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Revised phase diagram of the Gross-Neveu model
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We confirm earlier hints that the conventional phase diagram of the discrete chiral Gross-Neveu model in the
largeN limit is deficient at nonzero chemical potential. We present the corrected phase diagram constructed in
mean field theory. It has three different phases, including a kink-antikink crystal phase. All transitions are
second order. The driving mechanism for the new structure of baryonic matter in the Gross-Neveu model is an
Overhauser type instability with gap formation at the Fermi surface.
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[. INTRODUCTION pressed. Formally, the problem with previous investigations
lies in the tacit assumption of unbroken translational invari-

The simplest variant of the Gross-Nev@iN) model is a  ance. The condensatg/y) then gives rise merely to an
1+1 dimensional relativistic field theory with species of  x-independent mass term. Following similar studies of the

fermions interacting via a quartic self-interactiph: GN model with continuous chiral symmetfy,8], we have
1 found evidence for a crystal phase with lower energy than
L=div d, b+ =g2(b)2, 1.1 the standard massive Ferml_gas at zero temperature—a kind
Ny 2 a(y¥) @9 of kink-antikink crystal[9]. This result was based on a varia-

o o tional calculation using a specific ansatz. In the present work,
where we suppress the flavor indicegy{==;4;¢; etc).  we report on a complete Hartree-Fock calculation at fiflite
This model possesses a discrete chiral symmejry ¢/° ) and x. This enables us to round off our series of investiga-
which forbids a bare mass term. In the lafgémit, it can be  tions by presenting the revised phase diagram of the discrete
solved exactly. It exhibits a surprisingly large number of phe-chiral GN model in “full glory.” The basic theoretical tool
nomena of interest in nuclear and particle physfos a re- we have employed here is the relativistic Hartree-Fock
cent review, see Ref2]). Asymptotic freedom, dimensional method, appropriate for the leading order term of the INge
transmutation, spontaneous breakdown of chiral symmetryexpansion. The same method has been used in Réfis[7]
dynamical mass generation, quark-antiquark and multiquarknd[9] to which we refer the reader for further background
bound states are its most prominent features. Moreover, theaterial.

GN model is believed to have a nontrivial phase diagram. This paper is organized as follows: In Sec. Il, we explain
The discrete chiral symmetry gets restored at high temperdow we have solved the Dirac-Hartree-Fock equation using a
tures and/or densities. According to common lore, a criticacombination of numerical and analytical methods. Section IiI
line which separates the chirally symmetric phés@assless is dedicated to cold baryonic matteF£0). In Sec. IV, we
fermiong from the broken phasémassive fermionscom-  collect the necessary formulas for finite temperature and
prises both first and second order lines separated by a trehemical potential calculations. Section V contains the main
critical point [3]. Models for which one can construct the result of this work, namely the revised phase diagram of the
renormalized phase diagram analytically are extremel\GN model. In Sec. VI, we summarize our findings, compare
scarce and worth studying on theoretical grounds, even ifhem with the continuous chiral GN model and put them into
they are far from being realistic. In the present case it igperspective.

essential to define the model by lettihg— o before taking
the thermodynamic limit. In this way one can avoid conflict
with no-go theorems characteristic of low dimensional sys-
tems[4,5]. In particular, spontaneous breaking of continuous
symmetries becomes viable in-1 dimensiong6]. In spite We first discuss how to solve the Dirac-Hartree-Fock
of all the obvious reservations we feel that one can learpquation. In the GN model withyi) %-interaction, a mean
more about relativistic matter from E@1.1) than one had fie|d approach can only generatélacal) Lorentz scalar po-
any right to hope on the basis of such an incredibly simplgential. Therefore we have to diagonalize a single particle

model. S Dirac Hamiltonian of the generic form
Given the large number of papers dealing with the GN

model, one may wonder whether there are any open ques- 19

tions left. This is actually the case. In the present work, we H=Hy+V=19"~ —+y%S(x). (2.1
shall reconsider the model at finite temperature and chemical I X

potential. As we have pointed out recently, the alleged phase

diagram of the GN model is likely to be flawéd]. It does =~ We choose the following representation of thenatrices:
not do justice to the role played by baryons in the structure

of baryonic matter through effects which are nolN 1gup- W=—0q, vyl=ios, y’=-—o0,. (2.2

Il. SPECTRUM OF THE SINGLE PARTICLE
DIRAC HAMILTONIAN
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For spatially constang(x), H reduces to a free, massive consistently, not just the valence levels. In observables like
Dirac Hamiltonian and our task would be rather trivial. This the energy density or the baryon density infinities are then
would evidently lead back to the standard results for the GNinavoidable. They require regularization and renormalization
model. Instead, we admit the possibility that translationaland hence a certain amount of analytical work. Fortunately,
invariance breaks down and allow for spatially perio8{x) due to asymptotic freedom of the GN model, fermion states

with (yet to be determingdoerioda, with large momenta are only weakly affected by the mean
field. Thus all UV-divergencies can be handled perturba-
S(x+a)=S(x). (2.3) tively. Perturbation theory has turned out to be very useful to

the present study for other reasons as well. It provides more
analytical insight into various aspects of the phase diagram,
%n particular the vicinity of the chirally restored phase where
"S(x) is small. Therefore, we briefly outline how to apply
perturbation theory to the Hamiltonid@.1), restricting our-
selves to potentials satisfying E(2.8).

Naive application of second order perturbation theory in

We first diagonalize the free HamiltoniaH,. This step
serves both to generate a basis for the full, numerical diag
nalization ofH and as a starting point for perturbation theory
Enclosing the system in a box of lendtl= Na and imposing
antiperiodic boundary conditions, we findy (denotes the
sign of the energy

Hol 7.0y = 7lkyl| 7,0)  (7==+1) (2.4) would yield the following energies:

. . . . S 2

with the normalized spinor wave functions E_.~nsgrik,)| ky+ S Sl ' 2.9
g 7 2(ky—dy)
_ 1 & k=2 (n+ 172
<X|77'n>_ \/Z —InSgr(kn) ' n— L (n ) with
(2.5 e »

Matrix elements of the potential=y°S(x) in the unper- Q=73 (210
turbed basis can be expressed via the Fourier components of
S(x) Equation(2.9) displays simple poles which signal the break-

down of naive perturbation theory in the vicinity of the gaps.
2 e As is well known from solid state physics, this problem can
S(X):; S (S-¢=S¢) (26 be cured by resorting to “almost degenerate perturbation
theory” (ADPT) in the region of the gapEll]. More pre-
as follows: cisely, if S;#0 and we focus on the momentum region
around q,, we have to diagonalized exactly in two-
dimensional subspaces of states whose momenta differ by a
reciprocal lattice vector (&) but who have similar energy.
For €=0, these are states with oppositeand the same
XD 80 nneSe. 2.7y (smal) momentunk,; for €+0, states with the samg but
7 ’ momentek,*+q,, wherek, is again small. The result can be

) ) stated concisely as follows: Negy, replace the term which
Equations(2.4) and (2.7) are all that is needed for the nu- piows up in Eq.(2.9) as follows:

merical diagonalization oH. Due to the spatial periodicity

i
(n".n'[VImnm)= 5[ sgrkn) = 7'sgrkn)]

of S(x), the Hamiltonian matrix assumes a block diagonal |S,|? . .

form (conservation of Bloch momentynfurther simplifica- 2(k—_q)—>39r(kn—Qe)V(kn—Qe) +1S¢%= (kn—qe).

tions occur due to additional conservation laws for certain noHe (2.10)

types of potential. Most of our calculations are based on the '

additional assumptions If one seeks a reasonable “global” approximation to the
spectrum ofH, one should apply Eq2.11) in the region

S(=x)=—3(x), between the midpoints of two gaps: i.e.,
S(x+al/2)=—9S(x). (2.8

¢t 0de—1 de+1t0de
2 ’ 2 '

(2.12

Such a scalar potential consists of a regular succession of knele
positive and negative bumps of identical, symmetric shape. i ) ) _
For this choice, only odd appear, theS, are purely imagi- Hgnce the perturbative eigenvalues are best defined piece-
nary and the Hamiltonian matrix is real symmetric, cf. Eq.WIS€ as

(2.7). In some cases, we have employed more general shapes

of the potential which then lead to larger, complex matrices. pg(¢) 7 sgrk,)

e+ gk, —de) V(Ky— o)+ S|

It turns out though that the self-consistent Hartree-Fock po- 7"
tential belongs to the more restricted class of E99). )

A characteristic difficulty of the relativistic approach is |SJ'| (koel,) (.13
the fact that one has to determine the Dirac sea self- i7o 2(k,—qj) = )
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As is well known, perturbatively eac® # 0 induces exactly < 5 n 2 1 N

one gap ak,~q, with width 2|S,|. Y E_into—+o— > |S/2n[4a(k2—g?)].
Our last remark concerns the standard solution of the GN N L n=n; 2w 2m =0

model which corresponds in our notation $g+0 only. In (3.4

this particular case, ADPT yields the exact spectrum, sinc

the interaction only mixes the unperturbed states pairwise.%efore turning to the results, we briefly discuss two limiting

cases where some analytical insight can be reached: The high
density and the low density limit.
Iil. BARYONIC MATTER AT ZERO TEMPERATURE In the high density limit perturbation theory becomes ap-

We first present our results for the ground state of the GNPlicable by virtue of asymptotic freedom. The only self-
model at finite baryon densityT& 0). We have to compute consistent perturbative solution we could find is one where

the Hartree-Fock energy density for a scalar poterg{a), S.1#0 only anq all orbits below the first gap are fillel(
=q,=m/a). Using Eq.(2.13 and the real variable

1 L .
— = E E,]'n'f‘ Mfo dXSZ(X). (3.1 S, =15, (3.5

the self-consistent potential reads
For standard baryonic matter, the sum over occupied states
includes all negative energy statéhe Dirac sepand as S(x)=25;sin(2mx/a). (3.6)
many positive energy states as required by the prescribed
baryon density. Alternatively, one can consider “antimatter” Performing the renormalization along the lines described
where an appropriate number of negative energy states ibove leaves us with
unoccupied. We adopt here the latter, more economical way
of evaluating the energy density. The second term in Eq. Er K S o
(3.1) corrects for double counting of the interaction energy in N 2.7 E[m(lﬁkpsl)— 1], 3.7
the sum over single particle energies. Since the self-
consistent potential must be of the form of a local, scalaf hare the first term is the result for a free Fermi gas of
potential in the GN model, it is sufficient to minimize the
energy(3.1) with respect toS(x) in order to find the full
Hartree-Fock solution.

Equation(3.1) is not yet in a form suitable for numerical
calculations. The sum is badly UV divergent and the bare
coupling constant appears in the second term. Let us isolate. .
the UV divergent terms in the sum as follows: The sum overWIth the two solutions
negative energy states with short wavelengths is evaluated

massless quarks. Minimization with respeciQpyields the
equation

S,In(4kS;)=0 (3.9

using perturbation theory. Provided we stay below the energy ~slz 0— (3.9
of the last gap, we can simply use E@.9), 4ke
2 %A: _ ZJA dk (k+2 BB ) The nontrivial solution is lower in energy by
LT Heenl T ek e _(8r) L 210
— N N/, e4nk? '

k?—A? D Se? k—a,
T 27 - T 2T In A Evidently atT=0 the discrete chiral symmetry does not get
(3.2  restored at any finite density.

o In the low density limit S(x) is expected to be given by
(k=ky+m/L). The quadratic divergence is irrelevant andwell separated, equidistant kinks and antikinks. We therefore
can be eliminated by subtraction. The logarithmic divergencé@pproximateS(x) by tanhx for 0<x<A and 1 for A<x
is canceled by a corresponding divergence in the double<a/4, then continue symmetrically. Evaluating the Fourier
counting correction as can be shown with the help of the gapoefficientsS, for such a potential, we obtaifin the limit
equation at zero densifyl0] (we choose units such that the A — )
vacuum fermion massy, is equal to },

- 2ke

S SNtk 3.19

Adk

1 1
—:2f — ———==—In(2A). 3.3
NG 0 27 i1 —In(2A) (3.3 | | | | o
The Fourier amplitudes satisfy some kind of scaling &%

The final expression for the regularized and renormalizedeing a “universal function” of¢kg. Roughly,S,~ 1/¢ and
ground state energy of a system with Fermi momentum lathe convergence of the Fourier expansionS¢x) becomes
beled byng is then quite slow.
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FIG. 2. Spatial dependence of Hartree-Fock potential at various
FIG. 1. Dominant Fourier component of scalar potential versusdensities.
ke, compared with low-and high-density asymptotics.

We now turn to the numerical results &t=0. We have —~——+ & (ke—0). (3.13
carried out the above sketched diagonalization procedure. N 4 g2
The renormalized energy density was then minimized with
respect to the period and the Fourier coefficientS, of the At high density, perturbation theory predidisf. Egs.(3.7)
periodic scalar potential. We typically work in a box of and(3.10]
lengthL =1000(in units where the dynamical fermion mass
in the vacuum is J, taking into account Fourier components
in Eq. (2.6) up to € =23 if necessary. As far as the periad e T T (keo). (3.14
is concerned, we confirmed the results of Réf: The sys- N 27 6477k§
tem invariably adjusts its period such that the Fermi surface

coincides with the bottom of the first gap. This is of coursetpa yyo expression.13 and(3.14) have been matched at

reminiscent of the Overhauser effect in condensed mattgf o noi _ e i

: ) . i point where they agre&g{=0.55537). This simple esti-
physics[12] (for recent discussions in the context of QCD, mate seems to catch the essence of a lengthy numerical cal-
see Refs[13-16). The spatially averaged baryon density ., ation amazingly well.

per flavor is then given by In Fig. 4, we show the energy difference between our
solution and the standard solution of the GN model based on

(3.12 unbroken tran_sla_tional inva_lrian(t'é?e_dashed Iin_e is the per-
turbative prediction The kink-antikink crystal is energeti-
cally favored at all densities. Our results are of course also

In Fig. 1 we plot the most important Fourier componentlower than the more restricted variational calculation of the

(3,) as a function oks and compare it with the two analyti- kink-antikink crystal in Ref.[9], the improvement being
cal limits discussed above. The numerically found Fourier
component interpolates nicely between the low and high
density limits, a good test of the diagonalization and mini- | . analytical /
mization procedure. Inclusion of higher Fourier components 0.6} .
(€=3,5, ...) isnecessary at lower densities. After minimi- approximation
zation of the energy the correspondigare practically in- Enp ,
distinguishable from the analytical result, £§.11), so that N 0.4Ff rd
we refrain from showing any plot. A representative selection e
of the self-consistent Hartree-Fock potenti§(x) is shown -
in Fig. 2 for a range of densities. This figure illustrates how 02t e
S(x) interpolates between well separated kinks and antikinks -~
(~tanhx) at low density and the perturbative potential -
(~sin Z&x) at high density. ot -
The energy density obtained from our numerical calcula- el ‘ ‘ , ‘
tion is displayed in Fig. 3. The dashed curve is an analytical 0 0.5 ' 15 2
approximation obtained by matching the asymptotic behav- F
ior at large and smakg as follows: For low density, we have  FIG. 3. Hartree-Fock energy density compared with analytical
widely separated baryons of masN/2r; therefore, approximation obtained by asymptotic matching.

Ke
™

Q|

P
N
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kr IV. GRAND CANONICAL POTENTIAL
0 0.5 1 1.5 2 . .
Y : T In this section, we collect the formulas needed for deter-
. o mining the phase diagram and computing thermodynamic
o observables in the grand canonical framew@ege e.g[17]).
20.003F ° -~ The starting point for the full, nonperturbative calculation is
. 4 . . .
-~ the formal expression for the grand canonical potential den-
- _,#' sity ¥ (B=1/T),
AE 0006} " / v 2 &
7 —= E In[(1+e AEn=m)(1+ P Entr))
a J N ,BL
© 4, G (& 1
-0.009 . "N N +— f dx S(x). 4.1
. 7 - perturbative 2Ng-LJo
) predlct}on This quantity has to be minimized with respect $x).
-0.012 From now on, single particle energies will be defined as

FIG. 4. Ground state energy difference between kink-antikin

crystal and translationally invariant solution.

Positive energies, i.eE,=E,;,. The sums over positive
and negative energy states correspond to the two factors un-
der the logarithm. The first term in E¢4.1) is easily recog-
nized as the “effective potential” expected for independent

most significant at high densities. Finally, we can derive theermions. The second term is identical to the double counting
baryon chemical potential from the slope of the curve incorrection at zero temperature. Equati@nl) is still sym-

Fig. 3,

(3.15

In Fig. 5 we have plotte@/N vs n. As expected on the
basis of the low density limit, the curve starts Mitg/N
=2/7r. It then rises steeply and approaches an asymptote.
The solid curve is the result of the conventional calculation

bolic due to UV divergencies and requires some modifica-
tions. We proceed exactly like in the=0 case, dividing up

the spectrum into two parts: Far=0 . . .n, the energieg,,

are obtained by diagonalization of the Dirac-Hartree-Fock
Hamiltonian in a large but finite box. Far>n we use the
perturbative single particle energies and replace the sum by
an integral. Using the notation

1 1

s 1,
k=g, k+qe

e(k)=k+ > | 5 (4.2)
{>0

which involves a Maxwell-type construction. Here, the den- .
sity jumps discontinuously at=1/\2 where a first order for the perturbative energies akdas defined after Eq3.2),
phase transition takes place. Our calculation is strongly irwe find

favor of a second order phase transitionget 2/ (or p
=0). These results af=0 already indicate that the com-
monly accepted phase diagram of the GN model is not ten- N

able.
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57 2 |SAnL4(Ke —ad)]
Note carefully the signs in the various exponents. They arise
because one has to pull out the sum over single particle en-
ergies fork>k in order to perform the renormalization, cf.
Sec. Ill. As usual we have dropped the irrelevant divergent
terms

(4.9

The quadratically divergent term is already familiar frdm
=0, the linearly divergent term reflects the infinite baryon
density of the Dirac sea. From E@t.3), all other thermody-
namic quantitiegnotably pressur®, baryon densityp, en-
tropy densitys, and energy density) follow in the standard

FIG. 5. Mean baryon density versus chemical potentiall at

=0, compared to the translationally invariant case. way,
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9 temperature—onh5..;#0. Using the results for ADPT of
P=-v, P:—a‘l’- Sec. II, we find(with q=q,= 7/a)
4.9 A(k)=g—k+sgr(k—a) (k= a)?+]S;?
S= B (9,8 U:TS_P+/,Lp. . |Sl|2 or K g 3_q
2(k+q) 272
In the chirally restored phage&s(x) =0], everything can be
trivially evaluated in closed form: ISi?( 1 1
Alk)="3 (k— e )
P aT ) ,LLZ 1 p m q q
N8 27 a7 N A for 0<k<gq/2, k>3q/2. (5.2
4.6 :
u 2 49 We can actually expand the square rootSq|? provided we
o S w . .
—= T2+ —+— —=_T. are careful about the treatment of the resulting pole in the
N 6 27 47 N 3

integrand. One can easily convince oneself that one has to
take the Cauchy principal value pdithis being the only
V. REVISED PHASE DIAGRAM remnant of ADP7. Dropping those terms which do not de-

pend onS; then yields
According to common lore, the GN model has two phases

[3]: A chirally broken phase with a dynamical fermion mass A K sinh Bk

m+#0 at low (u,T), and a chirally symmetric phase with —~—|Sl|2 In(2A)—f dk( ) .
massless fermions at higa and/orT (chlral symmetry re- N 0 k?—q? | coshBk+coshBu
ferring to the discrete symmetryy— y°#). These two (5.3

phases are supposedly separated by a second order line going
from (u=0T=T,) to (u=p,,T=T,) and a first order line The phase boundary for the second order transition under the
C 1

; _ _ - traint that] (or a) has a given value is obtained from the
from the latter point to 4=1/y2,T=0). The critical tem- constr: . ; .
perature at zero chemical potential has the valye €/ condltlon_ that t_he rlght-hand_ side of E(.3) vanishes. For
~0.56693, whereas the tricritical point is located gt ~ £achd this defines a curve in theT(u)-plane. After a re-

=0.60822T,=0.31833. A mixed phase also appears Whichscalmg of variables,
can be mapped out in other types of phase diagrams like the _ ,_ ', r_
(U.p)- of (P.1/p)-plots, cf. Ref[18]. k=P p'=pp, AT=BA,q'=pd, (54

At variance with these results we have clearly identified, e can solve explicitly the condition that the coefficient of
three distinct phases in the.(T)-diagram. In addition to the |g |2 in Eq. (5.3 vanishes with the result
two known ones there is a crystalline phase with brokeA !
chiral and translational symmetry. These three phases are alll Beiln',q)= lim 2A expd®(u’,q",A"), (5.5
separated by second order lines which meet in one point. A o

We first explain how we have obtained the boundary of
the chirally restored phase. A second order line separates thvehere
chirally restored phase from either the massive or the crystal
phase, depending om. Since the scalar potential vanishes
continuously across this line, the line itself can be deter- (D(,U«',Q',A'):f dK( e 2) ;-
mined rigorously by using perturbation theory. We start from 0 (9)"— «*/ coshk+coshu
Eq. (4.1, add counter terms to the linearly and quadratically (5.6
divergent pieces of Eq4.4) and take the limitL—«, re-
placing the sum by an integral. Settikgk) =k+ A(k) and
linearizing inA (k) yields

A’ sinhk

If we plot Tey=1/Bci(p’,q") againstuci=u'/ Bei for all
possible values of’, the envelope of the resulting family of

curves represents the sought for phase boundary. Inciden-
A2 tally, since we allowqg to vary freely, we can also consider
No _f —In[(1+e Blk= u))(1+eﬁ(k+u))]+ i the limit g—O0 in which the period of the crystal becomes
2m infinite. In this limit one recovers the results of the standard
A 1 GN model solution which are usually derived by assuming
L —In(2A)Y, |S |2 So#0. Thus our method enables us to deal with the transla-
w2 T tionally broken and unbroken situation on the same footing.
A dk sinhgk In Fig. 6, we display a few representative curves obtained
_ZJ - _ (5.1) from Eq. (5.6). In particular the curvéABC corresponds to
2m coshpBk+coshBu q’=0. The sectiomAB coincides with the second order line
of the standard solutior8 being the tricritical poinf3]. This
Let us now assume that translational symmetry is also bropart of the phase boundary survives if we relax the assump-
ken spontaneously and that—just like in Sec. Il at zerotion of unbroken translational invariance.
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FIG. 6. Perturbative determination of phase boundaries as the FIG. 8. Revised phase diagram of the GN model in the
envelope of a family of curves. Each individual curve correponds td T.#)-plane. The dashed line is the first order phase boundary from

a certain wave number of the periodic potential.

the previous, translationally invariant calculation.

The true phase boundary beyond the tricritical point carpr liquid crystals which exhibit both periodic and homoge-
be generated as the envelope of the curves shown in Fig. 6eous ordered phases. At the Lifschitz point the wave vector

For eachu> u, there is one particular curvéabeled byq)

of the periodic structure vanishes continuously, just like in

which touches the envelope at thisvalue. This allows us to  Fig. 7.

define a functiorg () which describes how the period of the

One can determine the envelope of the curves from Fig. 6

crystal depends on the chemical potential along the phaseumerically and display it in theT,«) diagram. The result

boundary. This is of some interest singe 7r/a is an order

is drawn in Fig. 8 up tow=1.5. For larger values of the

parameter for the breakdown of translational invariance. Iffhemical potential, it is possible to derive the form of the

Fig. 7 we show the dependence of the order parantgter

phase boundary analyticallgee the Appendjxwith the re-

w as one moves along the phase boundary. The solid line 8ult

the curveq= x which is approached asymptotically by the
full calculation. At u=u,, the tricritical point of the old
solution, we see a clear signal of a second order phase tra
sition with a breakdown of translational invariance. The
point B in Fig. 6 is therefore also a multicritical point in the
revised phase diagram. It plays a somewhat different rol
though. In fact, it has all the characteristics of a “Lifschitz
point” in condensed matter theofy19]. This type of multi-
critical point has been discussed in the context of magneti

1.2}
08} *
q -,-'
04+ .." » numerical results
. q=p
0— 0.8 3 %) 73
bt u

eC
n- Tcrit:4ﬂ_,u . (5.7

Jhis curve does not intersect tiie=0 axis, as expected on

the basis of ouf =0 results of Sec. Ill.

From Fig. 5 atT=0 and Fig. 7 along the perturbative
Bhase boundary one would expect another second order line
joining the Lifschitz point T;,u) with the point T=0,u
=2/m). The scalar potential is constant to the left of this
hypothetical line and periodic to the right, its periaddi-
verging as one approaches the line from the right. Since the
amplitude is nonvanishing on both sides, we can no longer
invoke perturbation theory. We have determined this phase
boundary numerically by computing the value of the grand
canonical potential under the constraint that there are 0,2,4
potential wells in the interval of length. This is done along
curves of constant, varying u in the relevant region. At the
critical line, all three values of the potential should converge
for sufficiently largeL. Thereby, one can locate the value of
n where the instability with respect to breakdown of trans-
lational invariance(kink-antikink formation sets in. For
technical reasons, this particular calculation was done in a
much smaller intervall{~40-80) but the results are stable
with respect to increasing within the accuracy of our plot.
The resulting critical line is also included in Fig. 8. The

FIG. 7. Wave number characterizing the crystal period along thdricritical point of the old solution coincides with the point

phase boundary, showing the presence of a “Lifschitz poinfiat

where all three phase boundaries meet. The dashed curve is

125015-7



M. THIES AND K. URLICHS PHYSICAL REVIEW D67, 125015 (2003

0.12
061
Teri chirally
symmetric .
(m =0) :
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FIG. 9. Revised phase diagram of the GN model in the [ 10. Entropy density versus chemical potentialTat0.1

(T.p)-plane. The dashed lines belong to the old phase diagramshowing the absence of latent heat, in contrast to the translationally
where they enclose the mixed phase. This “droplet” region is SU-ipyariant case.

perseded by the crystal phase featuring baryons.

. . . . accurate computations very close to the phase boundary,
the first order line of the old SOIU“QEB] which ha_s NOW * these other observables are less well suited for judging the
bec;ome obsolete. It hqs only been included to highlight Morder of the phase transition and will not be shown here.
which Wﬁy the rf)ha}selldlagramllchqnggs_ ¢ , Finally, we wish to point out that one can do more ana-
H A %er a%s_ physically more | ‘;m'”gt'”g‘ way o [?]resentlng lytical work on the crystal phase in the asymptotic region of
the phase diagram Is given in Fig. 9 where we have translérgeu and largeB. As derived in the Appendix, the relation

formed our phase boundaries into the §)-plane. Here, the between 4%, and 44T in the crystal phase at largeis the

first order line of the old solution splits up into the two h b 4T in th Ve Fermi
dashed lines which delimit the mixed phase redidroplets same as the one betwegmand T in the massive Fermi gas
phase aju =0, see Fig. 11. We do not really understand the

of chirally restored matter in the chirally broken vacyum ro . . . .
y y Y reason for this interesting kind of scaling behavior. It may

This should be replaced now by the two solid lines going ~€ dditional simolifving f hich h
downward from the former tricritical point and enclosing the point to additional simp ifying features which we have not
yet fully exploited.

crystal phase. In the new solution&t 0 the crystal phase is
stable at all finite densities. If one increases the temperature
at fixed density, the outcome depends on the valye. dfor V1. SUMMARY AND PERSPECTIVE
p>py= i/, when crossing the new phase boundary one ) o
goes directly into the chirally and translationally restored Let us summarize our findings about the phase structure
phase in a second order transition. ot p,, translational of the GN model and try to understand the essential under-
invariance is restored first. At some higher temperature the
dynamical fermion mass vanishes and chiral symmetry gets
restored as well. 1
Our results suggest that the phase transition between the
crystal and massive Fermi gas is also a second order transi g g}
tion. Since the corresponding phase boundary has only beel
obtained numerically, we have computed various thermody-
namic observables along isotherms in thHe 4)-plane to 06
check whether they are indeed continuous. In the old solu-4uS1
tion, quantities likep,s,u are discontinuous across the first 04}
order line. By contrast, we see no discontinuity in any of
these quantities within our numerical accuracy. This is illus-
trated by way of example in Fig. 10 for the entropy density
as a function ofu (at T=0.1). Whereas in the old solution
the entropy exhibits a huge dISCOﬂtIﬂUIty' and jumps to the 06 07 05 03 03 05 0.6
chirally restored value of Eq4.6) at the first order phase 4uT
transition, the crystal solution interpolates smoothly between
the massive and massless Fermi gas. It shows no sign what- FIG. 11. Asymptotic behavior of the amplitude of the periodic
soever of a latent heat. The corresponding curvep fandu  scalar potential versus temperature, valid for laggeThe curve
also favor a second order transition. Since here the variatiogshown is identical to the dependence of the fermion mases T at
near the phase transition is more rapid and it is difficult to dow=0.

02}
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2F.2 . NJL; model
15b TN free spectrum

-2 -1 0 1 2 p=0pu>0 pu<0

FIG. 13. Schematic plot illustrating the filling of single particle
states in the NJL model for vacuum £=0), matter ¢z>0) and
antimatter £ <<0), respectively. Dark dashed regions: filled orbits,
light dashed: empty orbits, white: energy gaps.

FIG. 12. Single particle energy spectrum for the NJhodel
with dynamical mass gap.

lying physics. Together with our earlier results for the GN

model with continuous chiral symmetfy] (or equivalently ) ) )
the “two-dimensional Nambu—Jona-Lasinio (NJLmodel,” in the vacuum or chiral and translational symmetry in matter
' with one unbroken combination of the twaorhis scenario

we are now in a position to cover both variants of the mode _ _ S
as a lot in common with the Overhauser effect, originally

and compare their phase structure. So far, it has been asf . o
sumed that the phase diagrams are the same for the discréi§covered in nonrelativistic Hartree-Fock systehg]. The

and continuous casé48] and exhibit two phases: Massive nice feature about the present relativistic application is the
and massless fermions. The only symmetry issue considerdfimate relationship between mass gap and band gap. Note

was the breakdown of chiral symmetry. The phase boundar?‘at in the NJL, model the single particle spectra for matter
in the (u,T)-diagram had lines of first and second order(#=0) and antimatter £4<0) are different, although the

transitions as well as a tricritical point. Because of the firstN€rgy densities agreor the samd|). This follows from
order transition a mixed phase could also appear. the fact that under charge conjugation
The central result of our investigation is the fact that both 1ox
of these model theories can break translational invariance as Pe(X)=y " (X), (6.1)
well. Since this is a continuous symmetry, the lakgkmit is o )
of course instrumental for the phase structi@g]. We will the scalar' potential is invariant but the pseudoscalar one
now argue that the dynamical mechanism behind the brealghanges sign. _ _
down of chiral symmetry in the vacuum and translational NOW consider the discrete chiral GN modelTat 0. Here
symmetry in baryonic matter is actually the same. the potential is purely scalar and identical for matter and
Our point can most clearly be made &t 0. Let us first ~antimatter. The single particle spectrum is sketched in Fig.
recall the structure of baryonic matter in the NJmodel. 14 for the high density caseS¢,#0 only), showing the

The condensate is best pictured as a helix in the space

spanned by ), (iy®y), andx (the “chiral spiral” [7]). 2 " __ GN model
Since the chiral winding number is equal to the baryon num- 1.5} i .
ber, each full turn of the helix correponds to one baryon.

From the point of view of Hartree-Fock theory, it is in- Tr ]

structive to take a look at the single fermion spectrum. In the
vacuum one has dynamical mass generation with the spec-
trum sketched in Fig. 12. Because of the peculiar properties E ot
of this model, the whole picture drawn in Fig. 12 just moves
upward or downward by an amoumt at finite chemical 05¢
potential. In Fig. 13, we illustrate the filling of single particle Al
orbits for vacuum, matter and antimati@t T=0), respec-

tively. We see that there is always a gap of the same width -1.5
“floating” at the Fermi surface. This enables the system to :
make optimal use of the level repulsion at the gap for low- '2_2 1 0 1 )
ering its energy. The important dynamics is gap formation at k/q

the Fermi surface, which reduces to the surface of the Dirac

sea in the special cage=0. The system breaks whatever  FIG. 14. Same as Fig. 12, but for the discrete chiral GN model.
symmetry it takes to generate the gap, either chiral symmetryhe gaps are due to the periodic scalar potential.
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gualitatively. Again, the behavior &ye(p) atp=0 (vanish-

ing slope reflects the presence of massless baryons and the
breakdown of translational invariance is shifted to the point
pn=0. This shows that we have achieved an overall picture
of the phase structure of both GN models which is how con-
sistent with their different baryon spectra and therefore
physically more reasonable.
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APPENDIX: ASYMPTOTICS AT LARGE p AND B

p=0p>0 p<0 At. large . and 8 one can use perturbation the_ory to de-
termineS. ;. The starting point is the grand canonical poten-
FIG. 15. Same as Fig. 13, but for the discrete chiral GN modelfial of Eq. (4.1). Single particle energies can be computed in
As in Fig. 13, there is always a gap at the Fermi surface. ADPT, Eq.(2.13. Denotingélz iS; by sandq;=m/a by q
to ease the notation, find

appearance of a symmetric pair of ga{#or lower densities, v 2 ra2dk

more gaps would appear, but they are not relevant for the —=——_| _—|n[(1+e FE1-m)(1+f(E1r)]

argumenti. The filling of the single particle orbits is indicated N Blo 2m

in Fig. 15 which now replaces Fig. 13. The common theme is 2 raq dk

evidently gap formation right at the Fermi surface. — | ——In[(1+e AE2mm)(1+ B2t m)]
Turning to nonzero temperature the phase diagrams of the BJqr22m

two GN models are very different, both from each other and 5 raa2dk

from what had previously been thought. The continuous chi- i —In[(1+e AEsm)(1+P(Estm)]

ral model possesses two phases, the “chiral spiral” and the Blq 2w

chirally symmetric massless Fermi gas, separated by a hori-

zontal §econd order Ii_nfé:TC [_2]. Temperfiture affects only _ E _k|n[(1+e—ﬁ(E1—M))(1+eﬁ(E1+ﬂ))]

the radius of the helix, chemical potential affects only the B Jaqr2m

helix angle, and the two act independently. By contrast the 5

discrete chiral model exhibits three distinct phases: Massless + A_+ A_'“_,_ iln(ZA)sz (A1)

and massive Fermi gas and kink-antikink crystal. We have 27 '

not been able to compute the full phase diagram analytically
in this case but had to resort to a numerical solution of théVith

Dirac-Hartree-Fock equations. The phase boundary of the 2/ 1 1

chirally restored phase and the grand canonical potential at Ei=k+ = | ——+ _)
large ., B can be understood perturbatively. We find that the 2\k+tq k—q
tricritical point of the old solution is replaced by a Lifschitz )
point separating the homogeneous from the periodic ordered —a— J(k—a 2t 2+ S
phase. Due to thermal effects which smear out the Fermi Eo=g—(k=a)™*s 2(k+q)’

surface, the massive Fermi gas phase survives at higher tem-
peratures and small. —— 2

We have not found any first order transition in our calcu- Es=q+v(k=q)"+s™+ 2(k+q)”
lations. As suggested by Fig. 9 the crystal phase takes over (A2)
the role played by the mixed phase in the old solution, al-
though the quantitative details are quite different. As ex-Asymptotically, we may us@g.=—q, cf. Fig. 7. Then, inte-
plained in Ref[7], droplets of chirally restored matter with grals involving
extra fermions can be interpreted as “bag model” baryons
with a mass ofMg=N/2. This “wrong” baryon mass
leaves its traces in the old phase diagram of the GN mode
for instance in the value ofi, where the first order phase
transition takes place at=0 (the droplets fill all spade or
equivalently in the slope of the energy density=(p) at p eB(Ertp) (A4)
=0. In the revised phase diagram for the discrete chiral
model, the correct, lower baryon madd {=2N/) appears are negligible in the first term of EdA1) (k=0 ...q/2),
instead. The continuous chiral model has massless baryomghile in the fourth term K=3q/2 .. .A) one has to pull out
and consequently the structure of the phase diagram changdee T=0 piece as follows:

g AE1—w) g BE—n) g BEs—w) (A3)

!are exponentially suppressed and can be neglected. Integrals
involving
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1+ efEr W =gfErtm (14 g AELTH)), (A5) = dk 1
m In(m)+2f — =0.
Now, theT#0 part is negligible. Finally, in the third term of 0 Jym?+k?\| gBvmPHk? | q
Eqg. (Al), we again decompose (A10)
1+ePEstm = gBEatu)(1 + e AlEsH M), (A6)  Rescaling the integration variable and settmg: Bm then
but have to keep both pieces. In this way we find yields the solution
® 1
v a dk =
S (Ep+p) B=mex Zf = = (A11)
N 18 q/22 ln(1+eﬁ ) % 0 \/m2+K2 e m2+;<2+1
3a/2 dk If we evaluate the function on the right-hand side and plot

—|  s=In(1+e AEstn) ~ :
B q 27 m/B against 18, we recover the usual result for the tem-
& &« perature dependent mass, vanishinglat €%/ «r. That the
8ai2 A Euler constant appears i, follows from the following use-
—Zf E(Eﬁ’“‘)_zfg ,ZE(EDL’U“) ful relation [20]:

A% Ap 1 = d 1 1 a
+2—+—+—In(2A)sz. (A7) A =——In———C+O(a ).
T T T 0 \/a2+q2 eVa?+a? | 1 2 7 2

Finally, the following approximations can be made: Evaluate (A12)

the integrals oveE; andE; exactly and expand the result ¢ o now go back to Eq(A8) for the periodic case and
for small's up to second order, keeping the logarithmic cor- inimize with respect t@, we find

rections. In the other integrals, drop tB&term in E,,E;

and extend the integration limits to—(~...q) and 1
(q...»), respectively. Keeping only thedependent terms In(4sq)+2J S 5 =0.
in ¥ yields the simple final result \/ +k2\| fVsH kg
/) 2 (A13)
s
N~ 72,17 2In(4sq) f dkIn(1+e AW, This can be solved explicitly foy as a function o, 3. The

(A8) result can of course only be trusteddfand g8 are large
enough. We can reduce this problem to the preceding one
All of these approximations have been checked numericallfGN model atu=0) as follows: The relation betweergé
against the full result. and 49T in the crystal model is given by the same “universal
Before proceeding, let us compare this result with the on€urve” as the one betweem andT at ©=0.
which assumes unbroken translational invariance, but taken We finally note the following consequences of our

atT#0,u=0, asymptotic analysisg>0): The boundary line in thes(u)
) plane at largex andT=0 is given by
v m
N="aa1 Inmz)——j dk In(1+ e AVm7 k), 1
s=—), (Al4)
(A9) 4p

The structure is almost the same, sincenas been “eaten in agreement with E¢(3.9). The boundary line in theT(, «)
up” by g from the single particle energies in E@\8). Letus  plane ats=0 has the asymptotic form

recall how to evaluaten(T) at =0 (here, the old solution c
was correct Take the derivative of the grand canonical po- T= & (A15)
tential with respect ton and set it equal to zero, Aau’
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