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Extensive entropy bounds
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It is shown that, for systems in which the entropy is an extensive function of the energy and volume, the
Bekenstein and the holographic entropy bounds predict new results. More explicitly, the Bekenstein entropy
bound leads to the entropy of thermal radiation~the Unruh-Wald bound! and the spherical entropy bound
implies the ‘‘causal entropy bound.’’ Surprisingly, the first bound shows a close relationship between black hole
physics and the Stephan-Boltzmann law~for the energy and entropy flux densities of the radiation emitted by
a hot blackbody!. Furthermore, we find that the number of different species of massless fields is bounded by
;104.
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According to classical general relativity, ordinary matt
that crosses the event horizon will disappear into the sp
time singularity of the black hole. In 1971, Wheeler rais
the question: what happens to the entropy initially presen
the matter? It seems that there is no gain of ordinary entr
in the universe, to compensate for the loss of entropy of
matter that has been absorbed by the black hole. There
the second law of thermodynamics is violated in this proce

Bekenstein@1# found a way out of this paradox by intro
ducing the notion of black hole entropy. He assigned an
tropy SBH that is proportional to the horizon surface area
the black hole. After the discovery of Hawking radiation, th
entropy has been elevated to the status of a physical the
Furthermore, Bekenstein proposed to replace the ordin
second law of thermodynamics by thegeneralized second
law ~GSL!: The generalized entropy,Sg[S1SBH , of a sys-
tem consisting of a black hole and ordinary matter~with
entropy S) never decreases with time~for an excellent re-
view on the thermodynamics of black holes and the valid
of the GSL, see Wald@2#!.

The GSL not only resolves the difficulty emphasized
Wheeler but also imposes entropy bounds to hold for a
trary systems. The first entropy bound was proposed by B
enstein @3# more than 20 years ago. He considered
gedanken-experimentsuch that one lowers adiabatically
spherical box of radiusR toward a black hole~Geroch pro-
cess!. The box is lowered from infinity where the total en
ergy of the box plus matter contents isE. It was shown@3#
that the entropyS of the box must obey~throughout the
paperc5kB51)

S<
2pRE

\
, ~1!

in order to preserve the GSL.
The derivation of Eq.~1! in @3# was criticized by Unruh

and Wald@4,5# who have argued that, since the process
lowering the box is a quasistatic one~and therefore can be
considered as a sequence of static-accelerating boxes!, the
box should experience a buoyant force due to the Un
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radiation@6#. Describing the acceleration radiation as a flu
they have shown that this buoyant force alters the work d
by the box such that no entropy bound in the form of Eq.~1!
is necessary for the validity of the GSL. A few years ag
Pelath and Wald@7# gave further arguments in favor of thi
result.

Bekenstein@8,9#, on the other hand, argued that, only f
very flat systems, the Unruh-Wald effect may be importa
Later on, he has shown@10# that, if the box is not almost a
the horizon, the typical wavelengths in the radiation a
larger than the size of the box and, as a result, the deriva
of the buoyant force from a fluid picture is incorrect. Th
question of whether the Bekenstein bound follows from
GSL via the Geroch processremains controversial~see
@2,11–13#!. However, as it was shown by Bousso@14# ~see
the following paragraphs!, there is anotherlink connecting
the GSL with the Bekenstein bound.

Susskind@15# has shown, by considering the conversi
of a system to a black hole, that the GSL implies a spher
entropy bound

S<
1

4l p
2

A, ~2!

whereS is the entropy of a system that can be enclosed b
sphere with areaA. A few years later, Bousso@16,17# had
found an elegant way to generalize Eq.~2! and write it in a
covariant form. He proposed thecovariant entropy bound:
‘‘the entropy on any light-sheetL(B) of a surfaceB will not
exceed the area ofB.’’ That is,

S@L~B!#<
A~B!

4l p
2

, ~3!

where the light-sheetL@B# is constructed by the light ray
that emanate from the surfaceB and are not expanding~for
an excellent review see Bousso@17#!.

When a matter system with initial entropyS falls into a
black hole, the horizon surface area increases at leas
4l p

2S due to the GSL. This motivated Flanagan, Marolf a
Wald @18# to generalize Eq.~3! into the following form:
©2003 The American Physical Society01-1
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S@L~B,B8!#<
A~B!2A~B8!

4l p
2

, ~4!

whereL(B,B8) is a light-sheet which starts at the cross s
tion B and cuts off at the cross-sectionB8 before it reaches a
caustic.

Unlike the controversial issues regarding the relations
between the GSL and Eq.~1!, the entropy bounds in Eqs.~2!,
~3!, ~4! are closely related to the GSL. However, very r
cently, Bousso@17# has shown that the Bekenstein entro
bound follows from Eq.~4! for any isolated, weakly gravi-
tating system. Hence, even though it is not clear whet
quantum effects should be taken into consideration in
derivation of Eq.~1! ~via the Geroch process!, there is a
strong link between the GSL and the Bekenstein bound.

In the following, we provide another link connecting th
bound ~1! with the entropy of thermal radiation and th
Stephan-Boltzmann law. In our derivation, we consider s
tems in which the entropy density is a function of the ene
density. Later on, we show that for such systems, the sph
cal entropy bound~2! yields thecausal entropy boundpro-
posed by Brustein and Veneziano@19# and independently by
Sasakura@20#. We conclude that our results provide univers
upper bounds for extensive systems.

Consider an isolated spherical box1 of sizeR and volume
V5(4p/3)R3. Let us denote byS(E,V) the maximumen-
tropy of the box under the condition thatS is an extensive
function ofE andV. Bekenstein’s bound in terms ofE andV
is given by

S~E,V!,h
EV1/3

\
, ~5!

whereh5(6p2)1/3.
Since the maximum entropy, S~E,V!, will preserve the

extensivity property of entropy, it can be written as follow

S~E,V!5VFS E

VD , ~6!

where F is some function of the energy density,«[E/V.
Equation ~6! is equivalent to Euler’s theorem on homog
neous functions2:

E
]S

]E
1V

]S

]V
5S. ~7!

Now, Eq. ~1! and Eq.~6! imply a bound on F:

F~E/V!,
hE

V2/3\
. ~8!

1Throughout the paper we shall assume a spherical symm
even though it is not always necessary.

2We assume the case where there are no other thermodyn
functions such as an electric or chemical potential.
12750
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In order to compare between dimensionless quantities, le
multiple Eq.~3! by l p

3 and define the following dimensionles
quantities:

x[
l p
3E

epV
, y[

V1/3

l p
, and f ~x![ l p

3FS E

VD , ~9!

whereep andl p are the Planck energy and the Planck leng
respectively. In these notations, Eq.~3! can be written as

f ~x!,hxy. ~10!

However,x and y can be considered as two independe
parameters. Therefore, let us fixx and takey to its minimal
value. Reducingy implies reducingboth RandE sincex is
kept constant~actually E decreases faster thanR). Hence,
the minimal value ofy can be obtained by the requireme
R.\/E ~otherwise, the energy will leak out of the box!. In
terms ofx andy, it meansy.x21/4. Thus, takingy;x21/4,
we find that

f ~x!,x3/4, ~11!

where from this point we will stress functional dependen
while ignoring numerical factors.

By substituting this condition in Eq.~6!, we obtain the
following ‘‘extensive entropy bound’’:

S~E,V!,
E3/4V1/4

\3/4
5S ER

\ D 3/4

. ~12!

The above result, by itself, is not surprising. For examp
consider a gas of radiation at temperatureT that is confined
in the box. The energy and the entropy are given by
Stephan-Boltzmann law~neglecting corrections due to th
discreteness of modes!

E;nsR
3T4 and S;nsR

3T3, ~13!

wherens is the number of different~non-interacting! species
of particles in the gas. Hence, in terms ofE and R, the en-
tropy is proportional to

S;ns
1/4S ER

\ D 3/4

. ~14!

That is, the entropy of thermal radiation saturates Eq.~12!. It
is a good guess that no other system has more entropy
cause the rest mass of ordinary particles only enhances g
tational instability without contributing to the entropy. Thu
the bound~12! is understandable.

However, there are three points about Eq.~12! that are
very interesting and somewhat surprising: First, one doesnot
have to define unconstrained thermal radiation to be
maximum entropy system~as did, for example, Unruh an
Wald @4,5# and Pelath and Wald@7#!. It comes out that the
entropy of extensive systems is no higher if one assum
Bekenstein’s bound.

Second, the GSL leads to Bekenstein’s bound and ex
sivity leads to a bound proportional to the thermal radiat
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entropy. That is, the GSL implies the Stephan-Boltzma
law. Boltzmann and other physicists in his time would ha
never imagined that one would be able to obtain the ther
radiation entropy from black hole physics.3 Let us take this
moment to mention that both the black hole entropy formu
S}A (A is the horizon surface area!, and the Stephan
Boltzmann formula,u}T3 ands}T4 (u ands are the energy
and entropy flux densities of the radiation emitted by a
blackbody!, can be derived purely by classical thermod
namics @21#. This shows another similarity between th
physics of black holes and blackbodies.

Third, the species problem: one of the objections toall
kinds of entropy bounds is that one can takens in Eq. ~14! to
be arbitrarily large. Consider, for example, the spherical
tropy bound. In order forS in Eq. ~14! to become greate
thanA/4l p

2 , one has to takens.A/ l p
2 . Of course, we have no

evidence~experimental or string theoretical! that ns can run
into such a high number, as would be required to violate
bound. That is, one can always hold the position that
bound is telling us about the world as it is, not as it might
in the imagination of a physicist who needs counter
amples. Furthermore, if the number of species grows,
can raise the question whether interactions will not null
the assumption of ‘‘free particles.’’

However, the species problem manifests in a much m
conspicuous form in the extensive bound~12!. This bound
implies thatns

1/4 must be of order unity. That is,ns cannot be
much greater than 104. This number is much smaller tha
A/ l p

2 and it raises the question whether there are more r
istic bounds on the number of species in nature. Since
arguments that lead to Eq.~12! include the assumption tha
the minimum value ofR is approximately the Compton
wavelength\/E, we could not obtain the exact dimensio
less numerical factor that should be added to Eq.~12!. This
numerical factor would have provided an exact bound onns .

In the above considerations, it was assumed that the
tem does not exceed Bekenstein’s entropy bound. Let us
instead consider the the relationship between the sphe
entropy bound~2! and the extensivity property of the entrop
function S(E,V). As we will see in the following, this rela
tionship yields the ‘‘causal entropy bound’’@19# which scales
asAEV. We will first obtain this result by a simple heurist
argument, and then we will prove it rigorously.

Consider a box of sizeR ~volume R3) with energyE.
According to the holographic bound~2!, the entropy of the
box cannot exceed;R2/ l p

2 . Now, considerN3 (N is an in-
teger! identical boxes arranged in a much bigger box of s
NR ~volume N3R3). If the interactions between the boxe
are negligible andN is not too big~i.e. the big box is not a
black hole!, the entropy of the big box isN3S, whereS is the
entropy of a single box. However, by applying the ho
graphic bound for the big box, we get

N3S,
~NR!2

l p
2

~15!

3In some way, it also gives further evidence of Bekenstein’s id
tification of black hole entropy with the horizon area.
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or equivalently

S,
R2

Nlp
2

. ~16!

As it was expected, the holographic bound implies a tigh
bound for ‘‘non-gravitating’’ systems.

Now, the total mass~energy! of the big box,N3E, should
be smaller than the size of the boxNR ~the big box is not a
black hole!. Therefore, the maximum possible value ofN is
of the order;(epR/ l pE)1/2. By supplementing this in Eq
~16! we get

S&
R2

\
3S l pE

epRD 1/2

} AEV, ~17!

whereV is the volume of the small box.
The above arguments clarify why for extensive syste

the holographic principle predicts the bound~17!. We shall
now prove this bound in a more formal way.

Theorem: Denote byS(E,V) the maximum entropy tha
an isolated spherical system with energyE and volumeV can
have, under the condition that the entropy is distributed u
formly. The spherical entropy bound then implies th
S(E,V)&AEV.

The entropy is distributed uniformly if and only if it ca
be written in the form given in Eq.~6!. On the other hand
the spherical entropy bound implies

S~E,V!,
V2/3

ł p
2

. ~18!

Therefore, the bound~2! leads to the result

FS E

VD,
1

l p
2V1/3

, ~19!

whereF is defined in Eq.~6!. In terms of the dimensionles
quantities which are defined in Eq.~9!, the above inequality
can be written in the form

f ~x!,y21. ~20!

However, the two dimensionless parametersx and y21 can
be considered as independent. Therefore, one can kex
constant and takey21 to its minimum value. The minimum
value of y21 occurs when the size of the systemV1/3 be-
comes comparable with its energy. That is, whenx5y22.
Hence,

f ~x!,Ax. ~21!

Equation ~21! provides a proof for the theorem above.
shows a close relationship between the holographic princ
and the causal entropy bound obtained by Brustein and V
eziano@19# and independently by Sasakura@20#. In @19# the
causal entropy bound is defined covariantly and, hence,
much more general then our derivation. Note, however, t
for weakly gravitating systems, the Bekenstein bound
-
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tighter than the causal bound so that the later may be us
only for strongly gravitating systems. It may seem that
causal bound does not imply that the number of fundame
degrees of freedom is related to the area surfaces in sp
time. However, from our derivation of the causal bou
~based on the spherical bound!, we learn that the causa
bound can be incorporated into a holographic world.

In conclusion, in this paper we considered the appli
tions of the entropy bounds~1!, ~2! into extensive systems. I
was shown that extensivity provides links between differ
?,

n-

12750
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entropy bounds. One of the main results was the deriva
of a bound proportional to the entropy of thermal radiati
from black hole physics. In the future, we hope to genera
the results to charged and rotating systems.
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