both the pion condensate and the chiral co
densates are nonzero in the phase withrÞ0. We have to
solve the full system of three saddle point equations. In f
in this case the analytical solution is relatively simple. T
two chiral condensates are related by the equation

s12s25m
m11m2

m12m2
. ~5.42!

The solution fors f , f 51,2, is given by

s f5mm f

m11m2

~m12m2!2
1

2m

G2

1

~m12m2!224m2
. ~5.43!

The pion condensate then follows from
01400
,

n

a-

-

ee
al

e
e

-

t,

~s12m!~s22m!1r25
1

G2
1m1m224

m2m1m2

~m12m2!2
.

~5.44!

The free energy of this solution is

V~m,m1 ,m2!52~11 logG21m1m2G21m2G2!

2m2G2
~m11m2!2

~m12m2!2

2
1

2
logS ~m12m2!2

~m12m2!224m2D 2

. ~5.45!

For nonzero quark massm, the phase in whichrÞ0 does not
extend to zero isospin chemical potential. FormB50, the
onset chemical potential follows by equating the free ene
V11V2 of Eq. ~5.39! to the free energy of the pion con
densed phase given in Eq.~5.45!. It is given by m I ,c

2

5m/2G1O(m2), which identifiesA2m/G as the pion mass
for mB5T50.

By putting r250 in Eq. ~5.44!, we obtain the complete
second order transition line that bounds the pion conden
tion phase at low as well as high isospin chemical potent
Parametrized in terms of the baryon and isospin chem
potentials, it is given by

S mB
22m I

2

4m I
2

1
1

2G2

1

m I
22m2D m2

mB
2

m I
2

2mB
21m I

22
1

G2

m I
2

m I
22m2

1
m2

4G4

1

~m I
22m2!2

50. ~5.46!

For mB50 we again find a critical chemical potential give
by m I ,c5m/2G1O(m2). The phase diagram in them1-m2
plane formG50.1 and zero temperature is shown in Fig.
The qualitative difference from the massless case is the
pearance of a region where both chiral condensates are
zero in the center of the phase diagram. The dashed lines
border this region cross them I axis (mB50) at m I5
6mp/2 and are roughly constant inmB . They coincide in the
chiral limit, and the central region becomes a phase of n
zero pion condensate and zero chiral condensates~see Fig.
1!. For small quark massesm, the phase diagram at larg
values of the chemical potentials is almost unchanged
comparison to the phase diagram we found in the ch
limit. The transition lines are shifted only by small corre
tions of the order of the massmG.

F. Phase diagram at nonzero quark mass and temperature

Finally, we study the phase diagram at nonzero qu
mass and temperature. In this case it is no longer possib
obtain an analytical solution of the saddle point equatio
Instead, we determine the minimum of the free energy
merically. The results for the phases in them1-m2 plane for
temperatures ofTG50.3, TG50.5, TG50.6, and TG
50.8 are shown in Fig. 4. The quark mass used here
9-9
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mG50.1. Below the critical temperature, the phases are
same as at zero temperature~see Fig. 3! and differ qualita-
tively from the chiral limit only in the central region~see
Fig. 2!.

FIG. 3. Phase diagram of the RMT model for three colors a
value of the quark mass ofmG50.1. Solid~dashed! lines are lines
of first ~second! order transitions. Except for the four corner r
gions, the different phases are marked by the condensate that
not vanish in the chiral limit. The condensates that are not displa
are of O(m). In the four corner regions we have thatr50, s1

5O(m), ands25O(m).
01400
e

The phase diagram in themB-T plane form I50 has been
studied in@11#. In the chiral limit, the chiral restoration tran
sition extends as a second order line from themB50 axis,
changes order at a tricritical point, and intersects theT50
axis as a line of first order transitions. For nonzero qu
mass, the first order transition ends in a critical point, and
second order transition becomes a crossover.

Figure 5 shows the phase diagram in themB-T plane at
finite quark massmG50.1 for zero isospin chemical poten
tial and form IG50.1. We observe that the first order curv
splits into two first order curves that are separated by 2m IG.
This can be understood as follows. Below the threshold
pion condensation, the free energy separates into a sum
the two flavors. Form I50, the chiral phase transition line
for both flavors coincide. A finite isospin chemical potent
breaks the flavor symmetry, and the first order transition lin
for the two flavors split and shift according to

mB,c
(1) ~T!5mc~T!2m I ,

mB,c
(2) ~T!5mc~T!1m I , ~5.47!

wheremc(T) describes the transition line atm I50. The criti-
cal temperature is not affected by the isospin chemical
tential.

We saw in Eq.~5.6! that in the phase with zero pio
condensate the dependence of the critical temperature o
isospin chemical potential at zero baryon chemical poten

a

oes
d

e

e

l
a
s.
,
y
n-

d

t

FIG. 4. Phase diagram of th
RMT model for three colors for a
value of the quark mass ofmG
50.1. Values for the temperatur
are given in the figures. Solid
~dashed! lines are lines of first
~second! order transitions. Above
the critical temperature, the chira
restoration transition becomes
crossover, denoted by dotted line
Except for the four corner regions
the different phases are marked b
the condensate that does not va
ish in the chiral limit. The chiral
condensates are not displaye
when they are ofO(m). In the
four corner regions we have tha
r50, s15O(m), and s2

5O(m).
9-10



e
po
o

s

th

rv

so
e-

e-
he

n,
red.

ark

ra-
in,
ed
atu-
he
c-
en-
e

ma-
he
w-

pin
x
are
as

ase
and
gly

e.
fu

ic
s

t
nt

QCD PHASE DIAGRAM AT NONZERO TEMPERATURE, . . . PHYSICAL REVIEW D 68, 014009 ~2003!
is the same as the dependence of the critical temperatur
the baryon chemical potential at zero isospin chemical
tential. This suggests the possibility that for large values
the pion mass a tricritical point may appear in themB50
plane. As we will see below, this turns out not to be the ca
We first determine the domain in themB50 plane where
pion condensation occurs.

Performing a similar analysis as below Eq.~5.41! for the
free energy atmB50 but nonzerom, T, andm I , we find that
the region of nonzero pion condensate is bounded by
curve

m I
2~m I

22m2!G22
1

4
m22~m I

21T2!~m I
22m2!2G450.

~5.48!

For asymptotically large values of the quark mass, this cu
reduces to the two expressions

FIG. 5. Phase diagram in themB-T plane for quark massmG
50.1 and an isospin chemical as shown in the label of the figur
first order chiral restoration phase transition takes place at the
line that ends in the critical end point. For nonzero isospin chem
potential~lower figure! this curve is shifted in opposite direction

for the chiral restoration transitions of^ūu& and^d̄d&. The conden-
sates that are not displayed are ofO(m). The dotted curves depic
the crossover behavior. The temperature of the critical end poi
not affected by the isospin chemical potential.
01400
on
-
f

e.

e

e

m Ic
2 ~T!G25m2G21

1

2
6

1

2mG
A1

2
2T2G21

1

8m2G2

3~124T2G2!1OS 1

m3G3D . ~5.49!

However, for mB50 the saddle point equations are al
solved byr50. Then a first order transition takes place b
tween the solutions with large mass expansion given by

s15s25m6
1

G
A1

2
2G2T21OS 1

mGD . ~5.50!

At the tricritical point these solutions merge with the extr
mum between them. From this condition we find that t
position of the tricritical point is given by

T3
2G25

1

2
2

1

16m2G2
1OS 1

m3G3D
~5.51!

mB,3
2 G25m2G21

1

2
2

1

8m2G2
1OS 1

m3G3D ,

and the value ofs at the tricritical point is equal to

s35
1

4mG2
1OS 1

m2G2D . ~5.52!

One easily verifies from Eq.~5.49! that up to order 1/m2G2

the tricritical point is inside the pion condensation regio
where the phase with a nonzero pion condensate is favo
Numerically, one finds that this is also the case for qu
masses that are not asymptotically large.

VI. DISCUSSION

Starting from a random matrix model at nonzero tempe
ture and chemical potential for baryon number and isosp
we have obtained an effective potential for the matrix valu
order parameter field. This order parameter field arises n
rally in this random matrix model which is based on t
global symmetries of the QCD partition function. The expe
tation value of its diagonal elements are the chiral cond
sateŝ ūu& and^d̄d&, whereas its off-diagonal elements giv
the pion condensate. To first order inmp

2 and m I
2 and zero

baryon chemical potential and temperature, the random
trix model coincides with the zero momentum part of t
chiral Lagrangian that has been derived from QCD. Ho
ever, the tricritical point found in lattice simulations@34# and
in the chiral Lagrangian at nonzero temperature and isos
chemical potential@25# is not present in the random matri
model. We therefore conclude that the pion dynamics
important for the emergence of this tricritical point, as w
suggested in@34#.

Based on the effective potential, we have obtained a ph
diagram for QCD at nonzero temperature and baryon
isospin chemical potentials. We have found a surprisin
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rich phase diagram characterized by the condensates in
order parameter field. We find that close to the critical bary
chemical potential a small isospin chemical potential lead
a phase witĥ ūu& of the order ofLQCD

3 but ^d̄d& reduced by
a factor ofm/LQCD .

In the phase with a vanishing pion condensate, the ef
tive potential is an even function of the chemical potenti
and separates into a sum of free energies for each of the
flavors. This has important consequences. Since the effe
potential is even, the dependence of the partition function
mB at m I50 is the same as its dependence onm I at mB
50. Therefore, the phase diagram for baryon chemical
tential smaller than the pion mass can be studied reliably
means of the phase quenched partition function. Becaus
the separability of the free energy, the critical curve form I
50 splits into two curves shifted by a distance of 2m I . As
illustrated in Fig. 5, the structure of the phase diagram in
mB-T plane is structurally altered by an arbitrarily small no
zero isospin chemical potential, even for massive quarks.
a fixedm I,mp/2, we find that there are two first order pha
transitions at smallT whenmB is increased. Both first orde
lines end at the same temperature in critical end points w
a separation proportional tom I . The existence of two firs
order phase transition lines and two critical endpoints mi
have very important consequences for the numerous
ra
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n
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o
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nomenological systems whereboth mB andm I are nonzero,
such as neutron stars or heavy ion collision experime
Furthermore, it has been shown that relativistic heavy
collisions experiments might be sensitive to the critical e
point in the mB-T plane for m I50 @54,55#. Our analysis
shows that an increase inm I results in a critical end poin
with a lower value formB , thus making it easier to reach vi
heavy ion collision experiments. Our analysis also impl
that two crossovers separate the quark-gluon plasma and
hadronic phase at small but nonzero baryon and isos
chemical potentials. Therefore the transition between th
two phases should appear smoother atm IÞ0 than atm I
50. These results have important phenomenological con
quences. It is essential to confirm them by means of lat
QCD simulations or within other models.
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