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We calculate the probabilit§*quenching weight”) that a hard parton radiates additional energy fraction
AE due to scattering in spatially extended QCD matter. This study is based on an exact treatment of a finite
in-medium path length; it includes the case of a dynamically expanding medium, and it extends to the angular
dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft
scattering approximatiofBaier-Dokshitzer-Mueller-Peigrgchiff-Zakharo BDMPS2) formalism] and in the
single hard scattering approximatiphl=1 opacity approximatioph By comparison, we establish a simple
relation between the transport coefficient, Debye screening mass and opacity, for which both approximations
lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating
qguenching weights is provided electronically. To illustrate its applications, we discuss the suppression of
hadronic transverse momentum spectra in nucleus-nucleus collisions. Remarkably, the kinematic constraint
resulting from finite in-medium path lengths reduces significantlypthelependence of the nuclear modifica-
tion factor, thus leading to consistency with the data measured at the BNL Relativistic Heavy lon Collider.
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[. INTRODUCTION the medium-induced gluon energy distribution radiated off a
hard parton in two limits which emphasize the role of mul-
Hard partons produced in nucleus-nucleus collisions atiple soft and single hard medium-induced scatterings, re-
the BNL Relativistic Heavy lon CollideRHIC) and CERN ~ spectively. In Sec. Il we give results for the quenching
Large Hadron CollidefLHC) propagate through highly ex- weights corresponding to these limits. These quenching
cited matter before hadronizing in the vacuum. The resultingveights can be calculated with the numerical subroutine ac-
medium dependence of parton fragmentation is expected tgompanying this paper. In Sec. IV, we extend these calcula-
affect hadronic observables. This is of twofold interest. Firstfions to the case of an expanding medium, and in Sec. V, we
it provides a novel test of the space-time evolution of thediscuss the extension to radiation within a finite cone. As
perturbative parton shower. Second, the modification of hadapplication, we calculate in Sec. VI in two different ap-
ronic observables due to the spatially extended, hot ang@roaches the suppression of hadronic transverse momentum
dense QCD matter allows us to characterize the properties gPectra and we compare our results to the nuclear modifica-
the transient state produced in the collision. tion factor measured in Au-Au collisions at the Relativistic
Gluon emission off highly virtual hard partons is an es-Heavy lon Collider(RHIC).
sential component in the standard description of parton frag-
mentation in elementary processes. This effect degrades the II. MEDIUM-INDUCED GLUON RADIATION
energy of the leading parton. Recently, it has been proposed FROM A STATIC MEDIUM
[1] that in the presence of a spatially extended medium, the ) ) o o
additional medium-induced energy degradation of the lead- The.mcluswe energy distribution of gluon radiation off an
ing parton can be described by a probabilR¢AE), the IN-medium produced parton takes the fof#6,7]
so-called quenching weight, which is obtained from a proba- di a.C . . o
bilistic iteration of the medlum-modlfled_elementary splitting ,,— — S—2R22 Ref dylf dylf duf dk, e ikiu
processesq—qg and g—gg. The main purpose of the do (27)°w & vi 0
present work is to calculate and compare this quenching

weight for different approximations of the medium-modified Xe—(l/z)f;dgn(g)o(u)i_ if””w Dr

splitting process, to make the results RfAE) available as dy dUJy=o=r(y,

a numerical subroutine, and to illustrate the use of this sub- _

routine with some applications. xex;{i Mg |2 n(?)a(r)) _ 2.
We start from recent calculation2—5] of the modifica- y, 2 lw

tion of the elementary splitting processgs-qg and g

—gg due to multiple scattering. These results go under thélere, k, denotes the transverse momentum of the emitted

name medium-induced gluon radiation. They present limitgluon. The limit k, =|k, |<y» on the transverse phase

ing cases of a unique path-integral expression given in Ecspace allows to discuss gluon emission into a finite opening

(2.1 below. Technically, they collect all terms to leading angle®, y=sin®. For the full angular integrated quantity,

order in nuclear enhanced modificatic@$éa A9, thus ac-  x=1.

counting for the leading additional interactions of the parton The radiation of hard quarks or gluons differs by the Ca-

shower with the medium. simir factor Cg=Cr or C,, respectively. Numerical results
The paper is organized as follows. In Sec. I, we compareare for fixed coupling constant;=1/3, except where stated
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otherwise. The properties of the medium enter E4l) in 3225 F
terms of the product of the time-dependent density) of N C

scattering centers times the strength of a single elastic sca T 2 — EBDMPS (R=0c9)
tering o(r). This dipole cross sectiom(r) is given in terms 175 F
o . 5 ) .75 |
of the elastic high-energy cross secti@(q)|* of a single F o
) S - R=40000
scatterer in the color octet representation: 1.5 L
1.25 |
a(r>=2f 99 a1 e, (2.2 1
(2m)? :
0.75
Equation(2.1) is derived by resumming the multiple scatter- 0.5
ing Feynman diagrams for the gluon radiation amplitude to :
leading ordelO( @A) in the norm and phadd]. The two- 0.25 ¢
dimensional transverse coordinatesy, andr emerge in the E

0
derivation of Eq.(2.1) as distances between the positions of 10
projectile components in the amplitude and complex conju- w/ W,

gate amplitude. The longitudinal coordinatgs vy, integrate o o
over the ordered longitudinal gluon emission points in am- FIG. 1. The medium-induced gluon energy distribution
plitude and complex conjugate amplitude, which emerge irfr(dl/dw) in the multiple soft scattering approximation for differ-

time-ordered perturbation theory. For longitudinal positionse"t values of the kinematic constraRt=wL.

&>y, for which a gluon is emitted in both amplitude and
complex conjugate amplitude, the dipole cross secaiOm) . . o
in Eq. (2.1) measures the impact parameter differendse- For arbitrary many sof_t scattering centers, the prolectll_e
tween both gluons. By Fourier transformation, this difference?€rforms a Brownian motion in transverse momentum. This
y is related to the final transverse momentkmof the emit- ~ dynamical limiting case can be studied in the saddle point
ted gluon. For longitudinal positiong < &<y, for which a approximation of the path integré2.1), using[3,8]

gluon is emitted in the amplitude but not yet in the complex 1.

conjugate amplitude, the dipole cross sectipfr) in Eq. n(g)a(r):zq(g)rz. (2.3
(2.1 measures the impact parameter differencbetween

the emitted gluon and the position of the emitting quark- - . - .
antiquark system in amplitude and complex conjugate ampIi.Here’ q(é) is the transport coefficier®] which character-
es the medium-induced transverse momentum squared

tude. Technically, this results again in the cross section for & o .
g7 Ymed transferred to the projectile per unit path length

dipole with two color octet legs. In the following discussion, . . LA A
this space-time interpretation of the internal integration vari+©r @ static medium, the transport coefficient is time inde-

ables in Eq.(2.1) plays no role. An explicit derivation and Pendent:

more detailed discussion of ER.1) can be found in Ref. 2

[4] E]: <qJ_>med
Theoretical uncertainties related to Eg.1) have at least A

two origins. First, the derivation of Eq2.1) employs the o ] . ]
high-energy approximation in which the medium acts as 4" the approximatior(2.3), the path integral in Eqe2.1) is

collection of static scattering centers and the initial partorfduivalent to that of a harmonic oscillator. The correspond-
loses a small additional medium-induced amount of its total"d analytical expressions are summarized in Appendix A.
energy,AE<E. Thus, Eq.(2.1) can be expected to be reli- Qualitative arguments [10]We consider a gluon in the

able for AE<E if the spectrumw(d1/dw) is perturbatively hard parton wave function. This gluon is emitted due to mul-
hard (which will be established in Figs. 1 and 3 below tiple scattering if it picks up sufficient transverse momentum

However, it is unknown so far, to what extent H8.1) re- to decohere from the partonic projectile. For this, the average
ceives corrections for parameter values for whialE phasee accumulated by the gluon should be of order one:
~O(E). Second, for dipole cross sectiongr) of general 2 -
functional shape, the evaluation of the path integral in Eg. :<k—lAz N%L We (2.5

(2.2) requires a further approximation. We start our study of ¢ '

the energy distributiori2.1) for a static medium by compar-

ing two approximations: the saddle-point approximation andrhus, for a hard parton traversing a finite path lerigth the

the expansion of Eq(2.1) to first order in the number of medium, the scale of the radiated energy distribution is set
scattering centers. As explained below, these approximatiori®y the “characteristic gluon frequency”

may be viewed as extreme limiting cases since they focus on

the multiple soft and single hard momentum transfer from © ZEEILZ (2.6

the medium, respectively. c 27 '

A. Multiple soft scattering approximation

. (2.9
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For an estimate of the shape of the energy distribution, w&@his is the well-knowrlL? dependence of the average energy
consider the numbeN.,, of scattering centers which add loss[2,9,12. Due to the steep fall-off at large, the w
coherently in the gluon phage.5), kf:Ncohuz. Based on integral in Eg. (2.11) is dominated by the regionw
expressions for the coherence time of the emitted gluon<we/+/2.

teon= 0/k> =\ w/q and Ngy=tcon/\ = o/ u?\, one esti- We have evaluated numerically the energy distribution

mates, for the gluon energy spectrum per unit path length, (2.1) for finite values of the density paramefrAs seen in
Fig. 1, the distribution approaches for any valuePthe
= Baier-Dokshitzer-Mueller-Peigaschiff  (BDMPS)  limit

1 tt
di 1 dim*™ e a 2.7) (2.9 at sufficiently large gluon energy. Below a critical

W= W= = . "
dodz  Neon  dodz oo @ gluon energyw, however, the finite size gluon spectrum is
_ o depleted in comparison to the BDMPS limit. To understand
This 1A/w-energy dependence of the medium-induced nonthis effect, we consider the characteristic an@leat which

Abelian gluon energy spectrum is expected for sufficientlymedium-induced gluons are radiated on average
small o< w, .

Quantitative analysisThe gluon energy distributio®.1) K2 \/w—a w321
depends not only onw., but also on the constrairit, @izi:_: _) —. (2.12
<y on the transverse momentum phase space of the emit- o’ o @We R
ted gluon. This enters the calculation via the dimensionless
kinematic constrainf11] For ®.~1, the emitted gluons are sensitive to the kinematic
constraint sinc&k, ~O(w). The condition®.~1 thus pro-
1., B vides an estimate for the gluon energybelow which the
RXZEQX L% R=R-1=ocl. (2.9 energy distribution is cut off:
This constraint is neglected in the argument leading to the o E 2B 2.13
1/Jw-energy dependence of E.7). In the following sec- w: \R ’

tions, we limit the discussion to angular fully integrated
quantities for whichy=1. The only exception will be the The position of the maximum ab(dl/dw) as a function of

discussion of the angula® dependence oby(dl/dw) in R s consistent with this dependence an see Fig. 1. In

Sec. V, where we usg=sin®. general, gluon radiation at small energies corresponds to
The limit R—< which removes the kinematic constraint gluon radiation at large angle and is depleted as soon as the

from Eq.(2.1) is either realized by extending the integra- finite size of the transverse momentum phase space becomes

tion ad hocto infinity. Alternatively,R— o can be viewed as relevant. This suppression of the nonperturbative small-

the limit of infinite in-medium path Iength since it corre- contributions he|ps to make the calculation of medium-

sponds toL—« for x and o fixed. In Appendix A, we induced energy loss perturbatively stable.

derive theR— o limit of the energy distribution(2.1), The gluon energy distributio2.1) also determines the
multiplicity N(w) of gluons emitted with energies larger
i dl  2a,Cg . W than @
imw-—= Injcos (1+i)\/=—||. (2.9
R do T 2w
©  dli(w")
. o ) ) ) N(w)EJ do’ ) (2.14
This coincides with the result of Baier, Dokshitzer, Mueller, ® do’

Peigne and Schiff[9]. As expected from the estimates in
Egs. (2.5 and (2.7), it shows a characteristic {&-energy  In the absence of kinematic constraints, and for sufficiently
dependence for smadl which is suppressed above the char-small energiesw, one finds from Eq(2.10 that the total

acteristic gluon frequency,. [1]: multiplicity diverges as Nw [1],
2a.C 2w
A2 for w<awy, limN(w)= ——2+=—=" for w<w,. (2.19
) dl 2a,.Cg 2w Res T 0}
imw—=—"— 5
R dO ™ 1w L ) )
12 % for o> w. However, realistic kinematic constraints on the transverse

(2.10 momentum phase spac®<{») deplete the gluon energy
distribution at smalkw and ensure that the total gluon multi-
glicity N(w=0) is finite, see Fig. 2.
For realistic kinematic constrainB&<10 000, the average
additional total multiplicity iSN(w=0)=<3. In comparison
. dl acC to t_he t_ypicaIIy~5— 10 semihard partons which are the par-
(AE)g_.=lim | dow—= S ch, (2.1  tonic final state of a 100 GeV jet simulated in a parton
R—oJ 0 do 2 shower, this additional multiplicity is not negligible. It sup-

The average parton energy loss is the zeroth moment of th
energy distribution
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10 The gluon energy spectrum per unit path length can be esti-

mated in terms of the coherence tirt_lgh and of the average
numbernyL of scattering centers contributing incoherently

N(w)

I e (e (218
“dwdz 10 t 0-)dsT, '

coh

This is the typical 1 dependence of the non-Abelian gluon
radiation spectrum in the absence of LPM-type destructive
interference effects.
Quantitative analysisWe have calculated the first order
in opacityngL of the gluon energy distributio(2.1). To first
I order, the entire medium dependence comes from the inter-
-3 action of the hard parton with a single static scattering center,
e = R multiplied by the numbemgL=L/\ of scattering centers
along the path. Modeling the single scatterer by a Yukawa
potential with Debye screening mags we derive, in Ap-
FIG. 2. The multiplicity of additional medium-induced gluons Pendix B,

(2.14 radiated with energy larger than. Calculation done in the
multiple soft scattering approximation. diN"1  aCg sin(r)

[ r—
® =22 (nOL)yf dr———
) ) ) dw T 0 r2
ports the naive expectation that the number of partons in the
jet increases and softens with increasing transport coefficient ( 1 1

or path length.

"7 JI(RI2y)+1+ 1P 4rRI2y]

B. Single hard scattering approximation (219

In the previous subsection, we have studied the energ
distribution (2.1) of medium-induced gluon radiation in the
limit in which the partonic projectile performs a transverse
Brownian motion due to multiple soft scattering. Now, we
consider the opposite limiting case in which the radiation
pattern results from an incoherent superposition of very few R ==,242L2
noL single hard scattering processes positioned within path
lengthL. This limit is obtained by expanding the integrand of

the energy distributior2.1) in powers of n(§)a(r)]" upto  |n what follows, we work fory=1 except for the discussion

first order[4,5,13. Analytical expressions are given in Ap- of the angular dependence in Sec. V. In the limit in which the

pendix B. kinematic constraint is removed, the characteristic
Qualltatlve argumentSWe consider a hard partonlc pro- 1/e- -energy dependence of the es’umazela is recovered

jectile which picks up a single transverse momentuniy for sufficiently large gluon energies=> w,,
interacting with a single hard scatterer. An additional gluon ¢

of energyw decoheres from the projectile wave function if

¥his energy distribution depends on the phase fagtate-
fined in EQ.(2.16), and on the kinematic constraint in trans-
verse momentum phase space,

, R=R,_;=w.l. (2.20

— N=1 .
its typical formation timet ,=2w/u? is smaller than the lim wdl =2aSCR(n0L)yj dr 1 r—sin(r)
typical distancé. between the production point of the parton o do ™ r+vy r2
and the position of the scatterer. The relevant phase is o
L o c log —| for w.>w
== . o R
Tt @ (216 ~2=Fnl){
™ T W —
—— for w<w.
4 w
which indicates a suppression of gluons with enesgiarger (2.21

than the characteristic gluon energy

This limit agrees with the results of Gyulassy, Levai, and
Vitev [13]. The average parton energy loss for a single hard
s :Eﬂgl_ 2.17) scittering is dominated by contributions from the region
¢ 2 ) ' >wC [13114]1
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FIG. 3. The medium-induced gluon energy distribution FIG. 4. The multiplicity of additional medium-induced gluons
w(dl/dw) for a hard quark in the single hard scattering appgxima—(2.14) radiated with energy larger than. Calculation done in the
tion, calculated for different values of the kinematic constrint  single hard scattering approximation.

IN=1 In Fig. 4, the additional medium-induced gluon multiplic-
do ity (2.14) is calculated in the opacity approximation. In the

absence of kinematic constrairi®s=« (R==) and for suf-

asCr — — ficiently small gluon energie&)<5(w<w) this multi-

noL)wclog E/w.]. (2.2 - . e e

2 (Nob)wclog Blw]. (222 plicity changesx1/w in the opacity approximations(1/y/w

. o _ _ ~in the multiple soft scattering approximatjorin the pres-
It is logarithmically enhanced in comparison to the regionence of kinematic constraints, the total additional multiplic-

lim <AE>N:1=_|im f doo

R—® R—

w<w, for which ity is comparable for both approximationS{w=0)=<3.
(e, dINY 2aCh — , _ _
lim dow do = (noL)we.  (2.23 C. Comparison: multiple soft vs single hard
Row” 0 @ m scattering approximation

Remarkably, the average parton energy loss receives i‘s Qualitative The squared transverse momentum accumu-
. L . — . ated by a projectile due to Brownian motion increases lin-
dominant contribution from the hard regian> w. in the

) I . early « u?nyL with path length whera,=1/\ denotes the
opacity approxn_natlor‘(2.22) bu; from the_ SOft. regione longitudinal density of scattering centers. This leads to
<. in the multiple soft scattering approximati¢.11).

We have evaluated numerically the energy distribution
(2.19 for finite values of the kinematic constraiRt In close
analogy to the multiple soft scattering approximation, the
emission of soft gluons is suppressed in the opacity approx@nd thus
mation due to the kinematic constraRt w L on the trans-
verse momentum phase space, see Fig. 3. To estimate the 1., L— ) o
scale® at which this suppression sets in, we parallel the @c¢=2dL"=y@c inthe multiple soft scattering limit.
argument leading to Ed2.12. We require that the charac- (2.26
teristic angle of the gluon emission is of order one, finding

w?ngL=qL for Brownian motion (2.25

2 [5\%1 o1 Recent applications of the opacity approximation use 1
@gz ’Lf__ AC) el — o ——, (2.24 <L/N=<3. Inthis case, the gluon energy distribution is much
w? o/ R O \/E harder in the opacity approximation than in the multiple soft
scattering approximation, see Fig. 5.
The numerical position of the maximum o{dI1™~*/dw) in Quantitative The relationw.= (noL) w, holds only if the

Fig. 3 changes 1/\/5, in accordance with this estimate. We projectile accumulates transverse momentum by Brownian
thus have a semiquantitative understanding of how phasmotion. In general, deviations from Brownian motion are

space constraints deplete the nonperturbative soft region efue to the high transverse momentum tails of the elastic
the medium-induced gluon energy distribution. scattering cross sections
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3 27 bution P(AE) of the additional medium-induced energy loss
Q 18 - which we calculate now. If gluons are emitted independently,
S f P(AE) is the normalized sum of the emission probabilities
3 16| for an arbitrary number of gluons which carry away the
14 L total energyAE:
12 F B dli(w !
P(AE)=> —|]] f ; (i) 5(AE—Z o
1k n=o N!|i=1 d =1
o8l =
Xexp— | do-—|. (3.2
0.6 0 dow
0.4 r The summation over arbitrarily many gluon emissions in Eq.
0oL (3.1 can be performed by Laplace transformatjan
% P AE)—J & e (3.2
10 ( = | 2 (v)e’=*, .
FIG. 5. The gluon energy distribution without kinematic con- P v)=exp{ _ f”dw(“(w) (1—e "oy, 3.3
straint (R, R—x) as calculated in the multiple soft scattering ap- 0 do

proximation, and in the single hard scattering approximation for

noL=0.5,1,2,4. Results for the single hard scattering approximaHere, the contouiC runs along the imaginary axis with

tion are plotted for (/\) w,= o, . Rev=0. In general, the probability distributioR(AE) has
a discrete and a continuous phti]

w? P(AE)=poS(AE)+p(AE). (3.9

_—. (2.27
m(q%+ u?)? - - - o

The discrete weighp, may be viewed as the probability that
In QED, the Coulomb scattering distribution is well repre- no additional gluon is emitted due to in-medium scattering
sented by the theory of Molie [15] and shows logarithmic and hence no medium-induced energy loss occurs. This
deviations from Brownian motion. For QCD, one can iden-weight is determined by the total gluon multiplicity
tify an analogous logarithmic term in the transport coeffi- L _ B
cient (2.3) by expanding the dipole cross secti¢h?2) Po=lim P(v)=exg —N(w=0)]. 3.9

V— 0

la(q)|?=

R dzq 1 E " . . . . ..
L=nd.L a( 2= a2co2o~ (nel) 2N /ﬂ_ For finite in-medium path length, there is always a finite
g 0 f (277)2| (@ 24 o (Mol " probability p,# 0 that the projectile is not affected by the

(2.29  medium. Only a finite number of additional medium-induced

o gluons can be emitted, see E§.5). For infinite in-medium
Here, E.,; denotes the upper cutoff of the logarithmically path length, one finds

divergentq integral. This changes E¢2.26) to
lim py=0. (3.6)

- E R—
wc=(n0L)chn\/7cm. (2.29

The medium-induced gluon energy distributiar{(dl/dw)
The logarithmic term makes the comparison between singlédetermines to what extent the total energy distribution of a
hard and multiple soft scattering approximation more diffi-given parton deviates from its “vacuum” fragmentation in an
cult. Based on Eq2.29, the curves for the single hard scat- €lementary collision
tering approximation should be shifted in Fig. 5 by a factor (tot) (vac)
In VE¢u/ u>1 to the left. For realistic valugsu= A ocp and w di —w dl + wﬂ
Ec=E sayl, we find InVE,/x<10. Thus, the above con- do do do’
clusion stays unchanged: the medium-induced gluon energ&/ i
distribution is significantly harder in the single hard scatter- Fom the Laplace transfori{8.2), we obtain for the corre-
ing approximation than in the multiple soft one. sponding total probability

(3.7)

Ill. QUENCHING WEIGHTS P(tOt)(AE):f dEP(AE-E)P™E). (3.8
0

Medium-induced gluon radiation modifies the correspon-
dence between the initial parton and the final hadron moThe probabilityP'Y(AE) is normalized to unity and it is
menta. This modification can be determined from the distrifositive definite. In contrast, the medium-induced modifica-
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tion of this probabilityP(AE) is a generalized probability. It £
can take negative values for some ranga i, as long as its
normalization is unity,

1.2
- \
L K <,
.

------ gluon jet
— quark jet

f deP(E)=p0+ f wdEp(E)zl. (3.9
0 0

In this section, we calculate(AE) in the multiple soft and i
single hard scattering approximations. The results of these 0.6 |-
guenching weights are available as@RTRAN routine[16].

0.4
A. Quenching weights in the multiple soft scattering [
approximation 0|
By numerical evaluation of the Laplace transfo(f2), i
(3.3, we have calculated quenching weigRt6AE) for the [l i e
medium-induced energy distributid®.1) in the multiple soft 0 1 10 10° 10° 10*
scattering approximation. To motivate the range of paramete| R

values studied in what follows, we relate the transport coef-

ficient g to the in-medium path length and the saturation FIG. 6. The discrete pafi, of the quenching weight3.4) cal-

scaleQq [10], culated in the multiple soft scattering approximation as a function
of R=w.L.

Qi=qL. (3.10
loses an energy fractiodE changes with these medium

The saturation momentulQs determines the total aver- properties. As expected from the normalizatit9), the
age transverse momentum transferred to the partonic projegontinuous parp(AE) shows predominantly negative con-
tile in the high-energy limit of totally coherent scattering. tributions for small value&®< 100 where the discrete weight
Phenomenological estimates fQs are very uncertain but p, exceeds unity.

QZ<(3 GeV) may be considered as an upper bound at In the limit R—c, the quenching weight was found to be
CERN Large Hadron CollidefLHC). This is also consistent fit very well by a two-parameter log-normal distributifii7].
with alternative estimateR2,6,10 for the transport coeffi- This is a heuristic observation which is difficult to connect to
cientq. To discuss in-medium path lengthsup to twice a  the analytical structure of the gluon energy distribution. Ana-
nuclear Pb radius, we thus have to explore the parametdytically, an estimate of the quenching weight can be ob-
space up tdR<40000. We choose a very small lower value tained[1] in the limit R—c from the smallw approximation
R=x?w.L3=1 in order to tabulate quenching weights for (dl/dw)=1/\w in Eq. (2.10),

the radiation outside very small opening angiessin®. All
results will be given for energies in units af; .

The discrete weightp, of the probability distribution
P(AE) is plotted in Fig. 6 as a function of the kinematic
cutoff R=w.L. It approaches unity in the absence of a me-
dium (R—0) and it vanishes in the limit of infinite in-
medium path length, see E(B.6). Remarkablyp, exceeds ;
unity for small valuesR<100. This indicates that there is a 0f
phase space region at very small transverse momentum, int -o.1 s . .
which less gluons are emitted in the medium than in the 0 025 05 075 1
vacuum. The “vacuum” gluon radiation is shifted to larger
transverse momentum in the presence of a med&mThe
decrease of the discrete weight for lafBeand its growth
above unity for sufficiently smalR both depend on the :
strength of the interaction between partonic projectile and %4
medium. They are thus more pronounced for gluons than for 0.2 |
quarks. 0F

The continuous paf(AE) of the probability distribution —02f
(3.4) is shown in Fig. 7 as a function of the dimensionless _g4t
energy fractiolMAE/w, for different values of the kinematic
constraintR. Increasing the density of the mediuiie., in-

creasing the transport coefficie) or increasing the in- FIG. 7. The continuous part of the quenching weight), cal-

medium path lengti. corresponds to an increase®f and  culated in the multiple soft scattering approximation for a hard
R. Figures 6 and 7 specify how the probability that the partomuark (upper row or hard gluon(lower row).

p(AE/w.)

1F
0.8 [
0.6 [}

p(AE/w.)

1 C L
o] 0.25 05 075 1 0 025 05 0.75 1
AE/ . AE/w,
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FIG. 8. The discrete pap, of the quenching weight calculated AE/w, AE/w,

in the single hard scattering approximation for opacigy. =1.
a Ta
Ry LY
(3.11) ters involved in this momentum transfer. This is in contrast
to the multiple soft scattering approximation which specifies
This approximation is known to captufl] the rough shape the average transverse momentum squared transferred to the

of the probability distribution for large system size, but it hasPTOJ€ctile irespective of the number of scattering centers in-
an unphysical largee tail with infinite first moment volved. Thus, the single hard scattering approximation con-

[deeP¥P% &) Also, its Maximum eg=2am/3 grows tains one additional model parameter, the opacifly.

stronger with the effective coupling;Cr than the numerical . Des_plte this d_n‘fere_nce, we want to compare th_e quench-
result in Fig. 7 ing weights obtained in both approximations. To this end, we

start from the relations

FIG. 9. The continuous part of the quenching weight calculated
in the single hard scattering approximation with opaaigiz =1 for

2a§C§ a hard quarkupper row or hard gluon(lower row).
, Where a= — .
a

B. Quenching weights in the opacity approximation Rz(noL)ﬁ, wcz(noL)ac, (3.12
We have evaluated the quenching weidBt4) for the
medium-induced gluon energy distribution in tNe=1 opac-  discussed in Sec. II C. Keeping the valuesRfw. and
ity approximation(2.19. In general, the quenching weight R, w, fixed, we “fit" the opacity noL such that the quench-
depends in this approximation on the characteristic gluoring weights obtained in both approximations show the best
energy ;C, the kinematic constrainR= Xzzcl_, and the agreement. This allows us to discuss for both approximations

opacity ngl. differences in functional shape which cannot be removed by
For the numerical results presented in Figs. 8 and 9, wé change of model parameters.
usengL=1. The gluon energy distributiom(dl/dw) de- We start by comparing th® and R dependences of the

pends linearly omgL, but the quenching weight shows a discrete weighp, calculated in the multiple soffig. 6) and
complicated dependence amlL; it has to be calculated single hard(Fig. 8 scattering approximation, respectively.
separately for each value opL from Egs.(3.2) and(3.3.  For the choiceR=3R, the curves show better agreement.
However, sincengL multiplies the Casimir factoCr inthe  However, the excess above unity i 100 is much more
gluon energy distribution, the quenching weight for gluonspronounced in the multiple soft scattering approximation,
with ol =1 is identical to the quenching weight for quarks than the excess above unity foR3 100 in the single hard

¥Vith nOLk: C.A/CF.ZE.'ZS' 8\/icedv9ersa, Lhe quen((j:hing weight scattering approximation. This indicates that the specific de-
or quarks given in Figs. ¢ and 9 can be viewed as a QUeNChig e interference effects discussed in Sec. Ill A play a

ing weight for gluons witmeL =Cg/Ca. more important role in the multiple soft scattering approxi-

mation.
C. Comparison: multiple soft vs single hard In Fig. 10, we compare both approximations in the limit
scattering approximation in which the constraint on the transverse momentum phase

In the opacity approximation, one specifies both the averspace is removed.e., R,R—). For the opacityn,L =3,
age transverse momentum square@’noL transferred to  the maximum of the quenching weight takes the same value
the projectile and the average numipgt of scattering cen- in both approximations. However, significant differences can
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FIG. 10. Comparison of the quenching weights for infinite sys- |G, 11. The gluon energy distribution calculated in the multiple
tem size R,R— ) calculated for a hard gluon in the multiple soft soft scattering approximation with expansion paramete© (solid
("BDMPS” ) and single hard“GLV" ) scattering approximation. line), «=0.5 (dashed ling a=1.0 (dotted lind, anda=1.5 (dash-
For rescaled characteristic gluon energy=(noL)wc, NoL=3, dotted ling. Curves in the right hand column are scaled according
the agreement between both probability distributions improves, se® Eq.(4.2).
text for further discussion.

(2.2). 1t will be ignored in what follows. In this section, we
be seen in the functional shape. The gluon energy distribudiscuss the range of validity and the form of a dynamical
tion is harder in the single hard scattering approximats®e  scaling law[11] which relates the gluon energy distribution
Fig. 5 and this is reflected in a more pronounced large en{2.1) in a collision of arbitrary dynamical expansion to an
ergy tail of the quenching weight. We regard the remainingequivalent static scenario.
differences between both approximations as an indication of
the intrinsic theoretical uncertainties in evaluating the gluon

o A. Multiple soft scattering in an expanding medium
energy distribution(2.1). P g P g

In Appendix C, we give details of the calculation of the
gluon energy distributiori2.1) for values of the expansion
parameterr<<3 in the multiple soft scattering approximation
(2.3). As reported previousljl1], we observe a scaling law
Hard partons produced in the initial stage of ultra relativ-which relates the time-dependent transport coefficiéri)

istic nucleus-nucleus collisions are propagating through g, an equivalent static transport coefficignt
strongly expanding medium. This results in a time depen-

IV. MEDIUM-INDUCED GLUON RADIATION
FOR AN EXPANDING MEDIUM

dence of the transport coefficie&(g) which can be param- = 2 (Lt A
etrized in terms of a power law =zl dé(&—£0)a(é). (4.2
0
a(é)=qo é) . (4.2  As seenin Fig. 11, the gluon energy distributions for differ-
& ent values of the expansion parametediffer by orders of

magnitude if plotted in units of the same characteristic gluon

The expansion parametardetermines the dynamical evolu- A . . .
P b y energywm.= 3q,L2 and kinematic constrairR= w.L. How-

tion of the medium:a=0 characterizes a static medium. A ' _ _ —
one-dimensional, boost-invariant longitudinal expansion isever, if plotted in units of the rescaled gluon energyl 2

described byr=1. This value is supported by hydrodynami- anq the rescaled kinematic constraiL3, they agree ap-
cal simulations of the early stage. In general, however, amroximately over a large parameter range.

additional transverse expansion can lead to larger vadues  Eqr practical purposes, the accuracy of the scaling law
<3. The maximal valugy, of the transport coefficient is (4.2) is satisfactory forR>100. Concerning the deviations
reached at the time of highest density of the system which ifrom the scaling law foR<100 (see Fig. 11, we make the
the formation timet,. This formation time may be set by the following comments: In practice, these deviations are negli-
inverse of the saturation scalpg, [18], resulting in  gible sincepy~1 for R<100 and thus no significant me-
~0.2 fm/c at RHIC and~0.1 fm/c at LHC. The difference dium modification occurs. Technically, the static case (
betweené, and the production time of the hard parton is =0) is calculated for a box profile in the longitudinal density
negligible for the calculation of the gluon energy distribution of scattering centers. On the other hand, in the expanding

014008-9
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scenarios, the density profile degrades more smoothly witt 3 0.07 025 F _
increasing path length, and the discontinuity at path lehgth go.os 3 =40 | 02 F [\ R=400
is less important. The strength of destructive interferences® 0.05 £ 015 b 3
M. iati .30.04 F A9 F
between medium-induced and vacuum gluon radiation de 003 b :
pends on this discontinuity. This may explain why far 002 E 0.1 3
=40 the rescaled gluon energy distribution in Fig. 11 is more g g4 3 0.05 ¢
suppressed in the static case than in the expanding case. 0 B s e e B
10103071 10 10 101063071 10 10
B. The opacity expansion for an expanding medium 3 - _
05 EF Iy _ 1F
In Appendix B, we give analytical expression for the Q g J\. R=4000 E
. . 2 .. . = 04 F . 0.8 |
single hard scattering limit of the gluon energy distribution © E : .
(2.1 in a medium with expansion parameter The analyti- 3 03 E 0.6 .
cal form of Eq.(2.1) changes with the expansion parameter ~ 0-2 F 0.4 I
a. We derive an explicit expression for the Bjorken scaling 0.1 F 0.2 £y
casea=1 O Bl ruud vl 20D 0 Pluwd rouad vid L o
- 109073071 1010° 10710701 10 100
wd|a:1:2asCR(n &) w/w, w/w,
dw T 050

FIG. 12. The gluon energy distribution calculated in the single
«dr o . hard scattering approximation for a static medi(dashed lingand
X fo rs Re —Ei[ —ir ]+In[ —ir ]+ yg] for a medium with Bjorken expansiofsolid line). Curves for the
dynamically expanding case are scaled according to(£4).

Y Y —
r+ 7_ JZHr+v)2— 42 ) (4.3 In the regionw<w., significant deviations from the scal-
ing law (4.4) are seen in Fig. 12. However, the logarithmic
plot overemphasizes the importance of these deviations.
nential integral function is Ee]= -/ dte Yt. First, they occur in the sub dominant region which is less

To relate the gluon energy distributions for a static me_lmportant for calculating the quenching weights. Second,

o o . ’
dium (2.19 and a Bjorken scaling expansiof.3), we deter- these deviations do not exceed 30/(? in the ph_y5|_c_ally rel
mine the dynamically averaged density of scattering center§Vant parameter range 19&R<40000 in which significant

Here, yg~0.577 - - denotes Euler’'s constant and the expo-

following Eq. (4.2) medium modifications can be expected.
For practical purposes, the scaling l&4) is thus satis-
2 [Leg 2 factory. Quenching weights for a dynamically expanding sce-
= de(é—&)n(é)= 050 (4.4 nario can be obtained by calculating the quenching weights
L2) ¢ L of the dynamically equivalent static scenario according to
Eq. (4.4).

This equation suggests that the gluon energy distributions in
the static and Bjorken expansion case show agreement if the

prefactor f1,&,) in Eq. (4.3) is replaced byinL wheren
determines the density of scattering centers of the equivalent
static scenario. In Fig. 12, we test this suggestion numeri- The maximal angle under which a gluon can be radiated is

cally for different values of the kinematic constraRt given by the upper bound on the transverse momentum inte-

Remarkably, for sufficiently large kinematic constrait gral in Eq.(2.1),
>100, the gluon energy distribution shows dynamical scal-
= max
ing according to Eq(4.4) for gluon energieso> w. . This is O~ L _ (5.1)
the dominant kinematic region in the opacity expangsee 0 X '
the discussion in Sec. Il B, E42.2]) ff]. Thus, despite the

deviations from the scaling law fap<wc, the logarithmi-  Thys, for fixed values of the characteristic gluon enesgy
cally enhanced contribution to the average energy loss  ang of the kinematic constraif®=w.L, a decreasing value
No1 of sz)(zwcL determines the medium-induced energy radi-
<AE>N:1=f dwwdl 4.5 ated into a cone of opening ang&. In this section, we
d ' denote explicitly the dependence of the quenching weight
P(AE,w¢,R,) on o, and x’R. This quenching weight de-
shows scaling19] with Eq. (4.4). This is also known to hold termines the probability that an additional energy fraction
in the soft multiple scattering approximati¢@0] and it is  AE is radiatedinside the opening anglee=0. From the
consistent with results obtained on the basis of twist-4 matrixigs. 1 and 3, we know that the more collinear component of
elementq21]. the medium-induced gluon radiation is harder.

V. ANGULAR DEPENDENCE OF
RADIATION PROBABILITY

014008-10
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__ R=R=2000 scattering approximation, however, the dominant radiative
S o2 SeV 'F < | contribution lies in the soft regiom< w. which is emitted
=k= I ame values . .
< : " Gemw=31 GeV : with L/A=1/3 unAder ;4elat|vely large opening angles® >k, /w,
... R=R=400 k ~q1’4/w§ . For smaller opening angles, the average energy
w.=w.=15 GeV

loss (AE)(®) does not increase further. Indeed, multiple
soft scattering results in a shift in transverse phase space
which is known to depletd AE)(®) at very small angles
[6,22]. Thus, in the multiple soft scattering approximation,
there is no ultraviolet divergence at small anle
L N _ To compare the single hard and multiple soft scattering
e T approximations fo{ AE)(®), we proceed in analogy to the
angle (degrees) angle (degrees) discussion in Sec. Ill C: varying the opacity, we find the best
agreement between both approximations fgl=3. A
FIG. 13. The average energy logs3) radiated outside an angle qualitative difference which cannot be adjusted by the choice
0 as calculated in the multiple sofiower three linesand single o the additional model parameter,L persists for small
hard(upper three lingsscattering approximation for a jet of energy angles only. Its origin is explained above. Thus, Fig. 13 in-

E=100 Gev. dicates that for comparable sets of model parameigrsR

For fixed values ofw, and R=w,L, the gluon energy and wc, R, noL, respectively, the multiple soft and single

distribution radiateautsidethe opening angl® is given by  hard scattering approximations lead to a comparable angular
dependence ofAE)(®) for @>10°.

The calculation of the angular dependence in Fig. 13 was
done for quenching weights calculated for a static medium.

(5.2 In general, the dynamical scaling laW.2) and (4.4) relate
these to the quenching weights of dynamically expanding
scenarios. However, this is not the case for the small values

L/A=1

|=© dl dl
wm(wc,R)Zwa(wc,R)—wa(wc,RX)-

The probability that an additional energy fractiare is ra-
IdnlgteE%Ol(JéSg?mg ?rﬁ)ee %lgi'iingg]sfg”l.s(; g)tal(rée:(;)bl):/c;?stﬁg R, R<100 which eontgr the calculation of the small angular
current work, we did not calculate this probability; there is 9€Pendence® <10°) in Eq.(5.3). For these small values of
no simple way to obtain it without Mellin transform directly R, R, dynamical scaling breaks dowsee Figs. 11 and 12
from the quenching weights tabulated in Sec. Ill. Since typical jet cone openings correspond to larger angles
The calculation of the average energy lamstsidean  ®>10°, we did not make an effort to quantify the remaining
angle® is simpler. It can be calculated from the quenchingdependence of AE)(®) on the collective expansion of the

weights tabulated in Sec. IlI collision region.
41>@ In the multiple soft scattering approximatiofAE)(®
(AE>(®)=J dow——(w;,R=wl) =0) is finite. Baieret al. observed23] that the ratio{AE)
do X(0)/{AE)(®=0) is a universal quantity which depends
. solely ongL3®. Figure 14 shows that this statement remains
Zf dEE[P(E,0¢,R=wcl) approximately true in the presence of a finite kinematic con-
o straintR.
—P(E,0¢,R,=x’wcL)]. (5.3

In Fig. 13, we compare the angular dependence of the aver-  \, AppLICATIONS OF QUENCHING WEIGHTS
age parton energy log$.3) in the multiple soft and single

hard scattering approximation. In this section, we use quenching weights to calculate in
In the single hard scattering approximation, the integrakwo alternative ways the medium-induced suppression of

(5.3 diverges logarithmically in the ultraviolet fox=0 hadronic high transverse momentum spectra. In Sec. VI A,

—0. For the calculation of AE)N~1(®=0) in Eq.(2.22,  we determine the quenching fact®(p, ) and in Sec. VI B

we have cut off this divergence by limiting the energy radi-we calculate medium-modified parton fragmentation func-

ated away tow<E. For the plot in Fig. 13, we restrict in- tions. In Sec. VI C we finally discuss the relation of both

stead the calculation to sufficiently large anglgor which  calculations to the nuclear modification factor measured at
the second term in Eq5.3) provides an ultraviolet cutoff. RHIC.

Thus, for small angle® <10° whereAE~E, one overesti-
mates(AE)N=1(®).
In the single hard scattering approximation, the region A. Quenching factors for hadronic spectra
>w, is dominant. This hard part of the spectrum is emitted  The medium-dependence of inclusive transverse momen-

under angles®<,u/;C and thus appears as a logarithmic tum spectra can be characterized in terms of the quenching
enhancement in the collinear region. In the multiple softfactor[1]
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q=1 GeV:/fm

n=4, L=2fm n=4, L=5fm
~ 1
2 I .
<08 BDMS
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0.4 | — W=
0.2
~ 1
£
<08 ,
Same cuts with
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0.2
| | ' | |
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the multiple soft scattering approximation as a function of the re-

scaled parametey(L/2)%0.

domedp, )/dp?
Q(py)= dgvac(pi)/dpf
do'®(p, + AE)/dp?
:fdAEP(AE) LT )2“
do'®(p,)/dp?

(6.9

Here, the spectrurdo{p, )/dp? is unaffected by medium
effects; it is determined, e.g., in proton-proton collisions.
Equation(6.1) relates it to the medium-modified transverse
momentum spectrundo™qp, )/dp? measured, e.g., in
nucleus-nucleus collisions. We work in the longitudinally
comoving frame in which the total energy of the produced
parton is directed orthogonal to the beam. Due to the pre
ence of the medium, a parton produced initially with trans-
verse momentunp, +AE loses an additional energ&E
with probability P(AE). This defines the quenching factor
(6.1).

If one assumes a power law fall-off of thee spectrum,
then the quenching factd6.1) can be calculated explicitly,

)n
In general, the effective powerdepends omp, and+/s. Itis
n=7 in the kinematic range relevant for RHIC.

To compare directly to published resuly, we calculate
the quenching factof6.2) in Fig. 15 for parameter values

Py

Q(m)=f dAEP(AE)

used previously. The transport coefficient is taken to match

expectations for a hot mediufn=(1 GeV)’/fm. Given the
in-medium path length., this definesw, andR in the mul-

tiple soft scattering approximation. In the single hard scatter-

ing approximation, parameters are chosen for opaajty
=1 by identifyingR=R andw.= w.. The effective powen
in Eq. (6.2 is set to its asymptotic value=4. To be quan-

S

FIG. 15. The quenching factd6.2) calculated in the soft mul-
tiple scattering approximation far,=1/2. Upper row: calculation
in the R—« limit but with a varying sharp cutoff on the infrared
part of the gluon energy distributiom(dl/dw) determining the
guenching weight. Lower row: the same calculation is insensitive to
infrared contributions if the finite kinematic constraiRt= oL
<o is included.

titatively comparable with Ref.1], we usea =1/2 in Figs.
15 and 16 while all other numerical results are given for
as=1/3.

Figure 15 shows the numerical results obtained in the
multiple soft scattering approximation. The perturbative cal-
culation of the gluon energy distributio@(dl/dw) cannot
be trusted for soft gluon energies~O(Aqcp) Where per-
turbation theory breaks down. To quantify the sensitivity of
their calculation to this infrared region, Baier al. [1] intro-

n=4, L=2fm n=4, L=5fm
—~ 1
£
Co08
0.6 GLV
- W =500MeV
o4ry e Wen=300MeV
- W a=100MeV
0.2 H —_ cowFO/’/
~ 1
£
<08 |-
0.6 - .
Same cuts with
R <o
02 | /
! 1 . ! 1
0 50 100 0 50 100
p(GeV) p(GeV)

FIG. 16. The same quenching fact@.2) as in Fig. 15, here

calculated in the single hard scattering approximation.
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duced a sharp cutoff on tHe— gluon energy distribution
which was varied betwees. =0 andw.,~=500 MeV. The
resulting uncertainty is seen as=a20% variation of the
guenching factoQ(p,) in the upper row of Fig. 15. How-
ever, the finite kinematic constraiRt= w L <« depletes the
infrared region of the medium-induced gluon radiation spec-
trum (see Fig. 1 This constraint, which is a generic conse-
guence of a finite in-medium path length, removes almos
completely the sensitivity of the calculation to the uncon- 0.4
trolled infrared regior(see Fig. 15, lower royy Remarkably,

0.8 [

nching Factor
Qo
~
T

Que

it also tends to flatten thp, dependence of the quenching 03 g Mult. soft. R=2000, w,=67 GeV
factor. We shall return to the consequences of this observa T . Single hard R=R, &.=w
il/(ljnc.when we zoom into the regiop, <10 GeV in Sec. 02 e Single hard R=R/3, @.=w./3
We have calculated the quenching faci@1l) in the f | L | | | | . |
single hard scattering approximation, see Fig. 16. Since the %1 07"20""20 60 80 100 120 140 160 180 200
dominant contribution comes in this case from the hard part p(GeV)
t

of the spectrumw™>w,, the sensitivity to the infrared cut
weyt IS Mmuch reduced in compariion to Fig. 15. However, FIG. 17. Comparison of the quenching facté:.2) calculated

realistic finite kinematic constrain® remove a much larger for «s=1/3 and effective powen=7 in the multiple soft, single
part of the soft spectrum. As a consequence, the absolufard, and rescaled single hard scattering approximation.
value of Q(p,) increases significantly if finite kinematic . o .
constraints are imposed, and fhe dependence tends to flat- For notational simplicity, we do not denote the additional
ten. convolution ofdg9 with the (initial state parton distribu-

In Sec. Il C, we observed that for the quenching weightsions. The leading hadroh carries an energy fractioa

the best agreement between single hard and multiple soft En/Q qf the total virtuality of the par_tonic collision, which
scattering approximation is fan,= 35C  R=3R, noL=3. is a fractionx=E,/E, of the energy of its parent parton. The

Remaining differences come from the fact that the singléaarlfert]:] parton (t:arrlets tr:e energz/hfractbplzlliq/Q. ddi
hard scattering approximation shows a dominant contribu- e parent parton loses with probabili(e) an addi-

tion for o> w. while the multiple soft scattering approxima- :L?Q?;:giirg%;?gfitzﬁg %ﬁepr:'lo(;ftg hz(:trg:l\fviiittfln()’vy;r;n-
tion shows a dominant contribution fas<<w.. However, g g p

: ! i ergy (1-¢€)E; thus, it carries a larger fraction/(1—e€) of
the quenching facto@(p. ) for_small P, is sensitive only to the initial parton energy. The inclusion of this effect amounts

the soft regionw<w., (w<wc) in both approximations. replacing the fragmentation functidhh,q(x,Qz) in Eq.

This is so because medium-induced gluons cannot camys 3) by the medium-modified fragmentation function
away more than the total energy, of the parent parton, and [24,25

hence w<Eq<w. at smallp, . Thus, the simple relation

w.=3w;, R=3R does not hold fop, <w,. This is seen in 1 1 X

Fig. 17. The dominant multiple soft scattering approximation Dmed)(x'Qz): fo dfP(f)EDh/q(E’Qz)-

results in a much stronger suppression than the single hard (6.4)
one calculated for rescaled parametes 3w., R=3R.

To calculate Eq(6.4), we use the recent LO fragmentation
functions of Kniehl, Kramer, and ®er [26] (KKP). These
improve over previously available parametrizatiof#7].

Medium-induced gluon radiation off hard partons modi- However, the KKP parametrization still shows significant un-
fies the fragmentation and hadronization of final state pareertainties in the largg-region relevant for hadronip,
tons, thus affecting hadronip, -spectra. In Sec. VI A, we spectra[28]. For alternative approaches towards medium-
calculated this effect in terms of the quenching factormodified fragmentation functions, see Rd9,30Q.

Q(p,). Alternatively, this quenching factor can be deter- We have calculated the medium-modifige~# and g
mined from medium-modified fragmentation functions, — 7 fragmentation functiong6.4), using the quenching
which we discuss now. weights in the multiple softFig. 18 and single hardFig.

In the QCD-improved parton model, hadronic cross sec419) scattering approximation. The energy of the parent par-
tions for highp, hadroproduction are calculated by convo-ton is set to the virtuality of the hard processl| E,~ Q.
luting the perturbatively calculable hard partonic cross secThe medium-induced fragmentation functions decrease with
tion do® and the (final state¢ fragmentation function increasing density of the medium since the probability of a
Dh,q(x,Qz), parton of initial energyE, to fragment into a hadron of large
energy XE, decreases with increasing parton energy loss.
They should be trusted for sufficiently large momentum frac-
tions (x>0.1 say only. The reason is that the hadronized

B. Medium-modified fragmentation functions

dod

dy )dth,q(x,QZ)dx. (6.3

dUh(Z,Q2)=(
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quark gluon

—— KKP, no medium
R=350

~~~~

FIG. 18. The medium-modified fragmentation functi@y) for
Q?=(10 GeVY calculated in the multiple soft scattering approxi-
mation for a medium of length=6 fm.

remnants of the medium-induced soft radiation are not in-

cluded in the definition of Eq(6.4). These remnants are

PHYSICAL REVIEW D 68, 014008 (2003

To estimate the corresponding suppression of lgh-
hadronic spectra, we exploit that the fragmentation function
in Eq. (6.3 is weighed by the partonic cross section
dof/d pf (we work in the frame in which the total energy of
the produced parton goes transverse to the heémthe
kinematic range relevant for RHIC\6=200 GeV andp,

~10 GeV), one finds[31] do%dp?~1/p"P) with

n(Vs,p,)~6. Thus, Eq. (6.3 effectively tests
x"(sPOD(ed(x, Q). The suppression factor
6 (med), 2
X ath/ (Xma !pL)
Ret(pL) = . ‘ - |pL:Xma>£q (6.6

6 2
Xmath/q(XmaXv pj_)

provides a simple estimate of the reduction of hadrgnic
spectra. In EQ.(6.6), Xna.x denotes the maximum of
x"(SPOD R (x, Q%) and corresponds to the most likely en-
ergy fractionp, =XxmnaEq of the leading hadron. The sup-
pression factor can be read off easily from the lower rows of
Figs. 18 and 19. We now compare this suppression factor to
the quenching facto®(p,) in Eq. (6.2).

C. The nuclear modification factor

Experimental situationPublished data for AttAu colli-

soft—they can be expected to give an additional contributiorsjons at/sy=130 GeV show forp, <6 GeV a suppres-

in the regionx<<0.1. The neglect of these remnants in Eqg.
(6.4) implies that the normalization @y “(x,Q?) is a fac-
tor [deeP(€) too small,

fldxxD(med)(x)zfldxth (x)f de(1—€)P(e)
0 h/q 0 /q .

(6.9

For the suppression of highy hadronic spectra, this normal-
ization error is unimportant since the main contribution
comes from the region of larger

quark gluon

Dn/i(x 'Qz)

e} —— KKP, no medium
\iO‘OOS ...... R=350

r< N A N B IR R=1700
Pr ooo6 r [/ W . R =3500

X

FIG. 19. The medium-modified fragmentation functi@y) for

sion of neutral pior{32] and charged hadrof82,33 trans-
verse momentum spectra if compared to spectrgp
collisions rescaled by the number of binary collisions. This
suppression is most pronounceg to a factor~5) in cen-
tral Au+Au collisions and smoothly approaches the binary
scaling case with decreasing centrality. Within error bars, the
suppression factors af® and charged hadron spectra agree,
though central values for the suppression=df production
are slightly lower[32]. In addition, a maximal azimuthal
anisotropyv,(p,) of hadroproduction is found to persist up
to the highest transverse momentliB®—36. These data
indicate the importance of final state medium effects up to
p, <6 GeV.

Preliminary data shown at the Quark Matter 2002 confer-
ence confirm these findings for AtAu collisions at+/syy
=200 GeV; they extend many observations up (o
~10 GeV. In particular, data for the nuclear modification
factor show an approximately constant maximal suppression
within 6<p, <12 GeV for charged hadrof87-39 and up
to p, <8 GeV for 7° spectrg40,41]. The azimuthal anisot-
ropyv,(p,) of charged hadrons stays close to maximal up to
p, <10 GeV[42]. Moreover, the disappearance of back-to-
back highp, hadron correlationf43—45 provides an addi-
tional indication that final state medium effects play a deci-
sive role in hadroproduction up i@, ~10 GeV.

Theoretical situation Parton energy loss has been pro-
posed to account for the small nuclear modification factor
[17,21,48, the azimuthal anisotropyl9,47—50Q and the dis-
appearance of dijet51,57. Quantitative studies indicate,
however, that in the kinematic regime relevant for RHIC
(p. <12 GeV), p, broadening52,21], shadowing[46,21],

Q?=(10 GeVY calculated in the single hard scattering approxima-formation time[17], and possibly other effects contribute to

tion for a medium of length. =6 fm.

the highp, nuclear modification as well. Indeed, models
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1 [ =6 fm. As a consequence, we do not compare to the central-
Au+Au 200 GeV. PHENIX preliminary ity dependence of the nuclear modification factor for which a
realistic distribution of in-medium path lengths and their im-
pact parameter dependence is needied\We do not calcu-

) — Quen. Factor late the hard partonic matrix elements entering, e.g., Eq.
07k Multiple soft scat. e Usiing FF (6.3). Instead, we determine the quenching factors directly

s 9 from Eqgs.(6.2) and(6.6). As a consequence, we do not know

Y- 20— Quen. Factor thep, -dependent fractions of hard quarks and of hard gluons

N=1 opacity exp. Using FF which fragment into a leading®. Since parton energy loss

09 F

08 F

is different for quarks and gluons, we plot in Fig. 20 the
s limits for which all parent partons are quarks or gluons, re-
0.4 F + + quark spectively. The realistic curve lies in between these limits.

05 F

Ra Nuclear modification factor

Since the ratio of parent quarks over parent gluons increases
with p, , the p, dependence of the realistic curve will be
slightly steeper than the limiting cases presented in Fig. 20.
From Fig. 20, we can draw several conclusions. First, the
two definitions of quenching factors in terms of hadronic
spectra(6.2 and in terms of fragmentation functiori6.6)
lead to quantitatively comparable results. Second, the mul-
tiple soft and single hard scattering approximations for par-
ton energy loss lead to quantitatively comparable results. The
slight variations inp, slope should be regarded as theoretical
uncertainties in approximating E¢R.1) and do not give any
preference to either approximation scheme. Third, a calcula-
tion based on partonic energy loss only can reproduce the
magnitude of the observed nuclear modification factor.

0.3 F
0.2 F

0.1 f

FIG. 20. The nuclear modification factor far® production
[40,47] compared to model calculations involving parton energy
loss only. The lines show the quenching factér2) with effective
power n=7, and the suppression fact@6.6) calculated from

medium-modified fragmentation functions. They are given in the'vI . Its | hall d d hich
limiting cases where all parent partons are either quadgper oreover, it results in a very shallow, dependence whic

lines) or gluons(lower lineg. Calculations in the multiple soft scat- S€€MS Consis_tent with _the current quality of experimenta_l
tering approximation us&= 2000, ».=67.5 GeV, corresponding data. For an interpretation of the model parameters used in

to g=0.75 Ge\¥/fm and L=6 fm. In the single hard scattering Fig. ,20' we use for a Bjorken'scaling expansiqnz(l) the
o = o — relation[11,19 between the kinematic constraiRtand the
approximation, we USR=R, w.= ..

initially produced gluon density

have been proposed which account for hadronic quenching L2 dN9

without taking recourse to parton energy loss. Instead, these R= ? d_y (6.7
models invoke string percolatiofb3], small hadronization A

time argument$54], saturation physicgs5], the dominance \yhere R, denotes the nuclear radius. The extracted value
of parton recombination over parton fragmentatj&6], or dN9/dy=2000 is approximately a factor 2 larger than a pre-
initial state formation time argumenf57]. The consistency \jo,s estimatd19] based on data from elliptic flow. Given
and applicability of these models is currently under debateye theoretical uncertainties of parton energy loss calcula-

For thep, range accessible to RHIC, the competing had-jons pelowp, <10 GeV, this factor 2 mismatch constitutes
ronic effects may make it difficult to disentangi@antita- |, inconsistency.

tively the contribution of parton energy loss from the mea-

sured hadron_ic suppression pattern. The transverse phase VIl. CONCLUSION
space accessible to LHE( <200 GeV) may turn out to be
a qualitative advantage with this respect. In recent years, phenomenological applications of

Model comparisonin Fig. 20, we compare the two defi- medium-induced parton energy loss were based mainly on
nitions (6.2) and(6.6) of the quenching factor to the nuclear two different approximations of the medium-induced gluon
modification factor measured by the PHENIX Collaborationenergy distribution: the multiple soft BDMPS-Zakharov
in the 7% spectra[40,41] of central AutAu collisions at (BDMPS2) scattering approximation and the opacity ap-
Jsyn=200 GeV. We do not include the nuclear modifica- Proximation. It remained unclear, however, to what extent
tion factor for charged hadron87-39 in Fig. 20, since these approximations differ. Here, we have studied in both
charged hadrons are likely to be dominated at highby  approximations the medium-induced energy distributions
baryons whose production mechanism may involve addi{Sec. I), the corresponding quenching weigk&ec. 11, and
tional nonperturbative effec{$8]. the extension of these calculations to dynamically expanding

Our comparison makes several simplifying assumptiongollision regionsSec. 1V), and to the angular dependence of
which can be improved in further studie§) We do not the medium-induced radiation pattef8ec. \). The single
model a realistic space-time geometry of the collision. In-hard scattering approximation is dominated by the hard re-
stead, we work for a fixed in-medium path length  gion w>w. of the gluon energy distribution while the mul-
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tiple soft scattering approximation is dominated by the soft
regionw<w.. Despite this difference, both approximations
lead to quantitatively comparable results if comparable sets
of model parameters are used. Numerically, we determine the
correspondence

R=3R, (7.0

w.=3w,,

which relates the BDMPS transport coefficiemtand the
Debye screening mags® via an opacitynoL~3, see Eq.
(3.12. Deviations from Eq(7.1) can be understood in terms

of kinematic constraints on the hard part of the gluon energyyhere

distribution (see discussion of Fig. 17

The main result of this paper is the calculation of quench-
ing weights in Sec. Ill. We explained how to calculate from
these quenching weights the nuclear modification of had-
ronic spectra. There are indications that the interpretation of
RHIC data on hadronic quenching requires additional phys-
ics effects beyond the parton energy Idsee discussion in
Sec. VI Q. However, to discriminate energy loss contribu-
tions from these additional effects, a quantitatively reliable
discussion of the current theoretical calculations of parton
energy loss is needed. We hope that the CPU-inexpensive
subroutine for quenching weights which accompanies this
paper will prove a valuable tool to this end. Also, this routine
can be used to explore observable consequences of partgﬂ
energy loss in nucleus-nucleus collisions at LHC or for pro-
cesses in cold nuclear matter.

d
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1 L L
l4= 722 Refo dy, Jyldy|16A§

|1

iA;B4(xw)?
4(D,—iA4B,)?

exg - X1 (A2)
P T 4(D,—1A,B,)? '
1 L 4Ag i(yw)?
I5=5Refody|B—5 eXp{_4ASB5]_1}'
(A3)
A ©l Bs=co§Q(y,—yy)]
= — s =CO — s
T 2soh-yl Yoo
(A4)
1 _

D4: Enoc(L_yL), (AS)
As—my Bs=cogy,), (A6)
/q

Q=(1+i)\ 7 (A7)
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APPENDIX A: THE BDMPS-LIMIT OF THE ENERGY
DISTRIBUTION (2.1) L
Here, we establish that tHe—o limit of the gluon en- F!'LanS_ ~2Re 0 dy'sin(Qy,)cos{QyQ'
ergy distribution (2.1) coincides with the BDMPS result (A9)

(2.9). Using the saddle point approximati¢ 3), the energy

distribution (2.1) can be written in the form given in Egs. Both integrals are logarithmically divergent but this diver-

(A11) and(A12) of Ref.[6]. Integrated over transverse mo- gence cancels in the sum

mentum 6<k, < yw, one finds

dl

a)%:

(A1)

AsE
—(I4+15),
(1 +1g)
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lim (I,+15)=2Reln[cogQL)].

R—x

(A10)

This coincides with the BDMPS resul2.9).
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APPENDIX B: GLUON ENERGY DISTRIBUTION diN=1

TO FIRST ORDER IN OPACITY 0] =4

do
In this appendix, we calculate the first order in opacity of
the gluon energy distributio(®.1) for a Yukawa-type elastic

PHYSICAL REVIEW D68, 014008 (2003

asCR 0

f qdqZg?/L)

(B8)

scattering center with Debye screening mass

2

% y
X — .
(\/(K2+q2+ y)?=4K’g®  Q*+y

(1) For the static case=0, the phase factdB5) reads

y73
a(@)*=———5- (B1)
m(q°+u) .
= —LQy+sin(LQy)
. o Zo-0(Q1)= . (B9)
According to Eq.(6.4) of Ref. [4], the energy distribution Q1
takes the form
and
diN=? 2Cg (xo (= 2
0 g = Mok [ Caa—— dINE _,aCr ¢~ sin(?)
do (2m)° w° Jo o w(q-tu) S (nOL)yJ gqdq —4
Xk'qZ(Qle)! (BZ)
1 1
where Pty (kP + QP+ v)2— bR '
Q:_v 1= (BB) . . 2 .
20 20 Substitutingr = g2, we find Eq.(2.19.
(2) For the Bjorken scaling case=1, the phas€B5)
and reads
o] © [— g . . )
Z(Q,Q1)=|imRef dyf dye” "¢ Z,- 1(Q1)—Q—°Re[ e'Q1%(Eil —iQy(L+&o)]
e—0 éo y
y 0\ oo —E[-iQ g])+|ni
Xf dgno(g) e_|Q(y_§)_|Q1(§_Y) (B4) 160 L+§0
y
&o :
= —RgEI[—iQ;L]—In[—iQ,L]
No—- Q1
Eaz(Ql)- (B5)
—vetO(&/L)]

Irrespective of the value of the expansion parametein
(B4), the expression factorizes in the foli®5). In order to
simplify Eq. (B2), we shift the integration variables hy

—g—k, k—=ky2w/L andg—qy2w/L. This leads to

& ffinL e '-1
d
TQ E{ B

+O(§0/L)}.

(B11)

N1 Here, ye=0.577 - - is the Euler constant and the exponen-
wd' _ asCr de de J tial integral function Ei is defined in the text following Eq.
do 0 0 e 0 ok (4.3. Corrections of orde®(&,/L) can be ignored since the
time of production¢, is much smaller than the in-medium
1 (l) No ( 219, path lengthL. With this approximation, one has
k?+ 2kqcose+qg?+y) \ 27/ L e
a= a = qdq
(B6) 0y ( oéo) _Re[ Ei[ —ig?]
@ q°
where +|n[—iq2]+ '}/E]
B w?L B ol R 57 % Yy _ Y )
20 *XN2 TNz o B0 g2y )7 4K

The ¢- and k-integration in Eq.(B6) can be done analyti-

cally,

(B12)

Substitutingr =2, we find Eq.(4.3).
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APPENDIX C: THE DIPOLE APPROXIMATION iw F{ —iw
FOR AN EXPANDING MEDIUM K(rq,yq1:r2, = expg —
(FaYaifa Y2l =550y -y &R~ 25(y,.y,)
In this appendix, we follow Refl20] in giving explicit
expressions for the path integi@l.14) in the dipole approxi- X (Cqr2+cor22—2r,.- rz)} (C10
mation
K(ry1,y1:r2,Y5| o) We consider three cases.
(1) The casex<2. For this case, explicit expressions for
o (v2 [, Q2(&) ) Eqg. (C10 are given in Appendix B of Refl20]. The two
:f Dr ex 'EJ dé| ro- £ R independent solutions of the homogeneous differential equa-
ya tion (C5) are
€D \/’ 1/2
(&)= el [2vQ, ", C11
Equation(C1) is the path integral of a 2-dimensional har- 18 =vehl (&)£7] (19
monic oscillator with time-dependent imaginary frequency f,(&)= VEK [20Q (&) EY?"], (C12
0%(&) _ a(é) o i o|“ ©2 wherel, andK, are modified Bessel functions with argu-
I 2w 2w\ & ment
andmassw. The solution of Eq(C1) can be written in the = 1 (C13
form [20] 2—a’
w . H — i a
K(Fy,Y1:r2,Yol @)= DUy 7 extiSy(r1,Y1:r2.Y2)]- In terms of the variabl¢useQ (&) = V—1(go/2w) &3]
(C3) 2(6)=2vQ (&) £, (C19
Here, the classical actiog, in Eq. (C3) takes the form the solution(C10) is given by[20] [we usez=z(¢), z’
. ] " =2(¢")]
Sa(r1,Y1:r2,Y2) = 2 rea(é)- d_grcl(f) , ) (CH , 2, ’ ’
2 D(¢.é )ZW(ZZ)V[U(Z)KV(Z )
14
where the classical patfy (&) satisfies the homogeneous dif- 50
ferential equation -K, (2)1 (2], (C1H
&> 0Q%&) Y
@ g |O=0 (o2 =2 = | [1,-1(2K,(2)+K, 1(2)1,(2)],
(C16)
with initial conditions ,
z
ra(ypy)=ry andry(yz)=r,. (Co) szzl(;) [Ku(2D)1,-1(Z") +1,(2)K,_1(Z")].
The fluctuation determinar(&,£’) in Eq. (C3) satisfies (C17)

2 02(&) (2) The casex=2. In this case, the two independent so-
{——a—olD(é,E'FO, (C7) lutions of the homogeneous differential equati@@b) are
dé? & f(£)=MAA  and  f,(£)=VAATA  \where A

L . = \/1+4Q§=2(§0). From this, one finds
with initial conditions

1
d , D(£,&)= 1 (&£&)MAMAEA—gh), (C19
D(§,§)=0 and d—gD(é,f Ne=er=1. (C8) A
~(2)(1-A) :
In practice, D (&,¢’) is found by combining the two indepen- - 1+A[ € LA REA
dent(scalay solutionsf,, f, of Eq.(C5), OA g A ¢
, . , (C19
D(&E)=MFi(§)f2(E") - 2(§F1(EN)] (C9
1THA[ &) "WRA-A 1Al ¢ (112)(1+A)
and fixing the norm\ by the initial condition(C8). The Co= —— _) R
solution of Eq.(C1) can be written in terms dD(&,&') and A ¢ Ay
two ¢- and &’ -dependent variables;, c,, (C20
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(3) The caser>2. In this case, the solutidi€15—(C17) 1 Lté L+ [ —4AZD,
has the argument l4=—52 ReJ dy|J dy, félz
B 4o £ vi (D4—iA4B,)
2(£)=2|v|Q (&) E"". (C2)) 735 12 5
i
Modified Bessel functions with negative index can be ++“3> exg — ——————|, (C26)
avoided with the help of the identitie€,(z) =K _ (z) and (D4=iA4Bo)") | 4(D4=iA4By)
[,(2)—1_,(2)=—2[sin(vm)/7]K,(2).
! ’ ’ ’ —i [ k2
D(&,&")=2vVEE [1,(DK,(2)~K, (21 (2], _t f“% e i
(C22 Ig wRe o dy, gexp '4ASB5 , (C27
é:l 1/2v ’
c1=2|v| g§ Qa(&)l,-1(2)K,(2") where
+K,—1(2)1,(2")], (C23
A= ——, By=cy(y;, ),
£ , 4 2D(y, .y)) a=C1(y1,Yi
C2=2|v| E% Qa(&)[K(DN,-1(Z") (C29
+1,(2)K,-1(z")]. (C249 54:%jj+§od§n(§)g(r),
With the solution(C10), the radiation spectrum can be writ- .
ten as the sum of three contributiof&
w
At 1 do g divao g As=s——5——, Bs=ci(L+&.y).
- - __3 - 4 2D(L+ &,
G0 = o du= 2 Crllatlstle)= ——+ 5. (L+&o0.y1) 29

(C29

Here, Iezllkf is the medium-independent vacuum gluon In the casex=0, the functiond .. 15(z) andK..1/x(z) enter-
energy distributionl , andl 5 determine the medium-induced ing Eq.(C10) have explicit expressions in terms of exponen-
partdl/dw studied in this paper. They can be computed intials. One recovers the known expressions E#g)—(A6)
the dipole approximation for the static cas€3,6].
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