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Analytic study of nonperturbative solutions in open string field theory
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We propose an analytic framework to study the nonperturbative solutions of Witten’s open string field
theory. The method is based on the Moyal star formulation where the kinetic term can be split into two parts.
The first one describes the spectrum of two identical half strings which are independent from each other. The
second one, which we call midpoint correction, shifts the half string spectrum to that of the standard open
string. We show that the nonlinear equation of motion of string field theory is exactly solvable at zeroth order
in the midpoint correction. An infinite number of solutions are classified in terms of projection operators.
Among them, there exists only one stable solution which is identical to the standard butterfly state. We include
the effect of the midpoint correction around each exact zeroth order solution as a perturbation expansion which
can be formally summed to the complete exact solution.

DOI: 10.1103/PhysRevD.67.126007 PACS nuniderl1.25.Sq

[. INTRODUCTION ciative algebra amond,R,v,w to an associative one, by
introducing a regulated version of these matrices. All the
Starting with the original work of Witteril] string field  elements of string field theory, such as perturbative spectrum,
theory has been strongly tied with noncommutative geomNeumann matrices and Feynman rules, were explicitly writ-
etry. This is in the spirit of treating the open string field as anten in terms of the regularized framework, and their equiva-
infinite dimensional matrix, while the definition of the star lence to other frameworks, when the regulator is removed,
product is formally identical to matrix multiplication. This was demonstrated ifi7,8]. Other proposals of the Moyal
viewpoint has been pursued in more detail by explicitly split-formalism[10,11] are equivalent to the original oné].
ting the left and right degrees of freedom in the split string In this paper, we take a step toward the classification of
formalism[2]. nonperturbative solutions of string field theory. The method
Recently, this formal correspondence played a major rolés based on the splitting of the kinetic term into two parts.
in importing basic ideas of noncommutative geometry toThe first one gives a description of the open string where the
string field theory. One of the stimulating ideas is theleft and right half strings completely decouple. The second
vacuum string field theoryVSFT) proposal[3]. With an  term gives the correction to the split string description to
assumption on a simplified kinetic term to describe therecover the correct spectrum of the open string. We call it the
tachyon vacuum, the classical solutions that would describémidpoint correction” since it carries the information that
the D-brane are given by the noncommutative solifdh two half strings are indeed connected at the midpoint.
(=projector). It is well known that projectors are the funda-  We will show that there exists a basis which diagonalizes
mental geometrical objects in noncommutative geometrythe first part of the kinetic term and the nonlinear interaction
since they represent theéhomology group. The proof of the term at the same time. The combined nonlinear system
VSFT conjecture on the kinetic term was, however, difficult(namely Witten’s action without the midpoint correction of
and there remained many open questions. the kinetic termn becomes a completely solvable matrix
The Moyal star formulation of string field theofp—9] model. We can obtain all the exact solutions that are invari-
(MSFT) is an explicit representation of Witten’s string field ant under translations by using the projection operators under
theory in terms of the Moyal product, which is the main the star product. These provide a basis for classifying all
language in noncommutative geometry. Unlike previous prononperturbative solutions of open string field theory on the
posals of the split string field framework, particular attentionD25 brane. We derive the spectrum at zeroth order in the
was paid to solve the ambiguity at the midpoint. In the con-midpoint correction and then compute the effect of the mid-
text of MSFT, the subtlety is reflected in the form of the point as a perturbation.
associativity anomalf6] of the infinite dimensional matrices The midpoint correction has been neglected in the litera-
T,R,u,w which provide the change of variables from the ture because the coefficients in front of it seem to disappear
open string coordinates to the canonical pairs of the Moyain the naive limit of the regularization. It has, however, a
product. The anomaly is resolved by deforming the nonassdinite contribution to the spectrum and cannot be discarded.
In this paper, we propose to treat it as a correction to any of
the zeroth order exact solutions, and provide a formal expres-
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noncommutative scalar field theofy]. There, in large#  In Appendix A we summarize MSFT notation that is used in
(noncommutativity parametelimit, the potential term gives this paper, including precise definitions of the Bogoliubov
the dominant contribution, and the equation of motion istransformation between conventional open string operators
solved by projectors. For finité@, the kinetic term is incor- and Moyal coordinates.

porated as a perturbatidd,12,13 which gives corrections We note the additional free parameters in regulated
to the noncommutative soliton. In string field theory, usuallyMSFT. Namely, the spectrum parametetsand «, that cor-
there is no such parametémvhich can be adjusted to justify respond to string oscillator frequencies can be chosen freely
the validity of the perturbation expansion. However, in the(see Appendix A for the notatigras the definition of the
Moyal formulation with a regulator, we have some freedomregularized theory. While they will be fixed at the end to
to choose the string oscillator frequencigenoted asc,), k,=n to reproduce the correct open string defined in Eq.
while keeping the basic algebraic structure of string field(A2), the algebraic framework of MSFT is well defined for
theory, including important relations such as the nonlineaany «, as a function oh.

relations of Neumann coefficients derived by Gross and The equivalence of MSFT, with its regulator, to the con-
Jevicki [14]. While these parameters get fixed to the usualventional operator formulation has already been established
onesk,=n at the end, we may use the behavior of the theoryin the following sens¢8]:

as a function of this degree of freedom to define the pertu
bation theory in the intermediate steps. In Sec. IV, we give
construction of the exact solution of the full theory as the
expansion of the midpoint correction along this idea. The - . .
perturbative expansion can be determined uniquely at ea ) The Neumann cqefﬁuents of the oscillator formalism
order with a conditior(relating to the stabilityon the spec- were computed directly from the Moyal prodyat 16},
trum of the open string solution. The perturbation series can and these were shown to satisfy the Gross-Jevicki non-
then be summed up to a formal expression that represents the linear relations[14] for any frequenciesx,. Their

Zl) The spectrum of the kinetic term is identical to the con-
ventional open string at largd. That is, the propagator
in perturbation theory is identical in both theories.

full exact solution. simple expression explains as well as agrees with spec-
troscopy[15], and agrees numerically with other compu-
Il. THE SETUP tations at Iargd\l.
. These facts are sufficient to guarantee the equivalence of
A. Moyal star formulation two formulations of string field theory in the computation of

The starting point of our discussion is Witten’s action in any perturbative string amplitudd$]. Our formulation is
the Siegel gauge written in the Moyal star formulation of Well adapted for the discussion of nonperturbative string
string field theory(MSFT): physics which will be the main topic of this paper.

We note that the conformal symmetry is lost in the regu-
1 g larized theory since we truncate the number of oscillators at
EA*(Lo—l)AJr §A*A*A : level 2N. Such truncation is, however, indispensable for the
2.1) correct treatment of the associativity anomaly in the funda-

' mental matrice$6] and also the Neumann coefficients. We

The kinetic term is given by the Virasoro operator which is anote that every explicit computation of string field theory so
second order differential operator acting on string fieldsfar is based on some cutdfevel-truncation and so onThe

A(Zgyggh). We specify this operator later since it will be the additional freedom in the spectrum is actually direc;ly're—
main focus of this section. The string field is a function of lated to the loss of conformal symmetry. We have to fix it at

h idooi dinatex and d fermionid the end of the computation by taking the lafgdimit.
the midpoint coordinatex and matter and termioni®c One of the main goals of string field theof@nd also the

ghosts  coordinates, &= (x¢ ,pe), [#=01,...d=1(d  main goal of this papefis to solve the nonlinear equation of
=26)] and £9"=(x2 x5, p2,ps). The even index specifies  motion

the mode and takes its valuefe=2,4, ... , N} whereN is

the large integer which is introduced for the regularization. (Lo—1)A+ a'gA*A=0. 2.3

£ (&9") are Grassmann evedd) coordinates in noncom-

mutative Moyal space with the star product specified by. , o .
(5.8,16,17" The solutions, except for the trivial oneA€0), describe

nonperturbative backgrounds of open string theory which

Boav T i v b b1 _yyC nC1 — g should be related to D-branes. It is widely believed that there
[Xe Per ]« =100 m™,  {Xe,Perks={Xe Perta =0 5?; '2) exists a unique solutiol\, which describes the tachyon

' vacuum where D-branes are annihilated. There exists a large
amount of numerical evidendd 8] that confirms the exis-
tence and the desirable properties of such a soldbehrane
tension, the absence of open string propagation and 50 on
Cedh b N A . While the achievement of the numerical study is very im-
X=ro'SE", Pi=reSH", X=TY", Pe=Rd", (S=ksTw,).  pressive, it is still indispensable to develop an analytic
The form of the Moyak product{Eq. (70) in [8]] is invariant under ~ framework to study the tachyon vacuum and other nonper-
this transformation. turbative phenomena in string theory. In the operator formu-

S(A)=—J ddx Tr

!Compared t¢8], we redefined the Grassmann variables with odd
label to even ones® xS,p2,p¢ as
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lation a dlfflCUlty Originates from the fact that the basis 0ff-diagona| pieces with coefficient &LWW)fl appear be-
which diagonalizes the kinetic terniconventional Fock cause of the Bogoliubov transformation from the odd modes
space representation, which is its main jagiVes a compli-  with spectrumx,, to the even modes with spectrury.
cated expression for the star product including the Neumantrhjs complication of the kinetic term is the cost of the sim-

coefficients. _ plification of the star product in the Moyal product formula-
In the Moyal star formulation, on the other hand, the staf;jgn.
prOdUCt that produces E(ﬁ22) is triViaI, while the kinetic At this Stage1 the equation of motion appears as horrib'y

term becomes off-diagonal. The complication of the kineticcomplicated—it is nonlinear, it contains an infinite order of
term is, however, manageable and has not been a hindranggrivatives through the star product, and is off-diagonal
in developing the formalism for practical computations, SUChthrough the terms proportional to ﬂﬁw)ﬂ However

as Feynman graplig], and as we will see in the following, there exists a critical simplification df, which saves us

for nonperturhative solutions. from most of these difficulties. The trick is to rewrite the

diagonal pieces df ; by using the star product in the follow-

ing form. It gives the splitting of ; into two parts containing
We first translate the Virasoro operator from the convenihe symbolsCy, vy [7,8,16,

tional operator language to the Moyal star formulation by .

following the path in Refs[7,8,16. (Lo—1D)A=[Lo(Bo)*A+AxLo(—Bo) ]+ ¥A, (2.8

The Virasoro operataky written in terms of the standard

B. Splitting of the kinetic term

oscillator notation is with?
2N 2N L ):Ematter(ﬁ )+£ghost_ E
L=5adt 3, muatsait 3 ka(bogCytcoiby) olBo)=Lo™ (Pt Lo 5,
(2.4) y= ,ymatter+ ,yghost' (2.9)
where we explicitly truncate the number of oscil_lators and 2 2 |
e e rearey fomio T commutaon e -5 (1Lt St ot

(Al). After translating the oscillators into the Moyal space as

in Appendix A, we arrive at the expressionlaf as a second " £(1+V_VW),82— 9 2 p
order differential operator acting on the Moyal fieddn the 4 O 45
Siegel gauged, 8’ are arbitrary parameters which define the

noncommutativity, ands= y2a'), 2

) 2 K 1
Lghost:|go (ﬁpgp&- ?exgxg) +§ E Kpn,

LOZLBnatter+ Lghost, (25) =0
(2.10
122 6 0 1 212
Lmatterzz ——S———K2—+—K2X2+—Sp2 1 2|2 2
0 &5 2 &Xg 8|§ eapg 2|§ e’e 02 € ymatter:_ — _25( WeDe) ,
1+ww 6°\e>0
1 — 5l d
g (LHWWIBGH 5 Bo 2, e | ) ;
€ }’ghOSE_ — E We_b 2 Wer c |-
2 2 2N 1+wwle>0 “gx2/\e>o0 Xer
A s ) s, 2.6 (2.11)
1+ww 6210 ©° 2= '
The star products with thield £, reproduces the diagonal
h . g J 07 , 0 d 2 b part of thedifferential operator ly—1, while the ordinary
Lg"os=i 5 et g Ko oo T KeXeXe roduct withy gives the off-diagonal part df,— 1
o laxtaxe 4 "Copb ape P ny g gonai p 0 -
e e e e The action ofy can also be written by using the star
4 i 2 P product while it cannot be split as left and right multiplica-
b,.c ;
+— -— We—r tions alone,
027" T 1w | % ® ox®
|2
2N mattery _ S v
(? A__——ZWW’ 12 Iur ,,A**,
X(E Wer— |+ 2 K. 2.7 202(1+ww) oo TutPe APer Al
e’ Xe, n=1 (212
Bo=—Il s((9/(9?) = —il4(dl9xp) represents the center of mass

momentum, Wh|Ch can be Wl’itten as a deriVatiVe Of the m|d' 2The expressiorA*ﬁo(—lBO) is to be understood thwo is a

point coordinatex. We note that the expression consists ofderivative applied o\(x) on its left, even though it is written on
mostly a diagonal combination of the Moyal variables. Thethe right for convenience of notation.
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C. Strategy

h = b c
79 OStpA = — m 2, WeWe/{pe :[per 7A]*}* . Due to the separation of the kinetic term, we rewtite the
o (2.13 action in the following form:

These formulas will be useful in the concrete computation in S= _f d% Tr
Sec. IV.

We emphasize thag depends only on the rank one quan-
tity p*PC=(1+ww) Y23 wp“ P, which is basically a =5t SES). 219
single string momentum mode. This mode was first pointed 1 o
out as the source of associativity anomalies of the star prod- S;= —,j d9x Tr Ax Lo(Bg)* A, (2.16
uct in string field theory6]. The strange mode that was later «
discovered in the continuous Moyal formaligi0] is given 1
by p#°¢=(1+ww)~Y%p*P° up to a numerical constant as S,= —f dx Tr Ax(yA), (2.17
shown in[7,9]. As we will see, it is due to this midpoint 2a'
complication that string field theory is not trivially solvable.
We describe our strategy to solve the equation of motion  s,= gf d9% Tr AxAxA. (2.18
with this splitting in the next section. 3

We explain the basic role of the two partslaj. If the Before pursuing the nonperturbative analysis, let us em-

term were absent, the spe_ctrur_n of the fr_ee string would de[:')hasize that the conventional perturbation expansion of open
pend only on the frequencies sinceL, (aside from the last  gying field theory is successfully reproduced in our MSFT

constant term depends only onc,. The string Spectrum  ¢qmajism. In the conventional perturbative case, the classi-
coming only from the two terms witll, looks like the string 5 equation of motion that comes from the quadratic part
spectrum of both even and odd oscillators, but with the fre-sleS2 namely L,—1)A=0, gives the spectrum of string
quency of the odd oscillatok, adjusted to be equal to the grateq associated with the oscillator frequencies, £,)

frequency of the neighboring even oscillata,— o1 [7g]. The interaction among these perturbative states is

=Ke. On fur_ther reflec_tion, one can see that fheterm by given by S; where only the use of the Moyal product is
itself essentially describes the kinetic term of the two halfg ficient to compute interactions. Pursuing this in our for-

strings which the original open string is composed of. HOW-p5jism gives results that are in agreement with the conven-

ever, the open string has a different spectrum, namely thg,na| oscillator approach to the open string field theld].

even modes have frequencies and the odd modes have |, particular, our MSFT formalism including ghosts, replaces
frequenciesc, . The second terny precisely fixes the dis-  the complicated Neumann coefficients of the oscillator ap-
crepancy of 'ghe spectrum from the_ half_ string description. 'tproach to express the interaction part explicfty16]. Our
carries the information of the midpoint where two half {heqry includes a consistent regulator, and with it numerical
strings are connected, as shown[#hg]. In this sense, we egtimates of certain quantities have been compared success-
will refer to y as the “midpoint correction.” fully to numerical results obtained in other formalisfis].

The factor (t-ww) ' appears to vanish naively in the Thus, we are confident that we have the correct theory to
open string limit Eq.(A2). However, this is misleading be- explore nonperturbative phenomena.
cause in computations one obtains factorsvef in the nu- By dividing the kinetic term intd5; andS,, we can pur-
merator that produce finite contributions by theéerm. This  sue the alternative splitting of the action. Namely we first
is the mechanism of anomalid§]. It is because of this solve the system witB, +S;. As we discuss in the following
subtlety that this term has been largely missed in the spligections, there is a basis which diagonalizes these two terms
string literature. (L, and x-producy at the same tim&lt gives a major sim-

We note that the splitting of , into the £, part andy  plification of the equation of motion and we can solve the
term is not unique. Namely one may obtain the sdrgdoy ~ nonlinear equation analytically at the classical level. The so-
the shift, lutions are given in terms of the projection operators and

N N should be regarded as defining nonperturbative vacua of

Lo—Lo=F(£,:67),  yA—yAHIT(LE) AL (214 open string field theory in the limi&,—0. This is in some

. . _ . sense similar to the VSFT propogdl] although we expand
The framework of our analysis explained in the next sectior, system from the different vacuum. The midpoint correc-

will not be basically affected by such a change as long ag,, 5, will be introduced as the “perturbation” to the exact
f(£) is quadratic with respect t,£9". It modifies, however, solut?cz)ns ofS, +Ss. P

the half string spectrum and the Fock space structure dis-
cussed in the following sections. A fact mentioned above,—

namely thaty depends only on the rank one quantitywill 3There is another basis which diagonalifsandS; at the same

be generally broken in such an arbitrary shift. Such a comtime and we may carry out the program which parallels our discus-
plicated choice of the splitting betweefy, and y may be  sion in the following(see Appendix B However, there is no basis
useful to define a sensible perturbation expansion in the opeghich diagonalized all three tern® (i=1,2,3). It gives the essen-
string limit of Eqg.(A2). We will come back to this issue later. tial difficulty to obtain the tachyon vacuum in the analytic form.

1
—Ax(Ly—1)A+ gA*A*A
2a' 3
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At the level of the equation of motion, this strategy is SinceA appears on both sides, one approach to obtaining an

equivalent to writing Eq(2.3) as' explicit solution forA is by recursion. As will be discussed
below, this amounts to a perturbative expansioAaf pow-
ﬁo*A"‘A*Eo‘i‘ a’,gA*A:_G’}/A, (219 ers ofe,
and treats the right hand side as a source term. We introduced A=AO+ eAD+ 27D+ ... (2.25

formally an expansion parameterwhich will be used to
describe the order of perturbation. We must patl at the  with the lowest order being(®)=A . The full perturbative
end. We will first solve the equation in the absence of theseries is given later in Sec. IV. This analysis could in fact be
source term, and later include the source for the completpursued for anyC,,.
solution. Natural questions ar€l) does such a projectd? indeed

At first glance, even without the source term, we are stillexist, (2) can all such projectors be written explicitly for
left with a nonlinear differential equation of infinite order given £,, and(3) does this exhaust all the solutions of Eq.

and the analytic study of such an equation of motion seem@.19 with e=07? The answers are formally yes to all three
impossible. However, here the methods of noncommutativguestions, as follows.

geometry come in handy for any operatfy. Thus, at the As in the situation in the noncommutative solite], the
formal level, one may find solutiond=Ap labeled by pro-  oscillator representation of the Moyal product gives an
jectorsP in the following form: equivalent but more transparent means to analyze such a

problem. In this language, we taki® as a Hamiltonian. The
A __iﬁ P (2.20 rank one projectors which commute witfy, can be con-
P a'g 0m T ' structed schematically as outer produBts=|\)(\| of the
normalized eigenstates of the Hamiltonialy/\)=X\|\),
HereP is any projector which satisfies the following proper- with (X\|]\")= 6, . Finding solutions of the forn2.20 re-
ties: duces to finding eigenstates 6§. But this is an easy task for
our L, since it is the Hamiltonian of a collection of harmonic
PxP=P, [P,[s]=0. (2.21)  oscillators® A careful treatment along this scenario is given
] ) in the next section.
Once we have a solutioAp of the homogeneous equation,  after we find an analytic form foA©®, we use Eq(2.19

the corrections to it due tg are taken into account by the recyrsively to determine the expansion of the analytic solu-
following integral equation which is equivalent to an exactijon of the full equation of motion

formal solutior? of Eq. (2.19:
k—1

© _ ’ /C ,yA(k) x— A(kil)_ ! A(I) A(k7|)1 2'2
A:AP_J dre. HLo+a'9AR) (47 (A= Ap)? {Lo ¥ Y a 9241 * (2.26
0

_ : Lo =Lo+a gAD. 2.2
+eyA)*xe, (Lot atghp) (2.29 0 ° g 229
This is, of course, equivalent to the iterative solution of the
integral equation in Eq(2.24), but we will use a matrix
“We omit thex derivative (or B,) since our main focus in this formalism that is convenient in the case of oscillators. We

paper is the study of the translational invariant solutions. will show that there is no obstruction '[)0 solving EQ.26
5To verify this, consider the star anticommutator of both sides oforde_r by or.der and one can (;Ietermm@ unlquely for any

the integral equation with the quantitg+ a’gAp). The left side  starting pointA(%). The explicit form of the first order cor-

is {(Lo+a'gAp),A}, while the right side, in addition td(£,  rection and formal solution for ang is given in Sec. IV.

+a’'gAp),Ap},, produces a totak derivative under the integral

sign lll. PHYSICS AT =0
* J _ a' , . o

fodT&—T[e* 0T Oy (' g(A—Ap)2+ eyA)xe, 0TV I A. splitting limit

(2.22 The nature of the system at zeroth order in théerm
Assuming a positive spectrum for the Hamiltoniafy ¢ o' gAp), may be understood as follows. Let us begin by examihing
the integral contributes only at the boundary 0. We will return  in the absence of the gamma term. The remaining pal,of
later to discuss the issue of the spectrum 8§ «'gAp), fornow  has no information about the odd frequencies and the
we proceed formally. Inserting the result of the integral, the left andresulting spectrum of the modifidd, corresponds to string
right sides of the equation yield
{(Lot+a’gAp), AL ={(Lo+ a'gAp),Ap}.

, 2 8In the Moyal language, the projectors we want as functions of the

—(a'g(A-Ap)iteyA). (223 noncommutative spack, (¢) are known as the Wigner distribu-
Rearranging this equation we obtain back our full equation of mo-tions for all the quantum states of the harmonic oscillator. These are
tion in Eq. (2.19 after using the fact thalp is a solution of the  well known in the literature in the case of a single harmonic oscil-
homogeneous equation. lator [19].
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oscillators with the odd frequencies, replaced by the 1 Ke I
neighboring even frequen ":—(—ie e)—/—xt+— “) (3.2
g g quenay, Be Jra ( )2|s e gPe
Ko—Koi1=Ke fOr 0=1,35..., (3.1

while . is still arbitrary, as is usual in regulated MSFT. This
exactly characterizes the spectrum produced bydheart )
of Ly in Eg.(2.19 in the absence of. Indeed, an inspection lgcz(lxc_ «(e) i b) 33

of £, shows that it contains only the even frequencigs e \27¢ 0 Pe '
Given the fact that the star product is independent of the

frequencies, the syste8) + S; has no information on how to  which satisfy the canonical commutation relations with re-
correct the frequencies of the odd oscillators frag ; to  spect to thex product,

K

-
Conversely if we insert Eq(3.1) in the regulated MSFT [BL . Bul=n""e(€)erer {,82,,82,}*: Oeter -

system, a major simplification occurs in the defining matrices (3.9

and vectordJ,v,w. NamelyU becomes the identity matrix

andv,w vanishes. The vanishing of, immediately implies  In terms of these oscillators, one can rewilg as

S,=0, and the open string splits into independent half

strings. We recall that the meaning Gfv,w is to give Bo- _ u v b C. pc by _

goliubov transformation from variables with frequeneyto 60‘620 Kel BZe*Benuvt Boe*Bet B-exBe) = v,

those withk,. If there is no difference between the sets of

frequencies, there is no need to perform Bogoliubov trans-

formation and the matrix which defines it becomes trivial. V=

The MSFT formalism gives us the ability to consider this

limit as well as the corrections. Intuitively one may think that

a small change in the frequencies may not change the ph

ics of the system drastically. Indeed, E®.1) is a small

change ink, when o is sufficiently large. Hence a more

interesting situation is to consider MSFT in the lir8t1) for

o larger than some number>2N while leaving bothk,, k,

N| =

d-2
- (E ko= 2, Ko). (35
e>0 0>0

We note that both the star produ&4) and the kinetic term
y§3_5) are diagonal with respect to the ba$&2), (3.3. It
makes the splitting limit completely solvable.

We introduce thénonperturbativevacuum state through
the relations,

arbitrary for e,0=<2N. In that case the trivialization of B A= BP% A= BE% Ane Ak B4 = Ak B°
U,v,w applies only to the modes aboveN2 and y gets BexRo=Bexo=BexAo=Aox B=e=Ao* B
contributions only from the modes up tdN2 As long asy =Ag* % .=0. (3.6)

#0 the string does not split into two independent halves. So,
it seems worth studying such limits, at least for the highefThe state that solves them becomes
modes, since the formalism simplifies drastically while the
physics(depending on the specific questiamay be about Ke 2|§
Ag~exp — 2 | —5(Xe)?+ ——(Pe)®+ikeX2XS
e | 2lg 0 Ke

the same. Furthermore, since we have complete control of
the corrections, one can test both analytically and numeri-

cally the size of the correction. Such more complicated ap- 4i
proximation scenarios are under study. But in the present L p°ps | |. (3.7)
paper we do not take any limits on the,x,; we simply 0'%ke e

study the system in powers of but for arbitraryk,, «, .
This is called the “butterfly staté”in the literature[3] and
_ ) satisfies the projector condition,
B. Oscillator representation

The simplification achieved in the splitting limit is el- AoxAg=Ag, A5=Ao. (3.8
egantly rewritten in the oscillator notatidriVe diagonalize
the action ofZ, and the star product at the same time in theThis is the critical simplification by neglecting the mixing
matrix notation. term. As we see in the following, the states generated by

We introduce the creation and annihilation operators ofmultiplying the creation operators from the left or the anni-
the matter sectof7] and the ghost sectd,16] (in even hilation operators from the right diagonalize bath and the
mode variablg star product.

- . . 8 ; ;

"We note that a somewhat similar representation was considered In fact, we can ShmOW t,hat this, corresponds to théwisted
in [20] in the expansion around the sliver solution by neglecting thebutterfly state:e™2t-27t-29)¢,|0) in the limit k,=e,x,=0,N
midpoint correction. = [16].
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To illustrate our idea we use a simplified situation with similar to thec=d matrix model except that the kinetic term
only one pair oscillatora anda' satisfying[a,a’]=1. The contains a mass term which is not proportional to the
orthonormal basis is given explicitly as identity matrix. It describes a characteristic feature of string

theory that the color inder has a certain mass, .

bnm(X,p)= ' (aT)T*AO*(a)Tv bnm* Drs= OmrPns,

n'm! C. Translational invariant solutions

(3.9 In this section, we construct the translational invariant

Q _ S S At (=independent ofx) solutions in the splitting limit. It is
N*@om=Nénm:  Sam*N=Mdom, N=a a.(3 19  Quite interesting that the equation of motion becomes com-
' pletely solvable and we can give an explicit form of the
The orthogonality with respect to the product is essential arbitrary solutions. Each solution describes a nonperturbative
in the following. In the above case, it can be proved by thevacuum of string field theory while it may be stable or un-
commutation relation and the condition fé (3.7). ¢,, Stable. We also derive the open string spectrum around each

become mutually orthogonal projectors, vacuum explicitly while it becomes rather trivial.
The equation of motion obtained from the action
bnn* Pmm= SnmPmm- (3.11 (3.15,3.16 is
The multi-oscillator extension of the above basis is given ,
simply by direct products. We introduce the multi-index (Mp+HAp)agm+a g§k: ank@km = 0. (3.17
symbol
n={n|n.=0,e=24,...,N,i=0,...d; This equation has the following significant property which
ee we call “reducibility.” Namely for any finite) subset of3’
nie=0,1 for i=b,c}, (3.12 ={k4, ... ky} € B, one can consistently restrict the equa-

tion of motion by replacinga to its rankn sub-matrixa,
and introduce the Statasnm:HeHi(bgi'eini . We denote the With k,le B". In other words, one can consistently @y,
o ONda 5 ®2N & ) =0 if n or m do not belong ta3" without any conflict with
set of multi-indices{n}=2"""©Z,“" asB. The basis sat- the equation of motion. In short, the equation of motion can
isfies be truncated to the diagonal finite dimensional sub-matrix

of A.
Lo* bom=Nabom. bam* Lo=Ambnm., For the simplest casem=1, the equation of motion
reduces to a scalar relation\2a,,+ a'g(a,,)?=0 for
)\nz(z > Kenie)—% (3.13 neB’. A nonvanishing solution is given byA=
i e>0 —(2/a’'g)Ny¢pn by using rank one projectop,,. More

general diagonal solutions can be written by superposing

Drm* Hrs= Omr Pns- (314 mutually orthogonal projectors in the subst,
We expandA=3a,m(X) émn and put it in the Lagrang- ) )
ian, we obtainS, + S;= SMa"*+ §S with Agi=—— 2 Aybm=——Lo*Ps:, (3.18
a,g neB’ af,g
. — (1 — — 1
sma“'X=f dx Tr| S da(x)- dax)+ —A-a-a
“ Ps:= 2 ¢m, Ps*Ps/=Py. (3.19
neB’
+94.aal, (3.15 o
3 We note that there are an infinite number of exact and ana-

lytic solutions for the different choices of the subggt.
WW . Solutions of the form3.18 will be referred to as the diag-
5S= TJ d Tr d,a- da onal solutions.
Actually the solution is not restricted to the diagonal ones.

To see it, one can write the equation of motion in the matrix
z WePe|-dx@,  (3.16  form,

+2if dix T
g Xilra-

whereA ,m=\ndnm. the trace Tr is over tha indices and A-ata-A+ga’a-a=0. (3.20
is the matrix productP, is the matrix that corresponds to the

star multiplication ofp.= (Vkc0/2ls)(Be+ BL). 5Sbecomes By shifting a=a’—A/(a’g), the equation of motion be-
off-diagonal but does not affect the equation of motion withcomes

the translational invariance. In the splitting lin{8.2). 5S

vanishes because=0. S""* has a structure which is very (a")?=A%(a'g)?. (3.21)
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D. Tachyon vacuum

)\ﬁ is the same, namely the degenerate eigenspace in the right Suppose we start from the theory
hand side of the above equation. The equation of motion

restricted to the subsds’ becomes 4')?=[\%/(a’g)?]I

wherel is the identity matrix and is the degenerate eigen-

Ap<O ifandonlyif ne B, (3.26

value. This equation obviously has off-diagonal solutions. Agfor some subseB,C B. In such theory(at leas} the matrix

an example, we pick=2. A family of matrices which sat-

isfy this relation iSA=X,_; , ;07 with =,g?=\?/(a’g)?
(o are the Pauli matrices
The solvability of the classical equation of moti@.15

componentd\,, (ne B,) become the tachyonic modes. Our
arguments in this section clearly show that if we use the
solution of motionA, and re-expand around that solution,

all the negative contributions from the half string changes

implies that there exists a similar solvability even at thesigr_1 f':l_nd the tachyonic modes disappear. This is precisely the
quantum level if we ignore the dependence. We give a definition of the tachyonic vacuum.

short comment on the analogy with the two matrix model in

Appendix C.

In the splitting limit, for a specific parameter choieg
=e we haverv=1/2. There is only one tachyds,={0} and

We would like to interpret each solution of string field the tachyon vacuum becomes

theory as a newunstablg D-brane which is related to the
original D25 brané. In order to make this statement more

explicit, we expand the action around the solution,

SAg +A']= Tr(Lo2*Pg /) (3.22

3&'392

(1 1
+f dix Tr SOA > A+ —Lox(1=2Pg ) *xA'*A!
o

: (3.23

+gA’*A’*A’

The first term(whereV is the volume of space-timaives
the tension of théun)stable D-brane

(3.29

The second term shows; is replaced by a new " on the
(un)stable D-brane,

Lo= 2 Madm— Lo’ =Lo*(1-2P)

= 2

neB—B’

)\nd’nn_ 2 )\n(ﬁnn- (3-23

neB’

We note that the mass squared of the matrix compoAgpt

1
ag

This is the butterfly state in our notation. We note that we
obtain the butterfly state as the approximate solution
(namely, by neglecting,) and this is not the exact solution
for the full systemS;+S,+S;.

The action expanded around this vacuum takes the fol-
lowing form (after the shift of the vacuum enengy

1 1
SA]=Tr 5&;A*&;A+ —Lyac*AxA+ gA*A*A ,
o

‘cvac:; |)\n|¢nnv (3.28

with all eigenvalueg\ | positive. This is the action for the
“vacuum string field theory” in the splitting limit.

Our description of the solutions at zeroth order yn
shares many properties in common with the conventional
VSFT proposal. One of the most outstanding characteriza-
tions is the role of the projector for describing the exact
solutions of the classical equation of motion. On the other
hand, there are a few points which are different from the
VSFT proposal.

The first point is the form of the solutions. They contain
the action of Virasoro operator-2LyxP instead of the
simple projector itself as in the VSFT proposal. In a sense,
our solution is closer to the solutioh= Q| proposed in the
purely cubic theory21] (after the replacement of the identity
by the projector. It is due to the fact that the kinetic term
always remains in the expansion around any exact solution.

A second point is the nature of the tachyon vacuum. As

is given by the sum of the contribution from the half stringswe have seen it is characterized only by the absence of ta-
M+ An. The above argument shows that the contributionchyonic modes in the spectrum and the open string propaga-

changes its sign when the labels included in the seB’.

91t is not obvious if the open string at zeroth orderqir(splitting

tion seems to survive. Namely, the cohomology defined by
the quadratic term at the tachyonic vacuum does not appear
to be trivial. In the usual proposal, the tachyon vacuum is
where there is no open string propagation since it is the point

limit) is related to D-branes. However, we use this terminology in awhere D-branes annihilate.

generalized “background” where the open string has the frequen-

cies (ke ,x,), Which become £, k) wheny is neglected.

It is, of course, not very clear to which extent we should
take such “discrepancies” seriously. In the Siegel gauge
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there are an infinite number of subsidiary conditions thatn the usual scenario, we first solve the second part by as-
must be applied on our solutions. We have not implementeduming the parametet, which is a measure of noncommu-
yet these conditions. It is likely that the ground state of thetativity, is very large. The solution is given by the noncom-
potential energy already satisfies these conditions, but only mutative soliton asp=t¢, where ¢ox o= ¢ and V' (t)
subset or none of the remaining extremal states would. =~ =0. The first term is later included as the perturbation to
A better approach to investigate this issue may be to consuch solutions. Then one finds that while some solutions are
struct the full BRST operator in the Moyal formalism. This stable an instability emerges for some of the soluticks.
appears possible ai=c0, but with an infinite number of Here we try to investigate our system from a similar point of
modes the issue of the midpoint is plagued with anomaliesiew. In our case, a similar role is played by the spectral
and it is difficult to be confident that we have complete con-parametersk,. We can make they term very small by
trol of the anomalies by working directly &=o. On the choosing them very close to the splitting limit.
other hand, at finit&l we have not figured out a substitute for ~ We start from the rank 1 solution characterized by some
the Virasoro algebra that would be needed to construct thearmonic oscillator state labeled Iy
Becchi-Rouet-Stara-TyutitBRST) operator. At this point it
appears quite likely that, likey, the full BRST operatoQg

(a differential operatgralso has a representation similar to A0 = _ i)\n b .. 4.3
Eq. (2.19, namely a'g 0
QA= OxA+AxQ+qA. (3.29  We put Eq.(4.1) into the equation of motion and pick up

O(€) coefficients. In the first ordetk& 1) we obtain,
We hope to report on this aspect in a future publication.
Armed with such a star product representatiofQgfwe can Lo *AD+AD 7= — yAD=B1) (4.4
give a similar analysis to what we have presented in this
paper, and then we can answer the issues of the cohomology

at the tachyonic vacuum. ,  Lo'=Lota'gAO=2 Nid= 2 Md(1-28,1) b -
It is interesting to point out the following observation in 3 k
relation to closed strings. The spectrum at zeroth ordey in (4.5

(split string with x,= ) conceptually is close to thdosed

string spectrum, especially if we consider that each halfThe eigenvalues of the shiftedl,’ are exactly the same as

string imitates the independent modes from the left and righthe modified spectrum of the half string on the unstable

movers on a closed striftd.This begins to give a clue on D-brane which corresponds ®®) as in the previous sec-

how the graviton can be described as part of open string fieldons. If we expand AW=3,aB¢ — and —yA©®

theory. =Enmbf1}%¢mn, the solution to the perturbation expansion
becomes

IV. INCLUSION OF MIDPOINT CORRECTION

. o . . A+n)al=pl) 4.6
In Witten's string field theory, the solution which de- (Aot Am) 8 =D 4.6

scribes the tachyonic vacuum is one of the most important

goals. In our language, it corresponds to solving the equatiofhis equation has a unique solution as long a§+H\,)

of motion (2.3) without assumingy=0. Since we have al- #0. We note that X+ \) gives the mass squared of the
ready solved the equation of motion analytically in the open string on théunstablg D-brane. The recursion relation
=0 limit, it is sensible to introduce the effect gfas pertur-  breaks if there exist massless excitations. Such modes exist if
bation. For this purpose, we replageby ey with an expan- (i) there existsm(#ng) such thath,=\, (we suppose

sion parametee. We expandA as An,#0) or (i) A= 0 for somen. In such situations, we need
O A 2A) to imposeb{)=b{})=0 in order to have a perturbation ex-
A=A+ eAT+ AT+ 4.1 pansion with a nontrivial solution. However, this type of con-

straint becomes rather nontrivial when we need to solve the
and useA® as the solution ak=0. When the spectral higher order equation.
asymmetry betweer, and «, is very small, we would ob- For the situation(i), we believe that the rank 1 solutions
tain the converging series which describe the exact solutiorbecome singular in the perturbation series. One resolution for
We note that there is a formal analogy between our casthe degenerate case is to consider the higher rank projector
and the analysis of the noncommutative soliton in the scalaand only begin with the solution of the fornA(®=

field theory where the equation of motion becomes —(2N\a’'g)2i A where A is the set of indices with
Ni=\. Starting from this solution, it is not possible to have
[a,[a’,¢]]+6V'($),=0. (4.2 N +N\,=0, and the recursion formula becomes consistent

and has a unique solution. For the situatidn, there does
not seem to exist such a cure. One possibility is, however, to
10A related remark was made [22]. shift the splitting ofL into £, and vy slightly, £o— Lo+ b,
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v—y—2b. This shifts the eigenvalues df, by a constant Die,: nwx/KeKe,(lggT*ﬁg,T* boot Poo* Ber* BE)
and escapes the singularity mentioned abdve. ot bt b e
As an explicit example, we present the first order correc- +2ke(Be *Ber * boot Poo* Ber* Be), (4.13

tion if we take the butterfly state as the zeroth teAm
=(2/a’'g)v¢go. We use the oscillator representation of the Die,z N\ KeKer b boo* Bor

action of gamma terms to the string fields, R ) bt
— Ke( Be'* doo* Ber + Ber * Poo* Be)- (4.14

ymateA= > VkeWevkeWes We note that the first order correction is small compared with
B(1HWW) 6570 — ) o
the zeroth order term ikw<1, namely in the vicinity of the
x{3g+,g {IBe’+Be’ AL D 4.9 splitting limit (3.1). On the other hand, in the open string
limit (A2), while the combinationw,/V1+ww becomes
very small(which are the coefficients @, ,), ww, § andv

rA= 4(1+ww) E WeKeWer are naively divergent. In this sense, the applicability of the
oo perturbation series in the open string limit seems to be quite
x{BS— B[ B2 + B2 ALY (410  subtle.

One possibility to overcome this difficulty is to use the
ambiguity of the splitting ofZ, and y which is mentioned in

The first order correction is given as ) . '
Sec. Il B. With some careful choices, for example, it seems

(d—2)8 » that one can remove the divergenceviand 6 which appear
a'gA = oot _ at the first order. The problem of higher corrections, how-
4 4(1+ww) ever, is very delicate and we would like to postpone the
careful treatment of these problems to a future publication.
% 2 WeWer Dl . 2WeWer 2 Due to the correction to the tachyon vacuum, the formula
o =0 | Kot Ker Deo Kot Kot — 2V ee’ |7 for the brane tension should also be modified. We expand the
action in the following form:
(4.11
SAO+ AL+ 2A@ 4 .. =804 ¢SV + 252+ . . .
D KW’ (4.15
s=0 (4.12  If we start the perturbation series around the solu#dfy
1+ww =— (2/a’'g)LoxP (With LoxP=PxL,, PxP=P), the ze-
roth term is given in Eq(3.22. The first order correction is
given by
Wwe have to mention that such a dangerous situation seems to
appear at least naively. In the open string lifiA2), the vacuum 2
energyv defined in Eq(3.5) becomes divergent. If we use the zeta SM=— —2V Tr(ﬁof* PxAD), (4.1
function regularization to obtain a finite value for we need to use a'"g
E e—E 0=2[{(-1)—-4—-1,1/2)]= 2( i—i) - E In the perturbation around the butterfly state, we evaluate the
&0 0%0 24 12 4 tension a¥
(4.7
For the critical dimensiord=26, it makesy=2. With such a 1 4 128
choice forv, there exists a “graviton-like” excitatiofs "% ogx B4 52| 3 v — ET(d_ 2)|+0(€?). (4.1
which becomes exactly massless. Furthermore one can easily check a"g
that the right-hand side of E¢4.4) is also nonvanishingdilaton-
like excitation), We can continue the perturbation expansion for higher
The recursion formula is already given in E@.26). With
By ——— (W), B % oo Bh+ - - . (4.8)  the above redefinition of, for the degenerate case, we can
1+ww solve this equation term by term for any spectrum uniquely.

The situation is, however, very delicate. If we take the naive openfhe second order perturbation is, for example, given as
string limit ww— oo, this term also vanishes. This is the usual prob-

lem of taking the naive limit. The proposal in MSF8—8] is to use AP =(—Lg) H(yAD) +a'g(—Ly) HADxAD),

the finite N regularization in all the intermediate computation and (4.189
take the largeN limit only at the end of the calculation. The diver-

gence which we encounter is caused by the use of the zeta- functioMith

regularization(4.7) at the intermediate step of the computation

which becomes quite dangerous. The correct prescription will be to

take v unfixed and solve the recursion and only take the li#i?) 12This will be compared to the ordinary D25-brane tension after a
after we sum over all the perturbation expansion. self-consistent normalization of the action in MSFIB.
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A= (=Lo) H(yAD), (4.19 (=Lo) M+ (—Lo) tex(—Lo)
+(—Lo) tey(—Lo) tey(—Lg) Tt
where L, applied on any field is defined by,A=L,'xA =(—Li—ey) 1, (4.20

+Ax L', while (Lg) ! on any field is given by () "*A

L Y e and the “dressed version” oA and star product,
=[od7e, "0 xAxe, "0  as explained in Eq(2.24 and

footnote 5. More directly, boti.j and ;) ! are simple AB=(—Lo—ey) 1A,
algebraic expressions in the matrix notation of E@s4)— Re ol 1 -1
4.6). AeB=a'g(—Li—€ey) "(AxB). (4.21

Actually one may obtain a formal expression fofor the  We note that the “bullet product *” is not an associative
entire perturbation sum. For that purpose, we introduce thgroduct. One may then claim that the full wave functin
“dressed propagator,” can be expressed as

A=A® 1 AW+ 2T ED 4 SADADYAD £ ZOGADFD)) ...

=A+ E €"( (all possible associations of) AMDe...eAMD |,
n=1 R

(4.22
|
For example, the* term is given as, analytically in terms of the projection operators. We argued
o o o that this is an analog of the largelimit in the noncommu-
AW ADe (ALAD) ]+ (AL AD) e (AL AM) tative scalar field theory. We can introduce the midpoint ef-

fect as a perturbation series which is analogous to the fihite

case. In the development of open string field theory, this
gives the first example where the role of noncommutative
solitons is explicitly demonstrated with a careful treatment of
A proof of the formula(4.22 is given by the use of the the midpoint correction. We _believe that it gives a firm

recursion formula(2.26. An easier proof is to write down 9round upon which the relation between noncommutative
the equation of motion for the deviatiod'=A—A® geometry and open string field theory will be discussed in

+ADe[ (ADeAD e A+ [AMs (ANeA1L)) o AL

+ [(A(I)Q’A(l)).;&(l)]o:&(l)

=AW+ 2A@ ... the future.
’ There are, of course, many topics which should be clari-
—(Ly+ ey)A’=eyAQ+ o' gA * A’ (4.23  fied in a future study. One of the most interesting directions

is to find the analytic solution fory#0 in a closed form.
From the above definitions, one may rewrite it As While this appears difficult because we cannot find a basis

=eAM+A’-A’. We use this relation recursively to obtain Which diagonalizesS; (i=1,2,3) simultaneously, there may

Eq. (4.22), for example, be a possibility that a few of the_: exact solutions_, in particular
the true vacuum, could be derived with some insight.
A= AW+ (AD+A WA o (AL F AT A )= . . In our description, the tachyon vacuum still seems to have

(4.24) an open string spectrugmodulo the extra gauge invariance
conditions in the Siegel gaugeElimination of these modes

With this explicit formula, we claim that there exists a would be possible only when the exact solution is found in a
unique solution(4.22 to the full string field equation for closed form, and the remaining gauge invariance conditions
each solution in the splitting limit as long as the perturbationare imposed.
expansion is convergent. We hope that the careful analysis in A related issue is the BRST symmetry. So far with arbi-
the vicinity of the splitting limit will reveal some nature of trary choice of the spectrum, as a function oh, we cannot
the dynamics in the open string limit. define the nilpotent BRST operator. The merit of our ap-

We note that the solutions become the projectors withproach is that one can handle the midpoint correction at finite
respect to Witten’s star produet only at the splitting limit ~ N. While the BRST charge exists in the open string limit at

and the perturbation breaks such simplicity. k,=N, it is very challenging to see how the BRST operator
will be affected in that limit by the midpoint correction we
V. CONCLUSION have emphasized.

Another essential question is whether the splitting limit
We have seen in this paper that the splitting limit gives aitself can be interpreted as a “real string” defined by some
system where the translational invariant solutions are solveliind of (boundary conformal field theon{(B)CFT]. As an
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example, we takece=e and N=o. The spectrum of the 2 jo—e-1 .

model is generated by two sets of oscillaters (and a,) Useom — 56 we—i~ 2,

acting on the vacuum state from the léénd righ}. In a

sense each of the two half strings behave exactly like the 2 jo-1 _

original open string. This is somewhat similar to the closed vi— p and w'w’ —oo, (A3)

string excitation where two sets of oscillators are left and

right moving modes. Since there is hg—L,=0 constraint Compared to the notation, v, that we also use for positive
in the splitting limit, it is certainly different from the closed integersw’ andv’ are defined as

string. However this analogy may have some implication of

the nature of the tachyon vacuum where we are supposed to Wg=w|e|/\/§, vg=v|0‘/\/§. (A4)
have only the closed string excitations.

While it is more Specu|ative, we may comment on the In the regulated version of MSFT with finifé these ma-
relation with D-branes. Usually in BCFT, D-branes are de-trices are deformed as functions of arbitraty, «, as fol-
scribed by boundary states in the closed string Hilbert spacdows:
We note that the open string Hilbert space in the splitting

! ! ! ! ! !

limit has a similar structure as the closed string. The similar- :WerKo U-t :WerKe UU-l=U-lUu=1
ity may imply that the deformation of the open string Hilbert = ~&° /" Coe ! ’
space is needed to describe the D-brane as a projector in the e e e e (A5)
open string Hilbert space. This kind of comment might be
helpful if we want to perform a similar analysis in a generic 5
closed string background. IT [«3x2,—1)22
ole 0'>0
W= ,
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APPENDIX A: DEFINITIONS IN MSFT 0'(#0)>0
We review some basic definitions in the Moyal star for- Teo=U_gotUeo, Roe=UT;.+Ugz,
mulation of string field theory5—§]. . .
To provide a regulator in MSFT, we use an explicit trun- Seo=U_eo0=Ueo=U ;e Uge, (AT)

cation of the number of oscillators €/n|<2N) and intro- . _
duce the N arbitrary “frequency” parametersk, (n  Where abaron a matrix means its transpose. Of course, these

=1,...,MN). These appear in the commutation relations€XPressions reduce to their limiting values in E43) in the
among the oscillators, such as large N limit. They satisfy the following relations for arbi-
trary k,, [including the limit of Eq.(A2)]:

[af,ap ]=Ky6nin 7", Kp=€(N)Ky. (A1) PP — — w'w’
U '=k, "Uk,=U+v'w', UU=1-

1+w'w’

In the following we need to distinguish the frequency for

even and odd labels, and write themsds «/, wheree(o) v’ =Uw’, (A8)
runs over everjodd numbers in the range of.

In the definition of the canonical variables in Moyal TR=RT=1, SS=SS=1, T=«_'Sk,, R=x, 'Ske.
space, there is a Bogoliubov transformatidn , from the (A9)
oscillators labeled with odd numbesgo those labeled with
even number®. In [6—8], U is related to a set of special In Eq. (A8) the first formula implies that) changes the
matrices and vectorB,R,S,v’,w’. These are all functions of spectrum fromk,, to x;, whereas the second one gives the

the frequency parameteks, «, . In the limit (which we will  origin of the midpoint correction. The, andw/, vectors are
refer to as “the open string limity related to each other through the third relation. This is only a
partial list of relations; for the complete set of relations see
N—o, Kky—0, Kke—8, (A2) 7).

In most explicit computations it is much more efficient to
use the relations among the matrices rather than their explicit
the basic matriX and vectorsw/ ,v,, (for both positive and messy expressions. We emphasize that these relations hold
negative integers,0) are for any values of«,,, including those of the limiting case in
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Eq. (A2). Therefore, performing analytic computations at fi-  For arbitrary frequencies, one can define the perturbative
nite N is often not any more difficult than performing them at string states. In particular, the perturbative vacuum in the
infinite N. oscillator language is mapped to the Gaussian function

In the Moyal language, the action of the oscillataron  [7,16)],
the string field is represented by the action@bscillators

defined in Eq.(3.2). Suppose the oscillator staltgs) corre- Ag~exp(— Mo, —2E°M3"¢%), €= (xZpp),
sponds to Moyal fieldA (in Siegel gaugg .
£°=(Xe pe), (A19)
A K
al|y)y— BEA= \/;(BS*A—A*ﬂ’ie)—WéBS“A, ke -
(A10) o 0 SRkR 0
Mo= ) ) , Mgh— .
ab|y)BLA=, (BLAIU 25 iz 0o 2o
© &0 e —eo 0 _TK T 0/2Ke
ke, ; (A20)
=\ (Bo*xAt+AxBL,), (A11)

Similarly one can construct the Moyal map of coherent states
which correspond to adding a linear term in the exponent of
the Gaussian above. With this setup, the Moyal star is used to
compute generalizations of Neumann coefficients. It is
shown[7] that they satisfy the basic nonlinear relations given
b SbA— E AU by Gross and Jevicki even for arbitrary frequencies. The gen-
ol )= Bo =24 (BeAU—co eralized Neumann matrice®/{),,, (VI 0, (VI') o, for
any n-string vertex are shown to be simple explicit functions
R of the single matrixte,= k2T o.x, 2. Diagonalizing this
(,BO*A (—1)AAx " o) (ALY single matrix diagonalizes simultaneously all Neumann ma-
trices. This explains and justifies the notion of Neumann
spectroscopy for arbitrary oscillator frequencies. These re-
(Ige*A (— 1)\A\A*lg o, (A14) sults were initially obtained in the matter sect@r with
bosonized ghostdut by now they have been generalized to
include also the fermionic ghost sectft6]. In the open
BYA string limit we fix the frequencies to E@A2). In this limit
€ our generalized Neumann matrices agree with other compu-
tations of these coefficients.
=—(,8°*A+(—1)|A‘*B° ) (AL5) Furthermore, for arbitrary frequencies,, using the
o \/5 0 —o/s Moyal star, one can also compute open string amplit(iflgs
including the ghost sectdd6].
where 3, is Bogoliubov transformation oB,, namely The regulator is removed by taking the limit in E@\2)
at the end of computations. As emphasized 8y taking
b M b_ b such a limit at the Lagrangian level is wrong because of
\/K—oﬁo—go \/K_e,Beufe,Ov ﬂo—g«o BeV—eo, anomalies and leads to inconsistent results. We note that we
break the conformal symmetry explicitly when we work at
g= E U-l g (A16) finite N or arbitrary v_a!ues of,. This is the cost to pay to
&y oeler resolve the associativity anomaly among the basic relations.
We expect that the conformal symmetry is re-established in

Note thatB£:>¢, BE5¢ are differential operators, by,  the limit of Eq.(A2). . o .
are fields multiplied with the Moyal star. We can prove that It has been shown that this regularization scheme gives
the even differential operatord,, B, satisfy the standard the correct results in explicit computations, including the
P erre spectrum ofL,, perturbative states, Neumann coefficients,
(anti-) commutation relation for the even mode oscillators, . . . i
string Feynman graphs, and numerical estimates of certain

e|¢>HBbA=7(Be*A+( DML, (A12)

ol -

S

Cel ¢><_’BgA

Col ¢>‘_’:88A

( O*e

(3=, B.1=[B" E;]: Pk Beser s guantities computed with other methods in the literature.
(B2 B} ={B2. B} =Gerer - (A17) APPENDIX B: SOLVABILITY OF  S,+S,

R In this appendix, we show that the combinat®nt S; is
On the other hand, after Bogoliubov transformatiBfi,sat-  also solvable as in the combinati®g+ S, considered in the
isfies the odd mode commutation relation, text. For simplicity we consider only the matter sector and
S , ap ac keep just one space-time component. We change the variable
[B6 .85 1= Ko00+07 1 {Bo:1Bo}=00+0r- (ALB) (symplectic transformationfrom X.,pe t0 Ye,ge Such that
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Y= (1/y1+Ww) S Wep.. The equation of motion becomes (Namely zero dimensional modeWith this simplification,
q2A+a’gAxA=0 but sinceg,, s, . .. andy,.Ve, ... are W€ argue that it reduces to the two matrix model and is

indeed solvable.

irrelevant, we wrote it simply ageglecting subscript)2 : . ) i
We consider the partition function with the source term,

9*A(y,q) + a’g(AxA)(y,q)=0. (B1) L
_ 3
While the first term does not split as before, one may always 2[91= J [da]ex;{ —Tr(aha)—zTr(a )—Tr(Ja)).
write it as (CY
%{q,{q,A}*}*+a’gA*A:0. (B2) The following change of variable

a=—A+a’ (C2

While the kinetic term does not split, we may use the same ) » )
trick as before to write down one family of solutions. For kills the quadratic term and the partition function becomes

that purpose, we prepare the wave function which is diagonal

with respect tag, Z[J]=e*(2’3)T’(A3)*T'“A)f [da’]
ar (k) =ke(k,1), ok*xg=1¢(kl) kleR, .
(B3) xexp( - §Tr(a’3)—Tr[(J—A2)a’] . (C3
d(k,D* (k' 1")=6(1—=Kk")p(k,1"). (B4)
) ) S This is the partition function of the purely cubic theory with
The solution to this definition is given as the modified source terd—J’' =J—(A)?.
Bk, =o[q— (k+1)/2]el KNy, (B5) If we ignore the prefactor, the problem is now reduced to

solve the partition function,
If we expandA= [dkdIA(k,l)(l,k), the equation of mo-

tion can be rewritten in terms &(k,l) as Z[J’]ocf [da’]ex;{ — %Tr(a’3)—Tr(J’a’) . (CY

2
( 2 ) A(kl)+a'g | drA(knA(r1)=0.  (B6)  one interesting aspect of this integration is that the off-
diagonal part of the matrix integration can be exactly per-
A family of solutions which is similar to those given in the formed. The measure of the integration of Hermite madrix

previous section can be written as can be replaced by
k2 da’']=da[dU][A(a)]? C5)
Ak, l)=———05(k)8(k—1) (B7) e )= daduliata] (
@ g where we use the decompositiah=UaU" by using unitary
with matrix U and eigenvaluesa of A’ [azdiag(é)]. A(a)
=Ilj-j(aj—a;) is the van der Monde determinant. After this

1, ke, decomposition, Eq(C4) becomes

(k)= [ 0, otherwise, (B8)

. , _ . f da[A(a)]2e~ (WA a?f [dUJexp(—Trd’Uau~1).
whereX is a certain range ilR. We note that the projector '
¢(k,k)=6(g—k) does not depend on the coordingte (C6)

The tension is computed similarly as The integration over the unitary matrix can be performed by

using the famous formula proved by Itzykson, Zuber and

Y, :
SAs]= —f dkKe. (B9)  Brezin[23],
6&'392 s
1
-1
The volume factoW appears here becauaeloes not depend J [dU]exp(;Tr(AUBU ))
on the coordinate. Since the projector is defined over the
continuum variable, we expect any nontrivial solution ob- _ 1 1
tained here will be unstable except for the trivial oAe =clA(a)A(b)] “detexp yajby| |, (€7
=0.
where a,b are the eigenvalues of matricea,B,c
APPENDIX C: INTEGRABILITY OF THE MATRIX =tNN=DAII_j1 Equation(C4) becomes finally,
MODEL , _Aa) 1 .
The fact that we can solve the translational invariant so- Z[J" ] daA(‘P) exp — 3 EI a; _Ei eia;| (CY

lutions of Eq.(3.15 implies that it is also integrable even at
the quantum level as long as we neglect thdependence whereg’s are the eigenvalues df .
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