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The timelike boundary Liouvilléd TBL) conformal field theory consisting of a negative norm boson with an
exponential boundary interaction is considered. TBL theory and its close cousin, a positive norm boson with a
non-Hermitian boundary interaction, arise in the description ofcthd accumulation point of<1 minimal
models, as the worldsheet description of open string tachyon condensation in string theory and in scaling limits
of superconductors with line defects. Bulk correlators are shown to be exactly soluble. In contrast, due to OPE
singularities near the boundary interaction, the computation of boundary correlators is a challenging problem
which we address but do not fully solve. Analytic continuation from the known correlators of spatial boundary
Liouville to TBL theory encounters an infinite accumulation of poles and zeros. A particular contour prescrip-
tion is proposed which cancels the poles against the zeros in the boundary cod@gtaf two operators of
weight »? and yields a finite result. A general relation is proposed between two-point CFT correlators and
stringy Bogolubov coefficients, according to which the magnitudd(af) determines the rate of open string
pair creation during tachyon condensation. The rate so obtained agrees atlarijle a minisuperspace
analysis of previous work. It is suggested that the mathematical ambiguity arising in the prescription for
analytic continuation of the correlators corresponds to the physical ambiguity in the choice of open string
modes and vacua in a time dependent background.

DOI: 10.1103/PhysRevD.67.126002 PACS nuniderll.25.Hf

[. INTRODUCTION detail? However it is a close cousin of several theories which
have been well-studied. Analytically continuing—i¢ we
In this paper we study the two-dimensional conformalobtain a free positive-norm boson with a non-Hermitian
field theory described by a=1 negative norm boson with boundary interactiof3,4]
an exponential interaction on the boundary. The action is

1 — A .
1 — A SNH:z_f a¢a¢+§f e'?. (1.9
STBLz——f axax+—J eX. (1.2 ™I 3
2w Js 2 )
This can be viewed as “half” the boundary sine-Gordon
We will refer to this as the TBL(timelike boundary Liou- theory (with a marginal boundary interactip5—7], which

ville) theory. Because of the “wrong” sign in front of the has ane'?+\e”'¢ boundary interaction. The correlators of
kinetic term in Eq.(1.1), the X correlator on the upper half TBL theory are hence formally related to those following

plane i¢ from Eq.(1.4). However since Eq.1.4) has a non-Hermitian
interaction, its correlators are also not unambiguously de-
(X(z,)X(W,W))=In|z—w]|+In|]z—W], (1.2  fined.

Generalizing the coefficient of the exponent in Eb.4),
and improving the stress tensor so that the interaction re-
Mmains marginal, we obtain the ordinary spacelike boundary
Liouville (SBL) theory:

and the boundary interaction is marginal. This wrong sig
also implies that the functional integral

_ 1 — A
f DXe™ SaL (1.3 SSBL:ELMmﬁJrELEeW. (1.5

is not well-defined. In order to define the theory, we will This theory has been studied for generic real valuds @he
need to specify some kind of analytic continuation proce-two-point boundary correlators have been explicitly obtained
dure. in [8,9], the bulk-boundary correlators are[it0], an integral
TBL theory has not been previously studied in muchform of the three-point boundary correlators has been given
in [11], and supersymmetric correlators arg 12]. We shalll

*On leave of absence from Dept. of Physics and Astronomy;,

UCLA, Los Angeles, CA. A minisuperspace analysis appeared[ii. Certain bulk one-
'Here and in the rest of the paper we haveset 1. point functions were recently computed i@
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see that the analytic continuatidn—i from Seg, (1.5 to  for defining the TBL two-point correlators by analytic con-
tinuation gives a result in agreement with the minisuperspace

papproximation at high energies. This connection further sug-
gests that the mathematical ambiguity in the correlator cor-
responds physically to the ambiguity in the choice of a

c=1 accumglau_on point OT _m|n|mal_ mode[si,_l?:]. In this vacuum state and modes for open strings during the time-
paper we will give a specific, physically-motivatéuh the dependent process of tachyon condensation.

context of string theory proposal for continuing the two- We wish to stress that we regard this work as a prelimi-
point boundary co_rrelator to TBL theory. The prescription nary step in defining the TBL CFT. We have not given a
involves approaching the TBL theory throughkcl theories  procedure for defining the boundary three-point function

encountered previously while studying the roleSpf; in the

with a linear dilaton. . o ~ (known only in integral form for the spacelike caser veri-
Yet another related theory is the timelike boundary sinefied that our prescription yields correlators obeying the prop-
Gordon theory erties of a CFT. Indeed since the TBL theory is not unitary it

is not clear what those properties should be. Further, we feel
1 o there is some hidden “meaning” in theaccumulation of
Stese= — —f axax+f (A_e X+n,€5). (1.6 singularities which we have not fathomed. We regard all of
2m Js % these as interesting problems for future investigation. Since
tachyon condensation is an allowed process in string theory
The boundary state for this theory was found by analytiowe believe that, despite the apparently singular behavior of
continuation from the spacelike case[i¥,15, in the con-  the TBL theory, a well-defined set of correlators should exist.
text of string theory, where some cases describe-hrane An intriguing feature of our continuation prescription to
[16]. Aspects of closed string emission were computed inTBL theory is the following. As mentioned above, an inter-
[17—-20. We expect the boundary correlators for this theory,mediate step involves<1 timelike linear dilaton theories,
which have not been computed, to be more intricate due t@hich are of interest in their own right. The proposed pre-
the extra interaction term. A further complication is that therescription determines the norm of the boundary correlator
is no “free” region atX— —o in which the (open string |d(w_)| for all real values of the dilaton. Interestingly, as
spectrum can be easily understood. However the extra intef€tailed in Sec. IVB, the phase [nd(w)] is determined
action term could also simplify matters by controlling diver- Only for “rational” values of the dilaton, and does not have a
gences and leading to a hermitian actionXer i ¢. We will smoolth extension to rea_l values.
not consider this interesting theory further in the present _T_h|s paper 1S °f9af?'zed as follows. _In Sec. 1A the
paper’ minisuperspace an_aly5|s of 'I_'BL theory in the context of
The theories described by the actidhg, andSyy are of string theory is r_ev-|ewed. Wh”e the Val.'d't.y of the_mmlsu—
interest in a number of contexts. In string the&y, is the perspace analysis IS natpriori obvious, It gives us mval_u-
worldsheet action describing time-dependent open  strin ble clues as to which operators to consider and what kind of
tachyon condensatiofil,14,16. This can equivalently be henomena_to expect. In Sec. IIB a general relation be_tween
viewed as unstable D-brane decay or the future half of ar FT two-point fur_lctlons and stringy Bogolubov_ coefficients
sbrane. This relation will be further discussed in Sec. II." proposed. Section Il describes the computation of correla-

Non-Hermitian boundary interactions of the general varietytorS of bulk operators, and explicitly works out the one and

Sy (1.4) are realized in a variety of condensed matter sysWO-POINt functions as well as the boundary state. In Sec.

tems [22]. Syy itself arises in the infrared limit of a 2D IVA we review the crucial results of8] on the boundary

superconductor with a magnetic field and a line defect whic{Vo-PoInt function for ordinary boundary Liouville theory

are not paralle[23]. The non-Hermiticity corresponds to a \(,JVSrIChr:ac?sgl ngfccillr]kt?ngﬁlsort]ﬁi??vigy Igiriefﬁ.nlcvticl)an\,\tlg _?Etf”
lack of reflection symmetry across the defect. Finally Eq Prop 9 P

(1.4) is related to the=1 theory obtained as the accumula-.theory' This involves contours for analytic continuation of

- . . y . the background chargée., a timelike linear dilatonand ,

tion point of thec<1 unitary boundary minimal models, all e ; . .

of which it in a sense containg,13]. This highlights the as well as a prescription to sum a certain series of residues

nontrivial nature of this conforma{l fiéld theofCFT) after the analytic continuation. The final result for the mag-
As noted above, the TBL theory is not weII-defi'ned With- nitude gives agreement at high energies with the minisuper-

out some kind of additional prescription. This prescriptionSpace computation of the open string creation rate. Properties

should be dictated by, and may depend on, the physical cor?—f some special functions appearing in the expressions for

text in which the theory arises. In the context of string correlators are given in an Appendix.
theory, we shall argue that the two-point correlator gives Il. TBL AND STRING THEORY
stringy Bogolubov coefficients describing quantum open
string creation during tachyon condensation. The creation TBL theory is the worldsheet description of a time depen-
rate depends only on the magnitude of the two-point funcdent process in which the open string tachyon figtdeX”
tion, which was computed in the minisuperspace approxima-
tion to TBL theory in[1]. We find that a natural prescription
“4It would be interesting to understand the physical origin or reso-
lution of these ambiguities in the superconductor con{ed],
3A minisuperspace analysis will appear[®i]. where to date largely bulk quantities have been considered.
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starts at its unstable minimum in the infinite pa%f=—o  The in and out modes are related by the Bogolubov transfor-

and then rolls to an infinite value in the far futuk®= mation

+0o0. Such processes have been discussdd,it¥,16. This out - s
may equivalently be described as the decay of an unstable s =aps+ B,
brane or the future half of as-brane (which consists of )

creation of an unstable brane followed by its dgcay l//'SZaE l//gm— ﬁ,st//gué* ,

A. Minisuperspace review Tle

o o ag= —I'(1+2iw)e™,
The minisuperspace approximation to TBL theory was de- 7w
scribed in[1] and will be reviewed in this subsection. While
the validity of this approximation is na priori obvious, it e
nevertheless provides invaluable clues as to what to look for Bp=— —I(1-2iw)e ",

in the exact treatment. 4mi o

TheL,=0 constraint on the open string worldsheet for a
half s-brane becomes a Scliinger equation for the open
string wave function$1]®

(2.6)
which obeyagaj — B85 =1 as required. Expanding

2

_ in_in ink _inty _ out_ out outk _ outt
N4 N=14p2| p(X)=0. 2.1 (D_zﬁ (Vpas*¥p 35 )_Eﬁ (Vg +d5as ).
X (2.7
Here_ we abbreviate the _timelike c_oordinat% asX, pisthe  ihe in vacuum becomes
spatial momentum ani is the oscillator level number. The
solutions to this are Bessel functions _ _
lim =11 (1-|7a) e M2 yiag™?louy,
. )\i(u . p
— ; : 2.8
Yp=—==T(1-2iw)e? XI5 ,(2\Ne ), (
V2
¢ where
w=\N—1+p? (2.2 B
in_"P _ . -270
and their complex conjugates. In the far past this solution @ ag e ' (2.9

approaches a positive frequency plane wave
where w and p are related by Eq(2.2). The in vacuum is

« S . annihilated by ag‘=aﬁag”t+ B a‘i“g. Relation (2.8) ex-
- Yo \/Ze : 23 presses the fact that if there are no incoming particleX at

— —oo, there will necessarily be outgoing particles Xt
In the far futureX—oo, —o. a and B can be changed by phase redefinitions of the
modes, but the total string creation for a mode with fre-
quencyw is characterized birys|. Similarly the out vacuum

N (1-2iw)
e

in —XIA+ip-X —2i \NeX2+i(ml4 ) ! X
v5— 87w PrX(gme 2T is an excited state of the in vacuum
_ L aXI2_ .
e T rARE ), 2.4 loup=T] (1-]721)¥e” 23 y2%(all")2lin),
. P
We see that the incoming modeg' contain both negative (2.10

and positive frequency parts in the far future. This indicate§Nhere
open string pair creation. Normalized outgoing positive fre-

guency modes are Hankel functions y BE )\‘2“"1“(1+2i o) . s
0w *x T T/ _o..5 . .
lpOUt: \/Ee—waﬁiﬁ-iH(Z) (2\/XEX/2) ag I'l-2iw)
p 2i —2iw

The magnitude of this result will be reproduced for lawge

\ L4 in our CFT analysis of TBL theory.

—X/4—2i NeX2+ip . X
L

— e X—o0, (2.5

V2 B. Two-point function as stringy Bogolubov coefficient
We would like to improve on the minisuperspace analysis
%In classical string theory the tachyon can be perched indefiniteh@nd obtain exact CFT results. Our first order of business is to
at its unstable minimum without being pushed off by quantum fluc-understand what correlator or other quantity in the CFT de-
tuations. termines the open string production rate. In order to under-
®In our conventionsy’ =1. stand this, we first review certain aspects of the spacelike
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—1i, Q—0 which will be detailed below. Then in the free
iwX

regione’®?—e'“X  and the wave function behaves as

X——ow, W (X)—e '“Y+di(w)e'X, (2.19

where the appropriately continued reflection coefficient

R(p) ¢ PO

di(w)=(e '*Xe Xy g (2.19

is no longer necessarily a pure phase. In the strong coupling

e region, the potential is now negative relative to the kinetic
WWV/\/\/\(V\/V\/\\NWN‘\Q\NI\MQ term, and the wave function behaves as expY)
~exp(*ie®?) [as indicated in the minisuperspace result
(2.4)]. In the spacelike case, there are also two possible ex-
ponential behaviorggrowth and decaybut normalizability
singles out the decaying mode. Hence analytic continuation
from SBL to TBL theory yields a wave function with only
one of the two asymptotic behaviors, as opposed to a general
0 admixture. Let us choose our prescription so that this is the
positive frequency outgoing wave. Then we may interpret
Eqg. (2.19 as the linear combination of incoming waves that
produces a purely positive frequency outgoing wave. Com-
paring with Eq.(2.6) we then see that the two-point function

is a ratio of Bogolubov coefficients
FIG. 1. (a) Reflection amplitude for spacelike boundary Liou- 9

ville theory and (b) analytically continued amplitude for TBL

theory. Bo

di(w)z—. (217)
aw
boundary Liouville(SBL) theory with action(1.5). Quantum
states can be described as an incoming wel®# from the
free region ¢— — which reflects off the exponential
~eb?¢ potential and returns as an outgoing wave
dp(p)e "P?, where the reflection coefficiend,(p) is a
phase. The state then has the zero mode dependence in th
free region

The string pair production rate is determined by the magni-
tude ofd. In the minisuperspace approximation

|di(w)|=e"27". (218

eThere is another way of understanding the relat@47).
Mathematically, correlators in TBL theory are not unique
because one must specify an analytic continuation procedure.
Physically they are not unique because one must specify the
Under the barrier, roughly speaking the WKB wave functionVacuum state in a time-dependent background. As discussed
(for normalizable statesdies exponentially as exp(/V) above, ana_lytlc continuation _from SBL to TBL theory most
~exp(—€°#?), though of course the theory is strongly naturally_ gives correlators in the out vacuum. The out
coupled in this region so that statement is heuristic. AccordY2cUuUm is represented as an excited state of the in vacuum in

ing to the operator state correspondence, the reflection coe‘?—x.p_reSSiO'(Z'm' One th_en easily finds that, [n thislstate, .the
ficient is given by minisuperspace S-matrix for scattering two incoming strings

to zero outgoing strings is given by

p——», Vi (p)—e PRy (—ip)ePl. (2.12

- Out*=@:di(w). (219
(2%

w

whereQ=b+1/b and'the two-point boundary correlator on yence one may interpret the two point functiéh16 as
the upper half plane is giving this S-matrix element.

It is natural to conjecture that this relationship extends
beyond the example discussed here. More generally we ex-
pect that the disk or sphere two-point function for open or
closed strings in a time dependent background gives the
stringy Bogolubov coefficients.

Now we turn to computation of the CFT correlators.

Rb(—ip)=db(§—ip) (2.13

w

dp(@)=(e*?e*®)gp, , (2.14

where the insertions are a0 andz=1. This is illustrated
in Fig. 1(a).

Let us now consider analytic continuatign— —iX from
SBL to TBL, so thatX is now a timelike target space coor-
dinate, andp—iw, as shown in Fig. (b). There is also an
analytic continuation of the screening charge such that ’SinceQ—0 we need not distinguish betwe®&y andd, here.
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lll. BULK CORRELATORS

The TBL theory is a boundary deformation of a free time-

like boson on the upper half plane

= 1fx_x+)‘J X 3.1
SreL= 5253 Eﬁze' 3.9

A correlator involvingn closed string vertices aneh open
string vertices is formally given by the path integral

n m
A= < H eBfiX(z Z)H eij(Xj)>
=1 =1

n m
= f DXe S[[ efX@ ] e, (3.2
i=1 j=1

where x; is a point on the real axis. FollowinfR4], we

decomposeX=q+ X whereq is the zero mode oK. Then
the q integral can be done exactly, yielding

PHYSICAL REVIEW D 67, 126002 (2003

which obey
. . 2j3(w)
j-(2)j+(w)~ Z=w? (z=w)
. . j+ (W)
ja(2)] ()~ = 35

Note however that in the standard norm for a timelike boson
X, j3 is anti-Hermitian whilej = are both Hermitian. Never-
theless the charges

B dz

Je= Qo)

dz
(2)1 ‘J3: §ﬁ13(2), (36)

obey the usual commutation relations

[J—!‘]+]:_2J31 [‘]3!Ji]:i‘]t (37)

and are therefore useful for computing correlators. To exploit
this we note that the TBL boundary interaction is simply

(3.8

A

—f dreX=im\J".
2 Jss

n

I1

i=1

m

R | PSR
j=1

el
A fore]

where s=—-318;—="y;. For integers, I'(—s) has a . v
PP ' nx

simple pole and the residue is given by the integral over thé ﬁ??j?sitrlggc\;eugzxo(f)lﬁ(r)?rtgnturlnniirr:zgr\all;igi iﬁgte;rﬁfj?‘ba-

nonzero modes, which can be evaluated using the free field : P

correlation function on the half plane with Neumann bound—t've contr|_but|on IS given Py the insertion of Liouville
boundary interaction terms:

ary conditions(A useful reference for the resulting integrals .
)\ n
nX(ZyE»TBL:(E) <enx(2251_[ f dXiex(Xi)>
i=1

Correlators may then be evaluated by, e.g., deforming the
contour into the upper half plane and letting it act on the
operator insertions as {5].°

(3.3

free A. One-point function

In this section we calculate the one-point function of the

is [25].) The general correlator is then obtained by analytic
continuation ins. However, since the residues can be pertur- (e
batively evaluated only for integex and analytic continua-

tion from the integers in not unique, the final answer must be
checked using various consistency conditions such as factor-
ization, crossing symmetry, etc. This technique was used in
the calculation of the three point function for the bulk Liou-
ville theory[26,27].

This procedure however is a bit problematic for open
string correlators because of singularities when the boundary
operator and interaction insertions coincide. A prescription
must be specified for dealing with these correlators. Ulti-
mately we believe that this corresponds to the ambiguity in
the choice of open string vacuum, to which closed string
correlators on the disk are insensitive.

Rather than directly computing the integrals in E8}.3), o
bulk correlators of the forni3.2) may alternately be evalu- Where the third line of the upper half plane was mapped to
ated using contour deformation. TBL theory has a level ondhe disk, which- mapped the integrations to the well known

SU(2) current algebra generated®by Dyson-gas form. The perturbative res®.9) can now be
used to determine the general form of the bulk one-point

A\ A
5] 2L [ axIT ox
i=1 <]
n
X[ |z=x| "[z=x| ™"
i=1

dy, s
-1

s
=1 Uj i<j

{3

|Ui_Uj|2
1

= |z—E[—“2’2( %) (2m)"T'(n+1), (3.9

1 . . . . . .
i.(2)=e7X?, jy(2)= E&X(z), (3.4) function by analytical continuation using E.3):

SLife is not so simple with boundary insertions because one must

8In our conventions X(z,Z)=1/2(X(2) +X(2)), X(z)X(w) specify the contour prescription near the boundary operator inser-

~21In(z-w) anda’'=1. tion.
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(ePX(2,2))reL=|2—2 2"8(\) T (B)T(1- B)
Byra=3 z

0 e 271 (3.16

=[z=2] "2 e(m\) P (3.10

sin . . .
! B Following a related dlscu55|on 4], the component of

tinued Vla,8—>—|a) glvmg lator modes can be obtalned by settimg-j:*
—iwX —|y_S[-2h, P 1 _ L
(3.11)
B. Boundary states :nzo (—a\)"e0)= mm). (3.17

The collection of all bulk one-point functions can be rep-
resented by a boundary state. The boundary $Bitgsc for  This result agrees with the appropriate limit of the more gen-
the boundary Sine-Gordon theory eral boundary state found ji4]. Although every term in the
second line of Eq(3.17) diverges at late times the resummed
1 _ 1 o expression is well behaved, in particular there exists a Fou-
S= oy L&qﬁ&qﬂ > Jﬁz()\e'cﬁﬂxe"q’) (3.12 rier transform which gives the closed string one-point func-
tion

was found using the bulBU(2) current algebra if5] (see o X v
also [6,28—3(). For a non-compact boson one ham to (e”%|B)=constX (m\) SN 2ma)’ (3.18
normalization

in agreement with Eq3.1D).

j
|B>BSG:; m;j Dh,m(g()\,)\))n;m,m)). (3.13 C. N-point correlators

Perturbative correlation functions involving only bulk
Here [j;m,m)) is the Ishibashi state associated with thevertex operators can be easily evaluated using contour defor-
SU(2) primary field|j;m,m). Dm m(9) is the spinj repre-  mation techniques. For example the two-point functtis
sentation of thesU(2) rotation given by

Ao(j1,j2)=(e 21%(z;,77)e742X(2,,7) )1,

Si N
cog 7|\|) )\M BN PNt E g b 1
_ — I\ =(2qi)201ti2| — [
g\ N) =g TN = sinA)) . 2 2(j1+]2)!
IYT C05(7T|)\|) ) ) ) )
(3.14 x| e 1X(z)e 11X (zy)e 12X (z,)e712X(7y)
Reality of the boundary interaction demands thaind\ are 2(j1+i2) dx
complex conjugates. Sdri4,15 observed that an analytic X Hl 2 e (X))
continuation p— —iX° produces an exact time dependent =
open string background. S (n)20ati)
It was pointed out i3] (and at intermediate stages of the =(2mi)? ’1+'2>(
calculations in5]) that the boundary states can also be con- A A . .
structed forge SL(2,C), and in particular we can sat=0 x (e 11X(zy)et11X(z))e 12X (z,)e"12%(7;))
to obtain the non-Hermitian theory whose actigg, is in 21 +i)
Eq. (1.4). The unitary rotation matrix3.14 becomes a rais- :(2’7Ti)2(j1+12)(—) |Zl_71|—1'f/2| z,
ing operator. The boundary state becomes simply 2

] .
|B>NH=2 2 (J;—mm)(i ﬂ_)\)Zm“ ‘m,m). (3.19 0as inl [14] there are gxtra phas¢§_appearing inj;j,j) which
] m=0 can be fixed by demanding that the=\ = 1/2 state corresponds to
an array of DO-branes.
Inspection of theSU(2) currents3.4) of TBL theory reveals 1oy notation, we do not include the integration over the zero
that under ¢——iX% J—J and hence |j;mm)  mode in the correlatoh defined in Eq(3.2) and denote the ampli-
—|j;m,m). Therefore we may also write tude A.
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2 . I
—25| 12?2y~ 25|02 2, 75| Tz, (3.19 01600 gozd(0)y T i
(e"1?e ) X[ ~(3(Q— w1~ w,)
In the second line the bulk vertex operators on the half plane + (w1 — wy)d(w)), (4.3

where split into holomorphic and antiholomorphic parts on
the plane using the doubling trick. Then the contours alongvhere
the real axis were pulled off the lower half plane and the

SU(2) algebra (3.7 was used to turne 1iX(z) into d(w)z(Wﬁy(bZ)b2*2b2)<Q72w)/zb

e*1i*X(z). Note that all combinatorial factors cancel in the

end. It is straightforward to generalize the contour deforma- Gp(Q—2w) 1

tion techniques to evaluate bulNepoint functions. Hence as Gp(2w0—Q) Sy(w+iS)S,(w—iS)Sp(w)?"

far as the bulk correlation functions are concerned the TBL (4.4
theory is very simple. We shall see that this is not the case '

for correlation functions involving boundary vertex opera- Here G, and S, are special functions defined {8] and
tors. related to the Barnes double Gamma functi8d] (see the
Appendix for a collection of useful formulasThe parameter
s is related to the coupling constants in B¢.1) of the
theory in the following way:

As mentioned above, the simple methods for computing
bulk correlators encounter ambiguous singularities when ap-
plied to boundary correlators. In this section we will define
the two-point correlator by analytic continuation from known
expressions for the two-point correlator of the spatial bound- Our current interest is the case for which the bulk cosmo-
ary Liouville theory[8,9]. We shall see that even this proce- logical constant is turned off. From E@.5) it follows that
dure is ambiguous: an infinite number of pairs of poles andsu— 0 one has to takg—:
singularities accumulate at precisely the point we wish to

IV. BOUNDARY CORRELATORS

2

cost(mhs)= A}:—Msin( wb?). (4.5

continue to. We will adopt a simplébut not obviously IimU(a)=£< \ )(Q Za)/bF(Zba—bz)
unique prescription in which these poles and singularities R b\I'(1-b?)

cancel one another and a finite answer is obtained for the

two-point correlator. T 2 1 ) 46

A. Spacelike boundary Liouville theory Using Egs.(4.5 and (Al1l) the two-point function has the

Spacelike boundary Liouville theory can be defined by thdimit?
following action on the half plane:
lim d(w)=dy(w)

S—®

1 — A
SSBL:ZL(&MWWGMHEfﬁzew' 4.2

_(mbl—bz)“?2“)’bi(Q—2w) 1

: T'(1-b?) Gp(20—Q) Sp(w)*’
Here u and A are the bulk and boundary cosmological con-
stants respectively. The Liouville coupling constandeter- (4.7)
mines the background charge=b+1/b and the central

— 2
chargec=1+6Q" of the theory. Boundary vertex operators be related to the TBL theory with interactia® by taking

qu . . — _
e“? have conformal dimensioh,=w(Q— w). There are b—i while ¢— —iX. Note that in this limitQ—0, c—1

two important quantities calculated by Fateev, Zamolod- . o
chikov and Zamolodchikoy8] (see alsq)). First the bulk and one gets a free boson with vanishing background charge.

one-point function Furthermore perturbative correlation functions are clearly
P identical for the two theories.
For the bulk one-point functiofd.6) one finds

The SBL theory with interactioe®® can (at least formally

U(a)=(z—2)*"«(e?**X(2,2))

lim limU(a)=m(7\)%

2 — 4.9
= B(mw(bz))(Q_za)/ZbF(Zba—b2) bosi o sinh(27a)

20 1 which (up to normalizatiop agrees with Eq(3.18 for «
XF(F—F—l)COSI’((Q—Za)WS), (4.2 =w.

where y(x) =T'(x)/T(1—x). Secondly the boundary two- '?This formula appears ifi7], but apparently with a different
point function power of 2 in the normalization.
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B. Analytic continuation to timelike boundary Liouville theory +n)Reb+(m—n)imb, and an infinite number of them accu-

We wish to obtain the TBL two-point function from the mulate at every integer multiple f® For this reasor,, is

: : : : . not defined forb=i [31].
SBL two point function(4.4) by the analytic continuation However it turns out that if we look at the particular

(e71oXem1oXy o =(e“%eP) g p_i=di(w). (4.9 ratio of special functions appearing in,(w) (4.7),
we shall see that the poles and singularities
This however is not as straightforward as it sounds. As seeaccumulate in pairs and can be arranged to cancel for
in the appendix, the special functio®,(z) and Sy(z) ap- real w. This will enable us to give a prescription
pearing in Eq.(4.4 have poles and/or zeros a=mb  defining d,. Using recursion and product relations
+n/b for integermandn. If we takeb—i from the real axis from the Appendix, the ratio of special functions appearing
along the unit circle these poles or zeros arezat(m indy is

Gp(Q-2w) 1  GyQ-2w) Gy(w)?
Gp(20—Q) Sy(w)?  Gp(20—Q) Gp(Q—w)?

20 1 2w
F(T_ F)F(Zwb—l—bz)r( - T-ﬁ- 1|T'(—2wb)
:Yb(w)wa/b—wa—1/b2+b2 (410)
FZ( - %+1)r2(—bw)
|
where rameters will be obtained by analytic continuation. By de-
forming the integration contour, E¢4.13 may be rewritten
_Gu(—20) Gyw)® In Sy(X) =1 5(X) + S4(X) (4.14
Yp(w)= Go(20) Gy—w)?" (4.1 b b )
as the sum of an integra},(x) over the positive imaginary
Using the product representati¢h10) one has simply axis plus a sumXy(x) of simple pole residues at

=ni/b.**®(The contribution from the quarter-circle at in-
finity vanishes. Definingt=ir the integral is

sin((2x—Q)7) Q—2x
sinbr)sin(7/b)

2w+ 2

o= I 505

—wt+Q
o+

. (412 (- dr
f . (4.19

|b(X):§ .

T

whereQ)=mb+n/b. It can be seen that the product is abso-
lutely convergent for generic compléx
We now wish to understand the behavior of this correlato

For b—ipB with B real and positive, this reduces to the con-
vergent expression

for b—i. We will takeb—i by first going to the imaginary i (=d in((2x— 2
axis, so thab=iB andQ=i(B8—1/B) with B real, and then lig(x)= I—f = .sm(( X , Q)7) + Q- 2x )
taking B8— 1. Physically this corresponds to adding a real 2 Jo 7 |sinh(Br)sinh /) T

timelike linear dilaton which alters the growth of the (4.16
tachyon. For pure imaginaty, ) is also pure imaginary, and
(for real w) the factors in Eq(4.12 appear in complex con-
jugate pairs. Hence for this ca¥es formally a pure phase.
In order to make a more precise statement and determine the

phase we now introduce the integral form of the special func- 3This singularity may be related to the accumulation of boundary
tions minimal models at=1 [4,13].

In[8 finds the int | tati wWe might also have deformed to the negative imaginary axis
n [8] one finds the integral representation which would have picked up the polestat —nsib and changed
the results below by the replacemdnt: 1/b. One possibility is to
sinh(Q—2x)t 2x—Q take half the sum of the two contours which would manifestly pre-
sinh(bt)sinh(t/b) t . serve thebh— l/b.symmetr.y. Howevgr t.here is no change in the final
formulas forb=i, which is our main interest here, so we will not
(4.13 A
further explore these alternate prescriptions.
_ ) n the appendix of4] it was suggested that the residue sum
We take Imb>0, Reb>0 and 0<2x<Q with x real, which  might be dropped in determining the correlators. That leads to cor-
implies convergence of Eq4.13. Other values of the pa- relators which are pure phases of constant magnitude.

For b—1i, this further reduces to

1 [~dt
|nSb(X):§ OT
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_i =d7|sin(2xT) 2X
=5 | e ) @0

which contributes a pure phase ® The sum over pole
residues is

(-rsin| 22

2mnx mn\ [ 2mnX
co b —Cco Fsm b .

(4.18

In order to takeéb—i B in this expression, we define

1 1 :
EZZ—EZ‘FIG, x=—iby,

(4.19

wherey is real!® The real part of the sum is then

o0

1
RES g =2 —

n=1

cosi2mny)+sinh(27ny)

XIm

. (4.20

[(nﬂ' )
cotl ——nrie
B

We wish to takee— 0 with y fixed, which takes us outside
the radius of convergence of E®.20. The problematic
terms for smalle are the ones that behave &§"Y(e™2™)
for positive (negative vy, i.e., the first(second term in the

expression
* 2mny nw .
Re[2i5,6]=n§1 o 1+1Im cot(Ez—nme)H
* efzﬂ-ny

+2

n=1

1—Im

n .
on Cco ?—n’ﬂle

(4.21

When e— 0, we will define the firs{second term for posi-
tive (negative realy by analytic continuation from negative

PHYSICAL REVIEW D 67, 126002 (2003

sinh(2nre)
Im

1
T2

{7 e
COl —»—Nmle
A sinr?(nwe)JrsinZ(n—Z)

(4.22

To define the limit we must take8? irrational so that
sin(nm/B°) is nonzero for every. In that case, the sith/B)
dominates over the siAfnme) term fore— 0. Because of the
sinh(Zhmre) in the numerator every term in the sum vanishes
for e=0 and hence

. n7T .
lim Im CO[(T—MTIG) =0. (4.23
e—0 IB
This leaves us with, foe—0,
* eZTrny 6727-rny
RAYipl= 2 -+ 2 —5n (4.24

Using analytic continuation iy to define the sums, and re-
storingx= By gives

2| )
sin B

Although derived for irrationaj3?, this result can obvi-
ously be smoothly extended back to the reals. Fer1, the
integral (4.17) is real, and Eq(4.25 is the only real part of
In§. This then yields, fob—1,

Re Il Si(x)]=—In[2 sinH 7x)]. (4.26

Now we consider the imaginary part of the sum. Here it is
useful to conside?=q/p rational [with (p, g coprimg.
The imaginary part is then

RS 5]=—In : (4.29

o

Im[EiB,€]=—ZlHlsinr(ZWny)R%cot(nwg—nwie) ,
(4.27
where
) (2npw>
sin
p 1 q
Re{cot(nw——nme) =3 npa
a sinhz(mre)+sin2(T)
(4.28

Now we find that the terms witlh a multiple of g vanish,

(positive) realy. The resulting expression is related by ana-While the remaining terms are bounded but typically nonva-

lytic continuation to those obtained in tlee= 0 region where
the sum is convergent.

The dangerous-looking term in expressi@gh21) for e
—0 can be rewritten

18For b on the imaginary axis, reality of and reality ofy are the
same thing. Keeping rather tharx real forb off the imaginary axis
simplifies the calculations.

nishing fore—0. The sum is then foe=0

o

oy 1 p
Im[35]= n;mqnsmr‘(ZWny)cot(an). (4.29

Again we will define thee?™ terms by analytic continua-
tion from negativey but for the sake of brevity we will not
bother to separate the two types of terms. Writimg mq
+ng, with ng=1,...(q—1), Eq.(4.29 may be rewritten
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i X
sml-(27-r(mq+no)E)Co< p)

n —
ma-+ng o7 Y

q-1 =

IMSigl=— > >

ng=1 m=0

-1
xIB m d p

= dY —mgv— cot(n W-) 672wn0y_

Jx/B ye 2»rrqy_1nO§=:1 0 q

(4.30

PHYSICAL REVIEW D67, 126002 (2003
4(w+Q)|T(—2bw)I*(~b(w+Q))|?
T'(—2b(w+Q))I'(—bw)|
X |cot( mbhw)sinTb(2w+ Q)|?Yy(w).
(4.35

Yp(w+Q)=

Forb—i, Q—0, and this reduces to

Yi(w+0)=16 cosh(mw)Y;(w). (4.36

The integral has an unilluminating expression in terms Ofyyence along this contour the two-point function does not
hypergeometric functions. Note that for the case of currengmootmy approach Eg4.34), in accord with the general

interestb=i, p=g=1 and Eq.(4.30 trivially vanishes.
Equation(4.30 is a finite expression whicftogether with
Eq. (4.17)] defines the phase &,(x) for realx andb on the
imaginary axis. It is a smooth function affor any rational
b. It is easy to see, howevétthat it is not a smooth function

expectation that correlators lat=i will depend on a contour
prescription.
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APPENDIX: PROPERTIES OF SPECIAL FUNCTIONS

The special functiois,, was defined i8] (see als¢11]).
It obeys the recursion relations

Gp(x+b)=(27) Y2 P21 (bx) G (%),

Gp

x+% 2(277)1/2bx/b1/2r<%> Gp(X). (A1)

There exists an integral representation @&jy(x), which is
valid for Re§)>0,

| = dt eth/2_ efxt
nGb(X)_fo T (1_e—bt)(1_e—t/b)
Q)Y Q.
2 L 2 A
+ 5 e '+ r (A2)

Another useful special function is defined By(x) =G,(Q
—X)/G,(x) and satisfies the recursion relations

Sp(X+b)=2 sin(7bx)Sy(x),

. X
=2 S|r< 775) Sp(X),

1
X+ =

S| X+

S,(x+Q)=—4 sir(wbx)sin(rrg) Su(X), (A3)
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as well as

1

Sp(X)Sp(—x)=— (A4)

4 sin wbx)sin( wg)

SinceQ=b+1/b one can easily show by applying E@\1)
twice that

x/b—bx+1
Gp(x+Q)= —5—T|+1

5+ 1| T (G0,

_ 2_p2_
x/b+bx+1/b“—b 1277

Gp(Xx—Q)= Gp(x).
r(B— F)F(bx— 1-b?)

(A5)

Gp(x) is related to the Barnes double Gamma function

I'5(x|v1,v,) [31] in the following way:

Gy(2)=T,*(z|b,1). (AB)

PHYSICAL REVIEW D 67, 126002 (2003

in the following way:

. (A8)

Jd
Fz(X|V1'V2):eXF<£§§(X| v1,v2)|s-0

It follows from Egs. (A7) and (A8) thatI', has a product
representation

-1
Iy (zlvy,vp)

2
=¢? 12y91+ Z¥227 I I
m=0 n=0

2 2
e—Z/()+Z 12Q ’ (Ag)

1+Z
Q

whereQQ=mv;+nv, and y,,, 7y, are functions ofv,, v,
but not z which can be found if31]. It follows from Eg.
(A9) that

The Barnes double Gamma function is related to the doubl# the limit x—c with =Im(x)>0 one findg31,32

Hurwitz function[31,37

z%(xlvl,vZ>=m;>0(nvl+va+x>—s, (A7)

Go(—=2) o Tt o [ 2T

e LY | i L
(A10)

¢ Qx 1 , 1 1
IN(Sy(x))==*im ?_T_E(b +F+2) +o| 3/
(A1)
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