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It is shown that, for systems in which the entropy is an extensive function of the energy and volume, the
Bekenstein and the holographic entropy bounds predict new results. More explicitly, the Bekenstein entropy
bound leads to the entropy of thermal radiatidhe Unruh-Wald boundand the spherical entropy bound
implies the “causal entropy bound.” Surprisingly, the first bound shows a close relationship between black hole
physics and the Stephan-Boltzmann léhar the energy and entropy flux densities of the radiation emitted by
a hot blackbody. Furthermore, we find that the number of different species of massless fields is bounded by

~10%
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According to classical general relativity, ordinary matterradiation[6]. Describing the acceleration radiation as a fluid,
that crosses the event horizon will disappear into the spacehey have shown that this buoyant force alters the work done
time singularity of the black hole. In 1971, Wheeler raisedby the box such that no entropy bound in the form of &qg.
the question: what happens to the entropy initially present iris necessary for the validity of the GSL. A few years ago,
the matter? It seems that there is no gain of ordinary entropfPelath and Wald7] gave further arguments in favor of this
in the universe, to compensate for the loss of entropy of theesult.
matter that has been absorbed by the black hole. Therefore, Bekensteir{8,9], on the other hand, argued that, only for
the second law of thermodynamics is violated in this processvery flat systems, the Unruh-Wald effect may be important.

Bekenstein 1] found a way out of this paradox by intro- Later on, he has showd(] that, if the box is not almost at
ducing the notion of black hole entropy. He assigned an enthe horizon, the typical wavelengths in the radiation are
tropy Sg that is proportional to the horizon surface area oflarger than the size of the box and, as a result, the derivation
the black hole. After the discovery of Hawking radiation, this of the buoyant force from a fluid picture is incorrect. The
entropy has been elevated to the status of a physical theorguestion of whether the Bekenstein bound follows from the
Furthermore, Bekenstein proposed to replace the ordinar§gSL via the Geroch processremains controversialsee
second law of thermodynamics by tlyeneralized second [2,11-13). However, as it was shown by Bousgb4] (see
law (GSL): The generalized entrop$,=S+Sgy, of a sys-  the following paragraphs there is anothefink connecting
tem consisting of a black hole and ordinary mattaith  the GSL with the Bekenstein bound.

entropy S) never decreases with timgor an excellent re- Susskind[15] has shown, by considering the conversion
view on the thermodynamics of black holes and the validityof a system to a black hole, that the GSL implies a spherical
of the GSL, see Wal{i2)). entropy bound

The GSL not only resolves the difficulty emphasized by
Wheeler but also imposes entropy bounds to hold for arbi- 1
trary systems. The first entropy bound was proposed by Bek- Ss—A, (2
enstein [3] more than 20 years ago. He considered a Al
gedanken-experimerguch that one lowers adiabatically a
spherical box of radiu® toward a black holéGeroch pro- whereSis the entropy of a system that can be enclosed by a
cess. The box is lowered from infinity where the total en- sphere with area\. A few years later, Bousspl6,17 had
ergy of the box plus matter contentsks It was shown3] found an elegant way to generalize Eg) and write it in a
that the entropyS of the box must obeythroughout the covariant form. He proposed ttmvariant entropy bound
paperc=kg=1) “the entropy on any light-sheet(B) of a surfaceB will not

exceed the area @.” That is,

s 27RE D
g L
fi A(B)
SL(B)]=—, (©)
in order to preserve the GSL. 45

The derivation of Eq(1) in [3] was criticized by Unruh

and Wald[4,5] who have argued that, since the process ofwhere the light-sheet[B] is constructed by the light rays

lowering the box is a quasistatic ori@nd therefore can be that emanate from the surfaBeand are not expandingor

considered as a sequence of static-accelerating hottes  an excellent review see BousEb7)).

box should experience a buoyant force due to the Unruh When a matter system with initial entrofgfalls into a
black hole, the horizon surface area increases at least by
4I,2)S due to the GSL. This motivated Flanagan, Marolf and

*Email address: gilgour@Phys.UAlberta.CA Wald [18] to generalize Eq(3) into the following form:
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A(B)—A(B') In order to compare between dimensionless quantities, let us

S L(B,B")]=< 5 , (4)  multiple Eq.(3) by If; and define the following dimensionless

415 guantities:
whereL(B,B’) is a light-sheet which starts at the cross sec- I

tion B and cuts off at the cross-secti@i before it reaches a x=—y y=7. and f(X)E|§F(v) )

caustic.

Unlike the controversial issues regarding the reIationship,\,hereGp and| , are the Planck energy and the Planck length,

between the GSL and E(fl), the entropy bounds in Eq&2),  respectively. In these notations, E§) can be written as
(3), (4) are closely related to the GSL. However, very re-

cently, Boussd17] has shown that the Bekenstein entropy f(x) < pxy. (10
bound follows from EqJ(4) for any isolated, weakly gravi-
tating system. Hence, even though it is not clear whether However,x andy can be considered as two independent
quantum effects should be taken into consideration in thé@arameters. Therefore, let us foand takey to its minimal
derivation of Eq.(1) (via the Geroch processthere is a Vvalue. Reducing implies reducingboth RandE sincex is
strong link between the GSL and the Bekenstein bound. kept constantactually E decreases faster thd). Hence,

In the following, we provide another link connecting the the minimal value ofy can be obtained by the requirement
bound (1) with the entropy of thermal radiation and the R>%/E (otherwise, the energy will leak out of the Boxn

Stephan-Boltzmann law. In our derivation, we consider systerms ofx andy, it meansy>x_ "% Thus, takingy~x~"4
tems in which the entropy density is a function of the energywe find that
density. Later on, we show that for such systems, the spheri- a4

f(x)<x®"%, (11

cal entropy bound2) yields thecausal entropy boungro-
posed by Brustein and Veneziafit9] and independently by
Sasakur§20]. We conclude that our results provide universal
upper bounds for extensive systems.

Consider an isolated spherical Baf sizeR and volume
V=(47/3)R3. Let us denote byS(E,V) the maximumen-

where from this point we will stress functional dependence,
while ignoring numerical factors.

By substituting this condition in Eq6), we obtain the
following “extensive entropy bound”:

tropy of the box under the condition th&tis an extensive £34/14 | ER) 34
function of E andV. Bekenstein’s bound in terms &andV S(EV)<———= (_) (12
is given by 7,30 h
v The above result, by itself, is not surprising. For example,

S(ENV)<n——, (5)  consider a gas of radiation at temperatiirthat is confined
in the box. The energy and the entropy are given by the
2113 Stephan-Boltzmann lawneglecting corrections due to the

where = (67 discreteness of modes

Since the maximum entropy,(5,V), will preserve the

extensivity property of entropy, it can be written as follows: E~nR3T* and S~nR3TS, (13)
S(E V)=VF(E ©6) whereng is the number of differenfnon-interacting species
' V)’ of particles in the gas. Hence, in terms®Bfand R, the en-
tropy is proportional to
where F is some function of the energy densig/=E/V. a1
Equation(6) is equivalent to Euler’s theorem on homoge- S 1/4(3?
. ~n (14
neous functiorfs s\ 4
9S JS That is, the entropy of thermal radiation saturates(&g). It
EEtVy~—S (7)  is a good guess that no other system has more entropy, be-

cause the rest mass of ordinary particles only enhances gravi-
tational instability without contributing to the entropy. Thus,
the bound(12) is understandable.
However, there are three points about EtR) that are
F(E/V)< nE _ @ Very interesti_ng and somevyhat surprising: Fi_rst_, one chads
V23 have to define unconstrained thermal radiation to be the
maximum entropy systertas did, for example, Unruh and
Wald [4,5] and Pelath and Walf7]). It comes out that the

IThroughout the paper we shall assume a spherical symmet@ntropy of extensive systems is no higher if one assumes

Now, Eq.(1) and Eq.(6) imply a bound on F:

even though it is not always necessary. Bekenstein's bound. _
2We assume the case where there are no other thermodynamic Second, the GSL leads to Bekenstein's bound and exten-
functions such as an electric or chemical potential. sivity leads to a bound proportional to the thermal radiation
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entropy. That is, the GSL implies the Stephan-Boltzmanror equivalently
law. Boltzmann and other physicists in his time would have

never imagined that one would be able to obtain the thermal R2
radiation entropy from black hole physitd.et us take this S<W- (16)
moment to mention that both the black hole entropy formula, p

SxA (A is the horizon surface argaand the Stephan-
Boltzmann formulape T2 ands« T (u ands are the energy “ e T
and entropy flux densities of the radiation emitted by a hoPOund for “non-gravitating” systems. . 3
blackbody, can be derived purely by classical thermody- NOW the total masgenergy of the big box,N"E, should
namics [21]. This shows another similarity between the P& sSmaller than the size of the bbR (the big box is not a
physics of black holes and blackbodies. black holg. Therefore, the maximum possible valueMis
Third, the species problem: one of the objectionsaio  Of the order~ (e;R/I,E)*. By supplementing this in Eq.
kinds of entropy bounds is that one can takeén Eq. (14 to  (16) we get
be arbitrarily large. Consider, for example, the spherical en-
tropy bound. In order foiS in Eq. (14) to become greater S=—x
thanA/4l3, one has to takas>A/I3. Of course, we have no fi
evidence(experimental or string theoretigaghatng can run

into such a high number, as would be required to violate thé("herev is the volume of the s_mall box. .
bound. That is, one can always hold the position that the '€ above arguments clarify why for extensive systems

bound is telling us about the world as it is, not as it might belle holographic principle predicts the bouity). We shall
now prove this bound in a more formal way.

in the imagination of a physicist who needs counterex- .
amples. Furthermore, if the number of species grows, one |eorem Denote byS(E,V) the maximum entropy that

can raise the question whether interactions will not nuIIifyan isolated spherical system with enet‘gymd.volym_é\/ can
the assumption of “free particles.” have, under the condition that the entropy is distributed uni-

However, the species problem manifests in a much morérMly. The spherical entropy bound then implies that

conspicuous form in the extensive bou(i®). This bound S(E,V)=VEV. . . ) .
implies thatn* must be of order unity. That is cannot be The entropy is distributed uniformly if and only if it can
v be written in the form given in Eq6). On the other hand,

much greater than 0 This number is much smaller than h herical ent bound impli
A/If, and it raises the question whether there are more reaf- € Spherical entropy bound implies

As it was expected, the holographic bound implies a tighter

I pE 1/2
ﬁ) « \EV, (17

p

istic bounds on the number of species in nature. Since the V23
arguments that lead to E¢L2) include the assumption that S(E,V)<—-. (18
the minimum value ofR is approximately the Compton Ig

wavelength//E, we could not obtain the exact dimension-
less numerical factor that should be added to @@). This  Therefore, the boun(®) leads to the result
numerical factor would have provided an exact bounchgn
In the above considerations, it was assumed that the sys- E -
tem does not exceed Bekenstein’s entropy bound. Let us now \%
instead consider the the relationship between the spherical
entropy bound?2) and the extensivity property of the entropy whereF is defined in Eq(6). In terms of the dimensionless
function S(E, V). As we will see in the following, this rela- quantities which are defined in E(R), the above inequality
tionship yields the “causal entropy bounfit9] which scales can be written in the form
as\EV. We will first obtain this result by a simple heuristic
argument, and then we will prove it rigorously. fo)<y™™" (20
Consider a box of siz&® (volume R®) with energyE.

1

2\ /13’
12v

(19

; : However, the two dimensionless parametersndy ! can
According to the holographic boun@), the entropy of the y .
g Jrep na) 4 be considered as independent. Therefore, one can keep

box cannot exceed-R?/12. Now, considemMN® (N is an in- rant and take-* to it mini ue. The min
tege) identical boxes arranged in a much bigger box of size-onstant and takg = 1o 1ts minimum vaue. The minimum

-1 ; 13 ha.
NR (volume N3R3). If the interactions between the boxes value ofy OCCtL:lrS W.{‘he'?t the size qlfhthte.syst% I32e
are negligible andN is not too big(i.e. the big box is not a comes comparable with 1ts energy. that 1s, wheay =

black holg, the entropy of the big box i3S, whereSis the Hence,
entropy of a single box. However, by applying the holo- <
graphic bound for the big box, we get f0<x. 21)
(NR)2 Equation (21) provides a proof for the theorem above. It
N3S< > (150  shows a close relationship between the holographic principle
1o and the causal entropy bound obtained by Brustein and Ven-

eziano[19] and independently by Sasaky@0]. In [19] the
causal entropy bound is defined covariantly and, hence, it is
3In some way, it also gives further evidence of Bekenstein’s iden-much more general then our derivation. Note, however, that
tification of black hole entropy with the horizon area. for weakly gravitating systems, the Bekenstein bound is
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tighter than the causal bound so that the later may be usefeintropy bounds. One of the main results was the derivation

only for strongly gravitating systems. It may seem that theof a bound proportional to the entropy of thermal radiation

causal bound does not imply that the number of fundamentatom black hole physics. In the future, we hope to generalize

degrees of freedom is related to the area surfaces in spacgwe results to charged and rotating systems.

time. However, from our derivation of the causal bound

(based on the spherical boyndve learn that the causal I would like to thank J. Bekenstein for his influence and

bound can be incorporated into a holographic world. inspiration. | would also like to thank D. Page and V. Frolov
In conclusion, in this paper we considered the applicafor helpful discussions and to A.J.M. Medved for reading

tions of the entropy bound4), (2) into extensive systems. It and improving the English in the manuscript. The author is

was shown that extensivity provides links between differentalso grateful to the Killam Trust for its financial support.
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