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We introduce a random matrix model with the symmetries of QCD at finite temperature and chemical
potentials for baryon number and isospin. We analyze the phase diagram of this model in the chemical potential
plane for different temperatures and quark masses. We find a rich phase structure with five different phases
separated by both first and second order lines. The phases are characterized by the pion condensate and the
chiral condensate fazachof the flavors. In agreement with lattice simulations, we find that in the phase with
zero pion condensate the critical temperature depends in the same way on the baryon number chemical
potential and on the isospin chemical potential. At nonzero quark mass, we find, remarkably, that the critical
end point at nonzero temperature and baryon chemical potential is split in two by an arbitrarily small isospin
chemical potential. As a consequence, there tau@ crossovers that separate the hadronic phase from the
quark-gluon plasma phase at high temperature. Detailed analytical results are obtained at zero temperature and
in the chiral limit.
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[. INTRODUCTION simulations are possible at nonzero isospin chemical poten-
tial [13,14), the plane of zero baryon chemical potential has
Currently, there is strong interest in exploring the phasebeen understood best. At zero temperature, we expect a sec-
diagram of QCD at finite baryon density. A large number ofond order phase transition to a phase of condensed pions at
possible phases have been suggested for QCD at fini@n isospin chemical potential equal to half the pion mass.
baryon density(see[1,2] for a review. However, at this This type of transition occurs in any QCD-like theory with a
moment, the existence of none of these phases has been calemical potential for the charge of a Goldstone bdddi-
firmed either by first principles calculations or by the phe-26]. This prediction from effective Lagrangians has been
nomenology of heavy ion collisions and neutron stars. Beconfirmed by numerous lattice QCD simulatidig,27—34.
cause of the phase of the fermion determinant, standarBirom lattice simulation$14,34] and a one-loop analysis of
Monte Carlo simulations are possible only for small valuesthe effective Lagrangiaf23,25, it also follows that the sec-
of the chemical potentigl3—9]. Neutron stars are probably ond order line changes into a first order line at a tricritical
the most likely candidates for high baryon density physicspoint with critical chemical potential and temperature on the
but they are hard to observe and only a few parameters cascale of the pion mass. At nonzero baryon chemical poten-
be measured accurately. Relativistic heavy ion collisions extial, analytical results have been obtained for asymptotically
plore the region of low baryon density and high temperaturdarge values of the chemical potential, where QCD can be
but give a complex picture of QCD at finite density. How- analyzed perturbativelyd5,3€. Lattice QCD simulations are
ever, an experimental observation of a tricritical point mightreliable only for small values of the chemical potential
be within the realm of possibilities. Such a tricritical point [6,4,3. This leaves us with the bulk of theg-T plane,
was predicted on the basis of effective potent{d6] and  which could be analyzed only in simplified models such as
simplified models such as random matrix modglé] and  Nambu-Jona-Lasinio modelgl2,37,56, instanton liquid
Nambu-type modelEl2]. Furthermore, in both neutron stars models[38], and random matrix mode[4.1].
and relativistic heavy ion collisions, the isospin density is Random matrix models were introduced in the context of
different from zero. It is therefore important both phenom-QCD to describe the correlations of the low-lying eigenval-
enologically and theoretically to study the influence of iso-ues of the QCD Dirac operat¢B9,4Q. It was shown that
spin on the phase diagram of QCD at nonzero baryon chemihese models are equivalent to the mass term of a suitably
cal potential. chosen chiral Lagrangian, which is determined uniquely by
Our main goal is to study the phase diagram of QCD athe symmetries of the underlying microscopic thept—
nonzero temperature and chemical potentials for baryod4]. Therefore, in the chiral limit, chiral random matrix theo-
number and for isospin. The phase diagram of QCD with anyies provide an exact analytical description of the low-lying
of these external parameters equal to zero has already beBirac spectrum.
studied in a variety of ways. In particular, because lattice In this article we use random matrix theory as a schematic
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model for phase transitions in QCD at nonzero temperature-m_/2 the chiral condensates rotate into a pion condensate,
and chemical potentials. Such a model was first introduced idenoted byp, and approach zero fou,>m_/2. Since a
[45] to describe the chiral phase transition in QCD at non-baryon chemical potential excites states only fay larger
zero temperature. Even more successful was the applicatidhan the nucleon mass, we expect this second order line to
of random matrix theory to QCD at nonzero baryon chemicapersist in theu,-ug plane and to be parallel to theg axis.
potential. First, the failure of the quenched approximation The u,=0 plane was discussed in detail[ihl]. We ex-
was explained analyticallj46]. Second, a tricritical point pect a region with broken chiral symmetfwith chiral con-

was found in a model at nonzero baryon chemical th?”tiabensateqUu) and (dd) both nonzerp separated from the

and temperatur¢11]. Third, algorithms for QCD at finite yegion of unbroken chiral symmetry by a first order curve,

density could be investigated in detg#7,48. Fourth, the  genoted by (T), from the tricritical point to thef =0 axis

static part of the effective Lagrangians for QCD with @4nq in the chiral limit, a second order curve from the tric-

chgmlcal potentlal_ for the charge of Goldstone boso.ns can bgiical point to theug=0 axis.

derived from.a chiral random matrix modgl?]. In spite of For x, and ug both nonzero, there are eight possible

the schematic nature of the random matrix model, we hopeh ith either of the chiral d — ad

that it will teach us more about the plethora of possibleP '2>c> With €Eher oTie chira condensafes) or (dd), or

phases that may occur in QCD. the pion condensaje= ; ((uysd) —(dysu)) equal to zero or
The organization of this paper is as follows. In Sec. Il, wehot. Since the chemical potentials for me two_flavors are

deduce from general arguments the expected features of tigéfferent, there is no reason to expect that)=(dd).

QCD phase diagram for nonzero temperature and baryon and In the limit u;>Aqcp, one flavor decouples and we are

isospin chemical potentials. In Sec. Ill, we introduce ourin a situation with only one flavor at nonzero chemical po-

random matrix model. In Sec. IV, we derive an effective tential. In this case, we expect tr(a_tu>=0 and(Ed);éO for

partition function in terms of the meson fields and reproduce,,< 4 (T) but vanishes across the first order transition
the mean field results obtained from a chiral Lagrangian. Theurve for u,> uc(T).

phase diagram resulting from the random matrix model is  For ;,5=0, we have thap,= — ;. Using that
obtained in Sec. V. Concluding remarks are made in Sec. VI.
de(D+m—uyyo)=det (D+m+uyyy), (2.4
II. QCD AT NONZERO CHEMICAL POTENTIALS

AND TEMPERATURE we find that for equal quark masses the partition function
The QCD partition function at nonzero temperature and 2.1) is the phase quenched partition function for two flavors
. . o 13,18.
chemical potential for each quark flavor is given by
Ne Ill. RANDOM MATRIX MODEL
[ det(D+mi+uiyo) (2. o .
f=1 In this article we study a random matrix model for QCD

) , o at nonzero chemical potentials and temperature. The idea is
where the Euclidean Dirac operator is given By=y,(d, o replace the matrix elements of the Dirac operator by
+iA,) with vy, the Euclideany matrices, andA, is an  Gayssian random variables subject only to the global sym-
SU(N) valued gauge potential. The quark masses are deqetries of the QCD partition function. The dependence on
noted bym;, andu; is the chemical potential for each fla- the temperature and chemical potentials enters through exter-
vor. The average is over the Euclidean Yang-Mills action.ng) fields structured according to these symmetries.

Below we mainly focus on QCD with two flavors and non-  oyr guiding principle for constructing a random matrix
zero baryon number and isospin ch_emlcal poten'ual. In thatyodel is to respect the global symmetries of the QCD parti-
case, the baryon number and isospin chemical potential ag, function. At zero temperature and chemical potential,

defined by this amounts to replacing the matrix elements of the Dirac
) operator by Gaussian random variables subject to these glo-
me= 3 (M1t p2), (2.2 bal symmetries. The external fiel@(u:,T) representing
temperature and chemical potentials is introduced according
=3 (1= p). (2.9  to the following criteria.

(i) The chemical potential breaks the global flavor sym-

Before discussing the possible phases of random matriretry in the same way as in the QCD patrtition function.
models with the symmetries of the QCD partition function, (i) The temperature field does not break global flavor
we first make some general remarks on its phase diagram aymmetries.
nonzero temperature, isospin, and baryon chemical poten- (iii) For an anti-Hermitian Dirac operator, the temperature
tials. field is anti-Hermitian, whereas the chemical potential field

The case ojug=0 andm,,, T<Acp can be described in is Hermitian.
terms of a chiral Lagrangian. This Lagrangian has been ana- (iv) The eigenvalues of the external field arte=inT. In
lyzed to one-loop ordef23,25. At low T, a second order this article we consider only the cane=1.
phase transition to a pion condensation phase was found at For two flavors, the Dirac operator of the random matrix
my=m_/2 where m_ is the physical pion mass. Faqu, model is given by
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) . (3.2)
0 W= aw(T) + u, A m,

We have also included a pion condensate source term, whidbut with AX a Gaussiamx n random matrix. Such types of
in QCD is given by Dirac operators have the same spectral propelfigkas the
o Dirac operator in Eq(3.5 and lead to a similar phase dia-
iINysTotl, (3.2  gram.

where the Pauli matrix-, acts in flavor space. The matrix

elements of the X n matrix W are complex with probability V. EFFECTIVE PARTITION FUNCTION

distribution given by Because of the unitary invariance of the random matrix
5 " models, the partition function can be rewritten in terms of
P(W)=exp(—nG"Tr WW'). (33 invariant degrees of freedom only. Below we rewrite the par-

tition function introduced in Sec. Il in terms of these effec-
tive degrees of freedom.
iT o ) We consider the random matrix model for QCD at non-

The temperature field given by the matrix

(3.4  zero temperature and baryon and isospin chemical potentials
given in Eq.(3.5). The Gaussian integration over the matrix

“’(T):(o —iT

. . elements ofV can be performed trivially. The resulting four-
includes only the two lowest Matsubara frequencies. At zerQarmion interaction is decoupled by means of a Hubbard-

chemical potentials, this temperature dependence will resu@tratonovich transformation at the expense of introducing

in a second order phase transition along the temperature axigesonic degrees of freedom. After performing the Grass-
[45]. If we write the determinant as a Grassmann integral, the, o integrations, the partition functid8.5) can thus be
partition function of our model is given by written as

z=f DWH dy'dy'P(W)exp—yDy), (3.5 Z:f DAexd— LIAA], .1

whereD is the Dirac matrix given in E¢3.1). In the ther-
modynamic limit the partition function is a function aiy,
m,, N, u;, g, andT, but for brevity we will not display its n
arguments. L=nG*Tr(A-MT)(AT=M)— >TrlogQ’
Other types of random matrix models have also been con- 2
sidered[49-52. However, none of these models have been
studied at nonzero isospin chemical potential. We mention
models with a random gauge potential. In that case, the ma-

where

n
=nG*Tr(A—MT)(AT—M) - ST logQ'Q,

trix W has the spin and color structure of the usual Dirac (4.2)
operator,
. . . andA is an arbitrary compleXN; X N; matrix. The determi-
W—io,nA,, o,=(=i,04), (3.60  nant of the AN;x4N; matrix Q’, given by
A 0 iT+ug+uls 0
A 0 - |T + ,bLB+ ,LL| I 3
. , (4.3
0 —iT+ug+mupls 0 Al
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with I3=diag(1- 1), factors into the determinant of

A
iT+ug+uls

iT+pgt+uls

Q= At (4.9

and its Hermitian conjugate. The mass matrix is given by

)

By shifting A, we have absorbed the dependencevbinto
the quadratic term.

-\

mo

my
A

M (4.5

. . . tu
At zero temperature and chemical potentials, the chlraL

random matrix partition function is equivalent to the zero
momentum part of the QCD chiral Lagrangian. We will now

show that this is also the case for the chiral Lagrangian that

can be derived from Eq4.1). To derive this result, we use

PHYSICAL REVIEW D 68, 014009 (2003

L=co(pmg, i, T)—NGo(pug, HT(MST+MTY)
+nufG2o?(ug, T)Ca(up, TTH(E15315), (4.12)
wherecy(ug,u,,T) is independent of and

- (4G%ugT)?
4o (ug, T)-GHuz—-TH1?)
(4.13

This effective Lagrangian coincides with the zero momen-
m part of the leading-order chiral Lagrangian at zero tem-
erature and baryon chemical potential derived 1i@,18
based on the symmetries of QCD. A transition to a pion
condensation phase takes place at ,u,Z’C

m/[ZGE(,uB,T)cz(,uB,T)]. The pion condensate van-

Cz(MB,T):<1

the power counting scheme that is used in the construction dBNeS forui<uic. For w>u, c the chiral condensate ro-

the chiral Lagrangiang, , m,~\/m, and/\ are of the same
order[16]. We thus expand the random matrix theory effec-
tive Lagrangian to first order imand\ and second order in
u, about the saddle point obtained fpf=m=A=0. The
saddle point equation given by

G (AAT+T2— 42)2+ 4u2T? A= (AAT+ T2 — 42)A

(4.6)
has two solutions,
A=0, 4.7
or the solution of
GH(AAT+T?— uf)?+4ugT? = (AAT+ T2 - Mg).( )
4.8

tates into a pion condensate but the sum of the squares of the
chiral condensate and the pion condensate remains constant
as a function ofw,. The temperature and the baryon chemi-
cal potential affect both the magnitude and the orientation of
the condensates.

V. PHASE DIAGRAM

As was argued 115,16, the free energy4.12) is com-
pletely determined by the transformation properties of the
QCD partition function. Since the random matrix model has
the same global transformation properties as the QCD parti-
tion function, we thus find the same low-energy limit. In this
section we analyze the random matrix partition function be-
yond this universal domain. In our model we will be able to
study the partition function to all orders in the mass, chemi-
cal potential, and temperature. We will show that the inclu-
sion of such nonperturbative contributions alters the nature

For ;=0 itis a natural assumption that the flavor symmetryof the phase transition.

is not spontaneously broken. We can parametdzi the
broken phase as

_U(IL(’B vT)E!

A=5

4.9

whereX, is a unitary matrix and

O-(/'LB ,T):

1 1 1/2
5>+ 5V1-(4G%ugT)? - T?G%+ M§62>

(4.10

is a solution of the saddle point equati¢h.8). Using the
ansatz(4.9), the inverse of the matriQ for x,=0 is given

| )

(4.1

Inserting this result and the parameterizatidrd) in the chi-
ral expansion of the Lagrangidd.2), one easily derives

AT
—pp—iT

—pp—iT
A

1
0GR — (ug+iT)?

Q—l

A. Observables

We consider three different observables, the chiral con-
densates (uu) and (dd), and the pion condensate

%(<U’}/5d>_<a'ysu>). They can be expressed in terms of de-
rivatives of the partition function,

m 1 eff
(uu}zzamllogz

=G2<1<A* +A1)—m )
2 11 1 1]
(5.1)

e 1 eff
(dd)=%amzlogz

=G2<E<A* +A)—m )
2 22 2 2
(5.2)
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1 _ 1 " =0. We will calculate the phase diagram for-0 andm
5 ((uysd) —(dysu)) = ;- d,log Z° #0 by numerically minimizing the effective potential. In
addition, some analytical results are obtained for large quark
1 massm.
=G? Z<A12+AIZ_A21_A3]>_)\>-

(5.3 C. Chiral limitat T=0
In the case of vanishing quark mass, zero diquark source,

The expectation values of the diagonal matrix elements of and zero temperature, the effective potential simplifies to
can be interpreted as the chiral condensates, whereas its off-

diagonal elements represent the pion condensate. 1 0, 2. 2 1 912
~L=G o1+ 03+ 2p%) — Slogl (o1 + 1) (02— ua) +p°]
B. Effective potential

1
In the largen limit, the partition function can be calcu- —5logl (o1 p1) (oot o)+ p?]2. (5.9
lated by a saddle point approximation. To solve the saddle

point equations, we make an ansatz for the maiSince |, e chiral limit, chiral symmetry is broken spontaneously.
we have two independent chemical potentials, the chiral conag 540 as the isospin chemical potential is switched on, the
densates are not necessarily equal, whereas for a sufficienily,ira| condensate rotates into a pion condensate. Therefore,

large isospin chemical potential we expect a pion condeny, phase exists where both condensates are nonzero. The
sate. Based on the expressions for the chiral condensate aggddle point equation fop has two possible solutionsi
the pion condensate, we make the following ansatzAfor =0 andp#0. We first consider the cage=0

oL p For p=0, the effective potential separates into the sum of
A=( ) (5.4)  free energies forr; and o,
—p 02
; i at ; . 1 2 2 1 2 2\2
In this parameterization, the different condensates are given ﬁ£=f212 Gof— Elog(af — ). (5.9

by (uuy=G*(oy—my), (dd)=G%*(o,—m,), and
3((uysd)—(dysu)) =G2(p—\). Using this ansatz, we ob- The saddle point equations given by
tain the effective potential

o[ GXo?—pu?)—1]=0, f=1,2, (5.10
FL=G (01— M)+ (0= M) *+2(p=\)?] have the solutions
1 , _ o¢=0, f=1,2, (5.11)
=5 2 log({loa+ (pa =)o~ (up=T)]1+p%
- 1
x{[or—(p=i Dot (0o T)]+p%). (5.5 of=ptur f=12 (5.12

From here on, we seh;=m,=m. For p=0 this effective
potential is a function opf. In particular, this means that its
dependence op, at ug=0 is the same as its dependence on
pg at 4 =0. This implies that for the critical temperature Q¢=—loguf, (5.13
we have the relatioh5,14]

To )| py-0=Telte)l, 0 for p=0. (5.6

The contribution to the free energy from one flavor for these
solutions is given by

Q;=1+logG?+ u?G?, (5.14

] ] ] respectively. The full free energy is a sum over the contribu-
The fermion determinant of the theory withy=0 and equal  tjons from both flavors. The two solutions are separated by a

quark masses is equal to the fermion determinant of theyst order phase transition line where their free energy is
phase quenched partition function. We thus expect that theqyal,

phase quenched approximation works in the phase where the

pion condensate vanishes. 1+ u?G?+log(u2G?)=0. (5.15
To find the phase structure of our partition function, we
have to solve the saddle point equations The solution of this transcendental equation is given by
niG=u.G~0.52769746]. At this point a first order phase
L o L o L o transition to a phase witb;=0 takes place. In the.;-u,
doy ' doy, O dp (5.9 plane, we can thus distinguish four different phases with

nonzero condensates in strips along the chemical potential
We will treat the following cases analytically: the chiral limit axes. On the lineu;=u, in the center region, both chiral
(m=0) at zeroT and at finiteT, and the casen#0 atT  condensates are nonzero and equak o, #0.

014009-5
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At zero quark mass, the Goldstone bosons are massless, 2
and the critical value of the chemical potential for pion con- mG =0.0
densation igu;=0. Foru,>0, the chiral condensates rotate /
completely into a pion condensate, so that=c,=0. The .l a1 #£0
effective potential foip is given by
. 2 2 - p#0
Zr=2G2,2— _
n£ 2G log(p”— mim2)”. (5.16 GO | 20 o220
. . . 0
The saddle point equation given by S~
p[G*(p*— mipz)—11=0 (5.17) -
o140 ," o1=0
has again two solutions, ' ; oa=0
il p=0
— -2 . . .
p=0, -2 -1 0 1 2
mG
- 1
p= G2+/_L1/.L2 (5.18 FIG. 1. Phase diagram of the random matrix the@RMT)

model for three colors in the chiral limitnf=0) at zero tempera-

A d ord ition line is ai by the h bofa ture. Solid (dashedl lines are lines of firstsecond order phase
second order transition line is given by the hyperbp transitions. Except for the four corner regions, the different phases

=01in t_he quadrants wheye; u,<0. The free energy of this are marked by the nonvanishing condensate. In the four corner re-
phase is given by gions we have thah=o;=0,=0.

Q,=2(1+logG?+ 1y 1,G?). (5.19

— 2 2 1 2 2 2\2 2012

Finally, for u;= u», the saddle point equations allow a so- ﬁﬁ_f;]_’ze ot Z0al (o T T+ 4pTT].
lution with p#0 ando,=0,#0. However, the free energy (5.20
of this solution is higher than that of the solution with
=0,#0 andp=0. Physically this is clear, since the pion This free energy was studied [11] for the case of zero
condensate is expected to vanish for zero isospin chemicospin chemical potential. For each of the two flavofs (
potential. =1,2), the saddle point equation

Comparing the free energy of the pion condensation phase
to those of the chiral condensation phases and the chiral re-
stored phase, we can determine the remaining first ordef f
phase transition lines. The resulting phase diagram is shown
in Fig. 1. We find a region of pion condensation in the center (5.2
of the phase diagram. It is bounded by first order phase trarmas the solutions
sitions toward phases with nonzero chiral condensate for one
flavor, and by second order transition lines toward the chiral o:=0,

2 2
me—T
0 . +(pi+T?)?2|=0

1
4 2 2 2
ot—2| —=+u?-T?| 02+
! (262 ' '

restored phase. For,;=pu,, we are in a phase witlr, (5.22

= 0,70 andp=0. The chiral condensation phases form the 1 1

arms of a cross along the chemical potential axes. Sinds o= — ,ufz—Tzi—2 1—(4G%uT)%.

independent oft,, it is nonzero in a strip along the, axis, 2G 2G

and the same applies for the other flavor. The first order Ilnesh ‘ ‘ hf fth | |
intersect in the two points 4,G,u,G)~(*0.527697, e free energy for each flavor of these solutions is equal to

+0.527697). The intersection points of the second order
lines with the first order transitions between the pion and
chiral condensation phases are atu,G,u,G)

~(+0.527697+ 1.895025), and at the two points obtained Q= EHOngJFGz(M T2)+— 1—(4G2u,T)?
by interchanging the values far; and .. 2

1,
D. Chiral limit at T#0 ——Iog \/1 (4G?uT)? (5.24

At nonzero temperature, we analyze the phase structure in
the same way as we did far=0, and, initially, we also find respectively. For (&?u;T)?<1, the solution with the nega-
the same phases. tive branch of the square root will be discarded, since it does
In a phase with vanishing pion condensate, the effectivenot minimize the free energy. The second order phase tran-
potential again separates into a sum over contributions ddition line is given by the condition that the two solutions
two different flavors, coincide. One easily derives

Q= —log(uf+T?), (5.23

014009-6
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TG =03

TG =05

-1t S o1=0 1 -1r

-2 -2

p#0 . N P#0
/J2G 0 E o2 £0 o}l o2#£0 g #0 ]
p#0 p#0

o4

g

H#0

a1 #0

TG =0.8

G o} o o2#0

Y4

0'2#0

1} -1}

0‘1750

p7#0;

)
~4

g3
Il

oo

©
Il
=

-2 -1 0 1 2 -2 -1

(uf=T?)+G2(uf+T?)2=0. (5.29

0

wmG

=}

FIG. 2. Phase diagram of the
RMT model in the chiral limit for
different  temperatures.  Solid
(dashed lines are lines of first
(secongl order transitions. The
values for the temperature are
given in the figures. Except for the
four corner regions, the phases are
marked by condensates that do not
vanish in the chiral limit. In the
four corner regions we have that
p=01=0,=0. For u;=u, in
the center regiorisolid line), we
have thato;=0,#0 and p=0.
For TG=0.6, the phase wittr;
#0, o0,#0 has emerged. For
TG=0.8, the chiral restoration
transitions have become second
order transitions. The region in the
center where both chiral conden-
sation phases overlap and the chi-
ral condensates for both flavors
are nonzero can be seen clearly.
All condensates vanish af G
=1.

tion lines change in their entirety from first to second order

when we pass the ftricritical temperatu27) from below.

Since there is always the solutien=0, there can be a first
order transition when the coefficient of in the saddle point
equation(5.21) becomes negative. A tricritical point occurs
where both the coefficient af; andaf3 in Eq. (5.21) vanish.
This results in the equations

1
2_T2_
72(32+Mf T°=0,

The critical chemical potential of the transition becomes
smaller with increasing temperature. A baryon chemical po-
tential that is large enough will destroy the pion condensate.

Since the two chiral condensates are independent of one
another and depend only on the chemical potential for the
respective flavor, we again have four phases. A phase where
chiral symmetry is restoreds(; = 0,=0), and phases where
either one or both of the chiral condensates are nonzero. The
free energies are simply given by the sum of the one-flavor
free energies.

M?*T2+ GZ(,uf2+T2)2=O, (5.26 At nonzero isospin chemical potential, we expect that in
the limit of massless quarks the chiral condensates are com-
with solution given by pletely rotated into a pion condensate. The effective potential
for vanishingo; and nonzero pion condensagiebhecomes
2 ~2_ V2-1 _
15,3G°= 4 f=12, g 2 2 2 22, T2 2
HEZZG p —logl(p™— papat T+ T (gt p2)“l.
- 2+1 (5.28
T36°= 4 (5.27 The saddle point equation reads

Numerically, T3G~0.776887 u¢ 3G~0.321797, which was
also obtained if11].

In Fig. 2, we show the phase diagram for fixed tempera-
ture in the wi-u» chemical potential plane. The transition
lines for each flavor are straight and constant in the chemical
potential for the other flavor. In this plane, the phase transi-

1
G%p p°+ &(MlMZ_TZ)

1
42l —+ —T?
p 5G2 Maf2

+(papa—T?)2+ Ty + ua)?| =0. (5.29

014009-7
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It has the solutions All condensation phases vanish at the same temperature
TG=1.
p=0,
(5.30 E. Zero temperature limit at nonzero quark mass
1 1 s
p?= —2+M1M2—T2i—2\/1—(2G2(M1+M2)T)2- Away from the chiral limit, we can only solve the saddle
2G G point equation analytically fof =0. The results of this par-

ticular case will be discussed in this section. The phase dia-
Again the solution with the negative branch of the squaregram at nonzero quark mass is qualitatively different from
root has a larger free energy. A line of second order phasthe phase diagram in the chiral limit. First, the chiral con-
transitions is determined by the condition that the two solu-densatesg; and o,, are no longer good order parameters,

tions coincide: and, second, we expect a phase transition to a phase with
nonzero pion condensate for,=m_/2. However, in this
(o= T2+ G%(ypp—T?) 2+ G2T?(y+ py)%=0. case the chiral condensates are nonvanishing in the phase

The effective potential is given by

A first order phase transition may occur when the coefficient
of p® in Eq. (5.29 vanishes. However, we will see below 1
that this happens in a region where solutions with nonzeron
chiral condensate have a lower free energy.

In Fig. 2 we show the phase diagram in the-u, plane
for zero quark mass and temperatures equal @=0.3,
TG=0.5,TG=0.6, andT G=0.8. The first order lines in the
phase diagram are obtained by combining the results for the

free energies of the phases discussed above. . o . . .
. - . : Obviously, it is symmetric under a simultaneous interchange
The phase diagram ai=0 has been described in the 4 .

: . o . of the chiral condensates; and o, and the two chemical
previous section. With increasing temperature, the second OF stentialsw. and The saddle boint equations are aiven
der transition between the pion condensation phase and S H1 Ka: P q 9
chiral restored phase moves toward the origin. The effect oPy
the temperature term on the phase diagram is a shrinking of

the condensate phases. The critical chemical potential for the

1
L=GCG(oy—m)?+ (03— m)?+2p?] - EIOg[(01+M1)

1
?12= Slogl (1= ) (o2 + ) + p*1.

(5.32

X (o= o) +p

02— M2

2 —_ =
chiral restoration transition decreases with increasing tem- 2G oy —m) (o1 + pp) (00— o) + p2
" ; 17T M) 02— M2) TP
perature, so that the transition lines move toward the axes as
well. o2t o
At lower temperatures, the phase where both chiral con- t— FRRWCY (5.33
densates are nonzero simultaneously is always higher in en- (1= p1)(o2F p) +p

ergy than the pion condensation phase, and consequently it is
not realized. At a temperature G~ 0.548047, a first order )
transition between the pion condensation phase and the 2G%(o—m)=
phase witho; #0, 0,# 0, andp=0 emerges, and it appears
at the intersection points of the first order transitionsG 01—y
=u,G~0.413485, around the lingt,;=pu,. The upper + , (5.39
boundaries of this phase are always the transition lines where (01— p) (oot o) +p?
either of the two chiral condensates vanish.

The position of the tricritical point in the-T plane for p
any of the two chiral condensates is unaffected by the 2G%p= 5
presence of the second chemical potential. Therefore, we find (o1+ pa) (02— p2) +p

that at a temperaturB;G=13 \ \/§+ 1~0.776887, the phase p

transition lines between the chiral condensed phases and the + 5" (5.39
chiral restored phase in the chemical potential plane become (017 pa) (o2t p2)

second order transition lines in their entirety.

o1t p
(o1+ p1) (o= py)+p?

ira\S we see from the last equation (®.39), there is always a

condensates along the, and ., axes are bounded by sec- solution with p=0. We expect that th_is_ is the ac.tuall minij
ond order transition lines to the chiral restored phase. We cafium of the free energy below the critical chemical isospin
observe the region where both phases with chiral condensg0tential for pion condensation. In this case, aster 0, the

tion overlap. The pion condensation phase in the center igaddle point equations for the two chiral condensates de-
separated from the chiral condensation phases by first ord§PUPle and are given by

transition lines, and from the chiral restored phase by a sec- ) PR

ond order transition line. G(or—m)(of—uf)—or=0. (5.36

014009-8
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Although this third order equation can be solved analytically,

it is more instructive to expand it in powers of To first
order inm, we find foro, f=1,2,

mG
o=+ —| 1+ u?G’+ ————— + O(M?G?
f G Mt 2(1—!—,uf2G2) ( )
1 1 1
- T 2m2, 2n2 44
iG 1+ z,ufG + 2mG+(9(m G4 uiG )),
(5.37)
2m2
miG
o= ———m+O(Mm3G?). 5.3
The free energy of these solutions is given by
Q=1+logG?+ u?G?>—2mG+ O(m?G?), (5.39
— 2 2n2
Q= —log(uf) —O(M°G?), (5.40

respectively. The solution&.37) minimize the free energy

for small values of the chemical potential, and the solution
(5.38 minimizes the free energy for large values of the
chemical potential. As in the chiral limit, we once again have
four phases, where either chiral symmetry is broken spont

neously and the chiral order paramet&s; are ofO(1), or

where it is broken only explicitly and the chiral order param-

eters are of the order of the quark ma&é{m). The free

energies in these cases are given by the sum of the fre

a_

PHYSICAL REVIEW D 68, 014009 (2003

TRy

(m1—m2)?

1
(Ul_m)(ffz_m)+92:§+#1#2_4
2
(5.49

The free energy of this solution is
Q(M, w1, 1) = 2(1+10g G®+ pq u, G+ M?G?)

(t1+ po)?

_mZGZ 5
(1= m2)

2
(Ml_Mz)z

1
(1~ pp)*—4m?

2Iog (5.45

For nonzero quark mass, the phase in whicp# 0 does not
extend to zero isospin chemical potential. Fog=0, the
onset chemical potential follows by equating the free energy
0,+Q, of Eq. (5.39 to the free energy of the pion con-
densed phase given in E@5.45. It is given by u?,
=m/2G+ O(m?), which identifiesy2m/G as the pion mass
for ug=T=0.

By putting p2=0 in Eq. (5.44, we obtain the complete
second order transition line that bounds the pion condensa-
tion phase at low as well as high isospin chemical potential.
Parametrized in terms of the baryon and isospin chemical
potentials, it is given by

2 2 2 2
HB™ M 1 1 o MB s 2 1o
2 o2 2 oM TR S
4 2G° uy—m M G* uy—m

energies for each flavor. In contrast to the case of the chiral

limit m=0, the phase witho;#0, o,#0 appears at the
center of the phase diagram.

By matching the free energies for the phases with large

m? 1

— —5——5=0.
4G (uf—m?)?

(5.49

and small values of the chiral condensates, we obtain theor ;,,=0 we again find a critical chemical potential given
correction to the critical chemical potential due to the finitey,y |\, —m/2G+O(m?). The phase diagram in the;-u.,

guark massn. The critical chemical potential shifts to

_M® | omeey)
m ,
1+ uiG?

c

uiG=pG| 1+ (5.41)

where .G is the result for the chiral limit, obtained in Eq.

(5.15.

plane formG=0.1 and zero temperature is shown in Fig. 3.
The qualitative difference from the massless case is the ap-
pearance of a region where both chiral condensates are non-
zero in the center of the phase diagram. The dashed lines that
border this region cross the, axis (ug=0) at u,=
+m_/2 and are roughly constant jog . They coincide in the
chiral limit, and the central region becomes a phase of non-

For m#0, both the pion condensate and the chiral conZ€ro pion condensate and zero chiral condensates Fig.

densates are nonzero in the phase with0. We have to

1). For small quark masses, the phase diagram at large

solve the full system of three saddle point equations. In factvalues of the chemical potentials is almost unchanged in
in this case the analytical solution is relatively simple. Thecomparison to the phase diagram we found in the chiral

two chiral condensates are related by the equation

_|._
0'1—0'2=m'u1 Mz. (5.42
M1 M2
The solution foro;, f=1,2, is given by
M1t pz 2m 1
or=Mus———— (5.43

(m1—m2)? G2 (pg— po)?—4m?

The pion condensate then follows from

limit. The transition lines are shifted only by small correc-
tions of the order of the masaG.

F. Phase diagram at nonzero quark mass and temperature

Finally, we study the phase diagram at nonzero quark
mass and temperature. In this case it is no longer possible to
obtain an analytical solution of the saddle point equations.
Instead, we determine the minimum of the free energy nu-
merically. The results for the phases in the-u, plane for
temperatures ofTG=0.3, TG=0.5, TG=0.6, and TG
=0.8 are shown in Fig. 4. The quark mass used here is

014009-9
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2 y : - The phase diagram in theg-T plane foru, =0 has been
mG =0.1 studied in[11]. In the chiral limit, the chiral restoration tran-
sition extends as a second order line from fhe=0 axis,

4 o ] changes order at a tricritical point, and intersects Te0
o0 axis as a line of first order transitions. For nonzero quark
mass, the first order transition ends in a critical point, and the
second order transition becomes a crossover.

Figure 5 shows the phase diagram in flag-T plane at
finite quark massnG=0.1 for zero isospin chemical poten-
tial and foru,G=0.1. We observe that the first order curve
splits into two first order curves that are separated hy@

This can be understood as follows. Below the threshold for
pion condensation, the free energy separates into a sum over
2 . - . the two flavors. Fom, =0, the chiral phase transition lines

-2 -1 0 1 2 for both flavors coincide. A finite isospin chemical potential
breaks the flavor symmetry, and the first order transition lines

FIG. 3. Phase diagram of the RMT model for three colors at afor the two flavors split and shift according to
value of the quark mass oiG=0.1. Solid(dashedllines are lines ) B
of first (secondl order transitions. Except for the four corner re- MB,C(T)—MC(T)_M )
gions, the different phases are marked by the condensate that does
not vanish in the chiral limit. The condensates that are not displayed
are of O(m). In the four corner regions we have that0, o,
=0O(m), ando,=0O(m).

G o |

.
-1}

/
a1 /

(5.47)

whereu(T) describes the transition line a{=0. The criti-
cal temperature is not affected by the isospin chemical po-
mG=0.1. Below the critical temperature, the phases are théential.

pEUT) = (T +

same as at zero temperatysee Fig. 3 and differ qualita-
tively from the chiral limit only in the central regiofsee

Fig. 2.

2

ﬂzG ot

TG=03

1}

-2

TG =0.6

[LQG 0t

“}

-2

-1

1}

-2

At

-2

We saw in Eq.(5.6) that in the phase with zero pion

condensate the dependence of the critical temperature on the

isospin chemical potential at zero baryon chemical potential

g2

g1

p#0

TG =0.5

-1

-------------

.....................

a1

.............

-2

-
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FIG. 4. Phase diagram of the
RMT model for three colors for a
value of the quark mass ahG
=0.1. Values for the temperature
are given in the figures. Solid
(dashed lines are lines of first
(secondl order transitions. Above
the critical temperature, the chiral
restoration transition becomes a
crossover, denoted by dotted lines.
Except for the four corner regions,
the different phases are marked by
the condensate that does not van-
ish in the chiral limit. The chiral
condensates are not displayed
when they are ofO(m). In the
four corner regions we have that
p=0, o,=0(m), and o,
=0(m).
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15 T

1 1 1
r b 2 2_ 22 2n2
= +ort—\/z— +
e pr-ie Hel DO =M EH % ame V2~ T ¢ e
L ] X(1-4T2G?)+0 (5.49
- ] However, for ug=0 the saddle point equations are also
05 7 solved byp=0. Then a first order transition takes place be-
L o, _ tween the solutions with large mass expansion given by
- 0'2 4
0 02 04 %Go.s 0.8 1 G V2 mG
e IR B B IR I At the tricritical point these solutions merge with the extre-
i mG = 01 1 mum between them. From this condition we find that the
G | mG = 0.1 position of the tricritical point is given by
1 —
1 1 1
1 22 _
=== +
s ] BT A e
I ' ' ] (5.51)
0.5 |- - 1 1
2 2_ 202
- 1 = +-— +
i o \ o ] HesC T M e g et Ol et
L [ E
S AN RN and the value otr at the tricritical point is equal to

0 0.2 04 0.6 0.8

1
H'BG 1
03~ +O

FIG. 5. Phase diagram in theg-T plane for quark masmG 4mG? m?G?
=0.1 and an isospin chemical as shown in the label of the figure. A

first order chiral restoration phase transition takes place at the fulDne easily verifies from Eq5.49 that up to order Th>G?

line that ends in the critical end point. For nonzero isospin chemicathe tricritical point is inside the pion condensation region,
potential (lower figure this curve is shifted in opposite directions where the phase with a nonzero pion condensate is favored.
for the chiral restoration transitions ¢fiu) and(dd). The conden-  Numerically, one finds that this is also the case for quark
sates that are not displayed are@fm). The dotted curves depict masses that are not asymptotically large.

the crossover behavior. The temperature of the critical end point is

not affected by the isospin chemical potential. V1. DISCUSSION

) . (5.52

is the same as the dependence of the critical temperature %]rStartlng from a random matrix model at nonzero tempera-

the baryon chemical potential at zero isospin chemical po- e and chemical potential for baryon number and isospin,

tential. This sugaests the possibility that for large values owe have obtained an effective potential for the matrix valued
- ggests the pos: y g order parameter field. This order parameter field arises natu-
the pion mass a tricritical point may appear in thg=0

_ . rally in this random matrix model which is based on the
plane. As we will see below, this turns out not to be the casey|oha| symmetries of the QCD partition function. The expec-
We first determine the domain in theg=0 plane where (a40n value of its diagonal elements are the chiral conden-

plolg c?nde.nsanor) qlccurs. vsi | for th sate(uu) and(dd), whereas its off-diagonal elements give
erforming a similar analysis as below E€5-4D_ orthe - the pion condensate. To first order finf. and u? and zero
free energy akp=0 but nonzeram, T and,u., » we find that baryon chemical potential and temperature, the random ma-
the region of nonzero pion condensate is bounded by thﬁix model coincides with the zero momentum part of the
curve chiral Lagrangian that has been derived from QCD. How-
ever, the tricritical point found in lattice simulatiof34] and
in the chiral Lagrangian at nonzero temperature and isospin
chemical potential25] is not present in the random matrix
model. We therefore conclude that the pion dynamics are
(5.48  important for the emergence of this tricritical point, as was
suggested in34].
Based on the effective potential, we have obtained a phase
For asymptotically large values of the quark mass, this curveliagram for QCD at nonzero temperature and baryon and
reduces to the two expressions isospin chemical potentials. We have found a surprisingly

1
pt(pf—m?)G?— Zm?— (uf+T?) (uf—m?)?G*=0.

014009-11
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rich phase diagram characterized by the condensates in onomenological systems wheb®th wg and w, are nonzero,
order parameter field. We find that close to the critical baryorsuch as neutron stars or heavy ion collision experiments.
chemical potential a small isospin chemical potential leads t¢-urthermore, it has been shown that relativistic heavy ion
a phase witf{uu) of the order ofA%CD but(dd) reduced by collisions experiments might be sensitive to the critical end
a factor ofm/Aqcp. point in the ug-T plane for u;=0 [54,55. Our analysis

In the phase with a vanishing pion condensate, the effecshows that an increase ju, results in a critical end point
tive potential is an even function of the chemical potentialswith a lower value forug, thus making it easier to reach via
and separates into a sum of free energies for each of the tweeavy ion collision experiments. Our analysis also implies
flavors. This has important consequences. Since the effecti@at two crossovers separate the quark-gluon plasma and the
potential is even, the dependence of the partition function omadronic phase at small but nonzero baryon and isospin
ug at u=0 is the same as its dependence @nat ug  chemical potentials. Therefore the transition between these
=0. Therefore, the phase diagram for baryon chemical poyyg phases should appear smootheruat0 than atpu,
tential smaller than the pion mass can be studied reliably by g These results have important phenomenological conse-
means of the phase quenched partition function. Because gf,ences. It is essential to confirm them by means of lattice

the separability of the free energy, the critical curve far  QcD simulations or within other models.
=0 splits into two curves shifted by a distance gi,2 As

illustrated in Fig. 5, the structure of the phase diagram in the
ug-T plane is structurally altered by an arbitrarily small non-
zero isospin chemical potential, even for massive quarks. For
a fixedw,<m_/2, we find that there are two first order phase J. Kogut, K. Splittorff and B. Vanderheyden are acknowl-
transitions at small’ when ug is increased. Both first order edged for useful discussions. K. Splittorff is thanked for a
lines end at the same temperature in critical end points witleritical reading of the manuscript. D.T. is supported in part
a separation proportional ta,. The existence of two first by the “Holderbank”-Stiftung. This work was partially sup-
order phase transition lines and two critical endpoints mighported by the U.S. DOE Grant No. DE-FG-88ER40388 and
have very important consequences for the numerous phdyy the NSF under Grant No. NSF-PHY-0102409.
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