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Calculating quenching weights

Carlos A. Salgado and Urs Achim Wiedemann
Theory Division, CERN, CH-1211 Geneva 23, Switzerland

~Received 20 February 2003; published 10 July 2003!

We calculate the probability~‘‘quenching weight’’! that a hard parton radiates anadditionalenergy fraction
DE due to scattering in spatially extended QCD matter. This study is based on an exact treatment of a finite
in-medium path length; it includes the case of a dynamically expanding medium, and it extends to the angular
dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft
scattering approximation@Baier-Dokshitzer-Mueller-Peigne´-Schiff-Zakharov~BDMPSZ! formalism# and in the
single hard scattering approximation@N51 opacity approximation#. By comparison, we establish a simple
relation between the transport coefficient, Debye screening mass and opacity, for which both approximations
lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating
quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of
hadronic transverse momentum spectra in nucleus-nucleus collisions. Remarkably, the kinematic constraint
resulting from finite in-medium path lengths reduces significantly thep' dependence of the nuclear modifica-
tion factor, thus leading to consistency with the data measured at the BNL Relativistic Heavy Ion Collider.

DOI: 10.1103/PhysRevD.68.014008 PACS number~s!: 12.38.Mh, 24.85.1p, 25.75.2q
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I. INTRODUCTION

Hard partons produced in nucleus-nucleus collisions
the BNL Relativistic Heavy Ion Collider~RHIC! and CERN
Large Hadron Collider~LHC! propagate through highly ex
cited matter before hadronizing in the vacuum. The result
medium dependence of parton fragmentation is expecte
affect hadronic observables. This is of twofold interest. Fi
it provides a novel test of the space-time evolution of
perturbative parton shower. Second, the modification of h
ronic observables due to the spatially extended, hot
dense QCD matter allows us to characterize the propertie
the transient state produced in the collision.

Gluon emission off highly virtual hard partons is an e
sential component in the standard description of parton fr
mentation in elementary processes. This effect degrades
energy of the leading parton. Recently, it has been propo
@1# that in the presence of a spatially extended medium,
additional medium-induced energy degradation of the le
ing parton can be described by a probabilityP(DE), the
so-called quenching weight, which is obtained from a pro
bilistic iteration of the medium-modified elementary splittin
processesq→qg and g→gg. The main purpose of the
present work is to calculate and compare this quench
weight for different approximations of the medium-modifie
splitting process, to make the results forP(DE) available as
a numerical subroutine, and to illustrate the use of this s
routine with some applications.

We start from recent calculations@2–5# of the modifica-
tion of the elementary splitting processesq→qg and g
→gg due to multiple scattering. These results go under
name medium-induced gluon radiation. They present lim
ing cases of a unique path-integral expression given in
~2.1! below. Technically, they collect all terms to leadin
order in nuclear enhanced modificationsO(asA

1/3), thus ac-
counting for the leading additional interactions of the par
shower with the medium.

The paper is organized as follows. In Sec. II, we comp
0556-2821/2003/68~1!/014008~20!/$20.00 68 0140
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the medium-induced gluon energy distribution radiated of
hard parton in two limits which emphasize the role of mu
tiple soft and single hard medium-induced scatterings,
spectively. In Sec. III we give results for the quenchi
weights corresponding to these limits. These quench
weights can be calculated with the numerical subroutine
companying this paper. In Sec. IV, we extend these calc
tions to the case of an expanding medium, and in Sec. V,
discuss the extension to radiation within a finite cone.
application, we calculate in Sec. VI in two different a
proaches the suppression of hadronic transverse mome
spectra and we compare our results to the nuclear modi
tion factor measured in Au-Au collisions at the Relativis
Heavy Ion Collider~RHIC!.

II. MEDIUM-INDUCED GLUON RADIATION
FROM A STATIC MEDIUM

The inclusive energy distribution of gluon radiation off a
in-medium produced parton takes the form@4,6,7#

v
dI

dv
5

asCR

~2p!2v22 ReE
j0

`

dylE
yl

`

dȳlE duE
0

xv

dk'e2 ik'•u

3e2(1/2)*
ȳl

`
djn(j)s(u)

]

]y
•

]

]uEy505r (yl )

u5r ( ȳl ) Dr

3expF i E
yl

ȳl
dj

v

2 S ṙ22
n~j!s~r !

iv D G . ~2.1!

Here, k' denotes the transverse momentum of the emit
gluon. The limit k'5uk'u,xv on the transverse phas
space allows to discuss gluon emission into a finite open
angleQ, x5sinQ. For the full angular integrated quantity
x51.

The radiation of hard quarks or gluons differs by the C
simir factorCR5CF or CA , respectively. Numerical result
are for fixed coupling constantas51/3, except where state
©2003 The American Physical Society08-1
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C. A. SALGADO AND U. A. WIEDEMANN PHYSICAL REVIEW D 68, 014008 ~2003!
otherwise. The properties of the medium enter Eq.~2.1! in
terms of the product of the time-dependent densityn(j) of
scattering centers times the strength of a single elastic s
terings(r ). This dipole cross sections(r ) is given in terms
of the elastic high-energy cross sectionua(q)u2 of a single
scatterer in the color octet representation:

s~r !52E dq

~2p!2
ua~q!u2~12eiq•r !. ~2.2!

Equation~2.1! is derived by resumming the multiple scatte
ing Feynman diagrams for the gluon radiation amplitude
leading orderO(asA

1/3) in the norm and phase@4#. The two-
dimensional transverse coordinatesu, y, andr emerge in the
derivation of Eq.~2.1! as distances between the positions
projectile components in the amplitude and complex con
gate amplitude. The longitudinal coordinatesyl , ȳl integrate
over the ordered longitudinal gluon emission points in a
plitude and complex conjugate amplitude, which emerge
time-ordered perturbation theory. For longitudinal positio
j. ȳl for which a gluon is emitted in both amplitude an
complex conjugate amplitude, the dipole cross sections(u)
in Eq. ~2.1! measures the impact parameter differenceu be-
tween both gluons. By Fourier transformation, this differen
y is related to the final transverse momentumk' of the emit-
ted gluon. For longitudinal positionsyl,j, ȳl for which a
gluon is emitted in the amplitude but not yet in the comp
conjugate amplitude, the dipole cross sections(r ) in Eq.
~2.1! measures the impact parameter differencer between
the emitted gluon and the position of the emitting qua
antiquark system in amplitude and complex conjugate am
tude. Technically, this results again in the cross section fo
dipole with two color octet legs. In the following discussio
this space-time interpretation of the internal integration va
ables in Eq.~2.1! plays no role. An explicit derivation and
more detailed discussion of Eq.~2.1! can be found in Ref.
@4#.

Theoretical uncertainties related to Eq.~2.1! have at least
two origins. First, the derivation of Eq.~2.1! employs the
high-energy approximation in which the medium acts a
collection of static scattering centers and the initial par
loses a small additional medium-induced amount of its to
energy,DE!E. Thus, Eq.~2.1! can be expected to be rel
able forDE!E if the spectrumv(dI/dv) is perturbatively
hard ~which will be established in Figs. 1 and 3 below!.
However, it is unknown so far, to what extent Eq.~2.1! re-
ceives corrections for parameter values for whichDE
;O(E). Second, for dipole cross sectionss(r ) of general
functional shape, the evaluation of the path integral in
~2.1! requires a further approximation. We start our study
the energy distribution~2.1! for a static medium by compar
ing two approximations: the saddle-point approximation a
the expansion of Eq.~2.1! to first order in the number o
scattering centers. As explained below, these approximat
may be viewed as extreme limiting cases since they focu
the multiple soft and single hard momentum transfer fr
the medium, respectively.
01400
at-

o

f
-

-
n
s

e

-
li-
a

i-

a
n
l

.
f

d

ns
n

A. Multiple soft scattering approximation

For arbitrary many soft scattering centers, the projec
performs a Brownian motion in transverse momentum. T
dynamical limiting case can be studied in the saddle po
approximation of the path integral~2.1!, using@3,8#

n~j!s~r !.
1

2
q̂~j!r2. ~2.3!

Here, q̂(j) is the transport coefficient@9# which character-
izes the medium-induced transverse momentum squ
^q'

2 &med transferred to the projectile per unit path lengthl.
For a static medium, the transport coefficient is time ind
pendent:

q̂5
^q'

2 &med

l
. ~2.4!

In the approximation~2.3!, the path integral in Eq.~2.1! is
equivalent to that of a harmonic oscillator. The correspo
ing analytical expressions are summarized in Appendix A

Qualitative arguments [10]. We consider a gluon in the
hard parton wave function. This gluon is emitted due to m
tiple scattering if it picks up sufficient transverse momentu
to decohere from the partonic projectile. For this, the aver
phasew accumulated by the gluon should be of order on

w5K k'
2

2v
DzL ;

q̂L

2v
L5

vc

v
. ~2.5!

Thus, for a hard parton traversing a finite path lengthL in the
medium, the scale of the radiated energy distribution is
by the ‘‘characteristic gluon frequency’’

vc5
1

2
q̂L2. ~2.6!

FIG. 1. The medium-induced gluon energy distributio
v(dI/dv) in the multiple soft scattering approximation for diffe
ent values of the kinematic constraintR5vcL.
8-2



w
d

o

h,

on
tl

m
es

th

d

nt

-

r
in

r

th

gy

ion

l
is
nd

tic

to
the
mes

ll-
m-

r

tly

rse
y
i-

r-
on
-

CALCULATING QUENCHING WEIGHTS PHYSICAL REVIEW D68, 014008 ~2003!
For an estimate of the shape of the energy distribution,
consider the numberNcoh of scattering centers which ad
coherently in the gluon phase~2.5!, k'

2 .Ncohm
2. Based on

expressions for the coherence time of the emitted glu

tcoh.v/k'
2 .Av/q̂ and Ncoh5tcoh/l5Av/m2l, one esti-

mates, for the gluon energy spectrum per unit path lengt

v
dI

dvdz
.

1

Ncoh
v

dI1 scatt

dvdz
.

as

tcoh
.asA q̂

v
. ~2.7!

This 1/Av-energy dependence of the medium-induced n
Abelian gluon energy spectrum is expected for sufficien
small v,vc .

Quantitative analysis. The gluon energy distribution~2.1!
depends not only onvc , but also on the constraintk'

,xv on the transverse momentum phase space of the e
ted gluon. This enters the calculation via the dimensionl
kinematic constraint@11#

Rx5
1

2
q̂x2L3, R[Rx515vcL. ~2.8!

This constraint is neglected in the argument leading to
1/Av-energy dependence of Eq.~2.7!. In the following sec-
tions, we limit the discussion to angular fully integrate
quantities for whichx51. The only exception will be the
discussion of the angularQ dependence ofv(dI/dv) in
Sec. V, where we usex5sinQ.

The limit R→` which removes the kinematic constrai
from Eq.~2.1! is either realized by extending thek' integra-
tion ad hocto infinity. Alternatively,R→` can be viewed as
the limit of infinite in-medium path length since it corre
sponds toL→` for x and vc fixed. In Appendix A, we
derive theR→` limit of the energy distribution~2.1!,

lim
R→`

v
dI

dv
5

2asCR

p
lnUcosF ~11 i !Avc

2vGU. ~2.9!

This coincides with the result of Baier, Dokshitzer, Muelle
Peigné, and Schiff @9#. As expected from the estimates
Eqs. ~2.5! and ~2.7!, it shows a characteristic 1/Av-energy
dependence for smallv which is suppressed above the cha
acteristic gluon frequencyvc @1#:

lim
R→`

v
dI

dv
.

2asCR

p HAvc

2v
for v,vc ,

1

12S vc

v D 2

for v.vc .

~2.10!

The average parton energy loss is the zeroth moment of
energy distribution

^DE&R→`5 lim
R→`

E
0

`

dvv
dI

dv
5

asCR

2
vc . ~2.11!
01400
e

n,

-
y

it-
s

e

,

-

is

This is the well-knownL2 dependence of the average ener
loss @2,9,12#. Due to the steep fall-off at largev, the v
integral in Eq. ~2.11! is dominated by the regionv
,vc /A2.

We have evaluated numerically the energy distribut
~2.1! for finite values of the density parameterR. As seen in
Fig. 1, the distribution approaches for any value ofR the
Baier-Dokshitzer-Mueller-Peigne´-Schiff ~BDMPS! limit
~2.9! at sufficiently large gluon energy. Below a critica
gluon energyv̂, however, the finite size gluon spectrum
depleted in comparison to the BDMPS limit. To understa
this effect, we consider the characteristic angleQc at which
medium-induced gluons are radiated on average

Qc
2.

k'
2

v2
.

Avq̂

v2
.S v

vc
D 23/2 1

R
. ~2.12!

For Qc;1, the emitted gluons are sensitive to the kinema
constraint sincek';O(v). The conditionQc;1 thus pro-
vides an estimate for the gluon energyv̂ below which the
energy distribution is cut off:

v̂

vc
}S 1

RD 2/3

. ~2.13!

The position of the maximum ofv(dI/dv) as a function of
R is consistent with this dependence onv̂, see Fig. 1. In
general, gluon radiation at small energies corresponds
gluon radiation at large angle and is depleted as soon as
finite size of the transverse momentum phase space beco
relevant. This suppression of the nonperturbative smav
contributions helps to make the calculation of mediu
induced energy loss perturbatively stable.

The gluon energy distribution~2.1! also determines the
multiplicity N(v) of gluons emitted with energies large
thanv

N~v![E
v

`

dv8
dI~v8!

dv8
. ~2.14!

In the absence of kinematic constraints, and for sufficien
small energiesv, one finds from Eq.~2.10! that the total
multiplicity diverges as 1/Av @1#,

lim
R→`

N~v!5
2asCR

p
A2vc

v
for v,vc . ~2.15!

However, realistic kinematic constraints on the transve
momentum phase space (R,`) deplete the gluon energ
distribution at smallv and ensure that the total gluon mult
plicity N(v50) is finite, see Fig. 2.

For realistic kinematic constraintsR,10 000, the average
additional total multiplicity isN(v50)<3. In comparison
to the typically;5210 semihard partons which are the pa
tonic final state of a 100 GeV jet simulated in a part
shower, this additional multiplicity is not negligible. It sup
8-3
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ports the naive expectation that the number of partons in
jet increases and softens with increasing transport coeffic
or path length.

B. Single hard scattering approximation

In the previous subsection, we have studied the ene
distribution ~2.1! of medium-induced gluon radiation in th
limit in which the partonic projectile performs a transver
Brownian motion due to multiple soft scattering. Now, w
consider the opposite limiting case in which the radiat
pattern results from an incoherent superposition of very
n0L single hard scattering processes positioned within p
lengthL. This limit is obtained by expanding the integrand
the energy distribution~2.1! in powers of@n(j)s(r )#N up to
first order@4,5,13#. Analytical expressions are given in Ap
pendix B.

Qualitative arguments. We consider a hard partonic pro
jectile which picks up a single transverse momentumm by
interacting with a single hard scatterer. An additional glu
of energyv decoheres from the projectile wave function
its typical formation timet̄ coh52v/m2 is smaller than the
typical distanceL between the production point of the parto
and the position of the scatterer. The relevant phase is

g5
L

t̄ coh

[
v̄c

v
, ~2.16!

which indicates a suppression of gluons with energyv larger
than the characteristic gluon energy

v̄c5
1

2
m2L. ~2.17!

FIG. 2. The multiplicity of additional medium-induced gluon
~2.14! radiated with energy larger thanv. Calculation done in the
multiple soft scattering approximation.
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The gluon energy spectrum per unit path length can be e
mated in terms of the coherence timet̄ coh and of the average
numbern0L of scattering centers contributing incoherentl

v
dIN51

dvdz
.~n0L !

as

t̄ coh

.~n0L !as

m2

v
. ~2.18!

This is the typical 1/v dependence of the non-Abelian gluo
radiation spectrum in the absence of LPM-type destruc
interference effects.

Quantitative analysis. We have calculated the first orde
in opacityn0L of the gluon energy distribution~2.1!. To first
order, the entire medium dependence comes from the in
action of the hard parton with a single static scattering cen
multiplied by the numbern0L5L/l of scattering centers
along the path. Modeling the single scatterer by a Yuka
potential with Debye screening massm, we derive, in Ap-
pendix B,

v
dIN51

dv
52

asCR

p
~n0L !gE

0

`

dr
r 2sin~r !

r 2

3S 1

r 1g
2

1

A@~R̄/2g!1r 1g#224rR̄/2g
D .

~2.19!

This energy distribution depends on the phase factorg de-
fined in Eq.~2.16!, and on the kinematic constraint in tran
verse momentum phase space,

R̄x5
1

2
x2m2L2, R̄[R̄x515v̄cL. ~2.20!

In what follows, we work forx51 except for the discussion
of the angular dependence in Sec. V. In the limit in which t
kinematic constraint is removed, the characteris
1/v-energy dependence of the estimate~2.18! is recovered
for sufficiently large gluon energiesv.v̄c ,

lim
R̄→`

v
dIN51

dv
52

asCR

p
~n0L !gE

0

`

dr
1

r 1g

r 2sin~r !

r 2

.2
asCR

p
~n0L !5 logF v̄c

v
G for v̄c.v,

p

4

v̄c

v
for v̄c,v.

~2.21!

This limit agrees with the results of Gyulassy, Levai, a
Vitev @13#. The average parton energy loss for a single h
scattering is dominated by contributions from the regionv
.v̄c @13,14#,
8-4
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lim
R̄→`

^DE&N515 lim
R̄→`

E dvv
dIN51

dv

.
asCR

2
~n0L !v̄clog@E/v̄c#. ~2.22!

It is logarithmically enhanced in comparison to the regi
v,v̄c for which

lim
R̄→`

E
0

v̄c
dvv

dIN51

dv
.

2asCR

p
~n0L !v̄c . ~2.23!

Remarkably, the average parton energy loss receive
dominant contribution from the hard regionv.v̄c in the
opacity approximation~2.22! but from the soft regionv
,vc in the multiple soft scattering approximation~2.11!.

We have evaluated numerically the energy distribut
~2.19! for finite values of the kinematic constraintR̄. In close
analogy to the multiple soft scattering approximation, t
emission of soft gluons is suppressed in the opacity appr
mation due to the kinematic constraintR̄5v̄cL on the trans-
verse momentum phase space, see Fig. 3. To estimate
scale v̂ at which this suppression sets in, we parallel t
argument leading to Eq.~2.12!. We require that the charac
teristic angle of the gluon emission is of order one, findin

Qc
2.

m2

v̂2
.S v̄c

v̂
D 2

1

R̄
;1⇒ v̂

v̄c

}
1

AR̄
. ~2.24!

The numerical position of the maximum ofv(dIN51/dv) in

Fig. 3 changes}1/AR̄, in accordance with this estimate. W
thus have a semiquantitative understanding of how ph
space constraints deplete the nonperturbative soft regio
the medium-induced gluon energy distribution.

FIG. 3. The medium-induced gluon energy distributi
v(dI/dv) for a hard quark in the single hard scattering approxim

tion, calculated for different values of the kinematic constraintR̄.
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In Fig. 4, the additional medium-induced gluon multipli
ity ~2.14! is calculated in the opacity approximation. In th
absence of kinematic constraintsR̄5` (R5`) and for suf-
ficiently small gluon energiesv,v̄c(v,vc), this multi-
plicity changes}1/v in the opacity approximation (}1/Av
in the multiple soft scattering approximation!. In the pres-
ence of kinematic constraints, the total additional multipl
ity is comparable for both approximations:N(v50)<3.

C. Comparison: multiple soft vs single hard
scattering approximation

Qualitative. The squared transverse momentum accum
lated by a projectile due to Brownian motion increases l
early }m2n0L with path length wheren051/l denotes the
longitudinal density of scattering centers. This leads to

m2n0L5q̂L for Brownian motion ~2.25!

and thus

vc5
1

2
q̂L25

L

l
v̄c in the multiple soft scattering limit.

~2.26!

Recent applications of the opacity approximation use
<L/l<3. In this case, the gluon energy distribution is mu
harder in the opacity approximation than in the multiple s
scattering approximation, see Fig. 5.

Quantitative. The relationvc5(n0L)v̄c holds only if the
projectile accumulates transverse momentum by Brown
motion. In general, deviations from Brownian motion a
due to the high transverse momentum tails of the ela
scattering cross sections

-
FIG. 4. The multiplicity of additional medium-induced gluon

~2.14! radiated with energy larger thanv. Calculation done in the
single hard scattering approximation.
8-5
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ua~q!u25
m2

p~q21m2!2
. ~2.27!

In QED, the Coulomb scattering distribution is well repr
sented by the theory of Molie`re @15# and shows logarithmic
deviations from Brownian motion. For QCD, one can ide
tify an analogous logarithmic term in the transport coe
cient ~2.3! by expanding the dipole cross section~2.2!

q̂L5n0LE d2q

~2p!2
ua~q!u2

1

2
q2cos2w;~n0L !m2lnAEcut

m
.

~2.28!

Here, Ecut denotes the upper cutoff of the logarithmical
divergentq integral. This changes Eq.~2.26! to

vc5~n0L !v̄clnAEcut

m
. ~2.29!

The logarithmic term makes the comparison between sin
hard and multiple soft scattering approximation more di
cult. Based on Eq.~2.29!, the curves for the single hard sca
tering approximation should be shifted in Fig. 5 by a fac
ln AEcut/m.1 to the left. For realistic values@m>LQCD and
Ecut<E say#, we find lnAEcut/m!10. Thus, the above con
clusion stays unchanged: the medium-induced gluon en
distribution is significantly harder in the single hard scatt
ing approximation than in the multiple soft one.

III. QUENCHING WEIGHTS

Medium-induced gluon radiation modifies the correspo
dence between the initial parton and the final hadron m
menta. This modification can be determined from the dis

FIG. 5. The gluon energy distribution without kinematic co

straint (R, R̄→`) as calculated in the multiple soft scattering a
proximation, and in the single hard scattering approximation
n0L50.5,1,2,4. Results for the single hard scattering approxim

tion are plotted for (L/l)v̄c5vc .
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butionP(DE) of the additional medium-induced energy lo
which we calculate now. If gluons are emitted independen
P(DE) is the normalized sum of the emission probabiliti
for an arbitrary number ofn gluons which carry away the
total energyDE:

P~DE!5 (
n50

`
1

n! F)i 51

n E dv i

dI~v i !

dv GdS DE2(
i 51

n

v i D
3expF2E

0

`

dv
dI

dvG . ~3.1!

The summation over arbitrarily many gluon emissions in E
~3.1! can be performed by Laplace transformation@1#

P~DE!5E
C

dn

2p i
P~n!enDE, ~3.2!

P~n!5expF2E
0

`

dv
dI~v!

dv
~12e2nv!G . ~3.3!

Here, the contourC runs along the imaginary axis with
Ren50. In general, the probability distributionP(DE) has
a discrete and a continuous part@11#

P~DE!5p0d~DE!1p~DE!. ~3.4!

The discrete weightp0 may be viewed as the probability tha
no additional gluon is emitted due to in-medium scatter
and hence no medium-induced energy loss occurs. T
weight is determined by the total gluon multiplicity

p05 lim
n→`

P~n!5exp@2N~v50!#. ~3.5!

For finite in-medium path length, there is always a fin
probability p05” 0 that the projectile is not affected by th
medium. Only a finite number of additional medium-induc
gluons can be emitted, see Eq.~3.5!. For infinite in-medium
path length, one finds

lim
R→`

p050. ~3.6!

The medium-induced gluon energy distributionv(dI/dv)
determines to what extent the total energy distribution o
given parton deviates from its ‘‘vacuum’’ fragmentation in a
elementary collision

v
dI (tot)

dv
5v

dI (vac)

dv
1v

dI

dv
. ~3.7!

From the Laplace transform~3.2!, we obtain for the corre-
sponding total probability

P(tot)~DE!5E
0

`

dĒP~DE2Ē!P(vac)~Ē!. ~3.8!

The probabilityP(tot)(DE) is normalized to unity and it is
positive definite. In contrast, the medium-induced modific

r
-
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tion of this probabilityP(DE) is a generalized probability. I
can take negative values for some range inDE, as long as its
normalization is unity,

E
0

`

dĒP~Ē!5p01E
0

`

dĒp~Ē!51. ~3.9!

In this section, we calculateP(DE) in the multiple soft and
single hard scattering approximations. The results of th
quenching weights are available as aFORTRAN routine @16#.

A. Quenching weights in the multiple soft scattering
approximation

By numerical evaluation of the Laplace transform~3.2!,
~3.3!, we have calculated quenching weightsP(DE) for the
medium-induced energy distribution~2.1! in the multiple soft
scattering approximation. To motivate the range of param
values studied in what follows, we relate the transport co
ficient q̂ to the in-medium path lengthL and the saturation
scaleQs @10#,

Qs
2.q̂L. ~3.10!

The saturation momentumQs determines the total aver
age transverse momentum transferred to the partonic pro
tile in the high-energy limit of totally coherent scatterin
Phenomenological estimates forQs are very uncertain bu
Qs

2<(3 GeV)2 may be considered as an upper bound
CERN Large Hadron Collider~LHC!. This is also consisten
with alternative estimates@2,6,10# for the transport coeffi-
cient q̂. To discuss in-medium path lengthsL up to twice a
nuclear Pb radius, we thus have to explore the param
space up toR,40 000. We choose a very small lower valu
R5x2vcL

351 in order to tabulate quenching weights f
the radiation outside very small opening anglesx5sinQ. All
results will be given for energies in units ofvc .

The discrete weightp0 of the probability distribution
P(DE) is plotted in Fig. 6 as a function of the kinemat
cutoff R5vcL. It approaches unity in the absence of a m
dium (R→0) and it vanishes in the limit of infinite in
medium path length, see Eq.~3.6!. Remarkably,p0 exceeds
unity for small valuesR,100. This indicates that there is
phase space region at very small transverse momentum,
which less gluons are emitted in the medium than in t
vacuum. The ‘‘vacuum’’ gluon radiation is shifted to larg
transverse momentum in the presence of a medium@6#. The
decrease of the discrete weight for largeR and its growth
above unity for sufficiently smallR both depend on the
strength of the interaction between partonic projectile a
medium. They are thus more pronounced for gluons than
quarks.

The continuous partp(DE) of the probability distribution
~3.4! is shown in Fig. 7 as a function of the dimensionle
energy fractionDE/vc for different values of the kinematic
constraintR. Increasing the density of the medium~i.e., in-
creasing the transport coefficientq̂) or increasing the in-
medium path lengthL corresponds to an increase ofvc and
R. Figures 6 and 7 specify how the probability that the par
01400
se

er
f-

c-

t

ter

-

to

d
or

s

n

loses an energy fractionDE changes with these medium
properties. As expected from the normalization~3.9!, the
continuous partp(DE) shows predominantly negative con
tributions for small valuesR,100 where the discrete weigh
p0 exceeds unity.

In the limit R→`, the quenching weight was found to b
fit very well by a two-parameter log-normal distribution@17#.
This is a heuristic observation which is difficult to connect
the analytical structure of the gluon energy distribution. An
lytically, an estimate of the quenching weight can be o
tained@1# in the limit R→` from the small-v approximation
v(dI/dv)}1/Av in Eq. ~2.10!,

FIG. 6. The discrete partp0 of the quenching weight~3.4! cal-
culated in the multiple soft scattering approximation as a funct
of R5vcL.

FIG. 7. The continuous part of the quenching weight~3.4!, cal-
culated in the multiple soft scattering approximation for a ha
quark ~upper row! or hard gluon~lower row!.
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PBDMS
approx~e!5A a

e3
expF2

pa

e G , where a5
2as

2CR
2

p2
vc .

~3.11!

This approximation is known to capture@11# the rough shape
of the probability distribution for large system size, but it h
an unphysical largee tail with infinite first moment
*deePBDMS

approx(e). Also, its maximum emax52ap/3 grows
stronger with the effective couplingasCR than the numerica
result in Fig. 7.

B. Quenching weights in the opacity approximation

We have evaluated the quenching weight~3.4! for the
medium-induced gluon energy distribution in theN51 opac-
ity approximation~2.19!. In general, the quenching weigh
depends in this approximation on the characteristic glu
energy v̄c , the kinematic constraintR̄5x2v̄cL, and the
opacityn0L.

For the numerical results presented in Figs. 8 and 9,
use n0L51. The gluon energy distributionv(dI/dv) de-
pends linearly onn0L, but the quenching weight shows
complicated dependence onn0L; it has to be calculated
separately for each value ofn0L from Eqs.~3.2! and ~3.3!.
However, sincen0L multiplies the Casimir factorCR in the
gluon energy distribution, the quenching weight for gluo
with n0L51 is identical to the quenching weight for quar
with n0L5CA /CF52.25. Vice versa, the quenching weig
for quarks given in Figs. 8 and 9 can be viewed as a quen
ing weight for gluons withn0L5CF /CA .

C. Comparison: multiple soft vs single hard
scattering approximation

In the opacity approximation, one specifies both the av
age transverse momentum squared;m2n0L transferred to
the projectile and the average numbern0L of scattering cen-

FIG. 8. The discrete partp0 of the quenching weight calculate
in the single hard scattering approximation for opacityn0L51.
01400
n

e

s

h-

r-

ters involved in this momentum transfer. This is in contra
to the multiple soft scattering approximation which specifi
the average transverse momentum squared transferred t
projectile irrespective of the number of scattering centers
volved. Thus, the single hard scattering approximation c
tains one additional model parameter, the opacityn0L.

Despite this difference, we want to compare the quen
ing weights obtained in both approximations. To this end,
start from the relations

R.~n0L !R̄, vc.~n0L !v̄c , ~3.12!

discussed in Sec. II C. Keeping the values ofR, vc and
R̄, v̄c fixed, we ‘‘fit’’ the opacity n0L such that the quench
ing weights obtained in both approximations show the b
agreement. This allows us to discuss for both approximati
differences in functional shape which cannot be removed
a change of model parameters.

We start by comparing theR and R̄ dependences of the
discrete weightp0 calculated in the multiple soft~Fig. 6! and
single hard~Fig. 8! scattering approximation, respectivel
For the choiceR.3R̄, the curves show better agreeme
However, the excess above unity forR,100 is much more
pronounced in the multiple soft scattering approximatio
than the excess above unity for 3R̄,100 in the single hard
scattering approximation. This indicates that the specific
structive interference effects discussed in Sec. III A play
more important role in the multiple soft scattering appro
mation.

In Fig. 10, we compare both approximations in the lim
in which the constraint on the transverse momentum ph
space is removed~i.e., R,R̄→`). For the opacityn0L53,
the maximum of the quenching weight takes the same va
in both approximations. However, significant differences c

FIG. 9. The continuous part of the quenching weight calcula
in the single hard scattering approximation with opacityn0L51 for
a hard quark~upper row! or hard gluon~lower row!.
8-8
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be seen in the functional shape. The gluon energy distr
tion is harder in the single hard scattering approximation~see
Fig. 5! and this is reflected in a more pronounced large
ergy tail of the quenching weight. We regard the remain
differences between both approximations as an indicatio
the intrinsic theoretical uncertainties in evaluating the glu
energy distribution~2.1!.

IV. MEDIUM-INDUCED GLUON RADIATION
FOR AN EXPANDING MEDIUM

Hard partons produced in the initial stage of ultra relat
istic nucleus-nucleus collisions are propagating throug
strongly expanding medium. This results in a time dep
dence of the transport coefficientq̂(j) which can be param
etrized in terms of a power law

q̂~j!5q̂0S j0

j D a

. ~4.1!

The expansion parametera determines the dynamical evolu
tion of the medium:a50 characterizes a static medium.
one-dimensional, boost-invariant longitudinal expansion
described bya51. This value is supported by hydrodynam
cal simulations of the early stage. In general, however,
additional transverse expansion can lead to larger valuea

<3. The maximal valueq̂0 of the transport coefficient is
reached at the time of highest density of the system whic
the formation timej0. This formation time may be set by th
inverse of the saturation scalepsat @18#, resulting in
'0.2 fm/c at RHIC and'0.1 fm/c at LHC. The difference
betweenj0 and the production time of the hard parton
negligible for the calculation of the gluon energy distributi

FIG. 10. Comparison of the quenching weights for infinite s

tem size (R,R̄→`) calculated for a hard gluon in the multiple so
~‘‘BDMPS’’ ! and single hard~‘‘GLV’’ ! scattering approximation

For rescaled characteristic gluon energy,vc.(n0L)v̄c , n0L53,
the agreement between both probability distributions improves,
text for further discussion.
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~2.1!. It will be ignored in what follows. In this section, we
discuss the range of validity and the form of a dynami
scaling law@11# which relates the gluon energy distributio
~2.1! in a collision of arbitrary dynamical expansion to a
equivalent static scenario.

A. Multiple soft scattering in an expanding medium

In Appendix C, we give details of the calculation of th
gluon energy distribution~2.1! for values of the expansion
parametera,3 in the multiple soft scattering approximatio
~2.3!. As reported previously@11#, we observe a scaling law
which relates the time-dependent transport coefficient~4.1!

to an equivalent static transport coefficientq̄̂,

q̄̂5
2

L2Ej0

L1j0
dj~j2j0!q̂~j!. ~4.2!

As seen in Fig. 11, the gluon energy distributions for diffe
ent values of the expansion parametera differ by orders of
magnitude if plotted in units of the same characteristic glu
energyvc5 1

2 q̂0L2 and kinematic constraintR5vcL. How-

ever, if plotted in units of the rescaled gluon energy1
2 q̄̂L2

and the rescaled kinematic constraint1
2 q̄̂L3, they agree ap-

proximately over a large parameter range.
For practical purposes, the accuracy of the scaling

~4.2! is satisfactory forR.100. Concerning the deviation
from the scaling law forR,100 ~see Fig. 11!, we make the
following comments: In practice, these deviations are ne
gible sincep0;1 for R,100 and thus no significant me
dium modification occurs. Technically, the static casea
50) is calculated for a box profile in the longitudinal dens
of scattering centers. On the other hand, in the expand

-

ee

FIG. 11. The gluon energy distribution calculated in the multip
soft scattering approximation with expansion parametera50 ~solid
line!, a50.5 ~dashed line!, a51.0 ~dotted line!, anda51.5 ~dash-
dotted line!. Curves in the right hand column are scaled accord
to Eq. ~4.2!.
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C. A. SALGADO AND U. A. WIEDEMANN PHYSICAL REVIEW D 68, 014008 ~2003!
scenarios, the density profile degrades more smoothly w
increasing path length, and the discontinuity at path lengtL
is less important. The strength of destructive interferen
between medium-induced and vacuum gluon radiation
pends on this discontinuity. This may explain why forR
540 the rescaled gluon energy distribution in Fig. 11 is m
suppressed in the static case than in the expanding case

B. The opacity expansion for an expanding medium

In Appendix B, we give analytical expression for th
single hard scattering limit of the gluon energy distributi
~2.1! in a medium with expansion parametera. The analyti-
cal form of Eq.~2.1! changes with the expansion parame
a. We derive an explicit expression for the Bjorken scali
casea51

v
dIa51

N51

dv
52

asCR

p
~n0j0!

3E
0

`dr

r
Re@2Ei@2 ir #1 ln@2 ir #1gE#

3S g

r 1g
2

g

A~k21r 1g!224k2r
D . ~4.3!

Here,gE'0.577••• denotes Euler’s constant and the exp
nential integral function is Ei@z#52*2z

` dte2t/t.
To relate the gluon energy distributions for a static m

dium ~2.19! and a Bjorken scaling expansion~4.3!, we deter-
mine the dynamically averaged density of scattering cen
following Eq. ~4.2!

n̄5
2

L2Ej0

L1j0
dj~j2j0!n~j!5

2n0j0

L
. ~4.4!

This equation suggests that the gluon energy distribution
the static and Bjorken expansion case show agreement i
prefactor (n0j0) in Eq. ~4.3! is replaced by1

2 n̄L where n̄
determines the density of scattering centers of the equiva
static scenario. In Fig. 12, we test this suggestion num
cally for different values of the kinematic constraintR̄.

Remarkably, for sufficiently large kinematic constraintR̄
.100, the gluon energy distribution shows dynamical sc
ing according to Eq.~4.4! for gluon energiesv.v̄c . This is
the dominant kinematic region in the opacity expansion@see
the discussion in Sec. II B, Eq.~2.21! ff #. Thus, despite the
deviations from the scaling law forv,v̄c , the logarithmi-
cally enhanced contribution to the average energy loss

^DE&N515E dvv
dIN51

dv
~4.5!

shows scaling@19# with Eq. ~4.4!. This is also known to hold
in the soft multiple scattering approximation@20# and it is
consistent with results obtained on the basis of twist-4 ma
elements@21#.
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In the regionv,v̄c , significant deviations from the sca
ing law ~4.4! are seen in Fig. 12. However, the logarithm
plot overemphasizes the importance of these deviatio
First, they occur in the sub dominant region which is le
important for calculating the quenching weights. Seco
these deviations do not exceed 30% in the physically
evant parameter range 100,R̄,40000 in which significant
medium modifications can be expected.

For practical purposes, the scaling law~4.4! is thus satis-
factory. Quenching weights for a dynamically expanding s
nario can be obtained by calculating the quenching weig
of the dynamically equivalent static scenario according
Eq. ~4.4!.

V. ANGULAR DEPENDENCE OF
RADIATION PROBABILITY

The maximal angle under which a gluon can be radiate
given by the upper bound on the transverse momentum i
gral in Eq.~2.1!,

Q.
k'

max

v
5x. ~5.1!

Thus, for fixed values of the characteristic gluon energyvc
and of the kinematic constraintR5vcL, a decreasing value
of Rx5x2vcL determines the medium-induced energy ra
ated into a cone of opening angleQ. In this section, we
denote explicitly the dependence of the quenching wei
P(DE,vc ,Rx) on vc and x2R. This quenching weight de
termines the probability that an additional energy fracti
DE is radiatedinside the opening anglex5Q. From the
Figs. 1 and 3, we know that the more collinear componen
the medium-induced gluon radiation is harder.

FIG. 12. The gluon energy distribution calculated in the sin
hard scattering approximation for a static medium~dashed line! and
for a medium with Bjorken expansion~solid line!. Curves for the
dynamically expanding case are scaled according to Eq.~4.4!.
8-10



is
y

ng

ve

ra

di
-

e
ic
of

ive

rgy
le
ace

n,

ing
e
est

ice

in-

le
ular

as
m.

ing
lues

lar
f

gles
g

e

s

ins
on-

in
of

I A,

c-
th

at

en-
hing

e

y

CALCULATING QUENCHING WEIGHTS PHYSICAL REVIEW D68, 014008 ~2003!
For fixed values ofvc and R5vcL, the gluon energy
distribution radiatedoutsidethe opening angleQ is given by

v
dI.Q

dv
~vc ,R!5v

dI

dv
~vc ,R!2v

dI

dv
~vc ,Rx!.

~5.2!

The probability that an additional energy fractionDE is ra-
diatedoutsidethe opening anglex.Q is obtained by insert-
ing Eq. ~5.2! into the Mellin transform~3.2!, ~3.3!. For the
current work, we did not calculate this probability; there
no simple way to obtain it without Mellin transform directl
from the quenching weights tabulated in Sec. III.

The calculation of the average energy lossoutside an
angleQ is simpler. It can be calculated from the quenchi
weights tabulated in Sec. III

^DE&~Q!5E dvv
dI.Q

dv
~vc ,R5vcL !

5E dĒĒ@P~Ē,vc ,R5vcL !

2P~Ē,vc ,Rx5x2vcL !#. ~5.3!

In Fig. 13, we compare the angular dependence of the a
age parton energy loss~5.3! in the multiple soft and single
hard scattering approximation.

In the single hard scattering approximation, the integ
~5.3! diverges logarithmically in the ultraviolet forx5Q
→0. For the calculation of̂DE&N51(Q50) in Eq. ~2.22!,
we have cut off this divergence by limiting the energy ra
ated away tov,E. For the plot in Fig. 13, we restrict in
stead the calculation to sufficiently large anglesQ for which
the second term in Eq.~5.3! provides an ultraviolet cutoff.
Thus, for small anglesQ,10° whereDE;E, one overesti-
mates^DE&N51(Q).

In the single hard scattering approximation, the regionv

.v̄c is dominant. This hard part of the spectrum is emitt
under anglesQ,m/v̄c and thus appears as a logarithm
enhancement in the collinear region. In the multiple s

FIG. 13. The average energy loss~5.3! radiated outside an angl
Q as calculated in the multiple soft~lower three lines! and single
hard~upper three lines! scattering approximation for a jet of energ
E5100 GeV.
01400
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scattering approximation, however, the dominant radiat
contribution lies in the soft regionv,vc which is emitted
under relatively large opening anglesQ.k' /vc

;q̂1/4/vc
3/4. For smaller opening angles, the average ene

loss ^DE&(Q) does not increase further. Indeed, multip
soft scattering results in a shift in transverse phase sp
which is known to depletêDE&(Q) at very small angles
@6,22#. Thus, in the multiple soft scattering approximatio
there is no ultraviolet divergence at small angleQ.

To compare the single hard and multiple soft scatter
approximations for̂ DE&(Q), we proceed in analogy to th
discussion in Sec. III C: varying the opacity, we find the b
agreement between both approximations forn0L53. A
qualitative difference which cannot be adjusted by the cho
of the additional model parametern0L persists for small
angles only. Its origin is explained above. Thus, Fig. 13
dicates that for comparable sets of model parametersvc , R

and v̄c , R̄, n0L, respectively, the multiple soft and sing
hard scattering approximations lead to a comparable ang
dependence of̂DE&(Q) for Q.10°.

The calculation of the angular dependence in Fig. 13 w
done for quenching weights calculated for a static mediu
In general, the dynamical scaling laws~4.2! and ~4.4! relate
these to the quenching weights of dynamically expand
scenarios. However, this is not the case for the small va

R, R̄,100 which enter the calculation of the small angu
dependence (Q,10°) in Eq.~5.3!. For these small values o

R, R̄, dynamical scaling breaks down~see Figs. 11 and 12!.
Since typical jet cone openings correspond to larger an
Q.10°, we did not make an effort to quantify the remainin
dependence of̂DE&(Q) on the collective expansion of th
collision region.

In the multiple soft scattering approximation,^DE&(Q
50) is finite. Baieret al. observed@23# that the ratiô DE&
3(Q)/^DE&(Q50) is a universal quantity which depend

solely onq̂L3Q. Figure 14 shows that this statement rema
approximately true in the presence of a finite kinematic c
straintR.

VI. APPLICATIONS OF QUENCHING WEIGHTS

In this section, we use quenching weights to calculate
two alternative ways the medium-induced suppression
hadronic high transverse momentum spectra. In Sec. V
we determine the quenching factorQ(p') and in Sec. VI B
we calculate medium-modified parton fragmentation fun
tions. In Sec. VI C we finally discuss the relation of bo
calculations to the nuclear modification factor measured
RHIC.

A. Quenching factors for hadronic spectra

The medium-dependence of inclusive transverse mom
tum spectra can be characterized in terms of the quenc
factor @1#
8-11
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C. A. SALGADO AND U. A. WIEDEMANN PHYSICAL REVIEW D 68, 014008 ~2003!
Q~p'!5
dsmed~p'!/dp'

2

dsvac (p')/dp'
2

5E dDEP~DE!S dsvac~p'1DE!/dp'
2

dsvac~p'!/dp'
2 D .

~6.1!

Here, the spectrumdsvac(p')/dp'
2 is unaffected by medium

effects; it is determined, e.g., in proton-proton collision
Equation~6.1! relates it to the medium-modified transver
momentum spectrumdsmed(p')/dp'

2 measured, e.g., in
nucleus-nucleus collisions. We work in the longitudina
comoving frame in which the total energy of the produc
parton is directed orthogonal to the beam. Due to the p
ence of the medium, a parton produced initially with tran
verse momentump'1DE loses an additional energyDE
with probability P(DE). This defines the quenching facto
~6.1!.

If one assumes a power law fall-off of thep' spectrum,
then the quenching factor~6.1! can be calculated explicitly,

Q~p'!.E dDEP~DE!S p'

p'1DED n

. ~6.2!

In general, the effective powern depends onp' andAs. It is
n.7 in the kinematic range relevant for RHIC.

To compare directly to published results@1#, we calculate
the quenching factor~6.2! in Fig. 15 for parameter value
used previously. The transport coefficient is taken to ma
expectations for a hot mediumq̂5(1 GeV)2/fm. Given the
in-medium path lengthL, this definesvc andR in the mul-
tiple soft scattering approximation. In the single hard scat
ing approximation, parameters are chosen for opacityn0L

51 by identifyingR̄5R andv̄c5vc . The effective powern
in Eq. ~6.2! is set to its asymptotic valuen54. To be quan-

FIG. 14. Angular dependence of the average energy loss~5.3! in
the multiple soft scattering approximation as a function of the

scaled parameterq̂(L/2)3Q.
01400
.
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titatively comparable with Ref.@1#, we useas51/2 in Figs.
15 and 16 while all other numerical results are given
as51/3.

Figure 15 shows the numerical results obtained in
multiple soft scattering approximation. The perturbative c
culation of the gluon energy distributionv(dI/dv) cannot
be trusted for soft gluon energiesv;O(LQCD) where per-
turbation theory breaks down. To quantify the sensitivity
their calculation to this infrared region, Baieret al. @1# intro-

-
FIG. 15. The quenching factor~6.2! calculated in the soft mul-

tiple scattering approximation foras51/2. Upper row: calculation
in the R→` limit but with a varying sharp cutoff on the infrare
part of the gluon energy distributionv(dI/dv) determining the
quenching weight. Lower row: the same calculation is insensitive
infrared contributions if the finite kinematic constraintR5vcL
,` is included.

FIG. 16. The same quenching factor~6.2! as in Fig. 15, here
calculated in the single hard scattering approximation.
8-12
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CALCULATING QUENCHING WEIGHTS PHYSICAL REVIEW D68, 014008 ~2003!
duced a sharp cutoff on theR→` gluon energy distribution
which was varied betweenvcut50 andvcut5500 MeV. The
resulting uncertainty is seen as a'20% variation of the
quenching factorQ(p') in the upper row of Fig. 15. How-
ever, the finite kinematic constraintR5vcL,` depletes the
infrared region of the medium-induced gluon radiation sp
trum ~see Fig. 1!. This constraint, which is a generic cons
quence of a finite in-medium path length, removes alm
completely the sensitivity of the calculation to the unco
trolled infrared region~see Fig. 15, lower row!. Remarkably,
it also tends to flatten thep' dependence of the quenchin
factor. We shall return to the consequences of this obse
tion when we zoom into the regionp',10 GeV in Sec.
VI C.

We have calculated the quenching factor~6.1! in the
single hard scattering approximation, see Fig. 16. Since
dominant contribution comes in this case from the hard p
of the spectrumv.v̄c , the sensitivity to the infrared cu
vcut is much reduced in comparison to Fig. 15. Howev
realistic finite kinematic constraintsR̄ remove a much large
part of the soft spectrum. As a consequence, the abso
value of Q(p') increases significantly if finite kinemati
constraints are imposed, and thep' dependence tends to fla
ten.

In Sec. III C, we observed that for the quenching weig
the best agreement between single hard and multiple
scattering approximation is forvc53v̄c , R53R̄, n0L53.
Remaining differences come from the fact that the sin
hard scattering approximation shows a dominant contri
tion for v.vc while the multiple soft scattering approxima
tion shows a dominant contribution forv,vc . However,
the quenching factorQ(p') for small p' is sensitive only to
the soft regionv,vc , (v,v̄c) in both approximations.
This is so because medium-induced gluons cannot c
away more than the total energyEq of the parent parton, and
hencev,Eq,vc at small p' . Thus, the simple relation
vc53v̄c , R53R̄ does not hold forp',vc . This is seen in
Fig. 17. The dominant multiple soft scattering approximat
results in a much stronger suppression than the single
one calculated for rescaled parametersvc53v̄c , R53R̄.

B. Medium-modified fragmentation functions

Medium-induced gluon radiation off hard partons mo
fies the fragmentation and hadronization of final state p
tons, thus affecting hadronicp'-spectra. In Sec. VI A, we
calculated this effect in terms of the quenching fac
Q(p'). Alternatively, this quenching factor can be dete
mined from medium-modified fragmentation function
which we discuss now.

In the QCD-improved parton model, hadronic cross s
tions for high-p' hadroproduction are calculated by conv
luting the perturbatively calculable hard partonic cross s
tion dsq and the ~final state! fragmentation function
Dh/q(x,Q2),

dsh~z,Q2!5S dsq

dy DdyDh/q~x,Q2!dx. ~6.3!
01400
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For notational simplicity, we do not denote the addition
convolution of dsq with the ~initial state! parton distribu-
tions. The leading hadronh carries an energy fractionz
5Eh /Q of the total virtuality of the partonic collision, which
is a fractionx5Eh /Eq of the energy of its parent parton. Th
parent parton carries the energy fractiony5Eq /Q.

If the parent parton loses with probabilityP(e) an addi-
tional energy fractione5DE/Eq prior to hadronization, then
the leading hadron is a fragment of a parton with lower e
ergy (12e)Eq ; thus, it carries a larger fractionx/(12e) of
the initial parton energy. The inclusion of this effect amoun
to replacing the fragmentation functionDh/q(x,Q2) in Eq.
~6.3! by the medium-modified fragmentation functio
@24,25#

Dh/q
(med)~x,Q2!5E

0

1

deP~e!
1

12e
Dh/qS x

12e
,Q2D .

~6.4!

To calculate Eq.~6.4!, we use the recent LO fragmentatio
functions of Kniehl, Kramer, and Po¨tter @26# ~KKP!. These
improve over previously available parametrizations@27#.
However, the KKP parametrization still shows significant u
certainties in the large-x region relevant for hadronicp'

spectra@28#. For alternative approaches towards mediu
modified fragmentation functions, see Refs.@29,30#.

We have calculated the medium-modifiedq→p and g
→p fragmentation functions~6.4!, using the quenching
weights in the multiple soft~Fig. 18! and single hard~Fig.
19! scattering approximation. The energy of the parent p
ton is set to the virtuality of the hard process@11# Eq;Q.
The medium-induced fragmentation functions decrease w
increasing density of the medium since the probability o
parton of initial energyEq to fragment into a hadron of larg
energy xEq decreases with increasing parton energy lo
They should be trusted for sufficiently large momentum fra
tions (x.0.1 say! only. The reason is that the hadronize

FIG. 17. Comparison of the quenching factor~6.2! calculated
for as51/3 and effective powern57 in the multiple soft, single
hard, and rescaled single hard scattering approximation.
8-13



in
e
io
q

l-
on

-
ion
n
f

f
n-
-
of
r to

is

ry
the
e,

l
p

to

er-

n
ion

to
o-

ci-

o-
tor

,
IC

to
ls

i-

a

C. A. SALGADO AND U. A. WIEDEMANN PHYSICAL REVIEW D 68, 014008 ~2003!
remnants of the medium-induced soft radiation are not
cluded in the definition of Eq.~6.4!. These remnants ar
soft—they can be expected to give an additional contribut
in the regionx,0.1. The neglect of these remnants in E
~6.4! implies that the normalization ofDh/q

(med)(x,Q2) is a fac-
tor *deeP(e) too small,

E
0

1

dxxDh/q
(med)~x!.E

0

1

dxxDh/q~x!E de~12e!P~e!.

~6.5!

For the suppression of high-p' hadronic spectra, this norma
ization error is unimportant since the main contributi
comes from the region of largerx.

FIG. 18. The medium-modified fragmentation function~6.4! for
Q25(10 GeV)2 calculated in the multiple soft scattering approx
mation for a medium of lengthL56 fm.

FIG. 19. The medium-modified fragmentation function~6.4! for
Q25(10 GeV)2 calculated in the single hard scattering approxim
tion for a medium of lengthL56 fm.
01400
-

n
.

To estimate the corresponding suppression of highp'

hadronic spectra, we exploit that the fragmentation funct
in Eq. ~6.3! is weighed by the partonic cross sectio
dsq/dp'

2 ~we work in the frame in which the total energy o
the produced parton goes transverse to the beam!. In the
kinematic range relevant for RHIC (As5200 GeV andp'

;10 GeV), one finds @31# dsq/dp'
2 ;1/p

'

n(As,p') with
n(As,p');6. Thus, Eq. ~6.3! effectively tests
xn(As,p')Dh/q

(med)(x,Q2). The suppression factor

Rf f~p'!5
xmax

6 Dh/q
(med)~xmax,p'

2 !

xmax
6 Dh/q~xmax,p'

2 !
up'5xmaxEq

~6.6!

provides a simple estimate of the reduction of hadronicp'

spectra. In Eq. ~6.6!, xmax denotes the maximum o
xn(As,p')Dh/q

(med)(x,Q2) and corresponds to the most likely e
ergy fractionp'5xmaxEq of the leading hadron. The sup
pression factor can be read off easily from the lower rows
Figs. 18 and 19. We now compare this suppression facto
the quenching factorQ(p') in Eq. ~6.2!.

C. The nuclear modification factor

Experimental situation. Published data for Au1Au colli-
sions atAsNN5130 GeV show forp',6 GeV a suppres-
sion of neutral pion@32# and charged hadron@32,33# trans-
verse momentum spectra if compared to spectra inp1p
collisions rescaled by the number of binary collisions. Th
suppression is most pronounced~up to a factor;5) in cen-
tral Au1Au collisions and smoothly approaches the bina
scaling case with decreasing centrality. Within error bars,
suppression factors ofp0 and charged hadron spectra agre
though central values for the suppression ofp0 production
are slightly lower@32#. In addition, a maximal azimutha
anisotropyv2(p') of hadroproduction is found to persist u
to the highest transverse momentum@34–36#. These data
indicate the importance of final state medium effects up
p',6 GeV.

Preliminary data shown at the Quark Matter 2002 conf
ence confirm these findings for Au1Au collisions atAsNN
5200 GeV; they extend many observations up top'

;10 GeV. In particular, data for the nuclear modificatio
factor show an approximately constant maximal suppress
within 6,p',12 GeV for charged hadrons@37–39# and up
to p',8 GeV forp0 spectra@40,41#. The azimuthal anisot-
ropy v2(p') of charged hadrons stays close to maximal up
p',10 GeV @42#. Moreover, the disappearance of back-t
back high-p' hadron correlations@43–45# provides an addi-
tional indication that final state medium effects play a de
sive role in hadroproduction up top';10 GeV.

Theoretical situation. Parton energy loss has been pr
posed to account for the small nuclear modification fac
@17,21,46#, the azimuthal anisotropy@19,47–50# and the dis-
appearance of dijets@51,52#. Quantitative studies indicate
however, that in the kinematic regime relevant for RH
(p',12 GeV), p' broadening@52,21#, shadowing@46,21#,
formation time@17#, and possibly other effects contribute
the high-p' nuclear modification as well. Indeed, mode

-
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CALCULATING QUENCHING WEIGHTS PHYSICAL REVIEW D68, 014008 ~2003!
have been proposed which account for hadronic quenc
without taking recourse to parton energy loss. Instead, th
models invoke string percolation@53#, small hadronization
time arguments@54#, saturation physics@55#, the dominance
of parton recombination over parton fragmentation@56#, or
initial state formation time arguments@57#. The consistency
and applicability of these models is currently under deba
For the p' range accessible to RHIC, the competing ha
ronic effects may make it difficult to disentanglequantita-
tively the contribution of parton energy loss from the me
sured hadronic suppression pattern. The transverse p
space accessible to LHC (E',200 GeV) may turn out to be
a qualitative advantage with this respect.

Model comparison. In Fig. 20, we compare the two defi
nitions ~6.2! and~6.6! of the quenching factor to the nuclea
modification factor measured by the PHENIX Collaborati
in the p0 spectra@40,41# of central Au1Au collisions at
AsNN5200 GeV. We do not include the nuclear modific
tion factor for charged hadrons@37–39# in Fig. 20, since
charged hadrons are likely to be dominated at highp' by
baryons whose production mechanism may involve ad
tional nonperturbative effects@58#.

Our comparison makes several simplifying assumpti
which can be improved in further studies.~i! We do not
model a realistic space-time geometry of the collision.
stead, we work for a fixed in-medium path lengthL

FIG. 20. The nuclear modification factor forp0 production
@40,41# compared to model calculations involving parton ener
loss only. The lines show the quenching factor~6.2! with effective
power n57, and the suppression factor~6.6! calculated from
medium-modified fragmentation functions. They are given in
limiting cases where all parent partons are either quarks~upper
lines! or gluons~lower lines!. Calculations in the multiple soft scat
tering approximation useR52000,vc567.5 GeV, corresponding

to q̂50.75 GeV2/fm and L56 fm. In the single hard scatterin

approximation, we useR̄5R, v̄c5vc .
01400
g
se

e.
-

-
ase

i-

s
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56 fm. As a consequence, we do not compare to the cen
ity dependence of the nuclear modification factor for which
realistic distribution of in-medium path lengths and their im
pact parameter dependence is needed.~ii ! We do not calcu-
late the hard partonic matrix elements entering, e.g.,
~6.3!. Instead, we determine the quenching factors direc
from Eqs.~6.2! and~6.6!. As a consequence, we do not kno
thep'-dependent fractions of hard quarks and of hard glu
which fragment into a leadingp0. Since parton energy los
is different for quarks and gluons, we plot in Fig. 20 th
limits for which all parent partons are quarks or gluons,
spectively. The realistic curve lies in between these lim
Since the ratio of parent quarks over parent gluons increa
with p' , the p' dependence of the realistic curve will b
slightly steeper than the limiting cases presented in Fig.

From Fig. 20, we can draw several conclusions. First,
two definitions of quenching factors in terms of hadron
spectra~6.2! and in terms of fragmentation functions~6.6!
lead to quantitatively comparable results. Second, the m
tiple soft and single hard scattering approximations for p
ton energy loss lead to quantitatively comparable results.
slight variations inp' slope should be regarded as theoreti
uncertainties in approximating Eq.~2.1! and do not give any
preference to either approximation scheme. Third, a calc
tion based on partonic energy loss only can reproduce
magnitude of the observed nuclear modification fact
Moreover, it results in a very shallowp' dependence which
seems consistent with the current quality of experimen
data. For an interpretation of the model parameters use
Fig. 20, we use for a Bjorken scaling expansion (a51) the
relation @11,19# between the kinematic constraintR and the
initially produced gluon density

R5
L2

RA
2

dNg

dy
, ~6.7!

where RA denotes the nuclear radius. The extracted va
dNg/dy.2000 is approximately a factor 2 larger than a p
vious estimate@19# based on data from elliptic flow. Given
the theoretical uncertainties of parton energy loss calc
tions belowp',10 GeV, this factor 2 mismatch constitute
no inconsistency.

VII. CONCLUSION

In recent years, phenomenological applications
medium-induced parton energy loss were based mainly
two different approximations of the medium-induced glu
energy distribution: the multiple soft BDMPS-Zakharo
~BDMPSZ! scattering approximation and the opacity a
proximation. It remained unclear, however, to what exte
these approximations differ. Here, we have studied in b
approximations the medium-induced energy distributio
~Sec. II!, the corresponding quenching weights~Sec. III!, and
the extension of these calculations to dynamically expand
collision regions~Sec. IV!, and to the angular dependence
the medium-induced radiation pattern~Sec. V!. The single
hard scattering approximation is dominated by the hard
gion v.v̄c of the gluon energy distribution while the mu

e
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C. A. SALGADO AND U. A. WIEDEMANN PHYSICAL REVIEW D 68, 014008 ~2003!
tiple soft scattering approximation is dominated by the s
regionv,vc . Despite this difference, both approximatio
lead to quantitatively comparable results if comparable s
of model parameters are used. Numerically, we determine
correspondence

vc.3v̄c , R.3R̄, ~7.1!

which relates the BDMPS transport coefficientq̂ and the
Debye screening massm2 via an opacityn0L;3, see Eq.
~3.12!. Deviations from Eq.~7.1! can be understood in term
of kinematic constraints on the hard part of the gluon ene
distribution ~see discussion of Fig. 17!.

The main result of this paper is the calculation of quen
ing weights in Sec. III. We explained how to calculate fro
these quenching weights the nuclear modification of h
ronic spectra. There are indications that the interpretatio
RHIC data on hadronic quenching requires additional ph
ics effects beyond the parton energy loss~see discussion in
Sec. VI C!. However, to discriminate energy loss contrib
tions from these additional effects, a quantitatively relia
discussion of the current theoretical calculations of par
energy loss is needed. We hope that the CPU-inexpen
subroutine for quenching weights which accompanies
paper will prove a valuable tool to this end. Also, this routi
can be used to explore observable consequences of p
energy loss in nucleus-nucleus collisions at LHC or for p
cesses in cold nuclear matter.
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APPENDIX A: THE BDMPS-LIMIT OF THE ENERGY
DISTRIBUTION „2.1…

Here, we establish that theR→` limit of the gluon en-
ergy distribution ~2.1! coincides with the BDMPS resul
~2.9!. Using the saddle point approximation~2.3!, the energy
distribution ~2.1! can be written in the form given in Eqs
~A11! and ~A12! of Ref. @6#. Integrated over transverse mo
mentum 0,k',xv, one finds

v
dI

dv
5

asCF

p
~ I 41I 5!, ~A1!
01400
ft
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y
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,
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-

I 45
1

4v2 2 ReE
0

L

dylE
yl

L

dȳl16A4
2

3F S 12
iA4B4~xv!2

4~D42 iA4B4!2D
3expH 2

~xv!2

4~D42 iA4B4!2J 21G , ~A2!

I 55
1

v
ReE

0

L

dyl

4A5

B5
FexpH 2

i ~xv!2

4A5B5
J 21G ,

~A3!

where

A45
vV

2 sin@V~ ȳL2yL!#
, B45cos@V~ ȳL2yL!#,

~A4!

D45
1

2
n0C~L2 ȳL!, ~A5!

A55
vV

2 sin~VyL!
, B55cos~VyL!, ~A6!

and

V5~11 i !A q̂

4v
. ~A7!

The limit R→` is obtained by takingx→` in Eqs. ~A2!
and ~A3!:

lim
R→`

I 4522 ReE
0

L

dylE
yl

L

dȳl

V2

sin2@V~ ȳl2yl !#

52ReE
0

L

dylE
0

L

dȳl

V2

sin2@V~ ȳl2yl !#

52 ReE
0

L

dylV
cos~Vyl !

sin~Vyl !
, ~A8!

lim
R→`

I 5522 ReE
0

L

dyl

V

sin~Vyl !cos~Vyl !
.

~A9!

Both integrals are logarithmically divergent but this dive
gence cancels in the sum

lim
R→`

~ I 41I 5!52Reln@cos~VL !#. ~A10!

This coincides with the BDMPS result~2.9!.
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APPENDIX B: GLUON ENERGY DISTRIBUTION
TO FIRST ORDER IN OPACITY

In this appendix, we calculate the first order in opacity
the gluon energy distribution~2.1! for a Yukawa-type elastic
scattering center with Debye screening massm:

ua~q!u25
m2

p~q21m2!2
. ~B1!

According to Eq.~6.4! of Ref. @4#, the energy distribution
takes the form

v
dIN51

dv
5

as

~2p!2

2CR

v2 E0

xv

dkE
0

`

dq
m2

p~q21m2!2

3k•qZ~Q,Q1!, ~B2!

where

Q5
k2

2v
, Q15

~k1q!2

2v
~B3!

and

Z~Q,Q1!5 lim
e→0

ReE
j0

`

dyE
y

`

dȳe2ey2e ȳ

3E
y

ȳ
djn0S j0

j D a

e2 iQ( ȳ2j)2 iQ1(j2y) ~B4!

[
n0

Q
Z̄~Q1!. ~B5!

Irrespective of the value of the expansion parametera in
~B4!, the expression factorizes in the form~B5!. In order to
simplify Eq. ~B2!, we shift the integration variables byq
→q2k, k→kA2v/L andq→qA2v/L. This leads to

v
dIN51

dv
54

asCR

p E
0

k

dkE
0

2p

dwE
0

`

qdq
]

]k

3S 1

k212kq cosw1q21g
D S g

2p D n0

L
Z̄~q2/L !,

~B6!

where

g5
m2L

2v
, k5xAvL

2
5A R̄

2g
. ~B7!

The w- and k-integration in Eq.~B6! can be done analyti
cally,
01400
f

v
dIN51

dv
54

asCR

p

n0

L E
0

`

qdqZ̄~q2/L !

3S g

A~k21q21g!224k2q2
2

g

q21g
D . ~B8!

~1! For the static casea50, the phase factor~B5! reads

Z̄a50~Q1!5
2LQ11sin~LQ1!

Q1
2

~B9!

and

v
dIa50

N51

dv
54

asCR

p
~n0L !gE

0

`

qdq
q22sin~q2!

q4

3S 1

q21g
2

1

A~k21q21g!224k2q2D .

~B10!

Substitutingr 5q2, we find Eq.~2.19!.
~2! For the Bjorken scaling casea51, the phase~B5!

reads

Z̄a51~Q1!5
j0

Q1
ReFeiQ1j0~Ei@2 iQ1~L1j0!#

2Ei@2 iQ1j0# !1 ln
j0

L1j0
G

5
j0

Q1
Re@Ei@2 iQ1L#2 ln@2 iQ1L#

2gE1O~j0 /L !#

5
j0

Q1
ReF E

0

2 iQ1L

dt
e2t21

t
1O~j0 /L !G .

~B11!

Here,gE50.577••• is the Euler constant and the expone
tial integral function Ei is defined in the text following Eq
~4.3!. Corrections of orderO(j0 /L) can be ignored since th
time of productionj0 is much smaller than the in-medium
path lengthL. With this approximation, one has

v
dIa51

N51

dv
54

asCR

p
~n0j0!E

0

` qdq

q2
Re@2Ei@2 iq2#

1 ln@2 iq2#1gE#

3S g

q21g
2

g

A~k21q21g!224k2q2D .

~B12!

Substitutingr 5q2, we find Eq.~4.3!.
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APPENDIX C: THE DIPOLE APPROXIMATION
FOR AN EXPANDING MEDIUM

In this appendix, we follow Ref.@20# in giving explicit
expressions for the path integral~2.14! in the dipole approxi-
mation

K~r1 ,y1 ;r2 ,y2uv!

5E Dr expF i
v

2Ey1

y2
djS ṙ22

Va
2~j0!

ja
r2D G .

~C1!

Equation~C1! is the path integral of a 2-dimensional ha
monic oscillator with time-dependent imaginary frequenc

Va
2~j0!

ja
5

q̂~j!

i2v
52 i

q̂0

2v S j0

j D a

~C2!

andmassv. The solution of Eq.~C1! can be written in the
form @20#

K~r1 ,y1 ;r2 ,y2uv!5
v

2p iD ~y1 ,y2!
exp@ iScl~r1 ,y1 ;r2 ,y2!#.

~C3!

Here, the classical actionScl in Eq. ~C3! takes the form

Scl~r1 ,y1 ;r2 ,y2!5
v

2 F r cl~j!•
d

dj
r cl~j!GU

y2

y1

, ~C4!

where the classical pathr cl(j) satisfies the homogeneous d
ferential equation

F d2

dj2
2

Va
2~j0!

ja G r cl~j!50 ~C5!

with initial conditions

r cl~y1!5r1 and r cl~y2!5r2 . ~C6!

The fluctuation determinantD(j,j8) in Eq. ~C3! satisfies

F d2

dj2
2

Va
2~j0!

ja GD~j,j8!50, ~C7!

with initial conditions

D~j,j!50 and
d

dj
D~j,j8!uj5j851. ~C8!

In practice,D(j,j8) is found by combining the two indepen
dent ~scalar! solutionsf 1 , f 2 of Eq. ~C5!,

D~j,j8!5N@ f 1~j! f 2~j8!2 f 2~j! f 1~j8!# ~C9!

and fixing the normN by the initial condition~C8!. The
solution of Eq.~C1! can be written in terms ofD(j,j8) and
two j- andj8-dependent variablesc1 , c2,
01400
K~r1 ,y1 ;r2 ,y2uv!5
iv

2pD~y1 ,y2!
expF2

2 iv

2D~y1 ,y2!

3~c1r1
21c2r2222r1•r2!G . ~C10!

We consider three cases.
~1! The casea,2. For this case, explicit expressions f

Eq. ~C10! are given in Appendix B of Ref.@20#. The two
independent solutions of the homogeneous differential eq
tion ~C5! are

f 1~j!5AjI n@2nVa~j0!j1/2n#, ~C11!

f 2~j!5AjKn@2nVa~j0!j1/2n#, ~C12!

where I n and Kn are modified Bessel functions with argu
ment

n5
1

22a
. ~C13!

In terms of the variable@useVa(j0)5A2 i (q̂0/2v)j0
a]

z~j!52nVa~j0!j1/2n, ~C14!

the solution ~C10! is given by @20# @we usez[z(j), z8
[z(j8)]

D~j,j8!5
2n

~2nVa~j0!!2n
~zz8!n@ I n~z!Kn~z8!

2Kn~z!I n~z8!#, ~C15!

c15zS z8

z D n

@ I n21~z!Kn~z8!1Kn21~z!I n~z8!#,

~C16!

c25z8S z

z8
D n

@Kn~z!I n21~z8!1I n~z!Kn21~z8!#.

~C17!

~2! The casea52. In this case, the two independent s
lutions of the homogeneous differential equation~C5! are
f 1(j)5j (1/2)(12A) and f 2(j)5j (1/2)(11A) where A
5A114Va52

2 (j0). From this, one finds

D~j,j8!5
1

A
~jj8!(1/2)(12A)~jA2j8A!, ~C18!

c15
11A

A S j

j8
D 2(1/2)(12A)

2
12A

A S j8

j D (1/2)(11A)

,

~C19!

c25
11A

A S j8

j D 2(1/2)(12A)

2
12A

A S j

j8
D (1/2)(11A)

.

~C20!
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~3! The casea.2. In this case, the solution~C15!–~C17!
has the argument

z~j!52unuVa~j0!j1/2n. ~C21!

Modified Bessel functions with negative index can
avoided with the help of the identitiesKn(z)5K2n(z) and
I n(z)2I 2n(z)522@sin(np)/p#Kn(z).

D~j,j8!52nAjj8@ I n~z!Kn~z8!2Kn~z!I n~z8!#,
~C22!

c152unuAj8

j
j1/2nVa~j0!@ I n21~z!Kn~z8!

1Kn21~z!I n~z8!#, ~C23!

c252unuA j

j8
j81/2nVa~j0!@Kn~z!I n21~z8!

1I n~z!Kn21~z8!#. ~C24!

With the solution~C10!, the radiation spectrum can be wri
ten as the sum of three contributions@6#

dI (tot)

dv
5

1

v

ds

dv
5

as

p2 CF~ I 41I 51I 6!5
dI (vac)

dv
1

dI

dv
.

~C25!

Here, I 651/k'
2 is the medium-independent vacuum glu

energy distribution.I 4 andI 5 determine the medium-induce
part dI/dv studied in this paper. They can be computed
the dipole approximation
h

.

q
s

.

01400
I 45
1

4v2
2 ReE

j0

L1j0
dylE

yl

L1j0
dȳlS 24A4

2D̄4

~D̄42 iA4B4!2

1
iA4

3B4k'
2

~D̄42 iA4B4!3D expF2
k'

2

4~D̄42 iA4B4!
G , ~C26!

I 55
1

v
ReE

j0

L1j0
dyl

2 i

B5
2

expF2 i
k'

2

4A5B5
G , ~C27!

where

A45
v

2D~ ȳl ,yl !
, B45c1~ ȳl ,yl !,

~C28!

D̄45
1

2Eȳl

L1j0
djn~j!s~r !,

A55
v

2D~L1j0 ,yl !
, B55c1~L1j0 ,yl !.

~C29!

In the casea50, the functionsI 61/2(z) andK61/2(z) enter-
ing Eq.~C10! have explicit expressions in terms of expone
tials. One recovers the known expressions Eqs.~A4!–~A6!
for the static case@3,6#.
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