
PHYSICAL REVIEW D 67, 125015 ~2003!
Revised phase diagram of the Gross-Neveu model

Michael Thies and Konrad Urlichs
Institut für Theoretische Physik III, Universita¨t Erlangen-Nu¨rnberg, Staudtstrasse 7, D-91058 Erlangen, Germany

~Received 20 February 2003; published 23 June 2003!

We confirm earlier hints that the conventional phase diagram of the discrete chiral Gross-Neveu model in the
largeN limit is deficient at nonzero chemical potential. We present the corrected phase diagram constructed in
mean field theory. It has three different phases, including a kink-antikink crystal phase. All transitions are
second order. The driving mechanism for the new structure of baryonic matter in the Gross-Neveu model is an
Overhauser type instability with gap formation at the Fermi surface.
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I. INTRODUCTION

The simplest variant of the Gross-Neveu~GN! model is a
111 dimensional relativistic field theory withN species of
fermions interacting via a quartic self-interaction@1#:

L5c̄ igm]mc1
1

2
g2~ c̄c!2, ~1.1!

where we suppress the flavor indices (c̄c[( i c̄ ic i etc.!.
This model possesses a discrete chiral symmetry (c→g5c)
which forbids a bare mass term. In the largeN limit, it can be
solved exactly. It exhibits a surprisingly large number of ph
nomena of interest in nuclear and particle physics~for a re-
cent review, see Ref.@2#!. Asymptotic freedom, dimensiona
transmutation, spontaneous breakdown of chiral symme
dynamical mass generation, quark-antiquark and multiqu
bound states are its most prominent features. Moreover,
GN model is believed to have a nontrivial phase diagra
The discrete chiral symmetry gets restored at high temp
tures and/or densities. According to common lore, a criti
line which separates the chirally symmetric phase~massless
fermions! from the broken phase~massive fermions! com-
prises both first and second order lines separated by a
critical point @3#. Models for which one can construct th
renormalized phase diagram analytically are extrem
scarce and worth studying on theoretical grounds, eve
they are far from being realistic. In the present case i
essential to define the model by lettingN→` before taking
the thermodynamic limit. In this way one can avoid confl
with no-go theorems characteristic of low dimensional s
tems@4,5#. In particular, spontaneous breaking of continuo
symmetries becomes viable in 111 dimensions@6#. In spite
of all the obvious reservations we feel that one can le
more about relativistic matter from Eq.~1.1! than one had
any right to hope on the basis of such an incredibly sim
model.

Given the large number of papers dealing with the G
model, one may wonder whether there are any open q
tions left. This is actually the case. In the present work,
shall reconsider the model at finite temperature and chem
potential. As we have pointed out recently, the alleged ph
diagram of the GN model is likely to be flawed@2#. It does
not do justice to the role played by baryons in the struct
of baryonic matter through effects which are not 1/N sup-
0556-2821/2003/67~12!/125015~12!/$20.00 67 1250
-

y,
rk
he
.
a-
l

ri-

ly
if
s

t
-
s

n

e

s-
e
al
se

e

pressed. Formally, the problem with previous investigatio
lies in the tacit assumption of unbroken translational inva
ance. The condensatêc̄c& then gives rise merely to an
x-independent mass term. Following similar studies of
GN model with continuous chiral symmetry@7,8#, we have
found evidence for a crystal phase with lower energy th
the standard massive Fermi gas at zero temperature—a
of kink-antikink crystal@9#. This result was based on a varia
tional calculation using a specific ansatz. In the present w
we report on a complete Hartree-Fock calculation at finiteT
andm. This enables us to round off our series of investig
tions by presenting the revised phase diagram of the disc
chiral GN model in ‘‘full glory.’’ The basic theoretical too
we have employed here is the relativistic Hartree-Fo
method, appropriate for the leading order term of the largN
expansion. The same method has been used in Refs.@10#, @7#
and @9# to which we refer the reader for further backgrou
material.

This paper is organized as follows: In Sec. II, we expla
how we have solved the Dirac-Hartree-Fock equation usin
combination of numerical and analytical methods. Section
is dedicated to cold baryonic matter (T50). In Sec. IV, we
collect the necessary formulas for finite temperature a
chemical potential calculations. Section V contains the m
result of this work, namely the revised phase diagram of
GN model. In Sec. VI, we summarize our findings, compa
them with the continuous chiral GN model and put them in
perspective.

II. SPECTRUM OF THE SINGLE PARTICLE
DIRAC HAMILTONIAN

We first discuss how to solve the Dirac-Hartree-Fo
equation. In the GN model with (c̄c)2-interaction, a mean
field approach can only generate a~local! Lorentz scalar po-
tential. Therefore we have to diagonalize a single parti
Dirac Hamiltonian of the generic form

H5H01V5g5
1

i

]

]x
1g0S~x!. ~2.1!

We choose the following representation of theg matrices:

g052s1 , g15 is3 , g552s2 . ~2.2!
©2003 The American Physical Society15-1
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For spatially constantS(x), H reduces to a free, massiv
Dirac Hamiltonian and our task would be rather trivial. Th
would evidently lead back to the standard results for the
model. Instead, we admit the possibility that translatio
invariance breaks down and allow for spatially periodicS(x)
with ~yet to be determined! perioda,

S~x1a!5S~x!. ~2.3!

We first diagonalize the free HamiltonianH0. This step
serves both to generate a basis for the full, numerical dia
nalization ofH and as a starting point for perturbation theo
Enclosing the system in a box of lengthL5Na and imposing
antiperiodic boundary conditions, we find (h denotes the
sign of the energy!

H0uh,n&5huknuuh,n& ~h561!, ~2.4!

with the normalized spinor wave functions

^xuh,n&5
1

A2L
S 1

2 ih sgn~kn!
D eiknx, kn5

2p

L
~n11/2!.

~2.5!

Matrix elements of the potentialV5g0S(x) in the unper-
turbed basis can be expressed via the Fourier componen
S(x)

S~x!5(
,

S,ei2p,x/a ~S2,5S,* ! ~2.6!

as follows:

^h8,n8uVuh,n&5
i

2
@h sgn~kn!2h8sgn~kn8!#

3(
,

dn82n,N,S, . ~2.7!

Equations~2.4! and ~2.7! are all that is needed for the nu
merical diagonalization ofH. Due to the spatial periodicity
of S(x), the Hamiltonian matrix assumes a block diagon
form ~conservation of Bloch momentum!. Further simplifica-
tions occur due to additional conservation laws for cert
types of potential. Most of our calculations are based on
additional assumptions

S~2x!52S~x!,

S~x1a/2!52S~x!. ~2.8!

Such a scalar potential consists of a regular successio
positive and negative bumps of identical, symmetric sha
For this choice, only odd, appear, theS, are purely imagi-
nary and the Hamiltonian matrix is real symmetric, cf. E
~2.7!. In some cases, we have employed more general sh
of the potential which then lead to larger, complex matric
It turns out though that the self-consistent Hartree-Fock
tential belongs to the more restricted class of Eq.~2.8!.

A characteristic difficulty of the relativistic approach
the fact that one has to determine the Dirac sea s
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consistently, not just the valence levels. In observables
the energy density or the baryon density infinities are th
unavoidable. They require regularization and renormalizat
and hence a certain amount of analytical work. Fortunat
due to asymptotic freedom of the GN model, fermion sta
with large momenta are only weakly affected by the me
field. Thus all UV-divergencies can be handled perturb
tively. Perturbation theory has turned out to be very usefu
the present study for other reasons as well. It provides m
analytical insight into various aspects of the phase diagr
in particular the vicinity of the chirally restored phase whe
S(x) is small. Therefore, we briefly outline how to app
perturbation theory to the Hamiltonian~2.1!, restricting our-
selves to potentials satisfying Eqs.~2.8!.

Naive application of second order perturbation theory inV
would yield the following energies:

Eh,n'h sgn~kn!S kn1(
,

uS,u2

2~kn2q,! D , ~2.9!

with

q,5
p,

a
. ~2.10!

Equation~2.9! displays simple poles which signal the brea
down of naive perturbation theory in the vicinity of the gap
As is well known from solid state physics, this problem c
be cured by resorting to ‘‘almost degenerate perturbat
theory’’ ~ADPT! in the region of the gaps@11#. More pre-
cisely, if S,Þ0 and we focus on the momentum regio
around q, , we have to diagonalizeH exactly in two-
dimensional subspaces of states whose momenta differ
reciprocal lattice vector (2q,) but who have similar energy
For ,50, these are states with oppositeh and the same
~small! momentumkn ; for ,Þ0, states with the sameh but
momentakn6q, , wherekn is again small. The result can b
stated concisely as follows: Nearq, , replace the term which
blows up in Eq.~2.9! as follows:

uS,u2

2~kn2q,!
→sgn~kn2q,!A~kn2q,!21uS,u22~kn2q,!.

~2.11!

If one seeks a reasonable ‘‘global’’ approximation to t
spectrum ofH, one should apply Eq.~2.11! in the region
between the midpoints of two gaps: i.e.,

knPI ,5Fq,1q,21

2
,
q,111q,

2 G . ~2.12!

Hence the perturbative eigenvalues are best defined pi
wise as

Eh,n
(,) 'h sgn~kn!S q,1sgn~kn2q,!A~kn2q,!21uS,u2

1 (
j (Þ,)

uSj u2

2~kn2qj !
D ~knPI ,!. ~2.13!
5-2
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REVISED PHASE DIAGRAM OF THE GROSS-NEVEU MODEL PHYSICAL REVIEW D67, 125015 ~2003!
As is well known, perturbatively eachS,Þ0 induces exactly
one gap atkn'q, with width 2uS,u.

Our last remark concerns the standard solution of the
model which corresponds in our notation toS0Þ0 only. In
this particular case, ADPT yields the exact spectrum, si
the interaction only mixes the unperturbed states pairwis

III. BARYONIC MATTER AT ZERO TEMPERATURE

We first present our results for the ground state of the
model at finite baryon density (T50). We have to compute
the Hartree-Fock energy density for a scalar potentialS(x),

EHF

N
5

1

L (
h,n

occ

Eh,n1
1

2Ng2L
E

0

L

dxS2~x!. ~3.1!

For standard baryonic matter, the sum over occupied st
includes all negative energy states~the Dirac sea! and as
many positive energy states as required by the prescr
baryon density. Alternatively, one can consider ‘‘antimatte
where an appropriate number of negative energy state
unoccupied. We adopt here the latter, more economical
of evaluating the energy density. The second term in
~3.1! corrects for double counting of the interaction energy
the sum over single particle energies. Since the s
consistent potential must be of the form of a local, sca
potential in the GN model, it is sufficient to minimize th
energy ~3.1! with respect toS(x) in order to find the full
Hartree-Fock solution.

Equation~3.1! is not yet in a form suitable for numerica
calculations. The sum is badly UV divergent and the b
coupling constant appears in the second term. Let us iso
the UV divergent terms in the sum as follows: The sum o
negative energy states with short wavelengths is evalu
using perturbation theory. Provided we stay below the ene
of the last gap, we can simply use Eq.~2.9!,

2

L (
n5n̄

nL

E21,n'22E
k̄

L dk

2p S k1(
,

uS,u2

2~k2q,! D
'

k̄22L2

2p
1(

,

uS,u2

2p
ln

k̄2q,

L
~3.2!

( k̄5kn̄1p/L). The quadratic divergence is irrelevant a
can be eliminated by subtraction. The logarithmic diverge
is canceled by a corresponding divergence in the dou
counting correction as can be shown with the help of the
equation at zero density@10# ~we choose units such that th
vacuum fermion massm0 is equal to 1!,

1

Ng2
52E

0

L dk

2p

1

Ak211
5

1

p
ln~2L!. ~3.3!

The final expression for the regularized and renormali
ground state energy of a system with Fermi momentum
beled bynF is then
12501
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EHF

N
5

2

L (
n5nF

n̄

E21,n1
k̄2

2p
1

1

2p (
,.0

uS,u2ln@4~ k̄22q,
2!#.

~3.4!

Before turning to the results, we briefly discuss two limitin
cases where some analytical insight can be reached: The
density and the low density limit.

In thehigh density limit, perturbation theory becomes ap
plicable by virtue of asymptotic freedom. The only se
consistent perturbative solution we could find is one wh
S61Þ0 only and all orbits below the first gap are filled (kF
5q15p/a). Using Eq.~2.13! and the real variable

S̃15 iS1 , ~3.5!

the self-consistent potential reads

S~x!52S̃1sin~2px/a!. ~3.6!

Performing the renormalization along the lines describ
above leaves us with

EHF

N
5

kF
2

2p
1

S̃1
2

4p
@ ln~16kF

2S̃1
2!21#, ~3.7!

where the first term is the result for a free Fermi gas
massless quarks. Minimization with respect toS̃1 yields the
equation

S̃1ln~4kfS̃1!50 ~3.8!

with the two solutions

S̃150,
1

4kF
. ~3.9!

The nontrivial solution is lower in energy by

EHF

N
2S EHF

N D
0

52
1

64pkF
2

. ~3.10!

Evidently atT50 the discrete chiral symmetry does not g
restored at any finite density.

In the low density limit, S(x) is expected to be given by
well separated, equidistant kinks and antikinks. We theref
approximateS(x) by tanhx for 0,x,D and 1 for D,x
,a/4, then continue symmetrically. Evaluating the Four
coefficientsS̃, for such a potential, we obtain~in the limit
D→`)

S̃,5
2kF

sinh~p,kF!
. ~3.11!

The Fourier amplitudes satisfy some kind of scaling law,,S̃,

being a ‘‘universal function’’ of,kF . Roughly,S̃,;1/, and
the convergence of the Fourier expansion ofS(x) becomes
quite slow.
5-3



ur
it

f
ss
ts

ac
se
tt

D,
ity

n
-
ie
ig
ni
nt
i-

io

ow
nk
ial

la
ica
av
e

t
-
l cal-

ur
on

-
-
lso
he

su
ous

cal
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We now turn to the numerical results atT50. We have
carried out the above sketched diagonalization proced
The renormalized energy density was then minimized w
respect to the perioda and the Fourier coefficientsS, of the
periodic scalar potential. We typically work in a box o
lengthL51000~in units where the dynamical fermion ma
in the vacuum is 1!, taking into account Fourier componen
in Eq. ~2.6! up to ,523 if necessary. As far as the perioda
is concerned, we confirmed the results of Ref.@9#: The sys-
tem invariably adjusts its period such that the Fermi surf
coincides with the bottom of the first gap. This is of cour
reminiscent of the Overhauser effect in condensed ma
physics@12# ~for recent discussions in the context of QC
see Refs.@13–16#!. The spatially averaged baryon dens
per flavor is then given by

r

N
5

kF

p
5

1

a
. ~3.12!

In Fig. 1 we plot the most important Fourier compone
(S̃1) as a function ofkF and compare it with the two analyti
cal limits discussed above. The numerically found Four
component interpolates nicely between the low and h
density limits, a good test of the diagonalization and mi
mization procedure. Inclusion of higher Fourier compone
(,53,5, . . . ) isnecessary at lower densities. After minim
zation of the energy the correspondingS, are practically in-
distinguishable from the analytical result, Eq.~3.11!, so that
we refrain from showing any plot. A representative select
of the self-consistent Hartree-Fock potentialsS(x) is shown
in Fig. 2 for a range of densities. This figure illustrates h
S(x) interpolates between well separated kinks and antiki
(;tanhx) at low density and the perturbative potent
(;sin 2kFx) at high density.

The energy density obtained from our numerical calcu
tion is displayed in Fig. 3. The dashed curve is an analyt
approximation obtained by matching the asymptotic beh
ior at large and smallkF as follows: For low density, we hav
widely separated baryons of mass 2N/p; therefore,

FIG. 1. Dominant Fourier component of scalar potential ver
kF , compared with low-and high-density asymptotics.
12501
e.
h

e

er

t

r
h
-
s

n

s

-
l
-

EHF

N
'2

1

4p
1

2kF

p2
~kF→0!. ~3.13!

At high density, perturbation theory predicts@cf. Eqs. ~3.7!
and ~3.10!#

EHF

N
'

kF
2

2p
2

1

64pkF
2 ~kF→`!. ~3.14!

The two expressions~3.13! and~3.14! have been matched a
the point where they agree (kF50.55537). This simple esti
mate seems to catch the essence of a lengthy numerica
culation amazingly well.

In Fig. 4, we show the energy difference between o
solution and the standard solution of the GN model based
unbroken translational invariance~the dashed line is the per
turbative prediction!. The kink-antikink crystal is energeti
cally favored at all densities. Our results are of course a
lower than the more restricted variational calculation of t
kink-antikink crystal in Ref.@9#, the improvement being

s
FIG. 2. Spatial dependence of Hartree-Fock potential at vari

densities.

FIG. 3. Hartree-Fock energy density compared with analyti
approximation obtained by asymptotic matching.
5-4
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most significant at high densities. Finally, we can derive
baryon chemical potential from the slope of the curve
Fig. 3,

m5
]EHF

]r
. ~3.15!

In Fig. 5 we have plottedr/N vs m. As expected on the
basis of the low density limit, the curve starts atMB /N
52/p. It then rises steeply and approaches an asymp
The solid curve is the result of the conventional calculat
which involves a Maxwell-type construction. Here, the de
sity jumps discontinuously atm51/A2 where a first order
phase transition takes place. Our calculation is strongly
favor of a second order phase transition atm52/p ~or r
50). These results atT50 already indicate that the com
monly accepted phase diagram of the GN model is not
able.

FIG. 4. Ground state energy difference between kink-antik
crystal and translationally invariant solution.

FIG. 5. Mean baryon density versus chemical potential aT
50, compared to the translationally invariant case.
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IV. GRAND CANONICAL POTENTIAL

In this section, we collect the formulas needed for det
mining the phase diagram and computing thermodyna
observables in the grand canonical framework~see e.g.@17#!.
The starting point for the full, nonperturbative calculation
the formal expression for the grand canonical potential d
sity C (b51/T),

C

N
52

2

bL (
n50

nL

ln@~11e2b(En2m)!~11eb(En1m)!#

1
1

2Ng2L
E

0

L

dxS2~x!. ~4.1!

This quantity has to be minimized with respect toS(x).
From now on, single particle energies will be defined
positive energies, i.e.,En[E11,n . The sums over positive
and negative energy states correspond to the two factors
der the logarithm. The first term in Eq.~4.1! is easily recog-
nized as the ‘‘effective potential’’ expected for independe
fermions. The second term is identical to the double count
correction at zero temperature. Equation~4.1! is still sym-
bolic due to UV divergencies and requires some modifi
tions. We proceed exactly like in theT50 case, dividing up
the spectrum into two parts: Forn50 . . . n̄, the energiesEn
are obtained by diagonalization of the Dirac-Hartree-Fo
Hamiltonian in a large but finite box. Forn.n̄ we use the
perturbative single particle energies and replace the sum
an integral. Using the notation

«~k!5k1 (
,.0

uS,u2

2 S 1

k2q,
1

1

k1q,
D ~4.2!

for the perturbative energies andk̄ as defined after Eq.~3.2!,
we find

C

N
52

2

bL (
n50

n̄

ln@~11e2b(En2m)!~11eb(En1m)!#

2
2

bEk̄

` dk

2p
ln@~11e2b[«(k)2m] !~11e2b[«(k)1m] !#

1
k̄2

2p
1

m k̄

p
1

1

2p (
,.0

uS,u2ln@4~ k̄22q,
2!#. ~4.3!

Note carefully the signs in the various exponents. They a
because one has to pull out the sum over single particle
ergies fork. k̄ in order to perform the renormalization, c
Sec. III. As usual we have dropped the irrelevant diverg
terms

2
L2

2p
2

Lm

p
. ~4.4!

The quadratically divergent term is already familiar fromT
50, the linearly divergent term reflects the infinite bary
density of the Dirac sea. From Eq.~4.3!, all other thermody-
namic quantities~notably pressureP, baryon densityr, en-
tropy densitys, and energy densityu) follow in the standard
way,

k

5-5
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P52C, r52
]

]m
C,

~4.5!

s5b2
]

]b
C, u5Ts2P1mr.

In the chirally restored phase@S(x)50#, everything can be
trivially evaluated in closed form:

P

N
5

p

6
T21

m2

2p
2

1

4p
,

r

N
5

m

p
,

~4.6!
u

N
5

p

6
T21

m2

2p
1

1

4p
,

s

N
5

p

3
T.

V. REVISED PHASE DIAGRAM

According to common lore, the GN model has two pha
@3#: A chirally broken phase with a dynamical fermion ma
mÞ0 at low (m,T), and a chirally symmetric phase wit
massless fermions at highm and/orT ~chiral symmetry re-
ferring to the discrete symmetryc→g5c). These two
phases are supposedly separated by a second order line
from (m50,T5Tc) to (m5m t ,T5Tt) and a first order line
from the latter point to (m51/A2,T50). The critical tem-
perature at zero chemical potential has the valueTc5eC/p
50.56693, whereas the tricritical point is located atm t
50.60822,Tt50.31833. A mixed phase also appears wh
can be mapped out in other types of phase diagrams like
(u,r)- or (P,1/r)-plots, cf. Ref.@18#.

At variance with these results we have clearly identifi
three distinct phases in the (m,T)-diagram. In addition to the
two known ones there is a crystalline phase with brok
chiral and translational symmetry. These three phases ar
separated by second order lines which meet in one poin

We first explain how we have obtained the boundary
the chirally restored phase. A second order line separate
chirally restored phase from either the massive or the cry
phase, depending onm. Since the scalar potential vanish
continuously across this line, the line itself can be de
mined rigorously by using perturbation theory. We start fro
Eq. ~4.1!, add counter terms to the linearly and quadratica
divergent pieces of Eq.~4.4! and take the limitL→`, re-
placing the sum by an integral. SettingE(k)5k1D(k) and
linearizing inD(k) yields

C

N
52

2

bE0

L dk

2p
ln@~11e2b(k2m)!~11eb(k1m)!#1

L2

2p

1
Lm

p
1

1

2p
ln~2L!(

j
uSj u2

22E
0

L dk

2p
D~k!

sinhbk

coshbk1coshbm
. ~5.1!

Let us now assume that translational symmetry is also b
ken spontaneously and that—just like in Sec. III at ze
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temperature—onlyS61Þ0. Using the results for ADPT of
Sec. II, we find~with q[q15p/a)

D~k!5q2k1sgn~k2q!A~k2q!21uS1u2

1
uS1u2

2~k1q!
for kPFq

2
,
3q

2 G ,
D~k!5

uS1u2

2 S 1

k2q
1

1

k1qD
for 0,k,q/2, k.3q/2. ~5.2!

We can actually expand the square root inuS1u2 provided we
are careful about the treatment of the resulting pole in
integrand. One can easily convince oneself that one ha
take the Cauchy principal value part~this being the only
remnant of ADPT!. Dropping those terms which do not de
pend onS1 then yields

C

N
'

1

p
uS1u2F ln~2L!2«

0

L

dkS k

k22q2D sinhbk

coshbk1coshbmG .

~5.3!

The phase boundary for the second order transition unde
constraint thatq ~or a) has a given value is obtained from th
condition that the right-hand side of Eq.~5.3! vanishes. For
eachq this defines a curve in the (T,m)-plane. After a re-
scaling of variables,

k5bk, m85bm, L85bL, q85bq, ~5.4!

we can solve explicitly the condition that the coefficient
uS1u2 in Eq. ~5.3! vanishes with the result

bcrit~m8,q8!5 lim
L8→`

2L8expF~m8,q8,L8!, ~5.5!

where

F~m8,q8,L8!5«
0

L8
dkS k

~q8!22k2D sinhk

coshk1coshm8
.

~5.6!

If we plot Tcrit51/bcrit(m8,q8) againstmcrit5m8/bcrit for all
possible values ofq8, the envelope of the resulting family o
curves represents the sought for phase boundary. Inci
tally, since we allowq to vary freely, we can also conside
the limit q→0 in which the period of the crystal become
infinite. In this limit one recovers the results of the standa
GN model solution which are usually derived by assum
S0Þ0. Thus our method enables us to deal with the tran
tionally broken and unbroken situation on the same footi

In Fig. 6, we display a few representative curves obtain
from Eq. ~5.6!. In particular the curveABC corresponds to
q850. The sectionAB coincides with the second order lin
of the standard solution,B being the tricritical point@3#. This
part of the phase boundary survives if we relax the assu
tion of unbroken translational invariance.
5-6
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The true phase boundary beyond the tricritical point c
be generated as the envelope of the curves shown in Fi
For eachm.m t there is one particular curve~labeled byq)
which touches the envelope at thism-value. This allows us to
define a functionq(m) which describes how the period of th
crystal depends on the chemical potential along the ph
boundary. This is of some interest sinceq5p/a is an order
parameter for the breakdown of translational invariance
Fig. 7 we show the dependence of the order parameterq on
m as one moves along the phase boundary. The solid lin
the curveq5m which is approached asymptotically by th
full calculation. At m5m t , the tricritical point of the old
solution, we see a clear signal of a second order phase
sition with a breakdown of translational invariance. T
point B in Fig. 6 is therefore also a multicritical point in th
revised phase diagram. It plays a somewhat different
though. In fact, it has all the characteristics of a ‘‘Lifschi
point’’ in condensed matter theory@19#. This type of multi-
critical point has been discussed in the context of magn

FIG. 6. Perturbative determination of phase boundaries as
envelope of a family of curves. Each individual curve correpond
a certain wave number of the periodic potential.

FIG. 7. Wave number characterizing the crystal period along
phase boundary, showing the presence of a ‘‘Lifschitz point’’ atm t .
12501
n
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se

n

is

n-

le

ic

or liquid crystals which exhibit both periodic and homog
neous ordered phases. At the Lifschitz point the wave ve
of the periodic structure vanishes continuously, just like
Fig. 7.

One can determine the envelope of the curves from Fig
numerically and display it in the (T,m) diagram. The result
is drawn in Fig. 8 up tom51.5. For larger values of the
chemical potential, it is possible to derive the form of t
phase boundary analytically~see the Appendix! with the re-
sult

Tcrit5
eC

4pm
. ~5.7!

This curve does not intersect theT50 axis, as expected on
the basis of ourT50 results of Sec. III.

From Fig. 5 atT50 and Fig. 7 along the perturbativ
phase boundary one would expect another second order
joining the Lifschitz point (Tt ,m t) with the point (T50,m
52/p). The scalar potential is constant to the left of th
hypothetical line and periodic to the right, its perioda di-
verging as one approaches the line from the right. Since
amplitude is nonvanishing on both sides, we can no lon
invoke perturbation theory. We have determined this ph
boundary numerically by computing the value of the gra
canonical potential under the constraint that there are 0
potential wells in the interval of lengthL. This is done along
curves of constantT, varyingm in the relevant region. At the
critical line, all three values of the potential should conver
for sufficiently largeL. Thereby, one can locate the value
m where the instability with respect to breakdown of tran
lational invariance~kink-antikink formation! sets in. For
technical reasons, this particular calculation was done i
much smaller interval (L'40–80) but the results are stab
with respect to increasingL within the accuracy of our plot.
The resulting critical line is also included in Fig. 8. Th
tricritical point of the old solution coincides with the poin
where all three phase boundaries meet. The dashed cur

he
o

e

FIG. 8. Revised phase diagram of the GN model in t
(T,m)-plane. The dashed line is the first order phase boundary f
the previous, translationally invariant calculation.
5-7
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M. THIES AND K. URLICHS PHYSICAL REVIEW D67, 125015 ~2003!
the first order line of the old solution@3# which has now
become obsolete. It has only been included to highligh
which way the phase diagram changes.

A perhaps physically more illuminating way of presenti
the phase diagram is given in Fig. 9 where we have tra
formed our phase boundaries into the (T,r)-plane. Here, the
first order line of the old solution splits up into the tw
dashed lines which delimit the mixed phase region~droplets
of chirally restored matter in the chirally broken vacuum!.
This should be replaced now by the two solid lines go
downward from the former tricritical point and enclosing t
crystal phase. In the new solution atT50 the crystal phase is
stable at all finite densities. If one increases the tempera
at fixed density, the outcome depends on the value ofr. For
r.r t5m t /p, when crossing the new phase boundary o
goes directly into the chirally and translationally restor
phase in a second order transition. Forr,r t , translational
invariance is restored first. At some higher temperature
dynamical fermion mass vanishes and chiral symmetry g
restored as well.

Our results suggest that the phase transition between
crystal and massive Fermi gas is also a second order tra
tion. Since the corresponding phase boundary has only b
obtained numerically, we have computed various thermo
namic observables along isotherms in the (T,m)-plane to
check whether they are indeed continuous. In the old s
tion, quantities liker,s,u are discontinuous across the fir
order line. By contrast, we see no discontinuity in any
these quantities within our numerical accuracy. This is illu
trated by way of example in Fig. 10 for the entropy densits
as a function ofm ~at T50.1). Whereas in the old solutio
the entropy exhibits a huge discontinuity and jumps to
chirally restored value of Eq.~4.6! at the first order phase
transition, the crystal solution interpolates smoothly betwe
the massive and massless Fermi gas. It shows no sign w
soever of a latent heat. The corresponding curves forr andu
also favor a second order transition. Since here the varia
near the phase transition is more rapid and it is difficult to

FIG. 9. Revised phase diagram of the GN model in
(T,r)-plane. The dashed lines belong to the old phase diagr
where they enclose the mixed phase. This ‘‘droplet’’ region is
perseded by the crystal phase featuring baryons.
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accurate computations very close to the phase bound
these other observables are less well suited for judging
order of the phase transition and will not be shown here.

Finally, we wish to point out that one can do more an
lytical work on the crystal phase in the asymptotic region
largem and largeb. As derived in the Appendix, the relatio
between 4mS̃1 and 4mT in the crystal phase at largem is the
same as the one betweenm andT in the massive Fermi ga
phase atm50, see Fig. 11. We do not really understand t
reason for this interesting kind of scaling behavior. It m
point to additional simplifying features which we have n
yet fully exploited.

VI. SUMMARY AND PERSPECTIVE

Let us summarize our findings about the phase struc
of the GN model and try to understand the essential und

,
-

FIG. 10. Entropy density versus chemical potential atT50.1
showing the absence of latent heat, in contrast to the translation
invariant case.

FIG. 11. Asymptotic behavior of the amplitude of the period
scalar potential versus temperature, valid for largem. The curve
shown is identical to the dependence of the fermion massm on T at
m50.
5-8
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lying physics. Together with our earlier results for the G
model with continuous chiral symmetry@7# ~or equivalently
the ‘‘two-dimensional Nambu–Jona-Lasinio (NJL2) model,’’
we are now in a position to cover both variants of the mo
and compare their phase structure. So far, it has been
sumed that the phase diagrams are the same for the dis
and continuous cases@18# and exhibit two phases: Massiv
and massless fermions. The only symmetry issue consid
was the breakdown of chiral symmetry. The phase bound
in the (m,T)-diagram had lines of first and second ord
transitions as well as a tricritical point. Because of the fi
order transition a mixed phase could also appear.

The central result of our investigation is the fact that bo
of these model theories can break translational invarianc
well. Since this is a continuous symmetry, the largeN limit is
of course instrumental for the phase structure@2,6#. We will
now argue that the dynamical mechanism behind the bre
down of chiral symmetry in the vacuum and translation
symmetry in baryonic matter is actually the same.

Our point can most clearly be made atT50. Let us first
recall the structure of baryonic matter in the NJL2 model.
The condensate is best pictured as a helix in the sp
spanned bŷ c̄c&, ^c̄ ig5c&, andx ~the ‘‘chiral spiral’’ @7#!.
Since the chiral winding number is equal to the baryon nu
ber, each full turn of the helix correponds to one baryon.

From the point of view of Hartree-Fock theory, it is in
structive to take a look at the single fermion spectrum. In
vacuum one has dynamical mass generation with the s
trum sketched in Fig. 12. Because of the peculiar proper
of this model, the whole picture drawn in Fig. 12 just mov
upward or downward by an amountm at finite chemical
potential. In Fig. 13, we illustrate the filling of single partic
orbits for vacuum, matter and antimatter~at T50), respec-
tively. We see that there is always a gap of the same w
‘‘floating’’ at the Fermi surface. This enables the system
make optimal use of the level repulsion at the gap for lo
ering its energy. The important dynamics is gap formation
the Fermi surface, which reduces to the surface of the D
sea in the special caser50. The system breaks whatev
symmetry it takes to generate the gap, either chiral symm

FIG. 12. Single particle energy spectrum for the NJL2 model
with dynamical mass gap.
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in the vacuum or chiral and translational symmetry in mat
~with one unbroken combination of the two!. This scenario
has a lot in common with the Overhauser effect, origina
discovered in nonrelativistic Hartree-Fock systems@12#. The
nice feature about the present relativistic application is
intimate relationship between mass gap and band gap. N
that in the NJL2 model the single particle spectra for matt
(m.0) and antimatter (m,0) are different, although the
energy densities agree~for the sameumu). This follows from
the fact that under charge conjugation

cc~x!5g1c* ~x!, ~6.1!

the scalar potential is invariant but the pseudoscalar
changes sign.

Now consider the discrete chiral GN model atT50. Here
the potential is purely scalar and identical for matter a
antimatter. The single particle spectrum is sketched in F
14 for the high density case (S61Þ0 only!, showing the

FIG. 13. Schematic plot illustrating the filling of single partic
states in the NJL2 model for vacuum (m50), matter (m.0) and
antimatter (m,0), respectively. Dark dashed regions: filled orbi
light dashed: empty orbits, white: energy gaps.

FIG. 14. Same as Fig. 12, but for the discrete chiral GN mod
The gaps are due to the periodic scalar potential.
5-9



th
d
e

f t
n
h
th
o

he
th
le
v

al
th
th
l
h
tz
r
rm
te

u
ov
a
x

h
n

de
e

ira

yo
n

the
int
ure
on-
re

.

e-
n-
in

grals

e

M. THIES AND K. URLICHS PHYSICAL REVIEW D67, 125015 ~2003!
appearance of a symmetric pair of gaps.~For lower densities,
more gaps would appear, but they are not relevant for
argument.! The filling of the single particle orbits is indicate
in Fig. 15 which now replaces Fig. 13. The common them
evidently gap formation right at the Fermi surface.

Turning to nonzero temperature the phase diagrams o
two GN models are very different, both from each other a
from what had previously been thought. The continuous c
ral model possesses two phases, the ‘‘chiral spiral’’ and
chirally symmetric massless Fermi gas, separated by a h
zontal second order lineT5Tc @2#. Temperature affects only
the radius of the helix, chemical potential affects only t
helix angle, and the two act independently. By contrast
discrete chiral model exhibits three distinct phases: Mass
and massive Fermi gas and kink-antikink crystal. We ha
not been able to compute the full phase diagram analytic
in this case but had to resort to a numerical solution of
Dirac-Hartree-Fock equations. The phase boundary of
chirally restored phase and the grand canonical potentia
largem,b can be understood perturbatively. We find that t
tricritical point of the old solution is replaced by a Lifschi
point separating the homogeneous from the periodic orde
phase. Due to thermal effects which smear out the Fe
surface, the massive Fermi gas phase survives at higher
peratures and smallm.

We have not found any first order transition in our calc
lations. As suggested by Fig. 9 the crystal phase takes
the role played by the mixed phase in the old solution,
though the quantitative details are quite different. As e
plained in Ref.@7#, droplets of chirally restored matter wit
extra fermions can be interpreted as ‘‘bag model’’ baryo
with a mass ofMB5N/A2. This ‘‘wrong’’ baryon mass
leaves its traces in the old phase diagram of the GN mo
for instance in the value ofmc where the first order phas
transition takes place atT50 ~the droplets fill all space!, or
equivalently in the slope of the energy densityEHF(r) at r
50. In the revised phase diagram for the discrete ch
model, the correct, lower baryon mass (MB52N/p) appears
instead. The continuous chiral model has massless bar
and consequently the structure of the phase diagram cha

FIG. 15. Same as Fig. 13, but for the discrete chiral GN mod
As in Fig. 13, there is always a gap at the Fermi surface.
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qualitatively. Again, the behavior ofEHF(r) at r50 ~vanish-
ing slope! reflects the presence of massless baryons and
breakdown of translational invariance is shifted to the po
m50. This shows that we have achieved an overall pict
of the phase structure of both GN models which is now c
sistent with their different baryon spectra and therefo
physically more reasonable.
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APPENDIX: ASYMPTOTICS AT LARGE µ AND b

At large m andb one can use perturbation theory to d
termineS61. The starting point is the grand canonical pote
tial of Eq. ~4.1!. Single particle energies can be computed
ADPT, Eq.~2.13!. DenotingS̃15 iS1 by s andq15p/a by q
to ease the notation, find

C

N
52

2

bE0

q/2 dk

2p
ln@~11e2b(E12m)!~11eb(E11m)!#

2
2

bEq/2

q dk

2p
ln@~11e2b(E22m)!~11eb(E21m)!#

2
2

bEq

3q/2 dk

2p
ln@~11e2b(E32m)!~11eb(E31m)!#

2
2

bE3q/2

L dk

2p
ln@~11e2b(E12m)!~11eb(E11m)!#

1
L2

2p
1

Lm

p
1

1

p
ln~2L!s2, ~A1!

with

E15k1
s2

2 S 1

k1q
1

1

k2qD ,

E25q2A~k2q!21s21
s2

2~k1q!
,

E35q1A~k2q!21s21
s2

2~k1q!
.

~A2!

Asymptotically, we may usem52q, cf. Fig. 7. Then, inte-
grals involving

e2b(E12m), e2b(E22m), e2b(E32m) ~A3!

are exponentially suppressed and can be neglected. Inte
involving

eb(E11m) ~A4!

are negligible in the first term of Eq.~A1! (k50 . . .q/2),
while in the fourth term (k53q/2 . . .L) one has to pull out
the T50 piece as follows:

l.
5-10
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11eb(E11m)5eb(E11m)~11e2b(E11m)!. ~A5!

Now, theTÞ0 part is negligible. Finally, in the third term o
Eq. ~A1!, we again decompose

11eb(E31m)5eb(E31m)~11e2b(E31m)!, ~A6!

but have to keep both pieces. In this way we find

C

N
52

2

bEq/2

q dk

2p
ln~11eb(E21m)!

2
2

bEq

3q/2 dk

2p
ln~11e2b(E31m)!

22E
q

3q/2 dk

2p
~E31m!22E

3q/2

L dk

2p
~E11m!

1
L2

2p
1

Lm

p
1

1

p
ln~2L!s2. ~A7!

Finally, the following approximations can be made: Evalu
the integrals overE1 and E3 exactly and expand the resu
for small s up to second order, keeping the logarithmic c
rections. In the other integrals, drop thes2-term in E2 ,E3
and extend the integration limits to (2` . . . q) and
(q . . . `), respectively. Keeping only thes-dependent terms
in C yields the simple final result

C

N
52

s2

4p
@122 ln~4sq!#2

2

pbE0

`

dk ln~11e2bAk21s2
!.

~A8!

All of these approximations have been checked numeric
against the full result.

Before proceeding, let us compare this result with the o
which assumes unbroken translational invariance, but ta
at TÞ0,m50,

C

N
52

m2

4p
~12 ln m2!2

2

pbE0

`

dk ln~11e2bAm21k2
!.

~A9!

The structure is almost the same, sincem has been ‘‘eaten
up’’ by q from the single particle energies in Eq.~A8!. Let us
recall how to evaluatem(T) at m50 ~here, the old solution
was correct!. Take the derivative of the grand canonical p
tential with respect tom and set it equal to zero,
12501
e

-

ly

e
en

-

mF ln~m!12E
0

` dk

Am21k2 S 1

ebAm21k2
11

D G50.

~A10!

Rescaling the integration variable and settingm̃5bm then
yields the solution

b5m̃ expH 2E
0

` dk

Am̃21k2

1

e
Am̃21k2

11
J . ~A11!

If we evaluate the function on the right-hand side and p
m̃/b against 1/b, we recover the usual result for the tem
perature dependent mass, vanishing atTc5eC/p. That the
Euler constant appears inTc follows from the following use-
ful relation @20#:

E
0

` dq

Aa21q2

1

e
Aa21q2

11
52

1

2
ln

a

p
2

1

2
C1O~a2!.

~A12!

If we now go back to Eq.~A8! for the periodic case and
minimize with respect tos, we find

sF ln~4sq!12E
0

` dk

As21k2 S 1

ebAs21k2
11

D G50.

~A13!

This can be solved explicitly forq as a function ofs,b. The
result can of course only be trusted ifq and b are large
enough. We can reduce this problem to the preceding
~GN model atm50) as follows: The relation between 4qs
and 4qT in the crystal model is given by the same ‘‘univers
curve’’ as the one betweenm andT at m50.

We finally note the following consequences of o
asymptotic analysis (m.0): The boundary line in the (s,m)
plane at largem andT50 is given by

s5
1

4m
, ~A14!

in agreement with Eq.~3.9!. The boundary line in the (T,m)
plane ats50 has the asymptotic form

T5
eC

4pm
. ~A15!
,
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