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Analytic study of nonperturbative solutions in open string field theory
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We propose an analytic framework to study the nonperturbative solutions of Witten’s open string field
theory. The method is based on the Moyal star formulation where the kinetic term can be split into two parts.
The first one describes the spectrum of two identical half strings which are independent from each other. The
second one, which we call midpoint correction, shifts the half string spectrum to that of the standard open
string. We show that the nonlinear equation of motion of string field theory is exactly solvable at zeroth order
in the midpoint correction. An infinite number of solutions are classified in terms of projection operators.
Among them, there exists only one stable solution which is identical to the standard butterfly state. We include
the effect of the midpoint correction around each exact zeroth order solution as a perturbation expansion which
can be formally summed to the complete exact solution.
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I. INTRODUCTION

Starting with the original work of Witten@1# string field
theory has been strongly tied with noncommutative geo
etry. This is in the spirit of treating the open string field as
infinite dimensional matrix, while the definition of the st
product is formally identical to matrix multiplication. Thi
viewpoint has been pursued in more detail by explicitly sp
ting the left and right degrees of freedom in the split stri
formalism @2#.

Recently, this formal correspondence played a major r
in importing basic ideas of noncommutative geometry
string field theory. One of the stimulating ideas is t
vacuum string field theory~VSFT! proposal @3#. With an
assumption on a simplified kinetic term to describe
tachyon vacuum, the classical solutions that would desc
the D-brane are given by the noncommutative soliton@4#
(5projector). It is well known that projectors are the fund
mental geometrical objects in noncommutative geome
since they represent theK-homology group. The proof of the
VSFT conjecture on the kinetic term was, however, diffic
and there remained many open questions.

The Moyal star formulation of string field theory@5–9#
~MSFT! is an explicit representation of Witten’s string fie
theory in terms of the Moyal product, which is the ma
language in noncommutative geometry. Unlike previous p
posals of the split string field framework, particular attenti
was paid to solve the ambiguity at the midpoint. In the co
text of MSFT, the subtlety is reflected in the form of th
associativity anomaly@6# of the infinite dimensional matrice
T,R,v,w which provide the change of variables from th
open string coordinates to the canonical pairs of the Mo
product. The anomaly is resolved by deforming the nonas
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ciative algebra amongT,R,v,w to an associative one, b
introducing a regulated version of these matrices. All t
elements of string field theory, such as perturbative spectr
Neumann matrices and Feynman rules, were explicitly w
ten in terms of the regularized framework, and their equi
lence to other frameworks, when the regulator is remov
was demonstrated in@7,8#. Other proposals of the Moya
formalism @10,11# are equivalent to the original one@9#.

In this paper, we take a step toward the classification
nonperturbative solutions of string field theory. The meth
is based on the splitting of the kinetic term into two par
The first one gives a description of the open string where
left and right half strings completely decouple. The seco
term gives the correction to the split string description
recover the correct spectrum of the open string. We call it
‘‘midpoint correction’’ since it carries the information tha
two half strings are indeed connected at the midpoint.

We will show that there exists a basis which diagonaliz
the first part of the kinetic term and the nonlinear interact
term at the same time. The combined nonlinear sys
~namely Witten’s action without the midpoint correction
the kinetic term! becomes a completely solvable matr
model. We can obtain all the exact solutions that are inv
ant under translations by using the projection operators un
the star product. These provide a basis for classifying
nonperturbative solutions of open string field theory on
D25 brane. We derive the spectrum at zeroth order in
midpoint correction and then compute the effect of the m
point as a perturbation.

The midpoint correction has been neglected in the lite
ture because the coefficients in front of it seem to disapp
in the naive limit of the regularization. It has, however,
finite contribution to the spectrum and cannot be discard
In this paper, we propose to treat it as a correction to any
the zeroth order exact solutions, and provide a formal exp
sion that sums up the perturbation series to the full ex
solutions.

The situation turns out to be similar to the discussions
©2003 The American Physical Society07-1



i

lly
y
he
m

eld
ea
n

ua
or
tu
e
he
h
a

ca
s

in
o

a
ld
e
o

n
-
b

in
ov
tors

ted

eely

to
q.
r

n-
hed

n-
r

m

on-

ec-
u-

e of
of

ing

u-
at

he
da-
e

so

e-
at

f

ich
ere
n
arge

on
m-
tic
er-
u-

dd

BARS, KISHIMOTO, AND MATSUO PHYSICAL REVIEW D67, 126007 ~2003!
noncommutative scalar field theory@4#. There, in largeu
~noncommutativity parameter! limit, the potential term gives
the dominant contribution, and the equation of motion
solved by projectors. For finiteu, the kinetic term is incor-
porated as a perturbation@4,12,13# which gives corrections
to the noncommutative soliton. In string field theory, usua
there is no such parameteru which can be adjusted to justif
the validity of the perturbation expansion. However, in t
Moyal formulation with a regulator, we have some freedo
to choose the string oscillator frequencies~denoted askn),
while keeping the basic algebraic structure of string fi
theory, including important relations such as the nonlin
relations of Neumann coefficients derived by Gross a
Jevicki @14#. While these parameters get fixed to the us
oneskn5n at the end, we may use the behavior of the the
as a function of this degree of freedom to define the per
bation theory in the intermediate steps. In Sec. IV, we giv
construction of the exact solution of the full theory as t
expansion of the midpoint correction along this idea. T
perturbative expansion can be determined uniquely at e
order with a condition~relating to the stability! on the spec-
trum of the open string solution. The perturbation series
then be summed up to a formal expression that represent
full exact solution.

II. THE SETUP

A. Moyal star formulation

The starting point of our discussion is Witten’s action
the Siegel gauge written in the Moyal star formulation
string field theory~MSFT!:

S~A!52E ddx̄ TrS 1

2a8
A!~L021!A1

g

3
A!A!AD .

~2.1!

The kinetic term is given by the Virasoro operator which is
second order differential operator acting on string fie
A( x̄,j,jgh). We specify this operator later since it will be th
main focus of this section. The string field is a function
the midpoint coordinatex̄ and matter and fermionicbc
ghosts coordinates,j[(xe

m ,pe
m), @m50,1, . . . ,d21,(d

526)# andjgh[(xe
b ,xe

c ,pe
b ,pe

c). The even indexe specifies
the mode and takes its value in$e52,4, . . . ,2N% whereN is
the large integer which is introduced for the regularizatio
j (jgh) are Grassmann even~odd! coordinates in noncom
mutative Moyal space with the star product specified
@5,8,16,17#1

@xe
m ,pe8

n
#!5 iudee8h

mn, $xe
b ,pe8

b %!5$xe
c ,pe8

c %!5u8dee8 .
~2.2!

1Compared to@8#, we redefined the Grassmann variables with o
label to even onesxe

b ,xe
c ,pe

b ,pe
c as

xe
b5ke

21Sxo
gh , pe

b5keSpo
gh , xe

c5Tyo
gh , pe

c5R̄qo
gh , ~SªkeTko

21!.

The form of the Moyal! product@Eq. ~70! in @8## is invariant under
this transformation.
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In Appendix A we summarize MSFT notation that is used
this paper, including precise definitions of the Bogoliub
transformation between conventional open string opera
and Moyal coordinates.

We note the additional free parameters in regula
MSFT. Namely, the spectrum parameterske andko that cor-
respond to string oscillator frequencies can be chosen fr
~see Appendix A for the notation! as the definition of the
regularized theory. While they will be fixed at the end
kn5n to reproduce the correct open string defined in E
~A2!, the algebraic framework of MSFT is well defined fo
any kn as a function ofn.

The equivalence of MSFT, with its regulator, to the co
ventional operator formulation has already been establis
in the following sense@8#:

~1! The spectrum of the kinetic term is identical to the co
ventional open string at largeN. That is, the propagato
in perturbation theory is identical in both theories.

~2! The Neumann coefficients of the oscillator formalis
were computed directly from the Moyal product@7,16#,
and these were shown to satisfy the Gross-Jevicki n
linear relations @14# for any frequencieskn . Their
simple expression explains as well as agrees with sp
troscopy@15#, and agrees numerically with other comp
tations at largeN.

These facts are sufficient to guarantee the equivalenc
two formulations of string field theory in the computation
any perturbative string amplitudes@8#. Our formulation is
well adapted for the discussion of nonperturbative str
physics which will be the main topic of this paper.

We note that the conformal symmetry is lost in the reg
larized theory since we truncate the number of oscillators
level 2N. Such truncation is, however, indispensable for t
correct treatment of the associativity anomaly in the fun
mental matrices@6# and also the Neumann coefficients. W
note that every explicit computation of string field theory
far is based on some cutoff~level-truncation and so on!. The
additional freedom in the spectrum is actually directly r
lated to the loss of conformal symmetry. We have to fix it
the end of the computation by taking the largeN limit.

One of the main goals of string field theory~and also the
main goal of this paper! is to solve the nonlinear equation o
motion

~L021!A1a8gA!A50. ~2.3!

The solutions, except for the trivial one (A50), describe
nonperturbative backgrounds of open string theory wh
should be related to D-branes. It is widely believed that th
exists a unique solutionA0 which describes the tachyo
vacuum where D-branes are annihilated. There exists a l
amount of numerical evidence@18# that confirms the exis-
tence and the desirable properties of such a solution~D-brane
tension, the absence of open string propagation and so!.

While the achievement of the numerical study is very i
pressive, it is still indispensable to develop an analy
framework to study the tachyon vacuum and other nonp
turbative phenomena in string theory. In the operator form
7-2
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lation a difficulty originates from the fact that the bas
which diagonalizes the kinetic term~conventional Fock
space representation, which is its main tool! gives a compli-
cated expression for the star product including the Neum
coefficients.

In the Moyal star formulation, on the other hand, the s
product that produces Eq.~2.2! is trivial, while the kinetic
term becomes off-diagonal. The complication of the kine
term is, however, manageable and has not been a hindr
in developing the formalism for practical computations, su
as Feynman graphs@8#, and as we will see in the following
for nonperturbative solutions.

B. Splitting of the kinetic term

We first translate the Virasoro operator from the conv
tional operator language to the Moyal star formulation
following the path in Refs.@7,8,16#.

The Virasoro operatorL0 written in terms of the standar
oscillator notation is

L0
osc5

1

2
a0

21 (
n51

2N

hmna2n
m an

n1 (
n51

2N

kn~b2ncn1c2nbn!

~2.4!

where we explicitly truncate the number of oscillators a
rewrite the frequency fromn to kn . The commutation rela-
tion among oscillators with generic frequency is given in E
~A1!. After translating the oscillators into the Moyal space
in Appendix A, we arrive at the expression ofL0 as a second
order differential operator acting on the Moyal fieldA in the
Siegel gauge (u,u8 are arbitrary parameters which define t
noncommutativity, andl s5A2a8),

L05L0
matter1L0

ghost, ~2.5!

L0
matter5 (

e.0
S 2

l s
2

2

]2

]xe
2

2
u2

8l s
2
ke

2 ]2

]pe
2

1
1

2l s
2
ke

2xe
21

2l s
2

u2
pe

2D
1

1

2
~11w̄w!b0

21
i l s

2
b0(

e.0
we

]

]xe

2
1

11w̄w

2l s
2

u2 S (
e.0

wepeD 2

2
d

2 (
n51

2N

kn , ~2.6!

L0
ghost5 i (

e.0
S ]

]xe
b

]

]xe
c

1
u82

4
ke

2 ]

]pe
b

]

]pe
c

1ke
2xe

bxe
c

1
4

u82
pe

bpe
cD 2

i

11w̄w
S (

e
we

]

]xe
bD

3S (
e8

we8

]

]xe8
c D 1 (

n51

2N

kn . ~2.7!

b052 i l s(]/] x̄)52 i l s(]/]x0) represents the center of ma
momentum, which can be written as a derivative of the m
point coordinatex̄. We note that the expression consists
mostly a diagonal combination of the Moyal variables. T
12600
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off-diagonal pieces with coefficient (11w̄w)21 appear be-
cause of the Bogoliubov transformation from the odd mod
with spectrumko , to the even modes with spectrumke .
This complication of the kinetic term is the cost of the sim
plification of the star product in the Moyal product formul
tion.

At this stage, the equation of motion appears as horri
complicated—it is nonlinear, it contains an infinite order
derivatives through the star product, and is off-diago
through the terms proportional to (11w̄w)21. However,
there exists a critical simplification ofL0 which saves us
from most of these difficulties. The trick is to rewrite th
diagonal pieces ofL0 by using the star product in the follow
ing form. It gives the splitting ofL0 into two parts containing
the symbolsL0 , g @7,8,16#,

~L021!A5@L0~b0!!A1A!L0~2b0!#1gA, ~2.8!

with2

L0~b0!5L 0
matter~b0!1L 0

ghost2
1

2
,

g5gmatter1gghost, ~2.9!

L 0
matter~b0!5 (

e.0
S l s

2

u2
pe

21
ke

2

4l s
2

xe
22

l s

u
wepeb0D

1
1

4
~11w̄w!b0

22
d

4 (
n.0

kn ,

L 0
ghost5 i (

e.0
S 2

u82
pe

bpe
c1

ke
2

2
xe

bxe
cD 1

1

2 (
n.0

kn ,

~2.10!

gmatter52
1

11w̄w

2l s
2

u2 S (
e.0

wepeD 2

,

gghost52
i

11w̄w
S (

e.0
we

]

]xe
bD S (

e8.0

we8

]

]xe8
c D .

~2.11!

The star products with thefield L0 reproduces the diagona
part of thedifferential operator L021, while the ordinary
product withg gives the off-diagonal part ofL021.

The action ofg can also be written by using the sta
product while it cannot be split as left and right multiplic
tions alone,

gmatterA52
l s
2

2u2~11w̄w!
(
e,e8

wewe8hmn$pe
m ,$pe8

n ,A%!%! ,

~2.12!

2The expressionA!L0(2b0) is to be understood thatb0 is a

derivative applied onA( x̄) on its left, even though it is written on
the right for convenience of notation.
7-3
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gghostA52
i

u82~11w̄w!
(
e,e8

wewe8$pe
b ,@pe8

c ,A#!%! .

~2.13!

These formulas will be useful in the concrete computation
Sec. IV.

We emphasize thatg depends only on the rank one qua
tity p̂m,b,c5(11w̄w)21/2(ewepe

m,b,c , which is basically a
single string momentum mode. This mode was first poin
out as the source of associativity anomalies of the star p
uct in string field theory@6#. The strange mode that was lat
discovered in the continuous Moyal formalism@10# is given
by p̄m,b,c5(11w̄w)21/2p̂m,b,c up to a numerical constant a
shown in @7,9#. As we will see, it is due to this midpoin
complication that string field theory is not trivially solvabl
We describe our strategy to solve the equation of mot
with this splitting in the next section.

We explain the basic role of the two parts ofL0. If the g
term were absent, the spectrum of the free string would
pend only on the frequencieske sinceL0 ~aside from the last
constant term! depends only onke . The string spectrum
coming only from the two terms withL0 looks like the string
spectrum of both even and odd oscillators, but with the f
quency of the odd oscillatorko adjusted to be equal to th
frequency of the neighboring even oscillatorko→ko11
5ke . On further reflection, one can see that theL0 term by
itself essentially describes the kinetic term of the two h
strings which the original open string is composed of. Ho
ever, the open string has a different spectrum, namely
even modes have frequencieske and the odd modes hav
frequenciesko . The second termg precisely fixes the dis-
crepancy of the spectrum from the half string description
carries the information of the midpoint where two ha
strings are connected, as shown in@7,8#. In this sense, we
will refer to g as the ‘‘midpoint correction.’’

The factor (11w̄w)21 appears to vanish naively in th
open string limit Eq.~A2!. However, this is misleading be
cause in computations one obtains factors ofw̄w in the nu-
merator that produce finite contributions by theg term. This
is the mechanism of anomalies@6#. It is because of this
subtlety that this term has been largely missed in the s
string literature.

We note that the splitting ofL0 into the L0 part andg
term is not unique. Namely one may obtain the sameL0 by
the shift,

L0→L02 f ~j,jgh!, gA→gA1$ f ~j,jgh!,A%! . ~2.14!

The framework of our analysis explained in the next sect
will not be basically affected by such a change as long
f (j) is quadratic with respect toj,jgh. It modifies, however,
the half string spectrum and the Fock space structure
cussed in the following sections. A fact mentioned abo
namely thatg depends only on the rank one quantityp̂, will
be generally broken in such an arbitrary shift. Such a co
plicated choice of the splitting betweenL0 and g may be
useful to define a sensible perturbation expansion in the o
string limit of Eq.~A2!. We will come back to this issue late
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C. Strategy

Due to the separation of the kinetic term, we rewrite t
action in the following form:

S52E ddx̄ TrS 1

2a8
A!~L021!A1

g

3
A!A!AD

52~S11S21S3!. ~2.15!

S15
1

a8
E ddx̄ Tr A!L0~b0!!A, ~2.16!

S25
1

2a8
E ddx̄ Tr A!~gA!, ~2.17!

S35
g

3E ddx̄ Tr A!A!A. ~2.18!

Before pursuing the nonperturbative analysis, let us e
phasize that the conventional perturbation expansion of o
string field theory is successfully reproduced in our MS
formalism. In the conventional perturbative case, the cla
cal equation of motion that comes from the quadratic p
S11S2, namely (L021)A50, gives the spectrum of string
states associated with the oscillator frequencies (ke ,ko)
@7,8#. The interaction among these perturbative states
given by S3 where only the use of the Moyal product
sufficient to compute interactions. Pursuing this in our f
malism gives results that are in agreement with the conv
tional oscillator approach to the open string field theory@14#.
In particular, our MSFT formalism including ghosts, replac
the complicated Neumann coefficients of the oscillator
proach to express the interaction part explicitly@7,16#. Our
theory includes a consistent regulator, and with it numeri
estimates of certain quantities have been compared suc
fully to numerical results obtained in other formalisms@16#.
Thus, we are confident that we have the correct theory
explore nonperturbative phenomena.

By dividing the kinetic term intoS1 andS2, we can pur-
sue the alternative splitting of the action. Namely we fi
solve the system withS11S3. As we discuss in the following
sections, there is a basis which diagonalizes these two te
(L0 and!-product! at the same time.3 It gives a major sim-
plification of the equation of motion and we can solve t
nonlinear equation analytically at the classical level. The
lutions are given in terms of the projection operators a
should be regarded as defining nonperturbative vacua
open string field theory in the limitS2→0. This is in some
sense similar to the VSFT proposal@3# although we expand
the system from the different vacuum. The midpoint corre
tion S2 will be introduced as the ‘‘perturbation’’ to the exac
solutions ofS11S3.

3There is another basis which diagonalizesS2 andS3 at the same
time and we may carry out the program which parallels our disc
sion in the following~see Appendix B!. However, there is no basi
which diagonalized all three termsSi ( i 51,2,3). It gives the essen
tial difficulty to obtain the tachyon vacuum in the analytic form.
7-4
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At the level of the equation of motion, this strategy
equivalent to writing Eq.~2.3! as4

L0!A1A!L01a8gA!A52egA, ~2.19!

and treats the right hand side as a source term. We introd
formally an expansion parametere which will be used to
describe the order of perturbation. We must pute51 at the
end. We will first solve the equation in the absence of
source term, and later include the source for the comp
solution.

At first glance, even without the source term, we are s
left with a nonlinear differential equation of infinite orde
and the analytic study of such an equation of motion see
impossible. However, here the methods of noncommuta
geometry come in handy for any operatorL0. Thus, at the
formal level, one may find solutionsA5AP labeled by pro-
jectorsP in the following form:

AP52
2

a8g
L0!P. ~2.20!

HereP is any projector which satisfies the following prope
ties:

P!P5P, @P,L0#50. ~2.21!

Once we have a solutionAP of the homogeneous equatio
the corrections to it due tog are taken into account by th
following integral equation which is equivalent to an exa
formal solution5 of Eq. ~2.19!:

A5AP2E
0

`

dte!
2t(L01a8gAP)

!~a8g~A2AP!!
2

1egA!!e!
2t(L01a8gAP) . ~2.24!

4We omit the x̄ derivative ~or b0) since our main focus in this
paper is the study of the translational invariant solutions.

5To verify this, consider the star anticommutator of both sides
the integral equation with the quantity (L01a8gAP). The left side
is $(L01a8gAP),A%! while the right side, in addition to$(L0

1a8gAP),AP%!, produces a totalt derivative under the integra
sign

E
0

`

dt
]

]t
@e!

2t(L01a8gAP)
!~a8g~A2AP!!

21egA!!e!
2t(L01a8gAP)

#.

~2.22!

Assuming a positive spectrum for the Hamiltonian (L01a8gAP),
the integral contributes only at the boundaryt50. We will return
later to discuss the issue of the spectrum of (L01a8gAP), for now
we proceed formally. Inserting the result of the integral, the left a
right sides of the equation yield

$~L01a8gAP!,A%!5$~L01a8gAP!,AP%!

2~a8g~A2AP!!
21egA!. ~2.23!

Rearranging this equation we obtain back our full equation of m
tion in Eq. ~2.19! after using the fact thatAP is a solution of the
homogeneous equation.
12600
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SinceA appears on both sides, one approach to obtaining
explicit solution forA is by recursion. As will be discusse
below, this amounts to a perturbative expansion ofA in pow-
ers ofe,

A5A(0)1eA(1)1e2A(2)1•••, ~2.25!

with the lowest order beingA(0)5AP . The full perturbative
series is given later in Sec. IV. This analysis could in fact
pursued for anyL0.

Natural questions are~1! does such a projectorP indeed
exist, ~2! can all such projectors be written explicitly fo
given L0, and ~3! does this exhaust all the solutions of E
~2.19! with e50? The answers are formally yes to all thr
questions, as follows.

As in the situation in the noncommutative soliton@4#, the
oscillator representation of the Moyal product gives
equivalent but more transparent means to analyze suc
problem. In this language, we takeL0 as a Hamiltonian. The
rank one projectors which commute withL0 can be con-
structed schematically as outer productsPl5ul&^lu of the
normalized eigenstates of the HamiltonianL0ul&5lul&,
with ^lul8&5dll8 . Finding solutions of the form~2.20! re-
duces to finding eigenstates ofL0. But this is an easy task fo
ourL0 since it is the Hamiltonian of a collection of harmon
oscillators.6 A careful treatment along this scenario is give
in the next section.

After we find an analytic form forA(0), we use Eq.~2.19!
recursively to determine the expansion of the analytic so
tion of the full equation of motion,

$L 08,A
(k)%!52gA(k21)2a8g(

i 51

k21

A( i )!A(k2 i ), ~2.26!

L 08[L01a8gA(0). ~2.27!

This is, of course, equivalent to the iterative solution of t
integral equation in Eq.~2.24!, but we will use a matrix
formalism that is convenient in the case of oscillators. W
will show that there is no obstruction to solving Eq.~2.26!
order by order and one can determineA(k) uniquely for any
starting pointA(0). The explicit form of the first order cor-
rection and formal solution for anyA(k) is given in Sec. IV.

III. PHYSICS AT gÄ0

A. Splitting limit

The nature of the system at zeroth order in theg term
may be understood as follows. Let us begin by examiningL0
in the absence of the gamma term. The remaining part oL0
has no information about the odd frequenciesko and the
resulting spectrum of the modifiedL0 corresponds to string

f

d

-

6In the Moyal language, the projectors we want as functions of
noncommutative spacePl(j) are known as the Wigner distribu
tions for all the quantum states of the harmonic oscillator. These
well known in the literature in the case of a single harmonic os
lator @19#.
7-5
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oscillators with the odd frequenciesko replaced by the
neighboring even frequencyke

ko→ko115ke for o51,3,5, . . . , ~3.1!

while ke is still arbitrary, as is usual in regulated MSFT. Th
exactly characterizes the spectrum produced by theL0 part
of L0 in Eq. ~2.19! in the absence ofg. Indeed, an inspection
of L0 shows that it contains only the even frequencieske .
Given the fact that the star product is independent of
frequencies, the systemS11S3 has no information on how to
correct the frequencies of the odd oscillators fromko11 to
ko .

Conversely if we insert Eq.~3.1! in the regulated MSFT
system, a major simplification occurs in the defining matric
and vectorsU,v,w. NamelyU becomes the identity matrix
andv,w vanishes. The vanishing ofwe immediately implies
S250, and the open string splits into independent h
strings. We recall that the meaning ofU,v,w is to give Bo-
goliubov transformation from variables with frequencyko to
those withke . If there is no difference between the sets
frequencies, there is no need to perform Bogoliubov tra
formation and the matrix which defines it becomes trivial

The MSFT formalism gives us the ability to consider th
limit as well as the corrections. Intuitively one may think th
a small change in the frequencies may not change the p
ics of the system drastically. Indeed, Eq.~3.1! is a small
change inko when o is sufficiently large. Hence a mor
interesting situation is to consider MSFT in the limit~3.1! for
o larger than some number,o.2N while leaving bothke ,ko
arbitrary for e,o<2N. In that case the trivialization o
U,v,w applies only to the modes above 2N, and g gets
contributions only from the modes up to 2N. As long asg
Þ0 the string does not split into two independent halves.
it seems worth studying such limits, at least for the high
modes, since the formalism simplifies drastically while t
physics~depending on the specific question! may be about
the same. Furthermore, since we have complete contro
the corrections, one can test both analytically and num
cally the size of the correction. Such more complicated
proximation scenarios are under study. But in the pres
paper we do not take any limits on theke ,ko ; we simply
study the system in powers ofg but for arbitraryke ,ko .

B. Oscillator representation

The simplification achieved in the splitting limit is e
egantly rewritten in the oscillator notation.7 We diagonalize
the action ofL0 and the star product at the same time in t
matrix notation.

We introduce the creation and annihilation operators
the matter sector@7# and the ghost sector@8,16# ~in even
mode variable!

7We note that a somewhat similar representation was consid
in @20# in the expansion around the sliver solution by neglecting
midpoint correction.
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be
m5

1

Ake
S 2 i e~e!

ke

2l s
xe

m1
l s

u
pe

mD , ~3.2!

be
b5S 2 i e~e!

ke

2
xe

b1
1

u8
pe

cD ,

be
c5S 1

2
xe

c2e~e!
i

u8ke

pe
bD ~3.3!

which satisfy the canonical commutation relations with
spect to the! product,

@be
m ,be8

n
#!5hmne~e!de1e8 , $be

b ,be8
c %!5de1e8 .

~3.4!

In terms of these oscillators, one can rewriteL0 as

L05 (
e.0

ke~b2e
m !be

nhmn1b2e
b !be

c1b2e
c !be

b!2n,

n5
1

2
2

d22

4 S (
e.0

ke2 (
o.0

koD . ~3.5!

We note that both the star product~3.4! and the kinetic term
~3.5! are diagonal with respect to the basis~3.2!, ~3.3!. It
makes the splitting limit completely solvable.

We introduce the~nonperturbative! vacuum state through
the relations,

be
m!A05be

b!A05be
c!A05A0!b2e

m 5A0!b2e
b

5A0!b2e
c 50. ~3.6!

The state that solves them becomes

A0;expS 2(
e

S ke

2l s
2 ~xe!

21
2l s

2

u2ke

~pe!
21 ikexe

bxe
c

1
4i

u82ke

pe
bpe

cD D . ~3.7!

This is called the ‘‘butterfly state’’8 in the literature@3# and
satisfies the projector condition,

A0!A05A0 , A0* 5A0 . ~3.8!

This is the critical simplification by neglecting the mixin
term. As we see in the following, the states generated
multiplying the creation operators from the left or the an
hilation operators from the right diagonalize bothL0 and the
star product.

ed
e

8In fact, we can show that thisA0 corresponds to the~twisted!

butterfly state:e21/2(L22
m

1L228 g)c1u0& in the limit ke5e,ko5o,N
5` @16#.
7-6
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To illustrate our idea we use a simplified situation w
only one pair oscillatorsa anda† satisfying@a,a†#51. The
orthonormal basis is given explicitly as

fnm~x,p!5
1

An!m!
~a†!!

n!A0!~a!!
m, fnm!f rs5dmrfns ,

~3.9!

N̂!fnm5nfnm , fnm!N̂5mfnm , N̂5a†a.
~3.10!

The orthogonality with respect to the! product is essentia
in the following. In the above case, it can be proved by
commutation relation and the condition forA0 ~3.7!. fnn
become mutually orthogonal projectors,

fnn!fmm5dnmfmm. ~3.11!

The multi-oscillator extension of the above basis is giv
simply by direct products. We introduce the multi-inde
symbol

n5$ne
i une

i >0, e52,4, . . . ,2N, i 50, . . . ,d;

ne
i 50,1 for i 5b,c%, ~3.12!

and introduce the statesfnm5)e) ifn
e
i ,m

e
i

$ i ,e% . We denote the

set of multi-indices$n%5Z^ Nd
^ Z2

^ 2N asB. The basis sat-
isfies

L0!fnm5lnfnm , fnm!L05lmfnm ,

ln[S (
i

(
e.0

kene
i D 2n, ~3.13!

fnm!f rs5dmrfns. ~3.14!

We expandA5(nmanm( x̄)fmn and put it in the Lagrang-
ian, we obtainS11S35Smatrix1dS with

Smatrix5E ddx̄ TrS 1

2
] x̄a~ x̄!•] x̄a~ x̄!1

1

a8
L•a•a

1
g

3
a•a•aD , ~3.15!

dS5
w̄w

2 E ddx̄ Tr ] x̄a•] x̄a

1
2i

u E ddx̄ Tr a•S (
e

wePeD •] x̄a, ~3.16!

whereLnm5lndnm , the trace Tr is over then indices and•
is the matrix product.Pe is the matrix that corresponds to th
star multiplication ofpe5(Akeu/2l s)(be1be

†). dS becomes
off-diagonal but does not affect the equation of motion w
the translational invariance. In the splitting limit~3.1!. dS
vanishes becausew50. Smatrix has a structure which is ver
12600
e

n

similar to thec5d matrix model except that the kinetic term
contains a mass termL which is not proportional to the
identity matrix. It describes a characteristic feature of str
theory that the color indexn has a certain massln .

C. Translational invariant solutions

In this section, we construct the translational invaria
~5independent ofx̄) solutions in the splitting limit. It is
quite interesting that the equation of motion becomes co
pletely solvable and we can give an explicit form of th
arbitrary solutions. Each solution describes a nonperturba
vacuum of string field theory while it may be stable or u
stable. We also derive the open string spectrum around e
vacuum explicitly while it becomes rather trivial.

The equation of motion obtained from the actio
~3.15,3.16! is

~ln1lm!anm1a8g(
k

ankakm50. ~3.17!

This equation has the following significant property whi
we call ‘‘reducibility.’’ Namely for any~finite! subset ofB 8
5$k1 , . . . ,kn%PB, one can consistently restrict the equ
tion of motion by replacinga to its rank n sub-matrixakl
with k,lPB 8. In other words, one can consistently putanm
50 if n or m do not belong toB 8 without any conflict with
the equation of motion. In short, the equation of motion c
be truncated to the diagonal finite dimensional sub-ma
of A.

For the simplest casen51, the equation of motion
reduces to a scalar relation 2lnann1a8g(ann)

250 for
nPB 8. A nonvanishing solution is given byA5
2(2/a8g)lnfnn by using rank one projectorfnn . More
general diagonal solutions can be written by superpos
mutually orthogonal projectors in the subsetB 8,

AB 852
2

a8g
(

nPB 8
lnfnn52

2

a8g
L0!PB 8 , ~3.18!

PB 85 (
nPB 8

fnn , PB 8!PB 85PB 8 . ~3.19!

We note that there are an infinite number of exact and a
lytic solutions for the different choices of the subsetB 8.
Solutions of the form~3.18! will be referred to as the diag
onal solutions.

Actually the solution is not restricted to the diagonal on
To see it, one can write the equation of motion in the mat
form,

L•a1a•L1ga8a•a50. ~3.20!

By shifting a5a82L/(a8g), the equation of motion be
comes

~a8!25L2/~a8g!2. ~3.21!
7-7
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BARS, KISHIMOTO, AND MATSUO PHYSICAL REVIEW D67, 126007 ~2003!
We take the subsetB 8 in such a way that for everynPB 8,
ln

2 is the same, namely the degenerate eigenspace in the
hand side of the above equation. The equation of mo
restricted to the subsetB 8 becomes (a8)25@l2/(a8g)2#I
whereI is the identity matrix andl is the degenerate eigen
value. This equation obviously has off-diagonal solutions.
an example, we pickn52. A family of matrices which sat-
isfy this relation isA5( i 51,2,3qis i with ( iqi

25l2/(a8g)2

(s i are the Pauli matrices!.
The solvability of the classical equation of motion~3.15!

implies that there exists a similar solvability even at t
quantum level if we ignore thex̄ dependence. We give
short comment on the analogy with the two matrix model
Appendix C.

We would like to interpret each solution of string fie
theory as a new~unstable! D-brane which is related to th
original D25 brane.9 In order to make this statement mo
explicit, we expand the action around the solution,

S@AB 81A8#5
4V

3a83g2
Tr~L0!

3!PB 8! ~3.22!

1E ddx̄ TrS 1

2
] x̄A8!] x̄A81

1

a8
L0!~122PB 8!!A8!A8

1
g

3
A8!A8!A8D . ~3.23!

The first term~whereV is the volume of space-time! gives
the tension of the~un!stable D-brane

TB 85
4

3a83g2 (
nPB 8

ln
3 . ~3.24!

The second term showsL0 is replaced by a newL 08 on the
~un!stable D-brane,

L05 (
nPB

lnfnn→L 08[L0!~122PB 8!

5 (
nPB2B 8

lnfnn2 (
nPB 8

lnfnn . ~3.25!

We note that the mass squared of the matrix componentAnm
is given by the sum of the contribution from the half strin
ln1lm . The above argument shows that the contribut
changes its sign when the labeln is included in the setB 8.

9It is not obvious if the open string at zeroth order ing ~splitting
limit ! is related to D-branes. However, we use this terminology i
generalized ‘‘background’’ where the open string has the frequ
cies (ke ,ko), which become (ke ,ke) wheng is neglected.
12600
ght
n

s

n

D. Tachyon vacuum

Suppose we start from the theory

ln,0 if and only if nPB0 ~3.26!

for some subsetB0,B. In such theory,~at least! the matrix
componentsAnn (nPB0) become the tachyonic modes. O
arguments in this section clearly show that if we use
solution of motionAB0

and re-expand around that solutio
all the negative contributions from the half string chang
sign and the tachyonic modes disappear. This is precisely
definition of the tachyonic vacuum.

In the splitting limit, for a specific parameter choiceke
5e we haven51/2. There is only one tachyonB05$0% and
the tachyon vacuum becomes

A5
1

a8g
f00. ~3.27!

This is the butterfly state in our notation. We note that
obtain the butterfly state as the approximate solut
~namely, by neglectingS2) and this is not the exact solutio
for the full systemS11S21S3.

The action expanded around this vacuum takes the
lowing form ~after the shift of the vacuum energy!:

S@A#5TrS 1

2
] x̄A!] x̄A1

1

a8
Lvac!A!A1

g

3
A!A!AD ,

Lvac5(
n

ulnufnn , ~3.28!

with all eigenvaluesulnu positive. This is the action for the
‘‘vacuum string field theory’’ in the splitting limit.

Our description of the solutions at zeroth order ing
shares many properties in common with the conventio
VSFT proposal. One of the most outstanding character
tions is the role of the projector for describing the exa
solutions of the classical equation of motion. On the oth
hand, there are a few points which are different from t
VSFT proposal.

The first point is the form of the solutions. They conta
the action of Virasoro operator22L0!P instead of the
simple projector itself as in the VSFT proposal. In a sen
our solution is closer to the solutionC5QLI proposed in the
purely cubic theory@21# ~after the replacement of the identit
by the projector!. It is due to the fact that the kinetic term
always remains in the expansion around any exact solut

A second point is the nature of the tachyon vacuum.
we have seen it is characterized only by the absence o
chyonic modes in the spectrum and the open string propa
tion seems to survive. Namely, the cohomology defined
the quadratic term at the tachyonic vacuum does not ap
to be trivial. In the usual proposal, the tachyon vacuum
where there is no open string propagation since it is the p
where D-branes annihilate.

It is, of course, not very clear to which extent we shou
take such ‘‘discrepancies’’ seriously. In the Siegel gau

a
-
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there are an infinite number of subsidiary conditions t
must be applied on our solutions. We have not implemen
yet these conditions. It is likely that the ground state of
potential energy already satisfies these conditions, but on
subset or none of the remaining extremal states would.

A better approach to investigate this issue may be to c
struct the full BRST operator in the Moyal formalism. Th
appears possible atN5`, but with an infinite number of
modes the issue of the midpoint is plagued with anoma
and it is difficult to be confident that we have complete co
trol of the anomalies by working directly atN5`. On the
other hand, at finiteN we have not figured out a substitute f
the Virasoro algebra that would be needed to construct
Becchi-Rouet-Stara-Tyutin~BRST! operator. At this point it
appears quite likely that, likeL0, the full BRST operatorQB
~a differential operator! also has a representation similar
Eq. ~2.19!, namely

QBA5Q!A1A!Q1qA. ~3.29!

We hope to report on this aspect in a future publicati
Armed with such a star product representation ofQB we can
give a similar analysis to what we have presented in
paper, and then we can answer the issues of the cohomo
at the tachyonic vacuum.

It is interesting to point out the following observation
relation to closed strings. The spectrum at zeroth order ig
~split string withko5ke) conceptually is close to theclosed
string spectrum, especially if we consider that each h
string imitates the independent modes from the left and r
movers on a closed string.10 This begins to give a clue on
how the graviton can be described as part of open string fi
theory.

IV. INCLUSION OF MIDPOINT CORRECTION

In Witten’s string field theory, the solution which de
scribes the tachyonic vacuum is one of the most impor
goals. In our language, it corresponds to solving the equa
of motion ~2.3! without assumingg50. Since we have al-
ready solved the equation of motion analytically in theg
50 limit, it is sensible to introduce the effect ofg as pertur-
bation. For this purpose, we replaceg by eg with an expan-
sion parametere. We expandA as

A5A(0)1eA(1)1e2A(2)1•••, ~4.1!

and useA(0) as the solution ate50. When the spectra
asymmetry betweenke andko is very small, we would ob-
tain the converging series which describe the exact solut

We note that there is a formal analogy between our c
and the analysis of the noncommutative soliton in the sc
field theory where the equation of motion becomes

@a,@a†,f##1uV8~f!!50. ~4.2!

10A related remark was made in@22#.
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In the usual scenario, we first solve the second part by
suming the parameteru, which is a measure of noncommu
tativity, is very large. The solution is given by the noncom
mutative soliton asf5tf0 where f0!f05f0 and V8(t)
50. The first term is later included as the perturbation
such solutions. Then one finds that while some solutions
stable an instability emerges for some of the solutions@13#.
Here we try to investigate our system from a similar point
view. In our case, a similar role is played by the spect
parameterskn . We can make theg term very small by
choosing them very close to the splitting limit.

We start from the rank 1 solution characterized by so
harmonic oscillator state labeled byn0

A(0)52
2

a8g
ln0

fn0n0
. ~4.3!

We put Eq.~4.1! into the equation of motion and pick u
O(ek) coefficients. In the first order (k51) we obtain,

L 08!A(1)1A(1)!L 0852gA(1)[B(1), ~4.4!

L 08[L01a8gA(0)[(
k

lk8fkk5(
k

lk~122dn0k!fkk .

~4.5!

The eigenvalues of the shiftedL 08 are exactly the same a
the modified spectrum of the half string on the unsta
D-brane which corresponds toA(0) as in the previous sec
tions. If we expand A(1)5(nmanm

(1)fmn and 2gA(0)

5(nmbnm
(1)fmn , the solution to the perturbation expansio

becomes

~ln81lm8 !anm
(1)5bnm

(1) . ~4.6!

This equation has a unique solution as long as (ln81lm8 )
Þ0. We note that (ln81lm8 ) gives the mass squared of th
open string on the~unstable! D-brane. The recursion relatio
breaks if there exist massless excitations. Such modes ex
~i! there existsm(Þn0) such thatlm5ln0

~we suppose

ln0
Þ0) or ~ii ! ln850 for somen. In such situations, we nee

to imposebnm
(1)5bmn

(1)50 in order to have a perturbation ex
pansion with a nontrivial solution. However, this type of co
straint becomes rather nontrivial when we need to solve
higher order equation.

For the situation~i!, we believe that the rank 1 solution
become singular in the perturbation series. One resolution
the degenerate case is to consider the higher rank proje
and only begin with the solution of the formA(0)5
2(2l/a8g)( i PLf i i where L is the set of indices with
l i5l. Starting from this solution, it is not possible to hav
ln81lm8 50, and the recursion formula becomes consist
and has a unique solution. For the situation~ii !, there does
not seem to exist such a cure. One possibility is, howeve
shift the splitting ofL0 into L0 andg slightly, L0→L01b,
7-9
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BARS, KISHIMOTO, AND MATSUO PHYSICAL REVIEW D67, 126007 ~2003!
g→g22b. This shifts the eigenvalues ofL0 by a constant
and escapes the singularity mentioned above.11

As an explicit example, we present the first order corr
tion if we take the butterfly state as the zeroth termA0
5(2/a8g)nf00. We use the oscillator representation of t
action of gamma terms to the string fields,

gmatterA5
21

8~11w̄w!
(

e,e8.0

AkeweAke8we8

3$be
m1be

m† ,$be8
n

1be8
n† ,A%!%!hmn , ~4.9!

gghA5
1

4~11w̄w!
(

e,e8.0

wekewe8

3$be
c2be

c† ,@be8
b

1be8
b† ,A#!%! . ~4.10!

The first order correction is given as

a8gA15
~d22!d

4
f001

n

4~11w̄w!

3 (
e,e8.0

S wewe8

ke1ke8

Dee8
1

1
2wewe8

ke1ke822n
Dee8

2 D ,

~4.11!

d[

(
e.0

kewe
2

11w̄w
, ~4.12!

11We have to mention that such a dangerous situation seem
appear at least naively. In the open string limit~A2!, the vacuum
energyn defined in Eq.~3.5! becomes divergent. If we use the ze
function regularization to obtain a finite value forn, we need to use

(
e.0

e2(
o.0

o52@z~21!2z~21,1/2!#52S 2
1

24
2

1

12D52
1

4
.

~4.7!

For the critical dimensiond526, it makesn52. With such a
choice forn, there exists a ‘‘graviton-like’’ excitationb2

m†!f00!b2
n

which becomes exactly massless. Furthermore one can easily c
that the right-hand side of Eq.~4.4! is also nonvanishing~dilaton-
like excitation!,

B1}
1

11w̄w
~w2!

2hnmb2
n†!f00!b2

m1•••. ~4.8!

The situation is, however, very delicate. If we take the naive o

string limit w̄w→`, this term also vanishes. This is the usual pro
lem of taking the naive limit. The proposal in MSFT@6–8# is to use
the finite N regularization in all the intermediate computation a
take the largeN limit only at the end of the calculation. The dive
gence which we encounter is caused by the use of the zeta-fun
regularization~4.7! at the intermediate step of the computati
which becomes quite dangerous. The correct prescription will b
taken unfixed and solve the recursion and only take the limit~4.7!
after we sum over all the perturbation expansion.
12600
-

Dee8
1

5hmnAkeke8~be
m†!be8

n†!f001f00!be8
n !be

m!

12ke~be
c†!be8

b†!f001f00!be8
b !be

c!, ~4.13!

Dee8
2

5hmnAkeke8be
m†!f00!be8

n

2ke~be
c†!f00!be8

b
1be8

b†!f00!be
c!. ~4.14!

We note that the first order correction is small compared w
the zeroth order term ifw̄w!1, namely in the vicinity of the
splitting limit ~3.1!. On the other hand, in the open strin

limit ~A2!, while the combinationwe /A11w̄w becomes
very small~which are the coefficients ofD1,2), w̄w, d andn
are naively divergent. In this sense, the applicability of t
perturbation series in the open string limit seems to be q
subtle.

One possibility to overcome this difficulty is to use th
ambiguity of the splitting ofL0 andg which is mentioned in
Sec. II B. With some careful choices, for example, it see
that one can remove the divergence inn andd which appear
at the first order. The problem of higher corrections, ho
ever, is very delicate and we would like to postpone t
careful treatment of these problems to a future publicatio

Due to the correction to the tachyon vacuum, the form
for the brane tension should also be modified. We expand
action in the following form:

S@A(0)1eA(1)1e2A(2)1•••#5S(0)1eS(1)1e2S(2)1•••.
~4.15!

If we start the perturbation series around the solutionA(0)

52 (2/a8g)L0!P ~with L0!P5P!L0 , P!P5P), the ze-
roth term is given in Eq.~3.22!. The first order correction is
given by

S(1)52
2

a82g
V Tr~L0!

2!P!A(1)!. ~4.16!

In the perturbation around the butterfly state, we evaluate
tension as12

T5
1

a83g2 S 2
4

3
n32e

n2d

2
~d22! D1O~e2!. ~4.17!

We can continue the perturbation expansion for highek.
The recursion formula is already given in Eq.~2.26!. With
the above redefinition ofA0 for the degenerate case, we ca
solve this equation term by term for any spectrum unique
The second order perturbation is, for example, given as

A(2)5~2L08!21~gA(1)!1a8g~2L08!21~A(1)!A(1)!,
~4.18!

with

to

eck

n

-

ion

to
12This will be compared to the ordinary D25-brane tension afte

self-consistent normalization of the action in MSFT@16#.
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A(1)5~2L08!21~gA(0)!, ~4.19!

whereL08 applied on any field is defined byL08A[L 08!A
1A!L 08, while (L08)

21 on any field is given by (L08)
21A

5*0
`dte!

2tL 08!A!e!
2tL 08 , as explained in Eq.~2.24! and

footnote 5. More directly, bothL08 and (L08)
21 are simple

algebraic expressions in the matrix notation of Eqs.~4.4!–
~4.6!.

Actually one may obtain a formal expression forA for the
entire perturbation sum. For that purpose, we introduce
‘‘dressed propagator,’’
in

a

io
is
f

it

s
lve

12600
e

~2L08!211~2L08!21eg~2L08!21

1~2L08!21eg~2L08!21eg~2L08!21
•••

5~2L082eg!21, ~4.20!

and the ‘‘dressed version’’ ofA(1) and star product,

Ã(1)[~2L082eg!21gA(0),

A•B[a8g~2L082eg!21~A!B!. ~4.21!

We note that the ‘‘bullet product •’’ is not an associativ
product. One may then claim that the full wave functionA
can be expressed as
~4.22!
ed

ef-
te
his
ive
of

m
ive
in

ari-
ns

sis
y
lar

ve
e

n a
ons

bi-

p-
nite
at
tor
e

it
e

For example, thee4 term is given as,

Ã(1)•@Ã(1)•~Ã(1)•Ã(1)!#1~Ã(1)•Ã(1)!•~Ã(1)•Ã(1)!

1Ã(1)•@~Ã(1)•Ã(1)!•Ã(1)#1@Ã(1)•~Ã(1)•Ã(1)!#•Ã(1)

1@~Ã(1)•Ã(1)!•Ã(1)#•Ã(1).

A proof of the formula~4.22! is given by the use of the
recursion formula~2.26!. An easier proof is to write down
the equation of motion for the deviationA8[A2A(0)

5eA(1)1e2A(2)1•••,

2~L081eg!A85egA(0)1a8gA8!A8. ~4.23!

From the above definitions, one may rewrite it asA8

5eÃ(1)1A8•A8. We use this relation recursively to obta
Eq. ~4.22!, for example,

A85eÃ(1)1~eÃ(1)1A8•A8!•~eÃ(1)1A8•A8!5•••.
~4.24!

With this explicit formula, we claim that there exists
unique solution~4.22! to the full string field equation for
each solution in the splitting limit as long as the perturbat
expansion is convergent. We hope that the careful analys
the vicinity of the splitting limit will reveal some nature o
the dynamics in the open string limit.

We note that the solutions become the projectors w
respect to Witten’s star product! only at the splitting limit
and the perturbation breaks such simplicity.

V. CONCLUSION

We have seen in this paper that the splitting limit give
system where the translational invariant solutions are so
n
in

h

a
d

analytically in terms of the projection operators. We argu
that this is an analog of the largeu limit in the noncommu-
tative scalar field theory. We can introduce the midpoint
fect as a perturbation series which is analogous to the finiu
case. In the development of open string field theory, t
gives the first example where the role of noncommutat
solitons is explicitly demonstrated with a careful treatment
the midpoint correction. We believe that it gives a fir
ground upon which the relation between noncommutat
geometry and open string field theory will be discussed
the future.

There are, of course, many topics which should be cl
fied in a future study. One of the most interesting directio
is to find the analytic solution forgÞ0 in a closed form.
While this appears difficult because we cannot find a ba
which diagonalizesSi ( i 51,2,3) simultaneously, there ma
be a possibility that a few of the exact solutions, in particu
the true vacuum, could be derived with some insight.

In our description, the tachyon vacuum still seems to ha
an open string spectrum~modulo the extra gauge invarianc
conditions in the Siegel gauge!. Elimination of these modes
would be possible only when the exact solution is found i
closed form, and the remaining gauge invariance conditi
are imposed.

A related issue is the BRST symmetry. So far with ar
trary choice of the spectrumkn as a function ofn, we cannot
define the nilpotent BRST operator. The merit of our a
proach is that one can handle the midpoint correction at fi
N. While the BRST charge exists in the open string limit
kn5n, it is very challenging to see how the BRST opera
will be affected in that limit by the midpoint correction w
have emphasized.

Another essential question is whether the splitting lim
itself can be interpreted as a ‘‘real string’’ defined by som
kind of ~boundary! conformal field theory@~B!CFT#. As an
7-11
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example, we takeke5e and N5`. The spectrum of the
model is generated by two sets of oscillatorsae

† ~and ae)
acting on the vacuum state from the left~and right!. In a
sense each of the two half strings behave exactly like
original open string. This is somewhat similar to the clos
string excitation where two sets of oscillators are left a
right moving modes. Since there is noL02L̄050 constraint
in the splitting limit, it is certainly different from the close
string. However this analogy may have some implication
the nature of the tachyon vacuum where we are suppose
have only the closed string excitations.

While it is more speculative, we may comment on t
relation with D-branes. Usually in BCFT, D-branes are d
scribed by boundary states in the closed string Hilbert sp
We note that the open string Hilbert space in the splitt
limit has a similar structure as the closed string. The simi
ity may imply that the deformation of the open string Hilbe
space is needed to describe the D-brane as a projector i
open string Hilbert space. This kind of comment might
helpful if we want to perform a similar analysis in a gene
closed string background.
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APPENDIX A: DEFINITIONS IN MSFT

We review some basic definitions in the Moyal star fo
mulation of string field theory@5–8#.

To provide a regulator in MSFT, we use an explicit tru
cation of the number of oscillators (1<unu<2N) and intro-
duce the 2N arbitrary ‘‘frequency’’ parameterskn (n
51, . . . ,2N). These appear in the commutation relatio
among the oscillators, such as

@an
m ,an8

n
#5kn8dn1n8h

mn, kn8[e~n!k unu . ~A1!

In the following we need to distinguish the frequency f
even and odd labels, and write them aske8 , ko8 , wheree(o)
runs over even~odd! numbers in the range ofn.

In the definition of the canonical variables in Moy
space, there is a Bogoliubov transformationU2e,o from the
oscillators labeled with odd numberso to those labeled with
even numberse. In @6–8#, U is related to a set of specia
matrices and vectorsT,R,S,v8,w8. These are all functions o
the frequency parameterske ,ko . In the limit ~which we will
refer to as ‘‘the open string limit’’!

N→`, ko→o, ke→e, ~A2!

the basic matrixU and vectorswe8 ,ve8 ~for both positive and
negative integerse,o) are
12600
e
d
d

f
to

-
e.
g
r-

the

s

n.

s

U2e,o→
2

p

i o2e21

o2e
, we8→ i 2e12,

vo8→
2

p

i o21

o
and w̄8w8→`. ~A3!

Compared to the notationwe ,vo that we also use for positive
integers,w8 andv8 are defined as

we85wueu /A2, vo85v uou /A2. ~A4!

In the regulated version of MSFT with finiteN these ma-
trices are deformed as functions of arbitraryke ,ko as fol-
lows:

U2e,o5
we8vo8ko8

ke82ko8
, U2o,e

21 5
we8vo8ke8

ke82ko8
, UU215U21U51,

~A5!

we5 i 22e

)
o8.0

uke
2/ko8

2
21u1/2

)
e8(Þe).0

uke
2/ke8

2
21u1/2

,

vo5 i o21

)
e8.0

u12ko
2/ke8

2 u1/2

)
o8(Þo).0

u12ko
2/ko8

2 u1/2

, ~A6!

Teo5U2e,o1Ue,o , Roe5U2o,e
21 1Uo,e

21 ,

Seo5U2e,o2Ue,o5U2o,e
21 2Uo,e

21 , ~A7!

where a bar on a matrix means its transpose. Of course, t
expressions reduce to their limiting values in Eq.~A3! in the
large N limit. They satisfy the following relations for arbi
trary kn @including the limit of Eq.~A2!#:

U215ko8
21Ūke85Ū1v8w̄8, UŪ512

w8w̄8

11w̄8w
,

v85Ūw8, ~A8!

TR5RT51, SS̄5S̄S51, T5ke
21Sko , R5ko

21S̄ke .

~A9!

In Eq. ~A8! the first formula implies thatU changes the
spectrum fromko8 to ke8 , whereas the second one gives t
origin of the midpoint correction. Thevo8 andwe8 vectors are
related to each other through the third relation. This is onl
partial list of relations; for the complete set of relations s
@7#.

In most explicit computations it is much more efficient
use the relations among the matrices rather than their exp
messy expressions. We emphasize that these relations
for any values ofkn , including those of the limiting case in
7-12
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Eq. ~A2!. Therefore, performing analytic computations at
nite N is often not any more difficult than performing them
infinite N.

In the Moyal language, the action of the oscillatorsa on
the string field is represented by the action ofb oscillators
defined in Eq.~3.2!. Suppose the oscillator stateuc& corre-
sponds to Moyal fieldA ~in Siegel gauge!,

ae
muc&↔b̂e

mA[Ake

2
~be

m!A2A!b2e
m !2we8b0

mA,

~A10!

ao
muc&↔b̂o

mA[(
eÞ0

~ b̄e
mA!U2e,o

5Ake

2
~bo

m!A1A!b2o
m !, ~A11!

beuc&↔b̂e
bA[

1

A2
~be

b!A1~21! uAu!b2e
b !, ~A12!

bouc&↔b̂o
bA[(

eÞ0
~ b̄e

bA!U2e,o

[
1

A2
~bo

b!A2~21! uAuA!b2o
b !, ~A13!

ceuc&↔b̂e
cA[

1

A2
~be

c!A2~21! uAuA!b2e
c !, ~A14!

couc&↔b̂o
cA[(

eÞ0
~Uo,2e

21 b̄e
c!A

[
1

A2
~bo

c!A1~21! uAu!b2o
c !, ~A15!

wherebo is Bogoliubov transformation ofbe , namely

Akobo
m5 (

eÞ0
Akebe

mU2e,o , bo
b5 (

eÞ0
be

bU2e,o ,

bo
c5 (

eÞ0
Uo,2e

21 be
c . ~A16!

Note that b̂e,o
m,b,c ,b̄e,o

m,b,c are differential operators, butbe,o

are fields multiplied with the Moyal star. We can prove th
the even differential operatorsb̂e ,b̄e satisfy the standard
~anti-! commutation relation for the even mode oscillators

@b̂e
m ,b̂e8

n
#5@b̄e

m ,b̄e8
n

#5hmnke8de1e8 ,

$b̂e
b ,b̂e8

c %5$b̄e
b ,b̄e8

c %5de1e8 . ~A17!

On the other hand, after Bogoliubov transformation,b̂o
p sat-

isfies the odd mode commutation relation,

@b̂o
m ,b̂o8

n
#5ko8do1o8 , $b̂o

b ,b̂o8
c %5do1o8 . ~A18!
12600
t

For arbitrary frequencies, one can define the perturba
string states. In particular, the perturbative vacuum in
oscillator language is mapped to the Gaussian func
@7,16#,

A0;exp~2 j̄mM0jm22j̄bM0
ghjc!, j̄b5~ x̄e

bp̄e
b!,

j̄c5~ x̄e
c p̄e

c!, ~A19!

M05S ke

2l s
2

0

0
2l s

2

u2
Tko

21T̄
D , M0

gh5S i

2
R̄koR 0

0
2i

u82
ke

21D .

~A20!

Similarly one can construct the Moyal map of coherent sta
which correspond to adding a linear term in the exponen
the Gaussian above. With this setup, the Moyal star is use
compute generalizations of Neumann coefficients. It
shown@7# that they satisfy the basic nonlinear relations giv
by Gross and Jevicki even for arbitrary frequencies. The g
eralized Neumann matrices (Vn

[ rs] )kl ,(Vn
[ rs] )k0 ,(Vn

[ rs] )00 for
anyn-string vertex are shown to be simple explicit functio
of the single matrixteo5ke

1/2Teoko
21/2. Diagonalizing this

single matrix diagonalizes simultaneously all Neumann m
trices. This explains and justifies the notion of Neuma
spectroscopy for arbitrary oscillator frequencies. These
sults were initially obtained in the matter sector~or with
bosonized ghosts! but by now they have been generalized
include also the fermionic ghost sector@16#. In the open
string limit we fix the frequencies to Eq.~A2!. In this limit
our generalized Neumann matrices agree with other com
tations of these coefficients.

Furthermore, for arbitrary frequencieskn , using the
Moyal star, one can also compute open string amplitudes@8#
including the ghost sector@16#.

The regulator is removed by taking the limit in Eq.~A2!
at the end of computations. As emphasized in@8#, taking
such a limit at the Lagrangian level is wrong because
anomalies and leads to inconsistent results. We note tha
break the conformal symmetry explicitly when we work
finite N or arbitrary values ofkn . This is the cost to pay to
resolve the associativity anomaly among the basic relatio
We expect that the conformal symmetry is re-established
the limit of Eq. ~A2!.

It has been shown that this regularization scheme gi
the correct results in explicit computations, including t
spectrum ofL0, perturbative states, Neumann coefficien
string Feynman graphs, and numerical estimates of cer
quantities computed with other methods in the literature.

APPENDIX B: SOLVABILITY OF S2¿S3

In this appendix, we show that the combinationS21S3 is
also solvable as in the combinationS11S3 considered in the
text. For simplicity we consider only the matter sector a
keep just one space-time component. We change the var
~symplectic transformation! from xe ,pe to ye ,qe such that
7-13
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y25(1/A11w̄w)(ewepe . The equation of motion become
q2

2A1a8gA!A50 but sinceq4 ,q6 , . . . andy4 ,y6 , . . . are
irrelevant, we wrote it simply as~neglecting subscript 2!

q2A~y,q!1a8g~A!A!~y,q!50. ~B1!

While the first term does not split as before, one may alw
write it as

1

4
$q,$q,A%!%!1a8gA!A50. ~B2!

While the kinetic term does not split, we may use the sa
trick as before to write down one family of solutions. F
that purpose, we prepare the wave function which is diago
with respect toq,

q!f~k,l !5kf~k,l !, f~k,l !!q5 lf~k,l ! k,l PR,
~B3!

f~k,l !!f~k8,l 8!5d~ l 2k8!f~k,l 8!. ~B4!

The solution to this definition is given as

f~k,l !5d@q2~k1 l !/2#ei (k2 l )y. ~B5!

If we expandA5*dkdlA(k,l )f( l ,k), the equation of mo-
tion can be rewritten in terms ofA(k,l ) as

S k1 l

2 D 2

A~k,l !1a8gE drA~k,r !A~r ,l !50. ~B6!

A family of solutions which is similar to those given in th
previous section can be written as

Au~k,l !52
k2

a8g
uS~k!d~k2 l ! ~B7!

with

uS~k!5H 1, kPS,

0, otherwise,
~B8!

whereS is a certain range inR. We note that the projecto
f(k,k)5d(q2k) does not depend on the coordinatey.

The tension is computed similarly as

S@AS#5
V

6a83g2ES
dkk6. ~B9!

The volume factorV appears here becauseA does not depend
on the coordinate. Since the projector is defined over
continuum variable, we expect any nontrivial solution o
tained here will be unstable except for the trivial oneA
50.

APPENDIX C: INTEGRABILITY OF THE MATRIX
MODEL

The fact that we can solve the translational invariant
lutions of Eq.~3.15! implies that it is also integrable even
the quantum level as long as we neglect thex̄ dependence
12600
s

e

al

e
-

-

~namely zero dimensional model!. With this simplification,
we argue that it reduces to the two matrix model and
indeed solvable.

We consider the partition function with the source term

Z@J#5E @da#expS 2Tr~aLa!2
1

3
Tr~a3!2Tr~Ja! D .

~C1!

The following change of variable

a52L1a8 ~C2!

kills the quadratic term and the partition function become

Z@J#5e2(2/3)Tr(L3)1Tr(JL)E @da8#

3expS 2
1

3
Tr~a83!2Tr@~J2L2!a8# D . ~C3!

This is the partition function of the purely cubic theory wi
the modified source termJ→J85J2(L)2.

If we ignore the prefactor, the problem is now reduced
solve the partition function,

Z@J8#}E @da8#expS 2
1

3
Tr~a83!2Tr~J8a8! D . ~C4!

One interesting aspect of this integration is that the o
diagonal part of the matrix integration can be exactly p
formed. The measure of the integration of Hermite matrixa
can be replaced by

@da8#5daW @dU#@D~a!#2 ~C5!

where we use the decompositiona85UaU† by using unitary
matrix U and eigenvaluesaW of A8 @a5diag(aW )#. D(a)
5) i , j (ai2aj ) is the van der Monde determinant. After th
decomposition, Eq.~C4! becomes

E daW @D~a!#2e2(1/3)(
i

ai
3E @dU#exp~2Tr J8UaU21!.

~C6!

The integration over the unitary matrix can be performed
using the famous formula proved by Itzykson, Zuber a
Brezin @23#,

E @dU#expS 1

t
Tr~AUBU21! D

5c@D~a!D~b!#21detFexpS 1

t
ajbkD G , ~C7!

where a,b are the eigenvalues of matricesA,B,c
5tN(N21)/2) j 51

n j !. Equation~C4! becomes finally,

Z@J8#}E daW
D~a!

D~w!
expS 2

1

3 (
i

ai
32(

i
w iai D ~C8!

wherew ’s are the eigenvalues ofJ8.
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