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Timelike boundary Liouville theory
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The timelike boundary Liouville~TBL! conformal field theory consisting of a negative norm boson with an
exponential boundary interaction is considered. TBL theory and its close cousin, a positive norm boson with a
non-Hermitian boundary interaction, arise in the description of thec51 accumulation point ofc,1 minimal
models, as the worldsheet description of open string tachyon condensation in string theory and in scaling limits
of superconductors with line defects. Bulk correlators are shown to be exactly soluble. In contrast, due to OPE
singularities near the boundary interaction, the computation of boundary correlators is a challenging problem
which we address but do not fully solve. Analytic continuation from the known correlators of spatial boundary
Liouville to TBL theory encounters an infinite accumulation of poles and zeros. A particular contour prescrip-
tion is proposed which cancels the poles against the zeros in the boundary correlatord(v) of two operators of
weight v2 and yields a finite result. A general relation is proposed between two-point CFT correlators and
stringy Bogolubov coefficients, according to which the magnitude ofd(v) determines the rate of open string
pair creation during tachyon condensation. The rate so obtained agrees at largev with a minisuperspace
analysis of previous work. It is suggested that the mathematical ambiguity arising in the prescription for
analytic continuation of the correlators corresponds to the physical ambiguity in the choice of open string
modes and vacua in a time dependent background.

DOI: 10.1103/PhysRevD.67.126002 PACS number~s!: 11.25.Hf
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I. INTRODUCTION

In this paper we study the two-dimensional conform
field theory described by ac51 negative norm boson with
an exponential interaction on the boundary. The action is

STBL52
1

2p E
S
]X]̄X1

l

2 E
]S

eX. ~1.1!

We will refer to this as the TBL~timelike boundary Liou-
ville! theory. Because of the ‘‘wrong’’ sign in front of th
kinetic term in Eq.~1.1!, the X correlator on the upper hal
plane is1

^X~z,z̄!X~w,w̄!&5 lnuz2wu1 lnuz2w̄u, ~1.2!

and the boundary interaction is marginal. This wrong s
also implies that the functional integral

E DXe2STBL ~1.3!

is not well-defined. In order to define the theory, we w
need to specify some kind of analytic continuation pro
dure.

TBL theory has not been previously studied in mu

*On leave of absence from Dept. of Physics and Astrono
UCLA, Los Angeles, CA.

1Here and in the rest of the paper we have seta851.
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detail.2 However it is a close cousin of several theories wh
have been well-studied. Analytically continuingX→ if we
obtain a free positive-norm boson with a non-Hermiti
boundary interaction@3,4#

SNH5
1

2p E
S
]f]̄f1

l

2 E
]S

eif. ~1.4!

This can be viewed as ‘‘half’’ the boundary sine-Gordo
theory ~with a marginal boundary interaction! @5–7#, which
has aleif1l̄e2 if boundary interaction. The correlators o
TBL theory are hence formally related to those followin
from Eq.~1.4!. However since Eq.~1.4! has a non-Hermitian
interaction, its correlators are also not unambiguously
fined.

Generalizing the coefficient of the exponent in Eq.~1.4!,
and improving the stress tensor so that the interaction
mains marginal, we obtain the ordinary spacelike bound
Liouville ~SBL! theory:

SSBL5
1

2p E
S
]f]̄f1

l

2 E
]S

ebf. ~1.5!

This theory has been studied for generic real values ofb. The
two-point boundary correlators have been explicitly obtain
in @8,9#, the bulk-boundary correlators are in@10#, an integral
form of the three-point boundary correlators has been gi
in @11#, and supersymmetric correlators are in@12#. We shall

y,
2A minisuperspace analysis appeared in@1#. Certain bulk one-

point functions were recently computed in@2#.
©2003 The American Physical Society02-1
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M. GUTPERLE AND A. STROMINGER PHYSICAL REVIEW D67, 126002 ~2003!
see that the analytic continuationb→ i from SSBL ~1.5! to
SNH ~1.4! andSTBL ~1.1! is highly nontrivial and encounter
ambiguities for boundary correlators. This difficulty has be
encountered previously while studying the role ofSNH in the
c51 accumulation point of minimal models@4,13#. In this
paper we will give a specific, physically-motivated~in the
context of string theory! proposal for continuing the two
point boundary correlator to TBL theory. The prescripti
involves approaching the TBL theory throughc,1 theories
with a linear dilaton.

Yet another related theory is the timelike boundary si
Gordon theory

STBSG52
1

2p E
S
]X]̄X1E

]S
~l2e2X1l1eX!. ~1.6!

The boundary state for this theory was found by analy
continuation from the spacelike case in@14,15#, in the con-
text of string theory, where some cases describe ans-brane
@16#. Aspects of closed string emission were computed
@17–20#. We expect the boundary correlators for this theo
which have not been computed, to be more intricate du
the extra interaction term. A further complication is that the
is no ‘‘free’’ region at X→2` in which the ~open string!
spectrum can be easily understood. However the extra in
action term could also simplify matters by controlling dive
gences and leading to a hermitian action forX→ if. We will
not consider this interesting theory further in the pres
paper.3

The theories described by the actionsSTBL andSNH are of
interest in a number of contexts. In string theorySTBL is the
worldsheet action describing time-dependent open st
tachyon condensation@1,14,16#. This can equivalently be
viewed as unstable D-brane decay or the future half of
s-brane. This relation will be further discussed in Sec.
Non-Hermitian boundary interactions of the general vari
SNH ~1.4! are realized in a variety of condensed matter s
tems @22#. SNH itself arises in the infrared limit of a 2D
superconductor with a magnetic field and a line defect wh
are not parallel@23#. The non-Hermiticity corresponds to
lack of reflection symmetry across the defect. Finally E
~1.4! is related to thec51 theory obtained as the accumul
tion point of thec,1 unitary boundary minimal models, a
of which it in a sense contains@4,13#. This highlights the
nontrivial nature of this conformal field theory~CFT!.

As noted above, the TBL theory is not well-defined wit
out some kind of additional prescription. This prescripti
should be dictated by, and may depend on, the physical
text in which the theory arises. In the context of stri
theory, we shall argue that the two-point correlator giv
stringy Bogolubov coefficients describing quantum op
string creation during tachyon condensation. The crea
rate depends only on the magnitude of the two-point fu
tion, which was computed in the minisuperspace approxim
tion to TBL theory in@1#. We find that a natural prescriptio

3A minisuperspace analysis will appear in@21#.
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for defining the TBL two-point correlators by analytic con
tinuation gives a result in agreement with the minisupersp
approximation at high energies. This connection further s
gests that the mathematical ambiguity in the correlator c
responds physically to the ambiguity in the choice of
vacuum state and modes for open strings during the ti
dependent process of tachyon condensation.4

We wish to stress that we regard this work as a prelim
nary step in defining the TBL CFT. We have not given
procedure for defining the boundary three-point functi
~known only in integral form for the spacelike case!, or veri-
fied that our prescription yields correlators obeying the pr
erties of a CFT. Indeed since the TBL theory is not unitary
is not clear what those properties should be. Further, we
there is some hidden ‘‘meaning’’ in the~accumulation of!
singularities which we have not fathomed. We regard all
these as interesting problems for future investigation. Si
tachyon condensation is an allowed process in string the
we believe that, despite the apparently singular behavio
the TBL theory, a well-defined set of correlators should ex

An intriguing feature of our continuation prescription
TBL theory is the following. As mentioned above, an inte
mediate step involvesc,1 timelike linear dilaton theories
which are of interest in their own right. The proposed p
scription determines the norm of the boundary correla
ud(v)u for all real values of the dilaton. Interestingly, a
detailed in Sec. IV B, the phase Im@ln d(v)# is determined
only for ‘‘rational’’ values of the dilaton, and does not have
smooth extension to real values.

This paper is organized as follows. In Sec. II A th
minisuperspace analysis of TBL theory in the context
string theory is reviewed. While the validity of the minisu
perspace analysis is nota priori obvious, it gives us invalu-
able clues as to which operators to consider and what kin
phenomena to expect. In Sec. II B a general relation betw
CFT two-point functions and stringy Bogolubov coefficien
is proposed. Section III describes the computation of corre
tors of bulk operators, and explicitly works out the one a
two-point functions as well as the boundary state. In S
IV A we review the crucial results of@8# on the boundary
two-point function for ordinary boundary Liouville theor
which has a spacelike boson. Finally in Sec. IV B we de
our proposal for continuing this two-point function to TB
theory. This involves contours for analytic continuation
the background charge~i.e., a timelike linear dilaton! andv,
as well as a prescription to sum a certain series of resid
after the analytic continuation. The final result for the ma
nitude gives agreement at high energies with the minisup
space computation of the open string creation rate. Prope
of some special functions appearing in the expressions
correlators are given in an Appendix.

II. TBL AND STRING THEORY

TBL theory is the worldsheet description of a time depe
dent process in which the open string tachyon fieldT5eX0

4It would be interesting to understand the physical origin or re
lution of these ambiguities in the superconductor context@23#,
where to date largely bulk quantities have been considered.
2-2
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TIMELIKE BOUNDARY LIOUVILLE THEORY PHYSICAL REVIEW D 67, 126002 ~2003!
starts at its unstable minimum in the infinite past5 X052`
and then rolls to an infinite value in the far futureX05
1`. Such processes have been discussed in@1,14,16#. This
may equivalently be described as the decay of an unst
brane or the future half of ans-brane ~which consists of
creation of an unstable brane followed by its decay!.

A. Minisuperspace review

The minisuperspace approximation to TBL theory was
scribed in@1# and will be reviewed in this subsection. Whi
the validity of this approximation is nota priori obvious, it
nevertheless provides invaluable clues as to what to look
in the exact treatment.

The L050 constraint on the open string worldsheet fo
half s-brane becomes a Schro¨dinger equation for the ope
string wave functions@1#6

S ]2

]X2 1leX1N211pW 2Dc~X!50. ~2.1!

Here we abbreviate the timelike coordinateX0 asX, pW is the
spatial momentum andN is the oscillator level number. Th
solutions to this are Bessel functions

cpW
in5

l iv

A2v
G~122iv!eipW •xWJ22iv~2AleX/2!,

v[AN211pW 2 ~2.2!

and their complex conjugates. In the far past this solut
approaches a positive frequency plane wave

X→2`, cpW
in→ 1

A2v
e2 ivX1 ipW •xW. ~2.3!

In the far futureX→`,

cpW
in→ l iv21/4G~122iv!

A8pv
e2X/41 ipW •xW~epv22iAleX/21 i ~p/4!

1e2pv12iAleX/22 i ~p/4!!. ~2.4!

We see that the incoming modescpW
in contain both negative

and positive frequency parts in the far future. This indica
open string pair creation. Normalized outgoing positive f
quency modes are Hankel functions

cpW
out5Ap

2i
e2pv1 ipW •xWH22iv

~2! ~2AleX/2!

→ l21/4

&
e2X/422iAleX/21 ipW •xW, X→`. ~2.5!

5In classical string theory the tachyon can be perched indefini
at its unstable minimum without being pushed off by quantum fl
tuations.

6In our conventionsa851.
12600
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The in and out modes are related by the Bogolubov trans
mation

cpW
out5apWcpW

in1bpWc2pW
in* ,

cpW
in5apW

* cpW
out2bpWc2pW

out* ,

apW5
l2 iv

A4p iv
G~112iv!epv,

bpW52
l iv

A4p iv
G~122iv!e2pv,

~2.6!

which obeyapWapW
* 2bpWbpW

* 51 as required. Expanding

F5(
pW

~cpW
inapW

in1cpW
in* apW

in†!5(
pW

~cpW
outapW

out1cpW
out* apW

out†!,

~2.7!

the in vacuum becomes

u in&5)
pW

~12ugv
inu2!1/4e2~1/2!( gv

in~apW
out†!2uout&,

~2.8!

where

gv
in5

bpW
*

apW
52 ie22pv, ~2.9!

wherev and pW are related by Eq.~2.2!. The in vacuum is
annihilated by apW

in5apWapW
out1bpW

* a2pW
out†. Relation ~2.8! ex-

presses the fact that if there are no incoming particles aX
→2`, there will necessarily be outgoing particles atX
→`. a andb can be changed by phase redefinitions of
modes, but the total string creation for a mode with fr
quencyv is characterized byugpW u. Similarly the out vacuum
is an excited state of the in vacuum

uout&5)
pW

~12ugv
outu2!1/4e2~1/2!( gv

out~apW
in†!2u in&,

~2.10!

where

gv
out52

bpW
*

apW
*

5
l22ivG~112iv!

G~122iv!
e22pv. ~2.11!

The magnitude of this result will be reproduced for largev
in our CFT analysis of TBL theory.

B. Two-point function as stringy Bogolubov coefficient

We would like to improve on the minisuperspace analy
and obtain exact CFT results. Our first order of business i
understand what correlator or other quantity in the CFT
termines the open string production rate. In order to und
stand this, we first review certain aspects of the space

ly
-

2-3
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M. GUTPERLE AND A. STROMINGER PHYSICAL REVIEW D67, 126002 ~2003!
boundary Liouville~SBL! theory with action~1.5!. Quantum
states can be described as an incoming waveeipf from the
free regionf→2` which reflects off the exponentialV
;ebf potential and returns as an outgoing wa
db(p)e2 ipf, where the reflection coefficientdb(p) is a
phase. The state then has the zero mode dependence
free region

f→2`, Cp~f!→e2 ipf1Rb~2 ip !eipf. ~2.12!

Under the barrier, roughly speaking the WKB wave functi
~for normalizable states! dies exponentially as exp(2AV)
;exp(2ebf/2), though of course the theory is strong
coupled in this region so that statement is heuristic. Acco
ing to the operator state correspondence, the reflection c
ficient is given by

Rb~2 ip !5dbS Q

2
2 ip D ~2.13!

whereQ5b11/b and the two-point boundary correlator o
the upper half plane is

db~a!5^eafeaf&SBL , ~2.14!

where the insertions are atz50 andz51. This is illustrated
in Fig. 1~a!.

Let us now consider analytic continuationf→2 iX from
SBL to TBL, so thatX is now a timelike target space coo
dinate, andp→ iv, as shown in Fig. 1~b!. There is also an
analytic continuation of the screening charge such thab

FIG. 1. ~a! Reflection amplitude for spacelike boundary Lio
ville theory and ~b! analytically continued amplitude for TBL
theory.
12600
the

-
ef-

→i, Q→0 which will be detailed below. Then in the fre
regioneipf→eivX, and the wave function behaves as7

X→2`, Cv~X!→e2 ivX1di~v!eivX, ~2.15!

where the appropriately continued reflection coefficient

di~v!5^e2 ivXe2 ivX&TBL ~2.16!

is no longer necessarily a pure phase. In the strong coup
region, the potential is now negative relative to the kine
term, and the wave function behaves as exp(2AV)
;exp(6ieX/2) @as indicated in the minisuperspace res
~2.4!#. In the spacelike case, there are also two possible
ponential behaviors~growth and decay! but normalizability
singles out the decaying mode. Hence analytic continua
from SBL to TBL theory yields a wave function with onl
one of the two asymptotic behaviors, as opposed to a gen
admixture. Let us choose our prescription so that this is
positive frequency outgoing wave. Then we may interp
Eq. ~2.15! as the linear combination of incoming waves th
produces a purely positive frequency outgoing wave. Co
paring with Eq.~2.6! we then see that the two-point functio
is a ratio of Bogolubov coefficients

di~v!5
bv

av
. ~2.17!

The string pair production rate is determined by the mag
tude ofd. In the minisuperspace approximation

udi~v!u5e22pv. ~2.18!

There is another way of understanding the relation~2.17!.
Mathematically, correlators in TBL theory are not uniqu
because one must specify an analytic continuation proced
Physically they are not unique because one must specify
vacuum state in a time-dependent background. As discu
above, analytic continuation from SBL to TBL theory mo
naturally gives correlators in the out vacuum. The o
vacuum is represented as an excited state of the in vacuu
expression~2.10!. One then easily finds that, in this state, t
minisuperspace S-matrix for scattering two incoming strin
to zero outgoing strings is given by

2gv
out* 5

bv

av
5di~v!. ~2.19!

Hence one may interpret the two point function~2.16! as
giving this S-matrix element.

It is natural to conjecture that this relationship exten
beyond the example discussed here. More generally we
pect that the disk or sphere two-point function for open
closed strings in a time dependent background gives
stringy Bogolubov coefficients.

Now we turn to computation of the CFT correlators.

7SinceQ→0 we need not distinguish betweenRb anddb here.
2-4
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III. BULK CORRELATORS

The TBL theory is a boundary deformation of a free tim
like boson on the upper half plane

STBL52
1

2p E
S
]X]̄X1

l

2 E
]S

eX. ~3.1!

A correlator involvingn closed string vertices andm open
string vertices is formally given by the path integral

A5K )
i 51

n

eb iX~zi ,z̄i !)
j 51

m

eg jX~xj !L
5E DXe2S)

i 51

n

eb iX~zi ,z̄i !)
j 51

m

eg jX~xj !, ~3.2!

where xi is a point on the real axis. Following@24#, we
decomposeX5q1X̂ whereq is the zero mode ofX. Then
the q integral can be done exactly, yielding

A5G~2s!S l

2D sK )
i 51

n

eb i X̂~zi z̄i !)
j 51

m

eg j X̂~xj !

3S E dyeX̂~y!D sL
free

, ~3.3!

where s52( j
nb j2( i

mg i . For integer s, G(2s) has a
simple pole and the residue is given by the integral over
nonzero modes, which can be evaluated using the free
correlation function on the half plane with Neumann boun
ary conditions.~A useful reference for the resulting integra
is @25#.! The general correlator is then obtained by analy
continuation ins. However, since the residues can be pert
batively evaluated only for integers, and analytic continua-
tion from the integers in not unique, the final answer must
checked using various consistency conditions such as fa
ization, crossing symmetry, etc. This technique was use
the calculation of the three point function for the bulk Lio
ville theory @26,27#.

This procedure however is a bit problematic for op
string correlators because of singularities when the bound
operator and interaction insertions coincide. A prescript
must be specified for dealing with these correlators. U
mately we believe that this corresponds to the ambiguity
the choice of open string vacuum, to which closed str
correlators on the disk are insensitive.

Rather than directly computing the integrals in Eq.~3.3!,
bulk correlators of the form~3.2! may alternately be evalu
ated using contour deformation. TBL theory has a level o
SU(2) current algebra generated by8

j 6~z!5e6X~z!, j 3~z!5
1

2
]X~z!, ~3.4!

8In our conventions X(z,z̄)51/2„X(z)1X( z̄)…, X(z)X(w)
;2 ln(z2w) anda851.
12600
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j 2~z! j 1~w!;
1

~z2w!22
2 j 3~w!

~z2w!

j 3~z! j 6~w!;6
j 6~w!

~z2w!
. ~3.5!

Note however that in the standard norm for a timelike bos
X, j 3 is anti-Hermitian whilej 6 are both Hermitian. Never-
theless the charges

J65 R dz

2p i
j 6~z!, J35 R dz

2p i
j 3~z!, ~3.6!

obey the usual commutation relations

@J2 ,J1#522J3 , @J3 ,J6#56J6 ~3.7!

and are therefore useful for computing correlators. To exp
this we note that the TBL boundary interaction is simply

l

2 E
]S

dteX5 iplJ1. ~3.8!

Correlators may then be evaluated by, e.g., deforming theJ1

contour into the upper half plane and letting it act on t
operator insertions as in@5#.9

A. One-point function

In this section we calculate the one-point function of t
closed string vertex operatore2nX inserted at the center of
unit disk. Because of momentum conservation the pertur
tive contribution is given by the insertion ofn Liouville
boundary interaction terms:

^e2nX~z,z̄!&TBL5S l

2D nK e2nX~z,z̄!)
i 51

n E dxie
X~xi !L

5S l

2D n

uz2 z̄un
2/2)

i 51

n E dxi)
i , j

uxi2xj u2

3)
i 51

n

uz2xi u2nuz̄2xi u2n

5S l

2D n

uz2 z̄u2n2/2E )
i 51

s
dui

ui
)
i , j

s

uui2uj u2

5uz2 z̄u2n2/2S l

2D n

~2p!nG~n11!, ~3.9!

where the third line of the upper half plane was mapped
the disk, which mapped the integrations to the well kno
Dyson-gas form. The perturbative result~3.9! can now be
used to determine the general form of the bulk one-po
function by analytical continuation using Eq.~3.3!:

9Life is not so simple with boundary insertions because one m
specify the contour prescription near the boundary operator in
tion.
2-5
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^ebX~z,z̄!&TBL5uz2 z̄u22hb~pl!2gbG~b!G~12b!

5uz2 z̄u22hb~pl!2b
p

sinpb
. ~3.10!

The one-point function~3.10! can now be analytically con
tinued viab→2 iv, giving

^e2 ivX~z,z̄!&TBL5uz2 z̄u22hv~pl! iv
p

i

1

sinhpv
.

~3.11!

B. Boundary states

The collection of all bulk one-point functions can be re
resented by a boundary state. The boundary stateuB&BSG for
the boundary Sine-Gordon theory

S5
1

2p E
S
]f]̄f1

1

2 E]S
~leif1l̄e2 if! ~3.12!

was found using the bulkSU(2) current algebra in@5# ~see
also @6,28–30#!. For a non-compact boson one has~up to
normalization!

uB&BSG5(
j

(
m52 j

j

Dm,2m
j

„g~l,l̄ !…u j ;m,m&&. ~3.13!

Here u j ;m,m&& is the Ishibashi state associated with t
SU(2) primary fieldu j ;m,m&. Dm,2m

j (g) is the spinj repre-
sentation of theSU(2) rotation given by

g~l,l̄ !5eip~lJ11l̄J2!5S cos~pulu! il
sin~pulu!

ulu

i l̄
sin~pulu!

ulu
cos~pulu!

D .

~3.14!

Reality of the boundary interaction demands thatl andl̄ are
complex conjugates. Sen@14,15# observed that an analyti
continuationf→2 iX0 produces an exact time depende
open string background.

It was pointed out in@3# ~and at intermediate stages of th
calculations in@5#! that the boundary states can also be c
structed forgPSL(2,C), and in particular we can setl̄50
to obtain the non-Hermitian theory whose actionSNH is in
Eq. ~1.4!. The unitary rotation matrix~3.14! becomes a rais
ing operator. The boundary state becomes simply

uB&NH5(
j

(
m>0

j S j 1m
2m D ~ ipl!2mu j ;m,m&&. ~3.15!

Inspection of theSU(2) currents~3.4! of TBL theory reveals
that under f→2 iX0, Jk→Jk and hence u j ;m,m&&
→u j ;m,m&&. Therefore we may also write
12600
t

-

uB&TBL5(
j

(
m>0

j S j 1m
2m D ~ ipl!2mu j ;m,m&&. ~3.16!

Following a related discussion in@14#, the component of
the boundary state~3.16! which does not contain any osci
lator modes can be obtained by settingm5 j :10

uB&05(
j

~ ipl!2 j u j ; j , j &

5 (
n50

`

~2pl!nenqu0&5
1

11lpeq u0&. ~3.17!

This result agrees with the appropriate limit of the more g
eral boundary state found in@14#. Although every term in the
second line of Eq.~3.17! diverges at late times the resumme
expression is well behaved, in particular there exists a F
rier transform which gives the closed string one-point fun
tion

^e2ivXuB&5const3~pl!2iv
1

sinh~2pv!
, ~3.18!

in agreement with Eq.~3.11!.

C. N-point correlators

Perturbative correlation functions involving only bu
vertex operators can be easily evaluated using contour de
mation techniques. For example the two-point function11 is

A2~ j 1 , j 2!5^e22 j 1X~z1 ,z̄1!e22 j 2X~z2 ,z̄!&TBL

5~2p i !2~ j 11 j 2!S l

2D 2~ j 11 j 2! 1

„2~ j 11 j 2!…!

3K e2 j 1X~z1!e2 j 1X~ z̄1!e2 j 2X~z2!e2 j 2X~ z̄2!

3 )
i 51

2~ j 11 j 2! R dxi

2p i
eX~xi !L

5~2p i !2~ j 11 j 2!S l

2D 2~ j 11 j 2!

3^e2 j 1X~z1!e1 j 1X~ z̄1!e2 j 2X~z2!e1 j 2X~ z̄2!&

5~2p i !2~ j 11 j 2!S l

2D 2~ j 11 j 2!

uz12 z̄1u2 j 1
2/2uz2

10As in @14# there are extra phasesj j appearing inu j ; j , j & which

can be fixed by demanding that thel5l̄51/2 state corresponds t
an array of D0-branes.

11For notation, we do not include the integration over the ze
mode in the correlatorA defined in Eq.~3.2! and denote the ampli-
tudeA.
2-6
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2 z̄2u2 j 2
2/2uz12z2u j 1 j 2uz12 z̄2u2 j 1 j 2. ~3.19!

In the second line the bulk vertex operators on the half pl
where split into holomorphic and antiholomorphic parts
the plane using the doubling trick. Then the contours alo
the real axis were pulled off the lower half plane and t
SU(2) algebra ~3.7! was used to turne2 j iX( z̄i) into
e1 j iX( z̄i). Note that all combinatorial factors cancel in th
end. It is straightforward to generalize the contour deform
tion techniques to evaluate bulkN-point functions. Hence as
far as the bulk correlation functions are concerned the T
theory is very simple. We shall see that this is not the c
for correlation functions involving boundary vertex oper
tors.

IV. BOUNDARY CORRELATORS

As mentioned above, the simple methods for comput
bulk correlators encounter ambiguous singularities when
plied to boundary correlators. In this section we will defi
the two-point correlator by analytic continuation from know
expressions for the two-point correlator of the spatial bou
ary Liouville theory@8,9#. We shall see that even this proc
dure is ambiguous: an infinite number of pairs of poles a
singularities accumulate at precisely the point we wish
continue to. We will adopt a simple~but not obviously
unique! prescription in which these poles and singularit
cancel one another and a finite answer is obtained for
two-point correlator.

A. Spacelike boundary Liouville theory

Spacelike boundary Liouville theory can be defined by
following action on the half plane:

SSBL5
1

2p E
S
~]f]̄f1pme2bf!1

l

2 E
]S

ebf. ~4.1!

Herem andl are the bulk and boundary cosmological co
stants respectively. The Liouville coupling constantb deter-
mines the background chargeQ5b11/b and the central
chargec5116Q2 of the theory. Boundary vertex operato
evf have conformal dimensionhv5v(Q2v). There are
two important quantities calculated by Fateev, Zamolo
chikov and Zamolodchikov@8# ~see also@9#!. First the bulk
one-point function

U~a!5~z2 z̄!2ha^e2aX~z,z̄!&

5
2

b
„pmg~b2!…~Q22a!/2bG~2ba2b2!

3GS 2a

b
2

1

b221D cosh„~Q22a!ps…, ~4.2!

where g(x)5G(x)/G(12x). Secondly the boundary two
point function
12600
e

g

-

L
e

g
p-

-

d
o

e

e

-

-

^ev1f~x!ev2f~0!&5
1

uxu2hv
„d~Q2v12v2!

1d~v12v2!d~v!…, ~4.3!

where

d~v!5„pmg~b2!b222b2
…

~Q22v!/2b

3
Gb~Q22v!

Gb~2v2Q!

1

Sb~v1 is!Sb~v2 is!Sb~v!2 .

~4.4!

Here Gb and Sb are special functions defined in@8# and
related to the Barnes double Gamma function@31# ~see the
Appendix for a collection of useful formulas!. The parameter
s is related to the coupling constants in Eq.~4.1! of the
theory in the following way:

cosh2~pbs!5
l2

4m
sin~pb2!. ~4.5!

Our current interest is the case for which the bulk cosm
logical constant is turned off. From Eq.~4.5! it follows that
asm→0 one has to takes→`:

lim
s→`

U~a!5
1

b S pl

G~12b2! D
~Q22a!/b

G~2ba2b2!

3GS 2a

b
2

1

b221D . ~4.6!

Using Eqs.~4.5! and ~A11! the two-point function has the
limit 12

lim
s→`

d~v![db~v!

5S plb12b2

G~12b2!
D ~Q22v!/b

Gb~Q22v!

Gb~2v2Q!

1

Sb~v!2 .

~4.7!

The SBL theory with interactionebf can ~at least formally!
be related to the TBL theory with interactioneX by taking
b→ i while f→2 iX. Note that in this limitQ→0, c→1
and one gets a free boson with vanishing background cha
Furthermore perturbative correlation functions are clea
identical for the two theories.

For the bulk one-point function~4.6! one finds

lim
b→ i

lim
s→`

U~a!5p~pl!2ia
1

sinh~2pa!
, ~4.8!

which ~up to normalization! agrees with Eq.~3.18! for a
5v.

12This formula appears in@7#, but apparently with a different
power of 2 in the normalization.
2-7
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B. Analytic continuation to timelike boundary Liouville theory

We wish to obtain the TBL two-point function from th
SBL two point function~4.4! by the analytic continuation

^e2 ivXe2 ivX&TBL[^evfevf&SBL,b5 i5di~v!. ~4.9!

This however is not as straightforward as it sounds. As s
in the appendix, the special functionsGb(z) and Sb(z) ap-
pearing in Eq. ~4.4! have poles and/or zeros atz5mb
1n/b for integerm andn. If we takeb→ i from the real axis
along the unit circle these poles or zeros are atz5(m
o

to

a
e

-
.

t
nc

-

12600
n

1n)Reb1(m2n)Im b, and an infinite number of them accu
mulate at every integer multiple ofi.13 For this reasonGb is
not defined forb5 i @31#.

However it turns out that if we look at the particula
ratio of special functions appearing indb(v) ~4.7!,
we shall see that the poles and singularit
accumulate in pairs and can be arranged to cancel
real v. This will enable us to give a prescriptio
defining db . Using recursion and product relation
from the Appendix, the ratio of special functions appeari
in db is
Gb~Q22v!

Gb~2v2Q!

1

Sb~v!2 5
Gb~Q22v!

Gb~2v2Q!

Gb~v!2

Gb~Q2v!2

5Yb~v!b2v/b22bv21/b21b2
GS 2v

b
2

1

b2DG~2vb212b2!GS 2
2v

b
11DG~22vb!

G2S 2
v

b
11DG2~2bv!

, ~4.10!
e-

-

n-

ary

xis

re-
al
t

m
cor-
where

Yb~v![
Gb~22v!

Gb~2v!

Gb~v!2

Gb~2v!2 . ~4.11!

Using the product representation~A10! one has simply

Y~v!5 )
m50

`

)
n50

` S 2v1V

22v1V D S 2v1V

v1V D 2

, ~4.12!

whereV5mb1n/b. It can be seen that the product is abs
lutely convergent for generic complexb.

We now wish to understand the behavior of this correla
for b→ i . We will takeb→ i by first going to the imaginary
axis, so thatb5 ib andQ5 i (b21/b) with b real, and then
taking b→1. Physically this corresponds to adding a re
timelike linear dilaton which alters the growth of th
tachyon. For pure imaginaryb, V is also pure imaginary, and
~for real v! the factors in Eq.~4.12! appear in complex con
jugate pairs. Hence for this caseY is formally a pure phase
In order to make a more precise statement and determine
phase we now introduce the integral form of the special fu
tions.

In @8# one finds the integral representation

ln Sb~x!5
1

2 E0

` dt

t F sinh~Q22x!t

sinh~bt!sinh~ t/b!
1

2x2Q

t G .
~4.13!

We take Imb.0, Reb.0 and 0,2x,Q with x real, which
implies convergence of Eq.~4.13!. Other values of the pa
-

r

l

he
-

rameters will be obtained by analytic continuation. By d
forming the integration contour, Eq.~4.13! may be rewritten

ln Sb~x!5I b~x!1Sb~x! ~4.14!

as the sum of an integralI b(x) over the positive imaginary
axis plus a sumSb(x) of simple pole residues att
5np i /b.14,15 ~The contribution from the quarter-circle at in
finity vanishes.! Defining t5 i t the integral is

I b~x!5
i

2 E0

` dt

t F sin„~2x2Q!t…

sin~bt!sin~t/b!
1

Q22x

t G . ~4.15!

For b→ ib with b real and positive, this reduces to the co
vergent expression

I ib~x!5
i

2 E0

` dt

t F sin„~2x2Q!t…

sinh~bt!sinh~t/b!
1

Q22x

t G .
~4.16!

For b→ i , this further reduces to

13This singularity may be related to the accumulation of bound
minimal models atc51 @4,13#.

14We might also have deformed to the negative imaginary a
which would have picked up the poles att52np ib and changed
the results below by the replacementb→1/b. One possibility is to
take half the sum of the two contours which would manifestly p
serve theb→1/b symmetry. However there is no change in the fin
formulas forb5 i , which is our main interest here, so we will no
further explore these alternate prescriptions.

15In the appendix of@4# it was suggested that the residue su
might be dropped in determining the correlators. That leads to
relators which are pure phases of constant magnitude.
2-8
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I i~x!5
i

2 E0

` dt

t Fsin~2xt!

sinh2~t!
2

2x

t G , ~4.17!

which contributes a pure phase toS. The sum over pole
residues is

Sb~x!5 (
n51

` ~2 !n sinS pn~Q22x!

b D
n sinS pn

b2 D
5 (

n51

`
1

n FcosS 2pnx

b D2cotS pn

b2 D sinS 2pnx

b D G .
~4.18!

In order to takeb→ ib in this expression, we define

1

b2 52
1

b2 1 i e, x52 iby, ~4.19!

wherey is real.16 The real part of the sum is then

Re@S ib,e#5 (
n51

`
1

n Fcosh~2pny!1sinh~2pny!

3ImFcotS np

b2 2np i e D G G . ~4.20!

We wish to takee→0 with y fixed, which takes us outsid
the radius of convergence of Eq.~4.20!. The problematic
terms for smalle are the ones that behave ase2pny(e22pny)
for positive ~negative! y, i.e., the first~second! term in the
expression

Re@S ib,e#5 (
n51

`
e2pny

2n F11ImFcotS np

b2 2np i e D G G
1 (

n51

`
e22pny

2n F12ImFcotS np

b2 2np i e D G G .
~4.21!

Whene→0, we will define the first~second! term for posi-
tive ~negative! real y by analytic continuation from negativ
~positive! real y. The resulting expression is related by an
lytic continuation to those obtained in theeÞ0 region where
the sum is convergent.

The dangerous-looking term in expression~4.21! for e
→0 can be rewritten

16For b on the imaginary axis, reality ofx and reality ofy are the
same thing. Keepingy rather thanx real forb off the imaginary axis
simplifies the calculations.
12600
-

ImFcotS np

b2 2np i e D G5
1

2

sinh~2npe!

sinh2~npe!1sin2S np

b2 D .

~4.22!

To define the limit we must takeb2 irrational so that
sin(np/b2) is nonzero for everyn. In that case, the sin2(np/b)
dominates over the sinh2(npe) term fore→0. Because of the
sinh(2npe) in the numerator every term in the sum vanish
for e50 and hence

lim
e→0

ImFcotS np

b2 2np i e D G50. ~4.23!

This leaves us with, fore→0,

Re@S ib#5 (
n51

`
e2pny

2n
1 (

n51

`
e22pny

2n
. ~4.24!

Using analytic continuation iny to define the sums, and re
storingx5by gives

Re@S ib#52 lnF2S sinh
px

b D G . ~4.25!

Although derived for irrationalb2, this result can obvi-
ously be smoothly extended back to the reals. Forb→1, the
integral ~4.17! is real, and Eq.~4.25! is the only real part of
ln Si . This then yields, forb→ i ,

Re ln@Si~x!#52 ln@2 sinh~px!#. ~4.26!

Now we consider the imaginary part of the sum. Here it
useful to considerb25q/p rational @with ~p, q! coprime#.
The imaginary part is then

Im@S ib,e#52 (
n51

`
1

n
sinh~2pny!ReFcotS np

p

q
2np i e D G ,

~4.27!

where

ReFcotS np
p

q
2np i e D G5

1

2

sinS 2npp

q D
sinh2~npe!1sin2S npp

q D .

~4.28!

Now we find that the terms withn a multiple of q vanish,
while the remaining terms are bounded but typically non
nishing fore→0. The sum is then fore50

Im@S ib#52 (
nÞmq

`
1

n
sinh~2pny!cotS np

p

qD . ~4.29!

Again we will define thee2pny terms by analytic continua
tion from negativey but for the sake of brevity we will not
bother to separate the two types of terms. Writingn5mq
1n0 , with n051,...(q21), Eq. ~4.29! may be rewritten
2-9
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Im@S ib#52 (
n051

q21

(
m50

` sinhX2p~mq1n0!
x

b C
mq1n0

cotS n0p
p

qD
5E

2x/b

x/b

dy
p

e22pqy21 (
n051

q21

cotS n0p
p

qDe22pn0y.

~4.30!

The integral has an unilluminating expression in terms
hypergeometric functions. Note that for the case of curr
interest b5 i , p5q51 and Eq. ~4.30! trivially vanishes.
Equation~4.30! is a finite expression which@together with
Eq. ~4.17!# defines the phase ofSb(x) for realx andb on the
imaginary axis. It is a smooth function ofx for any rational
b. It is easy to see, however,17 that it is not a smooth function
of b2: it varies chaotically over the rationals, and has
obvious extension to the reals.

Now let us consider the productY appearing in Eq.~4.12!.
This can be written in terms ofSb as

Yb~v!5
Sb~2v!

Sb
2~gq!

b

2p

G2S 12
v

b DG2~2bv!

GS 12
2v

b DG~22bv!

. ~4.31!

It then follows from Eqs.~4.17!, ~4.25! and ~4.30! that

Yi~v!52eiu~v!, ~4.32!

which is a pure phase in agreement with the naive expe
tion from the product formula~4.12!. The phase is deter
mined by Eq.~4.17! as

u52 i I i~2v!12i I i~v!5
1

2 E0

` dt

t

sin~4vt!22 sin~2vt!

sinh2~t!
.

~4.33!

Hence, our continuation prescription yields

di~v!5
~pl!2iveiu~v!

4 cosh2~pv!
. ~4.34!

This agrees asymptotically for largev with the minisuper-
space result for the string creation rate~2.18!.

It is interesting to consider the results of taking other co
tours from Reb.0 to b5 i . Consider for example takingb
→ i along the arcb5eiu for 0<u<p/2, which has realQ
52 cosu. In this case the phase ofY is smooth~in fact it
vanishes! but the magnitude fluctuates wildly as a function
v for u→p/2. This can be seen from the recursion relatio18

17For exampleq5p11 for largep does not approachq5p51.
18Physically the recursion formulas are derived by consider

insertions of degenerate operators.
12600
f
t

a-

-

Yb~v1Q!5
4~v1Q!

v UG~22bv!G2
„2b~v1Q!…

G„22b~v1Q!…G2~2bv!
U2

3ucot~pbv!sinpb~2v1Q!u2Yb~v!.

~4.35!

For b→ i , Q→0, and this reduces to

Yi~v10!516 cosh4~pv!Yi~v!. ~4.36!

Hence along this contour the two-point function does n
smoothly approach Eq.~4.34!, in accord with the genera
expectation that correlators atb5 i will depend on a contour
prescription.
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APPENDIX: PROPERTIES OF SPECIAL FUNCTIONS

The special functionGb was defined in@8# ~see also@11#!.
It obeys the recursion relations

Gb~x1b!5~2p!21/2b2bx11/2G~bx!Gb~x!,

GbS x1
1

bD5~2p!21/2bx/b21/2GS x

bDGb~x!. ~A1!

There exists an integral representation forGb(x), which is
valid for Re(x).0,

ln Gb~x!5E
0

` dt

t
S e2Qt/22e2xt

~12e2bt!~12e2t/b!

1

S Q

2
2xD 2

2
e2t1

Q

2
2x

t
D . ~A2!

Another useful special function is defined bySb(x)5Gb(Q
2x)/Gb(x) and satisfies the recursion relations

Sb~x1b!52 sin~pbx!Sb~x!,

SbS x1
1

bD52 sinS p
x

bDSb~x!,

Sb~x1Q!524 sin~pbx!sinS p
x

bDSb~x!, ~A3!g
2-10
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as well as

Sb~x!Sb~2x!52
1

4 sin~pbx!sinS p
x

bD . ~A4!

SinceQ5b11/b one can easily show by applying Eq.~A1!
twice that

Gb~x1Q!5
bx/b2bx11

2p
GS x

b
11DG~bx!Gb~x!,

Gb~x2Q!5
b2x/b1bx11/b22b2212p

GS x

b
2

1

b2DG~bx212b2!

Gb~x!.

~A5!

Gb(x) is related to the Barnes double Gamma funct
G2(xun1 ,n2) @31# in the following way:

Gb~z!5G2
21~zub,1/b!. ~A6!

The Barnes double Gamma function is related to the dou
Hurwitz function @31,32#

z2
8~xun1 ,n2!5 (

m,n.0
~nn11mn21x!2s, ~A7!
y

ys

l-

.

v,
d

,’’

12600
le

in the following way:

G2~xun1 ,n2!5expS ]

]s
z2

s~xun1 ,n2!us50D . ~A8!

It follows from Eqs. ~A7! and ~A8! that G2 has a product
representation

G2
21~zun1 ,n2!

5ez2/2g211zg22z)
m50

`

)
n50

` S 11
z

V De2z/V1z2/2V2
, ~A9!

whereV5mn11nn2 and g21, g11 are functions ofn1 , n2
but not z which can be found in@31#. It follows from Eq.
~A9! that

Gb~2z!

Gb~z!
52e12zg22)

m50

`

)
n50

` S z1V

2z1V De22z/V.

~A10!

In the limit x→` with 6Im(x).0 one finds@31,32#

ln„Sb~x!…56 ipXx2

2
2

Qx

2
2

1

2 S b21
1

b2 12D C1oS 1

xD .

~A11!
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